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Abstract

It is shown that the pseudovariety R of all finite R-trivial semi-
groups is completely reducible with respect to the canonical signature.
Informally, if the variables in a finite system of equations with ratio-
nal constraints may be evaluated by pseudowords so that each value
belongs to the closure of the corresponding rational constraint and
the system is verified in R, then there is some such evaluation which
is “regular”, that is one in which, additionally, the pseudowords only
involve multiplications and ω-powers.
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1 Introduction

1.1 Framework

Since the 1960’s, the theory of finite semigroups has drawn a strong moti-
vation from applications in computer science, namely as a natural algebraic
framework for classifying combinatorial phenomena described through fi-
nite automata, rational languages, or various kinds of logical formalisms
[30, 31, 40, 41, 52]. A central question in problems arising from such appli-
cations is to determine effectively whether a given finite semigroup belongs

∗Centro de Matemática da Universidade do Porto, Departamento de Matemática Pura,
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to a fixed pseudovariety (that is a class closed under taking homomorphic
images, subsemigroups, and finite direct products) or to show that there is
no algorithm that solves the membership problem for the pseudovariety.

Pseudovarieties are often defined by describing a set of generators, which
are usually constructed by applying some natural algebraic construction to
members of given pseudovarieties. Thus, for two given pseudovarieties U

and V, the central problem translates into solving the membership problem
for their join U∨V, their semidirect or wreath product U ∗V, their bilateral
semidirect or block product U � V, their Mal’cev product U©m V, or the
power PV. While there is no hope for a universal solution of this type
of problem, as it has been shown that none of these operators preserves
decidability of the membership problem [1, 47, 48, 23], in many particular
cases the problem can be solved by exploring special structural features of
the semigroups involved.

An approach which has emerged from the work of several researchers
consists in finding stronger properties on the pseudovarieties upon which the
operators are to be applied that will ensure that the resulting pseudovarieties
will have decidable membership problem [6, 49]. This has been achieved with
various degrees of generality for different operators. Ideally, the properties
would be stronger than decidability of the membership problem and they
would be preserved under the operators. At present no (reasonable) such
properties have been established.

The key property which intervenes in the partially successful approach
has been formulated by Steinberg and the first author [16, 15], following ear-
lier attempts by the first author [3] and extending seminal work by Ash [22].
Basically, Ash’s theorem establishes the key property for the pseudovariety
of all finite groups, thereby proving the type II and pointlike conjectures
of Rhodes [32]. The key property has been called inevitability by Ash, for
whom it appeared in the special case of the pseudovariety of all finite groups
under a very particular form which is not readily extendible to other pseu-
dovarieties, and reducibility by Steinberg and the first author (see [6] and
Section 3 for further details).

1.2 Reducibility

The definition of reducibility is motivated by two observations. First, a
pseudovariety defined from pseudovarieties with decidable membership by
applying computable operators (which is the common situation) is recur-
sively enumerable, so there already exists a semi-algorithm for testing mem-
bership. Second, one can obtain in many cases a description of such a
pseudovariety in terms of pseudoidentities1. A typical situation in which

1Recall that a pseudoword is an element of an A-generated free profinite semi-
group ΩAS, where A is a finite alphabet. A pseudoidentity (u, v) is a pair of pseudowords,
noted u = v. A semigroup S satisfies the pseudoidentity u = v, written S |= u = v, if
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such a description can be achieved occurs in the computation of Mal’cev
products: a pseudoidentity basis for U©m V is obtained by substituting,
in each pseudoidentity of a basis Σ of U, all letters by pseudowords eval-
uating on V to the same idempotent [42]. Thus, a semi-algorithm for
non-membership of a finite semigroup S to U©m V amounts to finding a
pseudoidentity u(z1, . . . , zn) = v(z1, . . . , zn) of Σ on alphabet {z1, . . . zn}
and pseudowords w1, . . . , wn evaluating to the same idempotent on V, such
that S fails u(w1, . . . , wn) = v(w1, . . . , wn). This is equivalent to finding
s1, . . . , sn ∈ S with u(s1, . . . , sn) 6= v(s1, . . . , sn) and a continuous morphism
ϕ : ΩAS → S, such that there exist w1, . . . , wn ∈ ΩAS satisfying

V |= w2
1 = w1 = w2 = · · · = wn, and (1.1)

ϕ(wi) = si for i = 1, . . . , n. (1.2)

Let X = {x1, . . . , xn} be a set of variables. In the present situation, the
function mapping xi to wi is called a solution modulo V of the system

x2
1 = x1 = x2 = · · · = xn

with constraints (s1, . . . , sn) ∈ Sn associated to (x1, . . . , xn).
Since U is decidable, one can enumerate all tuples (s1, . . . , sn) of S failing

a given pseudoidentity of U. Therefore, deciding membership in U©m V is
reduced to obtaining a semi-algorithm for solving a system (1.1) of word
equations modulo the pseudovariety V, where solutions are pseudowords
constrained, by (1.2), to be chosen from the given clopen sets ϕ−1(si), that is
from the topological closure of given rational languages of A+ [2, Section 3.6].

Now, the universe of possible solutions is far too large, namely uncount-
able provided A 6= ∅, to permit an algorithmic treatment. Informally, the
pseudovariety V is said to be reducible if every such system which has a
solution also admits a solution using pseudowords of a restricted kind. To
define the restricted pseudowords, one fixes a set of pseudowords σ, called
an implicit signature. Elements of σ can be naturally viewed as (implicit)
operations under substitution, and one takes those pseudowords which can
be generated from the letters of A by applying these operations. We say that
V is σ-reducible for a class of equation systems if the existence of a solution
modulo V of any system in the class entails the existence of a solution in
σ-terms. The signature σ should also possess reasonable algorithmic prop-
erties, in order for the σ-reducibility of a pseudovariety to imply decidability
of its membership problem:

(1) as a set, σ should be recursively enumerable;

ϕ(u) = ϕ(v) for any continuous morphism ϕ : ΩAS → S. Given a set Σ of pseudoidentities,
the class JΣK of all finite semigroups satisfying all pseudoidentities of Σ is a pseudovariety.
Conversely, any pseudovariety is of the form JΣK, and one says that it is defined by the
pseudoidentity basis Σ [46]. See [2] and Section 3.
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(2) as implicit operations, the elements of σ should be effectively computable
in finite semigroups;

(3) the word problem for the free σ-algebra in the variety generated by V

should be decidable.

Properties (1) and (2) mean that σ forms a countable set {π0, π1, . . .}, and
that there exists a Turing machine outputting a sequence of Turing ma-
chines M0,M1, . . ., where Mi computes the implicit operation πi. That is,
given a semigroup S and elements s1, . . . , ski

of S, where ki is the arity of
πi, the machine Mi outputs πi(s1, . . . , ski

). From hereon, we only consider
signatures satisfying the algorithmic properties (1)–(3).

These properties, combined with the narrowing of the set where solu-
tions can be searched for (that is, σ-reducibility), yield a semi-algorithm
for solving systems modulo V with constraints: by (1), one can enumerate
tuples w1, . . . , wn of elements of the free σ-algebra as candidates for a solu-
tion; by (2), one can evaluate them in finite semigroups so that (1.2) can be
checked; finally by (3) one can test whether a candidate tuple satisfies an
equation system, such as (1.1).

The restriction on the form of the equation systems is motivated by
decidability results we want to obtain. For instance, systems of the form
x2

1 = x1 = x2 = · · · = xn are those that are required to obtain decidabil-
ity results for Mal’cev products. For some semidirect products, the Basis
Theorem [20]2 leads to the same reduction. In this case, the systems are as-
sociated with finite directed graphs as follows: the variables are the vertices
and the edges of the graph; for each edge v

e
−→ w, the system includes the

equation ve = w. Initially, it was this latter type of system that was consid-
ered in [16], where a pseudovariety V is called σ-tame if it is σ-reducible for
such equation systems, and satisfies (1)–(3). These systems are one-sided:
the variables y in equations xy = z can only appear once in the whole sys-
tem, whereas the variables x and z may appear several times and in either
position. This means in particular that proving that V is tame does not in
general entail that the dual pseudovariety is also tame. To overcome this
difficulty and to treat globally a more general situation, the notion of com-
plete σ-tameness (also called complete σ-reducibility in this paper, under
the assumption of (1)–(3)) was introduced in [6] to refer to a pseudovariety
which is σ-reducible for all finite systems of pseudoword equations in which
the pseudowords that define the equations are given by σ-terms. Unlike
tameness, this property is inherited by the dual pseudovariety.

2The proof of the Basis Theorem is known to have a gap in its full generality. However,
the statement holds in some relevant cases. Whether it is valid in full generality remains
an open problem. See [6, 53, 49] for further information.
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1.3 Known results

The implicit signature most often consists of just two pseudowords: ab,
representing semigroup multiplication, and aω−1, the unary pseudoinverse
which, evaluated on an element s of a profinite semigroup, takes the value of
the unique inverse of se in the maximal subgroup of the closed subsemigroup
generated by s, where e denotes the idempotent of that subgroup. Following
[15], we will say that this signature is canonical, and denote it κ.

There are several examples of reducibility results in the literature. In
the following incomplete sample, if no mention to the contrary is made, the
implicit signature is canonical. The pseudovariety G of all finite groups is
tame by the theorem of Ash [22] mentioned above together with a little
extra work [3, 15]. To justify the interest of the notion of reducibility, it
is also worth mentioning that the reducibility of G has been rediscovered
in disguise in Model Theory [33, 12, 13]. On the other hand, G is not
completely κ-tame by [29]. In contrast, the pseudovariety Gp of all finite p-
groups is not tame [15] for the canonical signature, basically because the free
group is residually a finite p-group for every prime p [25]. However, using
results of several authors [50, 38, 51] and analogies with Symbolic Dynamics,
the first author has exhibited an infinite implicit signature with respect to
which Gp is tame [5]. The pseudovariety Ab of all finite Abelian groups is
completely tame [14]. The pseudovariety LSl of all finite local semilattices
is tame [28]. The pseudovariety R of all finite semigroups in which the
Green relation R is trivial is tame, which entails the reducibility of several
associated pseudovarieties such as R ∨ G [11]. Earlier attempts to extend
the reducibility of R to more general systems of equations, with the aim of
proving that the dual pseudovariety L, of all finite L-trivial semigroups, is
also reducible have only succeeded in some very special cases [4].

1.4 Contributions

The present paper explores the methods of Makanin [36, 37] (see also [35,
Chapter 12]) and a good knowledge about the structure of free pro-R semi-
groups [19, 21] and particularly of the free κ-algebras in the variety generated
by R [21], to prove that R is completely reducible. The strong analogy be-
tween Makanin’s algorithm to solve, in free semigroups, systems of word
equations, also with rational constraints on the variables, and our reducibil-
ity problem in general stems from the fact that the algorithm consists in a
skillful combinatorial analysis to reduce the existence of an arbitrary solu-
tion of a given system to the existence of a solution of a special kind, namely
one whose exponents of periodicity are kept under control.

The basic difficulty in dealing with word equations, also when pseu-
dowords are involved, is the propagation of factorizations resulting from the
appearance of the same variable in different places. This problem is suitably
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handled by Makanin’s algorithm when solutions in words are sought, com-
putable bounds being established for how far the refinement process needs to
be performed. The difficulty is in a sense of the same nature when a similar
method is applied for a pseudovariety V such that, for two factorizations of
the same pseudoword modulo V, there is a notion of common refinement.
This is the case for R, but also for many pseudovarieties, and so, it should
be possible to extend the methods developed in this paper to establish com-
plete reducibility in other cases. It is with such extensions in mind that we
formulate in Section 3 a number of simplifications of the problem for general
pseudovarieties3.

A key difficulty is that it may be necessary to continue the refine-
ment process of factorizations indefinitely and even infinitely often (which
of course is not the case for finite words), but it will hopefully be possible
to take advantage of regularity patterns to obtain the desired reducibility
result. This program is carried out successfully in this paper for the pseu-
dovariety R.

The paper is organized as follows. We set up the notation in Section 2.
We show in Section 3 that for a broad class of pseudovarieties including R,
proving reducibility for general equation systems (with variables as well as
parameters) can be reduced to solving the problem for systems consisting
in a single equation without parameters. The structure of pseudowords of
ΩAR, which can be seen as particular labeled ordinals, is reviewed in Sec-
tions 4 and 5, and exploited in Section 6 to further simplify the equation
systems. In Section 7, we formulate the problem in terms of systems of
boundary equations. The main tools to manipulate these systems are pre-
sented in Section 8. Finally, the problem formulated in Section 7 for systems
of boundary equations is solved in Section 9.

2 Definitions and notation

Given a semigroup S, we let ≤R ⊆ S × S be the relation defined by s ≤R t
if and only if sS1 ⊆ tS1. The Green relation R is defined by s R t if and
only if s ≤R t and t ≤R s. We write s <R t if s ≤R t, and s and t are not
R-equivalent. A semigroup is R-trivial if s R t implies s = t. We denote by
R the pseudovariety of all R-trivial semigroups.

A finite semigroup is viewed as a topological semigroup under the discrete
topology. Recall that a profinite semigroup is a compact residually finite
semigroup. More generally, if V is a pseudovariety of semigroups, then a
pro-V semigroup is a compact semigroup which is residually in V. The free

3To solve word equations, there is a more efficient (Pspace) algorithm than Makanin’s,
due to Plandowski [44, 45]. We are concerned here with an abstract property rather than
the construction of an algorithm, and there is no complexity issue in this paper. This
justifies the use of Makanin’s ideas rather than Plandowski’s, since the former seem to be
more adjusted to the current problem.
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pro-V semigroup on a free finite set of generators A (also called an alphabet)
may be constructed as the completion ΩAV of the free semigroup A+ with
respect to the (pseudo) ultrametric defined by dV(u, v) = 2−rV(u,v), where
rV(u, v) is the smallest cardinality of a semigroup S ∈ V such that S fails the
identity u = v, in case such a semigroup exists, and dV(u, v) = 0 otherwise.
See [8] for further details.

In particular, it is important to note that indeed ΩAV has the universal
property which justifies calling it a free pro-V semigroup on the set A of free
generators: given any function ϕ : A → S into a pro-V semigroup S, there
is a unique continuous homomorphism ϕ̂ : ΩAV → S such that ϕ̂ ◦ ι = ϕ,
where ι : A→ ΩAV is the natural mapping (that associates with each letter
a ∈ A the equivalence class of the constant sequence with value a). The
mapping ϕ̂ is also said to be induced by ϕ. It follows that, if A is a subset
of the finite set B, then the unique continuous homomorphism ΩAV → ΩBV

induced by the inclusion mapping A →֒ B is injective. We will identify ΩAV

with its image and therefore view ΩAV as the closed subsemigroup of ΩBV

generated by A.
Let S be the pseudovariety of all finite semigroups. The elements of

(ΩAS)1, over arbitrary finite alphabets A, will be called pseudowords. They
may also be viewed as A-ary implicit operations on profinite semigroups
as follows: given a profinite semigroup S, a pseudoword w ∈ ΩAS, and an
evaluation mapping ϕ : A → S, since ΩAS is freely generated by A as a
profinite semigroup, there is a unique extension of ϕ to a continuous ho-
momorphism ϕ̂ : ΩAS → S. We let wS(ϕ) = ϕ̂(w). This interpretation
of w as an operation, which is also called the natural interpretation, com-
mutes with continuous homomorphisms between profinite semigroups. In
particular, if S = 2A is the semigroup of all subsets of A under the op-
eration of binary union and ϕ : A → S sends each letter a to {a}, then
w ∈ ΩAS 7→ wS(ϕ) ∈ 2A is a continuous homomorphism which is denoted
by c and which is known as the content function. A letter a is said to occur
in the pseudoword w if a ∈ c(w).

A pseudoidentity is a formal equality of the form u = v with u, v ∈ ΩAS

for some finite alphabet A. We say that a profinite semigroup S satisfies
u = v and we write S |= u = v if uS = vS . A class C of profinite semigroups
satisfies a set Σ of pseudoidentities, noted C |= Σ, if every semigroup of C

satisfies every pseudoidentity of Σ. Note that if c(u)∪c(v) ⊆ A, then ΩAV |=
u = v if and only if every pro-V semigroup satisfies the pseudoidentity u = v,
that is, if and only if V |= u = v, in which case we will sometimes also write
u =V v.

We start with the formal setup of the problem of reducibility of a system
of equations for a general pseudovariety V of semigroups. Let X be a finite
set, whose elements will be the variables of the system which are to be
evaluated in order to solve the system. We also consider a finite set P of
parameters, disjoint from X, whose evaluation is fixed from the start. In
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word equations with rational constraints on the variables, there is no need
for parameters as the evaluation of a variable can be fixed by stipulating
a singleton rational constraint. This gimmick does not work in the setting
of a free profinite semigroup with clopen constraints since the only clopen
singletons are those consisting of finite words. Yet we show in Proposition 3.1
below that parameters may be systematically avoided in some circumstances.

We consider a finite system of pseudoword equations

ui = vi (i = 1, . . . , r), (2.1)

where each of the pseudowords ui and vi belongs to the free profinite semi-
group ΩX∪P S. We also fix a finite set A which is the free generating set of
the free profinite semigroup ΩAS in which “solutions modulo V” are sought.
To each x ∈ X we associate a constraint which is a clopen subset Kx of ΩAS.
To each parameter p ∈ P we associate an element πp ∈ ΩAS. A solution of
the system (2.1) modulo V satisfying the constraints is given by a continuous
homomorphism δ : ΩX∪P S → ΩAS such that the following conditions are
satisfied:

(1) δ(x) ∈ Kx for every x ∈ X;

(2) δ(p) = πp for every p ∈ P ;

(3) the pseudovariety V satisfies each of the pseudoidentities δ(ui) = δ(vi)
(i = 1, . . . , r).

