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ABSTRACT 

 

Candida species belong to the normal human microbiota and are 

commonly responsible for several clinical manifestations from 

mucocutaneous overgrowth to severe bloodstream infections. Candida 

albicans is the predominant species involved in disease conditions. 

Nevertheless, in the last decade, the number of infections due to non-

albicans Candida (NAC) species has significantly increased. Candida 

species have several virulence factors, such as hyphal growth, secretion of 

hydrolases, and the ability to form biofilms. Biofilm formation is 

considered one of the main virulence factors of C. albicans. Biofilm 

production can occur on the host mucosa and on the surface of medical 

indwelling devices and includes a self-produced polymeric matrix that 

encloses fungal micro-colonies in a complex structure. The main 

components of the biofilm matrix are polysaccharides (e.g. -1,3 glucans 

and mannans), but proteins, DNA and lipids (e.g. ergosterol) can also be 

found in variable amounts. In this chapter, we will discuss the role of 

mannans within Candida biofilms. Additionally, the role of Candida 

biofilms in fungal structure, pathogenesis, and resistance will also be 

addressed. 

 

Keywords: Candida, mannan, -1,3 glucans, biofilm, matrix, pathogenesis, 

cell wall, NAC 

 

 

INTRODUCTION TO BIOFILMS AND MANNANS  

 

The majority of microorganisms in the environment and hospitals are 

able to grow on the surface of various materials in form of biofilms, which 

are communities attached to either biotic or abiotic surfaces and ecased in a 

self-secreted polymeric matrix [1]. In the hospital environment, biofilm 

formation occurs mostly on implanted plastic devices, while in a host 

biofilm formation can occur on mucosal surfaces [2, 3]. The most common 

fungal organisms able to form biofilms on clinically relevant surfaces belong 

to the genus Candida and the complexity of the biofilm varies depending on 

the specific Candida species [2, 4]. A common characteristic of most 

biofilms, including those formed by Candida, is the presence of an 

extracellular matrix (ECM). The main function of the ECM is to preserve 



Advances in Candida sp. Biofilm Mannans 3 

the structure of the biofilm, although the ECM also plays a role in antifungal 

drug resistance as it prevents antifungal agents to penetrate through the 

biofilm [4–6]. Generally, the main components of ECMs are proteins (55%), 

carbohydrates (25%), lipids (15%) and extracellular DNA (5%), all of which 

are present in Candida biofilms [7, 8].  

Mannose is a common compound of glycosylated eukaryotic proteins in 

various species, however the structure and size of mannans on proteins 

greatly differs between the different organisms. Basically, there are two 

types of protein glycosylation: O-glycosylation and N-glycosylation – with 

both present in eukaryotes, including fungi. The glucan chain of O-

glycosylated proteins is shorter than in N-glycosylated proteins and in fungi 

show less diversity compared to mammalian or insect O-glycosylation [9–

11]. Both N- and O-glycans are synthetized in the endoplasmic reticulum 

(ER) and the Golgi. In the next sections we will discuss the structure of the 

fungal cell wall with a special focus on mannose glycosylation of cell wall 

proteins in yeast and review how Candida biofilms are structured focusing 

on the biofilm matrix and the mannan portion of ECM. 

 

 

THE FUNGAL CELL WALL:  

ROLE IN STRUCTURE AND IN PATHOGENESIS  

 

The fungal cell wall is a highly complex and dynamic structure 

composed mainly of glycoproteins and polysaccharides such as glucan and 

chitin. Furthermore, this structure is involved in wide range of processes in 

the biology of fungi. These include protection from changes in osmotic 

pressure and other stressors [12], cell growth and division, development of 

specialized fungal cell types, and interaction with the environment (i.e., 

adhesion) [13–16]. The cell wall is also highly dynamic having to adapt to 

morphological changes such as filamentation, which involve yeast cells 

becoming hyphae [17–19]. This structure is also highly specific to fungi and 

therefore represents a valuable target for vaccine [20–22] and antifungal 

development. Indeed, two of the three main classes of antifungal therapies 
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target the cell wall [23–25]. In this section, we explore the structural role of 

the fungal cell wall and its role in pathogenesis.  

