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5.1 INTRODUCTION

Marine seaweeds are a variable group of photosynthetic organisms that are classi-
fied according to their morphological characteristics and mainly for the presence of 
structural pigments that will determine the category group to which they are going 
to belong: red, brown, or green seaweeds (Domínguez 2013; Ngo and Kim 2013). 

5
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According to the database of the Food and Agriculture Organization of the United 
Nations, by 2014, the world’s seaweed production had reached 25,665,934 tons.  
China produced more than 13 million tons, which is equivalent to 50% of this 
production. Other principal producers are Asian countries such as Indonesia, the 
Philippines, and Korea. Denmark is the principal non-Asiatic producer, with less 
than 0.1% of the world’s production.

Throughout history, Asiatic countries have been recognized for taking advantage 
of seaweed, particularly Japan, China, and Korea. Seaweed cultivation has become a 
major industry—principally as a source of food and for the obtainment of hydrocol-
loids such as agar, carrageenan, and alginate (Smit 2004), which have been used as 
gelling agents and stabilizers in the food and pharmaceutical industries as animal 
feed, fertilizers, and for industrial applications (Guiry 2012; Mohamed et al. 2012; 
Stengel and Connan 2015; Cervantes-Cisneros et al. 2017).

In several coastal areas, seaweed are considered a waste because they represent a 
problem for the local ecosystem due to their high rates of growth and reproduction, which 
creates problems for fishing, recreational activities, and in other areas (Balboa et al. 
2015). This means that in these regions, the seaweed biomass is not currently exploited.

Looking to increase the use of seaweed, there have been more studies and 
research on the extraction of components and compounds such as soluble and 
sulfate polysaccharides, peptides, vitamins, minerals, and phenolic compounds 
(Kadam et al. 2015a, 2015b; Argüello-Esparza et al. 2019). Traditional methods 
used for the extraction of these compounds are generally based on the use of heat 
with water, acid, and alkaline solvents, but these techniques usually report long 
extraction times, high energy consumption, and low extraction yields (Yin et al. 2014; 
Kadam et al. 2015b; Ruiz et al. 2015; Kadam et al. 2017). This has led to the devel-
opment of novel extraction procedures in order to obtain higher yields with less 
energy used in shorter time periods, such as using specific enzymes to disrupt the 
cell wall structure of seaweed and to degrade or depolymerize internal compounds 
for an easier extraction. The aim of this chapter is to give an update on the seaweed 
biomass and the specific biological catalyzers of brown seaweed that are capable of 
simplifying the elucidation of the structure of the most relevant seaweed polysac-
charides. The development of enzyme-assisted extraction is a promising technique 
not only because it is environmentally friendly but also because it is the most 
specific method available.

5.2 STRUCTURAL COMPOSITION OF SEAWEED

The taxonomical classification of seaweed is principally divided into four groups 
according to the presence of specific pigments. The characteristic color of green 
algae, or chlorophyte, is due to the presence of chlorophyll, which is the phylum 
Rhodophyta that gets its red tones from the abundance of phycoerythrin and phy-
cocyanin, and the phylum Phaeophyta, in which the brown or yellow-brown hue 
characteristics are attributed to the presence of fucoxanthin (Quitral et al. 2012; 
Domínguez 2013; Kılınc et al. 2013). Many authors report that seaweed composi-
tion varies depending on factors such as growth and climatic conditions such as 
light, nutrients, temperature, geographical localization, the seaweed species, and 
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the season of harvesting (Banerjee et al. 2009; Schiener et al. 2014; Chakraborty 
et al. 2016; Tabassum et al. 2016).

Seaweed’s cell walls are similar to land plants and other lignocellulosic mate-
rials and consist mainly of cellulose and hemicellulose but in a lower ratio. Also 
the cell walls are made up of complex biomolecules such as sulfated and branched 
polysaccharides, commonly associated with proteins and ions (Kadam et al. 2013; 
Raimundo et al. 2016) (Figure 5.1). These cell wall storage polysaccharides are 
specific according to the seaweed species. For example, red seaweed contains 
carrageenan, agar, xylan, floridean starch, and porphyrans; green seaweed con-
tains ulvans, sulphated galactans, xylans, and sulphuric acid polysaccharides; and 
brown seaweed contains alginate, fucoidan, laminarin, and sargassan (Popper  
et al. 2011; Kraan 2012). The composition of these polysaccharides protects the 
seaweed against osmotic stress, pH and temperature changes, and metal toxicity, 
and also provides flexibility to resist strong ocean currents and antioxidant proper-
ties (Deniaud-Bouët et al. 2014; Ficko-Blean 2015). In recent years, these kinds 
of brown seaweed polysaccharides have attracted attention for their bioactive 
properties—such as being an antioxidant, anti-inflamatory, antiallergy, antiviral, 
antitumoral, among others (Berteau and Mulloy 2003; Ale and Meyer 2013; Ngo 
and Kim 2013; Yuan and Macquarrie 2015). These properties are closely linked 
with molecular weight, sugar composition, sulfation level, and the distribution 
of the sulfate groups along the polysaccharide backbone (Ale and Meyer 2013; 
Balboa et al. 2013; Mak et al. 2013; Shao et al. 2013). Due to this relation between 
the polysaccharide structure and properties and its molecular weight and composi-
tion, it is crucial to develop techniques and methods for the extraction of polysac-
charide fractions in a more specific way.