Let σ be an implicit signature, by which we mean a set of pseudowords
including the pseudoword ab ∈ Ω{a,b}S. Under the natural interpretation of
the elements of σ, every profinite semigroup may be viewed as a σ-algebra
in the sense of Universal Algebra [27]. The σ-subalgebra of ΩAS generated
by A is denoted Ωσ

AS and can be easily shown to be freely generated by A
in the variety of σ-algebras generated by the pseudovariety S of all finite
semigroups. The most encountered example of such a signature is {ab, aω−1},
where the implicit operation aω−1 is defined in Section 1.

Consider a system of the form (2.1), with clopen constraints Kx ⊆ ΩAS

(x ∈ X), with the restrictions that ui, vi ∈ Ωσ
X∪P S and for every parameter

p ∈ P , πp ∈ Ωσ
AS. Assume that this system has a solution modulo V. The

pseudovariety V is said to be σ-reducible for this system if it also has a
solution δ : ΩX∪P S → ΩAS modulo V with the additional property δ(X) ⊆
Ωσ

AS. We call such a function δ a solution modulo V in σ-terms. We say
that V is completely σ-reducible if it is σ-reducible for every such system.

3 Preliminary simplifications

Let us proceed with the simplifications which are the objective of this section.
The first one consists in a simple observation stating that, just as in the
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word case, we may consider only systems without parameters, even though
parameters cannot be directly captured by the constraints as in the word
case.

Proposition 3.1 Let V be an arbitrary pseudovariety. If V is σ-reducible
for systems of equations of σ-terms without parameters, then V is completely
σ-reducible.

Proof. Consider a system of the form (2.1) with ui, vi ∈ Ωσ
X∪P S, clopen

constraints Kx ⊆ ΩAS (x ∈ X), and parameter values πp ∈ Ωσ
AS (p ∈ P ).

We consider an enlarged set of variables Y = X ⊎A together with an empty
set of parameters. The constraints for the elements of X are kept as given
while, for each new variable a ∈ A, the corresponding constraint is the
singleton set Ka = {a} (which is clopen in ΩAS). We also modify the
equations as follows. We consider the unique continuous homomorphism
ψ : ΩX∪P S → ΩY S mapping each element of X to itself and each p ∈ P
to πp, which can now be viewed as an element of ΩY S (since A ⊆ Y ) as
argued in Section 2. Note that, since πp ∈ Ωσ

AS for all p ∈ P , ψ maps each
u ∈ Ωσ

X∪P S to ψ(u) ∈ Ωσ
Y S: since ψ simply replaces some letters in σ-terms

by σ-terms, it maps a σ-term to a σ-term. We consider the new system

ψ(ui) = ψ(vi) (i = 1, . . . , r) (3.1)

over the set of variables Y under the constraints Ky (y ∈ Y ).
Suppose that δ : ΩX∪P S → ΩAS is a solution modulo V of the sys-

tem (2.1) under the original constraints and parameter values. Then δ(p) =
πp for every p ∈ P so that the unique continuous homomorphism δ′ : ΩY S →
ΩAS which is the identity on A and coincides with δ on X is such that
δ′ ◦ ψ = δ and so δ′ is a solution modulo V of the new system (3.1).
Conversely, assume that ε′ : ΩY S → ΩAS is a solution modulo V of the
system (3.1) under the constraints Ky (y ∈ Y ). It is then a routine mat-
ter to check that ε = ε′ ◦ ψ is a solution modulo V of the original sys-
tem (2.1). For instance, to verify that ε(p) = πp for every p ∈ P , since
ε(p) = ε′(ψ(p)) = ε′(πp), it suffices to observe that ε′(πp) = πp because
ε′(a) ∈ Ka = {a} for every a ∈ A and πp ∈ Ωσ

AS ⊆ ΩAS.
Finally, suppose that δ is a solution modulo V of (2.1) and let δ′ be the

solution modulo V of (3.1) constructed as above. By hypothesis, there is a
solution ε′ of (3.1) modulo V which assigns to all variables y ∈ Y elements
of Ωσ

AS. By the above, ε is a solution modulo V of (2.1) which coincides
with ε′ on X and so, in particular, assigns to all variables elements of Ωσ

AS.
Hence V is completely σ-reducible. �

We will say that the pseudovariety V is weakly cancellable if, whenever
V satisfies a pseudoidentity of the form u1#u2 = v1#v2, where # is a letter
which does not occur in any of the pseudowords u1, u2, v1, v2, then V also
satisfies the pseudoidentities u1 = v1 and u2 = v2.
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Of course, no nontrivial pseudovariety of commutative semigroups is
weakly cancellable. Yet, there are many common examples of weakly can-
cellable pseudovarieties such as R [9] and J (finite J-trivial semigroups) [2].
A stronger requirement is that V be closed under Birget expansions [26],4

which is the case for any pseudovariety of the form V = B©m W [17], where
B is the pseudovariety of all finite bands (semigroups in which all elements
are idempotents), which in turn is equivalent to V = B©m V. Using these
results, one may show that pseudovarieties such as OCR (finite orthodox
completely regular semigroups), CR (finite complete regular semigroups), H

(finite semigroups whose subgroups lie in a given pseudovariety of groups H),
DA (finite semigroups in which regular elements are idempotents), DO (fi-
nite semigroups in which regular D-classes are orthodox subsemigroups), DS

(finite semigroups in which regular D-classes are subsemigroups), as well as
any meet or join of some of these pseudovarieties, are weakly cancellable
[17]. Another type of example of weakly cancellable pseudovariety is given
by any arborescent pseudovariety of groups H [18], which may be charac-
terized by the property that H = (H ∩ Ab) ∗ H (the name standing for the
profinite Cayley graphs of its relatively profinite groups being profinite trees;
see also [24]). This latter type of example includes the pseudovarieties G and
Gp which already appeared in Section 15. Thus indeed weak cancellability
is a rather common and weak property, which justifies the interest of the
simplification of the reducibility problem given by the following result.

Proposition 3.2 Let V be a weakly cancellable pseudovariety. If V is σ-
reducible for systems consisting of just one equation of σ-terms without pa-
rameters, then V is completely σ-reducible.

Proof. Consider an arbitrary system (2.1) of r equations of σ-terms. By
Proposition 3.1, it suffices to consider the case in which the set of parameters
is empty. We consider an enlarged set of variables Y = X ⊎ {#1, . . . ,#r−1}
and we also enlarge the alphabet for the solutions which becomes B =
A⊎ {#1, . . . ,#r−1}. We add singleton constraints {#i} for each of the new
variables #i and we consider the single equation

u1#1 · · · ur−1#r−1ur = v1#1 · · · vr−1#r−1vr (3.2)

under the old and new constraints over the alphabet B. Note that ΩAS is a
clopen subset of ΩBS so that indeed the given constraintsKx on the variables
x ∈ X may be considered as constraints over the enlarged alphabet B.

Assume δ : ΩXS → ΩAS is a solution modulo V of the original sys-
tem (2.1). We extend δ to the unique continuous homomorphism δ′ : ΩY S →

4Birget expansions are obtained by iterating alternately right and left Rhodes expan-
sions, cutdown to generators. Some properties of right Rhodes expansions are recalled in
Section 4, where they also play a role.

5See also [10] for further remarks on weakly cancellable pseudovarieties of groups.
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ΩBS which coincides with δ on ΩXS and which is the identity on the new
variables #i. Then δ′ is a solution modulo V of the equation (3.2). Since
V is assumed to be σ-reducible for such equations, there is some solution
ε′ : ΩY S → ΩBS, modulo V, of the equation (3.2) which assigns to all vari-
ables pseudowords defined by σ-terms. We let ε be the restriction of ε′

to ΩXS. Since ε′(x) ∈ Kx ⊆ ΩAS, ε assumes its values in Ωσ
AS. On the

other hand, by applying ε′ to both sides of the equation (3.2) we obtain the
pseudoidentity

ε(u1)#1 · · · ε(ur−1)#r−1ε(ur) = ε(v1)#1 · · · ε(vr−1)#r−1ε(vr)

which is valid in V. Since V is weakly cancellable, it follows that each of
the pseudoidentities ε(ui) = ε(vi) (i = 1, . . . , r) is valid in V. Hence ε is a
solution of the original system modulo V. This shows that V is completely
σ-reducible. �

The constraints have been formulated in the simplest terms possible,
namely using clopen subsets of the free profinite semigroup ΩAS where so-
lutions modulo V are sought. It is however often more convenient to work
instead with constraints determined by fixing a continuous homomorphism
ϕ : ΩAS → S into a finite semigroup S and stipulating that the value δ(x)
attributed to each variable x should be such that ϕ(δ(x)) = sx is a given
element of S. Using Hunter’s Lemma [34], it is easy to see that, given any
finite set of clopen subsets of a profinite semigroup T , there exists a contin-
uous homomorphism ϕ : T → S into a finite semigroup S such that each of
the given clopen subsets is of the form ϕ−1(Q) for some subset Q of S [7].
Under these circumstances, one also says that the clopen subsets are rec-
ognized by ϕ. Hence clopen constraints can be split into disjoint unions
of constraints given by values under continuous homomorphisms into finite
semigroups. It follows that the two notions of reducibility, using clopen
constraints or constraints given by continuous homomorphisms into finite
semigroups, are equivalent.

By Proposition 3.2, one may assume the following simplified setup for the
proof that a weakly cancellable pseudovariety V is completely κ-reducible.

Data The following are given:

(D.1) two finite sets X and A;

(D.2) a single equation u = v, with u, v ∈ Ωκ
XS;

(D.3) a continuous homomorphism ϕ : ΩAS → S into a finite semigroup
S and, for each x ∈ X, an element sx ∈ S which is used to define
the clopen constraint ϕ−1(sx) ⊆ ΩAS;

(D.4) a solution modulo V of the equation u = v satisfying the con-
straints, which is given by an evaluation δ : ΩXS → ΩAS such
that {

V |= δ(u) = δ(v),
ϕ(δ(x)) = sx (x ∈ X).
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Objective To show that there exists a solution, modulo V, using only κ-
terms, of the equation u = v which satisfies the constraints.

For the remainder of the paper, we will consider this setup for the specific
pseudovariety V = R.

4 Structural aspects of ΩAR

Before introducing some specific tools to handle pseudowords modulo the
pseudovariety R, we recall the following finite cancellability result for pseu-
dowords, which is stated here formally for later reference. An elementary
proof can be found in [21, Proposition 2.1]. See also the discussion following
Proposition 5.4 in [11].

Proposition 4.1 ([21, Proposition 2.1]) Let x, y, z, t be pseudowords and
let a, b be letters such that xay = zbt and a /∈ c(x) and b /∈ c(z). If either
c(x) = c(z) or c(xa) = c(zb), then x = z, a = b, and y = t.

Applying inductively Proposition 4.1, we obtain the following result,
where we also include the left-right dual statement.

Corollary 4.2 Let w be a pseudoword over a finite alphabet.

(1) There is a unique factorization w = a1w1 · · · anwn where, for i = 2, . . . , n,
ai /∈ c(a1w1 · · · ai−1wi−1) and c(w) = {a1, . . . , an}.

(2) There is a unique factorization w = wnan · · ·w1a1 where, for i = 2, . . . , n,
ai /∈ c(wi−1ai−1 · · ·w1a1) and c(w) = {a1, . . . , an}.

The factorizations of Corollary 4.2 will be called, respectively, the first-
occurrences and the last-occurrences factorizations.

For u ∈ ΩAS, let ~c(u) denote the cumulative content of u, that is the set
of all letters a ∈ A such that R |= ua = u. It follows immediately from this
definition that for u, v ∈ ΩAS, if R satisfies u = v, then ~c(u) = ~c(v).

If, instead of the pseudoidentity ua = u, we consider the pseudoidentity
uv = u where v is a pseudoword, then we have the following result.

Lemma 4.3 Let u, v ∈ ΩAS. Then R |= uv = u if and only if c(v) ⊆ ~c(u).
In particular, R |= u2 = u if and only if c(u) = ~c(u).

Proof. Suppose first that c(v) ⊆ ~c(u). Since the content function c is
continuous and A+ is dense in ΩAS, there is a sequence (wn)n of finite words
which converges to v such that c(wn) = c(v) for all n. Hence it suffices to
establish that R |= uv = u in case v is a finite word. This in turn follows
directly from the definition of cumulative content by induction on the length
of the word.

12



Conversely, suppose that R |= uv = u. If c(v) * ~c(u) then there is some
factorization of the form v = v0av1 such that c(v0) ⊆ ~c(u) and a /∈ ~c(u).
By the already proved half of the lemma, we have R |= uv0 = u. Hence
R |= uav1 = u. Hence, in finite R-trivial semigroups, ua and u are R-
equivalent, and therefore they are equal. Hence, R |= ua = u, which yields
a ∈ ~c(u), in contradiction with the choice of a. Hence c(v) ⊆ ~c(u).

The last sentence in the statement of the lemma is now immediate taking
into account that we always have ~c(u) ⊆ c(u). �

We will also need the following well-known property of R (cf. [2, Sec-
tion 9.2]).

Lemma 4.4 Let w be a pseudoword and let a be a letter such that, for
every positive integer n, there exists a factorization w = w1 · · ·wn with a ∈
c(wn) ⊆ · · · ⊆ c(w1). Then a ∈ ~c(w).

We will say that a pseudoword is end-marked if it is of the form ua where
a is a letter and u is a pseudoword such that a /∈ ~c(u). The following result
states that the R-equivalence is trivial on end-marked pseudowords.

Lemma 4.5 If ua and vb are end-marked pseudowords such that ua R vb,
then a = b and u = v.

Proof. By hypothesis there are possibly empty pseudowords x and y such
that vbx = ua and uay = vb. If y = 1 then the result follows from Corol-
lary 4.2(2). Otherwise, also by Corollary 4.2(2), from uay = vb we deduce
that there is a factorization of the form y = y′b and uay′ = v. Similarly, we
may assume that there is a factorization x = x′a such that vbx′ = u. Hence
u = u · ay′bx′ = u(ay′bx′)n for all n ≥ 1 which implies that u = u(ay′bx′)ω.
Since R |= (az)ωa = (az)ω , we deduce that R |= ua = u. This contradicts
the hypothesis that a /∈ ~c(u) and therefore we must have y = 1, which
establishes the lemma. �

Lemma 4.6 There are no infinite ascending ≤R-chains of pairwise distinct
end-marked pseudowords over a finite alphabet.

Proof. Suppose that u1a1 ≤R u2a2 ≤R · · · is an ascending chain of end-
marked pseudowords. By Lemma 4.5, R-equivalent terms in the chain must
be equal. Hence we may assume that the sequence is strictly increasing.
Arguing by contradiction, we assume also that the chain is infinite.

Then, for each n ≥ 2, there is some nonempty pseudoword xn such that
unanxn = un−1an−1. Cancelling the last letter, we obtain a factorization of
the form un−1 = unanyn. By finiteness of the alphabet and by compactness
of ΩAS, we may replace the chain by an infinite subchain such that each of
the sequences (an)n, (~c(un))n, and (c(anyn))n is constant, and the sequences
(un)n and (anyn · · · a2y2)n converge, say respectively to the pseudowords u
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and v. Let a be the letter in the sequence (an)n. Since v is a product
of arbitrarily many factors with the same content, Lemma 4.4 implies that
R |= va = v. Hence a ∈ ~c(v). Since u1 = unanyn · · · a2y2 for all n, by
continuity of multiplication we obtain the equality u1 = uv. Hence a1 =
a ∈ ~c(v) ⊆ ~c(u1) which is a contradiction since u1a1 is assumed to be an
end-marked pseudoword. �

We next recall from [31, Chapter XII] some important properties of right
Rhodes expansions. Given a semigroup S, its Rhodes expansion is given by
an onto homomorphism ηS : ŜR → S. If S is A-generated, in the sense
that a mapping ι : A → S is given (the choice of generators) whose image
generates S, then one may consider the subsemigroup of ŜR which is A-
generated via the mapping ρS : A → ŜR such that ηS ◦ ρS = ι [26]. This
gives a version of the right Rhodes expansion which is said to be cutdown
to generators. It is denoted ŜR

A , and it has, among others, the following
property [26, Fact 2.8]:

If r, s, t ∈ ŜR
A are such that r ≥R t and s ≥R t, then r ≥R s

or s ≥R r.
(4.1)

Let LZ be the pseudovariety of finite left-zero semigroups, which is de-
fined by the identity xy = x. Then, using the same sort of argument as in
the proof of [17, Proposition 3.3], it is easy to show that every pseudovariety
of the form LZ©m V is closed under taking right Rhodes expansions. On the
other hand, it is a routine calculation to check that LZ©m R = R. It follows
that R is closed under right Rhodes expansions, a conclusion which could
also be drawn for example by invoking [31, Corollary XII.12.2].

Lemma 4.7 Let V be a pseudovariety of semigroups which is closed under
right Rhodes expansions. Suppose that u and v are two prefixes of the same
element of ΩAV. Then one of u and v is a prefix of the other.