 

 

Cell Wall Components 

 

Although there can be variations in the composition of the fungal cell 

wall, the main components are present in many fungi [26]. These include 

chitin, glucans ( -1,3 and -1,6), and mannans and each plays a distinct role 

within the cell wall. All of these components are interconnected throughout 

the cell wall. Closer to the plasma membrane of the fungal cell is chitin, a 

linear homopolymer of -1,4-linked N-acetylglucosamine, which only 

accounts for 1-2% of the cell wall in yeast [27, 28] and up to 20% in 

filamentous fungi, but the tensile strength it provides significantly 

contributes to cell wall integrity and stability. The contribution of chitin to 

the structure and integrity of the cell wall was previously tested by using 

Nikkomycin Z, a competitive inhibitor of chitin synthase. The investigators 

reported that the inhibition of chitin-synthase activity resulted in significant 

alterations in hyphal morphology and an overall reduction in fungal wall 

thickness [29]. Importantly, in some fungi such as C. albicans, proper hyphal 

formation is required for biofilm formation and pathogenesis [17, 30]. 

Present in the outer cell wall are glucans, which have been shown to be the 

major structural constituents of the fungal cell wall accounting for up to 50-

60% of the cell wall [31]. These compounds can be found in several forms, 

but in yeast such as Saccharimyces cerevisiae and C. albicans, they are 

found as -1,3 forming structural scaffolds and -1,6 forming branches [32]. 

Lastly, interwoven throughout the chitin and glucan scaffolds are proteins, 

which are reported to account for 30-50% of cell walls of fungi such as S. 

cerevisiae and C. albicans [33]. In this category are the mannans, which are 

proteins glycosylated with chains rich in mannose [33]. Cell wall proteins 

play a wide array of roles in the fungal cell wall such as mediating cell 

adhesion, maintaining cell wall structure by synthesizing cell wall 

components, maintenance of cell shape, among others. It is important to 

recognize that although the components described above are found in most 
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fungi, extensive differences are also present in some fungi [34, 35]. This 

complex array of structures plays important structural and functional roles 

within the fungal cell wall, but they are also able to interact with the 

surrounding environment such as that of the host. 

 

 

Immune Recognition/Interaction of Host with Fungal Cell Wall 

Components and Pathogenesis 

 

The immune system of mammals is able to recognize and respond to all 

of the main components found in the fungal cell wall. Chitin and mannans 

are both recognized by the mannose receptor (CD206), while -1,3 glucans 

are recognized by Dectin-1, CR3 (CD11c/CD18), CD5, CD36, and 

SCARF1. Additionally, mannans are also recognized by DC-SIGN 

(CD209), Langerin (CD207), and Dectin-2 [36–39]. Additionally, other 

receptors can sense more unique structures and components in other fungi 

[40], a discussion which is beyond the scope of this chapter. The ability of a 

healthy host to sense and respond to fungi often results in the prevention of 

pathogenesis. Indeed, most fungal infections are associated with 

immunocompromised individuals (i.e., AIDS, organ transplants, medically 

compromised). There are many examples of fungal pathogens devising 

strategies to overcome the immune response. In this section, we will discuss 

two examples to illustrate the consequences of these interaction. 

Candida glabrata is an opportunistic pathogenic yeast and a common 

colonizer of the human gastrointestinal (GI) tract. C. glabrata is able to 

disseminate from the GI to cause invasive candidiasis in immune-

compromised individuals [41–43]. As described above, the cell wall of fungi 

is highly complex and dynamic, with the ability to adapt to distinct 

environments. C. glabrata is able to respond to its environment by 

remodelling cell wall components. Recently, Charlet and co-workers 

investigated the effect of cell wall remodelling by C. glabrata in the context 

of the GI using a murine dextran sulfate sodium (DSS) colitis mode [44]. In 

this model, C. glabrata was able to remodel the cell wall after passage 

through the GI with an increase in chitin and -mannans and a significant 
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decrease in -mannans. Additionally, C. glabrata was able to persist longer 

in the GI of mice in the DSS model, which the authors attribute to the 

remodelling of the cell wall. The authors also studied the impact of improper 

cell wall structure on the ability of C. glabrata to colonize and cause disease. 

