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ABSTRACT 

A textile reinforced mortar (TRM) compatible with rammed earth structures is proposed to mitigate their 

seismic vulnerability. Being TRM a composite material, defining the matrix-fibre interface relationship is 

fundamental to predict the performance of strengthened structures. In this framework, an existing analytical 

approach with a newly damage model was adapted to a specific TRM composite system that is not yet 

addressed in literature. Hence, an adhesion-friction law was calibrated with basis on recent experimental 

observations. In conclusion, the proposed algorithm reproduces adequately the elastic and nonlinear response 

of the matrix-fibre interface and predicts with accuracy the pull-out strength of the composite. 

Keywords: rammed earth, analytical model, bond stress-slip law, textile reinforced mortar, direct boundary 

approach 

1. INTRODUCTION 

Raw earth is one of the most ancient building materials and its related building techniques are spread 

worldwide. The importance of this building material stands out from the fact that 20% to 30% of the world 

population is estimated to live in earthen dwellings and that more than 10% of the built World Heritage 

classified by UNESCO is made of earth [1][2]. Among the different building techniques based on the use of 

raw earth, rammed earth consists in compacting a mixture of moistened earth within a formwork [1][3]. This 

technique has been used since ancient times to build from monuments [1][4][5] to affordable dwellings [6][7]. 

Nonetheless, earthen buildings are a subject of increasing concern as they present a high seismic vulnerability, 
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which is due to low mechanical properties of the material, high self-weight and poor connections between 

structural elements. Thus, moderate to intense earthquakes are expected to result in in-plane cracking of the 

walls, formation of out-of-plane mechanisms and potential collapse of the roof and floors [8][9].  

Recently, textile reinforced mortar (TRM) composites have been proposed as an alternative strengthening 

solution because of the low self-weight, high tensile strength and ductility capacity, as already demonstrated 

for masonry buildings [10][11][12][13]. Some experimental studies on TRM-based strengthening systems for 

earthen buildings were conducted on adobe structural elements and mock-ups, which evidenced to be an 

efficient solution to reduce their seismic vulnerability [14][15][16][17][18][19][20][21].  

Although the investigation on TRM strengthening for rammed earth structures is recent and the first outcomes 

show potential improvement of the overall seismic capacity [7][22][23], the research carried out so far 

overlooked the local response of the system in favour of investigating its global effect on full structures or 

structural components. In addition, insufficient attention is paid to the compatibility between the proposed 

strengthening solutions and rammed earth substrates, which guarantees the long-term effectiveness of the 

interventions [24]. Yet, in composite materials, the definition of the mechanical properties of the matrix-fibre 

interface, known as bond stress-slip relationship (BSR), is of primary importance to understand and predict 

the overall performance of a strengthened structure. In this context, different test setups have been implemented 

to describe the interaction between the two components of TRM and to deduce consistent interface models 

[25][26][27]. Pull-out tests are among these setups and consist of pulling out a single fibre or a mesh band 

embedded in a specimen representative of the matrix, while the corresponding load-displacement relationship 

P(u) is recorded. However, the resistance to debonding depends on the mechanical and chemical properties of 

the matrix-mesh interface and the interfacial bond area, which is a function of the embedded length and fibre 

diameter. Therefore, the P(u) relationship is a response of a system with a specific geometry, not representing 

a material property of the tested composite. For obtaining material parameters to define the shear force 

transmission independently from the geometric properties, numerical or analytical models can be applied to 

the experimental P(u) curves [28][29].  

In general, analytical interface models can be divided in two main groups [30]: a) perfect interface model, 

mainly used in the case of stress transfer problems of resin matrix composites (e.g. FRP) [31]; b) imperfect 

interface models, usually implemented in the case of cement-based matrix composites [30]. In the case of 
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imperfect bond (granted by cohesion and adhesion mechanisms), a transition zone (interface) is assumed with 

properties different from the matrix and fibre. Consequently, when the stiffness of the interface is much smaller 

than that of the adjacent constituents, the deformation in this zone can be higher than that of the fibre uf or 

matrix um. Therefore, the difference between the deformation of the components represents the interface 

deformation and it is defined as slip [s=uf -um] [32]. Hence, the bond stress-slip law represents the idealization 

of the shear stress τ(s) transfer at the interface matrix-fibre at any coordinate of the fibre x as a function of the 

slip s [30][32][33][34]. 