Proof. Let (Sn)n be a sequence of A-generated semigroups from V such that
every other A-generated semigroup from V is a homomorphic image of Sn, by
a homomorphism which respects the choice of generators, for all sufficiently

large n (cf. [18]). Then the sequence (Ŝn

R

A)n possesses the same property.
Moreover, note that every infinite subsequence retains yet the same property.

Let ψn : ΩAV → Ŝn

R

A be the unique continuous homomorphism such that
ψn ◦ ιV = ρSn where ιV : A→ ΩAV is the natural mapping.

From the hypothesis that u and v are prefixes of the same element of ΩAV

it follows that ψn(u) and ψn(v) are both R-above the same element of Ŝn

R

A.
By (4.1), we deduce that ψn(u) and ψn(v) are comparable under ≤R. By
taking a subsequence, we may assume that ψn(u) ≤R ψn(v) for every n. By
a standard compactness argument, we conclude that we may assume that
u ≤R v (cf. [2, Section 5.6] and [6, Section 8]). �

14



We say that a partially ordered set (Y,≤) is a forest if the set of elements
above any given element is a chain, and we say it is well-founded if it has
no infinite ascending chains.

The following result is now immediate in view of Lemmas 4.5, 4.6, and 4.7
since the pseudovariety S is obviously closed under right Rhodes expansions.

Proposition 4.8 The set of all end-marked pseudowords over a finite al-
phabet constitutes a well-founded forest under the partial order ≤R. �

The following is another useful property involving the cumulative con-
tent. Indirect proofs can be derived from known structure theorems for ΩAR.
The direct proof which we provide is inspired by the proof of [2, Lemma 9.2.10].
For a positive integer m we denote by Em the semigroup of all expansive
transformations (acting on the right) of the set {1, . . . ,m} into itself, that is
such transformations f which satisfy if ≥ i for all i. It is well known that a
finite semigroup is R-trivial if and only if it may be embedded in some Em.
See [2, Proposition 9.2.5] for a direct proof, or [43, Chaper 4, Theorem 3.3]
for a proof based on Eilenberg’s characterization of the variety of languages
corresponding to R [31, Chapter X, Corollary 3.3].

Lemma 4.9 Let u = u0au1 and v = v0bv1 be factorizations in ΩAS such
that a ∈ A \~c(u0), b ∈ A \~c(v0), and R satisfies the pseudoidentities u0 = v0
and u = v. Then a = b.

Proof. Denote by pR the unique continuous homomorphism ΩAS → ΩAR

which respects the choice of generators. By Lemma 4.7, since pR(u0a) and
pR(u0b) = pR(v0b) are both prefixes of pR(u) = pR(v), we may assume that
pR(u0a) ≤R pR(u0b). Since R satisfies u0 = v0, we have ~c(u0) = ~c(v0). Since
b /∈ ~c(v0) = ~c(u0), there exists m such that Em fails the pseudoidentity
u0b = u0. Let θ : ΩAS → Em be a continuous homomorphism such that
θ(u0b) 6= θ(u0). Then θ(u0a) ≤R θ(u0b) <R θ(u0). Let i ∈ {1, . . . ,m} be
such that, for j = iθ(u0) and k = jθ(b), we have j 6= k. Since Em consists
of expansive transformations, it follows that j < k and k ≤ jθ(a).

Suppose that a 6= b. We define a new continuous homomorphism θ′ :
ΩAS → Em by its restriction to A as follows. On A \ {a}, θ′ coincides with
θ. To obtain the new transformation θ′(a) from θ(a), we only modify its
value on j by letting jθ′(a) = j. Since iθ(u0) = j and j < jθ(a), there can
be no prefix of u0 of the form wa such that iθ(w) = j. Hence iθ′(u0) = iθ(u0)
and, therefore, we have iθ′(u0a) < iθ′(u0b), which contradicts the relation
θ′(u0a) ≤R θ′(u0b) since transformations in Em are expansive. �

Several representations have been proposed for the elements of ΩAR [19,
21]. For our present purposes, the most convenient one is by reduced labeled
ordinals [19]. We consider labelings λ : α→ A of ordinals α by the alphabet
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A such that the following property holds:

if β is a limit ordinal such that β < α and there is a cofinal
set C of ordinals γ < β such that λ(γ) = a for a fixed letter a,
then λ(β) 6= a.

(4.2)

This property implies an upper bound on the ordinal α, namely α < ω|A|.
We denote by OA the set of all A-labeled ordinals and we define a mapping
p : ΩAS → OA as follows.

For each pseudoword u ∈ ΩAS, we consider the set of all end-marked
pseudowords va which are prefixes of u. By Proposition 4.8, this set is well
ordered under the relation ≥R and, therefore, there is a unique isomorphism
θ from an ordinal αu onto it. We define the labeling λu : αu → A by letting
λu(β) be the last letter of θ(β). Observe that, by definition of θ, λu satisfies
(4.2). The mapping p : ΩAS → OA sends u to the ordinal αu labeled by λu.

The following result is a reformulation of [19, Theorem 3.3.5]. We present
a direct proof to justify the above description of the labeled ordinal associ-
ated with a pseudoword.

Theorem 4.10 The mapping p : ΩAS → OA is such that, for all u, v ∈ ΩAS,
p(u) = p(v) if and only if R |= u = v.

Proof. Suppose first that p(u) and p(v) are given by the same ordinal α and
λu = λv. Proceeding by transfinite induction on α, to show that R |= u = v,
we may assume that the direct implication of the statement of the theorem
holds whenever the ordinal involved is smaller than α. Note that u is an
end-marked pseudoword if and only if α is a successor ordinal. Hence, if
α = β + 1 is a successor ordinal, u = u′a and v = v′b are both end-marked
pseudowords. Since λu = λv, it follows that a = b. Moreover, since u′a
and v′a are end-marked, we obtain αu′ = β = αv′ . Finally, since λu = λv,
we have λu′ = λu|β = λv|β = λv′ . Applying the induction hypothesis, we
deduce that R |= u′ = v′ and so also R |= u = v.

Consider next the case where α is a limit ordinal. Since α is countable,
there is an increasing sequence of ordinals (βn)n whose union is α. We
may assume that the sequence of the λu(βn) = λv(βn) is constant, say with
value a. Let ψ and θ be the isomorphisms of α with the sets of end-marked
prefixes of u and v, respectively, and let ψ(βn) = una and θ(βn) = vna.
Then we may also assume that the sequences (un)n and (vn)n converge, say
to the respective limits u′ and v′ where there are factorizations u = u′u′′ and
v = v′v′′. From the induction hypothesis, we have R |= un = vn for every n.
Hence R |= u′ = v′.

To conclude the induction step, in view of Lemma 4.3 it suffices to show
that c(u′′) ⊆ ~c(u′). If this were not the case, then there would be a letter
b ∈ c(u′′) \ ~c(u′) and a factorization u′′ = xby with c(x) ⊆ ~c(u′). Then u′xb
is an end-marked prefix of u since, by Lemma 4.3, ~c(u′x) = ~c(u′). Since α
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is the union of the βn, there must exist an end-marked prefix wd of some
una such that wd = u′xb, which, by Corollary 4.2(2), implies that d = b and
w = u′x. But una is a prefix of u′ and therefore so is wb, say u′ = wbz.
Hence w = u′x = wbzx which implies that b ∈ ~c(w). This contradicts the
choice of b since ~c(w) = ~c(u′x) = ~c(u′).

For the converse, assume that R |= u = v. Without loss of generality, we
may also assume that αu ≤ αv. We first prove, by transfinite induction on
β < αu, that λu(β) = λv(β). Assume then that the equality λu(γ) = λv(γ)
holds for every γ < β. Let u = u0au1 and v = v0bv1 be factorizations
such that u0a and v0b are the end-marked prefixes corresponding to β in
the unique isomorphisms between the ≥R-ordered sets of such prefixes of u
and v and the labeled ordinals p(u) and p(v), respectively. Then the ordinal
associated with each of u0 and v0 is β and, by the induction hypothesis,
for both it is labeled by the same function, namely λu|β = λv|β . By the
direct part of the statement of the theorem, it follows that R |= u0 = v0.
By Lemma 4.9, we deduce that a = b, that is that λu(β) = λv(β). This
completes the induction step. Hence λu(β) = λv(β) for all β < αu and
therefore there is nothing else to prove in case αu = αv.

Suppose next that αu < αv. Let now v = v0av1 be a factorization such
that v0a is the end-marked prefix of v corresponding to αu in the unique
isomorphism between αv and the ≥R-ordered set of end-marked prefixes
of v. Since λu = λv|αu by the above, it follows that p(u) = p(v0) and
so again R |= u = v0 by the already-proved direct part of the statement
of the theorem. Hence R |= v0 = u = v = v0av1 which, by Lemma 4.3,
yields a ∈ ~c(v0). This is in contradiction with the assumption that v0a is an
end-marked pseudoword and, therefore, we conclude that αu = αv and so
p(u) = p(v). �

For ordinals β1 and β2 such that β1 < β2, we denote by β2 − β1 the
unique ordinal γ such that β1 + γ = β2.

Lemma 4.11 Let β1, γ1, β2, γ2 be ordinals such that 0 ≤ β1 < γ1 and 0 ≤
β2 < γ2. If γ1 < γ2 and γ1 − β1 = γ2 − β2, then β1 < β2.

Proof. By elementary results on ordinal arithmetic, if β1 ≥ β2, then we
obtain γ1 = β1 + (γ1 − β1) ≥ β2 + (γ2 − β2) = γ2, a contradiction. �

Given two labeled ordinals λ : α → A and µ : β → A, where α is not a
limit, define their concatenation λ ·µ to be the ordinal sum α+β labeled by

γ 7→

{
λ(γ) if γ < α

µ(γ − α) if γ ≥ α.

Then we have the following result.

Lemma 4.12 If w0a is an end-marked pseudoword then we have the equality
p(w0aw1) = p(w0a) · p(w1).
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Proof. It suffices to observe that, in view of Proposition 4.1, the end-marked
prefixes of w0aw1 of which w0a is a prefix are of the form w0aw2b where w2b
is an end-marked prefix of w1. �

As an application of Theorem 4.10, we can now add a refined conclusion
to Lemma 4.9.

Corollary 4.13 Let u = u0au1 and v = v0bv1 be factorizations in ΩAS such
that a ∈ A \ ~c(u0), b ∈ A \ ~c(v0), R satisfies the pseudoidentity u = v, and
αu0 = αv0 . Then a = b and R satisfies the pseudoidentities u0 = v0 and
u1 = v1.

Proof. By Lemma 4.12, p(u) = p(u0a) · p(u1) and p(v) = p(v0b) · p(v1).
From the hypothesis that R |= u = v, by Theorem 4.10 we deduce that
p(u) = p(v). Taking into account the definition of concatenation of labeled
ordinals, it follows that p(u0) = p(v0), a = b, and p(u1) = p(v1). Invoking
again Theorem 4.10, we obtain the corollary. �

Yet another improvement of Lemma 4.9 is given by the following result.

Corollary 4.14 Let x, y, z, t be pseudowords over a finite alphabet A and
a, b ∈ A be letters such that xay = zbt, xa and zb are end-marked, and
R |= x = z. Then x = z, a = b, and y = t.

Proof. Both xa and zb are prefixes of xay = zbt. By Lemma 4.7 applied to
S (which is clearly closed under right Rhodes expansions), xa and zb are ≤R-
comparable. Assume that xa 6= zb. By symmetry, one can assume without
loss of generality that xa is a proper prefix of zb, so that is z = xax′ for
some x′ ∈ (ΩAS)1. Then we have αz ≥ αxa = αx +1 since xa is end-marked.
In particular, p(z) 6= p(x), so that by Theorem 4.10, we deduce R 6|= x = z,
in contradiction with the hypothesis of the statement. Hence xa = zb. By
the dual of Proposition 4.1, we conclude that x = z and a = b. It remains
to show that y = t.

By hypothesis, R fails the pseudoidentity xa = x. Hence there exists a
positive integer m, a continuous homomorphism ψ : ΩAS → Em, and i ∈ Y ,
where Y = {1, . . . ,m}, such that i ψ(xa) 6= i ψ(x). Since Em consists of
expansive transformations, we must have j < j ψ(a) for j = i ψ(x). Suppose
that y 6= t. Then there exists a finite set Z disjoint from Y , a continuous
homomorphism θ : ΩAS → TZ into the semigroup TZ of all transformations
of the set Z, and a point q ∈ Z such that q θ(y) 6= q θ(t). We define
a continuous homomorphism τ : ΩAS → TY ∪Z by letting, for each letter
d ∈ A \ {a} and each r ∈ Y ∪ Z, r τ(d) be r ψ(d) or r θ(d) according to
whether r ∈ Y or r ∈ Z; in case d = a, we also use the same rule unless
r = j, for we let j τ(a) = q. Then we still have i τ(x) = j and q τ(y) 6= q τ(t)
so that

i τ(xay) = j τ(ay) = q τ(y) 6= q τ(t) = j τ(at) = i τ(xat)
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which shows that τ(xay) 6= τ(xat) and, therefore, that xay 6= xat, which is
in contradiction with the assumption. This shows that y = t. �

Corollary 4.14 justifies the following notation which will be very useful
in the sequel. Let w be a pseudoword and let β and γ be ordinals such that
β ≤ γ < αw. Let xa and yb be end-marked prefixes of w corresponding to β
and γ, respectively. If β < γ then xa is a prefix of y and, by Corollary 4.14,
there is a unique pseudoword z such that y = xaz. We denote z, az, zb, and
azb respectively by w]β, γ[, w[β, γ[, w]β, γ], and w[β, γ]. In case β < γ = αw,
we let w[β, γ[ = az and w]β, γ[ = z, where w = xaz and xa is the end-marked
prefix corresponding to β. For the case γ = β, we also set w]β, β[, w[β, β[,
and w]β, β] to be the empty word, and w[β, β] = λw(β). Note that

β1 ≤ β2 ≤ β3 ≤ αw =⇒ w[β1, β3[ = w[β1, β2[ w[β2, β3[.

Example 4.15 Let w = (ab)ωacaω. Then αw = ω2 and the end-marked
prefixes of w corresponding to the ordinals ω and ω + 3 are respectively
(ab)ωac and (ab)ωaca3. Hence

w[0, ω[ = (ab)ωa; w[ω, ω + 3[ = ca2; w[ω + 3, ω2[ = aω−2.

Recall also that, by definition of αw, given ordinals β, γ < αw,

β < γ ⇐⇒ w[0, β] >R w[0, γ]. (4.3)

In view of the equivalence (4.3), Corollary 4.14 may be viewed as a can-
cellation property for the strict <R-ordering of end-marked prefixes of a
pseudoword.

5 Multiple periods over R

The main result of this section, Proposition 5.5, shows a necessary and
sufficient condition for idempotent pseudowords to be equal over R. It will
be used in Section 9, but depends on proof techniques similar to those of
Section 4.

Lemma 5.1 Let u and v be pseudowords such that R satisfies vuω = uω

and c(v) $ c(u). Then R satisfies vu = u.

Proof. Let u = u0u1 with c(u0) ⊆ c(v), and the first letter of u1 is not
in c(v). Note that since c(v) $ c(u), the existence and uniqueness of such
a factorization of u follows from Corollary 4.2(1). Since, by hypothesis,
the pseudovariety R satisfies vuω = uω, it also satisfies vu0u1u

ω = u0u1u
ω.

Hence by Theorem 4.10, R satisfies vu0 = u0. Therefore, vu = u holds
in R. �
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Lemma 5.2 If u, v ∈ ΩAS are such that R satisfies the pseudoidentity vu2 =
u2, then it also satisfies vu = u.

Proof. Since R satisfies the pseudoidentity vu2 = u2, it also satisfies vuω =
uω. The case where c(v) $ c(u) follows from Lemma 5.1 and so we assume
that c(v) = c(u).

Using the pseudoidentity u2 = vu2 iteratively, which is satisfied by R,
we deduce the pseudoidentity u2 = vnu2 for all n which yields R |= u2 =
vωu2 = vω, where we also use Lemma 4.3. Therefore, again by Lemma 4.3,
c(u2) = ~c(u2). Hence c(u) = c(u2) = ~c(u2) = ~c(u) and so R |= u2 = u, once
again by Lemma 4.3, from which the conclusion of the lemma follows. �

A product of possibly empty pseudowords w1 · · ·wn is said to be reduced
if, for i = 1, . . . , n − 1, either wi+1 = 1 or the first letter of wi+1 does not
belong to ~c(wi). We will use the following remark, which follows directly
from Theorem 4.10.

Fact 5.3 If u, v,w ∈ ΩAS are pseudowords such that R satisfies w = uv
and the product uv is reduced, then w admits a factorization u′v′ such that
R satisfies both u = u′ and v = v′.

Lemma 5.4 Let x, y be pseudowords over A such that R satisfies xω = yω.
Assume that the products xx and yy are reduced. Then, there exist w ∈
ΩAS, r, s ∈ (ΩAS)1, and integers k, ℓ > 0 such that R satisfies the following
pseudoidentities: 





x = wkr
y = wℓs
w = rw = sw

where all the indicated products as well as ww are reduced.

Proof. If R satisfies x = y, then we can choose w = x, k = ℓ = 1, and
r = s = 1. From now on, we assume that R does not satisfy x = y.