Using a chitin synthetase mutant (ΔChs1) C. glabrata strain, which 

contained higher levels of chitin and -mannans in the cell wall, the authors 

described enhanced virulence in the DSS model compared to WT. These 

results highlight the importance of cell wall structure and composition in the 

host environment and persistence. Additionally, apart from C. glabrata 

stimulating an immune response, it was also able to impact the composition 

of the GI microbiota by significantly reducing the population of 

Lactobacillus johnsonii. These effects could be due in part to the immune 

response that C. glabrata induces in the GI, direct antagonistic interactions 

with L. johnsonii, or a change in the metabolite milieu leading to an 

unfavorable environment for L. johnsonii. In summary, this study highlights 

the importance of the fungal cell wall in the context of colonization and 

disease. In other studies, genes related to the mannans production where 

found overexpressed and mannans concentration in the matrices was clearly 

higher, when C. glabrata biofilms were under drug stress [45, 46]. 

As described above, the opportunistic pathogenic fungus C. albicans is 

a common colonizer of the GI tract and responsible for a large number of 

fungal infections [19, 47–50]. As shown by Wagener and co-workers, C. 

albicans is able to use its cell wall to evade and modify the host immune 

response [51]. In this study, the authors demonstrate that C. albicans is able 

to survive inside macrophages by induction of host arginase activity, which 

blocks the production of nitric oxide in human-monocyte-derived 

macrophages. Moreover, C. albicans demonstrated the ability to influence 

macrophage polarization from a classically activated phenotype to an 

alternatively activated phenotype, which has reduced antimicrobial 

functions, leading to C. albicans enhanced survival. The authors further 

described that the main component of C. albicans leading to the effects 

observed was chitin. Therefore, fungal cell wall composition affects 

interaction with host macrophages, which can enhance survival of the 

pathogen. 
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The two examples described above underscore the importance of the 

fungal cell wall in colonization, pathogenesis, and persistence in the host 

environment. 

 

 

MANNAN: VARIATIONS IN YEASTS 

 

As explained, mannans form the outermost layer of the yeast cell wall. 

Although, β-1,3-glucan is the major component of the fungal cell wall 

compared to the total cell wall dry-weight, mannans occupy much higher 

volume compared to the volume of other cell wall polysaccharides (β-

glucan, chitin) in C. albicans [52]. The majority of the mannose in the fungal 

cell wall is presented as O- or N-linked mannan on specific protein residues. 

O-glycans are bound to serine or threonine -OH groups on the surface 

of proteins. For O-glycosylation there are no specific sequences to initiate 

glycosylation. Instead, the presence of O-glycan residues is determined by 

the conformation of the polypeptide chain. O-glycosylation is diverse in 

higher eukaryotes, but in fungi it contains mannose only without branches 

[52–54]. The initial O-glycan residue is α-mannose and its binding is 

directed by Pmt1, Pmt2, Pmt3, Pmt4, Pmt5 and Pmt6 in the endoplasmic 

reticulum [54–56]. PMT family members bear redundant function, however, 

Pmt2 appears to be essential for the viability of C. albicans. After the 

initiation of O-glycosylation, proteins are transported to the Golgi apparatus 

for subsequent modifications, including the formation of 1,2-bouds between 

α-mannose monomers by Mnt1 and Mnt2 (Figure 2) [14, 54–56]. Deletion 

of the corresponding genes resulted in reduced biofilm forming capacity and 

they also showed adhesion deficiencies (Figure 2) [54, 57, 58]. According 

to this knowledge O-mannan possibly has an importance in the biofilm 

forming ability of different Candida species. 

