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Preparation and characterisation of novel multifunctional chitosan-

based membranes to modulate cell-material interactions 

 

A critical scarcity of donors and the high risk of graft rejection are the two major obstacles to 

the wide spreading of organ transplantation as an universal therapy for the substitution of 

organ, which underwent disease caused failure or irreversible accidental damaging. In order 

to overcome some of the limitations of the current therapies, several regenerative medicine 

concepts have emerged in the last few decades. One of those concepts, denominated 

guided bone regeneration (GBR), consists on the use of barrier membranes that prevent the 

in-growth of connective tissue, which in critical size defects inhibits the formation of new 

bone through the natural healing process. The first objective of this thesis was to develop 

biodegradable membranes based on chitosan and soybean protein exhibiting a biphasic 

structure, which would originate in situ porous formation, through a two step degradation 

mechanism. This application features some limitations and new approaches were designed 

seeking to widen the impact that the developed work could have in the regenerative medicine 

field.  

The tissue engineering field is likely to be the most paradigmatic example within the several 

regenerative medicine strategies born in the past decades. However, tissues and organs 

reconstruction have been often limited by these approaches, since tissue engineered 

constructs are very sensitive to a range of variables, which correlation is frequently not well 

understood or easily controllable. In order to overcome some of the limitations imposed by 

the use of supporting biodegradable materials, a new ingenious approach known as “cell 

sheet engineering” proved to succeed on recreating in vitro tissues with high therapeutic 

potential. Despite of the still relatively low number of the papers found in the literature about 

this issue, “cell sheet engineering” products are already reaching the clinical stage. This 

technology makes use of culture dishes grafted with thermo-responsive poly(N-

isopropylacrylamide) (PNIPAAm) that undergo a transition at the lower critical solution 

temperature (LCST) from hydrophobic (above that value) to hydrophilic. At the culture 

temperature, grafted surfaces are slightly hydrophobic and cell adhesion and proliferation 

proceed as in conventional culture surfaces. Cultured confluent cell sheets spontaneously 

detach by merely reducing the temperature. In fact, the slightly hydrophobic surfaces are 

suitable for cell adhesion, while the more hydrated hydrophilic surfaces are not. The method 

is minimally invasive to the extracellular matrix (ECM), cell-to-cell and cell-to-ECM 

interactions, in opposition to the conventional enzymatic methods, which are deleterious to 

important biological structures such as ECM and cell membrane proteins.  
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Despite of the great advances that have been already done on culturing and harvesting cell 

sheets from varied phenotypes, much less endeavour has been devoted to the creation of 

multifunctional novel thermo-responsive surfaces. In this thesis, several studies have been 

performed towards this goal, which are described in detail in Chapters 5, 6 and 7. 

First, we prepared chitosan membranes and studied the influence of crosslinking these 

membranes with glutaraldehyde in a range of different properties. We performed 

measurements of the mechanical properties with the samples immersed in an aqueous 

environment at 37ºC, in order to simulate physiological and cell culture conditions. Chitosan 

absorbs high amounts of water in aqueous solutions forming hydrogels. In this kind of 

systems, the determination of the mechanical properties in dry conditions has no practical 

meaning.  

Second, a preliminary cytotoxicity screening was performed in order to check if the materials 

would be suitable as implantable biomaterials, as well as for cell culture purposes. The 

tested membranes showed to be suitable for biomedical applications. 

Third, the transport properties of small molecules have been studied, showing that the 

membranes possess permeation properties that can be useful for the controlled delivery of 

bioactive agents, but also in combined strategies of growth and differentiation factors delivery 

and cell sheet engineering.  

Finally, PNIPAAm was grafted onto chitosan membranes to render surface with thermo- 

responsive properties. Those modified membranes showed to be suitable for cell culture, 

which can reach confluence and be thermally harvested by means of lowering the 

temperature.  

Single cell sheets can be layered in order to recreate thicker tissue-like constructs. However, 

the number of cell sheets that can be kept in culture is limited, because of restrictions on the 

delivery of nutrients and accumulation of metabolic wastes. It should be noticed that 

PNIPAAm grafted tissue culture polystyrene (TCPS) substrates commonly used to culture 

single cell sheets are impermeable. The use of chitosan membranes, which we found to be 

permeable to small molecules, would increase the mass transfer area for nutrients and 

metabolic wastes, hopefully supporting the culture of thicker layered cell sheet constructs. 

Furthermore, fully hydrated chitosan membranes should be easily adaptable to several 

anatomical shapes, owing to its flexible mechanical properties, facilitating the transfer of 

either single cell sheets or layered cell sheet constructs directly to the host site with minimal 

manipulation. 
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Preparação e caracterização de membranas à base de quitosano 

contendo simultaneamente várias funcionalidades inovadoras para 

modular as interacções entre células e materiais. 

 

O elevado défice de doadores e o risco de rejeição impedem a banalização do transplante 

de órgãos como abordagem terapêutica. Nas últimas décadas têm sido propostas várias 

estratégias de investigação no campo da medicina regenerativa para tentar resolver estas 

limitações. A regeneração guiada de osso (GBR) é uma dessas estratégias e consiste no 

uso de membranas que proporcionam uma barreira à penetração de tecido conectivo no 

defeito ósseo, o que em lesões acima de uma determinada dimensão, impede o processo 

natural de regeneração. O primeiro objectivo desta tese foi desenvolver membranas 

biodegradáveis para este tipo de aplicações, combinando quitosano com proteína de soja, 

de forma a obter uma estrutura com duas fases. A diferente taxa de degradação de cada 

uma dessas fases originaria a formação de poros in situ. Ainda que bastante interessantes, 

estas aplicações possuem potencialidades de inovação algo limitadas, pelo que, outras 

estratégias foram implementadas ao longo do trabalho para alargar seu o impacto no campo 

da medicina regenerativa. 

A engenharia de tecidos humanos é provavelmente uma das estratégias mais 

paradigmáticas e representativas das revoluções recentes no campo da medicina 

regenerativa. Contudo, a reconstrução de tecidos e órgãos é muitas vezes limitada, uma vez 

que os implantes produzidos por engenharia de tecidos são muito sensíveis a um conjunto 

de variáveis cuja correlação é frequentemente obscura ou dificilmente controlável. Mais 

recentemente, uma estratégia inovadora, denominada em inglês “cell sheet engineering”, 

têm permitido recriar tecidos in vitro com elevado potencial terapêutico, evitando o uso de 

materiais de suporte biodegradáveis. De facto, embora seja relativamente recente, alguns 

produtos já foram testados clinicamente com sucesso. Esta tecnologia baseia-se no uso de 

superfícies modificadas com poli(N-isopropilacrilamida) (PNIPAAm). Este polímero possuí 

uma temperatura de transição em solução (LCST), conferindo à superfície carácter 

hidrofóbico acima da LCST e hidrofílico abaixo desse valor. Assim, superfícies modificadas 

com este polímero têm um carácter hidrofóbico nas condições de cultura celular, permitindo 

uma correcta adesão e proliferação. No entanto, diminuindo a temperatura abaixo da LCST 

o carácter da superfície passa a ser hidrofílico, induzindo o destacamento das células. 

Quando cultivadas até atingirem a confluência, ocorre uma separação espontânea de uma 

película de células contíguas ou “cell sheet”, conjuntamente com a matriz extracelular 

entretanto produzida por essas mesmas células. Este método permite a recuperação de 
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estruturas biológicas importantes para o correcto funcionamento dos tecidos, em oposição 

aos métodos enzimáticos mais convencionais, que são bastante destrutivos. As grandes 

potencialidades deste método, já demonstradas para células de diversas origens e 

fenótipos, tornam bastante atractivo o desenvolvimento de superfícies que respondem à 

temperatura com outras funcionalidades inovadoras. Os diversos estudos desenvolvidos no 

âmbito desta tese com este objectivo estão detalhados nos capítulos 5, 6 e 7. 

Em primeiro lugar, prepararam-se membranas de quitosano e estudou-se a influência da 

reticulação dessas membranas com glutaraldeído em várias propriedades. As propriedades 

mecânicas destas membranas foram estudadas submergindo as amostras em soluções 

aquosas a 37ºC, de forma a simular as condições fisiológicas. O quitosano absorve 

quantidades consideráveis de água, sendo os materiais resultantes hidrogéis. Neste tipo de 

sistemas, a determinação das propriedades mecânicas com as amostras secas perderia o 

significado prático. 

Numa segunda fase foi feita uma avaliação preliminar da citotoxicidade dos materiais, o que 

demonstrou a sua potencial aplicabilidade como biomateriais e em culturas celulares. 

No passo seguinte estudaram-se as propriedades de transporte de pequenas moléculas, 

demonstrando-se que as membranas possuem valores de permeabilidade que podem ser 

úteis para aplicações de libertação controlada de agentes bioactivos, assim como, em 

estratégias que combinem a libertação controlada de factores de crescimento e 

diferenciação com as técnicas de “cell sheet engineering”. 

Por último, a PNIPAAm foi originalmente imobilizada à superfície das membranas de 

quitosano, de forma a que a superfície responda a alterações de temperatura. Estas 

membranas demonstraram ser adequadas para a cultura de células que, uma vez atingida a 

confluência, puderam ser separadas da superfície apenas reduzindo a temperatura. 

As “cell sheets” podem ser sobrepostas de forma a criar estruturas biológicas com maior 

espessura. No entanto, o número de “cell sheets” sobrepostas que se podem manter em 

cultura está limitado por restrições no fornecimento de nutrientes e pela acumulação de 

produtos metabólicos de excreção. As superfícies tipicamente usadas em “cell sheet 

engineering” consistem em PNIPAAm covalentemente imobilizado na superfície de placas 

de poliestireno de cultura celular. No entanto, estes materiais são impermeáveis. O uso de 

membranas de quitosano, permeáveis a moléculas de pequenas dimensões, aumentaria a 

eficiência na troca de nutrientes e produtos de excreção, permitindo eventualmente o 

aumento do número de “cell sheets” que se poderia sobrepor em cultura. Adicionalmente, as 

membranas de quitosano hidratadas poderão ser facilmente adaptáveis a formas 

anatómicas diversas, devido à sua elasticidade, facilitando a manipulação e a transferência 

directa de “cell sheets” individuais ou sobrepostas para o paciente.  
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Chapter 1 

Introduction 

Smart thermoresponsive coatings and surfaces for tissue 

engineering: switching cell-material boundaries 

 

1.1 Abstract 

 

The smart thermoresponsive coatings and surfaces that have been explicitly designed for 

cell culture are mostly based on poly(N-isopropylacrylamide) (PNIPAAm). This polymer is 

characterized by a sudden precipitation on heating, switching from a hydrophilic to a 

hydrophobic state. Mammalian cells cultured on such thermoresponsive substrates can be 

recovered as confluent cell sheets, while keeping the newly deposited extracellular matrix 

intact, simply by lowering the temperature and thereby avoiding the use of deleterious 

proteases. Thermoresponsive materials and surfaces are powerful tools for creating tissue-

like constructs that imitate native tissue geometry and mimic its spatial cellular organization. 

Here we review and compare the most representative methods of producing 

thermoresponsive substrates for cell sheet engineering. 

 

 

This chapter is based on the following publication: 

Ricardo M.P. da Silva; João F. Mano; Rui L. Reis. Smart thermoresponsive coatings and 

surfaces for tissue engineering: switching cell-material boundaries. Trends in 

Biotechnology 2007, 25, (12), 577-583. 
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1.2 Tissue culture on thermoresponsive substrates 

 

Thermoresponsive substrates designed for tissue engineering have mainly used poly(N-

isopropylacrylamide) (PNIPAAm) as the molecular switch for cell adhesion (ON) and 

detachment (OFF). The first published paper reporting the inverse solubility upon heating of 

PNIPAAm dates from 1967 1. The cloud point (at around 32°C in pure water 1-3) is also 

termed inverse temperature solubility or, more generally, the lower critical solution 

temperature (LCST). In an aqueous environment, isolated individual PNIPAAm chains 

undergo a reversible conformational transition from expanded coil to compact globule as the 

temperature is raised above the LCST 2, 3. The solubility is affected because the amphiphilic 

PNIPAA chains hide the hydrophilic amide groups and expose the hydrophobic isopropyl 

groups in the compact globule conformation. The chemical mechanism and thermodynamic 

details of this phenomenon have been reviewed elsewhere 4, 5. 

In their natural environment, many mammalian cells do not exist in solution but interact with 

immobilized components of the extracellular matrix (ECM) for the development, organization 

and maintenance of the tissues. Consequently, anchorage-dependent cells need to adhere 

to solid substrates for normal functioning. Attached cells proliferate and produce ECM, 

forming confluent cell monolayers. In conventional cell culture dishes, which consist of tissue 

culture polystyrene (TCPS), cells are harvested by disaggregating the ECM through the 

proteolytic action of trypsin and by chelating the Ca2+ and Mg2+ ions with 

ethylenediaminetetraacetic acid (EDTA). However, nonspecific proteases can damage 

crucial cell surface proteins, and this constitutes a major drawback of this cell harvesting 

method 6-10. Moreover, from a tissue engineering perspective, the disruption of the newly 

formed tissue-like structures seems to be a backward step. 

Thermoresponsive substrates can be created so that cells adhere and proliferate at the 

culture temperature, and then release the cultured cell sheets on command, by cooling below 

the LCST. These cell sheet engineering tools have been classified according to two distinct 

strategies that were demonstrated in the pioneering papers: thermoresponsive insoluble 

surface grafts 6 and soluble coatings 11. 

The use of temperature to detach confluent cell sheets in culture, without the use of 

conventional enzymatic treatments, was first reported in 1990 by Takezawa et al. 11. In this 

study, fibroblast monolayers were released at lowered temperature by dissolution of the dish 

coating, which consisted of a physical blend of collagen and PNIPAAm. In this method, cell 

sheet recovery is accomplished by disintegration of the coating. 

Around the same time, Yamada et al. 6 reported that bovine hepatocytes, which are highly 

sensitive to enzymatic harvesting, could be successively subcultured on TCPS surfaces that 
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were covalently grafted with PNIPAAm. The rationale is that the slightly hydrophobic 

surfaces will support cell adhesion, whereas hydrated hydrophilic surfaces will not. At the 

culture temperature (37°C) insoluble grafted molecules expose their hydrophobic groups, 

whereas below the LCST the chains become hydrophilic and hydrated. 

Here we review the thermoresponsive substrates underlying several outstanding 

achievements in regenerative medicine. Further sophistication of such substrates will be 

made possible by greater understanding of the underlying principles that govern their 

applicability. 

 

1.3 Insoluble PNIPAAm surfaces: fabrication methods 

 

A large range of different methods can be used to fabricate insoluble thermoresponsive 

surfaces 6, 9, 10, 12-15. Nevertheless, only a few of these have been found to be suitable for cell 

sheet engineering. Some surfaces based on PNIPAAm do not support cell adhesion even 

above the LCST 16, 17, making them unsuitable as culture substrates. The surface fabrication 

methods reviewed here are limited to those that have consistently demonstrated an ability to 

grow cultured cells to confluence. 

Electron-beam (e-beam) polymerization of NIPAAm onto TCPS is by far the most employed 

method for producing thermoresponsive surfaces for cell sheet engineering 6-8, 16, 18-29. 

Temperature-controlled cell adhesion and detachment is achieved for grafting densities in 

the range of 1.4–2 µg/cm2 (thickness 15–20 nm) 16, 19-23. Grafted PNIPAAm layers thicker 

than 30 nm (2.9–3 µg/cm2) do not support cell adhesion at any temperature 16, 17. 

A second type of thermoresponsive surface that is covalently attached to a solid substrate is 

produced by plasma polymerization of NIPAAm 10, 30. Plasma glow discharge power is 

gradually decreased to form an adhesion-promoting layer on the substrate and to deposit a 

functional coating at the outer surface. Plasma-deposited PNIPAAm was found to be 

consistent with a crosslinked structure, which largely retained the monomeric structure and 

preserved the PNIPAAm phase transition 31, 32. The sum frequency generation (SFG) 

vibrational spectra obtained for this type of graft above the LCST suggested that the 

hydrophobic isopropyl side groups were oriented towards the aqueous environment. By 

contrast, the spectra obtained at room temperature provided evidence for a disordering of the 

isopropyl groups away from the surface normal (the perpendicular). Furthermore, the 

characteristic peaks of amide groups were not detected; this suggests that the previous 

hypothesis, that these groups are exposed to the aqueous environment to participate in 

hydrogen bonding below the LCST, is possibly not correct 32. Finally, cell culture studies and 

thermal lift-off did not show obvious differences between different batches of plasma-
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deposited coatings, although the thickness of deposited polymer varied from batch to batch 

10, 30. This shows that cell adhesion and proliferation do not seem to be sensitive to the 

grafted layer thickness of plasma-polymerized PNIPAAm substrates. 

Another method of producing thermoresponsive surfaces involves the partial entrapment of a 

copolymer of NIPAAm and 4-(N-cinnamoylcarbamide)methylstyrene (CCMS) onto TCPS and 

irradiation with ultraviolet (UV) light to crosslink the copolymer through the dimerization of the 

cinnamoyl groups 9, 33. Similarly to plasma-polymerized PNIPAAm, cell adhesion and 

proliferation were not sensitive to the thickness of the functional layer in the range 2.4–

6.9 µg/cm2 33.  

Another approach to functionalizing TCPS surfaces makes use of a NIPAAm copolymer 

derivatized with photoreactive 4-azidoaniline groups 34-37. UV light irradiation produces a 

heavily crosslinked surface layer 38. This method has been employed to produce 

micropatterned surfaces with thermoresponsive regions by photolithography in which the 

solvent cast coating is washed out from shadowed regions 34-37. Using this approach, 

fibroblasts were cultured for short periods (2 h) and adhered to the micropatterned 

substrates. Afterwards, the cells were selectively detached from the grafted regions 34, 35. 

This technique demonstrated that spatial control over detachment of adhered cells can be 

achieved, and might be a useful tool to control the distribution of different cell types in 

coculture systems. 

All the methods described in this section use the hydrophobic-to-hydrophilic switch to recover 

cell sheets, instead of disintegration of the coating. This ensures that the coating is not 

harvested with the cell sheet, keeping the cell construct free of unwanted soluble polymer 

after detachment. 

 

1.4 Insoluble PNIPAAm surfaces: achieving cell adhesion and proliferation 

 

Although all thermoresponsive substrates based on PNIPAAm showed the expected 

hydrophilic properties below the LCST (see Tables 1.1 and 1.2), only some were able to 

support cell adhesion and proliferation above the LCST; in others, cells did not form 

contiguous monolayers. For instance, the surfaces described above as consisting of thin 

layers of crosslinked PNIPAAm immobilized on solid supports, do support cell adhesion and 

proliferation. By contrast, cells fail to adhere on e-beam-grafted PNIPAAm surfaces thicker 

than 30 nm 16, 17, or on PNIPAAm crosslinked with methylenebis(acrylamide) (MBAAm) 16, 17 

or non-crosslinked PNIPAAm homopolymer 11. Cell adhesion can be correlated to the 

adsorption of adhesive proteins, such as fibronectin. The e-beam-grafted PNIPAAm at the 

greatest density and the bulk crosslinked hydrogel fail to adsorb fibronectin 16, 17. 
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Understanding why only certain molecular architectures produce surfaces with appropriate 

properties could facilitate the engineering of more sophisticated thermoresponsive surfaces 

with increased functionalities. 

The equilibrium water contact angle (measured under static conditions) of some polymer 

substrates has been shown to correlate with cell adhesion and proliferation, which are both 

optimal at an angle of around 70° 39. Using this correlation, the unsuitability of bulk 

crosslinked PNIPAAm hydrogels for supporting cell adhesion can be explained by their 

greatly hydrophilic nature, which is revealed by a low static water contact angle, even above 

the LCST (see Table 1.1) 16. However, plasma-deposited PNIPAAm, which has been shown 

to support reversible cell adhesion and detachment 32, gave similar values for the static water 

contact angle 32, 40. 

 

Table 1.1 Temperature-induced surface free energy changes as sensed by the static water 

contact angle measured above and below the LCST 

Surface description T > LCST T < LCST 
Cell 

adhesion 
Ref. 