We argue by transfinite induction on max{αx, αy}. Assume that the
result holds when max{αx, αy} < α and let max{αx, αy} = α. Assume next
that αx = αy. Since R satisfies xxω = yyω, we would then have p(x) = p(y),
so that R would satisfy x = y, a case that we have already excluded. Hence
αx 6= αy and, by symmetry, we can assume without loss of generality that
αx < αy = α.

Since xω =R yω by hypothesis, we deduce that R satisfies xω = yxω.
Hence, xnxω =R yxω for every positive integer n. Since αx < αy, there
is, by Fact 5.3, some reduced factorization y = y1y

′
1 where y1 =R x, and

therefore the set

J = {n ≥ 1 : (∃y1, . . . , yn) y ≤R y1 · · · yn and (∀i, 1 ≤ i ≤ n) yi =R x}
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is nonempty. If it were unbounded, then by Lemma 4.4, any letter of c(x) =
c(yi) (i ≥ 1) would be in the cumulative content of y, so that we would have
~c(y) = c(x) = c(y), a contradiction with the hypothesis that the first letter
of y is not in ~c(y). Let m be the maximum of the set J . Then we can write
y as a reduced product

y = y1 · · · ymy
′ with yi =R x for i ≥ 1. (5.1)

From xω =R yx
ω and (5.1), using Corollary 4.13, we deduce also that

R |= xω = y′xω. (5.2)

We now distinguish two cases.

• If c(y′) $ c(x), then by (5.2) and Lemma 5.1, R satisfies x = y′x, so that
one can choose w = x, k = 1, ℓ = m, r = 1, s = y′.

• If c(y′) = c(x), then (5.2) shows that R satisfies xω = y′ω. Further,
~c(y′) = ~c(y) and the first letter of y′ is the first letter of x, that is, the
first letter of y. Since by hypothesis the first letter of y is not in ~c(y), we
deduce that the first letter of y′ is not in ~c(y′). Therefore the pair (y′, x)
satisfies the hypotheses of the lemma. By maximality of m, we obtain
αy′ ≤ αx < αy = α, so we can apply the induction hypothesis to deduce
that there exist w ∈ ΩAS, k, ℓ > 0 and r, s ∈ (ΩAS)1 such that R satisfies
the following pseudoidentities






x = wkr
y′ = wℓs
w = rw = sw

where all the products and ww are reduced. Therefore, R satisfies y =
xmy′ = wkm+ℓs.

This completes the proof of the lemma. �

More generally, we have the following result which will be crucial in the
proof of the main theorem of this paper.

Proposition 5.5 Let x0, . . . , xn be pseudowords over A such that R satisfies
xω

0 = · · · = xω
n. Assume that, for all i, the product xixi is reduced. Then,

there exist u ∈ ΩAS, vi ∈ (ΩAS)1, and integers mi > 0 such that R satisfies
the following pseudoidentities, for all i = 0, . . . , n,

{
xi = umivi

u = viu

where all the products and uu are reduced.
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Proof. We prove the result by induction on n. The case n = 1 has already
been treated in Lemma 5.4. Let x0, . . . , xn be pseudowords satisfying the
hypotheses of the proposition. By Lemma 5.4 applied to each pair (x0, xi),
i = 1, . . . , n, we obtain wi ∈ ΩAS, ri, si ∈ (ΩAS)1 and integers ki, ℓi > 0
such that R satisfies the pseudoidentities






x0 = wki

i ri

xi = wℓi

i si

wi = riwi = siwi

(5.3)

where all the products, as well as wiwi, are reduced. Since xω
0 = wω

1 =
· · · = wω

n , we can apply the induction hypothesis for w1, . . . , wn to obtain
y ∈ ΩAS, zi ∈ (ΩAS)1, and integers ni > 0 such that R satisfies the following
pseudoidentities: {

wi = ynizi
y = ziy

(5.4)

where all the products and yy are reduced. Using (5.3), we deduce that R

satisfies

x0 = (ynizi)
kiri = ynikiziri,

xi = (ynizi)
ℓisi = yniℓizisi.

Setting u = y, v0 = z1r1, vi = zisi for i ≥ 1, m0 = n1k1 and mi = niℓi for
i ≥ 1, it remains to show that R satisfies

y = z1r1y = zisiy. (5.5)

From (5.3), we have R |= wi = riwi, that is R |= ynizi = riy
nizi. Multiplying

by y2ni−ni on the right and using R |= y = ziy, we obtain R |= y2ni = riy
2ni ,

which yields R |= y = riy, by Lemma 5.2. Multiplying on the left by zi
and using (5.4), we therefore obtain R |= y = ziriy, the first pseudoidentity
of (5.5) for i = 1. The other pseudoidentity can be obtained similarly. �

6 Further simplifications for R

We present some further simplifications in the setup of the κ-reducibility
problem introduced at the end of Section 3 which may be applied for the
pseudovariety R.

Note that ~c(xω) = c(x) for every pseudoword x. The following simple
lemma will allow us to work with word equations instead of κ-term equations.

Lemma 6.1 Let u and v be pseudowords. Then R satisfies the pseudoiden-
tity uω = v if and only if R satisfies the pseudoidentity uv = v and c(u) =
c(v).
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Proof. From the assumption that R |= uω = v, we deduce that the semi-
lattice {0, 1} satisfies u = v, which implies that c(u) = c(v). Moreover,
the same assumption implies that R |= uv = uuω = uω = v. Conversely,
assuming R |= uv = v, we obtain that R satisfies unv = v for every positive
integer n and therefore R |= uωv = v. Assuming further that c(u) = c(v)
and invoking Lemma 4.3, we conclude that R |= uω = uωv = v. �

Proposition 6.2 If R is κ-reducible for systems consisting of a single word
equation without parameters, then R is completely κ-reducible.

Proof. In view of the results of Section 3, it remains to show that an equa-
tion of κ-terms u = v can be converted into a finite system of word equa-
tions, possibly with word parameters (although we will not require them).
We proceed as follows, assuming that δ is a solution of the equation u = v
modulo R. Without loss of generality, we may assume that the constraints
specify the content of the value of each variable under a solution modulo R.
For each subterm of u or v of the form tω, we introduce a new variable xt

and we add the equation t′xt = xt and the constraint c(xt) = c(δ(t)), where,
for a κ-term w, w′ is obtained from w by replacing each factor of the form
sω by the new variable xs. Finally, the equation u = v is replaced by the
new equation u′ = v′. By Lemma 6.1, the solution δ modulo R gives rise to
a solution ε of the new system modulo R by letting it coincide with δ on the
original variables and by taking ε(xt) = δ(tω). On the other hand, if ε̄ is a
solution modulo R in κ-terms of the new system, then we obtain a solution
modulo R in κ-terms of the original equation u = v by restricting ε̄ to the
original variables. �

As an example, consider the single equation of κ-terms

xz
(
(xy)ωz

)ω
= y

(
(zx)ωy

)ω

with constraints which include the specification of the content of the value
of each variable under a solution. Suppose δ is a solution modulo R. We
introduce new variables a, b, c, d and consider the system consisting of the
equations

xya = a, azb = b, zxc = c, cyd = d, xzb = yd

where, to the given constraints on the variables x, y, z we add the following
constraints

c(a) = c(δ(xy)), c(b) = c(δ(xyz)), c(c) = c(δ(xz)), c(d) = c(δ(xyz)).

Then the new system has a solution modulo R. A solution of this system
modulo R in κ-terms provides a κ-reduction of the original equation.

To proceed with the simplifications for the κ-reducibility for R, we intro-
duce the notion of an R-reduced solution. Consider a word equation u = v
with clopen constraints. A solution δ modulo R of the equation is said to be
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R-reduced with respect to u = v if it has the following property: for every
factor xy of uv, where x and y are variables, the first letter of δ(y) does not
belong to ~c(δ(x)).

Proposition 6.3 Suppose that R is κ-reducible for systems of word equa-
tions which involve one equation u = v without parameters and all other
equations of the form xa = x, where x is a variable and a ∈ A is a parameter
evaluated to itself, and which admit solutions modulo R which are R-reduced
with respect to the equation u = v. Then R is completely κ-reducible.

Proof. By Proposition 6.2, we know that, to prove that R is completely κ-
reducible, it suffices to show that R is κ-reducible for systems consisting of
a single word equation without parameters. Let u = v be an equation with
u, v ∈ X+ with clopen constraints in ΩAS. Suppose that δ : ΩXS → ΩAS

is a solution of u = v modulo R. We show how to transform u = v and δ
into a system and solution of the special form described in the statement of
the proposition.

For each variable x ∈ X, we consider the first-occurrences factorization
of the pseudoword δ(x) as given by Corollary 4.2(1):

δ(x) = a1,xδ(x)1 · · · anx,xδ(x)nx .

To describe such a factorization, we consider the extended set of variables

Y = X ⊎ {xi : x ∈ X, 1 ≤ i ≤ nx},

the set of parameters
P = A ⊎ {$},

where each parameter evaluates to itself, and we introduce a new equation

x = a1,xx1 · · · anx,xxnx . (6.1)

We impose constraints expressing content conditions on each variable xi:

c(xi) ⊆ {a1,x, . . . , ai,x} (6.2)

while in (6.1) the letters ai,x ∈ A are parameters. Finally, to capture some
information about the cumulative content which will be required later, we
consider all equations of the form

xnxa = xnx , a ∈ ~c(δ(x)nx). (6.3)

The solution δ of the original equation, modulo R, gives rise to a continu-
ous homomorphism ε : ΩY ∪P S → ΩP S mapping any parameter to itself, and
defined on variables by ε(x) = δ(x) and ε(xi) = δ(x)i for x ∈ X. Clearly,
ε satisfies the old along with the new constraints. Further, if we apply ε to
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both sides of each of the equations u$ = v$, (6.1) and (6.3), then we obtain
pseudoidentities which are valid in R.

In the equation u$ = v$, we substitute the occurrence of each vari-
able x by its expression given by equation (6.1) and we reduce it by ap-
plying the following reduction rule to each side of the new intermediate
equation. Let wx be a prefix of either side of the equation, where x is a
variable. If c(δ(x)) ⊆ ~c(δ(w)), then we suppress the indicated occurrence
of the variable x. Otherwise, we let i ∈ {1, . . . , nx} be the minimum index
such that ai,x /∈ ~c(δ(w)) and we replace the indicated occurrence of x by
ai,xxi · · · anx,xxnx . A new equation u′ = v′ is thus obtained by applying
the reduction rule to both sides of the equation u$ = v$ until no further
application of the rule is possible.

From the above process, we obtain in particular a new system consisting
of the equations u′ = v′ and (6.1) (x ∈ X) with the old constraints together
with the new constraints (6.2) (x ∈ X, 1 ≤ i ≤ nx) and parameters ai,x

and $ interpreted as the corresponding letters of A ∪ {$}. By applying the
simplifications described in Section 3, this new system may be converted into
a single word equation, without parameters, and with a solution modulo R

which is R-reduced. We add to this equation the equations (6.3) (x ∈ X).
A solution ε̄, modulo R, in κ-terms, of the system thus obtained yields a

solution modulo R in κ-terms of the original equation simply by restricting ε̄
to X. Indeed, the image under ε̄ of the prefix of the right side of (6.1) which
was omitted in the reduction procedure to obtain the equation u′ = v′ may be
inserted without affecting the solution modulo R because the equations (6.3)
together with the evaluation of parameters and (6.2) guarantee that each
factor which is inserted has a content which lies in the cumulative content
of the prefix to the left of it. By hypothesis, this new system is κ-reducible
for R. Hence so is the original equation. �

We end this section with a strengthening of a special case of the κ-
reducibility problem for R which is implicit but not explicit in [11].

Proposition 6.4 Let ϕ : ΩAS → S be a continuous homomorphism into a
finite semigroup S and let u1, . . . , un ∈ ΩAS be pseudowords such that

R |= u1 = · · · = un. (6.4)

Then there exist κ-terms w1, . . . , wn such that

(i) R |= w1 = · · · = wn;

(ii) ϕ(ui) = ϕ(wi) (i = 1, . . . , n);

(iii) c(ui) = c(wi) (i = 1, . . . , n);

(iv) ~c(ui) = ~c(wi) (i = 1, . . . , n).
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For shortness, we say that the n-tuple (w1, . . . , wn) of κ-terms is a κ-
reduction of (u1, . . . , un) if it satisfies conditions (i)–(iv).
Proof. Without loss of generality, we may assume that S has a content func-
tion [17], that is that the content function c : ΩAS → 2A factors through ϕ.
In this way, property (iii) is subsumed by property (ii). Note that, by (6.4),
we must have c(u1) = · · · = c(un).

We show by induction on |c(u1)| that the ui may be replaced by κ-terms
wi satisfying properties (i)–(iv). The case c(u1) = {a} is easy. Indeed, in
case u1 ∈ A+ is a word, then by (6.4) all ui are words and, therefore, they
are given by κ-terms. Otherwise, for each i, ui = aωui and so, choosing a
finite power aki such that ϕ(aki) = ϕ(ui), we may take wi = aω+ki .

Suppose that the claim holds whenever |c(u1)| < K and consider u1, . . . , un

satisfying (6.4), such that |c(u1)| = K. Factorize ui as

ui = ui,0 a0 · ui,1 a1 · · · ui,ℓ aℓ · u
′
i,ℓ (6.5)

where each ap ∈ A \ c(ui,p) and c(ui,0a0) = c(ui,1a1) = · · · = c(ui,ℓaℓ) ⊇
c(u′i,ℓ). In particular, the prefixes ui,0 a0 · ui,1 a1 · · · ui,k ak are end-marked
pseudowords. By Theorem 4.10, the suprema ‖ui‖ of the lengths of such
factorizations are the same for all i and, moreover, the sequences of letters
a0, a1, . . . , aℓ are also the same for all i, and

R |= ui,p = uj,p for all i, j (6.6)

R |= u′i,ℓ = u′j,ℓ for all i, j. (6.7)

By construction, |c(ui,p)| = |c(u1)| − 1 and so, by the induction hypothesis
and (6.6), for each p there exists a κ-reduction (w1,p, . . . , wn,p) of (u1,p, . . . , un,p).

We next distinguish two cases. In the first case, we assume ‖u1‖ < ∞.
In this case, taking ℓ = ‖ui‖ = ‖u1‖ in (6.5), we also have |c(u′i,ℓ)| < |c(u1)|.
Using (6.7) and applying the induction hypothesis again, we deduce that
there exists a κ-reduction (w′

1,ℓ, . . . , w
′
n,ℓ) of (u′1,ℓ, . . . , u

′
n,ℓ). One may then

verify that, taking

wi = wi,0 a0 · wi,1 a1 · · ·wi,ℓ aℓ · w
′
i,ℓ

defines a κ-reduction (w1, . . . , wn) of the original n-tuple (u1, . . . , un).
In the remaining case, we have ‖u1‖ = ∞. We then consider, for each ℓ,

the n-tuple of elements of S
(
ϕ(w1,0 a0w1,1 a1 · · ·w1,ℓ aℓ), . . . , ϕ(wn,0 a0 wn,1 a1 · · ·wn,ℓ aℓ)

)
.

Since S is finite, there are indices k and ℓ such that k < ℓ and, for i =
1, . . . , n,

ϕ(wi,0 a0wi,1 a1 · · ·wi,k ak) =

= ϕ(wi,0 a0 wi,1 a1 · · ·wi,k ak(wi,k+1 ak+1 · · ·wi,ℓ aℓ))

= ϕ(wi,0 a0 wi,1 a1 · · ·wi,k ak(wi,k+1 ak+1 · · ·wi,ℓ aℓ)
ω).
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Take
wi = wi,0 a0wi,1 a1 · · ·wi,k ak(wi,k+1 ak+1 · · ·wi,ℓ aℓ)

ωw′
i,k

where here w′
i,k is chosen to be any word such that ϕ(w′

i,k) = ϕ(u′i,k) (i =
1, . . . , n). Then one again verifies that (w1, . . . , wn) is a κ-reduction of the
original n-tuple (u1, . . . , un). �

7 From systems of equations to systems of bound-

ary equations

We introduce in this section a formalism which is borrowed from Makanin’s
algorithm for the solution of systems of word equations in the free monoid
(cf. [35, Chapter 12]). Since it needs to be suitably adapted, the reader
familiar with Makanin’s algorithm will find some differences in our approach.

Throughout the remainder of the paper, we fix a continuous homomor-
phism ϕ : ΩAS → S into a finite semigroup S.

A system of boundary equations is a tuple (X, I, ζ, χ, right,B) where:

• X is a finite set of variables with a fix-point-free involution x 7→ x̄;

• I is a finite set, whose elements are called indices, with a total order ≤; we
will write i ≺ j to mean that i ≤ j and there is no k such that i < k < j;

• ζ : {(i, j) ∈ I × I : i ≺ j} → 2S is a function;

• χ : {(i, j) ∈ I × I : i ≺ j} → 2A is a function;

• right : X → I is a function;

• B is a set of quadruples of the form (i, x, j, x̄) ∈ I × X × I × X, which are
called boundary equations, such that, whenever (i, x, j, x̄) ∈ B, the dual
boundary equation (j, x̄, i, x) also belongs to B.

We extend χ to a function {(i, j) ∈ I × I : i ≤ j} → 2A by letting χ(i, j) =
χ(j−, j) where j− ∈ I is such that j− ≺ j in case i < j and we let χ(i, i) = ∅.
A box of the system is any pair of the form (i, x) such that there exists j
for which (i, x, j, x̄) is a boundary equation. For a variable x, we also define
left(x) to be the minimum of the i ∈ I such that there is a box (i, x), in case
there is at least one such box.