The polysaccharide chain of N-glycosylated proteins is a branched 

structure and in fungi it also consists of mannose. The synthesis of N-glycans 

has two steps that take place in different organelles: the ER and the Golgi 

apparatus. The first phase takes place in the ER and is a highly conserved 

biosynthetic pathway among eukaryotic organisms. In this phase the N-
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glycosylation core is synthetized on the lipid dolichol-phosphate (Dol-P). 

Dolichol is a polyisoprene lipid molecule. In yeasts, dolichol consist of 14 

isoprene units [59, 60]. During the first part of the synthesis of the N-glycan 

core, N-Acetyl-D-glucosamine (GlcNAc) and D-Mannose (Man) serve as 

monomers, after which they are activated by nucleotides UDP and GDP, 

respectively [61]. This first part is taken place at the outer side of ER until 

the Man5GlcNAc2-P-P-Dolichol is formed. Then, the molecule is “flipped” 

into the lumen of the ER by the product of a mammalian RFT1 ortholog, 

where for the later mannose and glucose incorporation Man-P-Dol and Glc-

P-Dol serve as glucan donors. Man-P-Dol and Glc-P-Dol are synthetized in 

the cytoplasm by Dpm1 and Alg5, respectively. In order to be utilised, 

further 4 mannose and 3 glucose Man-P-Dol and Glc-P-Dol donor molecules 

must be “flipped” to the lumen of the ER. From the addition of the first 

GlcNAc to P-Dol (Glc3Man9Glc 

NAc2-P-P-Dol) different members of the ALG (Asparagine-Linked 

Glycosylation) loci catalyse the transfer of sugar residues from the donor 

molecules (UDP-GlcNAc, GDP-Man, Glc-P-Dol, Man-P-Dol,) to the 

developing N-glycan core [10, 61]. The subsequent translocation steps 

include the formation of various types of covalent bounds between sugar 

residues. Then, two mannose molecules bind to the first one, one by α-1,3- 

and the other by α-1,6-bound. In the lumen of the ER, two additional 

mannose molecules bind to the α-1,3-mannose by an α-1,2-bound. Inside the 

ER, two mannose monomers will bind to the α-1,6-mannose by α-1,3- and 

α-1,6- bounds [10, 61]. The synthetized glycan precursors are then 

transferred to the -NH2 group of asparagine at specific Asn-X-Ser/Thr 

amino acid sequences - where “X” can be any amino acid except for proline 

- by the oligosaccharyltransferase (OST) complex. Following the transfer of 

the N-glycan core to the nascent protein, glycosidase I and II trim all the Glc 

residues for correct protein folding. Before the folded protein is transported 

to the Golgi, the ER mannosidase I cuts the terminal α-1,2-mannose from 

the central antenna [62].  

In all eukaryotic organisms the maturation of the N-glycan takes place 

in the Golgi apparatus, however the machinery of glycosylation and the 

structure of N-glycans are very divergent between different species. In 
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yeasts the mature N-glycan consists of high amounts of mannose with 

branches [63]. The donor molecule for mannan extension is GDP-Man in 

the Golgi apparatus. During the synthesis of the mannan outer chain one 

glycosyltransferase or a redundant family of glycosyltransferases are 

responsible for the production of specific bounds between the mannose 

residues [63]. The first step of outer chain synthesis is the addition of α-1,6-

mannose to the basal α-1,3-mannose at the base of the long mannose chain 

in the N-mannan core, which is catalysed by Och1. Further elongation of the 

α-1,6-mannose backbone is catalysed by the mannan polymerase I and II 

complexes, both composed of 2 proteins: Mnn9 in both and Van1 or Anp1, 

respectively [64]. In C. albicans Mnn9 is a key enzyme in α-1,6-

polymannose synthesis as Δ/Δmnn9 deletion mutants bear significantly less 

mannan in the cell wall [54]. Operation of Mnn9 results in a long α-1,6-

mannose backbone, containing repetitions of 10 α-1,6-mannose residues. 