FIGURE 5.1 Hypothetical cell wall model from brown seaweed based on the model pro-
posed by Deniaud-Bouët et al. (2014). The content of cellulose microfibrils is dispersed to a 
lesser extent than in terrestrial plants; these take on a flat ribbon shape. The fucose sulfate 
polysaccharides and alginates form the greater part of the cell wall polymers; the phenols are 
commonly associated with alginates and proteins.
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5.3 EXTRACTION METHODS FOR SEAWEED POLYSACCHARIDES

The traditional methods for the extraction and/or modification of seaweed polysac-
charides of different sizes and heterogeneity are frequently carried out by physi-
cochemical methods, either by conventional techniques (solvent precipitation, 
acid/base reaction, soxhlet, etc.) or by emerging technologies (microwave, ultra-
sound, steam explosion, etc.) (Balboa et al. 2013; Kadam et al. 2015b; Yuan and 
Macquarrie 2015). Figure 5.2 shows a scheme of the main methods for obtaining 
the extraction compounds in seaweeds. The conventional extraction methods show 
some disadvantages, such as the long extraction times with low yields. As reported 
by Lim et al. (2014) for fucoidan extraction from Sargassum binderi with CaCl2 

at 85°C for periods of 24 h repeating six times, the environmental contamination 
with the use of chemicals as a solvent plays an important role in the negative aspect 
of these methods. On the other hand, the use of emerging technologies has devel-
oped extraction processes with more extraction yields, generating less contamina-
tion with lower costs, less time, and less consumption of energy. In spite of these 
advantages, with these kinds of technologies, it is unknown how they affect the bio-
logical properties and structure of the polysaccharides (Hahn et al. 2012). However, 
these compounds can be susceptible to these kinds of thermochemical methods 
where it is difficult to determine the hydrolytic point in the polysaccharide chain, 
thereby affecting the reproducibility of the production yield and the composition of 
the target compounds.

FIGURE 5.2 Sequencing scheme of the extraction methods for polysaccharides and other 
compounds in brown seaweed.
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Moreover, the seaweed cell wall is more complex than the cell wall of terrestrial 
plants; the combination of sulfated and branched polysaccharides and other com-
pounds is a characteristic that can affect the efficiency of general extraction proce-
dures. To improve the use of cell wall degrading enzymes, an alternative extraction 
process can expedite the access to the seaweed compounds and derived metabolites. 
Actually, there are reports of the hydrolysis of the seaweed cell wall using enzymatic 
methods that show considerable yields of poly- and oligosaccharide fractions with 
relevant biological and chemical properties. Enzyme assisted extraction (EAE) is a 
promising alternative technology to the conventional methods that offers biotechno-
logical procedures with many advantages, such as high catalytic efficiency and high 
specificity, and it is nontoxic and ecofriendly as well. In addition, the use of specific 
enzymes over seaweed substrate allows the extraction to be performed in mild con-
ditions that can promote conserving the bioactivity of the extracts (Athukorala et al. 
2006; Hahn et al. 2012; Wijesinghe and Jeon, 2012; Ale and Meyer 2013; Rodrigues 
et al. 2015; Siller-Sánchez et al. 2019).

5.4 ENZYME CATALYZERS OF BROWN SEAWEED

5.4.1 ALGINATE LYASES

The alginate lyases, or alginases, catalyze the degradation of alginate; alginate is the 
most abundant polysaccharide of brown seaweed (about 40% of dry weight). This 
polysaccharide is mainly composed of β-D-mannurate (M) and α-L-gluronate (G); 
its structure varies depending on the position of the monomer in the chain; and these 
units are linked in three kinds of segments or blocks—homopolymeric G blocks; 
poly α-L-guluronate (polyG), homopolymeric M blocks; and poly β-D-mannuronate 
(Yang et al. 2011; Lee and Mooney 2012; Pawar and Edgar 2012) (Figure 5.3).