To infer the analytical law of the mortar-mesh interaction for imperfect interface models, mainly two 

approaches are used, namely considering a direct boundary problem (DBP) or an inverse boundary problem 

(IBP). For DBP, the load versus displacement relation P(u) of a pull-out test is calculated on basis of an 

assumed constitutive law τ(s) [30][35][36][37][38]. To derive such a bond stress-slip relationship for a material 

combination, its parameters must be assumed to simulate the pull-out curve, whose outcome is compared with 

the experimental data. The bond-slip law is defined once the best approximation is achieved by means of fitting 

or other optimization processes. Nevertheless, the direct approach entails complex mathematical problems, 

since the simultaneous optimization of many parameters is difficult to perform. For this reason, only a limited 

number of free parameters are typically considered, meaning that the general mathematical description of the 

bond-slip might be restricted. Regarding the inverse boundary problem, the analytical solution is determined 

directly from a given experimental P(u) curve [29][33][39]. Thus, the constitutive law is not restricted in 

number of parameters as in the case of the direct boundary problem. On the other hand, the constitutive law is 

stepwise defined with basis on the identification of the pair [τ-s](i) in an iterative algorithm, which in turn 

depends on the previously determined pair [τ-s](i-1), meaning that the error introduced by the adopted tolerance 

keeps accumulating with further steps. The growing of such inaccuracy since earlier derivation steps can result 

in oscillation effects or even in a diverging calculation, for which further regularization methods in the 

numerical solution routine are required. 

Considering the existing approaches to infer the analytical law of the interaction mortar-mesh and the 

experimental results presented in Romanazzi et al. [40], the direct approach was adopted to infer a bond stress-

slip relationship for the specific TRM composite system, not yet addressed in literature. This paper presents 

firstly the materials characterization and the results of pull-out tests from a previous experimental program 
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conducted by the authors, which allowed to hypothesize the BSR. Subsequently, the problem statement of the 

analytical model with the implementation of a novel damage model is derived. Afterwards, the algorithm for 

solving the problem and analytically simulate the pull-out test is proposed and discussed. Finally, a sensitivity 

analysis is performed, and the constitutive law verified for the specific composite material. 

2. EXPERIMENTAL PROGRAM OVERVIEW 

The material properties and the results of a previous series of pull-out tests conducted by the authors are here 

briefly reported for convenience, nonetheless further details can be found in Romanazzi et al. [40]. The referred 

experimental program proposed a TRM strengthening solution for rammed earth, composed of an earth-based 

mortar and a low-cost glass fibre mesh and compatible with the substrate from the physical and mechanical 

points of view [24]. The earth-based mortar was manufactured with soil sieved through a 2 mm aperture sieve 

and fine sand, in proportions that resulted in a clay content of 11% to mitigate cracking due to drying shrinkage. 

The water content W/S, defined as the ratio of the added water to the dry weight of the material, was determined 

according to a workability requirement (flow table value of about 170 mm [41]) for rendering mortars [42] as 

0.18. The mechanical properties of the earth-based mortar were characterized according to EN 1015-11 [43]. 

After a drying period of 28 days under constant hygrothermal conditions (T= 20±2 °C and RH= 57.5±5%), 

three prismatic specimens with dimensions 40x40x160 mm3 were tested under three-point bending and, 

afterwards, the remaining parts were tested under compression. The average flexural strength fb was 0.5 MPa 

(CoV= 14%), while the average compressive strength fc was 1.2 MPa (CoV= 12%). Finally, the Young’s 

modulus Em was evaluated by means of axial compression tests on three cylindrical specimens with 90 mm 

diameter and 175 mm height. The average Young’s modulus Em, computed by linear fitting of the stress-strain 

curves in the range 0-30% of fc, was of about 4915 MPa (CoV= 20%). 

As illustrated in Figure 1, the glass fibre mesh is woven and presents different properties according to the main 

orthogonal orientations. Therefore, the physical properties were assessed in both longitudinal X and transversal 

Y directions in terms of mesh size, linear density TEX [44], grammage GSM [45], density ρ and average cross-

section of a single yarn Ay. The tensile behaviour of the dry mesh in the longitudinal direction was evaluated 

according to the procedure prescribed by ASTM D6637 [46] and RILEM TC-250 CSM [47]. According to 

Oliveira et al. [48], this direction presents the highest mechanical properties and, for sake of simplicity, it was 

the only direction considered in this experimental program. Thus, the mechanical behaviour was characterized 
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by testing five mesh specimens with width of 50 mm and free length of 300 mm. The average maximum linear 

force Pw,p obtained was 18.4 kN/m (CoV 11%), while the average tensile strength ft of a single yarn and the 

peak axial strain εpeak were 626 MPa (CoV 11%) and 0.021 (CoV 10%), respectively. In addition, an average 

Young’s modulus Ey of 32181 MPa (CoV 6%) was obtained by linear fitting of the tensile stress-strain curve 

in the range 0-30% of ft. Table 1 summarizes the properties of both materials integrating the tested TRM 

solution. 

 

Figure 1. Glass fibre mesh integrating the tested TRM strengthening solution. 