These repetitions bear the same mannose branch motifs. The initiative 

mannose residue of the extensive branches is bound to the α-1,6-mannose 

backbone via α-1,2-linkages, which is catalysed by Mnn2 and its further 5 

gene products (MNN2-family). The initial α-1,2-mannose residues are 

extended with 2 or 3 α-1,2-mannoses due to Mnn5. The absence of Mnn2, 

Mnn5 and the functionally related proteins results in the deletion of larger 

mannan fibrils [65]. In yeasts α-1,2-mannose branches are usually capped 

with an α-1,3-mannose residue. In C. albicans α-1,3-mannose caps are 

formed due to the operation of the MNN1 gene family, which contains six 

members and shows redundancy as reported by previous studies [66]. A 

special aspect of protein glycosylation in Candida species is that the α-1,2-

mannose branches end with 2 or 3 β-1,2-mannose residues, however β-1,2-

mannose is not presented in the cell wall of S. cerevisiae. The addition of β-

1,2-mannose to N-glycans is performed by β-mannosyltransferases (BMT). 

In C. albicans BMTs are encoded by the BMT1 and BMT3 genes. Depletion 

of β-1,2-mannose does not affect the viability or the cell wall structure of 

Candida cells however, such alteration is recognized by the galectin-3 

immune receptor presented on the surface of neutrophils and macrophages 

[67,68]. Due to this, the importance of the β-1,2-mannose in the cell wall of 

Candida species is unclear (Figure 1). 
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Figure 1. Polysaccharides of yeast cells with significant mannan content. Basic 
structure of cryptococcal capsule, consisting of glucuronoxylomannan (GXM) (A) and 

glucuronoxylomannogalactan (GXMGal) (B). Squared brackets [] represent the 

repetition of polymeric structures. Parentheses () represent the eventuality event of Xyl 

substitution on the GXM backbone, that determines the serotype of Cryptococcus 

strains. 

Cryptococcus species are basidiomycete yeasts. The unique feature of 

the cryptococcal cell surface is that it is covered with a capsule [69]. The 

capsule of Cryptococcus species varies in size between the different species; 

however, the main components remain glucuronoxylomannan (GXM) and 

glucuronoxylomannogalactan (GXMGal), which contain mannose residues. 

Nearly 90% of the capsule dry mass consists of GXM, but GXMGal is also 

present. The backbone of the GXM consists of an α-1,3-mannose polymer 

substituted with β-1,2-linked glucuronic acid (GlcA) and β-1,2- or β-1,4-

linked xylose (Xyl). An additional modification of the mannose backbone is 

the 6-O-Acetylation. The substitutions and acetylation on the backbone are 

repeated in triplets and define the serotype of the different Cryptococcus 

strains (Figure 1A) [69, 70]. In contrast with GXM, the backbone of 

GXMGal is built up of α-1,6-galactose (Gal), which bears side chains of β-

1,2- or β-1,3-linked galactose or galactofuranose (Galf). β-1,3-Gal side 
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chains are substituted with α-1,4-Man-α-1,3-Man disaccharides, bearing β-

1,3-GlcA, β-1,2-Xyl and β-1,3-Xyl, respectively (Figure 1B) [69,70]. 

 

 

CANDIDA SP. BIOFILMS  

 

The virulence of the Candida species has been attributed to their ability 

to form structured aggregates of cells called biofilms [6], which have distinct 

phenotypes compared to their planktonic cell counterparts [71, 72]. Thus, 

biofilm cell communities can create a source of persistent infection, more 

difficult to treat than planktonic cell-induced infections because of an 

increased resistance to antifungal drugs [71, 73]. In addition, the presence of 

biofilms reduces the likelihood of removal of organisms by the host defense 

mechanism, inducing localized pathology and tissue damage [74, 75]. 