The products of the depolymerization of alginate by the physicochemical method, 
or by the use of alginate lyase, are known as alginate oligosaccharides. These com-
pounds and their derivatives have been attracting attention in recent years due to 
their bioactivity, such as the induction of tumor necrosis factor (TNF)-α37 and its 
wide use in the food, cosmetic, and pharmaceutical industries (Zhang et al. 2004; 
Li et al. 2011). Alginate lyase degrades alginate by β-elimination of glycosidic bonds 
and produces unsaturated oligosaccharides with double bonds at the nonreducing 
end (Wong et al. 2000; Lxa et al. 2008; Ogura et al. 2008; Hehemann et al. 2014). 
The alginases have been isolated from many different sources, such as marine mol-
lusks, marine seaweed, terrestrial bacterial, and other microorganisms (Gacesa 1992; 
Sawabe et al. 1997; Ogura et al. 2008; Kim et al. 2013).

Gomaa et al. (2015) reported high specific alginase activity found in acrophia-
lophora sp. and Setosphaeria rostrata, two algicolous fungi. The alginate lyases can 
be classified in two groups depending on their substrate specificities: (a) the G block-
specific polyguluronate lyase (poly G) and (b) the M block-specific polymannuronate 
lyase (poly M) (Kim et al. 2012; Park et al. 2012). However, there are reports that 
show some enzymes having the ability to act on both links—the polyG and polyM. 
Likewise, these enzymes can be classified into endolytic and exolytic alginate lyase, 
depending on their mode of action (Balboa et al. 2013). Recent studies indicate that 
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FIGURE 5.3 Chemical structure of the main polysaccharides in brown seaweed.  
(A) Alginate structure and alginate lyase block site action. (B) Common Fucoidan structure 
and fucosidase types depending on the specific site of cleavage. (C) Laminarin structure and 
laminarase cleavage action.
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the alginate lyases have important biological applications such as the production of 
oligosaccharides with various biological functions and in determining the structure 
of alginate and alginases, which can be used in the treatment of some pathologies in 
combination with antibiotics (Zhu and Yin 2015).

5.4.2 FUCOIDANASES

The enzymes capable of degrading or modifying the fucoidan polysaccharides are 
called fucosidases or fucoidanases. The fucoidans are sulphated polysaccharides 
mainly consisting of sulfate L-fucose and the sulfate ester groups. These polysac-
charides are principally found in brown seaweeds and in some marine invertebrates, 
such as sea urchins and sea cucumbers (Li et al. 2008; Ale and Meyer 2013). These 
polysaccharides are important for their high bioactive properties, such as anticoagu-
lants, and their antithrombotic (Cho et al. 2010; Kwak et al. 2010), antiviral (Ahmadi 
et al. 2015), antitumoral, and anti-inflammatory aspects (Raghavendran et al. 2011; 
Yuan and Macquarrie 2015). The properties of the fucoidans are related to their 
molecular weight, sulfate content, the position of their sulfate ester groups, and their 
monosaccharide composition (Li et al. 2008; Hahn et al. 2012; Morya et al. 2012). 
However, almost all the methods used for the extraction of fucoidan can cause struc-
tural alterations, and fucoidanases are useful for the partial depolymerization of 
these polysaccharides without modifying the structural units of the fucoidan (Hahn 
et al. 2012; Ale and Meyer 2013; Rodrigues et al. 2015).

The main natural sources for obtaining these fucoidan-degrading enzymes are 
several marine microorganisms such as marine bacteria—for example, members 
of the bacterodetal Flavobacteria (Mann et al. 2013; Ficko-Blean 2015), Vibrio 
sp., Alteromonadaceae sp. (Sakai 2004), Pseudoalteromonas sp., Cytophaga, 
Fucanobacter lyticus (Holtkamp et al. 2008; Ale and Meyer 2013), and some marine 
fungus Dendryphiella arenaria (Wu et al. 2011). Likewise, it is reported in marine 
mollusks and invertebrates. Silchenko et al. (2014) reported that the isolation of 
fucoidanase from the digestive glands of the marine mollusk Lambis sp. is capable 
of hydrolysating the fucoidan from Fucus vesiculosus and Fucus evanescens; other 
authors report the isolation from littorina kurila (Kusaykin et al. 2006) and sev-
eral species of abalone (Haliotis sp.), scallops (pectinidae sp.) (Berteau and Mulloy 
2003), Chamalea gallina, and pomacea canaliculata. But, in the last decade, a few 
papers reported the presence of fucoidanases in the digestive systems of arachnids 
and ticks (Moreti et al. 2003). There are very few reports of the production of these 
enzymes by solid-state fermentations, such as those reported by Qianqian et al. 
(2011) using Fusarium sp., a marine fungus isolated from sand in Germany’s North 
Sea. Rodriguez-Jasso et al. (2013) reported the production capacity of these enzymes 
in solid-state fermentation using seaweed biomass with some terrestrial organisms, 
such as filamentous fungi as Aspergillus niger and Mucor sp.