The pull-out specimens consisted of a glass fibre mesh band embedded in earth-based mortar cylinders with 

diameter of about 150 mm and height corresponding to the bonded length Lb. In the present study, only the 

specimens with bonded length 90 mm and 150 mm were considered. The specimens were casted ensuring the 

correct filling of the mould and perfect alignment of a single mesh band with 50 mm width, while the unbonded 

part of the mesh was kept vertically to avoid any damage due to bending. The drying period of the specimens 

was of 28 days under constant hygrothermal conditions (T= 20±2 °C and RH= 60±5 %), after which they were 

subjected to displacement controlled pull-out tests. The displacements of the mesh were recorded by means of 

one LVDT set at the free-end and two LVDTs set at the loaded-end close to the mortar surface (Figure 2). 

Table 1. Properties of the earth-based mortar and glass fibre mesh used in the specimens of the pull-out tests. 

Material 

Pw,p 

(kN/m) 

εpeak 

(mm/mm) 

ft 

(MPa) 

Ey 

(MPa) 

Ay 

(mm2) 

fc 

(MPa) 

fb 

(MPa) 

Em 

(MPa) 

Glass fibre mesh 18.42 0.021 625.8 32181 0.2944 - - - 

Earth-based mortar - - - - - 1.17 0.50 4915 
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Figure 2. Setup of the pull-out tests. 

The results are summarized in Table 2 in terms of elastic force per width Pel,w and related elastic displacement 

at the loaded-end uel, maximum force per width Pmax,w and ultimate displacement at the loaded-end uult. These 

values were subsequently considered in the algorithm to define the bond stress-slip relationship. It is reported 

that to identify the elastic force (Pel,w), linear regressions were performed increasing the value of the force and 

checking the goodness-of-fit. The end of the elastic response is considered when the goodness-of-fit decreases 

below a specific value or the slope of the fitting curve significantly changes. Figure 3a-d presents the response 

curves in terms of force per width, slip at the loaded-end and slip at the free-end for the two different bonded 

lengths considered. Based on the literature [32][36][38][39][49][50], the experimental pull-out curves can be 

divided into two zones, to which correspond different shear stress distribution along the mesh-mortar interface. 

A linear response is observed while the load is transmitted from the yarns to the matrix by adhesion and the 

shear strength is not achieved, which corresponds to the elastic force Pel,w. After this point, micro-cracks are 

developed at the interface, resulting in detachment between the two components and the response becomes 

nonlinear. During the nonlinear stage, adhesion is still in action at the interface of the bonded fibres, while 

friction between the fibres and the matrix is the resistant mechanism in the detached length. As the debonding 

propagates towards the free-end, the stiffness of the load-slip curve decreases, until the shear strength is 

attained at the free-end. In addition, as throughout reported in Romanazzi et al. [40], failure of the pull-out 

tests with bonded lengths of 50, 90 and 150 mm occurred in an embedded section of the yarns for tensile forces 

lower than the strength capacity of the dry mesh, as showed in Figure 4a and Figure 4b. This premature failure 
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of the mesh is attributed to damage accumulation in the yarns, caused by friction wearing between the earth-

based mortar and the fibres as slipping progressed. 

Table 2. Results of pull-out tests for the bonded lengths of 150 mm and 90 mm. 

Specimen Lb (mm) Pel,w (kN/m) uel (mm) Pmax,w (kN/m) uult (mm) 

POGM150_1 150 2.64 0.1704 14.34 2.32 

POGM150_2 150 2.48 0.2304 13.66 1.96 

POGM150_3 150 2.92 0.1555 12.66 2.54 

POGM150_4 150 2.38 0.1001 13.98 2.63 

Average 

(CoV %) 

 

2.61 

(9) 

0.1641 

(33) 

13.66 

(5) 

2.3625 

(13) 

POGM90_1 90 3.13 0.2009 13.22 3.84 

POGM90_2 90 2.99 0.1702 12.51 3.27 

POGM90_3 90 2.83 0.1221 13.44 2.67 

POGM90_4 90 2.67 0.0864 14.78 3.38 

Average 

(CoV %) 

 

2.91 

(7) 

0.1449 

(35) 

13.49 

(7) 

3.29 

(15) 

 

  

(a) (b) 
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(c) (d) 

Figure 3. Pull-out experimental curves: a) loaded-end Lb 150 mm, b) free-end Lb 150 mm, c) loaded-end Lb 90 mm, and d) free-end 

Lb 90 mm. 

  

(a) (b) 

Figure 4. Experimental pull-out tests: a) damage of the fibres at embedded section; b) evolution of maximum 

linear force with bonded length and comparison with average tensile strength. 