Bulk PNIPAAm hydrogel crosslinked with 

MBAAm (1.3%) 

49.4º (a) 

(T=40ºC) 

11.5º (a) 

(T=10ºC) 

non-

adhesive 
(16) 

e-beam polymerised PNIPAAm (1.4 µg/cm2) 
77.9º (a) 

(T=37ºC) 

65.2º (a) 

(T=20ºC) 
ok (16) 

e-beam polymerised PNIPAAm (2.9 µg/cm2) 
69.5º (a) 

(T=37ºC) 

60.0º (a) 

(T=20ºC) 

non-

adhesive 
(16) 

e-beam polymerised PNIPAAm (1.6 µg/cm2) 
66º (b) 

(T=37ºC) 

54º (b) 

(T=20ºC) 
ok (41) 

Plasma polymerised PNIPAAm (1W)  
40º (a) 

(T=40ºC) 

34º (a) 

(T=20ºC) 
ok (32) 

Plasma polymerised PNIPAAm (5 W, 55ºC) 
42.5º (a) 

(T=45ºC) 

33.5º (a) 

(T=20ºC) 
NA (40) 

 

(a)
 Captive air bubble method; 

(b)
 Sessile drop method; NA = cell adhesion studies were not reported; ok = cells 

adhere, proliferate and detach as a confluent sheet 

 

Also, the dependence of cell adhesion on the thickness of PNIPAAm grafted onto TCPS by 

e-beam irradiation cannot be clearly correlated with the differences found in the static water 

contact angle, because the reported values (Table 1.1) are close to what is regarded as 

optimal for cell adhesion. Besides, as the values in Table 1.1 show, the nonadhesive surface 

with the greatest grafting density (2.9 µg/cm2) showed a contact angle between the values 
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found for lower densities (1.4 and 1.6 µg/cm2), which are in turn appropriate for cell adhesion 

and proliferation 16, 41. These findings suggest that an additional effect other than the surface 

wettability, but nevertheless strongly related to the grafting density or thickness, is 

responsible for inhibiting protein adsorption onto e-beam-grafted surfaces at the greatest 

density and, consequently, hindering cell adhesion. 

The performance of the surfaces can also be affected by the swelling ability. Akiyama et al. 

reported that swelling was significantly reduced for crosslinked gels immobilized on a rigid 

surface and that the swelling ratio was further lowered for the thinner crosslinked gels. 

Consequently, they suggested that the surface immobilization of the crosslinked chains 

dramatically restricted the molecular motion, and extrapolated that those restrictions on 

molecular mobility would be more significant in the vicinity of the rigid support surface, as in 

the case of the e-beam-grafted PNIPAAm on TCPS 16, enabling cell adhesion below a 

suitable thickness limit. 

It is well established that, under suitable grafting densities and sufficient molecular mobility 42-

44, immobilized nonionic and greatly hydrated macromolecules such as polyethylene glycol 

(PEG) can prevent (or minimize) protein adsorption and, consequently, render surfaces 

resistant to cell adhesion. The nonfouling nature of those surfaces is often interpreted in 

terms of the ‘steric repulsion’ model. It is considered that the solvation of the PEG chains 

together with their great conformational freedom and hence entropy prevents the protein 

adsorption that, otherwise, would restrict the conformational mobility of the hydrated free 

polymer molecules 42, 45, 46. The nonfouling property of PEG chains has been used to explain 

the nonadhesive property of hydrated PNIPAAm surfaces below the LCST 15, 17, 47. 

However, the same ‘steric repulsion’ model is less successful at explaining the nonfouling 

nature of the thicker e-beam PNIPAAm-grafted surfaces (2.9 µg/cm2) above the LCST. In 

fact, during the volume transition it is expected that the PNIPAAm molecules dehydrate, at 

least partially, and expose their hydrophobic isopropyl groups, as was reported for plasma-

polymerized NIPAAm NIPAAm 32. In Figure 1.1, crosslinked PNIPAAm chains are 

schematically represented above the LCST. The isopropyl groups are oriented towards the 

interface with the water, and the dependence of protein adsorption on the grafting thickness 

and chain mobility is illustrated. The decrease of the PNIPAAm chain density with increasing 

grafting thickness is based on the model proposed by Kikuchi and Okano 48. Similarly, 

surfaces containing methoxy-terminated oligo(ethylene glycol) self-assembled monolayers 

(SAMs) on gold resist protein adsorption, despite the hydrophobic group pointing to the water 

interface 43, 46. By contrast, protein adsorption is detected for the same SAMs on silver, which 

form a denser SAM phase, thereby restricting access to water molecules and molecular 

mobility of the oligo(ethylene glycol) tails 46. The ‘steric repulsion’ model does not explain the 

nonfouling nature of some short oligomers, but this nature can be interpreted based on the 



Chapter 1 - Introduction 

7 

‘water barrier’ theory, that is, protein cannot adsorb because of a tightly bound water layer 42, 

46. 

 

water water

water water

TCPS TCPS

GOLDSILVER

Protein Retentive Protein Repelent

Increasing Thickness

Decreasing Chain Density

Increasing Chain Mobility

Decresing Chain Density

Increasing Chain Mobility

Isopropyl Groups

PNIPAAm 

Crosslinked Chains

Tissue Culture 

Polystyrene Dishes

Methyl Groups

O(PEG)-SAMs

Underlying Substrate

(a) (b)

(c) (d)

 

Figure 1.1 (a) Schematic representation of the e-beam-grafted insoluble PNIPAAm surfaces. 

At culture temperatures above the LCST, the isopropyl groups point to the interface with the 

water, conferring hydrophobic properties on the surface. At low graft thicknesses, adhesive 

proteins will adsorb and cells can adhere to the surface. (b) As the graft thickness increases, 

the PNIPAAm chain density decreases (lower surface concentration of isopropyl groups) and 

the surface becomes unsuitable for cell culture. (c) Methoxy-terminated oligo(ethylene glycol) 

self-assembled monolayers (SAMs) behave in a similar way to (a) and (b). These SAMs 

expose the hydrophobic methyl groups to the water interface. The SAMs on silver form 

greatly compacted structures that were found to adsorb proteins. (d) The same molecules 

form less compacted SAMs on gold producing nonfouling properties typical of other 

oligo(ethylene glycol) molecules. The black dots represent the hydrophobic isopropyl and 

methyl groups of PNIPAAm and O(PEG)-SAMs, respectively. 



Chapter 1 - Introduction 

8 

The similarity between the results on the methoxy-terminated oligo(ethylene glycol)-SAMs 

and the dependence of protein adsorption on the thickness of the e-beam-grafted PNIPAAm 

layer, and its consequences for cell adhesion behaviour (see Figure 1.1), is remarkable. 

Greater restrictions to the molecular mobility and lower hydration, which have been 

associated with the lower thicknesses of e-beam-grafted PNIPAAm, are in turn correlated 

with the denser molecular packing of SAMs on the model surfaces. 

 

Table 1.2 Temperature-induced surface free energy changes associated with the dispersive 

component as sensed by the advancing water contact angle measured above and below the 

LCST  

Surface description T > LCST T < LCST 
Cell 

adhesion 
Ref. 

UV crosslinked  

P(NIPAAm-co-CCMS) (0.7%) 

87.8º (a)  

(T=37ºC) 

37.2º (a) 

(T=19ºC) 
ok (33) 

UV crosslinked  

P(NIPAAm-co-CCMS) (1.2%) 

92.6º (a) 

(T=37ºC) 

40.5º (a) 

(T=19ºC) 
ok (33) 

Bulk PNIPAAm hydrogel crosslinked 

with MBAAm (1%) 

90º (b) 

(T=36ºC) 

42º (b) 

(T=25ºC) 
NA (49) 

Bulk PNIPAAm hydrogel crosslinked 

with MBAAm (1.8%) 

90º (b) 

(T=36ºC) 

42º (b) 

(T=25ºC) 
NA (50) 

Bulk PNIPAAm hydrogel crosslinked 

with MBAAm (2.2%) 

60º (a) (c) 

(T=37ºC) 

25º (a) (c) 

(T=20ºC) 
NA (51) 

Bulk PNIPAAm hydrogel crosslinked 

with MBAAm (10%) 

90º (a) (c) 

(T=37ºC) 

30º (a) (c) 

(T=20ºC) 
NA (51) 

 

(a) 
Dynamic Wilhelmy plate method; 

(b) 
Sessile drop method; 

(c)
Estimated from a chart; NA = cell adhesion studies 

were not reported in these articles, but it has been reported that cells do not adhere on bulk PNIPAAm hydrogel 

crosslinked with MBAAm
16, 17; 

ok = cells adhere, proliferate and detached as confluent sheet 

 

The dynamic contact angle, that is, the measurement of the ‘advancing’ and ‘receding’ 

contact angles at the moving three phase boundary (solid–liquid–air), was also used to study 

the properties of insoluble PNIPAAm surfaces. Johnson and Dettre proposed a model for 

dynamic contact angle hysteresis caused by surface chemical heterogeneity; they predicted 

that the advancing contact angle would be associated with the surface concentration of 

hydrophobic regions 52, 53. They also found that the advancing contact angle does not vary 

greatly for elevated concentrations of the hydrophobic regions, but decreases sharply when 

the concentration of the latter is reduced to a low coverage ratio 52, 53. When analysing the 
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values of the advancing water contact angle reported by several authors (Table 1.2), and 

considering the nonadhesive nature of bulk PNIPAAm hydrogels crosslinked with MBAAm, 

no clear tendency can be seen correlating these values with the suitability of the surface to 

support cell growth. However, similar elevated values for advancing contact angle of the 

surfaces above the LCST confirm the raised concentration of hydrophobic regions, but can 

still hide considerable differences in the concentration of isopropyl groups. Moreover, a low 

advancing contact angle (Table 1.2) below the LCST should mean that most of the isopropyl 

groups are no longer oriented to the interface. This is corroborated by SFG vibrational 

spectra, which provide evidence for the orientation of the isopropyl groups towards the 

aqueous environment above the LCST, and their disordering away from the surface normal 

at lower temperatures 32. 

In conclusion, cell adhesion and proliferation on insoluble PNIPAAm surfaces cannot be 

described only in terms of surface wettability, because above the LCST the surfaces are only 

partially dehydrated. Interdependent variables such as swelling ratio, molecular mobility, 

chain density and concentration of the hydrophobic groups must be simultaneously 

addressed. 

 

1.5 Insoluble PNIPAAm surfaces: mechanisms underlying cell sheet 

detachment 

 

Spontaneous cell sheet detachment is driven by physical events, such as an increased 

hydrophilicity, that are induced by lowering the temperature below the LCST. Nevertheless, 

detachment seems also to be mediated by active cellular metabolic processes, given that cell 

detachment can be suppressed by adding an ATP synthesis inhibitor 54. Selective inhibition 

of actin filaments, by means of either an actin stabilizer or an actin depolymerizer, strongly 

indicates that forces exerted by the cytoskeleton are important in the detachment process 54. 

Moreover, cells of different phenotypes require varying optimum temperatures for 

detachment, depending on their differing temperature sensitivities for cellular metabolic 

processes 55. Furthermore, each specific cell phenotype creates different ECM structures, 

and it is expected that deposited basal structures could also be different. This could also 

have implications for the response to the thermoresponsive switch of cell sheets created 

from different cell sources. For example, fibronectin, which was deposited as a matrix 

composed of thin fibrils on the thermoresponsive surface, could be recovered together with 

the confluent monolayer of bovine aortic endothelial cells by low-temperature lift-off 56. This is 

in good agreement with the resistance exhibited by e-beam PNIPAAm-grafted surfaces to 

adsorb the soluble form of fibronectin below the LCST 16. In addition, bovine aortic 
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endothelial cell sheets grown on plasma-polymerized NIPAAm surfaces left behind little (if 

any) laminin or fibronectin after thermal harvesting. However, a detailed analysis of the 

thermoresponsive surface after cell sheet detachment showed evidence of a protein film 

consistent with collagen types I and IV 10, 30, indicating that a fraction of some of the ECM 

proteins that cells deposit in the culture surfaces remains in that substrate after thermal lift-

off. Canavan et al. suggested that, because cells mainly interact with the ECM at focal 

points, the ECM proteins that do not have strong interactions with cells could be retained in 

the substrate after thermal recovery of the cell sheet 10. Finally, it is also reasonable to 

consider that thermoresponsive surfaces below the LCST have a different adhesiveness 

towards ECM proteins. Cell sheets could resist detachment because of proteins that function 

as anchoring points and therefore remain attached to the surface after detachment. This 

might explain why cell sheets do not detach when the cytoskeletal contractile forces are 

selectively inhibited. 

 

1.6 Cell sheet engineering and manipulation 

 

When confluent cell sheets are harvested from thermoresponsive dishes, the cellular 

contractile forces exerted by the cytoskeleton are no longer supported by the forces of 

adhesion to the solid surface. As a result, the cell sheet starts to shrink 21 and to aggregate 

resulting in multicellular spheroids 11. Hydrophilic membranes placed on top of the cell sheets 

adhere to their apical surface upon removing the culture medium, possibly because of 

capillary forces. When the temperature is lowered, the cell sheet is released but still stuck to 

the supporting membranes, which provide a physical support for the manipulation of the 

delicate cell sheets and enable their transfer from the thermoresponsive surface to the 

desired substrate 19, 21-23, 25, 28. The basal surface of the cell sheet will adhere to the new 

substrate, possibly through the remaining adhesive proteins that were present at the 

interface with the previous thermoresponsive surface and harvested with the cell sheet 56. In 

a final step, the supporting membrane will spontaneously detach by adding culture medium. 

Cell sheet manipulation techniques have been established notably by the group led by Dr T. 

Okano; after their pioneering paper 6, this team systematically investigated insoluble 

PNIPAAm-grafted substrates to produce different cell sheets from several cell phenotypes 48, 

57, 58. 

The advantages of cell sheet engineering over more conventional tissue engineering 

strategies are described in Box 1.1. Single cell sheets have been produced for regeneration 

of cornea 7, 18, 24, 29 and epidermis 19 . When directly transplanted to human patients for 

corneal regeneration, cell sheets adhered rapidly, avoiding the need for sutures 18. In 
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comparison, conventional corneal and epidermal tissue engineering approaches use dispase 

to harvest corneal epithelial cell sheets and multilayered keratinocyte sheets from the culture 

dishes. These nonspecific proteases damage the formed ECM and other proteins, leading to 

fragility of the cell sheets and disrupting differentiated structures and functions 7, 19, 20. 

Residual dispases can also be harmful to the transplantation site and jeopardize the 

treatment. 

 

Box 1.1 Advantages of cell sheet engineering compared with more conventional approaches 

• Cell sheets harvested from thermoresponsive substrates adhere to the host tissues without 

the need for sutures 18. 

• Tissue engineering strategies require the scaffold material to be surgically placed between 

cultured cells and the injury site, which can complicate or delay integration of the tissue 

implant 58. 

• Cell sheet engineering avoids the use of scaffold materials, which can have potential for 

inflammatory or foreign body reactions or other complications arising from the by-products of 

scaffold biodegradation. 

• Thermoresponsive substrates avoid the use of deleterious enzymes that typically are used 

to remove cell monolayers from conventional culture dishes 7, 19, 20. 

• Control over the spatial distribution of cells within three-dimensional stratified tissues can be 

achieved by layering cell sheets created from different cell types 22. 

• Cell sheet engineering offers better control over cell seeding; that is, when cells are seeded 

at a cell concentration similar to that observed on a confluent monolayer, final tissue-like 

constructs have greater cell densities and less ECM, reflecting the varying cell densities of 

the different native tissues 21, 26. 

 

 

An alternative tissue engineering approach makes use of biodegradable scaffolds, such as 

collagen 59. However, this technique requires that scaffold material is surgically placed 

between the cultured cells and the host tissue at the injured (or diseased) site. Unless the 

use of scaffolds is crucial for treatment, such as to provide short-term mechanical support, 

cell sheet engineering can be an appealing alternative. For example, if a scaffold is used only 

to recover and manipulate cultured tissue, replacing it with engineered cell sheets has great 

advantages – in avoiding a possible inflammatory or foreign body reaction or other 

complications arising from the by-products of scaffold biodegradation. 

Moreover, from the tissue organization point of view, it might be desirable to avoid the use of 

scaffolds, whose supramolecular organization does not match that of the ECM deposited by 
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the cells. For instance, in native cardiac muscle, cells are densely packed with diffuse gap 

junctions, important for electrical transmission. Layered cardiomyocyte cell sheets showed a 

greater cell density with diffuse gap junctions and less ECM deposition, than constructs that 

were created using biodegradable scaffolds 21, 26. Further, cell sheet engineered cardiac 

grafts showed synchronized pulsation 26. 

This method was also used to create cell sheets of hepatocytes and endothelial cells that 

were subsequently layered to mimic the three-dimensional cellular organization in liver 

lobules. It was found that the hepatocytes cocultured in the layered system maintained 

differentiated functions for over 41 days, whereas these functions disappeared within 10 

days in hepatocyte monoculture controls 22. 

It should be emphasized that in all the examples given above of applications for cell sheet 

engineering, the cell sheets were obtained using insoluble thermoresponsive surfaces. In 

fact, the majority of the cell sheet engineering applications were developed for insoluble 

thermoresponsive surfaces. It was only recently that the attention of cell sheet engineers 

turned again toward the approach based on thermoresponsive substrates that become 

soluble below the LCST. Endothelial cells were cultured until confluency on coatings of 

PNIPAAm-grafted gelatin produced by living radical photopolymerization 60-66. Gelatin, the 

denaturated form of collagen, was used to address the nonadhesive nature of soluble 

PNIPAAm. These cells were shown to detach successfully when the temperature was 

lowered to 20 °C 61. Moreover, a tubular monolayer of endothelial cells was created by 

coating a glass capillary tube with the same PNIPAAm-grafted gelatin. An engineered 

vascular graft could be recovered that consisted of the endothelial cells and secreted ECM. 

The resulting tubular endothelium resembled the intimal layer of a native blood vessel 60. 

The disintegration of the coating could be a potential drawback of this method, because it 

poses the risk that the harvested cell sheet will be contaminated with soluble polymer after 

detachment. Nevertheless, the method gives the cell sheet engineer the ability to release 

biological structures from intricate supportive moulds, enabling the design and one-step 

fabrication of ‘cell sheets’ with complex geometries resembling the native tissue shapes. 

 

1.7 Concluding remarks 

 

Thermoresponsive surfaces that consist of thin layers of crosslinked PNIPAAm on a 

nonthermoresponsive solid support were initially proposed as new technologies for cell 

proliferation. However, since then thermoresponsive surfaces have been developed into 

valuable tools for engineering cell sheets and used successfully to produce tissue-like 

structures with interesting and important applications in regenerative medicine. So far, this 
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technology is being applied for the regeneration of cornea 7, 18, 24, 29, skin 19, liver 22, heart 21, 26 

and blood vessels 60. 

The insoluble PNIPAAm surfaces are suitable for producing cell sheets that seem to be ideal 

for applications where the native tissues show stratified structures. Cell sheets can be 

layered to obtain thicker tissue-like constructs composed of single 26 or multiple cell 

phenotypes 22. Moreover, the low-temperature soluble coatings that can support cell 

adhesion and proliferation above the LCST have great potential for engineering ‘cell sheets’ 

with more complex geometries resembling tissue shapes, which can only be obtained after 

complete removal of supporting materials. 

Despite the advances that thermoresponsive coatings and surfaces have already made for 

the regeneration of injured tissues, cell sheet engineering is still in its infancy and has 

enormous research potential. The scarcity of suitable cell sources is an important obstacle to 

developing clinically relevant applications, a common issue in the field of regenerative 

medicine. Future developments in stem cell technologies combined with a full toolbox of 

thermoresponsive technologies promise great benefits for human health and welfare.  
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Chapter 2 

Materials and methods 

 

Scientific knowledge is a constant evolution process. Testing the formulated hypotheses 

often requires the adjustment of methods or even major changes to meet specific 

requirements. This is even more significant when trying to simulate real and complicated 

systems such as the human one through simplifications, in order to isolate factors and 

understand how different variables correlate. In the scientific dynamic process, methods are 

also constantly being perfected for higher accuracy and to obtain more relevant information. 

This thesis, as a scientific endeavour, comprises the use of different techniques, which in 

some cases evolved along its time span in order to test different hypotheses or to better 

simulate the aimed application environment. On the other hand, procedures and methods as 

described in the different papers are often lacking less relevant details, that are however still 

important to permit a faster replication. Furthermore, each one of these papers alone is not 

able either to transmit that evolution process, or to explain the reason behind some decisions 

on the experimental design. 