Candida species biofilms are among the most common in clinical settings, 

and can be formed in biotic (e.g., mouth or vaginal mucous membranes) or 

abiotic (e.g., catheters or prostheses) surfaces [76–78]. One of the most 

commonly colonized medical devices is the central venous catheter (CVC) 

used to administer nutrients, fluids and medications to patients [76] 

infections related to non-medical devices, such as Candida endocarditis, 

may result from the formation of biofilms on damaged vascular endothelium 

of native heart valves in patients with pre-existing cardiac disease [79]. 

Candida biofilm formation can be explained in four chronological stages 

(Figure 2): i) surface adhesion/colonization in which the planktonic yeast 

cells adhere to the surface. The extent of adhesion depends on the 

characteristics of Candida cells and the host and/or abiotic surface properties 

such as hydrophobicity and cell wall composition (1–3 h); (ii) cell 

proliferation/invasion and formation of well-organized colonies (11–14 h); 

(iii) production and maturation of the ECM with differentiation into a mature 

three-dimensional structure consisting of yeasts, pseudohyphae and/or 

hyphae (or not, depending on the Candida species) embedded in the matrix 

(20–48h); (iv) dispersion of biofilm cells to promote colonization and 

infection of distal sites (after 24h) [76, 80–82]. 
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Figure 2. Formation and development of a Candida species biofilm on a surface. 

 

As mentioned above, a mature biofilm is comprised of a dense network 

of cells involved by ECM with water channels between the cells. These 

channels help in the removal of residues and the diffusion of nutrients from 

the environment through the biomass to the lower layers [71, 73]. The final 

architecture of the biofilm is variable and depends, in part, on the growth 

conditions of the substrate in which it is formed, and, mainly, on the Candida 

species involved and its clinical origin (Table 1) [71, 73]. Cells whitin 

biofilms usually present several morphologies, from blastospores to true 

hyphae, depending on the species, e.g., C. albicans, can present 

blastospores, pseudohyphae and hyphae in the same biofilm. Alternatively, 

species such as C. glabrata can only form blastospores. Moreover, several 

changes can be observed in yeast biofilms induced by changes in 

environmental conditions, such as oxygen rate, pH and media composition 

[83]. These changes can affect matrix composition, total biofilm biomass and 
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yeast morphology. For example, in the presence of media with high glucose 

content, C.glabrata strains form less robust biofilms compared to Candida 

tropicalis and Candida parapsilosis, but in poor media, such as artificial 

urine, the former is a better producer of biofilm than the other species [83]. 

Furthermore, the morphology of C. albicans changes from hyphae to 

blastospores in response to a pH change, demonstrating here a quick 

response to environmental stress [83]. 

 

Table 1. Characteristics of biofilms of the most  

common Candida species [74] 

 

Species Biofilm Characteristics Biofilm formation 

Candida albicans Basal blastospores layer. 

Dense overlying matrix (exopolysaccharides 

and hyphae) 

Very high 

Candida 

dubliniensis 

Chains of cells with thin extracellular matrix 

material. 

High variability among clinical isolates. 

High 

Candida glabrata Forms considerably less biofilm than C. 

albicans. High in both protein and 

carbohydrate content. 

High/Normal 

Candida krusei Thick multilayer with pseudohyphal 

embedded within the polymeric matrix. 
High 

Candida 

parapsilosis 

Clumped blastospores and less volume. 

Large amounts of carbohydrate with less 

protein. 

High variability among clinical isolates 
Normal to high 

Candida 

tropicalis 

Large chains of cells with thin extracellular 

matrix material. 

 

From the clinical point of view, the most important feature of Candida 

biofilms is their role in resistance to conventional antifungal therapy [74, 84]. 

The antifungal resistance can be inducible in reaction to a drug, or a 

permanent genetic change resulting from prolonged exposure to that drug 

[45, 85, 86]. Although resistance mechanisms of biofilms to antifungals are 

not fully understood, the current consensus is that biofilm resistance is a 

complex multifactorial phenomenon involving different molecular 
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mechanisms of resistance compared to those exhibited by planktonic cells 

[75, 80, 87]. These include the structural density; complexity of the biofilm, 

i.e., the intrinsic metabolic heterogeneity; the impact of sterols content and 

its correlation with expression of ERG genes; the biofilm positive regulation 

of the efflux pump genes, which may pump out the drugs; the presence of 

persister cells; and the presence of ECM, which induces the limitation of 

diffusion [71, 75]. Next section will discuss the density and complexity of 

the biofilm matrix in Candida species and its role in the drug resistance. 