3. ANALYTICAL MODEL 

Taking into account the results of the experimental program above-mentioned, the direct approach was adopted 

to process the experimental data of the pull-out tests and derive the corresponding analytical bond stress-slip 

law. Thus, an adhesion-friction constitutive law was assumed for the direct problem with a linear response up 

to the maximum shear strength τmax and elastic slip sel. Subsequently, the strength drops to the shear friction 

resistance τfri, which is constant until failure (see Figure 5)[51].  
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Figure 5. Adhesion-friction bond stress-slip relationship assumed to simulate the results of the pull-out tests. 

Given the static equilibrium along the embedded length (see Figure 6), the tensile force in the yarn F is 

transferred to the matrix through the interface and then spread through the matrix to the reaction plate by 

compressive stress. Considering the infinitesimal interface length dx, the equilibrium can be expressed as: 

𝑑𝐹

𝑑𝑥
= 𝑝𝜏(𝑥) 

Eq. 1 

where p is the perimeter of the yarn and τ is the shear stress at the yarn-matrix interface.  

 

Figure 6. Static scheme of the interface during the pull-out test. 

Since the axial elongation in the fibre and in the matrix can be defined, respectively, as 𝜀y =
𝐹

𝐴y𝐸y
 and 𝜀m =

−
𝐹

𝐴m𝐸m
, the derivative of the displacement in the section x can be calculated as the difference between the 

elongation of the components 
𝑑𝑢

𝑑𝑥
= 𝜀y − 𝜀m, hence: 

𝑑𝑢

𝑑𝑥
=

𝐹(𝑥)

𝐴y𝐸y

+
𝐹(𝑥)

𝐴m𝐸m

 Eq. 2 

where Am, Ay, Em and Ey are the cross-sections and the Young’s moduli of the matrix and fibre, respectively. 

It should be specified that the cross-section of the mortar Am was not possible to be defined experimentally, 

therefore its value was assessed by mean of a sensitivity analysis of the presented approach. Substituting the 

Eq. 2 into Eq. 1, one obtains: 
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𝑑𝐹

𝑑𝑥
=

𝑑2𝑢

𝑑𝑥2
= 𝑄𝑝𝜏 

Eq. 3 

where 𝑄 =
1

𝐴y𝐸y
+

1

𝐴m𝐸m
 is the relative axial stiffness between the two components. Eq. 3 represents the 

analytical problem statement of the pull-out test to be solved according to the stage in which the section is, as 

described herein. 

3.1 Linear stage 

During the adhesion phase, the assumed interface stress-slip relationship is linear with τ=κu (Figure 5), which 

substituted in Eq. 3 leads to: 

𝑢′′ − 𝜆2𝑢 = 0 Eq. 4 

with 𝜆 = √𝑝𝜅𝑄. The general solution of this second order differential equation is: 

𝑢(𝑥) = 𝐶1𝑒𝜆𝑥 + 𝐶2𝑒−𝜆𝑥 Eq. 5 

which derived and substituted in Eq. 2 leads to: 

𝐹(𝑥) =
𝑑𝑢

𝑑𝑥

1

𝑄
=

1

𝑄
(𝐶1𝜆𝑒𝜆𝑥 − 𝐶2𝜆𝑒−𝜆𝑥) 

Eq. 6 

To solve Eq. 6 and obtain the constants C1 and C2, the boundary conditions are the force in the fibre at the free-

end, which is null F(0)=0, while the force in the fibre at the loaded-end is equal to the pull-out force F(Lb)=P. 

Substituting the boundary conditions in Eq. 6, the coefficients C1 and C2 result 𝐶1 = 𝐶2 =
𝑃𝑄

𝜆(𝑒𝜆𝐿−𝑒−𝜆𝐿)
. 

Therefore, replacing C1 and C2 in Eq. 6, the force distribution along the fibre F(x) equals: 

𝐹(𝑥) = 𝑃
(𝑒𝜆𝑥 − 𝑒−𝜆𝑥)

(𝑒𝜆𝐿𝑏 − 𝑒−𝜆𝐿𝑏)
= 𝑃

𝑠𝑖𝑛ℎ(𝜆𝑥)

𝑠𝑖𝑛ℎ(𝜆𝐿b)
 

Eq. 7 

while the shear τ(x) distribution along the interface is: 

𝜏(𝑥) =
𝑑𝐹

𝑑𝑥

1

𝑝
= 𝑃

𝜆

𝑝

𝑐𝑜𝑠ℎ(𝜆𝑥)

𝑠𝑖𝑛ℎ(𝜆𝐿b)
 

Eq. 8 

The slip s(x) distribution is calculated as the integral of the difference of the strains between the components 

up to coordinate (x) [32]: 

𝑠(𝑥) = ∫ 𝐹(𝑥)𝑄𝑑𝑥
𝑥

0

= 𝑃𝑄
1

𝑠𝑖𝑛ℎ(𝜆𝐿b)
∫ 𝑠𝑖𝑛ℎ(𝜆𝑥) 𝑑𝑥

𝑥

0

 Eq. 9 

For pull-out loads lower than the elastic limit load F(Lb)=P<Pel, the shear stress at the interface is less than 

the shear strength τmax and the yarn and the matrix are fully bonded. Once the pull-out force achieves the elastic 
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load F(Lb)=P=Pel, the shear strength τmax is attained in the loaded-end x=Lb with the consequent debonding of 

that section. Hence, in such configuration the shear stress distribution is illustrated in Figure 7 and Eq. 8 

becomes Eq. 10. 