A model of the system (X, I, ζ, χ, right,B) of boundary equations is a
triple M = (w, ι,Φ) where

• w ∈ (ΩAS)1;

• ι : I → αw + 1 is an order-preserving injection such that, if I 6= ∅, then
ι(max I) = αw;
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• for each pair i, j ∈ I with i ≺ j and each s ∈ ζ(i, j), Φ(i, j, s) ∈ ΩAS.

Before stating the properties which we require from a model, we introduce
the following convenient notation: for i, j ∈ I with i ≤ j, we set

w(i, j) = w[ι(i), ι(j)[.

For instance, consider the pseudoword w = (ab)ωacaω of Example 4.15, and

let I = {0, 1, 2, 3} and ι =
„

0 1 2 3
0 ω ω + 3 ω2

«

. Then w(0, 1) = (ab)ωa,

w(1, 2) = ca2 and w(2, 3) = aω−2.
The following are the properties which we require from the model M:

(M.1) if i ≺ j and s ∈ ζ(i, j) then ϕ(Φ(i, j, s)) = s;

(M.2) if i ≺ j then ~c(w(i, j)) = χ(i, j);

(M.3) if i ≺ j and s ∈ ζ(i, j) then R |= Φ(i, j, s) = w(i, j);

(M.4) if (i, x, j, x̄) ∈ B then R |= w(i, right(x)) = w(j, right(x̄)).

A system is satisfiable if it has at least one model.
We say that M is a model in κ-terms if w ∈ Ωκ

AS and Φ takes its values
in Ωκ

AS. It is important to note that, as a consequence of a result from [21],
each w(i, j) is then also a κ-term for every i, j ∈ I with i < j. For future
reference, we explicitly state this in the following lemma.

Lemma 7.1 Let z be a pseudoword given by a κ-term and let z = z1az2 be
a factorization such that z1a is end-marked. Then z1 and z2 are also given
by κ-terms.

We next present a number of properties of systems of boundary equations
which admit models and which will be useful later.

Proposition 7.2 Let S = (X, I, ζ, χ, right,B) be a system of boundary equa-
tions and suppose that M = (w, ι,Φ) is a model of S. Then the following
properties are satisfied:

(S.1) if (i, x, j, x̄) ∈ B then i ≤ right(x) and j ≤ right(x̄);

(S.2) if (i, x, j, x̄) ∈ B and right(x) > right(x̄) then i > j;

(S.3) if (i, x, j, x̄) ∈ B then χ(i, right(x)) = χ(j, right(x̄));

(S.4) if (i, x, j, x̄), (i, y, j, ȳ) ∈ B then

right(x) ≤ right(y) ⇐⇒ right(x̄) ≤ right(ȳ).
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Proof. Since we have only defined w(i, j) in case i ≤ j, condition (M.4)
implies (S.1). Next, (S.2) follows from Lemma 4.11 together with (M.4),
and (S.3) follows from condition (M.2) combined with (M.4).

For (S.4), suppose that (i, x, j, x̄), (i, y, j, ȳ) ∈ B. By duality, it suffices to
prove the implication from left to right in (S.4). Arguing by contradiction,
suppose that right(x) ≤ right(y) and right(x̄) > right(ȳ). Then, from the
hypothesis that ι : I → αw + 1 is an order-preserving injection and the defi-
nition of w(p, q), we conclude that w(i, right(x)) is a prefix of w(i, right(y))
and that w(j, right(ȳ)) is a proper prefix of w(j, right(x̄)). On the other hand,
by (M.4), R satisfies the pseudoidentities w(i, right(x)) = w(j, right(x̄)) and
w(i, right(y)) = w(j, right(ȳ)). This leads to the following relations:

w(i, right(x)) ≥R w(i, right(y)) =R w(j, right(ȳ))

w(j, right(ȳ)) ≥R w(j, right(x̄)) =R w(i, right(x)).

Hence R satisfies w(j, right(ȳ)) = w(j, right(x̄)), which contradicts the as-
sumption that the pseudowordw(j, right(ȳ)) is a proper prefix of w(j, right(x̄))
by Corollary 4.14. �

We use the same visual notation as in [35, Chapter 12] for representing
boxes and boundary equations. From Proposition 7.2 (S.1), every box (i, x)
of a satisfiable system of boundary equations is such that i ≤ right(x). We
represent such a box by the following picture:

i x

The box starts at index i and ends at index right(x). We say that the right
value of the box (i, x) is right(x). The relative orders of beginnings and ends
of boxes can be read on such pictures.

For instance, Proposition 7.2 (S.4) states that the situation of Fig-
ure 1 (a) cannot occur in a satisfiable system. Similarly, by Proposition 7.2 (S.2),
a boundary equation (i, x, j, x̄) such that j ≤ i and right(x) < right(x̄), as
pictured in Figure 1 (b) and (b′), cannot occur either in a satisfiable system.

i x

i y

j x̄

j ȳ

(a)

i x

j x̄

i x

j x̄

(b) (b′)

Figure 1: Some forbidden configurations for a satisfiable system.

In the proof of Makanin’s algorithm, a boundary equation (i, x, j, x̄) of a
satisfiable system with right(x) = right(x̄) must have its two boxes aligned,
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that is, i = j, as in Figure 2. This is because (i, x) and (j, x̄) represent equal
factors of the solution ending at the same position right(x) = right(x̄).

i x

j x̄

Figure 2: A boundary equation whose boxes are aligned.

In our framework, this condition is replaced by (M.4), which allows boxes
of “different lengths” ending, but not starting, at the same position. Such a
boundary equation will be called elastic.

i x

j x̄

Figure 3: An elastic boundary equation.

To prove the complete reducibility of R, in view of Proposition 6.3 it
suffices to consider a system S consisting of an equation u = v, with u, v ∈
X+, together with the equations xa = x, where a ∈ Ax and x ∈ X, for
a family (Ax)x∈X of subsets of A, which express that, in a solution, the
cumulative content of the value of x contains Ax. Here the letters a may be
viewed as parameters since we are going to treat separately the equations
xa = x. Constraints are given by the fixed continuous homomorphism ϕ :
ΩAS → S and a family (sx)x∈X of elements of S. We also suppose that
a solution δ : ΩXS → ΩAS, modulo R, of the system S is given which,
furthermore, is R-reduced for the equation u = v.

We associate with such a system S, together with a solution, a system
of boundary equations

S′ = (X, I, ζ, χ, right,B). (7.1)

The construction is borrowed from Makanin’s algorithm. Its purpose is to
organize the matching of both factorizations by only matching a pair of
factorizations of the same word at a time.

Example 7.3 Let us first illustrate the construction with an example. Con-
sider the equation xyzx = yzxty. Then, the matching might be done as
indicated in the following diagram:

x1 x̄1 x2 x̄2

x3 x̄3 x4 x̄4x5 x̄5

x y z x = y z x t y
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The new variables x1 to x5 of the system of boundary equations can be seen
as pairs (p, q), where p and q represent positions of two occurrences of the
same original variable in the word uv, where u = v is the equation we started
with, in our example u = xyzx and v = yzxty. For instance, since x occurs
at positions 1, 4 and 7 in the product xyzx · yzxty of both words defining
the original equation, we introduce two variables x1 = (1, 4) and x2 = (4, 7).
In the translation from systems of equations to systems of boundary equa-
tions, the purpose of a new variable (p, q) is to capture information that,
in the original equation, factors of δ(uv) corresponding to the value of two
occurrences of the same variable x, at positions p and q, are equal (to δ(x)).
Introducing another variable (1, 7) is useless, since the relationship between
the corresponding factors of the solution is already captured by the previous
variables, by transitivity of equality.

In the system S′ of boundary equations, there are two additional variables,
x0 and x̄0, used to match the common value of both sides of the equation, over
R (but not necessarily over S). Each box is then identified by the position i of
its beginning (its left) together with the new variable xk or x̄k that determines
it. In the example, we obtain the following representation.

i0 x1 i1 x3 i2 x5 i3 x2

i3 x̄1

i4 x4

i4 x̄3

i5 x̄5 i6 x̄2 i7 x̄4

i0 x0 i4 x̄0

This representation defines the variables, boundary equations and the value
of the right function. The remaining parts of the system of boundary equa-
tions (I, ζ, and χ) will be defined in terms of the relevant values of the corre-
sponding factors of the solution (associated ordinal, value over the semigroup
S, cumulative content). From the solution of the original equation system
S, we shall also derive a model of the system of boundary equations.

Let us formalize the construction illustrated in Example 7.3. First, we let
u = x1 · · · xr and v = xr+1 · · · xs, where the xp ∈ X, and we consider the
undirected graph with vertex set {1, . . . , s} which has an edge {p, q} if and
only if xp = xq and p 6= q. Let i0 = 0 and ip = αδ(x1···xp) for p = 1, . . . , s.
Next, we choose a spanning forest F for this graph. We then set the defining
components of our system of boundary equations as follows:

• we put in X all pairs (p, q) such that {p, q} ∈ F and we let (p, q) = (q, p);

• I = {i0, . . . , is} ordered by the usual order between ordinals;

• ζ(ip−1, ip) = {ϕ(δ(xp))} = {sxp};

• χ(ip−1, ip) is the set ~c(δ(xp)), and therefore it contains Axp ;

31



• for (p, q) ∈ X, we let right(p, q) = ip;

• for each (p, q) ∈ X, we put in B the boundary equation

(
ip−1, (p, q), iq−1, (q, p)

)
;

• we add to X a pair of variables l, r with l̄ = r and r̄ = l, and we set
right(l) = ir and right(r) = is;

• we add to B the boundary equations (i0, l, ir, r) and (ir, r, i0, l).

We also define a candidate for a model of the system of boundary equations
S′ which is given by MS = (w, ι,Φ), where:

• w is the pseudoword δ(uv);

• ι is the inclusion mapping of I into the ordinal αw + 1;

• for each p ∈ {1, . . . , s}, Φ(ip−1, ip, sxp) = w(ip−1, ip) = δ(xp).

Proposition 7.4 The tuple S′ given by (7.1) is a system of boundary equa-
tions and MS is a model of S′. Moreover, if the system of boundary equa-
tions S′ admits a model in κ-terms, then the original system S has a solution,
modulo R, in κ-terms.

Proof. To verify that MS is a model of S′, we observe that conditions (M.1),
(M.2), and (M.3) are given directly by the definition of ζ, χ, and Φ. If
(i, x, j, x̄) is a boundary equation, then the pseudoidentity

w(i, right(x)) = w(j, right(x̄))

is trivial unless x is one of the variables l or r, in which case the above
pseudoidentity is valid in R since δ(u) = δ(v). This proves condition (M.4).

Finally, assume that (w′, ι′,Φ′) is a model in κ-terms of S′. For each
variable x ∈ X which occurs in the equation u = v, choose any p ∈ {1, . . . , s}
such that xp = x. Let

ε(x) = Φ′(ip−1, ip, sxp).

We extend ε to all of X by choosing, for each variable x′ ∈ X which does
not occur in u = v, a suitable κ-term ε(x′) such that ϕ(ε(x′)) = sx′ and
~c(ε(x′)) ⊇ Ax′ , whose existence is guaranteed by Proposition 6.4. By con-
dition (M.1), the constraints of the original system S are satisfied by ε.
By condition (M.2) and the definition of ε on variables which do not oc-
cur in u = v, the equations xa = x of the system S are satisfied, modulo R,
by ε. By the case of condition (M.4) corresponding to the boundary equation
(i0, l, ir, r), we obtain that

R |= w′(i0, ir) = w′(ir, is). (7.2)
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By definition of w′(i, j), we have the factorizations

w′(i0, ir) = w′(i0, i1) · · ·w
′(ir−1, ir) (7.3)

w′(ir, is) = w′(ir, ir+1) · · ·w
′(is−1, is). (7.4)

By condition (M.3), we have

R |= w′(ip−1, ip) = Φ′(ip−1, ip, sxp). (7.5)

Combining (7.2), (7.3), (7.4), and (7.5), we conclude that ε is a solution
modulo R of the equation u = v. Hence S has a solution modulo R in
κ-terms. �

Let us emphasize that, given a model (w, ι,Φ) of a system of boundary
equations containing the boundary equation (i, x, j, x̄), we do not require
that w(i, right(x)) and w(j, right(x̄)) be equal, even if this happens to be
the case for the boundary equation system S′ obtained from S (except for
x = x0). Instead, condition (M.4) just imposes these pseudowords to project
on the same element of ΩAR. It turns out that, for S′, these conditions are
sufficient to recover, from a model of the system of boundary equations, a
solution of the original equation.

Another remark is that the boundary equation system S′ we obtain from
an equation system S is such that |ζ(i, j)| = 1 for i ≺ j. This again is very
special and more general systems, where |ζ(i, j)| > 1, will come up during
the forthcoming constructions.

Combining Proposition 7.4 with Proposition 6.3, we obtain yet another
sufficient condition for the complete κ-reducibility of R.

Corollary 7.5 If every system of boundary equations which has a model
also has a model in κ-terms, then R is completely κ-reducible. �

8 Factorization schemes and refinements

We gather in this section a couple of technical results which will be used
repeatedly in the next section.

Let w ∈ ΩAS. By a factorization scheme for w we mean a triple C =
(I, ι,Φ) where:

• I is a finite totally ordered set for which we use the same notation as in
the definition of system of boundary equations;

• ι : I → αw + 1 is an order preserving injective function;

• Φ is a partial function whose domain is contained in the set {(i, j, s) ∈
I × I × S : i ≺ j} and which takes its values in ΩAS.
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We further require that the following pointlike properties be satisfied by C

whenever the pseudoword Φ(i, j, s) is defined:

(PL.1) R |= Φ(i, j, s) = w[ι(i), ι(j)[;

(PL.2) ϕ(Φ(i, j, s)) = s.

Given two factorization schemes for the pseudoword w, C1 = (I1, ι1,Φ1)
and C2 = (I2, ι2,Φ2), we say that C1 refines C2 if the following conditions
are satisfied:

(R.1) Im ι2 ⊆ Im ι1;

(R.2) if i ≺ j in I2, i0 ≺ i1 ≺ · · · ≺ in in I1, ι2(i) = ι1(i0), ι2(j) = ι1(in), and
Φ2(i, j, s) is defined, then there exists in S a factorization s = s1 · · · sn

such that each Φ1(im−1, im, sm) is defined (m = 1, . . . , n).

Notice that, in particular, for each element i2 ∈ I2 there exists a unique
element i1 ∈ I1, such that ι1(i1) = ι2(i2), namely i1 = ι−1

1 (ι2(i2)). Therefore,
when convenient, we will regard I2 as a subset of I1, following the convention
of identifying each i2 ∈ I2 with ι−1

1 (ι2(i2)) ∈ I1.

Proposition 8.1 Let C1 = (I1, ι1,Φ1) and C2 = (I2, ι2,Φ2) be factorization
schemes for the pseudoword w. Then there exists a common refinement
C3 = (I3, ι3,Φ3) of C1 and C2 such that Im ι3 = Im ι1 ∪ Im ι2. Moreover, if
all the Φ1(i, j, s) and Φ2(i, j, s) which are defined are given by κ-terms, then
the same property holds for Φ3.

Proof. Let I3 = Im ι1 ∪ Im ι2 and let ι3 : I3 →֒ αw + 1 be the inclusion
mapping. We start by setting Φ3(β, γ, s) to be undefined for all β, γ ∈ I3
such that β ≺ γ in I3 and all s ∈ S. We will describe a situation that may
provide candidates for the definition of Φ3(β, γ, s) and, since any of those
candidates will do the job, we just choose one of them.

Suppose that k ∈ {1, 2}, i, j ∈ Ik, and s ∈ S are such that i ≺ j and
Φk(i, j, s) is defined. Let ℓ be the element of {1, 2} \ {k}. Suppose further
that the inverse image of the interval [ιk(i), ιk(j)] under ιℓ consists of the
indices p1, . . . , pn ∈ Iℓ such that p1 ≺ · · · ≺ pn. We let β0, . . . , βt be the
elements of the set {ιk(i), ιℓ(p1), . . . , ιℓ(pn), ιk(j)}, so that β0 < · · · < βt. By
Corollary 4.14 and (PL.1) for Ck, there is a unique factorization Φk(i, j, s) =
z1 · · · zt such that R |= zm = w[βm−1, βm[ for m = 1, . . . , t. Then zm is one
of the candidates for the definition of Φ3(βm−1, βm, ϕ(zm)).

It remains to check that C3 = (I3, ι3,Φ3) is a factorization scheme for w
which is a common refinement of C1 and C2. The properties (PL.1) and
(PL.2) are immediate by construction: if Φ3(β, γ, s) has been defined then
it has been set to be a pseudoword z such that ϕ(z) = s and R |= z = w[β, γ[.