 

 

CANDIDA SP. BIOFILM MATRIX 

 

In Candida species biofilms, the ECM is self-secreted by the cells and 

completely surrounding the biofilm structure. The ECM is a defining 

characteristic of all Candida species biofilms, providing the cells protection 

from hostile factors and conferring significant resistance to antifungal 

therapy and intense host immune responses [85, 88, 89]. Little is known about 

matrix composition of Candida species biofilms. However, it is important 

to address that the composition of the Candida biofilm matrices can vary 

according to the species [74, 83]. In general, the ECM of Candida biofilms 

is composed by carbohydrates, proteins, phosphorus, hexosamines, DNA 

and uronic acid [74, 83]. 

Regarding the general constitution, the ECM of C. glabrata biofilms 

(Table 1) has a high amount of proteins and polysaccharides, C. parapsilosis 

biofilms have more carbohydrates and low protein contents than C. 

tropicalis whose biofilms present low carbohydrates and high protein 

contents compared to the other Candida species [74, 83]. However, the major 

component quantified in C. tropicalis biofilm matrices was hexosamine 

(27%). Recently, Rodrigues et al. (2016) revealed for the first time the 

presence of β-glucans in the C. glabrata matrices even when treated with 

azoles, amphotericin B and echinocandins [85, 88, 90]. In Candida species, 

there is scarce knowledge concerning the contribution of extracellular DNA 

to biofilm matrix and overall structure [74, 90, 91].  
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Although the ECM of Candida biofilms is far from completely 

characterized, it is known that it contributes to biofilm resistance to 

antifungal therapies and recalcitrance [83, 92, 93]. In this sense, studies have 

been carried out to broaden our knowledge and to clarify the involvement of 

some of the matrix components in Candida biofilm resistance. Recent 

studies revealed the involvement of the matrix on C. tropicalis strains on 

amphotericin B resistance, namely in increase of the biofilm production [74, 

94]. These studies highlight the incapacity of this traditional antifungal to 

totally prevent biofilm formation and to eradicate C. tropicalis biofilms. 

This probably occurs due to a response of C. tropicalis biofilm cells to the 

drug stress, which determined the overgrowth of the biofilm matrix. Fonseca 

et al. and Rodrigues et al. (2014 and 2017) revealed a phenomenon similar 

for C. glabrata with an increase of proteins and carbohydrates in the 

matrices extracted from biofilms treated with fluconazole [95, 96]. In fact, β-

1,3 glucans were linked to antifungal resistance and the proposed 

mechanism is that these polymers make it difficult to the drugs to diffuse 

through the biofilm matrices and reach the yeast cells [8, 73, 85, 88, 97–99]. 

When induced, the disruption of β-1,3-glucans or a β-1,3-glucanase 

treatment have been shown to increase susceptibility of biofilms to 

fluconazole and the addition of exogenous β-1,3 glucans has been 

demonstrated to result in the rise of resistance to fluconazole in planktonic 

cells [80, 100]. Additionally, it is possible that biofilms can also sequester 

amphotericin B, as it has been shown that β-1,3-glucans can bind specifically 

to this drug [80, 90, 101]. Research has recently shown that the ECM β-1,3 

glucan is synthesized from glucan synthase Fks1 using a defined knockout 

and over-expressing strain [74, 102]. This study demonstrated that β-1,3 

glucan is responsible for sequestering azoles, conferring resistance on C. 