 

Figure 7. Shear stress distribution along the interface at the elastic load. 

𝜏(𝐿b) = 𝜏max = 𝑃el

𝜆

𝑝

𝑐𝑜𝑠ℎ(𝜆𝐿)

𝑠𝑖𝑛ℎ(𝜆𝐿)
 

Eq. 10 

While the slip at the loaded-end results: 

𝑠(𝐿b) = 𝑢el = ∫ 𝐹(𝑥)𝑄𝑑𝑥
𝐿b

0

= 𝑃𝑄
1

𝑠𝑖𝑛ℎ(𝜆𝐿b)
∫ 𝑠𝑖𝑛ℎ(𝜆𝑥) 𝑑𝑥

𝐿b

0

= 𝑃el𝑄
1

𝑠𝑖𝑛ℎ(𝜆𝐿b)

1

𝜆
[𝑐𝑜𝑠ℎ(𝜆𝐿b) − 1] 

Eq. 11 

Given the experimental elastic pull-out load and displacement (Pel and uel, respectively), the shear strength τmax 

and the shear stiffness of the interface κ are obtained by solving the system of equations composed of Eq. 10 

and Eq. 11 at the coordinate of the loaded-end (x=Lb). 

3.2 Nonlinear stage 

With the loading going beyond the elastic limit F(Lb)=P>Pel, micro-cracks are developed at the interface and 

propagate in the further sections towards the free-end. Thus, the fibre and mortar are debonded in the length 

Ld, while they are still adhered in the remaining length Lb-Ld. In such configuration, the shear stress distribution 

is composed of constant frictional bond stress τfri in the debonding length Ld<x<Lb and adhesion τ=κu along 

the bonded length L-( Lel - Ld)<x<Lb-Ld, while the maximum shear strength τfri is achieved at the coordinate 

x=Lb-Ld (see Figure 8). 

 

Figure 8. Shear stress distribution along the interface during the nonlinear response. 

Therefore, the pull-out force is the sum of the forces resulting from adhesion and friction: 
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𝐹(𝐿b) = 𝑃 = 𝐹Imax
+ 𝐹II =  

𝜏max 𝑝

𝜆
𝑡𝑎𝑛ℎ[𝜆(𝐿b − 𝐿d)] + 𝜏fri𝑝𝐿d 

Eq. 12 

In this case, the boundary conditions are: 

• F(0)=0 

• 𝐹(𝐿b − 𝐿d) =
𝜏max 𝑝

𝜆
𝑡𝑎𝑛ℎ[𝜆(𝐿b − 𝐿d)] 

• F(Lb)=P  

which can be used to solve Eq. 3, leading to the force distribution F(x) at the elastic length: 

𝐹I(𝑥) =
𝜏max 𝑝

𝜆
𝑡𝑎𝑛ℎ[𝜆(𝐿b − 𝐿d)]

𝑠𝑖𝑛ℎ(𝜆𝑥)

𝑠𝑖𝑛ℎ[𝜆(𝐿b − 𝐿d)]
 

[L-( Lel - Ld)<x<Lb-Ld] Eq. 13 

And at the debonded length: 

𝐹(𝑥) = 𝐹Imax
+ 𝐹II =  

𝜏max 𝑝

𝜆
𝑡𝑎𝑛ℎ[𝜆(𝐿b − 𝐿d)] + 𝜏fri𝑝(𝑥 − 𝐿b + 𝐿d) 

[Lb-Ld<x<Lb] Eq. 14 

The slip along the yarn s(x) can be evaluated as the sum of the slips according to the different stages in which 

the two parts of the yarns are, namely at the bonded section: 

𝑠el(𝐿b − 𝐿d) = ∫ 𝐹Imax
(𝑥)𝑄𝑑𝑥

𝐿b−𝐿d

0

= 

= ∫ 𝜏max𝜆𝑄 𝑝𝑡𝑎𝑛ℎ[𝜆(𝐿b − 𝐿d)]
𝑠𝑖𝑛ℎ(𝜆𝑥)