Condition (R.1) is immediate from the choice of I3 and ι3. For condi-
tion (R.2), consider k ∈ {1, 2} and i, j ∈ Ik such that i ≺ j in Ik. Suppose
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that Φk(i, j, s) is defined. Let β0, . . . , βn ∈ I3 be such that β0 = ιk(i),
βn = ιk(j), and β0 ≺ β1 ≺ · · · ≺ βn in I3. Since i ≺ j in Ik, if n > 1
then the ordinals β1, . . . , βn−1 belong to Im ιℓ, where {k, ℓ} = {1, 2}. The
ordinals β0 and βn may or may not belong to Im ιℓ. In any case, if both
ι−1
ℓ (βm−1) and ι−1

ℓ (βm) are defined then ι−1
ℓ (βm−1) ≺ ι−1

ℓ (βm) in Iℓ. Then,
by the definition of Φ3, the unique factorization Φk(i, j, s) = z1 · · · zn such
that R |= zm = w[βm−1, βm[ gives rise to a candidate zm for the definition
of Φ3(βm−1, βm, ϕ(zm)). Even if this is not the candidate that has been cho-
sen for that definition, all that condition (R.2) requires is that each pseu-
doword Φ3(βm−1, βm, ϕ(zm)) be defined, and this is certainly guaranteed.
The last assertion from the proposition follows directly from Lemma 7.1. �

We also have the following easier result whose proof amounts to a straight-
forward verification of the required properties.

Proposition 8.2 Suppose that C1 = (I1, ι1,Φ1) is a factorization scheme
for w and let ι2 : I2 → αw + 1 be an order preserving injection of another
totally ordered set I2 into αw + 1 such that ι2(I2) ⊆ ι1(I1). Define C2 =
(I2, ι2,Φ2), where

• if i0 ≺ · · · ≺ in in I1, i = ι−1
2 (ι1(i0)), j = ι−1

2 (ι1(in)), i ≺ j in I2, and each
Φ1(im−1, im, sm) is defined, then we take the product

∏n
m=1 Φ1(im−1, im, sm)

to be one of the candidates for the definition of Φ2(i, j,
∏n

m=1 sm);

• in case there is at least one candidate for the definition of Φ2(i, j, s) then
we choose any such candidate to define Φ2(i, j, s).

Then C2 is a factorization scheme for w and C1 is a refinement of C2. If
all the Φ1(i, j, s) which are defined are given by κ-terms, then the similar
property holds for Φ2. �

A factorization scheme C2 as given by Proposition 8.2 is said to be a
restriction of C1 to I2.

9 Systems of boundary equations

To achieve our programme for the proof of complete κ-reducibility of R,
it remains to show that any system of boundary equations which admits
a model also admits a model in κ-terms (cf. Corollary 7.5). This will be
established by transfinite induction on a suitable parameter. For a system
S = (X, I, ζ, χ, right,B) and a model M = (w, ι,Φ) of S, the parameter in
question is

[S,M] = (αw, n)

where n is the number of boxes (i, x) in the system S such that right(x) =
max I. The pairs of the form (α, n), where α is an ordinal and n is a non-
negative integer, are ordered lexicographically so that (α, n) ≤ (β,m) if and
only if either α < β, or α = β and n ≤ m.
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The induction hypothesis is that, for every system S1 of boundary equa-
tions and model M1 of S1 such that [S1,M1] < [S,M], S1 admits a model
in κ-terms. We proceed to show that S also admits a model in κ-terms. If
|I| ≤ 1 then, for the appropriate function ı, (w, ı, ∅) is a model for every
κ-term w, and so we may assume that |I| > 1, and in particular I 6= ∅.

The induction step consists in associating with the pair (S,M) a new
pair (S1,M1) such that S1 is a system of boundary equations and M1 is a
model of S1 and the following properties are satisfied:

(P.1) [S1,M1] < [S,M];

(P.2) if there is a model of S1 in κ-terms, then there is also a model of S

in κ-terms.

The induction step is subdivided into several cases, according to the
pattern formed by boundary equations whose right value of one of their
associated boxes is maximal in I. It will be described following, as much
as possible, the rules in Makanin’s algorithm. Yet, unlike what happens in
Makanin’s algorithm, we may well have a boundary equation (i, x, j, x̄) with
i 6= j and right(x) = right(x̄) (see Figure 3). Recall that such a boundary
equation is said to be elastic. We will need an auxiliary step to handle elastic
boundary equations which will also involve constructing a pair (S(1),M(1))
from (S,M) but without changing the induction parameter. It will be con-
venient to describe this step only after considering some of the cases of the
induction step.

Here is an informal overview of which situation each case handles. We
assume globally that whenever we enter one of the following cases, all pre-
ceding cases do not apply.

Case 1. There is a variable with only empty associated boxes, at the right
end of the interval I.

Case 2. There is a boundary equation (i, x, i, x̄) whose aligned boxes (see
Figure 2), end at max I.

Case 3. There is no box ending at max I.

Case 4. There is an elastic boundary equation (i, x, j, x̄) whose boxes end
at max I, with i < j and c(w(i, j)) $ c(w(i, right(x))).

Case 5. There is a boundary equation which is not elastic, one of whose
boxes ends at max I.

Case 6. There is an elastic boundary equation ending at max I, and Case 4
does not apply.
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These cases cover all possibilities in view of Proposition 7.2. We now
prove that, for each of them, one can derive from the system S and its
model M a system S1 and a model M1 of S1, satisfying (P.1) and (P.2). In
each case, if all boxes involving a variable are removed from the system, then
it is understood that we also remove that variable.

The first three cases are easy. They handle situations where one can
remove from the system boundary equations without modifying the model
(Cases 1 and 2), or shrink the set I (as well as the solution) because its
maximal element is not a value under the right function (Case 3).

Case 1. If there is a variable x such that left(x) = right(x) = max I, then
delete the boundary equations involving x and x̄. This leads to a new system
S1 which has exactly the same models as S and it is such that [S1,M] <
[S,M]. Hence properties (P.1) and (P.2) are verified and the induction step
is achieved in this case.

Case 2. If there is any boundary equation (i, x, i, x̄) such that right(x) =
right(x̄) = max I, then both boxes (i, x) and (i, x̄) represent the same factor
of the solution. In this case, we delete the boundary equations (i, x, i, x̄) and
(i, x̄, i, x) to obtain a new system S1. The induction step is achieved here
precisely for the same reasons as in Case 1.

Case 3. If there is no box (i, x) such that right(x) = max I, then we let
J = I \ {max I}, and we define a new system

S1 = (X, J, ζ|J×J , χ|J×J , right,B).

Let r = max I and let c = maxJ . Let w1 = w[0, ι(c)[. For i, j ∈ J with i ≺ j
and s ∈ ζ(i, j), let Φ1(i, j, s) = Φ(i, j, s). We observe that M1 = (w1, ι|J ,Φ1)
is a model of S1 such that αw1 = ι(c) < αw, which guarantees the property
(P.1). To establish property (P.2), suppose that M′

1 = (w′
1z

′, ι′1,Φ
′
1) is a

model of S1 in κ-terms such that ι′1(c) = αw′
1

and, if z′ 6= 1 then the first
letter of z′ is not in ~c(w′

1). By Lemma 7.1, both w′
1 and z′ are κ-terms.

If ζ(c, r) = ∅, then we let w′
2 be any κ-term such that ~c(w′

2) = χ(c, r). In the
case where ζ(c, r) 6= ∅, since by condition (M.3) we have R |= Φ(c, r, s1) =
w(c, r) = Φ(c, r, s2) whenever s1, s2 ∈ ζ(c, r), we deduce from Proposition 6.4
that, for each s ∈ ζ(c, r), there exists a κ-term Φ′(c, r, s) such that

• ϕ(Φ′(c, r, s)) = ϕ(Φ(c, r, s)) whenever s ∈ ζ(c, r);

• ~c(Φ′(c, r, s)) = ~c(Φ(c, r, s)) whenever s ∈ ζ(c, r);

• R |= Φ′(c, r, s1) = Φ′(c, r, s2) whenever s1, s2 ∈ ζ(c, r).

We then choose any s0 ∈ ζ(c, r) and we let w′
2 = Φ′(c, r, s0). For i, j ∈ J

with i ≺ j and s ∈ ζ(i, j), we set Φ′(i, j, s) = Φ′
1(i, j, s). We take w′ = w′

1w
′
2.

Finally, we set M′ = (w′, ι′,Φ′), where ι′ extends ι′1 by letting ι′(r) = αw′ . It
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is then easy to verify that M′ is a model of S. To verify (M.1), given i, j ∈ I
with i ≺ j and s ∈ ζ(i, j), we have

ϕ(Φ′(i, j, s)) =

{
ϕ(Φ′

1(i, j, s)) = s if j ≤ c

ϕ(Φ(i, j, s)) = s if j = r,

which completes the verification of (M.1). For (M.2), consider i, j ∈ I with
i ≺ j and suppose that j ≤ c. Then

w′(i, j) = w′[ι′(i), ι′(j)[ = w′[ι′1(i), ι
′
1(j)[

= w′
1[ι

′
1(i), ι

′
1(j)[ = (w′

1z
′)[ι′1(i), ι

′
1(j)[

= (w′
1z

′)(i, j).

Therefore ~c(w′(i, j)) = χ(i, j) by (M.2) applied to the model M′
1 of S1. Sup-

pose now that j = r, whence i = c. In this case w′(i, j) = w′[ι′1(c), αw′ +1[ =
w′

2. If ζ(c, r) = ∅, then ~c(w′(i, j)) = ~c(w′
2) = χ(c, r) by the choice of w′

2. Oth-
erwise w′

2 = Φ′(c, r, s0) and so ~c(w′(i, j)) = ~c(Φ′(c, r, s0)) = ~c(Φ(c, r, s0)) =
χ(c, r) again by (M.2) since M is a model of S. This completes the ver-
ification of (M.2). Conditions (M.3) and (M.4) may be verified similarly
to (M.2). Hence the induction step is also achieved in this case.

Case 4. This case handles the easiest situation where there is an elastic
rightmost boundary equation (and Cases 1–3 do not apply): suppose that
there is some elastic boundary equation (i, x, j, x̄) ∈ B such that right(x) =
right(x̄) = max I, i < j, and

c(w(i, j)) $ c(w(i, right(x))).

In this case, it will be possible to obtain S1 by shrinking this boundary
equation. Let r = max I. Notice that, by (M.4), R satisfies w(i, r) =
w(j, r). There are factorizations w(i, r) = uiv and w(j, r) = ujv such that
c(ui) = c(uj) = c(w(i, j)) and the first letter of v does not belong to c(ui).
The situation is shown in Figure 4, where the new position k, which is to be
defined below along with y and ȳ, will correspond, through the appropriate
order preserving injective function ι1, to the end of ui and uj . In this figure
and the following ones, dashed lines indicate relevant positions, or outline
boxes which have been cut out.

i x

r

j x̄

k

i y

j ȳ

k r

(a) (b)

Figure 4: Case 4 (a) in S, and (b) in S1.
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By Corollary 4.13, R satisfies ui = uj. We construct the pair (S1,M1) as
follows.

• We introduce a new variable y along with its dual ȳ and we let X1 =
X ⊎ {y, ȳ}.

• Let z = w[0, ι(i)[ and let β be the ordinal such that w[0, β[ = zui, that
is, β = αzui

.

• Consider the two factorization schemes (I, ι,Φ) and ({β}, {β} →֒ αw +
1, ∅) for w. By Proposition 8.1, there exists a common refinement (I1, ι1,Φ1).
Let k = ı−1

1 (β).

• For i, j ∈ I1 such that i ≺ j, we set χ1(i, j) = ~c(w[ι1(i), ι1(j)[).

• We define the function right1 : X1 → I1 by letting right1(y) = right1(ȳ) =
k and right1(z) = right(z) for z ∈ X (here, in order to simplify the nota-
tion, we follow the convention of identifying I with a subset of I1).

• For i, j ∈ I1 with i ≺ j, we let

ζ1(i, j) = {s ∈ S : Φ1(i, j, s) is defined}.

• Finally, we obtain B1 from B by replacing the boundary equation (i, x, j, x̄)
and its dual by the new boundary equation (i, y, j, ȳ) along with its dual.

Proposition 9.1 The triple M1 = (w, ι1,Φ1) is a model of the system of
boundary equations S1 = (X1, I1, ζ1, χ1, right1,B1) such that the properties
(P.1) and (P.2) hold.

Proof. We first check that M1 is a model of S1. Properties (M.1) and
(M.3) of the definition of model follow from the fact that (I1, ι1,Φ1) is a
factorization scheme for w. Property (M.2) is guaranteed by the definition
of χ1 and Property (M.4) follows from the fact that this property holds for
the model M of S since R |= ui = uj.

Property (P.1) holds since we did not change the pseudoword in the model
but we reduced by 2 the number of boxes (i, x) whose right is the maximum
index.

For Property (P.2), suppose that M′
1 = (w′, ι′1,Φ

′
1) is a model of S1 in κ-

terms. Let (I, ι′,Φ′) be a restriction of the factorization scheme (I1, ι
′
1,Φ

′
1),

where ι′ : I → αw′ + 1 is the composite function ι′1 ◦ ι−1
1 ◦ ι. It remains

to check that Properties (M.1)–(M.4) of the definition of model are verified
for M′ = (w′, ι′,Φ′). Again Properties (M.1) and (M.3) follow from the fact
that (I, ι′,Φ′) is a factorization scheme for w′.

For Property (M.2), suppose that i, j ∈ I are such that i ≺ j. Let i1, j1 ∈ I1
be such that i1 ≺ j1 and ι1(i1) = ι(i) and ι1(j1) = ι(j). Then ι′1(i1) = ι′(i),
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ι′1(j1) = ι′(j) and we obtain the following equalities:

~c(w′[ι′(i), ι′(j)[) = ~c(w′[ι′1(i1), ι
′
1(j1)[) = χ1(i1, j1)

= ~c(w[ι1(i1), ι1(j1)[) = ~c(w[ι(i), ι(j)[)

= χ(i, j).

Finally, Property (M.4) is immediate for all but the boundary equation
(i, x, j, x̄) and its dual which amounts to R |= w′(i, right(x)) = w′(j, right(x̄)).
This follows from the condition R |= w′(i, right(y)) = w′(j, right(ȳ)) which is
associated with the boundary equation (i, y, j, ȳ) by multiplying both sides
on the right by w′[ι′1(k), ι

′(r)[. �

Proposition 9.1 achieves the induction step in Case 4.

At this point, we introduce the announced auxiliary step. It will be used to
transform the system and model in both Cases 5 and 6.

Auxiliary step

We assume that Cases 1–4 do not apply, that there is at least one elastic
boundary equation (i, x, j, x̄) such that i < j, right(x) = right(x̄) = max I,
and, for every such boundary equation, c(w(i, j)) = c(w(i, r)), where r =
max I. Hence, R |= w(j, r) = w(i, r) = w(i, j)w(j, r), so that c(w(i, j)) =
c(w(i, r)) = ~c(w(i, r)). Among the variables x such that right(x) = right(x̄) =
r, we consider those for which left(x) is minimum, and we denote this mini-
mum by ℓ. Let

k0 = min{j ∈ I : ∃(ℓ, x, j, x̄) ∈ B and right(x) = right(x̄) = r}.

Note that ℓ and k0 are well defined by the definition of left. We choose
x0 ∈ X such that (ℓ, x0, k0, x̄0) ∈ B and right(x0) = right(x̄0) = r. Since
Case 2 does not apply, we have ℓ < k0.

The auxiliary step takes as input the original system and the boundary
equation (ℓ, x0, k0, x̄0), and outputs a new system, where (ℓ, x0, k0, x̄0) and
its dual are removed and replaced by two new boundary equations and
their duals.

Let i0 ∈ I \ {r}. If i0 < ℓ, then we set n(S,M, i0) = −∞. Suppose
now that i0 ≥ ℓ. Since c(w(ℓ, k0)) = c(w(ℓ, r)), we have R |= w(ℓ, r) =
w(ℓ, k0)w(k0, r) = w(k0, r) = w(ℓ, k0)

ω. Therefore, by Theorem 4.10, αw(ℓ,r) =
αw(ℓ,k0)ω . Since i0 6= r, we have αw(ℓ,i0) < αw(ℓ,r) = αw(ℓ,k0)ω = αw(ℓ,k0) · ω,
so there exists an integer n such that αw(ℓ,k0) ·n < αw(ℓ,i0) < αw(ℓ,k0) ·(n+1).
A repeated application of Fact 5.3 then yields factorizations w(ℓ, i0) =
u1 · · · unv1 and w(i0, r) = v2v3 such that the first letter of each factor in
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u1 · · · unv1v2v3 does not belong to the cumulative content of the preceding
factor and

R |= u1 = · · · = un = v1v2 = w(ℓ, k0). (9.1)

We set n(S,M, i0) = n, where n is determined by (9.1).

In the case where i0 ≥ ℓ, we will define a pair (S(1),M(1)), consisting of
a system of boundary equations S(1), whose index set I(1) contains I, and
a model M(1) of S(1), such that [S(1),M(1)] = [S,M], none of the Cases 1–
4 apply to (S(1),M(1)), whenever S(1) has a model in κ-terms so does S,
and n(S(1),M(1), i0) < n(S,M, i0). Once we have managed to obtain such a
construction, we may conclude, inductively, that it suffices to consider the
case in which i0 < ℓ.

We construct the pair (S(1),M(1)) as follows. We let

S(1) = (X(1), I(1), ζ(1), χ(1), right(1),B(1))

M(1) = (w, ι(1),Φ(1))

be defined as follows. The construction resembles considerably the one
adopted for Case 4.

• We consider four new variables y1, ȳ1, y2, ȳ2 and we take X(1) = X ⊎
{y1, ȳ1, y2, ȳ2}.

• Let β = ι(k0) + (ι(k0) − ι(ℓ)).