This section is a comprehensive effort to condensate, to contextualise and to explain the 

methods used throughout the thesis, as well as to provide further details, thereby shortening 

the way of future scientific works built over the foundations of this scientific enterprise. 

 

2.1 Materials 

 

2.1.1 Chitosan 

 

Chitosan with origin from crab shells was purchased from Sigma-Aldrich (see Figure 3.5 for 

chemical structure). The early experiments that we have performed to determine important 

properties of chitosan, such as the degree of N-acetylation (DA)1 and the molecular weight, 

revealed a substantial variability between batches. Moreover, chitosan raw-materials 

sometimes possess an insoluble fraction that could be remaining chitin or other type of 

impurities. For that reason, a purification procedure was set up. The products obtained from 

                                                
1
 The degree of N-acetylation (DA) and the degree of N-deacetylation (DD) refer to the same property, 

but are defined as the molar fraction of the different monosaccharide units (DA = 1 - DD).  
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independent purifications were thoroughly mixed to obtain a final homogeneous batch of 

purified chitosan. Each homogeneous batch was characterised independently and no further 

chitosan was added, even if obtained using similar purification procedures and belonging to 

the same raw-material. These careful measures were taken to prevent concerns about the 

influence of the purification in the DA or in the molecular weight. It was not possible to keep 

the same batch along the entire experimental work, but each chapter refers only to a single 

batch, with a well defined DA (or DD) and viscosity molecular weight (Mv). 

 

Purification of chitosan 

 

A suitable amount of chitosan was dissolved in an aqueous acetic acid solution (1%) at ~1% 

(w/v). The insoluble material was removed by filtration with Whatman® ashless filter paper 

(20-25 µm). The obtained clear solution was precipitated adding a NaOH solution (final pH ~ 

8). The formed white gel was sieved to remove the exuded liquid and thoroughly rinsed with 

distilled water, until no changes in the pH were detected. The chitosan gel was further 

washed with ethanol, freeze-dried, ground to powder and dried at 60ºC overnight. 

 

Determination of the viscosity molecular weight 

 

Viscosity is empirically related to molecular weight, because the measurement depends upon 

the hydrodynamic volume of the macromolecule, which is a function of the molecular weight, 

conformational properties and polymer-solvent interactions1-3. Measurements of solution 

viscosity are made by comparing the flow time t required for a specific volume of polymer 

solution to flow through a capillary tube with the correspondent flow time t0 for the solvent. 

Relative viscosity (ηr) and specific viscosity (ηsp) are calculated from t and t0, according to the 

following equations:  

 

00r η/ηη t/t≅=             (2.1) 

1η
η

ηη
η r

0

0

sp −=
−

=            (2.2) 

 

Several mathematical equations are available for determining the intrinsic viscosity [η] of a 

polymer. These equations are found to be valid at sufficiently low concentrations, assuring 

that the polymer chains are free to move individually in the solvent, i.e., the kinetic units are 

not aggregates but single polymer molecules. The equations derived by Huggins2 (equation 
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2.3) and Kraemer3 (equation 2.4) relate ηr and ηsp, respectively, with the polymer 

concentration in the solvent (C in g/dL or any other units proportional to this), according to 

the following expressions:  

 

[ ] [ ] CK
C

2

H

sp
ηη

η
+=            (2.3) 
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K
r ηη

η ln
−=            (2.4) 

 

The Huggins (KH) and the Kraemer (KK) coefficients give information on the polymer-solvent 

interactions, being the KH lower values (ranging from 0.25 to 0.5) and the KK negative values 

related to a better solvation of the polymer chains4. Theoretically, KH + KK should be equal to 

0.5. The intrinsic viscosity [η] is a theoretical value calculated at the limit of infinite dilution 

using those equations: 

 

[ ] ( )
0cspηη
=

= /C   (Huggins)          (2.5) 

[ ] ( )
0crη lnη == /C   (Kraemer)          (2.6) 

 

The graphical extrapolation (C=0) using both equations is expected to produce more or less 

the same values of [η] for a particular polymer-solvent system. The quality of the results was 

assessed by comparing the values of [η] and evaluating KH and KK. Chitosan fresh solutions 

were prepared with five different concentrations in the range that gives ηr between 1.1 and 

1.9. The flow time was obtained from five reproducible measurements for each solution, 

using an Ubbelohde viscometer (T = 25.0 ± 0.1ºC). The intrinsic viscosity [η] was calculated 

by linear regression plotting ηsp/C and ln(ηr)/C against C(g/dL) (see Figure 2.1). The solutions 

were carefully prepared since the method is very sensitive to small errors in the 

concentration, solutions ageing and the presence of dust particles, which due to the small 

diameter of the capillary can decrease significantly the flow section area. The purified 

chitosan samples were oven dried overnight and accurately weighted in an analytical 

balance (± 0.1 mg). In any case the amount of weighted chitosan was inferior to 20.0 mg in 

other to minimise weighting errors. The residual water was determined thermo-

gravimetrically (TGA) and the concentration was corrected accordingly. First, the chitosan 

powder was completely dissolved in acetic acid (AcOH) 0.5 M. Then, a suitable amount of 

sodium acetate (AcONa) was added to give a final concentration of 0.2 M. This solution was 

filtered and transferred to a volumetric flask. The filter and glassware was rinsed with the 

same 0.5 M AcOH solution to assure that chitosan is completely transferred. The volumetric 
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flask was filled up to the mark with the same 0.5 M AcOH solution. The blank solution was 

prepared in the same way, but without adding chitosan. Finally, the pH was checked (it 

should be around 4.3-4.4) and the flow time was analysed immediately to avoid chitosan 

depolymerisation.  
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Figure 2.1 Example of linear regressions obtained by plotting ηsp/C (Huggins) or ln(ηrel/C) 

(Kraemer) against C (Mv = 790 kDa, KH = 0.31;KK = 0.17) 

 

The viscosity average molecular weight (Mv) was calculated based on the Mark-Houwink 

equation: 

 

[ ] a

v )(Mη k=              (2.7) 

 

with, [η] in dL/g, Mv in Da, k = 3.5 x 10-4 and a = 0.76 for 0.5 M AcOH/0.2 M NaOAc aqueous 

solution as solvent at 25ºC (independent of the DA at these conditions)1, 5. 

 

Determination of the degree of N-acetylation 

 

Chitosan is the most deacetylated part (DA < 60) of a series of copolymers of β-(1→4)-2-

acetamido-2-deoxy-D-glucopyranose (GluNAc) and β-(1→4)-2-amino-2-deoxy-D-

glucopyranose units (GluN). The properties of chitosan vary considerably with the DA; 

therefore it can only be correctly defined once its DA is known. Although apparently a simple 

analytical problem, the DA determination has revealed to be a complicate issue. A huge 

number of methods have been proposed in the literature6-22, which include Fourier 
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transformed infrared spectroscopy (FTIR)6-9, potentiometric10 and metachromatic11 titrations, 

elemental analysis10,12, ultraviolet (UV) spectrophotometry12-14, ninhydrin assay15, 

conductometric titration16 and nuclear magnetic resonance (NMR) spectroscopy17-22, just to 

refer to most common. The great number of methods described in the literature may be 

regarded as an advantage, but can pose some difficulties to the untrained researchers at the 

time of deciding which method to use. In fact, these methods differ in reliability, robustness, 

precision and accuracy over the entire DA range. 

In a first approach, we used several methods and compared them in terms of precision and 

accuracy of the obtained values, but we also evaluated practical issues such as the amount 

and harmfulness of the produced residues or if the methods encompass time-spending and 

laborious procedures. The DA value determined by metachromatic titration11 for highly 

deacetylated samples (DA = 6.7 %) was abnormally high, with no practical meaning since 

greater than 100%. We hypothesised that the methachromatic effect is no longer 

stoichiometric for high DD. This anomalous result, together with the poor accuracy for lower 

DA values (considering the 1H-RMN as the reference technique), as well as with the fact of 

being highly time-spending, made this method one of the most inappropriate that we tested 

in this first screening. FTIR methods are widely used to determine the DA of chitosan and, 

since the determination is performed in the solid state, they are also suitable to determine the 

DA of chitin (DA > 60). If the materials are in the salt form they should be previously 

converted to the free amine form. The FTIR methods involve the comparison between the 

absorbance of a band assigned exclusively to one of the monosaccharides and a suitable 

internal reference band to correct for film thickness or sample concentration (KBr disks). A 

big effort has been devoted to identity the right combination of bands and respective 

baselines, which led to a large number of proposed methods found in the literature6-9. In our 

first attempt to determine the DA by FTIR we used the method proposed by Baxter et al.6 and 

the bands proposed by Brugnerotto et al.8 that are depicted in Table 2.1.  

 

Table 2.1 Calibration curves to determine the DA using the FTIR spectrum of chitosan that 

make use of different combinations of bands and baselines. The absorbance (A) is the height 

at the band maximum corrected by the intercept with the respective baseline 

Band (cm-1) Baseline (cm-1) DA (%) Ref. 

1655 1800 - 1600 

3450 4000 - 2500 
DA = (A1655/A3450) x 115 [6] 

1320 1355 - 1270 

1420 1495 - 1405 
A1320/A1420 = 0.3822 + 0.03133 x DA [8] 

1320 1355 - 1270 

3450 4000 - 2500 
A1320/A3450 = 0.03146 + 0.00226 x DA [8] 
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The methods that used the –OH stretching band at 3450 cm-1 gave in general lower values 

than the ones obtained by using the band at 1420 cm-1. This is likely due to the fast uptake of 

moisture from the atmosphere that oven-dried chitosan materials present (see Chapter 3), 

which interfere with the band at 3450 cm-1 leading to an overestimation of its intensity.  

Moreover, we found that the values achieved making use of the reference band at 1420 cm-1 

did not consistently match the DA obtained using 1H-NMR. The discrepancy between the 

results obtained using different calibration curves and also with respect to reference methods 

has been described in the literature7. The use of FTIR for quantification purposes have 

drawbacks intrinsic to the fact that some bands depend on intricate associations with the 

typical hydrogen-bonding networks different for each chitin polymorphic form7. This fact 

makes the selection of suitable bands and baselines quite problematic. More recently, 

statistical studies comparing the vast number of proposed bands and baselines combinations 

have been employed to assist in that selection based on robust criteria9. Despite its 

drawbacks, FTIR has been often preferred because it is a quick, user-friendly and low-cost 

method, but mostly because it can also be applied to the insoluble chitin. Nevertheless, the 

construction of a specific calibration line for each particular isolation and deacetylation 

procedure may be necessary to obtain reliable values of DA9. The calibration requires the 

use of standards previously assessed for the DA, which, in the case of insoluble samples, is 

normally done using solid state 13C-NMR as a reference method7-9. For these reasons, we 

did not consider the FTIR technique to report the DA of the chitosan raw-materials used in 

this thesis and focused on two methods, which results were consistently similar all over the 

entire range of the DA of chitosan, by means of 1H-NMR and 1st derivative UV 

spectrophotometry. One entire chapter (Chapter 3) is dedicated to this issue, in which 1st 

derivative UV spectrophotometry first proposed by Muzzarelli and Rocchetti13 is improved. A 

mathematical expression is derived to avoid the use of empiric correction curves for highly 

deacetylated samples. The DA is determined directly from the mass concentration of 

chitosan solutions and the first derivative value of its UV spectra at 202 nm (the acetic acid 

solutions zero crossing point), over the entire range of the DA of chitosan. 

 

Preparation of chitosan samples with several DA by selective N-acetylation 

 

The selective N-acetylation of chitosan can be performed under mild conditions at which the 

molecular weight was reported to not vary considerably23. This is a valuable route to obtain 

chitosan materials with similar molecular weight, but different DA. The chitosan sample (5 g) 

was dissolved in 1% (w/v) of aqueous acetic acid (50 ml). A variable volume of acetic 

anhydride was mixed with 50 ml of ethanol, added slowly to the chitosan solution and stirred 
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overnight. The ratio of the acetic anhydride to the chitosan GluN units was adjusted to obtain 

samples with different DA. The solutions were precipitated with acetone, followed by diethyl 

ether and dried under vacuum. The acetylated samples were then neutralised in 1N NH4OH 

aqueous solution, thoroughly washed with distilled water and freeze-dried. The resultant 

sponges were milled with liquid nitrogen and the obtained flakes were dried at 80ºC under 

reduced pressure. 

 

Determination of the moisture content by thermogravimetric analysis (TGA) 

 

Chitosan usually contains residual moisture irrespective to the drying procedure24. The 

hypothesis that this residual moisture could be caused by a fast water uptake from the 

atmosphere would make the accurate determination of the chitosan weight a tricky 

procedure. The water content of the chitosan samples was estimated by TGA (TA 

Instruments, model TGA Q500), immediately after being weighted for the UV determination 

of the DA. The thermograms were obtained under an atmosphere of flowing nitrogen. The 

chitosan powder (4-10 mg) was first heated at a 10ºC/min ramp, which was followed by an 

isothermal step of 20 min at 110ºC to assure complete dryness of the samples. Moisture 

content (MC(%)) was considered to be the weight loss at that time point. The temperature 

programme also included a cooling down period, under the same nitrogen stream. Then, the 

dried sample was exposed to the air atmosphere and weighted again at preset time periods, 

by closing temporarily the TGA apparatus furnace. This procedure allowed us to estimate the 

time necessary for the dried chitosan materials to recover the initial water content when 

exposed to the atmospheric moisture. 

 

2.1.2 Soybean protein Isolate 

 

Soybean protein isolate (SI) was provided by Loders Crocklaan BV (Netherlands). SI is a 

mixture of globulin proteins on which Glycinin is present at about 40% (isoelectric point - pI 

6.4) and β-conglycinin at about 28% (pI 4.8)25. The same material has been used in different 

works in our group26-30. SI is not totally soluble in water, but about 90% of the proteins 

present in soybean are soluble at some pH (water extractable)31.  
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2.1.3 N-Isopropylacrylamide 

 

N-isopropylacrylamide (NIPAAm) (see Figure 2.2) from Acros-Organics was purified by 

recrystallisation. The monomer was dissolved in a boiling mixture of n-hexane/diethyl ether 

(5:1), filtrated and left at room temperature overnight to obtain a greater amount of 

crystallised monomer. After solvent removal by decantation the purified monomer was dried 

over vacuum for 24h to remove the residual solvent. 

 

NHO

NIPAAm  

Figure 2.2 Chemical structure of N-isopropylacrylamide 

 

2.2 Processing of multifunctional chitosan-based membranes  

 

2.2.1 Chitosan/Soybean protein isolate membranes 

 

Chitosan was dissolved at a concentration of 1 wt.% in an acetic acid 1 wt.% solution 

(AcOH). SI was suspended in distilled water at room temperature under gentle stirring in 

order to avoid protein denaturation and consequently, foam formation. SI suspensions were 

added dropwise to chitosan solutions under constant stirring at different ratios (designated 

cts100%, cts75%, cts50%, cts25%, related to chitosan percentage), and pH was corrected to 

4.0 with AcOH (equal to chitosan solution). Mixtures were poured into the moulds directly in 

the drying place and moulds were no longer moved or removed until complete drying, in 

order assure that the insoluble part of SI was uniformly distributed. Drying was performed at 

room temperature (c.a. 20ºC) and relative humidity (c.a. 55%). The air-exposed (AE) surface 

during the drying process presented some roughness at the macroscopic level, whereas the 

mould-exposed (ME) surface presented a very smooth appearance. In this way, the surface 

characterization was carried on taking in consideration this feature. β-radiation sterilization 

was preformed by Ionmed Esterilizatión, SA (Cuenca, Spain) at different radiation doses (25, 

50 and 100 kGy) using the electron accelerator Rhodotron TT2 (10 MeV).  
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2.2.2 Chitosan membranes  

 

The chitosan solution was prepared by dissolving chitosan (1% wt.) in acetic acid solution 

(1% wt.). The solutions were carefully stirred in order to avoid the formation of any air bubble, 

poured on Petri Dishes and dried at room temperature in a dust free environment. The 

resultant membranes (thickness approx. 50 µm for 5 mg of chitosan/cm2) were neutralised in 

NaOH 0.1M solution for 10 min and washed thoroughly with distilled water. The obtained 

membranes (CTS) were hold in a frame and dried again, presenting a smooth surface 

without the typical wrinkles derived from the material shrinking during the drying process.  

 

2.2.3 Crosslinking with glutaraldehyde 

 

The chitosan solution was prepared by dissolving chitosan (1% wt.) in acetic acid solution 

(1% wt.). Glutaraldehyde (GA) solutions were prepared at concentrations ranging from 0.1 M 

to 5 x 10-4 M. The amount of chitosan amine groups (NH2) (GluN units) can be determined 

using the following expression: 
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where M(GluNAc) = 203 and M(GluN)  = 161 are the molecular weights of the GluNAc and GluN 

units within the copolymer, m(CTS) is dry weight of chitosan in grams, n(GluN) is the molar 

amount of amine groups in that weight of chitosan and DD the degree of N-deacetylation. 

Then, defining the crosslinking degree (x) as the percentage of aldehyde (CHO) groups with 

respect to the initial free NH2 groups (CHO/NH2 ratio), we can write: 
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and it follows that: 
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where V(GA) and C(GA) are respectively the volume and concentration of the glutaraldehyde 

solutions. Actually, the crosslinking degree defined by equation 2.10 is the reagents feed 

ratio, since the real crosslinking efficiency depends upon the chemical conversion and on the 

occurrence of other parallel reactions, which can form either any or longer crosslinks.  
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The glutaraldehyde solution volume added to a certain amount of the previous chitosan 

solution was kept constant. The several crosslinking degrees were obtained by only 

changing the concentration of glutaraldehyde, according to equation 2.10. In this way, the 

reaction volume and polymer concentration was kept constant for all the samples, varying 

only the molar amount of glutaraldehyde added, which determines the crosslinking degree. 

Glutaraldehyde solution was added dropwise during 5 min under gentle stirring and the 

resultant solutions were let quiescent for about 1 h to remove any air bubble formed. 

Solutions were poured into Petri dishes and dried at room conditions. The resultant 

membranes were neutralised in NaOH 0.1M solution for 10 min, washed thoroughly with 

distilled water and dried again. Samples were labelled according to their crosslinking degree 

as CTS[x(%)]. For instance, samples with x = 0.1%, 1% and 20% were labelled as CTS0.1, 

CTS01 and CTS20, respectively. 

It should be noticed that in Chapter 5, the crosslinking degree (x’) is defined in a slightly 

different way. It is defined as the molar ratio between the added glutaraldehyde and the 

chitosan amine groups, which can be written as: 

2

 (%) 
  100(%)

(GluN)

(GA) x

n

n
x' =×=          (2.11) 

Although both values are interconvertible, the equation 2.11 cannot be used to make an 

exact comparison between the crosslinked samples referred in Chapters 5 and 6. In fact, 

since the chitosan raw-materials used in each one of these chapters possess different DA, 

the same x or x’ value should correspond to a similar chemical efficiency, but it probably 

gives a different average molecular weight between crosslinks. As we already referred 

previously, it was not possible to keep the same batch along the entire experimental work, 

but each chapter refers only to a single batch, with a well defined DA and molecular weight. 

 

2.2.4 Oxygen plasma treatment 

 

The surface of chitosan membranes was modified by plasma treatment according to a 

procedure described elsewhere 32. Briefly, the plasma treatment was performed using radio 

frequency (13.56 MHz) Plasma Prep5 equipment from GaLa Instrumente (Bad Schwalbach, 

Germany). Samples were exposed to O2 plasma at 30 W of power during 15 min. The 

pressure in the reactor was maintained under 20 Pa by regulating the gas flow. The samples 

were only further processed after 48 h in order to assure that free radicals formed during the 

plasma treatment have been quenched. 
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2.2.5 Modification of chitosan membranes with PNIPAAm 

 

The monomer (NIPAAm) was dissolved in several compositions of isopropanol/water 

mixtures varying in the volume ratio from (50:50) to pure isopropanol (100:0). The initiator, 

2,2’-Azobis-isobutyronitrile (AIBN), was dissolved in each solvent mixture used in the 

respective monomer solution. Chitosan membranes were immersed in the monomer 

solutions. Both monomer and initiator solutions were deoxygenated under slow nitrogen flow 

for 10 min. The polymerisation was initiated adding the AIBN solution to the monomer 

solutions and the reaction was performed at 60ºC under N2 atmosphere for 18h. The 

volumes of NIPAAM and AIBN solutions give a final monomer concentration of 0.25 g/mL 

and AIBN to NIPAAm molar ratio of 1%. The grafted membranes were washed thoroughly 

with acetone/water (75:25) to remove unbound polymer. Samples were labelled as 

iPrOH100, iPrOH90, iPrOH75 and iPrOH50, according to the volume of isopropanol used in 

the non-solvent/solvent mixture composition. The same PNIPAAm grafting procedure was 

also applied to plasma treated chitosan membranes at an isopropanol/water composition of 

75:25 (P-iPrOH75). 