𝑠𝑖𝑛ℎ[𝜆(𝐿b − 𝐿d)]
𝑑𝑥

𝐿b−𝐿d

0

= 

= 𝐹Imax
𝜆

1

𝑠𝑖𝑛ℎ[𝜆(𝐿b − 𝐿d)]
[𝑐𝑜𝑠ℎ[𝜆(𝐿b − 𝐿d)] − 1] 

[L-( Lel - Ld)<x<Lb-Ld] Eq. 15 

And at the debonded section: 

𝑠fri(𝐿b) = ∫
𝐹(𝑥)

𝐸𝐴
𝑑𝑥

𝐿b

𝐿b−𝐿d

= 

= ∫ 𝐹Imax
+ 𝜏fri𝑝(𝑥 − 𝐿b + 𝐿d)𝑄𝑑𝑥 =

𝐿b

𝐿b−𝐿d

 

= 𝐿d𝑄 (𝐹Imax
+

𝜏fri𝑝𝐿d

2
) 

[Lb-Ld<x<Lb] Eq. 16 

Thus, the total slip equals: 

𝑠(𝐿b) = 𝑢 = 𝑠el + 𝑠fri = 𝐹Imax
𝜆𝑄

1

𝑠𝑖𝑛ℎ[𝜆(𝐿b − 𝐿d)]
[𝑐𝑜𝑠ℎ[𝜆(𝐿b − 𝐿d)] − 1] + 𝐿d𝑄 (𝐹Imax

+
𝜏fri𝑝𝐿d

2
) 

Eq. 17 

In this configuration, the unknowns are the debonded length Ld and the frictional bond stress τfri, which can be 

obtained by solving the system of equations composed of Eq. 12 and Eq. 17, considering as inputs the 

experimental pull-out force P and slip u in the nonlinear branch of the curve. 
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3.3 Damage model 

As reported in Romanazzi et al. [40] and in section 2, damage due to friction between the components was 

observed in the experimental programme. In view of that, a simple damage model that considers the reduction 

of the effective cross-section of the yarn is here proposed as a function of the sliding. 

The damage function can be defined as 𝜉(𝑢) =
𝐴y−𝐴y,d

𝐴y
𝑥100, where Ay and Ay,d represent the initial cross-

section area (undamaged state) and the reduced cross-section area of the yarn due to friction, respectively. 

Note that Ay,d depends on the sliding undertaken by the yarn at the nonlinear stage. Thus, the ultimate load 

(𝑃ult) of the specimens from each bonded length can be considered to compute the damage at failure. In this 

case, the reduced cross-section is evaluated as 𝐴y,d
=

𝑃ult

𝑛°𝑓t
, where ft is the tensile strength of the dry mesh and 

n is the number of yarns. In this framework, a correlation between the value of the damage and the sliding of 

the nonlinear stage (u-uel) was found, which is further expressed in Eq.18. In addition, the constraint ξ(0)  = 0  

was introduced, meaning that the damage is null at the end of the elastic stage (u = uel). 

𝜉(𝑢) = (1.541𝑒1.294(𝑢−𝑢el) − 1.541)𝑋
1

100
 

Eq. 18 

The difference between the ultimate slip uult and the elastic slip uel represents the sliding for which the damage 

involves a reduced section of the yarn, leading to an apparent tensile strength lower than the tensile strength 

of the dry mesh. Therefore, the value of 𝜉(𝑢) = (1.541𝑒1.294(𝑢−𝑢el) − 1.541)𝑋
1

100
 (see Figure 9) is introduced as 

a factor to reduce the cross-section of the yarn in evaluation of the friction force 𝜏fri𝑝(𝜉(𝑢))𝐿d, which is then 

considered in the system of equations of the nonlinear stage, composed of Eq. 12 and Eq. 17. 

 

Figure 9. Damage curve of the section of the yarn due to slip. 
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4. IMPLEMENTATION AND RESULTS 

The algorithm to solve the problem stated in Section 3 for the different stages is described in this section and 

implemented for each pull-out specimen tested in the experimental program. After individuating the end of the 

linear stage, the corresponding pull-out force Pel and displacement uel were considered to solve the system of 

equations Eq. 10 and Eq. 11. Therefore, the maximum shear stress τmax and the shear stiffness κ were evaluated. 

To verify the reliability of the elastic values, a linear regression of the pull-out values up to Pel and uel can be 

performed and the R2 value checked. During the nonlinear stage, several pairs of pull-out force-displacement 

P-u can be considered to solve the system of equations constituted by Eq. 12 and Eq. 17 for obtaining the 

debonded length Ld and the frictional bond stress τfri. For this reason, the experimental curves were discretized 

by considering load points in increments of 10% of Pmax and the corresponding displacement u. For each step, 

the damage function 𝜉(𝑢) was calculated according to Eq. 18 and the damage was considered through 

𝜏fri𝑝(𝜉(𝑢))𝐿d in the system of equations constituted by Eq. 12 and Eq. 17. Since different values of shear 

friction τfri resulted from each step, the average value of τfri was calculated as to be lower than or equal to the 

shear strength τmax. In the cases of such restriction being unverified, the shear friction is considered equal to 

the shear strength. 