• Consider the two factorization schemes (I, ι,Φ) and ({β}, {β} →֒ αw +
1, ∅) for w. By Proposition 8.1, there exists a common refinement (I(1), ι(1),Φ(1)).

Let k1 = ı−1
(1)(β).

• For i, j ∈ I(1) such that i ≺ j, we set χ(1)(i, j) = ~c(w[ι(1)(i), ι(1)(j)[).

• We define the function right(1) : X(1) → I(1) by letting right(1)(y1) = k0,
right(1)(ȳ1) = k1, right(1)(y2) = right(1)(ȳ2) = r, and right(1)(x) = right(x)
for x ∈ X.

• For i, j ∈ I(1) with i ≺ j, we let

ζ(1)(i, j) = {s ∈ S : Φ(1)(i, j, s) is defined}.

• Finally, we obtain B(1) from B by replacing (ℓ, x0, k0, x̄0) and its dual
by two new boundary equations (ℓ, y1, k0, ȳ1) and (k0, y2, k1, ȳ2), along
with their duals. We will refer to this procedure as pushing forward the
period (ℓ, k0).

The boundary equations that get transformed are shown in Figure 5.

It is now routine to check the following result using Lemma 6.1.
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ℓ x0

k0 x̄0

k1

(a)

k0 y2

k1 ȳ2

ℓ y1

k0 ȳ1

(b)

Figure 5: Auxiliary step: (a) in S and (b) in S(1), while pushing forward one
period.

Proposition 9.2 The triple M(1) = (w, ι(1),Φ(1)) is a model of the system
of boundary equations S(1) = (X(1), I(1), ζ(1), χ(1), right(1),B(1)) such that the
following properties are verified:

(1) if S(1) admits a model in κ-terms, then so does S;

(2) n(S(1),M(1), i0) < n(S,M, i0);

(3) [S(1),M(1)] = [S,M]. �

Case 5. We now consider the case where all elastic boundary equations
whose right value is max I do not fall in Case 4, and there is a nonelastic
boundary equation, one of whose boxes has a maximal right value. In this
case, the outline of the procedure to reduce the parameter [S,M] consists
in choosing a suitable such boundary equation, and in matching its asso-
ciated boxes, by “transporting” some factorization points appearing inside
the rightmost of these boxes to the leftmost one. This is justified by the
results of Section 4, since both boxes represent factors of the solution which
are equal over R. This matching can be seen, graphically, as moving the
rightmost of the two boxes to align it with the other one. After this, we will
drop the rightmost box, thus decreasing the induction parameter.

Let r = max I. Suppose that there exists at least one variable x such that
right(x) = r 6= right(x̄). Let

ℓ = min{left(x) : x ∈ X, right(x) = r 6= right(x̄)}.

Since we are assuming that Cases 1–4 do not apply, note that ℓ is well
defined and ℓ < r. Moreover, by applying repeatedly Proposition 9.2 of
the auxiliary step to push forward periods, we may assume that all elastic
boundary equations (i, x, j, x̄) with right(x) = right(x̄) = r are such that
ℓ < i (hence also ℓ < j, by duality).

Choose x0 ∈ X such that left(x0) = ℓ and right(x0) = r 6= right(x̄0). Let ℓ∗

be any element of I such that (ℓ, x0, ℓ
∗, x̄0) ∈ B and let r∗ = right(x̄0). The

critical boundary is the element c = max{c′, ℓ} of I, where

c′ = max{right(x) : x ∈ X, left(x) < ℓ}.

Since right(x0) = max I 6= right(x̄0), we have right(x0) > right(x̄0). By (S.2),
it follows that ℓ = left(x0) > ℓ∗. Hence r∗ = right(x̄0) belongs to the set of
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which c′ is defined to be the maximum, so that c′ and c are both well defined
and r∗ ≤ c′ ≤ c. We also have ℓ∗ < ℓ ≤ c < r.

A representation is given in Figure 6 (a). The box (i, y) of the second row
is such that right(y) is maximum among all right values of boxes starting
before ℓ, hence c = right(y).

k z

ℓ x0ℓ∗ x̄0

j t

i y

rc

i

r∗

(a)

ℓ xνℓ∗ x̄ν

j t

i y

k• z

rc

i

r∗c•

i•

(b)

Figure 6: Case 5: (a) before and (b) after transporting the box (ℓ, x0).

The set of transport positions is the subset T of I defined by

T = {i ∈ I : c ≤ i} ∪ {i ∈ I : ∃ a box (i, x) such that right(x) > c}.

In the example of Figure 6 (a), the set T is {c, i, r} ∪ {k, ℓ}, since the boxes
“crossing” the critical boundary c are (k, z) and (ℓ, x0). We note that:

(i) max T = r, since r = max I and r ∈ T ;

(ii) for every box (i, x0), i ∈ T ;

(iii) by definition of c, right(x) > c implies left(x) ≥ ℓ, and so ℓ = minT .

For i ∈ T , let i◦ = ι(ℓ∗) + (ι(i) − ι(ℓ)). Note that ℓ◦ = ι(ℓ∗). Likewise,
since M is a model of S, R satisfies the pseudoidentity w(ℓ∗, r∗) = w(ℓ, r) by
(M.4), so r◦ = ι(r∗) < ι(r).

Lemma 9.3 The function i 7→ i◦ enjoys the following properties.

(1) The function is order-preserving and injective.

(2) If ℓ ≤ i ≤ r then R satisfies the pseudoidentity w[ℓ◦, i◦[ = w(ℓ, i).

(3) For every i ∈ T , we have i◦ < ι(i).

Proof. Taking into account that ι is order-preserving and injective, prop-
erty (1) is an exercise in ordinal arithmetic. Note that the hypothesis that
R satisfies the pseudoidentity w(ℓ∗, r∗) = w(ℓ, r) implies

r◦ − ℓ◦ = ι(r) − ι(ℓ) (9.2)

and also w[ℓ◦, i◦[ = w(ℓ, i) using Corollary 4.13 and the definition of the
function i 7→ i◦, which establishes (2). Finally, consider the following ordinal
inequalities and equalities: ℓ◦ ≤ i◦ ≤ r◦, ι(ℓ) ≤ ι(i) ≤ ι(r), r◦ < ι(r), and

i◦ − ℓ◦ = ι(i) − ι(ℓ). (9.3)
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Since equal summands can be canceled on the left in ordinal sums, it follows
from (9.2) and (9.3) that r◦ − i◦ = ι(r) − ι(i). As r◦ < ι(r), Lemma 4.11
yields that i◦ < ι(i), which proves (3). �

Consider two factorization schemes for w,

(I(1), ι(1),Φ(1)) and (I(2), ι(2),Φ(2)), (9.4)

where (I(1), ι(1),Φ(1)) is obtained from (I, ι,Φ) by restriction (cf. Proposi-
tion 8.2) and

• I(1) = {i ∈ I : i ≤ c} and I(2) = {i◦ : i ∈ T};

• ι(1) = ι|I(1) and ι(2) : I(2) →֒ αw + 1 is the inclusion mapping;

• let (T, ι|T ,Φ2) be obtained from the factorization scheme (I, ι,Φ) by re-
striction; for i, j ∈ T such that i ≺ j, we let Φ(2)(i

◦, j◦, s) = Φ2(i, j, s)
whenever the latter is defined.

By Lemma 9.3(2), (I(2), ι(2),Φ(2)) is indeed a factorization scheme. Infor-
mally, I(2) represents transport positions shifted from [ℓ, r] to [ℓ∗, r∗]. By
Proposition 8.1, there exists a common refinement (I1, ι1,Φ1) of the two
factorization schemes (9.4).

We proceed to define the new system of boundary equations

S1 = (X1, I1, ζ1, χ1, right1,B1). (9.5)

To avoid ambiguity in the notation w(i, j), we may assume, without loss of
generality, that I is disjoint from I1. Denote the composite ι−1

1 ◦ ι by ξ. To
simplify the notation, we also let i• = ι−1

1 (i◦) whenever i ∈ T .

• The set X1 is obtained by adding a new variable xν along with its dual
x̄ν .

• For i, j ∈ I1, we let

ζ1(i, j) = {s ∈ S : Φ1(i, j, s) is defined}.

• For i, j ∈ I1 with i ≺ j, we let χ1(i, j) = ~c(w(i, j)).

• The function right1 : X1 → I1 is defined by

right1(x) =






ξ(right(x)) if x ∈ X and right(x) ≤ c

(right(x))• if x ∈ X and right(x) > c

ξ(c) if x = xν

c• if x = x̄ν .

The description of the set B1 of boundary equations is somewhat more
complicated and proceeds in several stages, starting with B1 = ∅.
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(a) let B′ = B \ {(ℓ, x0, ℓ
∗, x̄0), (ℓ

∗, x̄0, ℓ, x0)};

(b) put a new boundary equation (ξ(ℓ), xν , ℓ
•, x̄ν) and its dual (ℓ•, x̄ν , ξ(ℓ), xν)

into B1;

(c) for each variable x ∈ X such that right(x) > c and each boundary equa-
tion in B′ of the form (i, x, j, x̄), put new boundary equations into B1

as follows:

(i) if right(x̄) ≤ c, then add to B1 the 4-tuple (i•, x, ξ(j), x̄) and its
dual (ξ(j), x̄, i•, x);

(ii) if right(x̄) > c, then add to B1 the 4-tuple (i•, x, j•, x̄) and its
dual (j•, x̄, i•, x);

(d) for each variable x ∈ X such that both right(x) ≤ c and right(x̄) ≤ c,
and each boundary equation in B′ of the form (i, x, j, x̄), put a new
boundary equation (ξ(i), x, ξ(j), x̄) into B1.

Figure 6 (b) shows the system of boundary equations obtained from the one
of Figure 6 (a). (To simplify notation, we wrote j, ℓ, c, i, and r for ξ(j),
ξ(ℓ), ξ(c), ξ(i), and ξ(r), respectively.)

Finally, we let M1 = (w1, ι1,Φ1), where w1 = w[0, ι(c)[. Notice that
max I1 = ξ(c) and that ι1(ξ(c)) = ι(c) = αw1 .

Proposition 9.4 The tuple S1 defined by (9.5) is a system of boundary
equations and M1 is a model of S1.

Proof. To check that M1 is a model of S1, we need to verify conditions
(M.1)–(M.4). The first three are immediate from the definitions of ζ1, Φ1,
and χ1. For condition (M.4), we consider the various types of boundary
equations as given in steps (b), (c), and (d).

In case (b), consider the boundary equation (ξ(ℓ), xν , ℓ
•, x̄ν). By definition

of M1, we have w1(ξ(ℓ), right1(xν)) = w1(ℓ, c) and the pseudoidentity which
we must prove to be valid in R becomes w1(ℓ, c) = w1[ℓ

◦, c◦[, which follows
from Lemma 9.3(2).

In case (c)(i), we consider (i, x, j, x̄) ∈ B′ such that right(x̄) ≤ c < right(x).
We need to prove that R |= w1(i

•, right1(x)) = w1(ξ(j), right1(x̄)), which
amounts to prove that R |= w(i•, right1(x)) = w(ξ(j), right1(x̄)). Now,
right1(x) = (right(x))• and right1(x̄) = ξ(right(x̄)) so that, by Lemma 9.3(2)
and the definition of the model M1, the pseudoidentity whose validity in R

we need to establish becomes w(i, right(x)) = w(j, right(x̄)), which is valid
since M is a model of S. Cases (c)(ii) and (d) are handled similarly. �

Proposition 9.5 The properties (P.1) and (P.2) are verified by the step
(S,M) 7→ (S1,M1).
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Proof. For property (P.1) it suffices to notice that αw1 = ι(c) < ι(r) = αw.

Suppose that M′
1 = (w′

1, ι
′
1,Φ

′
1) is a model of S1 in κ-terms. We construct a

model M′ = (w′, ι′,Φ′) of S in κ-terms as follows.

• Let w′ = w′
1 · w

′
1(c

•, r•). By Lemma 7.1, w′ is a κ-term.

• Let ι′ : I → αw′ + 1 be defined by

ι′(i) =

{
ι′1(ξ(i)) if i < c

αw′
1
+ (ι′1(i

•) − ι′1(c
•)) if i ≥ c.

Note that ι′(c) = αw′
1

= ι′1(ξ(c)) since M′
1 is a model of S1 and max I1 =

ξ(c). Moreover ι′(r) = αw′ .

• We consider the following two restrictions of the factorization scheme
(I1, ι

′
1,Φ

′
1) for w′: (I(1), ι

′|I(1) ,Φ
′
(1)) and (I(2), ι

′|I(2) ,Φ
′
(2)). We transfer

(I(2), ι
′|I(2) ,Φ

′
(2)) to a new factorization scheme (T, ι′|T ,Φ

′
2) for w′ by

letting Φ′
2(i, j, s) = Φ′

(2)(i
◦, j◦, s) whenever i, j ∈ T and s ∈ S are such

that i ≺ j in T and Φ′
(2)(i

◦, j◦, s) is defined. By Proposition 8.1 there is a

common refinement (Ī , ῑ, Φ̄) of the factorization schemes for w′ given by
(I1, ι

′
1,Φ

′
1) and (T, ι′|T ,Φ

′
2). Finally, we set

Φ′(i, j, s) = Φ̄(ῑ−1(ι′(i)), ῑ −1(ι′(j)), s), (9.6)

whenever i, j ∈ I and s ∈ S are such that i ≺ j and the right side of (9.6)
is defined.

The following pseudoidentities are valid in R:

w′(ℓ, r) = w′(ℓ, c)w′(c, r)

= w′[ι′(ℓ), ι′(c)[ · w′[ι′(c), ι′(r)[

= w′[ι′1(ξ(ℓ)), ι
′
1(ξ(c))[ · w

′[αw′
1
, αw′ [

= w′
1(ξ(ℓ), ξ(c))w

′
1(c

•, r•)

= w′
1(ℓ

•, c•)w′
1(c

•, r•) in view of (M.4) for (ξ(ℓ), xν , ℓ
•, x̄ν) ∈ B1

= w′
1(ℓ

•, r•)

= w′
1[ι

′
1(ℓ

•), ι′1(r
•)[

= w′[ι′(ℓ∗), ι′(r∗)[

= w′(ℓ∗, r∗).

This shows that
R |= w′(ℓ, r) = w′(ℓ∗, r∗). (9.7)

We proceed to verify that the properties (M.1)–(M.4) hold for M′. Properties
(M.1) and (M.3) follow from the fact that (I, ι′,Φ′) is a factorization scheme
for w′, which is immediate to check taking into account (9.7).
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Let i, j ∈ I with i ≺ j. To verify (M.2) suppose first that j ≤ c and let
k ∈ I1 be such that ξ(i) ≤ k ≺ ξ(j). Then we have

~c(w′(i, j)) = ~c(w′
1(k, ξ(j))) = χ1(k, ξ(j)) = ~c(w(k, ξ(j)))

= ~c(w(ξ(i), ξ(j))) = ~c(w(i, j))

= χ(i, j).

On the other hand, if i ≥ c, then we let k ∈ I1 be such that i• ≤ k ≺ j•.
Now, we obtain the following equalities:

~c(w′(i, j)) = ~c(w′
1(i

•, j•))

= ~c(w′
1(k, j

•)) = χ1(k, j
•) = ~c(w(k, j•))

= ~c(w(i•, j•)) = ~c(w(i, j)) since R |= w(ℓ∗, r∗) = w(ℓ, r)

= χ(i, j).

This establishes (M.2).

It remains to verify property (M.4). For the boundary equation (ℓ, x0, ℓ
∗, x̄0),

this is given by (9.7). Consider next a boundary equation (i, x, j, x̄) ∈ B

with ℓ ≤ i. In view of (M.4) for (ξ(ℓ), xν , ℓ
•, x̄ν) ∈ B1, we know that R

satisfies w′
1(ξ(ℓ), ξ(c)) = w′

1(ℓ
•, c•). Using (9.3), we also have αw′

1(ξ(ℓ),ξ(i))
=

αw′
1(ℓ

•,i•). Corollary 4.13 therefore implies that

R |= w′
1(ξ(i), ξ(c)) = w′

1(i
•, c•). (9.8)

If i ≤ c < right(x), then R satisfies the following pseudoidentities:

w′(i, right(x)) = w′(i, c)w′(c, right(x))

= w′
1(ξ(i), ξ(c))w

′
1(c

•, (right(x))•)

= w′
1(i

•, c•)w′
1(c

•, (right(x))•) by (9.8)

= w′
1(i

•, (right(x))•).

That R also satisfies w′(i, right(x)) = w′
1(i

•, (right(x))•) when c < i, is an
immediate consequence of the definition of ι′. Hence

R |= w′(i, right(x)) = w′
1(i

•, (right(x))•)

Assume first that right(x̄) ≤ c. Then we have (i•, x, ξ(j), x̄) ∈ B1 and so R

satisfies

w′
1(i

•, (right(x))•) = w′
1(ξ(j), right1(x̄)) = w′

1(ξ(j), ξ(right(x̄)))

= w′(j, right(x̄)).

On the other hand, if right(x̄) > c then (i•, x, j•, x̄) ∈ B1 and so R satisfies

w′
1(i

•, (right(x))•) = w′
1(j

•, right1(x̄)) = w′
1(j

•, (right(x̄))•)

= w′(j, right(x̄)).
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It remains to consider the case in which both right(x) and right(x̄) are at
most c. Then (ξ(i), x, ξ(j), x̄) ∈ B1, right1(x) = ξ(right(x)), and right1(x̄) =
ξ(right(x̄)). Hence R satisfies the following pseudoidentities:

w′(i, right(x)) = w′
1(ξ(i), ξ(right(x))) = w′

1(ξ(j), ξ(right(x̄)))

= w′(j, right(x̄)).