 

2.3 Surface characterisation of the chitosan-based membranes 

 

In biomaterials science the surface analysis has a central role, because the surface is the 

first contact between the living body and the biomaterial when a certain device is implanted 

into the body. It is well known33 that the surface properties of biomaterials, namely chemistry, 

topography and/or surface energy, are essential factors for cell adhesion and proliferation 

and consequently for the performance (rejection or acceptance) of a potential device. 

 

2.3.1 Contact angle measurements 

 

The contact angle of a liquid drop with a solid surface is a consequence of the force balance 

between the liquid-vapour surface tension of the drop and the interfacial tension between the 

solid and the drop. The surface energy can be calculated with data from liquids of different 

surface tensions. The contact angle methods are very surface-sensitive, being the analysed 

depth of around 3-20 Å 34. The equilibrium water contact angle (measured under static 

conditions) of some polymer substrates has been shown to correlate with the cell adhesion 

and proliferation, which are both optimal at around 70º 35.  
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In Chapter 4, contact angle (θ) measurements were undertaken by means of sessile drop 

method with contact angle measurement system G10 from Krőss (Hamburg, Germany) at 

room temperature (c.a. 20ºC). At least five measurements were performed for each solvent. 

Surface tension (σs), as well as its polar (σs
p) and dispersive (σs

d) components were 

determined by Owens and Wendt method36, using the equipment software G402 (Krőss, 

Hamburg, Germany). Glycerol and methylene iodide were respectively used as polar and 

non-polar test liquids. 

In Chapter 6, the influence of the glutaraldehyde crosslinking on the hydrophilicity of the 

materials was assessed by means of evaluating the surface wettability using water contact 

angle measurements. Static contact angle measurements were carried out by the sessile 

drop method using a contact angle meter OCA 15+ with high-performance image processing 

system from DataPhysics Instruments (Filderstadt, Germany). A drop (1 µL) of water was 

added by a motor driven syringe at room temperature and the contact angle was measured 

after the contact between the drop and the surface. Two different samples of each material 

were used and at least three measurements were carried out for each sample. 

 

2.3.2 X-ray photoelectron spectroscopy (XPS) 

 

The X-ray photoelectron spectroscopy (XPS) method (also called Electron Spectroscopy for 

Chemical Analysis, ESCA) is based on the photoelectric effect. The interaction of the X-rays 

focused on the sample with its atoms causes the emission of a core level (inner shell) 

electron. The energy of this electron is measured and its value provides information about 

the nature (survey spectrum) and environment (high resolution spectrum) of the atom from 

which it came. Being so, information about the elemental composition and chemistry can be 

obtained at the surface level of the sample within a depth of 10-250 Å 34. 

Possible chemical changes occurred on the surfaces after the modifications performed in 

Chapter 7 were evaluated by XPS. The spectra were obtained using an ESCALAB 200A 

instrument from VG Scientific (East Grinstead, UK) with PISCES software for data acquisition 

and analysis. A monochromatic Al-Kα radiation (hν = 1486.60 eV) operating at 15 kV (300 

W) was used. The measurements were performed in a constant Analyser Energy mode 

(CAE) and take off angle of 90º relative to the sample surfaces. Survey spectra were acquire 

using a pass energy of 50 eV, over a binding energy range of 0 to 1100 eV, and were used 

to calculate the elemental composition of the surfaces. Element atomic percentages were 

calculated from the integrated intensities of the survey spectra using the sensitivity factor of 

the instrument data system. High resolution spectra for different regions (C1s, O1s and N1s) 

were obtained using a pass energy of 20 eV and were peak-fitted using a least-squares peak 
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analysis software, XPSPEAK version 4.1, using the Gaussian/Lorenzian sum function. 

Background counts were subtracted using a linear baseline and the sample charging was 

corrected assigning a binding energy of 285.0 eV to the saturated hydrocarbons C1s peak. 

 

2.3.3 Morphological characterisation by scanning electron microscopy (SEM)  

 

Scanning electron microscopy (SEM) images are obtained from the low-energy secondary 

electrons emitted from each spot of the sample where the focused electron beam impacts. It 

possess a penetration depth of 5 Å 34. The samples should be previously dehydrated. Non-

conductive samples are typically coated with a thin, electrically deposited metal layer, to 

minimise charge accumulation. In turn, although based on the same principal, environmental 

SEM (ESEM) allows observing wet and uncoated samples, due to small changes introduced 

in the apparatus configuration 34. The main disadvantage of ESEM relies on its lower 

resolution when compared with SEM. Uncoated surfaces of chitosan and chitosan/soybean 

protein isolate (Chapter 4) membranes were characterized morphologically by Scanning 

Electron Microscopy (SEM, Philips XL30) and Environmental Scanning Electron Microscopy 

(ESEM, Philips XL30). 

 

2.4 Solvent induced swelling and degradation experiments 

 

Many polymeric systems can uptake limited amounts of solvents and swell to accommodate 

the absorbed liquid without dissolving. When the solvent is water, the network of polymer 

chains that are water-insoluble is called a hydrogel. The chitosan membranes developed in 

this thesis fit well the hydrogel definition. The properties of chitosan are highly dependent on 

the swelling ratio. For instance, the mechanical properties were found to vary dramatically 

when determined with the samples immersed in aqueous solutions (Chapter 5) and the 

permeability correlated well with the crosslinked membranes water uptake (swelling ratio) 

(Chapter 6). In this sense, the determination of the swelling ratio in aqueous solutions that 

simulate the physiological environment was very important for a better understanding of the 

physico-chemical and biological behaviour of the membranes.  

Moreover, the water uptake ability of chitosan membranes and the non-solvent properties of 

isopropanol were used to control the grafting of PNIPAAm. This control was based on the 

different swelling ratios that chitosan membranes possess towards mixtures of both solvents. 

In this sense, the relevance of measuring the solvent induced swelling or solvent uptake was 
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not limited to aqueous solutions. In section 2.4.1, it is given a general overview of these 

experiments procedure. More detailed information is given in the respective chapters.  

Finally, the aqueous environment can also induce materials degradation by leaching out 

small molecular weight polymer chains or other additives or through hydrolytic degradation. 

The determination of the degradation in aqueous solutions was also performed.  

 

2.4.1 Swelling (solvent uptake) experiments 

 

The swelling behaviour of chitosan membranes in different solvents and aqueous solutions 

was determined by immersing previously weighted chitosan membranes. Containers were 

sealed and placed in a controlled temperature environment. After a certain time period, 

swelled samples were blotted with filter paper to remove the adsorbed solvent and weighted 

immediately. The swelling ratio (S) was calculated using the following equation: 
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S %            (2.12) 

where W0 is the initial weight of the sample and W is the weight of the swelled sample. The 

equilibrium swelling ratio (Seq) was considered to be the last point of a swelling kinetics 

curve, where no further swelling is observed with time. In the case of aqueous solutions the 

swelling ratio was denoted water uptake (WU). 

 

2.4.2. In vitro degradation 

 

In vitro degradation of chitosan membranes was assessed in isotonic saline solution (ISS) 

(NaCl 0.154 M and pH = 7.4 ± 0.02). Samples were previously weighted and then fully 

immersed in solution. Containers were sealed and placed in a thermostatic bath at 37 ± 1 ºC. 

After each test period (7, 14, 30 and 60 days) samples were dried until constant weight (W1). 

The weight loss (WL) was calculated using the following equation:  
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where W0 is the initial weight of the sample. 
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2.5. Chemical characterisation 

 

2.5.1 Fourier Transform infrared spectroscopy (FTIR) 

 

Fourier transform infrared spectroscopy (FTIR) is a standard analytical method that can 

reveal information about the sample chemical structure, since the absorption of infrared (IR) 

light is related to discrete energy transitions of the vibrational states of atomic and molecular 

units within a molecule. In transmission mode, the FTIR spectra give information related to 

the bulk material. The attenuated total reflection (ATR) sampling mode can be used to 

increase the intensity of the surface signal, because it observes the region near the surface. 

However, FTIR-ATR is not truly surface sensitive due to the high penetration depth of the 

analysis (1 – 5 µm) 34. Nevertheless, the rich structural information that the IR spectra 

provide makes the FITR-ATR an interesting technique to evaluate greater chemical changes, 

such as the grafting of polymers both at the surface and also at a broader region nearby the 

surface (Chapter 7). If thick enough, deposited layers of materials onto the original surface 

can also be observed. Finally, FTIR-ATR can be also used to evaluate homogeneous 

materials, in which the surface composition does not differ significantly from the bulk. 

Different FTIR spectrophotometers have been used based on the availability of the 

equipments or ATR accessory at the place and moment the work has been performed. For 

this reason, there is an unusual heterogeneity of equipment models/trademarks in the 

different chapters. See each chapter for further details on the equipments and experimental 

procedures. 

 

2.5.2 Proton nuclear magnetic resonance (1H-NMR) 

 

Chitosan is soluble in moderately acid conditions. In this way, chitosan materials (10 mg) 

were dissolved in 1 ml of 0.4% (w/v) of deuterium chloride (DCl) in D2O solution at room 

temperature. On the other hand, since chitosan easily absorb water from the atmosphere the 

signal arose from this residual water (HDO) may be too intense. If this is the case, samples 

can be lyophilised and dissolved again in D2O or, alternatively, dried thoroughly. Proton 

nuclear magnetic resonance (1H-NMR) was used to estimate the total amount of grafted 

PNIPAAm, which were thought to be detectable for samples in which grafting reaction was 

performed in solvents with higher water content. The 1H-NMR spectra were acquired in a 

Varian Inova-300 (300 MHz) spectrometer (Palo Alto, USA). 
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The determination of the degree of N-deacetylation by 1H-NMR required additional care in 

the adjustment of the experimental conditions. In order to minimise the deacetylation 

catalysed by the presence of deuterium chloride, only freshly prepared solutions were used. 

The 1H-NMR spectra were acquired in a Varian Unity Plus (300 MHz) spectrometer (Palo 

Alto, USA) at 70ºC, temperature at which the solvent signal (HOD) does not interfere with the 

chitosan peaks. The acquisition (64 transients) started after 10 min, considered to be enough 

to reach the thermal equilibrium. The pulse repetition delay, 6 s, and the acquisition time, 2 s, 

were set to assure complete relaxation of the nuclei before each pulse application. This 

procedure (repetition time of 8 s) guarantees that the relative intensities of the resonances 

correlate with the exact number of nuclei originating that signal19. 

 

2.6 Crystallinity 

 

Chitosan is a semi-crystalline polymer from which several polymorphs have been mentioned 

in the literature 37-39. Chitosan molecular weight 38, DD 40 and different membrane processing 

methods gave origin to substantial variations in the presence and amounts of the different 

polymorphs 38, 39. Several properties of chitosan membranes should depend on the type and 

the degree of crystallinity. In this sense, the samples used in Chapters 5 and 6 were 

analysed by X-ray diffraction since the properties been analysed could be affected by the 

crystallinity.  

In Chapter 5, the morphology of the studied membranes was analysed by X-ray diffraction 

using synchrotron radiation at the A2 Soft Condensed Matter Beamline of HASYLAB, DESY 

(Hamburg, Germany). 2D wide-angle X-ray scattering (WAXS) patterns were obtained 

employing an image plate, separated 22 cm from the sample.  

In Chapter 6, the morphology of the membranes was analysed recording the wide-angle X-

ray scattering (WAXS) patterns in a Philips PW1710 reflection diffractometer (Almelo, The 

Netherlands), with a step (2θ = 0.02º) scanning time of 2 s and Cu-Kα-radiation generated at 

40 kV and 30 mA. 

 

2.7 Mechanical properties 

 

The mechanical properties of a material are usually an important criterion in the appropriate 

selection of a material for a particular biomedical application, mainly for implants that will 

withstand mechanical stresses in a clinical situation. Thus, a proper mechanical 

characterisation is one of the critical physical tests, which must be undertaken in order to get 
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a reliable prediction of the implant geometrical integrity under service conditions, both at 

short-term (determined by means of quasi-static mechanical tests) and long-term (obtained 

from extrapolated creap/stress relaxation tests or fatigue).  

Besides the information that can be obtained about the mechanical performance in a wide 

temperature and timescale range, dynamic mechanical analysis (DMA) also reveals the 

existence of relaxation processes. These processes are evidenced by great changes in the 

level of the storage modulus (E’) and storage compliance (D’) and by peaks in the 

corresponding imaginary components or in the loss factor (tan δ) in the log frequency or 

temperature axis. Interpretation of the relaxation phenomena (e.g. glass transition) gives a 

better understanding of the relationship between structure and properties. The relaxation 

processes may alter the viscoelastic behaviour of the material in a given temperature or 

frequency range in such a way that it would hamper the device general performance.  

In the other hand, novel materials to be used in biomedical applications should have 

compatible time-dependent mechanical (viscoelastic) features with the organ or tissues that 

they will contact with. For this reason it is also important to know the mechanical behaviour of 

the tissues that they will contact41. It should be noticed that most of the biological tissues 

have viscoelastic properties with excellent damping capabilities, allowing for an efficient 

dissipation of external loads caused by daily life42, 43. For instance, in cardiovascular or skin 

applications, one should have materials that are relatively compliant at low strains but with 

high strengths, as it happens with the corresponding biological materials, in order to integrate 

well within the living tissues41. 

If the material swells easily in aqueous solutions, as it is the case of chitosan materials, the 

evaluation of the mechanical performance both under static and dynamic solicitations with 

the samples at an air atmosphere is worthless. Actually, these test conditions do not 

represent the physiological environments in which the materials will have a completely 

different mechanical behaviour. The tests should be performed while immersing the 

specimen in physiological simulated aqueous solutions and ideally at 37ºC. In fact, water 

content of hydrogel materials can affect drastically its mechanical properties, as we will see 

later in this thesis (Chapter 5). In this sense, materials were tested in a water bath designed 

to fit the DMA equipment and described below.  

 

2.7.1 Quasi-static mechanical properties  

 

Neutralised chitosan membranes were cut into strips with around 15 x 2 x 0.02 mm after 

conditioning in isotonic saline solutions (ISS) for 15 min. Thickness was taken as a mean of 

ten values at different points measured with a low-pressure micrometer. Their resistance to 
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stretching was evaluated with a Perkin-Elmer DMA7e at a constant stress rate of 5 MPa/min 

using the tensile mode. In such experiments, the strain was monitored as a function of 

stress. Please note that such procedure is different from conventional mechanical tests 

where the stress is monitored as a function of strain, which varies at constant rate. However, 

one can also build stress-strain curves and obtain a measure of the stiffness (by looking at 

the slope of the curve at early stages) and the strength (measured by the stress at break) of 

the sample, when experiments at constant stress rate are performed. The assays with 

samples immersed in solution were preformed using a liquid bath built in stainless steel. This 

bath can be fitted into the furnace of the DMA equipment. A schematic representation is 

shown in Figure 5.1. Mechanical tests in immersed conditions were carried out in an ISS 

(NaCl 0.154 M and pH = 7.4 ± 0.02) at body temperature (37 ºC). Samples were kept 

immersed for 15 min in order to reach the hydration and thermal equilibrium, after holding it 

in the test probe. Mechanical tests in a dry environment and in solution at room temperature 

(c.a. 20ºC) were undertaken for comparison purposes. Non-neutralised chitosan membranes 

were only tested in a dry environment. Temperature was checked with an external 

temperature sensor after and before each test. The temperature read by the sensor 

fluctuated less then 0.1ºC during the experiments. Secant modulus was calculated at 2% of 

elongation. Stress and strain at break were also estimated. 

 

2.7.2 Dynamic mechanical analysis  

 

Dynamical mechanical measurements were carried out on chitosan membranes with a 

Perkin-Elmer DMA7e analyser (Waltham, USA) at 1 Hz and heat rate of 2ºC/min. The tests 

were preformed with samples immersed in ISS, using the same system described above. In 

these measurements, sample and solution was carefully cooled down to near 0ºC, in order to 

avoid solution freezing and consequent sample damage. Experiments were stopped at about 

80ºC. The dimensions were the same of those for quasi-static mechanical tests and 

thickness was also taken using the same procedure. It was considered that the cross-section 

area of the samples do not vary during the experiment. 

During each DMA experiment, both the storage modulus, E’, and the loss factor, tan δ, were 

measured as a function of temperature. The first corresponds to the real component of the 

complex modulus (E* = E’ + iE”), being a measure of the sample’s stiffness, whereas the 

later gives the ratio between the amount of mechanical energy lost and stored during a cycle 

(tan δ = E” / E’), measuring the damping capability of the sample. 

A control sample of polybutadiene was tested both into solution and in the conventional dry 

state. This rubber material was found to not absorb any water by a simple gravimetric assay 
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and so mechanical dynamic performance in wet conditions should not differ from 

conventional assay. In fact, it was found that both E’ and tan δ are similar when measuring in 

both dry and wet conditions, indicating that immersion into the solution does not influence 

significantly the measurements. 

 

2.8 Determination of the polymer density 

 

The chitosan and chitosan/SI membranes density measurements were undertaken making 

use of the miscible solvents system n-heptane/dibromoethane. The rational for the solvents 

choice was based on their density (polymer density limited by solvents density) and the fact 

that samples did not absorb any measurable quantity of both. Membranes were cut in at 

least 3 strips (c.a. 1 x 20 mm). A test tube was filled with n-heptane and placed in a 

ultrasound bath for 5 min to eliminate air bubbles (at this stage membrane strips should be 

settled down at the bottom). Then, dibromoethane was added drop by drop until all polymer 

strips start to go up and tend to float. At this stage the liquid density, determined by 

pycnometry, should be an approximation of the polymer density. The procedure was 

repeated 3 times giving results with a good precision (maximum standard deviation of 

0.0058). In general, measures revealed to be accurate since near the polymer density the 

addition of a few drops did not change significantly the liquid density. 

 

2.9 Study of the diffusion of small molecules across chitosan membranes 

 

2.9.1 Permeation studies 

 

The permeation studies were performed using an in-house built side-by-side diffusion cell 

(see details in Chapter 6). Membranes were previous equilibrated in the respective buffer 

solution and mounted between the half-cells of the receptor and donor compartments (1 cm2 

area of diffusion). The receptor compartment fluid was continuously pumped through a flow-

through quartz cuvette with optical pathway (l) of 1 cm. The absorbance at a maximum 

wavelength (different for each solute) was monitored in a UV-1610 Shimadzu 

spectrophotometer. The volume of the monitoring system (tubing and quartz cuvette) was 

calibrated before each experiment and it was found to vary between 2.84 and 2.90 ml. The 

monitoring system was filled with fresh buffer and air bubbles were purged before each 

measurement. The inlet and outlet tubing was connected to the receptor cell previously filled 
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with 2.2 ml of fresh buffer. Then, the diffusion cell was immersed in a thermostatic bath at 

37.0 ± 0.1 ºC. Finally, the donor cell was filled with 2.2 ml of the buffer solution containing the 

respective solute and the absorbance recorded. The solutions in both cells were stirred by 

magnetic bars at 800 rpm to eliminate the boundary layer effect. In preliminary experiments, 

we confirmed that the calculated permeability was kept constant above 400 rpm. 

The permeability of the chitosan membranes was evaluated for small molecules of similar 

size, but holding different chemical moieties, either ionised (anionic) or neutral at 

physiological pH (see Figure 6.1). Moreover, solutes with different ionic charges were tested 

by choosing monoprotic and diprotic acids that are fully ionised at that pH (see Table 6.1). 

The solutions of the anionic solutes, such as benzoic acid (BA), salicylic acid (SA), phthalic 

acid (Ph), were prepared at 5 mM, 2 mM and 5 mM, respectively. Since these molecules at 

the working concentration are able to change the pH of the buffer solution, this was further 

corrected to pH 7.4 with NaOH solution. The solution of 2-phenylethanol was prepared at a 

concentration of 10 mM. The different concentrations used took into consideration the 

different molar absorptivities, in order to allow the detection of the solutes at the early stages 

of permeation experiments (see Table 6.1). The flux rate of those model molecules was 

determined in both phosphate buffer saline (PBS) solution and buffered 

trishydroxymethylaminomethane (TRIS)-Ca2+/Mg2+ solutions, the same used in the water 

uptake experiments. After each assay, the swollen membrane thickness was taken as a 

mean of five values at different points measured with a low-pressure micrometer. 