Finally, the obtained bond stress-slip law was verified through the simulation of the pull-out experiments, 

which was performed by increasing the value of the relative displacement at the loaded-end u(Lb), while the 

corresponding value of pull-out force was evaluated from Eq. 10. When the displacement at the loaded-end 

was equal to the elastic slip u(Lb)=sel, the end of the linear behaviour was achieved. Further increasing of the 

displacement makes the response become nonlinear. Thus, the corresponding pull-out force was calculated by 

solving the system of equations constituted by Eq. 12 and Eq. 17, where the unknowns are the pull-out force 

P and the debonding length Ld. At this stage, the damage model by Eq. 18 was introduced in Eq. 12, while the 

failure of the mesh was controlled for each step of pull-out force by checking if the corresponding tensile stress 

in the yarn was lower than the tensile strength of the dry mesh, as in (Eq. 19): 

𝜎y(𝑃(𝑢)) =
𝑃

𝐴y(1 − 𝜉(𝑢))
 Eq. 19 

When this last condition was not verified, the tensile failure of the mesh was achieved and the simulation 

stopped. Therefore, the simulated pull-out force-slip curve was obtained and compared with the experimental 
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curve to verify the accuracy. Afterwards, a sensitivity analysis was performed by varying the values of τmax 

and sel in about -10% and +10%, leading to a set of 9 constitutive laws for each sample, which were further 

checked by simulation of the pull-out response as previously described. Since the bond stress-slip law is 

independent from the geometry of the specimen, the optimum values of τmax - sel were selected among all the 9 

possibilities and were used to verify the simulations of the different bonded lengths. 

The methodology described above was implemented considering the experimental values reported in Table 2, 

which allowed to obtain the BSRs of each specimen, as summarized in Table 3. It should be noted that the 

proposed analytical model intends to simulate the response of pull-out tests in which damage due to friction 

between fibres and matrix influences the failure mode. Accordingly, a reducing factor (𝜉(𝑢)) for the 

geometrical properties of the composite is introduced, which in this case is referred to the cross-section of the 

yarn, according to what was observed in the experimental programme. Thereby, the experimental observations 

could be reproduced. It is also specified that, while the approach of considering a reducing factor in case of 

damage due to friction can be generally applied, the inferred model may require calibration for geometries 

different from the ones considered in the present investigation. 

As anticipated, τfri must not exceed the shear strength τmax, differently the value of the shear friction is assumed 

as the shear strength. As reported in Table 3, such condition was not satisfied in all the cases. A scattering in 

the results can be observed, in particular for the values of the interface stiffness κ, which present a coefficient 

of variation of 61%. Such dispersion can be due to the considered experimental elastic displacement sel. 

Table 3. Bond stress-slip parameters obtained by implementation of the direct problem approach. 

Simulation τmax (MPa) sel (mm) κ τfri (MPa) sult (mm) 

POGM150_1 0.398 0.1704 2.336 0.398 2.6100 

POGM150_2 0.235 0.2304 1.022 0.235 3.0800 

POGM150_3 0.567 0.1316 4.305 0.567 2.2000 

POGM150_4 0.593 0.0906 6.540 0.593 2.1400 

POGM90_1 0.392 0.2009 1.951 0.392 2.6800 

POGM90_2 0.459 0.1702 2.697 0.459 2.4800 

POGM90_3 0.672 0.3066 2.191 0.672 2.1000 

POGM90_4* 1.220 0.2207 5.527 1.220 3.65 
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Average 

(CoV %) 

0.47 

(31%) 

0.1858 

(38%) 

3.006 

(61%) 

0.47 

(31%) 

2.4700 

(14%) 

* The results obtained for POGM90_4 are considered as outliers [52]. 

Subsequently, the sensitivity analysis was performed and the optimized parameters were assessed from the 9 

combinations of (τmax – sel) for each specimen, which led to the bond-slip laws presented in Figure 10 and Table 

4. It should be noted that the shear strength τmax, the elastic slip sel, the elastic stiffness κ and the frictional bond 

stress τfri are equal for both bonded lengths (90 mm and 150 mm), while the ultimate slip sult may vary, since 

it is affected by the damage of the yarn. 

 

Figure 10. Sensitivity analysis of the BSR parameters. 

Table 4. Optimized bond stress-slip parameters resulting from the sensitivity analysis. 