This completes the proof of the proposition. �

Proposition 9.5 shows that the induction step is therefore also achieved in
Case 5.

Case 6. It remains to consider the case where all boundary equations of
the form (i, x, j, x̄) with right(x) = max I are elastic (since Case 5 does not
apply), and Case 4 does not apply. We set r = max I and we let E be the
set of all elastic equations (i, x, j, x̄) ∈ B such that right(x) = right(x̄) = r.

We let r− be the maximum among the elements i ∈ I \ {r} which satisfy at
least one of the following conditions:

• i = min I;

• there is no box of the form (i, x);

• there is a boundary equation of the form (i, x, j, x̄) ∈ B \ E;

• i ∈ right(X).

By applying repeatedly Proposition 9.2 of the auxiliary step, we may push
forward the periods of the boundary equations in E until r− is left behind
so that we may assume that the following condition holds:

∀ i ∈ I
(
r− ≤ i < r ⇐⇒ ∃ a box (i, x) such that right(x) = r

)
.

We now set

ℓ = max{i ∈ I : ∃ (i, x, j, x̄) ∈ E : i < j}.

In order to align with ℓ the left boundary i of all equations (i, x, j, x̄), i < j,
of E, we construct an intermediate pair (S0,M0) as follows (see Figure 7).
Let

S0 = (X0, I0, ζ0, χ0, right0,B0)

M0 = (w, ι0,Φ0).

Let E′ be the set consisting of all boundary equations (ie, x, je, x̄) ∈ E such
that ie < min{je, ℓ}.

• For each e ∈ E′, we introduce four new variables ye, ȳe, ze, z̄e and we let

X0 = X ⊎ {ye, ȳe, ze, z̄e : e ∈ E′}.
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ℓ

ie x

je x̄

ke

(a)

ℓ

ie ze ℓ ye

je z̄e ke ȳe

(b)

Figure 7: Aligning boxes to ℓ: before (a) and after (b).

• For each e ∈ E′, we let βe ∈ αw be such that R satisfies the pseudoidentity
w(ie, ℓ) = w[ι(je), βe[.

• By Proposition 8.1, there is a common refinement (I0, ι0,Φ0) of the fol-
lowing factorization schemes for w: (I, ι,Φ) and ({βe}, {βe} →֒ αw +1, ∅),
with e ∈ E′. Without loss of generality, we may assume that I ⊆ I0 and
ι = ι0|I . We let ke = ι−1

0 (βe).

• For each e ∈ E′, we set right0(ye) = right0(ȳe) = r, right0(ze) = ℓ and
right0(z̄e) = ke. We extend right0 to all of X0 so that it coincides with
right on X.

• The set B0 is obtained from B by replacing each e ∈ E′ and its dual
by two new boundary equations, namely (ℓ, ye, ke, ȳe) and (ie, ze, je, z̄e),
together with their duals.

It is routine to establish the following result.

Proposition 9.6 The triple M0 is a model of the system of boundary equa-
tions S0 such that:

(1) if S0 admits a model in κ-terms, then so does S;

(2) the set E′
0 corresponding to the system S0 is empty;

(3) [S0,M0] = [S,M]. �

Hence, we may assume that E′ = ∅, which we do from hereon. This means
that, for all boundary equations (i, x, j, x̄) ∈ B such that i < j and right(x) =
r, the index i is the same, namely what was above denoted by ℓ. Let those
elastic boundary equations be (ℓ, x1, j1, x̄1), . . . , (ℓ, xn, jn, x̄n), with j1 ≤ · · · ≤
jn. Since M is a model of S, it follows that

R |= w(ℓ, jm)w(ℓ, r) = w(ℓ, jm)w(jm, r) = w(ℓ, r) (m = 1, . . . , n). (9.9)

Taking into account that Case 4 does not apply, so that we are assuming
that c(w(ℓ, jm)) = c(w(ℓ, r)) for m = 1, . . . , n, we obtain, using Lemma 4.3,
the following equivalent condition:

R |= (w(ℓ, j1))
ω = · · · = (w(ℓ, jn))ω = w(ℓ, r). (9.10)
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We will apply Proposition 5.5 to reduce the satisfaction of the elastic bound-
ary equations in E expressed by condition (9.9) into another set of boundary
equations which will guarantee (9.10). In the process, we will introduce
perhaps very many boundary equations but we will reduce the induction
parameter [S,M], which is what we need to achieve the induction step. A
little extra work will be required to handle the constraints, which will be
done using the method that was introduced for the proof of Proposition 6.4.
Informally, this is achieved by repeating, modulo R, the “longest” basis of
the ω-powers (as in (9.10)), namely w(ℓ, jn), sufficiently many times to guar-
antee that we enter into a cycle in terms of the constraints.

We start by introducing the reduced factorizations, modulo R, given by
Proposition 5.5: there are pseudowords u, v1, . . . , vn and positive exponents
e1, . . . , en such that for m = 1, . . . , n,

R |= w(ℓ, jm) = uemvm, (9.11)

R |= vmu = u (9.12)

where all the products, including uu, are reduced. Let e = max{em : m =
1, . . . , n}. By Fact 5.3, there are induced factorizations of the w(ℓ, jm) which
are described by appropriate choices of ordinals βq with ι(ℓ) = β0 < · · · < βe

such that
w[βq−1, βq[ =R u and w[βem , ι(jm)[ =R vm

(q = 1, . . . , e; m = 1, . . . , n).
(9.13)

Observe that βq = β0 + (β1 − β0)q.

To handle the constraints, recall that a standard combinatorial argument
shows that there exist integers hS and nS such that 1 < hS < nS and, for
all s1, . . . , snS

∈ S,

s1 · · · snS
= s1 · · · shS

(s1+hS
· · · snS

)ω−1. (9.14)

We now construct the new pair (S1,M1), where

S1 = (X1, I1, ζ1, χ1, right1,B1)

M1 = (w, ι1,Φ1).

The various components are described as follows.

• The set X1 is obtained from X by adding new variables yq, ȳq, zm, z̄m, ti, t̄i
with q = 1, . . . , e, m = 1, . . . , n and i = 1, . . . , nS − 1.

• Let J be the set consisting of the following ordinals:

– βq = β0 + (β1 − β0)q, (q = 0, . . . , e+ 1);

– γm = β0 + ι(jm) − βem , (m = 1, . . . , n);

– δp = β0 + (βe − β0)p, (p = 0, . . . , nS).
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Note that in the first line, we define a new ordinal βe+1. Since every finite
power of u is a prefix of w(ℓ, r), we have w[βe, βe+1[ =R u =R w[βq−1, βq[
for q = 1, . . . , e.

Also, by (9.12), R satisfies u = vmu, and since the product vmu is reduced,
we have αu > αvm . Using (9.11), we obtain βe ≤ ι(jn) < βe+1.

Notice finally that, by Proposition 5.5, the product uu is reduced. Hence
R 6|= u2 = u, and by (9.11), we obtain γm < β1. Let (I1, ι1,Φ1) be
a common refinement for the following two factorization schemes for w:
(I, ι,Φ) and (J, J →֒ αw + 1, ∅). We let

(1) bq = ι−1
1 (βq) (so that b0 = ℓ);

(2) cm = ι−1
1 (γm);

(3) dp = ι−1
1 (δp) (so that d0 = ℓ and d1 = be).

• For i, j ∈ I1 with i ≺ j, we set

ζ1(i, j) = {ϕ(Φ1(i, j, s)) : Φ1(i, j, s) is defined}

χ1(i, j) = ~c
(
w [ι1(i), ι1(j)[

)
.

• Denote the composite ι−1
1 ◦ ι by ξ. We define

right1(x) =






ξ(right(x)) if x ∈ X

bq if x = yq, q ∈ {1, . . . , e}
bq+1 if x = ȳq, q ∈ {1, . . . , e}
b1 if x ∈ {zm, z̄m}, m ∈ {1, . . . , n}
dp if x = tp, p ∈ {1, . . . , nS − 1}
dp+1 if x = t̄p, p ∈ {1, . . . , nS − 1}.

• Finally, the set B1 of boundary equations consists of all the following
4-tuples:

– (ξ(i), x, ξ(j), x̄) if (i, x, j, x̄) ∈ B \ E;

– (bq−1, yq, bq, ȳq), together with its dual (q = 1, . . . , e);

– (ℓ, zm, cm, z̄m), together with its dual (m = 1, . . . , n);

– (dp−1, tp, dp, t̄p), together with its dual (p = 1, . . . , nS − 1).

Let us illustrate the new boundary equations with an example (see Figure 8,
where the dashes emphasize that, over R, every finite power of u is a prefix
of w(ℓ, r)). Assume that n = 2, that is, we start with two elastic boundary
equations (ℓ, x1, j1, x̄1), and (ℓ, x2, j2, x̄2). Boundary equations involving yi,
ȳi, zi, and z̄i are meant to handle the periodicity over R of w(ℓ, r). The first
group of boundary equations, involving variables yi, ȳi, takes care of the fact
that, by (9.13), we have w[βq−1, βq[ =R w[βq , βq+1[ =R u. The purpose of
the second group is to encode that w[βem , ι(jm)[ =R vm. Finally, assume
that nS = 4. The last boundary equations are added to take care of the
constraints on the finite semigroup S.
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ℓ x1

j1 x̄1

ℓ x2

j2 x̄2

b0 y1 b1 y2

b1 ȳ1 b2 ȳ2

ℓ z1

c1 z̄1

ℓ z2

c2 z̄2

d0 t1

d1 t̄1

d1 t2

d2 t̄2

d2 t3

d3 t̄3

Figure 8: Handling constraints in S with new boundary equations

From the construction, it is immediate that M1 is a model of the system S1 of
boundary equations and that the inequality [S1,M1] < [S,M] holds since we
have kept the ordinal which determines the first component of the induction
parameter while reducing the second component to zero. To complete the
proof of the induction step also in the present case, it remains to show that
Property (P.2) holds.

Proposition 9.7 Suppose that M′
1 = (w′

1, ι
′
1,Φ

′
1) is a model of S1 in κ-

terms. Then S also admits a model in κ-terms.

Proof. Set τ = ι′1 ◦ ι
−1
1 . We let M′ = (w′, ι′,Φ′) be defined as follows:

• the pseudoword w′ is given by the κ-term

w′ = w′
1[0, τ(δhS

)[ · (w′
1[τ(δhS

), τ(δnS
)[)ω−1 · w′

1[τ(δnS
), τ(ι(r))[ ;

• let K = I ⊎ {rhS
, rnS

} be ordered so that the function ι′(0) : K → αw′
1
+ 1

is order preserving, where ι′(0) is defined to be the extension of ι′1 ◦ ξ that

is determined by ι′(0)(rhS
) = τ(δhS

) and ι′(0)(rnS
) = τ(δnS

);

• let (K, ι′(0),Φ
′
(0)) be the factorization scheme of w′ which is obtained from

(I1, ι
′
1,Φ

′
1) by restriction;

• for i ∈ I, set

ι′(i) =

{
(ι′1 ◦ ξ)(i) if i < r
αw′ if i = r;

• for i, j ∈ I with i ≺ j and s ∈ ζ(i, j), we let Φ′(i, j, s) = Φ′
(0)(i, j, s) if

j < r; in the case where j = r, so that i = jn (recall that jn = max{jm :
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m = 1, . . . , n}), we set

Φ′(jn, r, s) = Φ′
(0)(jn, rhS

, s1) · (Φ
′
(0)(rhS

, rnS
, s2))

ω−1 · Φ′
(0)(rnS

, r, s3),
(9.15)

where s = s1s2s3 is chosen to be a factorization such that Φ′
(0)(jn, rhS

, s1),

Φ′
(0)(rhS

, rnS
, s2), and Φ′

(0)(rnS
, r, s3) are defined. Note that there exists

at least one such factorization: since (I1, ι1,Φ1) is a refinement of the
factorization scheme (I, ι,Φ) for w, and

ξ(jn) ≺ d2 ≺ · · · ≺ dnS
≺ ξ(r)

in I1, there exists a factorization s = s′1s
′
2 · · · s

′
nS

such that we have s′1 ∈
ζ1(ξ(jn), d2), s

′
i ∈ ζ1(di, di+1) (i = 2, . . . , nS − 1), and s′nS

∈ ζ1(dnS
, ξ(r)),

so that we may take s1 = s′1 · · · s
′
hS−1, s2 = s′hS

· · · s′nS−1, and s3 = s′nS
.

The mappings are shown on Figure 9. Note that not all triangles in this
diagram commute, and that τ is a partial function.

I

I1

J K

αw′ + 1αw + 1

֒

ι

ξ ξ′

ι′

ι′1ι1

τ

ι−1
1 |J֒

ι′(0)

Figure 9: Involved mappings

We claim that M′ is a model of S in κ-terms. Let i, j ∈ I be such that
i ≺ j. We first consider the case where j < r. Then we have the following
equalities, where, if appropriate, we assume that s ∈ ζ(i, j):

ϕ(Φ′(i, j, s)) = ϕ(Φ′
(0)(i, j, s)) = s

~c(w′(i, j)) = ~c
(
w′

1

(
ι′1

−1
(ι′(i)), ι′1

−1
(ι′(j))

))

= χ1

(
t, ι′1

−1
(ι′(j))

)
if t ≺ ι′1

−1
(ι′(j))

= ~c
(
w

(
ι−1(ι1(t)), j

))

= ~c(w(i, j)) = χ(i, j)

R |= Φ′(i, j, s) = Φ′
(0)(i, j, s) = w′(i, j)

where the validity of the last pseudoidentity over R follows from the defini-
tion of factorization scheme. Assume next that j = r, so that i = jn. For
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s ∈ ζ(i, j), from the definition of Φ′(jn, r, s) in (9.15) and the hypothesis
that (9.14) holds for all elements of S, we deduce that

ϕ(Φ′(jn, r, s)) = ϕ(Φ′
(0)(jn, rhS

, s1)) · ϕ(Φ′
(0)(rhS

, rnS
, s2)) · ϕ(Φ′

(0)(rnS
, r, s3))

= s1s2s3 = s

for an appropriate choice of factorization s = s1s2s3. This completes the
proof of (M.1). For (M.2), we perform the following calculations:

~c(w′(jn, r)) = ~c
(
w′

1

(
ι′1

−1
(ι′(jn)), ι′1

−1
(ι′(r))

))

= χ1

(
ι′1

−1
(ι′(jn)), ι′1

−1
(ι′(r))

)

= ~c(w[δnS
, ι(r)[) = ~c(w[ι(jn), ι(r)[)

= ~c(w(jn, r)) = χ(jn, r).

In turn, the following calculations yield (M.3), for s ∈ ζ(jn, r) and a suitable
choice of factorization s = s1s2s3:

R |= Φ′(jn, r, s) = Φ′
(0)(jn, rhS

, s1) ·
(
Φ′

(0)(rhS
, rnS

, s2)
)ω−1

· Φ′
(0)(rnS

, r, s3)

= w′(jn, rhS
) ·

(
w′(rhS

, rnS
)
)ω−1

· w′(rnS
, r)

= w′(jn, r).

Finally, for condition (M.4), let (i, x, j, x̄) be a boundary equation in B. If it
does not belong to E then, by the choice of B1, (ξ(i), x, ξ(j), x̄) belongs to B1

and so, since M′
1 is a model of S1, R satisfies the following pseudoidentities:

w′(i, right(x)) = w′
1 (ξ(i), ξ(right(x))) = w′

1(ξ(i), right1(x)))

= w′
1(ξ(j), right1(x̄))) = w′

1 (ξ(j), ξ(right(x̄)))

= w′(j, right(x̄)).

For the remaining boundary equations, it suffices to check that R satisfies
each of the pseudoidentities w′(ℓ, r) = w′(jm, r) (m = 1, . . . , n). Now, since
M′

1 is a model of S1, R satisfies

w′[βq−1, βq[ = w′
1[βq−1, βq[ = w′

1(ι
′
1
−1

(βq−1), right1(yq))

= w′
1(ι

′
1
−1

(βq), right1(ȳq)) = w′
1[βq, βq+1[

= w′[βq, βq+1[ (q = 1, . . . , e)

= w′[β0, β1[

and, similarly, R satisfies

w′[βem , ι(jm)[ · w′[β0, β1[ = w′[β0, β1[ (m = 1, . . . , n), and

w′[δi−1, δi[ = w′[δi, δi+1[ (i = 1, . . . , nS − 1)

=
(
w′[β0, β1[

)e
.
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Hence R also satisfies

w′(ℓ, r) = w′(ℓ, jm) · w′(jm, r)

=
(
w′[β0, β1[

)em w′[βem , ι(jm)[

·
(
w′[β0, β1[

)e−em+(hS−2)e
·
(
w′[β0, β1[

)ω−1
· w′[δnS

, ι(r)[

=
(
w′[β0, β1[

)(hS−1)e
·
(
w′[β0, β1[

)ω−1
· w′[δnS

, ι(r)[

= w′(jm, r).

This concludes the proof of the proposition. �

We have thus concluded all the cases of the induction step and we have
therefore proved the following main result.

Theorem 9.8 The pseudovariety R is completely κ-reducible. �
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