 

2.9.2 Determination of the partition coefficients 

 

The partition coefficient (K) was considered the ratio of the solute concentration in the liquid 

fraction absorbed by each sample (Cm) to that in the bulk solution (Cs) 
44: 

s

m

C

C
K =              (2.14) 

It was determined in both PBS and buffered TRIS-Ca2+/Mg2+ solutions. First the membrane 

samples were equilibrated for 48 h in a solution of each model molecule at a concentration 

(Cs) 5 times higher than that used in the permeation experiments. The pH of the buffer 

solutions was corrected to pH 7.4 with NaOH solution after the solubilisation of each acid 

solute. When compared with the amount of membrane sample, the volume of the 

concentrated solution was higher enough to consider that Cs did not vary during the solute 

uptake stage. The membrane was removed from the concentrated solution and the excess of 

liquid was removed blotting the membrane with filter paper. The water uptake of each sample 

was determined as described for the equilibrium water uptake experiments. Loaded 
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membranes were immersed in fresh buffer and this procedure was repeated until no further 

release was observed by UV spectrophotometry. The amount of the solute uptake was 

calculated as the total cumulative release and Cm was determined accordingly.  

 

2.10 Biological characterisation of chitosan membranes  

 

2.10.1 Cytotoxicity 

 

The materials were cut in 1 x 1 cm2 pieces and sterilized by ethylene oxide (EtO), as 

described elsewhere45. The sterilization procedure did not show any adverse effect on the 

samples (data not shown). The materials were immersed for 24 hours at 37ºC (with constant 

shaking) in Dulbecco's Modified Eagle's Medium (DMEM) without phenol red (Gibco BRL, 

USA), supplemented with 10% Foetal Bovine Serum (FBS) (BioChrome, Germany) and 1% 

antibiotic/antimycotic solution (Sigma, St. Louis, USA), at a ratio of 1.5 cm2/ml. This is an 

advised procedure for biomaterials extraction to obtain the major leachables and determine 

their short-term effect in a dynamic environment46. The extracts were then filtered through a 

0.45 µm pore size filter and then used for MTT (see details below) and total protein 

quantification tests. 

 

2.10.2 MTT test 

 

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) has a yellow tonality 

and is soluble in water. This compound can be converted by the mitochondrial enzyme 

succinate dehydrogenase in a purple colour salt insoluble in water. The insoluble salt 

absorbs at a wavelength of 570 nm and it is proportional to the amount of viable cells, since 

only viable cells can metabolise MTT 47-49. 

A commercial cell line of rat lung fibroblasts – L929 (ECACC, UK) – was used in these 

studies. The cells were cultured in 75 cm2 flasks (Costar). After detaching them from the 

culture flask by using a 0.25% trypsin-Ethylenediaminetetraacetic acid (EDTA) solution 

(SIGMA, St. Louis, USA) they were re-suspended in DMEM culture medium. The cells were 

plated in 96-well micrometer plates at a density of 2 x 104 cells/well. The plates were 

incubated for 48 hours in a humidified atmosphere of 5% CO2 at 37ºC. After this, the culture 

medium was removed and the extracts were placed in contact with the cell monolayer and 

culture medium was used as control. The plates were incubated for 72 hours, and after 
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removal of the culture medium, 50 µl of MTT (Sigma, St. Louis, USA) solution (1 mg/ml in 

culture medium) was added and incubated 4 hours at 37ºC. To dissolve the formazan 

crystals that are formed, 100 µl of isopropanol were added and the plates were incubated for 

15 minutes at 37ºC and then placed at room temperature in an orbital shaker to help 

dissolving the crystals. The optical densities at 570 nm and 650 nm (background) were read 

on a multiwell plate reader (Molecular Dynamics, Amersham, USA) against a blank of MTT 

solution and isopropanol. All the materials were tested in 10 replicates for each extract for at 

least three separate experiments with reproducible results. 

 

2.10.3 Total protein quantification 

 

The method used to quantify the total protein make use of the Micro BCA Protein Assay 

Reagent Kit (Pierce, USA) that uses bicinchoninic acid (BCA) as the detection reagent for 

Cu+, which is formed when Cu2+ is reduced by proteins in an alkaline environment. The 

purple colour product is formed by the chelation of two molecules of BCA with one Cu+ ion. 

This complex is water-soluble and absorbs at 562 nm, and its absorbance is linearly 

correlated with protein concentration50. 

The procedure is very similar to the one of MTT. After the 72 hours incubation, the extracts 

are removed from contact with cells and these are washed with PBS solution 0.01 M, and 

100 µl of PBS 0.01 M are added to each well. To each well 100 µl of the BCA reagent were 

added, the plates were agitated for 30 seconds and incubated for 2 hours at 37ºC. The plates 

were then cooled to room temperature and the optical densities were measured at 562 nm 

against a blank of PBS 0.01 M and BCA reagent. Total protein (in µg/ml) was determined 

using a BSA standard curve. 

 

2.11 Cell sheet culture and detachment 

 

2.11.1 Cell culture  

 

A human foetal lung cell line (MRC-5), an immortalized cell line with fibroblast-like 

morphology, was obtained from European Collection of Cell Cultures (ECACC, UK) and was 

used in the cell culture studies. The cells were cultured in Dulbecco’s Modified Eagle’s 

Medium (DMEM; Sigma-Aldrich, Inc, USA) supplemented with 10000 U/ml penicillin-G 

sodium, 10000 µg/ml streptomycin sulfate and 25 µg/ml amphotericin B in a 0.85% saline 
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(Gibco, Invitrogen Corporation, UK) and 10% of heat-inactivated fetal bovine serum (FBS; 

Biochrom AG, Germany) in a humidified atmosphere with 5% of CO2 at 37ºC. Membranes 

were cut with 14 mm diameter and placed onto 24 well culture plates. Prior culturing, all 

samples were sterilized by adding 1 ml of 70% ethanol aqueous solution for 90 minutes and 

subsequently washed with sterile phosphate buffered saline solution (PBS, Sigma Chemical 

Co., USA) to remove the remaining ethanol. Cells were seeded on the materials at a 

concentration of 7 x 104 cells/ml, adding 1 ml per well and incubated for 10 days, time at 

which the cells seeded on plasma treated materials (P-iPrOH75) were 100% confluent.  

 

2.11.2 Cell sheet detachment and assessment of the cell viability 

 

After 10 days of culture, plates were removed from the incubator and observed by light 

microscopy. The cells cultured on the different samples were continuously observed to 

assess the eventual detachment from the surface at room temperature (c.a. 16ºC). Cell 

viability was assessed after Calcein AM staining. A 2:1000 Calcein AM solution (Sigma, 

Germany) was prepared with DMEM culture medium and 1000 µl were added to each 

sample culture. Plates were incubated for 15 minutes at 37ºC in a humidified atmosphere of 

5% CO2 and cell fluorescence examined in an Axioplan Imager Z1 from Zeiss (Germany). 
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Chapter 3 

Straightforward determination of the degree of N-acetylation of 

chitosan by means of 1st derivative UV spectrophotometry 

 

3.1 Abstract  

 

The 1st derivative UV spectrophotometry has been herein proved to be a reliable method for 

the determination of the degree of N-acetylation (DA) of chitosan samples, previously 

dissolved in a diluted acetic acid aqueous solution. We derived a mathematical expression 

that allows for the determination of DA directly from the mass concentration of chitosan 

solutions and the first derivative value of its UV spectra at 202 nm (the acetic acid solutions 

zero crossing point), over the entire range of the DA of chitosan. This avoids the use of 

empiric correction curves for highly deacetylated samples. A simple calibration procedure 

consisted on the previous determination of the 1st derivative of the molar absorptivities of the 

two monosaccharides that compose this series of natural copolymers. A procedure is also 

proposed for the accurate mass determination of the hygroscopic chitosan. The proposed 

approach is important to automate the routine determination of the DA at large industrial 

scale, especially if taking into consideration the currently available potent multiwell microplate 

readers, which allow measuring hundreds of samples in just few minutes. 

 

 

This chapter is based on the following publication: 

Ricardo M.P. da Silva; João F. Mano; Rui L. Reis. Straightforward determination of the 

degree of N-acetylation of chitosan by means of 1st derivative UV spectrophotometry 

(submitted). 
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3.2 Introduction  

 

Chitin is a structural polysaccharide that can be found in the cell wall of fungi and in the 

exoskeleton of most invertebrates, of which crustaceans are currently the major source of 

chitin for the industry 1. This polysaccharide is similar to cellulose, both in function, chemical 

structure and abundance; chitin is likely one of the most abundant natural macromolecules in 

the biosphere. Besides its central importance as building and structural material in a great 

number of biological organisms, chitin is winning a central role as a raw material in 

engineering and emergent technologies, in great part owing to its soluble derivative, 

chitosan. Given its natural abundance, it promises to be one of the future important sources 

of renewable materials. In fact, more or less successfully, chitin and chitosan have been 

proposed for a broad range of industrial applications, including wastewater treatment, food, 

agriculture, cosmetics, biotechnological processes and separation technologies 2, as well as, 

for medical applications, such as biomaterials 3, 4 and tissue engineering 5-7. It can be also 

used as a precursor to produce other materials through chemical modification 8, 9. 

Chitin is poly[β-(1→4)-2-acetamido-2-deoxy-D-glucopyranose]. The N-deacetylation 

processes give origin to a series of copolymers varying in the relative amounts of its 

comonomers, β-(1→4)-2-acetamido-2-deoxy-D-glucopyranose (GluNAc) and β-(1→4)-2-

amino-2-deoxy-D-glucopyranose units(GluN) 10. The molar fraction of the GluNAc units is 

defined as degree of N-acetylation (DA). Chitosan is the most N-deacetylated part of this 

series of copolymers. Although the criteria that defines what is chitin or chitosan based on 

the DA value is somewhat controversial, chitosan is often regarded as the soluble 

copolymers in dilute acidic solutions, oppositely to the insoluble chitin. Much more relevant 

than the details on the nomenclature affairs, it is that both physicochemical 11-15 and 

biological properties 16 of these copolymers are strongly dependent on the DA. For instance, 

the dependence on the DA has been shown for properties such as: the polymer conformation 

in solution 11, 12, the supramolecular aggregation 13 and the pKa 14; the crystallinity 15, 17 and 

the mechanical properties of these biopolymers films 17; the cellular uptake and the in vitro 

cytotoxicity of its molecules and nanoparticles 16. Therefore, the chitin/chitosan biopolymer 

can only be correctly defined once its DA is known. The determination of this parameter is 

only apparently a simple analytical problem and, actually, it has revealed to be a rather 

complicate issue. A myriad of methods have been proposed and tuned over the past two 

decades, but all of them possess inherent drawbacks and limitations. The portfolio of 

methods includes techniques such as Fourier transformed infrared (FTIR) spectroscopy 18-20, 

potentiometric titration 21, elemental analysis 21, 22, ultraviolet (UV) spectrophotometry 22-24, 

ninhydrin assay 25, conductometric titration 26 and a range of nuclear magnetic resonance 
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(NMR) spectroscopic methods, both in liquid 10, 27, 28 and solid state 29-31, just to refer to most 

common. 

Solid state methods, which do not require the materials dissolution, present the advantage of 

being applicable over the entire range of DA values, both for chitin and chitosan. Solution 

methods are limited to soluble samples and, by definition, can only be applied to determine 

the DA of chitosan (for DA < 0.60, approx.). 

The most widely used solid state method for the DA determination is FTIR, but some bands 

depend on intricate associations with the typical hydrogen-bonding networks different for 

each chitin polymorphic form 18. A great number of different bands and baselines have been 

suggested in the literature, but important variations can often be found in the respective 

results 18. This fact makes the selection of suitable bands and baselines quite problematic. 

Statistical studies comparing the vast number of proposed bands and baselines 

combinations have been employed to assist in that selection based on robust criteria 19. 

Despite its drawbacks, FTIR has been often preferred because it is a quick, user-friendly and 

low-cost method, but mostly because it can also be applied to the insoluble chitin. 

Nevertheless, the construction of a specific calibration line for each particular isolation and N-

deacetylation procedure may be necessary to obtain reliable values of DA 19. The calibration 

requires the use of standards previously assessed for the DA, which, in the case of insoluble 

samples, is normally done using solid state 13C-NMR as a reference method 18-20. 

The solid state NMR methods are powerful tools for determining the DA of chitin and 

chitosan. The 15N Solid-state Cross Polarization Magic Angle Spinning NMR (15N CP/MAS 

NMR) has been used to evaluate the acetyl content in the case of a complex association of 

chitin with other polysaccharides. The combination with 13C CP/MAS NMR also allowed the 

determination of the chitin content in the structural polysaccharides in fungus 31. The NMR 

methods are often referred as the gold standard techniques and employed to calibrate other 

techniques or to assess their accuracy 18-21, 24-26. The NMR does not require the use of 

external standards, it provides a simultaneous checking for the present of some impurities 

and structural information can be inferred. The experimental parameters should be carefully 

adjusted in order that the signal is proportional to the concentration of the all sample nuclei. 

Comprehensive studies on the adjustment of the NMR assay parameters have been reported 

both for liquid 1H-NMR 27, 28 and solid state 13C CP/MAS NMR 30. Unfortunately, the related 

costs and complicate technical considerations hinder its widespread as routine technique at 

the industrial scale and in non-specialised laboratories. 

Amongst the solution methods, the first derivative UV spectrophotometry presents several 

advantages. It was conceived by Muzzarelli and Rocchetti to provide accurate and precise 

results in a simple and fast way for highly deacetylated chitosan, which can be hardly 

analysed by techniques that record the signals of the N-acetyl group 23. Furthermore, this 
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method is insensitive to the acetic acid concentration, under reasonable limits, a typically 

residue from the manufacturing process; the use of water as a reference blank reduces light 

absorption in the reference system, thus permitting a better signal to noise ratio 23; it tolerates 

the presence of remaining traces of protein contaminants 24; calibration does not rely on 

other determinations of the DA of standard samples; and it only requires very small amounts 

of sample, simple reagents and instrumentation. The main disadvantages of the method are 

the requirement of an accurate determination of the weight, particularly difficult for the highly 

hygroscopic chitosan samples, and the need of using an empiric correction curve for 

DA<0.11 23, due to the contribution of the GluN to the 1st derivative signal. 

The GluN and GluNAc are two far UV chromophoric groups, which contribute in a simple 

addictive way to the total absorbance of the material at a particular wavelength, since they do 

not interact within the polymer in a manner that would affect absorption of UV radiation 22. 

Based on this evidence Liu et al derived a linear relationship between the absorbance 

divided by the total molar concentration of the monomers and the DA. The main advantage 

of such approach is the absence of the necessity for corrections at lower DA 22. In our 

approach, we derived a similar equation that combines the advantages and robustness of the 

1st derivative method, with the exact mathematical description of the DA in function of the 1st 

derivative of the absorbance at 202 nm and the mass concentration of the polysaccharide 

solutions. It was also defined a solid criterion for the absorbance range within which the 

method remains valid. We believe that the proposed procedure, combining the accuracy and 

precision of the 1st derivative UV spectrophotometry with a straightforward determination of 

the DA, constitutes a breakthrough in the reliable determination of the DA of chitosan 

samples at a large industrial scale, specially if taking into consideration the currently 

available potent multiwell microplate readers, which can allow the fast measurement of 

hundreds of samples in just few minutes. 

 

3.3 Materials and methods  

 

3.3.1 Purification and characterisation of chitosan 

 

Chitosan raw-materials from crab shells were purchased from Sigma-Aldrich (USA). The 

chitosan samples were purified once in an amount sufficient to perform all the experimental 

work reported, by re-precipitation in sodium hydroxide. First, the chitosan was dissolved in an 

aqueous acetic acid solution (1%) at ~1% (w/v). The insoluble material was removed by 

filtration with Whatman® ashless filter paper (20-25 µm). The obtained clear solution was 
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precipitated adding a NaOH solution (final pH ~ 8). The formed white gel was sieved to 

remove the exuded liquid and thoroughly rinsed with distilled water, until no changes on the 

pH were detected. The chitosan gel was further washed with ethanol, freeze-dried, ground to 

powder and dried at 60ºC overnight. Two different chitosan raw-materials varying in the 

degree of acetylation were labelled according to their nominal DA values as DA05 and DA20 

(see Table 1). The average molecular weight was of found to be 790 kDa for DA05 and 770 

kDa for DA20 by viscometry in CH3COOH 0.5 M/ NaCH3COO 0.2 M, according to the Mark-

Houwing theory (k = 3.5 x 10-4; a = 0.76) 32. 

 

3.3.2 Preparation of chitosan samples with several DA by selective N-acetylation 

 

The chitosan sample DA20 (5 g) was dissolved in 1% (w/v) of aqueous acetic acid (50 ml). A 

variable volume of acetic anhydride was mixed with 50 ml of ethanol, added slowly to the 

chitosan solution and stirred overnight. The ratio of the acetic anhydride to the chitosan GluN 

units was adjusted to obtain samples with different DA. The solutions were precipitated with 

acetone, followed by diethyl ether and dried under vacuum. The acetylated samples were 

then neutralised in 1N NH4OH aqueous solution, thoroughly washed with distilled water and 

freeze-dried. The resultant sponges were milled with liquid nitrogen and the obtained flakes 

were dried at 80ºC under reduced pressure. The N-acetylated chitosan Fourier-transform 

infrared (FTIR) spectra were recorded in an IRPrestige 21 FTIR spectrophotometer (36 

scans, resolution 4 cm-1) from the solvent cast films, previously neutralised in 1N NH4OH in 

water/methanol (1:3) and thoroughly dried under vacuum. 

 

3.3.3 Thermogravimetric analysis (TGA) 

 

In one of our previous works 33, we found that chitosan membranes contain residual moisture 

irrespective to the drying procedure. The hypothesis that this residual moisture could be 

caused by a fast water uptake from the atmosphere would make the accurate determination 

of the chitosan weight a tricky procedure. The water content of the chitosan samples was 

estimated by TGA (TA Instruments, model TGA Q500), immediately after being weighted for 

the UV determination of the DA. The thermograms were obtained under an atmosphere of 

flowing nitrogen. The chitosan powder (4-10 mg) was first heated at a 10ºC/min ramp, which 

was followed by an isothermal step of 20 min at 110ºC to assure complete dryness of the 

samples. Moisture content (MC(%)) was considered to be the weight loss at that time point. 

The temperature programme also included a cooling down period, under the same nitrogen 
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stream. Then, the dried sample was exposed to the air atmosphere and weighted again at 

preset time periods, by closing temporarily the TGA apparatus furnace. This procedure 

allowed us to estimate the time necessary for the dried chitosan materials to recover the 

initial water content when exposed to the atmospheric moisture. 

 

3.3.4 Ultraviolet (UV) 1st derivative spectrophotometry 

 

The monosaccharides, GluN (D-glucosamine hydrochloride, >99%, Mr 215.6) and GluNAc 

(>99%, Mr 221.2), were purchased from Sigma-Aldrich. The GluNAc was stored in the 

freezer and kept in a vacuum desiccator for at least 2 hours before use. One stock solution of 

acetic acid (AcOH) 0.1 M was prepared and another AcOH 0.01 M stock solution was 

obtained diluting the previous one. Standard monosaccharide solutions were prepared 

dissolving each sugar powder in acetic acid 0.01 M at several molarities, in the range of 3 

mM to 0.2 M for GluN and from 0.01 mM up to 1 mM for GluNAc. 