Little is known about the mechanisms that these enzymes possess. The fucosi-
dases are able to cleave special glycosidic bonds in the polysaccharide chain, 
and this cleavage pattern depends on the source of the production of the enzyme. 
Presently, these enzymes are classified in three groups: α-L-fucosidases, which 
cause the release of the L-fucose from the nonreducing end of the polysaccharide; 
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and the fucoidanases or fucansulphatehydrolases, which have two kinds of cleav-
age patterns—the first is the endo-fucoidanase that cleaves the core of the poly-
saccharide producing oligosaccharides, and the second is the exo-fucoidanase 
that cleaves the edge of the polysaccharide with a slow decrease of the molecular 
weight-producing monomers (Figure 5.3) (Berteau and Mulloy 2003; Wu et al. 2011; 
Silchenko et al. 2013).

5.4.3 LAMINARINASES

The laminarinases are also known as β-(1→3)-glucanases and are enzymes with the 
ability to hydrolyze β-1,3- and β-1,4-glycosidic bonds of the laminarin (Cano-Salazar 
et al. 2011) (Figure 5.3). This class of enzyme is typical in bacteria, archaea, and 
some eukaryotic organisms, mainly fungi. Giese et al. (2006) investigated the hydro-
lysis of laminarin from Lamianria digitate by the preparation of β-1,3-glucanases 
from two filamentous fungi, Botryosphaeria rhodina and Trichoferma harzianum. 
They have already classified some structural and chemical β-1,3-glucanases. But, in 
the case of β-1,3-glucanases, organisms that are in contact with genuine laminarin 
from macroalgae reports are scarce. In recent years, research on these enzymes has 
increased. Kobayashi et al. (2016) reported the purification and homogeneity of β-1,3 
glucanase produced by the sub-seafloor bacteria Laceyella putida, and Zhang et al. 
(2004) found a β-glucosidase capable of degrading the laminarin precedent from 
Vibrio campbellii.

Laminarin is present in the cell walls of brown algae. This is a reserve poly-
saccharide that provides strength and flexibility, maintains ionic equilibrium, and 
prevents desiccation. This low molecular weight polysaccharide is composed of 
β-(1,3) glucans with occasional β-(1-6) branches (Lynch et al. 2010; Hou et al. 2015). 
The beta-glucans are composed of monomers of D-glucose. These heterogeneous 
carbohydrates differ from each other by their structural properties, such as their 
molecular weight, length, and degree of branching (Volman et al. 2010; Fuentes 
et al. 2011). Likewise, some investigations show that these polysaccharides have 
immune-modulating effects and can be considered as dietary fiber. Not only does 
the structure affect these bioactive properties, isolation methods can also influence 
the properties of β-glucans (Volman et al. 2010).

5.4.4  OTHER ENZYMES CAPABLE OF DEGRADING THE CELL WALLS  
OF BROWN SEAWEED

With the rise in the use of enzymatic hydrolysis of brown seaweed, studies to 
increase and improve yields have led to the use of nonspecific enzymes of seaweed 
polysaccharides—either in combination with various enzymes or using only specific 
enzymes such as alginases, laminarinases, fucosidases, etc. The vital factors for an 
efficient cell wall degradation include the selection of a mixture of enzymes suit-
able for the optimal conditions of the reaction, such as temperature and pH that are 
specific for each kind of enzyme (Wijesinghe and Jeon 2012; Heo et al., 2015). The 
proteases, classified as endopeptidases or exopeptidases depending on their hydro-
lyzing mechanism, and the carbohydrate degrading enzymes are the principal types 
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of enzymes used for the enzymatic hydrolysis of the seaweed cell wall. The most 
common enzymes used for cell wall hydrolysis and the extraction of biocompounds 
are summarized in Table 5.1.

Rodrigues et al. (2015) reports the use of two carbohydrate-degrading enzymes, 
Vizcozyme L, a multi-enzyme complex of carbohydrate hydrolases—such as araban-
ase, cellulase, β-glucanase, hemicellulose, xylanase, Cellulase, and two proteases, 
Alcalase and endopeptidase. The second compound is Flavourzyme, an endoprote-
ase and exopeptidase. Both complexes are used for the extraction of bioactive com-
pounds. The results show that the higher extraction yields correspond to Vizcozyme 
L and cellulase. The extraction efficiency and advantages provided by the cellulases 
are due to the extraction efficiency of targeted compounds and the robustness.