Simulation τmax (MPa) sel (mm) κ τfri (MPa) sult (mm) 

POGM150 

0.45 0.12 3.75 0.45 

2.45 

POGM90 2.47 

 

Finally, considering the parameters reported in  Table 4, the simulation of the pull-out tests was performed for 

the bonded lengths of 150 mm and 90 mm. The comparison of the simulated and experimental curves P(u) at 

the free-end and loaded-end is presented in Figure 11. Although differences in the fitting of the analytical 

solution with the experimental data can be observed, the proposed algorithm reproduces well the elastic 

response and the nonlinear behaviour of the pull-out tests. Such differences can be ascribed to the fact that the 

pull-out specimens consisted of a mesh band embedded in earth-based mortar, therefore uneven transmission 

of loads along the width of the mesh can occur during the test. Table 5 compares the average values of the 

parameters obtained from the experimental curves with the values obtained from the simulated curves, namely 
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in terms of elastic force per width Pel,w, elastic slip uel, maximum force per width Pmax,w, ultimate slip uult, force 

per width at the sliding onset Psl,w and ultimate slip at the free-end usl,ul. Although all the values obtained from 

the analytical model are within the range of variation of the observations, their difference can be better 

observed when the percentage error of the simulation is calculated with respect to the experimental values (see 

Table 6). The elastic pair Pel,w – uel and the maximum force per width Pmax,w are well predicted as the error is 

relatively small with respect to the experimental scattering. In the case of the ultimate displacement uult and 

force at the sliding onset Psl,w, the predicted values agree with those obtained experimentally for the specimens 

with bonded length of 150 m, while underestimate the experimental values for the specimens with bonded 

length of 90 mm. Despite that, the values are within the limits of the scattering from the experimental results. 

As for the ultimate slip at the free-end usl,ul, the value calculated from the analytical model for the bonded 

length of 90 mm meets the experimental one, although it is overestimated for the bonded length of 150 mm. 

  

(a) (b) 

Figure 11. Simulation of the pull-out tests and comparison with the experimental curves, considering the slip at the: (a) loaded-end 

and (b) free-end. 

Table 5. Comparison of the parameters obtained from the experimental curves with those obtained from the analytical curves (CoV 

in between brackets). 

Lb 

(mm) 

Pel,w 

(kN/m) 

uel 

(mm) 

Pmax,w 

(kN/m) 

uult 

(mm) 

Psl,w 

(kN/m) 

usl,ul 

(mm) 

 Exp Ana Exp Ana Exp Ana Exp Ana Exp Ana Exp Ana 

150 2.76 

(9%) 

2.32 

0.1545 

(32%) 

0.1200 

13.66 

(5%) 

13.68 

2.36 

(13%) 

2.50 

7.87 

(17%) 

7.67 

0.6655 

(33%) 

1.78 

90 13.49 13.56 3.29 2.52 4.64 1.35 2.2241 2.44 
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(7%) (15%) (37%) (25%) 

 

Table 6. Errors of the simulated parameters with respect to the experimental ones. 

Lb 

(mm) 

Pel,w 

(%) 

uel 

(%) 

Pmax,w 

(%) 

uult 

(%) 

Psl,w 

(%) 

usl,ul 

(%) 

       

150 

16.94 22.33 

-0.15 -5.93 2.54 -167.47 

90 -0.52 23.40 70.91 -9.71 

 

5. CONCLUSIONS 

A bond stress-slip analytical model of a TRM-based solution for strengthening rammed earth dwellings is here 

calibrated based on an experimental program conducted by the authors. Firstly, the material properties of the 

composite solution and the results of previous pull-out tests are presented. In this regard, the experimental 

curves of the pull-out tests evidenced an initial linear response, in which the load is transferred through the 

interface solely by adhesion. After this stage, the response became nonlinear due to achievement of the shear 

strength, which implicates the formation of micro-cracks at the interface and leads friction to be the bond 

mechanism of the debonded components. Therefore, the direct boundary problem approach is adopted, and an 

adhesion-friction bond stress-slip law was hypothesized. 

In addition, a novel damage model was inferred to reduce the effective area of the fibers, as an empirical 

correlation between the level of sliding and the loss of strength capacity with respect to the dry mesh was 

experimentally observed. 

In conclusion, the proposed analytical model reproduces well the elastic and nonlinear response of the pull-

out tests, as the maximum force per width, the elastic force per width and the corresponding elastic slip 

obtained by the model are similar to the experimental values. Nevertheless, the ultimate slip at the loaded-end 

is underestimated for the bonded length of 90 mm, while the ultimate slip at the free-end is overestimated for 

the bonded length of 150 mm. Despite that, the analytical values were found to be within the range of scattering 

of the experimental results. Therefore, the proposed analytical model adequately simulates the interface matrix-
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fibres behaviour of the TRM strengthening under study and might be implemented in further numerical and 

analytical applications. 
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