For the determination of the DA, chitosan samples were dried over vacuum at 80ºC. The 

dried chitosan powder uptakes the water from the atmosphere at a rate that is high enough 

to provoke water content shifts within two consecutive weightings of the same sample, as 

previously verified by means of thermogravimetric analysis (TGA). For this reason, chitosan 

samples were previously conditioned at the atmospheric moisture for 10 min and 

subsequently weighted. After that, the chitosan samples were subjected to TGA to determine 

the water content, as described above. The accurately weighted (10.0 mg) chitosan samples 

were dissolved in 2.00 ml of AcOH 0.1 M and diluted 10-fold with distilled water to obtain a 

final AcOH concentration of 0.01 M (chitosan was not dissolved directly in AcOH 0.01M, 

since it would be more time consuming). When required, further dilutions were performed 

using the AcOH 0.01 M stock solution to keep the AcOH concentration at this value. All 

solutions, including the AcOH 0.01M, were prepared from the same AcOH 0.1M stock 

solution. All the spectra (range 200-240 nm, step 1 nm) were recorded with a Bio-Tek® 

SynergyTM HT microplate reader in a 96 well quartz plate from Hellma® using 300 µl of each 

solution. The empty quartz plate was read before each set of experiments and subtracted 

from measured spectra to attenuate possible differences in the residual absorbance, arising 

from an eventual drift in the plate thickness, scratches or occasional dirtiness. Distilled water 

was used as a blank. All measurements were preformed at least in triplicate. 
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3.3.5 Determination of the DA by 1H-NMR 

 

Three different solutions of each chitosan sample were prepared by stirring 10 mg of 

chitosan in 1 ml of 0.4% (w/v) DCl in D2O solution at room temperature. In order to minimise 

the N-deacetylation catalysed by the presence of deuterium chloride, only freshly prepared 

solutions were used. The 1H-NMR spectra were acquired in a Varian Unity Plus (300 MHz) 

spectrometer at 70ºC, temperature at which the solvent signal (HOD) does not interfere with 

the chitosan peaks. The acquisition (64 transients) started after 10 min, considered to be 

enough to reach the thermal equilibrium. The pulse repetition delay, 6 s, and the acquisition 

time, 2 s, were set to assure complete relaxation of the nuclei before each pulse application. 

This procedure (repetition time of 8 s) guarantees that the relative intensities of the 

resonances correlate with the exact number of nuclei originating that signal 28. 

 

3.4 Results and discussion 

 

3.4.1 Preparation of chitosan samples with different DA over the entire solubility range 

 

The chitosan samples, both purified raw-materials (DA05 and DA20) and N-acetylated 

samples, are depicted in Table 1 and cover the entire DA range of the polysaccharide 

solubility. The ratio of acetic anhydride to GluN units was chosen in order to get samples with 

differences of around 10% between each DA value. The use of aqueous alcoholic acetic acid 

solutions for the reaction of chitosan with carboxylic anhydrides has been shown to avoid the 

O-acylation side reaction 34, 35. The selective N-acetylation was confirmed by FTIR spectra, 

where the absorption bands typical of the O-acetyl groups were absent, ~1750 cm-1 (C=O) 

and ~1240 cm-1 (C-O) 34, in addiction to those assigned to the N-acetyl groups at ~1655 cm-1 

(C=O) and ~1560 cm-1 (N-H).  

The molecular weight was reported to not vary considerably if the N-acetylation is performed 

under mild conditions 14, similar to the ones used in this study. For this reason and since the 

molecular weight should obviously not influence the DA measure, it was only determined for 

the original purified raw-materials. 
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Table 3.1 Degree of N-acetylation (DA) by the 1st derivative UV spectrophotometry and by 

liquid phase 1H-NMR using equations 3.16, 3.17 and 3.18; coefficient of variation (CV = σ / 

DA x 100), where σ is the standard deviation of three measurements; and moisture content 

(MC) 

UV 1H-NMR (3.16) 1H-NMR (3.17) 1H-NMR (3.18) 
Sample 

DA CV(%) DA CV(%) DA CV(%) DA CV(%) 
MC(%)  

DA05 0.067 2.0 0.049 6.9 0.052 2.7 0.101 40.6 7.3 

DA20 0.216 1.3 0.187 4.8 0.200 5.4 0.251 6.4 7.1 

DA30 a 0.326 0.8 0.279 2.0 0.314 4.0 0.388 11.9 8.2 

DA40 a 0.415 3.2 0.372 1.0 0.435 3.6 0.516 6.9 4.5 

DA50 a 0.514 0.0 0.506 3.6 0.526 1.5 0.543 5.2 6.2 

DA60 a 0.613 0.6 0.556 1.4 0.592 2.2 0.617 3.8 10.0 

 

a 
N-acetylated from DA20 sample 

 

3.4.2 Determination of the 1st derivative of the monosaccharides molar absorptivities 

 

The high absorbance of the acetic acid at the working concentration disturbs the 

determination of both GluNAc (Figure 3.2) and GluN (Figure 3.3) residues, when using the 

zero order UV spectra (see also Figure 3.1a). The 1st derivative spectra of the AcOH 

solutions, reported in Figure 3.1b, share a common point at around 202 nm for 

concentrations from 0.005M up to 0.03 M, designated as the zero crossing point by 

Muzzarelli and Rocchetti 23. In this sense, at the zero crossing point, the determination of the 

monosaccharides concentration should be relatively insensitive to fluctuations in the acetic 

acid concentration. It also corresponds to a stronger signal of the monosaccharides, if 

compared to the quite low contribution of the acetic acid, as can be observed in the Figure 

3.1b. 

The monosaccharides individual calibration curves were easily drawn through a linear 

regression between the concentration and the 1st derivative UV signal arising either from 

GluNAc (Figure 3.2) or GluN (Figure 3.3). This can be deduced from the Beer-Lambert law 

for diluted solutions, which correlates the concentration (C) with the absorbance (A), for a 

given wavelength (λ): 

( ) ( ) lC λελA =             (3.1) 

where ε is the molar absorptivity and l, the optical path length. Since both l and C are 

independent on the wavelength: 
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lC
dλ

dε

dλ

dA
=   or  ( ) lC λε

dλ

dA
′=         (3.2) 

It should be noticed that the acetic acid gives also a signal at λ = 202 nm, thus the 

expressions should be corrected by: 

lCε A - A =AcOH             (3.3) 

lC ε
dλ

dA

dλ

dA
′=







−
AcOH

           (3.4) 
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Figure 3.1 Zero order (a) and first derivative (b) UV spectra of the acetic acid (AcOH) 

solutions with different concentrations (grey) and of the monosaccharides standards (black) 

dissolved in AcOH 0.01M (closed dots). Each spectrum represents the average of three 

independent data sets. 

 

In Figure 3.2c it is possible to observe that the GluNAc concentration (0.167 mM) above 

which Beer-Lambert law lost validity (equations 3.1 and 3.3 with ε no longer independent on 

the concentration), matches the same limit value observed for equation 3.4 (Figure 3.2b), as 

expected. The validity limit is regarded as the concentration above of which the linear 

correlation is lost (r2 < 0.99). This linearity limit is not a problem concerning the estimation of 



Chapter 3 - Determination of the degree of N-acetylation of chitosan 

58 

the GluN residues (20 mM), because this limit is never reached in the determination of the 

DA, even considering the maximum concentration of chitosan used and a theoretical DA of 0 

(maximum GluN molar fraction). 
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Figure 3.2 First derivative UV spectra (a) of GluNAc at several concentrations (0.0167 to 1 

mM) dissolved in AcOH 0.01 M; First derivative (b) and zero order (c) UV spectral value at λ 

= 202 nm (after subtracting the contribution of the AcOH 0.01 M) in function of the GluNAc 

concentration. Each spectrum represents the average of three independent data sets.  
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On the other hand, the 1st derivative spectra of GluNAc surfer a continuous peak deviation as 

the concentration increases above the linearity limit (Figure 3.2a) and, as a consequence, 

the dA/dλ at λ = 202 nm reaches a minimum at around 0.4 mM and start to increase again 

(Figures 3.2a and 3.2b). Therefore, one single measurement of dA/dλ at λ = 202 nm could be 

assigned to two very different GluNAc concentrations. This would pose a difficulty to 

determine the DA of chitosan without ambiguity and would require the analysis of the all 

spectrum. In order to assure that the GluNAc concentration is within the linearity range one 

may alternatively use the following practical criterion: 

( )  0.5<
AcOH
A-A            (3.5) 
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Figure 3.3 (a) First derivative UV spectra of GluN at several concentrations (3.33 to 200 mM) 

dissolved in AcOH 0.01 M; (b) First derivative UV spectral value at λ = 202 nm (after 

subtracting the contribution of the AcOH 0.01 M) in function of the GluN concentration. Each 

spectrum represents the average of three independent data sets.  

 

Since the GluNAc absorbance at 202 nm is an increasing monotonic function of the 

concentration (Figure 3.2c), each absorbance value is unequivocally assigned to one 
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concentration value of the GluNAc. In this way, it is still possible to only use the spectral 

region in the neighbourhood of 202 nm (few data points) for the routine determination of the 

DA of chitosan samples. 

Denoting the 1st derivative of the GluNAc and GluN molar absorptivities as εa and εg, 

respectively, the linear regression of the experimental data gives that: 

1M 394.7 −−=l ε 'a  and 
1M 061.3 −−=l ε 'g  

The optical path length (l) was estimated (approx. 0.93 cm) from the geometrical features of 

the microplate wells and the solution volume (300 µl) added to each well. The solution shape 

was considered to be roughly cylindrical, disregarding the meniscus concavity. 

 

3.4.3 Determination of the DA by means of the 1st derivative UV spectrophotometry 

 

The method is based on the assumption that the molar absorptivities of both GluN (εa) and 

GluNAc (εg) chromophoric groups does change when they are covalently bound through β-

(1�4) glycosidic linkages. Being so, the monosaccharides contribute in an addictive way to 

the total absorbance, which in the presence of acetic acid can be expressed as: 

AcOHAcOHggaa lC εlC εlC εA ++=
        (3.6) 

with concentrations (C) in mol/l. Since the optical path length (l) and the concentration (C) 

are independent on the wavelength, differentiating equation 3.6, it gives: 

ggaa
AcOH

lCεlCε
dλ

dA

dλ

dA '' +=






−          (3.7) 

The DA, defined as the molar fraction of the GluNAc units, can be expressed as the ratio 

between the GluNAc concentration and the total monosaccharides concentration (Ct): 

t

a

ga

a

C

C

CC

C
=

+
=DA            (3.8) 

Combining equations 3.7 and 3.8 and rearranging, it follows that:  

lεlε- lε
dλ

dA

dλ

dA

C

'

gga
AcOHt

+




=



















− DA  ''1
        (3.9) 

This equation is the basis of the method proposed herein. It is interesting to notice that the 

method developed by Muzzarelli and Rocchetti 23 is a particular case of the last equation. If 

fact, since 
'

g

'

a εε >>  equation 3.9 can be simplified: 

lε lε
dλ

dA

dλ

dA

C ga
AcOHt

'' DA  
1

+




≈



















−         (3.10) 
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If DA is not too small (those authors found that for DA > 0.11 the GluN does not interfere with 

the GluNAc determination), it can be further simplified, giving: 

a

'

a
t

'

a

AcOH

C  l ε C   l ε
dλ

dA

dλ

dA
=





≈



















− DA        (3.11) 

For DA < 0.11, Muzzarelli and Rocchetti 23 proposed a correction curve.  

The molar concentration of both pyranosyl units (Ct) within a chitosan sample can not be 

achieved without knowing the DA. Thus, it is more convenient to express the copolymer 

concentration in terms of solute mass ( tC ) in g/l, which is defined experimentally. These two 

concentration values are related by the next equation: 

( )
gga

t

t M MM
C

C
+−= DA           (3.12) 

where Ma and Mg are the molecular weights of the GluNAc and GluN units within the 

copolymer. Combining equations 3.9 and 3.12, it gives: 

( )
( ) gga

'

g

'

g

'

a

AcOH
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
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

−
DA

DA
       (3.13) 

and, rearranging, 

( )ll
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=       (3.14) 

The values of the 1st derivative of the molar absorptivities have been determined in a 

separate experiment (calibration). Also, the molecular weight of the monosaccharides within 

the copolymer are easily calculated (Ma = 203 g/mol and Mg = 161 g/mol). Therefore, 

equation 3.14 allows a straightforward determination of the DA, known the 1st derivative UV 

spectral signal at 202 nm of the chitosan solution at a suitable concentration. The results 

obtained for the different chitosan samples are depicted in Table 3.1. The determination of 

the mass concentration ( tC ) requires the accurate measurement of the chitosan weight. 

Since chitosan is very hygroscopic, concerns can be raised regarding the accuracy of this 

measurement. This issue was addressed by means of TGA and it is detailed in the following 

section. 
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3.4.4 Determination of the moisture content of chitosan 

 

In order to assure the accurate chitosan mass measurement, the water uptake of thoroughly 

dried chitosan samples from the atmosphere was assessed under similar conditions used to 

weight the samples. It was found that the completely dried chitosan samples (after a TGA 

drying cycle) recover the initial moisture content in less than 10 min (see Figure 3.4b), when 

exposed to the room atmosphere. A longer exposition time point would be required to show 

that the typical equilibrium plateau has been already reached. Nevertheless, the total 

recovery of the initial moisture content value was considered as an evidence of that the 10 

min exposition to room atmosphere gives a value that for our purpose was close enough to 

the equilibrium.  
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Figure 3.4 (a) Thermogram of DA05 conditioned at the room atmosphere for 10 min and 

accurately weighted for the UV spectra determination; (b) Water uptake (ratio between the 

weight increment and the initial dry weight) of the samples exposed to the room atmosphere 

during different times after a TGA drying cycle.  
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The fast atmospheric water uptake, calculated as the ratio between the weight increment and 

the initial dry weight, is enough to provoke water content shifts within two consecutive 

weightings of the same sample. Based on this result, an alternative procedure was adopted. 

Thoroughly dried samples were conditioned at the air atmosphere for around 10 min and 

accurately weighted (W). After that, the moisture content (MC(%)) of the samples was 

determined by TGA (see Figure 3.4a and Table 3.1) and the mass concentration was 

corrected according to equation 3.15. 

( )( )
V

MCW
C
t

100/%1−×
=           (3.15) 

Although the difficulty of determining the accurate weight of a chitosan sample is often 

considered one of the drawbacks of the UV spectrophotometry based methods, we found 

that the DA value is relatively insensitive to a small drift in the moisture content. We simulate 

an absolute error of ±1% in the moisture content of our samples and encountered a relative 

error associated to the DA of ±1.3%. Besides, the proposed procedure should provide 

reliable chitosan weight determinations. 

 

3.4.5 Comparison with the DA as determined by liquid phase 1H-NMR 

 

Proton chemical shifts (δ), relative to 3-(trimethylsilyl)propionic acid, were assigned as 

reported in the literature 27. Data for the sample DA30: 1H-NMR (D2O, DCl) δ 2.05 (s, HAc of 

GluNAc), 3.20 (s, H2 of GluN), 3.6-4.0 (m, H2 of GluNAc and H3, H4, H5, H6, H6’ of both 

monomers), 4.61 (s, H1a of GluNAc) and 4.90 (s, H1g of GluN) (see Figure 3.5). 
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Figure 3.5 Chemical structure of chitosan. 

 

The comparison between the DA values calculated using different combinations of peaks, 

can be used as an indicator of the 1H-NMR method consistency. We have used several 

methods to calculate the DA, namely the method proposed by Hirai et al 27, which makes use 

of the peak areas from the protons H2, H3, H4, H5, H6, H6’ to estimate the sum of both 

monomers and the signal arising from the acetyl group protons (HAc) to the amount of 

GluNAc: 
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( ) 66HH6H5H4H3H2

3HAc
DA

′+++++
=        (3.16) 

The method proposed by Lavertu et al 28 uses the peak of proton H1g to estimate the amount 

of GluN and the signal from the acetyl group protons (HAc) to estimate the amount of 

GluNAc: 

3HAcH1g

H1g
1DA

+
−=           (3.17) 

We also calculated the DA using a combination of the two previous equations, as it follows: 

( ) 66HH6H5H4H3H2

H1g
1DA

′+++++
−=        (3.18) 

The results obtained from these different calculation methods showed that, although the 1H-

NMR is regarded as having a good internal consistency, the determination of DA may be 

somewhat systematically affected by the choice of the peaks to be used in that calculation 

and in the way those peaks are combined to estimate the GluN and GluNAc quantities. None 

of the calculation methods make use of the peak assigned to the H1a proton of the GluNAc, 

because of its lower intensity for low DA values and, simultaneously, due to its proximity to 

the HOD signal. These equations represent the possible combinations of the other different 

sets of well resolved peaks (excluding H1a). 

The coefficient of variation, which stands for the ratio between the standard deviation and the 

averaged DA value, was found to be considerably lower for the UV determination, confirming 

the higher precision of the method proposed in this work. The DA values achieved for the 

different chitosan samples using the 1st derivative UV spectrophotometry method were 

plotted against the values achieved for the same samples using each one of the calculation 

methods based on the 1H-NMR spectra (Figure 3.6). Ideally, this representation should give 

a straight-line with slope 1 and y-intercept 0. In this respect, the equation 3.17 gives the best 

match with the UV method. However, any irrefutable conclusions can be drawn with respect 

to the accuracy, just based on this result, because we do not know what equation gives the 

most accurate results from the 1H-NMR data. Especially when the reasons behind the 

discrepancy between the results are not known and logic criteria can not be established to 

disregard some of the equations. 

On the other hand, albeit the average between the three methods is solely an algebraic 

combination of the three equations and do not assure that a value closer to the actual DA is 

obtained, the correlation between the averaged 1H-NMR DA values and the UV method is 

noteworthy. The respective linear regression gives a correlation factor R2=0.993 and a 

straight-line with slope 0.986 and y-intercept 0.0074. It should be noticed that the 1st 

derivative UV spectrophotometry and the liquid state 1H-NMR are independent techniques, in 
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the sense that the calibration of the former does not rely on the DA values of chitosan 

standards obtained from other techniques, neither the 1H-NMR required any calibration. 

Hence, the good correlation between both techniques constitutes a strong indication of the 

good accuracy of the 1st derivative UV spectrophotometry method over the whole DA range 

of the chitosan solubility and using equation 3.14, if a reliable measure of the chitosan weight 

is undertaken. 
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Figure 3.6 DA obtained by the proposed UV spectrophotometric method (equation 3.14) vs 

DA calculated from the 1H-NMR data (equations 3.16 to 3.18). The straight-line represents 

the linear regression between the DA determined by the UV method and the average of each 

of the three different experimental values obtained for the same sample by 1H-NMR  

(y = 0.9868x + 0.0063; R2 = 0.993). 

 

3.5 Conclusions 

 

The 1st derivative UV spectrophotometry is a robust, accurate and precise technique for the 

determination of the DA of soluble chitosan samples. It presents several advantages such 

as: it is relatively tolerant to the presence of residual acetic acid and protein contaminants; it 

only requires a small amount of sample, simple reagents and equipments; and the high value 

of the molar absorptivity 1st derivative of the GluNAc should assure a good accuracy on the 

determination of the GluNAc residues even at very low concentrations (high DA). We derived 

a mathematical expression that described the DA as a function of the 1st derivative signal at 

202 nm and the mass concentration of the polysaccharide solution, avoiding the use of 

empiric correction curves for the determination of the DA of highly deacetylated samples. 

The values of the DA for several chitosan samples on the entire range of the copolymer 

solubility confirmed the good precision of the method with typical coefficients of variation 
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around 1%. The comparison with an optimised 1H-NMR determination reiterates the 

expected fine accuracy of the 1st derivative UV spectrophotometry. 
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Chapter 4 

Influence of β-radiation sterilization in properties of new 

chitosan/soybean protein isolate membranes for guided bone 

regeneration 

 

4.1 Abstract 

 

Novel chitosan (CTS) and Soybean Protein Isolate (SI) blended membranes were prepared. 

These membranes were produced by solvent casting. Besides combining the advantages of 

both materials, CTS/SI membranes exhibit a biphasic structure that will eventually originate 

in situ porous formation, through a two-step degradation mechanism. In this particular work 

the effect of β-radiation over the properties of these membranes was evaluated. β-radiation 

sterilisation was performed at three different doses (25, 50 and 100 kGy) and eventual 

surface chemical changes were evaluated by Fourier Transform Infrared with Attenuated 

Total Reflection (FTIR-ATR) and Contact Angle Measurements. Moreover, eventual bulk 

properties changes due to β-radiation were assessed by means of mechanical tensile tests 

and water uptake measurements. In general, no substantial changes were detected on the 

studied properties, with the exception of the surface energy that was found to be slightly 

increased for higher applied doses. 