5.5  CURRENT APPLICATIONS OF THE ENZYME CAPABLE  
OF DEPOLYMERIZING SEAWEED POLYSACCHARIDES

Since the seaweed’s biomass is a recognized as an adequate source of polysaccha-
rides and other value compounds, as well as an alternative to the high demand for 
fuels. In the development of the use of green processes, the use of enzymatic hydroly-
sis leads one of the most appropriate methods for the depolymerization of compounds, 
such as those present in the cell wall of seaweed. For that reason, studies in this area 
have improved over the years. Nowadays, enzymatic hydrolysis and enzyme assisted 
extraction (EAE) techniques generally are still used on pilot and laboratory scales. 
Current studies on the use of enzymes in seaweed focus on their use in biorefineries 

TABLE 5.1
Optimal Conditions of Some of the Most Commonly Used Commercial Enzymes

Enzyme Enzyme Characteristics Seaweed Optimal Conditions Reference

Temperature (°C) pH
Vizcozyme Arabanase, cellulase, 

β-glucanase, 
hemicellulase,  
and xyalase

Ecklonia cava 50 4.5 (Heo et al. 
2005;  
Kim et al. 
2006)

Celluclast Cellulase Ecklonia cava 50 4.5
Termamyl Thermos-stable  

α-amylase
Ecklonia cava 60 6.0

Alginate  
lyase

β-(1,4)-glucosiase Macrocystis 
pyrifera

37 6.3 (Ravanal  
et al. 2016) 

Kojizyme Endoprotease and 
exo-peptidase

Ecklonia cava 40 6.0 (Ahn  
et al. 2008)

Laminarase Endo-1,3-β-glucanase Laminaria digitate
Luminaria 
hyperborean

Saccharina 
latissima

45 5.1 (Schiener  
et al. 2015)
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as a method of converting seaweed biomass into bioethanol via enzymatic hydroly-
sis, where sugars released by enzymes are used in fermentative process. Due to the 
absence of lignin in seaweed biomass, bioethanol production with this solid waste 
does not require pretreatment—unlike most commonly used raw materials (Tan and 
Lee 2014), which is an advantageous attribute. There are many reports of other com-
pounds of interest, such as the investigation of Hou et al. (2015), who performed an 
integrated bioethanol and protein production using the brown seaweed Laminaria 
digitate. These investigations try to increase economic feasibility by recovering an 
important dietary complement from an unexploited source. However, enzyme appli-
cation is not limited to biofuel production. There are many reports showing that the 
extracts obtained by enzyme-assisted extraction have a greater antioxidant capacity 
compared to the extracts obtained by conventional methods. Furthermore, Athukorala 
et al. (2006) reported that the cell proliferation inhibition on cancer cell lines of, and 
enzymatic extract from, Ecklonia cava, show the capacity of the enzymatic-assisted 
extraction for breaking the complex bonding between phenolics and proteins in the 
seaweed cell wall. In the same way, in vitro studies performed by Charoensiddhi 
(2015) showed that the enzyme extracts from Ecklonia cava processed with a car-
bohydrase mix have a promising prebiotic potential. There are reports of the use of 
EAE of a sulfated polysaccharide from E. cava with a potential modulation of anti-
inflammatory agents (Lee et al. 2012). In all the cases, the use of hydrolytic enzymes 
has been combined for the rupture of cell walls, breaking down the structure and 
liberating the metabolites of interest from the seaweed.

5.6 PERSPECTIVES AND CONCLUSIONS

Seaweeds make up a significant source of novel compounds. The use of enzymatic-
assisted extraction shows a potential for enhancing the extraction yield and improving 
the extractability of bioactive compounds such as peptides, carotenoids, fucoidans, 
and phlorotannins—all with promising applications in areas such as pharmaceu-
ticals, functional foods, cosmetics, etc. With the capacity of enzymes to convert 
water-insoluble materials into water-soluble materials without using any other toxic 
chemicals and removing the most common mechanical barriers, EAE can be a useful 
method as an alternate stage in the solvent extraction process to improve yields and 
conserve bioactivity of compounds. In the same way, the use of enzymes in biofuel 
production in a biorefinery concept can be more profitable not only environmentally 
but also economically, with the recovery techniques of metabolites of interest. For 
that reason, aspects such as the investigation of optimal conditions of reaction of each 
enzyme, the correct use of enzymatic cocktails, as well as the search for new sources 
of enzymes each plays an important role in the development of this technology.
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