albicans biofilms [74, 102]. Other studies have shown that they are also 

responsible for sequestering echinocandins, pyrimidines, and polyenes [74, 

103]. Following studies have identified a role for the SMI1 in C. albicans, a 

gene involved in cell-wall glucans synthesis, in biofilm ECM production and 

development of a drug-resistant phenotype, which appears to act through 

transcription factor Rlmp and glucan synthase Fks1. In addition to Fks1, a 

zinc-response transcription factor ZAP1 has been shown to be a negative 
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regulator of ECM soluble β-1,3 glucan in both in vitro and in vivo C. 

albicans biofilm models [74, 104]. Conversely, two glucoamylases, Gca1 

and Gca2, are thought to have positive roles in matrix production. A group 

of alcohol dehydrogenases ADH5, CSH1, and LFD6 also have roles in 

matrix production, with ADH5 acting positively, and CSH1 and LFD6 acting 

negatively [74, 105]. It is also present on a number of other Candida species, 

including C. glabrata, C. parapsilosis and C. tropicalis [45, 80]. 

 

 

CANDIDA SP. MANNAN: ROLE IN PATHOGENESIS 

 

As mentioned, Candida sp. mannoproteins have both N- and O-linked 

sugars, mainly mannans, gathering up to 200 mannose units [106, 107], 

attached via a phosphodiester linkage (phosphomannan) (Figure 3) [54]. The 

number of mannans units and their molecular weights greatly fluctuate between 

species [108], having significant effects for host-fungus interactions [65, 107]. 

For example, mannans derived from C. glabrata are less closely related to those 

of Saccharomyces cerevisiae than to those of C. albicans [109], yet the core of 

the biosynthetic machinery appears to be conserved in all three organisms [107].  

The deletion of ScMNN2 has proved to inhibit the accumulation of α-

1,2-mannose onto the mannan backbone, preventing any formation of N-

mannan outer chains [110]. In C. albicans, this conditions growth, cell 

morphology and immune detection [111]. Numerous mannosyltransferases 

related to the mannan biosynthesis in S. cerevisiae, have been identified, 

being also conserved in C. albicans and other pathogenic fungi. Curiously, 

various of these fungal mannosyltransferases are not present in human cells, 

which has been important in development of new targets for novel 

antifungals and vaccines. This subject has advanced in S. cerevisiae and C. 

albicans, but not in NAC, principally in biofilms. Phosphomannans are 

mainly organised in mannans, and have a crucial role in adhesion and host 

recognition (host-fungus interactions) [47, 54, 107, 112]. A deletion of any 

of the MNN2 family members, disturbs the phosphomannan content of the 

cell wall [46, 65]. In fact, several authors have demonstrated that C. glabrata 

increases the mannans’ content on the cell wall in the presence  
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of drugs, possibly due to an adaptation of the cells to the drug stress  

[46]. Other cell walls modifications have been described and  

explained as a response to antifungal stress/resistance [80, 97, 113, 114].  

 

 

Figure 3. General structure of the Candida sp. cell wall, highlighting the mannans. 

Besides, it has also been confirmed that strains of C. glabrata have less 

mannans on the matrices with contact to several antifungal drugs, which 

indicate that matrices with poorer mannans’ content are more fragile, more 

predisposed to environmental stresses and, thus, more susceptible to 

biomass loss. When this decrease occured, an growth in the β-1,3 glucans’ 

concentration was detected. This observation led to conclude that there was 

a compensation of the mannans decrease, probably related to resistances 

profiles [46]. These facts connect directly the mannans and β-1,3 glucans 

(present in cell wall and in the biofilm matrices) to antifungal drug 

resistance. 
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CONCLUSION 

 

Candida sp. biofilm matrices and cell wall compositions of have been 

related to higher pathogenicity and virulence states. The mannans evidently 

influence the drug response profile of biofilm cells, being interconnected to 

β-glucans in the resistance of Candida sp. biofilms to antifungal drugs. Since 

there is a strong variability between species and strains, other factors are 

related to this biofilm drug resistance  

The identification and blocking of genes directly related to the plasticity 

of the composition of the matrices and cell walls seem to be important for 

the search to new antifungal agents, yet other tactics must be investigated, 

due to the high capacity of gene adjusments in Candida genus. 
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