 

 

This chapter is based on the following publication: 

R. M. Silva, C. Elvira, J. F. Mano, J. San Román, R. L. Reis. Influence of β-Radiation 

Sterilization in Properties of New Chitosan/Soybean Protein Isolate Membranes for Guided 

Bone Regeneration. Journal of Materials Science: Materials in Medicine, 15 (2004) 523-

528. 
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4.2 Introduction 

 

In many cases, bone healing and the formation of new bone are inhibited by the rapid 

appearance of connective tissue. The concept of guided bone regeneration (GBR) primarily 

consists in barrier membranes that prevent the in-growth of connective tissue. Furthermore, 

growth factors can be accumulated under the membrane 1, 2. One interesting approach to 

develop suitable barrier membranes for GBR has been focused in proteins present in the 

extracellular matrix, namely on using collagen 3. However, a lot of work has still to be done to 

develop an ideal GBR and the recent Bovine Spongiform Encephalopathy (BSE) crises lead 

to an increasing concern about the use of animal origin proteins in biomedical applications. 

Soybean protein isolate (SI) has been proposed as a non-animal origin protein substitute for 

several biomedical applications 4, 5. SI is a mixture of globulin proteins on which Glycinin is 

present at about 40% (isoelectric point - pI 6,4) and β-conglycinin at about 28% (pI 4.8) 6. SI 

is not totally soluble in water, but about 90% of the proteins present in soybean are soluble at 

some pH (water extractable) 7. On the other hand, chitosan is a copolymer of N-

acetylglucosamine (GluNAc) and glucosamine (GluN). It has been observed that GluN, a 

degradation product of chitosan, has a beneficial effect on treatment and symptoms of 

osteoarthritis as it helps to regenerate joint cartilage 8, 9. Moreover it possesses excellent 

properties such as biocompatibility, biodegradability and non-toxicity 10 and its degradation 

products are non-toxic, nonimunogenic and noncarcinogenic 11. Chitosan has been widely 

studied and proposed for many biomedical applications 12-17, namely for skin tissue 

regeneration, wound dressings, as barrier-membranes to prevent the ingrowth of undesirable 

connective tissue, sutures and carriers for sustained drug release 10. 

Thus, blending both materials can combine the advantages of a protein material with the 

unique properties of chitosan. Furthermore, the organic fractions of biological mineralized 

structures (like bone and tooth) are mainly composed by protein/polysacharide systems. 

Furthermore, these systems should possess different degradation behaviours as the distinct 

phases are degraded by different enzymes (chitosan by lysozyme 18, 19 and SI by non-

specific proteases). So, by controlling the insoluble fraction and distribution of the protein 

material, which depends on factors such as pH, mixture composition, polymer concentration, 

etc, it should be possible to tailor the degradation rate, leading to systems with a two-step 

degradation behaviour. 

This work focus on the assessment of the influence of β-radiation sterilization in the 

properties of the novel blended membranes composed by chitosan and SI blends. The main 

effects that ionizing radiation exposure can eventually induce in exposed samples are, 

among others, crosslinking, chain scissions and oxidative processes 20. Whenever occurring, 
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these changes should have a remarkable effect on properties such as mechanical properties, 

water uptake ability and surface energy. In this work, besides the referred properties, the 

eventual chemical changes were analyzed by Fourier Transform Infrared with Attenuated 

Total Reflection (FTIR-ATR) spectroscopy. 

 

4.3 Materials and methods 

 

4.3.1 Membranes preparation and β-radiation sterilisation 

 

Chitosan (deacetylation degree of about 85%) was purchased from Sigma. SI was provided 

by Loders Crocklaan BV (Netherlands). Membranes (average thickness from 45 up to 65 µm) 

were prepared by solvent casting. Chitosan was dissolved in 1 wt.% of acetic acid solution 

(AcOH) at a concentration of 1 wt.%. SI was suspended in distilled water at room 

temperature under gentle stirring in order to avoid protein denaturation and consequently, 

foam formation. SI suspensions were added dropwise to chitosan solutions under constant 

stirring at different ratios (designated CTS100%, CTS75%, CTS50%, CTS25%, related to 

chitosan percentage), and pH was corrected to 4.0 with AcOH (equal to chitosan solution). 

Mixtures were poured into the moulds directly in the drying place and moulds were no longer 

moved or removed until complete drying, in order assure that the insoluble part of SI was 

uniformly distributed. Drying was performed at room temperature (ca. 20ºC) and relative 

humidity (ca. 55%). The air-exposed (AE) surface during the drying process presented some 

roughness at macroscopical level, whereas the mould-exposed (ME) surface presented a 

very smooth appearance. In this way, the surface characterization was carried on taking in 

consideration this feature. β-radiation sterilization was preformed by Ionmed Esterilizatión, 

SA (Spain) at different radiation doses (25, 50 and 100 kGy) using the electron accelerator 

Rhodotron TT2 (10 MeV). Both membrane surfaces were characterized morphologically by 

Scanning Electron Microscopy (SEM, Philips XL30) and Environmental Scanning Electron 

Microscopy (ESEM, Philips XL30). 

 

4.3.2 Fourier Transform infrared with attenuated total reflection 

 

Surface chemical modifications were assessed by Fourier Transform Infrared with 

Attenuated Total Reflection (FTIR-ATR) spectroscopy (Perkin-Elmer 457 Spectrometer). The 

Oxidative effects of radiation should be detected at surface level by changes in the FTIR-
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ATR spectrum regions of 3000-3500 and 1650-1800 cm-1 21. This spectrum regions were 

analysed in more detail for chemical shifts, peak shape and intensity changes. Both, AE and 

ME surfaces were analysed. 

 

4.3.3 Contact angle measurements 

 

Contact Angle (θ) Measurements were undertaken by means of sessile drop method with 

contact angle measurement system G10 from Krőss at room temperature (ca. 20ºC). At least 

five measurements were performed for each solvent. Surface tension (σ), as well as its polar 

(σp) and dispersive (σd) components were determined by Owens and Wendt method 22, using 

the equipment software G402. Glycerol and methylene iodide were respectively used as 

polar and non-polar test liquids. Both AE and ME surfaces were tested. 

 

4.3.4 Water uptake measurements 

 

The water uptake measurements were carried out by means of immersing previously 

weighted (W0) samples, in a phosphate buffer solution (pH 7.4, ionic strength 0.154 M, buffer 

conc. 50 mM) at 37ºC. Containers were sealed and placed in a thermostatic bath at 37 ± 

1ºC. For each condition 4 samples were used. After each time period (from 10 seconds up to 

48 h) samples were removed from containers, adsorbed water was removed by sandwiching 

between two paper towels and weighted immediately (W). The water uptake (WU) was 

calculated using the following equation: 

00

0

W

W

W

WW
WU =

−
=            (4.1) 

 

4.3.5 Quasi-static mechanical properties 

 

Membranes were cut into strips. Their dimensions were found to be typically about 8 x 1 x 

0.045 mm. Thickness was taken as a mean of ten values at different points measured with a 

low-pressure micrometer. Their resistance to stretching was evaluated on a Perkin-Elmer 

DMA7e at a constant stress rate of 5 MPa/min using the tensile mode. In such experiments, 

the strain was monitored as a function of stress. Please note that such procedure is different 

from conventional mechanical tests where the stress is monitored as a function of strain, 

which varies at constant rate. However, one can also build stress-strain curves and obtain a 
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measure of the stiffness (by looking at the slope of the curve at early stages) and the 

strength (measured by the stress at break) of the sample, when experiments at constant 

stress rate are performed. Mechanical tests were carried out at room temperature (ca. 20 ºC) 

and relative humidity (ca. 70%). Secant modulus was calculated at 1% of elongation. Stress 

and strain at break were also estimated. 

 

4.3.6 Density determination 

 

The polymer blends density measurements were undertaken making use of n-

heptane/dibromoethane soluble solvents system. The rational for the solvents choice was 

based on their density (polymer density limited by solvents density) and the fact that samples 

did not absorb any measurable quantity of both. Membranes were cut in at least 3 strips (ca. 

1 x 20 mm). A test tube was filled with n-heptane and placed in a ultrasound bath for 5 min to 

eliminate air bubbles (at this stage membrane strips should be settled down at the bottom). 

Then, dibromoethane was added drop by drop until all polymer strips start to go up and tend 

to float. At this stage the liquid density, determined by pycnometry, should be an 

approximation of the polymer density. The procedure was repeated 3 times giving results 

with a good precision (maximum standard deviation of 0.0058). In general, measures 

revealed to be accurate since at the changing point the addition of a few drops did not 

change significantly the liquid density. 

 

4.4 Results and discussion 

 

4.4.1 Fourier Transform infrared with attenuated total reflection 

 

FTIR analysis was applied in order to detect chemical modifications on irradiated samples by 

means of oxidation or crosslinking processes. The most representative signals (see Figure 

4.1) are those in the 3400-3200 cm-1 range, corresponding to the stretching vibration of the 

chitosan hydroxyl groups, amine groups (–NH2, -NH- and –NH) of the amino-acids (SI) and 

amide groups. The signals appearing at 1626 cm-1 can be assigned to the NH2 bending 

vibration (chitosan), amide vibration (SI), and signals appearing at 1530 cm-1 to the aromatic 

ring of some amino acids of SI. In terms of different radiation doses no significant changes 

are observed in the corresponding signal also in comparison to non-irradiated samples, 

indicating that significant chemical modifications are not observed by this spectroscopic 



Chapter 4 - Chitosan/Soybean Protein Isolate Membranes 

76 

technique when treating CTS/SI membranes with β-radiation under the mentioned 

conditions. 
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Figure 4.1 FTIR-ATR spectra of the ME surface of CTS75% membranes treated with 

different doses of β-radiation. Scale was adjusted to see in detail 3000-3500 and  

1650-1800 cm-1 spectra regions. 

 

4.4.2 Contact angle measurements 

 

Contact Angle measurements were performed on all treated samples in order to determine 

the surface energy, the respective polar and dispersive contribution, and the possible 

changes due to the β-radiation treatment. The contribution of the dispersive (σd) and polar 

interactions (σp) to the surface energy was calculated by considering that the intermolecular 

attraction, which causes surface free energy (σ) results from a variety of intermolecular 

forces according to the additive rule. Thus, surface energy and contact angle of a liquid on a 

solid were calculated as described in the experimental part. Figure 4.2 shows the total 

surface energies and the respective polar and dispersive components values versus the β-

radiation doses in the different CTS/SI formulations. In this figure it can be observed that as 

the SI percentage increases in the blends composition the surface energy also increases, as 

well as its polar and dispersive components. In Figure 4.2a it can be observed an increase in 

the dispersive energy component when increasing the β-radiation dose in formulations like 

CTS25%, CTS50%, CTS100%, whereas in the case of CTS75% σd is maintained constant. A 

similar behaviour is observed in the polar component energy values (Figure 4.2b) in 

CTS25%, CTS50% and CTS75%, whereas in CTS100% the σp decreases with the β-
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radiation dose. Finally, the addition of both components to obtain the final surface energy 

(see Figure 4.2c) shows a general increase tendency, in about 2 mN/m units of energy, with 

respect to non-treated samples. 
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Figure 4.2 Dispersive (a) and polar (b) components of surface energy (c) measured at the 

ME surface in function of applied β-radiation dose. Data represents mean ± error at 95% of 

confidence level. 
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4.4.3 Morphological characterization by SEM and ESEM 

 

The air-exposed (AE) surface exhibited a granulate aspect, in contrast with the smooth 

mould-exposed (ME) surface for all CTS/SI compositions, by simple eye observation. 

Reversely, AE surface present a smooth appearance at higher magnifications and it was 

possible to observe in the ME surface the presence of some globular structures incorporated 

in a continuous matrix, providing roughness at a lower scale (see Figure 4.3 and 4.4). This 

seems to indicate, in the authors’ view, that during the drying time insoluble suspended SI 

particles settle down at the bottom. Therefore, bottom membrane surface can possibly 

present some SI insoluble particles, which are not totally covered by a chitosan layer. On 

contrary, in the upper surface a chitosan layer cover totally SI insoluble particles and 

accompany the gaps left by SI particles, originating the final rough appearance. Moreover, 

CTS100% membranes present both surfaces rather smooth at all magnifications used 

(results not shown). When comparing the membrane structures of the different blends with 

the ones of the CTS100%, one can correlate such granules with the SI insoluble part. This 

assumption is in a certain way supported by the fact that such granules present a higher 

swelling with respect to the surrounding matrix as it was possible to detect by ESEM (Figure 

4.4), being SI more hydrophilic than chitosan. It was not detected any change in the 

membranes morphology after being sterilised by β-radiation at the tested doses. 

 

   

(a)        (b) 

Figure 4.3 SEM micrographs of CTS75% non-irradiated membranes: (a) ME surface (1000x) 

(b) AE surface (100x). 
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(a)      (b)    (c) 

Figure 4.4 ESEM micrographs of CTS75% non-irradiated membranes in dry state (660 Pa) 

(a) and previously swollen in a buffer solutions at pH of 7.4 (b) and at 6.5 (c). 

 

4.4.4 Swelling kinetics 

 

Figures 4.5a and 4.5b show two examples of the typical variation of the water uptake as a 

function of time. All formulations were found to reach the maximum of the hydration degree in 

less than 5 min. After that, it was observed a decrease in the water uptake towards the 

hydration equilibrium degree. This effect was more accentuated for the formulations with 

greater chitosan content, being likely due to the pH equilibration process inside the polymeric 

matrix. The hydration equilibrium degree values were taken after 2 days of immersion and it 

is shown to be independent of the β-radiation treatment. In respect to the CTS/SI blend 

composition no considerable differences could be observed (see Figure 4.5c). 
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Figure 4.5 Swelling kinetics profile of non-irradiated CTS25% (a) and CTS75% (b) and the 

equilibrium hydration degree taken at 2 days of immersion in buffer solution (pH 7.4; IS 0.154 

M; buffer conc. 50 mM) as a function of chitosan percentage in the blends for non-treated 

and exposed to β-radiation (100 kGy) membranes (c). Data represents mean ± standard 

deviation of at least three samples. 

 

4.4.5 Quasi-static mechanical properties 

 

Tensile tests were carried out in order to evaluate the impact of β-radiation on the 

mechanical performance of the several formulations, since if crosslinking and/or polymer 

oxidative degradation/depolymerisation had occurred, it could cause important changes on 

those properties. It was impossible to test membranes with higher SI content, because of its 

high brittleness. In Figures 4.6a and 4.6c, it is represented the tensile strength and the 

secant modulus, respectively, as a function of the applied β-radiation dose. From those 

figures it can be observed that β-radiation did not affect the strength and the stiffness of the 

tested formulations, with the exception of CTS50% where the strength and the stiffness were 

found to increase when applying a β-radiation dose of 100 kGy. On the other hand, chitosan 

membranes (CTS100%) presented higher values of tensile strength at break (64.7 MPa) and 

modulus (2.5 GPa), than the blends. Furthermore, the amount of SI among the studied 

compositions did not change substantially these properties, which was found to be around 45 

MPa and 2.0 GPa, respectively. The same behaviour was also observed for the strain at 

break (Figure 4.6c), being about 12% for chitosan membranes (CTS100%) and 3-4% for the 

blends. Moreover, the brittleness did not vary consistently with the β-radiation treatment, 

even when applying a 100 kGy β-radiation dose. 
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Figure 4.6 Membranes tensile properties of several CTS/SI blend compositions as a function 

of applied β-radiation dose: (a) secant modulus at 2% of elongation; (b) stress at break; (c) 

strain at break. Data represents mean ± standard deviation of at least three experiments. 

 

4.4.6 Polymer density 

 

Polymer density was determined in order to calculate the average molecular weight between 

possible crosslinks on irradiated samples. However, since the water uptake and the modulus 

of all formulation were not substantially affected by the β-radiation treatment, it is presented 
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as a further indication that no remarkable crosslinking reactions are taking place (see Table 

4.1). 

 

Table 4.1 Polymer density as a function of chitosan percentage in the blends for non-treated 

and exposed to β-radiation (100 kGy) membranes. Data represents mean ± error at 95% of 

confidence level 

 Radiation dose (kGy) 

Sample 0 100 

CTS100% 1.420 ± 0.025 1.424 ± 0.016 

CTS 75% 1.386 ± 0.017 1.380 ± 0.010 

CTS 50% 1.334 ± 0.008 1.355 ± 0.018 

CTS 25% 1.314 ± 0.009 1.332 ± 0.005 

 

4.5 Conclusions 

 

Membranes presenting a very interesting morphology and correspondent properties could be 

obtained from combining chitosan and SI on blended membranes. The partial insolubility of 

SI at the processing pH, as well as its asymmetric distribution through the transversal 

section, being the SI insoluble particles concentrated at the ME surface, are desirable 

features to attain a controlled degradation rate in vivo. Furthermore, it can be foreseen a two-

step degradation mechanism, eventually leading to in situ porous formation, which might be 

clinically useful. Moreover, since in general no remarkable differences were observed for the 

studied bulk and surface properties of the membranes, it might be possible to tailor their 

degradation and their biological response without changing their key properties, by means of 

controlling blends’ composition. 

β-radiation seems to be a suitable sterilization methodology to be used on chitosan/SI 

membranes aiming to be used in GBR. In fact, no considerable changes could be detected 

on the mechanical properties and equilibrium hydration degree. Furthermore, FTIR-ATR 

analyses indicated that no substantial chemical modifications occur when sterilising samples 

by β-radiation, for radiation doses up to 100 kGy. The most sensitive property to β-radiation 

exposure was the surface energy. In fact, a slight increase tendency was observed for the 

surface energy due to β-radiation. 
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Chapter 5 

Preparation and characterisation in simulated body conditions of 

glutaraldehyde crosslinked chitosan membranes 

 

5.1 Abstract  

 

Chitosan membranes, aimed at biomedical applications, were prepared by a solvent casting 

methodology. Crosslinking was previously performed in acetic acid solution with 

glutaraldehyde, in order to obtain different degrees of crosslinking. Some membranes were 

neutralised in a NaOH solution. Mechanical tensile tests comprised quasi-static experiments 

at constant stress rate and temperature sweep dynamic mechanical analysis tests. This 

included measurements with the samples immersed in isotonic saline solution (ISS) at 37ºC, 

in order to simulate physiological conditions, which were performed using a specific liquid 

container. It was observed that for higher crosslinking levels the membranes become stiffer 

but their strength decreases; these results are in agreement with swelling tests, also 

performed at body temperature. All the membranes exhibited similar and significant damping 

properties in wet conditions, which revealed to be stable in a broad temperature range. 

Weight loss measurements allowed showing that the developed membranes degrade slowly 

up to 60 days. Cytotoxicity screening, using cell culture tests, showed that such materials 

could be eventually adequate for being used in biomedical applications. 

 

 

This chapter is based on the following publication: 

R. M. Silva, G. A. Silva, O. P. Coutinho, J. F. Mano, R. L. Reis. Preparation and 

characterisation in simulated body conditions of glutaraldehyde crosslinked chitosan 

membranes. Journal of Materials Science: Materials in Medicine, 15 (2004), 1105-1112. 
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5.2 Introduction 

 

Chitin is the second most abundant biopolymer in nature and the supporting material of 

crustaceans, insects, fungi, etc. Chitosan can be obtained by N-deacetylation of chitin, 

although this N-deacetylation is almost never complete. Thus, chitosan is a co-polymer of 2-

amino-2-deoxy-D-glucopyranose (GluN) and 2-acetamido-2-deoxy-D-glucopyranose 

(GluNAc). 

The ratio of GluN units to both glucopyranose structural units is known as the degree of 

deacetylation (DD) and has a striking effect on chitosan physical and chemical properties. 

The DD is typically of more than 75% 1. The presence of free amino groups that can be 

protonated at acidic conditions make it soluble in dilute aqueous solutions of formic, acetic, 

lactic, citric and hydrochloric acid 2. Chitosan acid-base equilibrium pKa depends on the net 

charge and its solubility occurs in the range of the degree of protonation of ca. 0.5. Chitosan 

(DD 88%) acetate neutral salt possesses a pKa of approx. 6.2 at that degree of protonation 3. 

Chitosan can be hydrolysed by lysozyme present in human body fluids 4-7. The degradation 

rate of chitosan by lysozyme depends on the DD, reaching a maximum at about 50%. In turn, 

no apparent lysozyme degradation was observed in chitosan with DD higher than 97% 8, 9. 

This natural polymer is of special interest in the biomedical field, since it displays excellent 

properties such as biocompatibility, biodegradability, non-toxicity1 and bioactivity 10, and its 

degradation products are non-toxic, non-immunogenic and non-carcinogenic 11. Chitosan has 

been widely studied and proposed for biomedical applications, namely for skin tissue 

regeneration, wound dressings, as barrier-membranes to prevent the in-growth of 

undesirable connective tissue, sutures and for sustained drug release 1. 

Crosslinking chitosan is an appropriate methodology for controlling its swelling rate, drug 

release rate and changing of mechanical properties. Some crosslinking reagents have been 

suggested in literature, like glutaraldehyde 12-16, sulphuric acid 17, genipin 18, 19 and oxidized 

glucose 20. Glutaraldehyde is the most widely studied crosslinker of chitosan and it was often 

used as a comparison in the study of novel crosslinkers. The reaction with chitosan amine 

groups produces covalent crosslinking through a Schiff base reaction. Three different 

propositions are considered: (a) There is the formation of one Schiff base and the other 

aldehyde group of glutaraldehyde remains free (in this case no crosslinking is formed); (b) 

the crosslinking occurs with one glutaraldehyde molecule and two chitosan unities, involving 

the formation of two Schiff bases; (c) a great crosslinking chain is formed due to the 

polymerisation of glutaraldehyde. Chitosan dissolved in acetic acid pH 3-4 react with 

glutaraldehyde in short times, less that 1 hour. Therefore, the protonation of chitosan amine 

groups does not affect the reaction, while the concentration of glutaraldehyde strongly affects 
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the physical properties of the general compounds formed 21. In this work, chitosan 

membranes with no, low or high crosslinking degree, as induced by glutaraldehyde were 

prepared and their degradation and swelling properties was evaluated. 

The mechanical properties are usually an important criterion in selection of a material for 

biomedical applications. Water content of hydrogel materials can affect drastically its 

mechanical properties, especially when specimens are in contact with physiological fluids. In 

this sense, materials should be tested in water bath or in high humidity environment. Some 

authors 14, 18 have reported mechanical properties of chitosan membranes crosslinked with 

glutaraldehyde in dry state. However, some applications require the knowledge of 

mechanical properties measured in physiological conditions. In this work, an isotonic saline 

solution was used to simulate body fluid conditions and tests were preformed with samples 

immersed at 37ºC. 

On the other hand, a material to be used as an implant or as a scaffold for tissue engineering 

applications must exhibit an appropriate biological behaviour in terms of interaction with living 

tissues 22. The first step of the evaluation of these materials in terms of biological behaviour 

is their cytotoxicity testing in vitro, using immortalised cell lines 23. Cytotoxicity deals mainly 

with substances that leach out of the proposed biomaterials 24, which in contact with cells 

allow for the evaluation of its possible toxicity over cells. Parameters like cell morphology, 

death, proliferation and adhesion are evaluated for a preliminary screening of the 

biocompatibility. Biochemical tests such as MTT test and total protein quantification are often 

used in these indirect contact studies. The MTT test has been widely used to measure 

cellular viability and proliferation 25-27, and the total protein test is a fairly accurate measure of 

cell proliferation 28. 

 

5.3 Materials and methods 

 

5.3.1 Membranes preparation 

 

Chitosan origin from crab shells was purchased from Sigma-Aldrich. According to the 

manufacturer its degree of deacetylation (DD) is superior than 85%. Acetic acid, 

glutaraldehyde and other reagents were of reagent grade. 

The chitosan solution was prepared by dissolving chitosan (1 wt.%) in acetic acid (1 wt.%) 

solution. Glutaraldehyde solutions with different concentrations were prepared diluting 

glutaraldehyde solution (50 wt.% ) as it was provided by the manufacturer. The same volume 

of each glutaraldehyde solution was added to a certain amount of the previous chitosan 
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solution in order to obtain a glutaraldehyde to chitosan amine groups molar ratio (assuming 

the minimum degree of acetylation 85%) of 1% (CTS01), 10% (CTS10) and 20% (CTS20). 

Glutaraldehyde solution was added dropwise during 5 min under gentle stirring and the 

resultant solutions were let quiescent for about 1 h to remove any air bubble formed. Non-

crosslinked chitosan membranes (CTS) were prepared in the same way, but no 

glutaraldehyde solution was added. Membranes were prepared by solvent casting. Solutions 

were poured into Petri dishes and dried at 37ºC. After drying, membranes were neutralised in 

NaOH 0.1 M solution for 10 min, washed thoroughly with distilled water and dried again at 

37ºC. Some samples were not neutralised to be tested in dry state. Obviously, non-

neutralised chitosan membranes can not be tested in solution, since they rapidly swell and 

dissolve due to the protonated amine groups 

 

5.3.2 X-ray diffraction 

 

The morphology of the studied film was analysed by X-ray diffraction using synchrotron 

radiation at the A2 Soft Condensed Matter Beamline of HASYLAB, DESY (Hamburg, 

Germany). 2D wide-angle X-ray scattering (WAXS) patterns were obtained employing an 

image plate, separated 22 cm from the sample. 

 

5.3.3 Degradation and swelling kinetics 

 

The water uptake measurements were carried out by means of immersing neutralised 

samples, previously weighted, in 30 ml of ISS (NaCl 0.154 M and pH = 7.4 ± 0.02). 

Containers were sealed and placed in a thermostatic bath at 37 ± 1ºC. After 15 min and 1, 2, 

4, 8, 24 and 54 h samples were removed from containers, adsorbed water was removed by 

sandwiching between two paper towels and weighted immediately.  The water uptake (WU) 

of all formulations was calculated using the following equation: 

1
00

0 −=
−

=
W

W

W

WW
WU           (5.1) 

where W0 is the initial weight of the sample and W is the weight of the sample at certain 

immersion time. 

In vitro degradation of chitosan membranes was assessed again in 30 ml of ISS. Samples 

were previously weighted and then fully immersed in solution. Containers were sealed and 

placed in a thermostatic bath at 37 ± 1ºC. After each test period (7, 14, 30 and 60 days) 
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samples were dried until constant mass (W1). The weight loss (WL) was calculated using the 

following equation:  

0

1

0

10 1
W

W

W

WW
WL −=

−
=           (5.2) 

where W0 is the initial weight of the sample. 

 

5.3.4 Quasi-static mechanical properties 

 

Chitosan membranes neutralised in 0.1 M NaOH solution were cut into strips. Their 

dimensions were found to be typically about 15 x 2 x 0.02 mm after conditioning in ISS for 15 

min. Thickness was taken as a mean of ten values at different points measured with a low-

pressure micrometer. Their resistance to stretching was evaluated with a Perkin-Elmer 

DMA7e at a constant stress rate of 5 MPa/min using the tensile mode. In such experiments, 

the strain was monitored as a function of stress. Note that such procedure is different from 

conventional mechanical tests where the stress is monitored as a function of strain, which 

varies at constant rate. However, one can also build stress-strain curves and obtain a 

measure of the stiffness (by looking at the slope of the curve at early stages) and the 

strength (measured by the stress at break) of the sample, when experiments at constant 

stress rate are performed. The assays with samples immersed in solution were preformed 

using a liquid bath built in stainless steel. This bath can be fitted into the furnace of the DMA 

equipment. A schematic representation is shown in Figure 5.1. 

Mechanical tests in immersed conditions were carried out in ISS at body temperature (37ºC). 

Samples were kept immersed for 15 min in order to reach the hydration and thermal 

equilibrium, after holding it in the test probe. Mechanical tests in a dry environment and in 

solution at room temperature (ca. 20ºC) were undertaken for comparison purposes. Non-

neutralised chitosan membranes were only tested in a dry environment. Temperature was 

checked with an external temperature sensor after and before each test. The temperature 

read by the sensor fluctuated less then 0.1ºC during the experiments. Secant modulus was 

calculated at 2% of elongation. Stress and strain at break were also estimated. 
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Figure 5.1 Schematic picture of DMAe7 Perkin-Elmer water bath system, used to test 

biomaterials in ISS. Legend: a) DMA tensile accessory; b) top and bottom clamps; c) sample 

(membrane); d) DMA furnace; e) metallic liquid reservoir; f) isotonic saline solution. 

 

5.3.5 Dynamic mechanical analysis (DMA) 

 

Dynamical mechanical measurements were carried out on chitosan membranes with a 

Perkin-Elmer DMA7e analyser at 1 Hz and heating rate of 2ºC/min. The tests were 

preformed with samples immersed in ISS, using the same system described above. In these 

measurements, sample and solution was carefully cooled down to near 0ºC, in order to avoid 

solution freezing and consequent sample damage. Experiments were stopped at about 80ºC. 

The dimensions were the same of those for quasi-static mechanical tests and thickness was 

taken by the method described in the previous section. It was considered that the cross-

section area of the samples do not vary during the experiment. 

During each DMA experiment, both the storage modulus, E’, and the loss factor, tan δ, were 

measured as a function of temperature. The first corresponds to the real component of the 

complex modulus (E*=E’+iE”), being a measure of the sample’s stiffness, whereas the later 

gives the ratio between the amount of mechanical energy lost and stored during a cycle (tan 

δ=E”/E’), measuring the damping capability of the sample. 

A sample of polybutadiene was tested both into solution and in the conventional dry state. 

This rubber material was found to not absorb any water by a simple gravimetric assay and so 

mechanical dynamic performance in wet conditions should not differ from conventional 

assay. In fact, it was found that both E’ and tan δ are similar when measuring in both dry and 

wet conditions, indicating that the effect of the solution does not influence significantly the 

measurements. 
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5.3.6 Cytotoxicity 

 

The materials were cut in 1 x 1 cm2 pieces and sterilized by ethylene oxide (EtO), as 

described before 29. The sterilization procedure did not show any adverse effect on the 

samples (data not shown). 

The materials were immersed for 24 hours at 37ºC (with constant shaking) in DMEM culture 

media without phenol red (Gibco BRL, USA), supplemented with 10% Fetal Bovine Serum 

(FBS) (BioChrome, Germany) and 1% antibiotic/antimycotic solution (Sigma, St. Louis, 

USA), at a ratio of 1.5 cm2/ml. This is an advised procedure for biomaterials extraction to 

obtain the major leachables and determine their short-term effect in a dynamic environment 

23. The extracts were then filtered through a 0.45 µm pore size filter and then used for MTT 

and total protein quantification tests. 

 

5.3.7 MTT test 

 

The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) has a yellow tonality 

and is soluble in water. This compound can be converted by the mitochondrial enzyme 

succinate dehydrogenase in a purple colour salt insoluble in water. The insoluble salt 

absorbs at a wavelength of 570 nm and it is proportional to the amount of viable cells, since 

only viable cells can metabolise MTT 26, 27, 30. 

A commercial cell line of rat lung fibroblasts – L929 – was used in these studies. The cells 

were cultured in 75 cm2 flasks (Costar). After detaching them from the culture flask by using 

a 0.25% trypsin-EDTA solution (SIGMA, St. Louis) they were re-suspended in DMEM culture 

medium. The cells were plated in 96-well micrometer plates at a density of 2 x 104 cells/well. 

The plates were incubated for 48 hours in a humidified atmosphere of 5% CO2 at 37ºC. After 

this, the culture medium was removed and the extracts were placed in contact with the cell 

monolayer and culture medium was used as control. The plates were incubated for 72 hours, 

and after removal of the culture medium, 50 µl of MTT (Sigma, St. Louis, USA) solution (1 

mg/ml in culture medium) was added and incubated 4 hours at 37ºC. To dissolve the 

formazan crystals that are formed, 100 µl of isopropanol were added and the plates were 

incubated for 15 minutes at 37ºC and then placed at room temperature in an orbital shaker to 

help dissolving the crystals. The optical densities at 570 nm and 650 nm (background) were 

read on a multiwell plate reader (Molecular Dynamics, Amersham, USA) against a blank of 

MTT solution and isopropanol. All the materials were tested in 10 replicates for each extract 

for at least three separate experiments with reproducible results. 
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5.3.8 Total protein quantification 

 

The method used to quantify the total protein make use of the Micro BCA Protein Assay 

Reagent Kit (Pierce, USA) that uses bicinchoninic acid (BCA) as the detection reagent for 

Cu1+, which is formed when Cu2+ is reduced by proteins in an alkaline environment. The 

purple colour product is formed by the chelation of two molecules of BCA with one Cu1+ ion. 

This complex is water-soluble and absorbs at 562 nm, and its absorbance is linearly 

correlated with protein concentration 28. 

The procedure is very similar to the one of MTT. After the 72 hours incubation, the extracts 

are removed from contact with cells and these are washed with a phosphate buffer solution 

(PBS) 0.01 M, and 100 µl of PBS 0.01 M are added to each well. To each well 100 µl of the 

BCA reagent were added, the plates were agitated for 30 seconds and incubated for 2 hours 

at 37ºC. The plates were then cooled to room temperature and the optical densities were 

measured at 562 nm against a blank of PBS 0.01 M and BCA reagent. Total protein (in 

µg/ml) was determined using a BSA standard curve. 

 

5.4 Results and discussion 

 

5.4.1 Crystallinity 

 

The 2D WAXS pattern of non-crosslinked chitosan (not shown) exhibited a Debye ring at 2θ 

≈ 20º and an isotropic crystalline orientation. This reflection is in agreement with the typical 

chitosan diffractogram 21, 31. The equatorial cuts of such patterns for the studied chitosan 

membranes are shown in Figure 5.2. One clearly sees that for 1% crosslinking the 

crystallinity degree is highly depressed. The results for higher-crosslinked materials show 

that these membranes are amorphous. 
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Figure 5.2 X-ray diffraction patterns of neutralised chitosan membranes non-crosslinked 

(CTS) and with crosslinker chitosan amine groups molar ratio of 1% (CTS01), 10% (CTS10) 

and 20% (CTS20). 

 

5.4.2 Degradation and swelling kinetics 

 

All samples reached the equilibrium hydration degree in about 15 min. This can be observed 

in Figure 5.3 which shows the swelling isotherms and respective pH drift. Chitosan 

membranes with lower crosslinking degree (CTS01) presented higher equilibrium hydration 

degree than non-crosslinked membranes (CTS) despite the crosslinking reactions. On the 

other hand, higher crosslinking degrees (CTS10 and CTS20) showed to be effective on 

lowering the equilibrium hydration degree. In fact, crystallinity decreases as crosslinking 

degree by glutaraldehyde increases, since crosslinks between two chitosan units or pendant 

glutaraldehyde with one aldehyde free may constitute an obstacle to chitosan molecules 

packing. The lower crystallinity enhance the water molecules accessibility. Thus, the 

hydration equilibrium degree should depend on the balance between crystallinity and 

crosslinking degree leading to a maximum somewhat between non-crosslinked membranes 

(CTS) and CTS10. 

All formulations revealed to be very stable in the simulated body wet environment with a 

weight loss never superior than 12% after 60 days of immersion. Membranes degrade up to 

30 days of immersion. After that, samples weight seems to stabilize and weight loss reach 

what can be roughly described as a plateau. These results may suggest that the low 

molecular mass fraction of the chitosan membranes is continuously released in the first 30 

days. The higher molecular mass components are much more stable within the experimental 

time window studied. 
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Figure 5.3 Swelling isotherms at 37ºC in ISS of chitosan membranes (CTS) and with 

crosslinker to chitosan amine groups molar ratio of 1% (CTS01), 10% (CTS10) and 20% 

(CTS20). Variation of pH during tests (inset graphics). Data represents mean ± standard 

deviation of at least three samples. 

 

The results in Figure 5.4 show that the weight loss can be despised when performing 

mechanical tests on such membranes in wet state, since the time scale of such experiments 

is relatively short (only a few minutes) when compared to the time required to reach a 

significant weight loss. 
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Figure 5.4 Degradation isotherms at 37ºC in ISS of chitosan membranes (CTS) and with 

crosslinker chitosan amine groups molar ratio of 1% (CTS01), 10% (CTS10) and 20% 

(CTS20). Data represents mean ± standard deviation of at least three samples. 
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5.4.3 Quasi-static mechanical properties 

 

The results obtained for assays performed in dry state are presented in Table 5.1. No 

significant differences were found between neutralised and non-neutralised chitosan 

membranes for evaluated tensile mechanical properties in the dry state. Similar values of 

non-neutralised chitosan films have been reported by A. Bégin et al 2. In order to evaluate the 

mechanical performance of the several prepared formulations in wet state, tensile tests were 

carried out in ISS. It was impossible to test membranes with higher degree of crosslinking 

(CTS20), because of its low resistance in wet state. 

 

Table 5.1 Mechanical tensile properties of non-crosslinked chitosan (CTS) membranes 

(average ± standard deviation of at least three samples) performed in the dry state 

 E2% (GPa) σ at break (MPa) ε at break (%) 

Non-neutralised  1.5 ± 0.6 52 ± 12 5.9 ± 0.5 

Neutralised 1.8 ± 0.3 59 ± 11 4.9 ± 1.3 

 

The mechanical resistance to stretching decreased sharply, when samples were swollen in 

the ISS. Secant modulus decreased about one hundredfold from 1.8 GPa to 13 MPa at room 

temperature, while stress at break decreased about tenfold from 59 MPa to 6.1 MPa at the 

same temperature. This is a consequence of the high equilibrium swelling degree. On the 

other hand, strain at failure increased from 4.9% to 59% due to the water plasticising effect. 

Typical stress-strain curves of samples tested as well as the corresponding relevant 

mechanical properties for all conditions studied are shown in Figure 5.5 and Figure 5.6, 

respectively. 
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Figure 5.5 Typical stress-strain curves of membranes of non-crosslinked chitosan (CTS) and 

with crosslinker chitosan amine groups molar ratio of 1% (CTS01) and 10% (CTS10): (a) 

neutralised membranes tested in dry state at room temperature; (b) neutralised membranes 

tested in ISS at room temperature; (c) neutralised membranes tested in ISS at 37ºC. 
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Figure 5.6 Tensile properties of neutralised chitosan membranes non-crosslinked (CTS) and 

with crosslinker chitosan amine groups molar ratio of 1% (CTS01) and 10% (CTS10), 

measured in ISS: (a) secant modulus at 2% of elongation; (b) stress at break; (c) strain at 

break. Data represents mean ± standard deviation of at least three samples. 

 

Secant tensile modulus at 2% decreased when a small amount of glutaraldehyde was used 

to crosslink chitosan (CTS01), for both temperatures tested. On the other hand, modulus 

increased for higher concentrations (CTS10). The minimum in stiffness found for CTS01 can 

be related with the maximum achieved for the equilibrium hydration degree for the same 

sample (Figure 5.3). However, a similar result was obtained for CTS01 tested in a dry 
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environment (results not showed). In this way, the balance between the effects of opposite 

variation of crystallinity and crosslinking degree may also have an effect on this behaviour, 

besides the hydration degree. It is well known that the elastic modulus increase when 

reducing the average molecular weight between crosslinks. However, in such a complex 

system where a semi-crystalline polymer is crosslinked with glutaraldehyde, which 

possesses a distinct chemical character from the original polymer, crystallinity, hydration 

degree and different hydrophilicity can also play a certain role. In this way, it is very difficult to 

correlate all those factors with the final viscoelastic properties of such materials.  

At physiologic temperature the modulus decreased for each sample tested, relatively to what 

was observed at room temperature. Moreover, stress and strain at failure decreased when 

the crosslinking degree increased, since samples become fairly brittle for glutaraldehyde 

chitosan amine groups molar ratio of 10% (CTS10). 

 

5.4.4 Dynamic mechanical analysis (DMA) 

 

The storage modulus of non-crosslinked chitosan membranes (CTS) was almost constant 

during temperature scan, only showing a slight decrease around 40ºC (Figure 7a). On the 

other hand, both crosslinked samples (CTS01 and CTS10) storage modulus presented a 

continuous decrease with increasing temperature (Figures 7a and 7b) This is in agreement 

with the previously described decrease of the secant tensile modulus observed from room to 

physiological temperature. The slope of such curves seems to increase with crosslinking. All 

modulus values are quite similar to the values achieved for quasi-static tests and the same 

trends are basically observed.  

The damping properties of the studied membranes are also depicted in Figure 5.7, as 

measured by the loss factor, tan δ. One founds values between 0.15 and 0.20, indicating a 

clear viscoelastic behaviour for the prepared chitosan membranes. This result is in 

accordance to the viscoelastic character also observed in meshes of chitosan fibres also 

analysed in wet conditions both by DMA and creep experiments 32. It should be noticed in 

this context that most of the living tissues have viscoelastic properties. Thus, besides the 

conventional quasi-static mechanical properties, new materials to be used in biomedical 

applications should have compatible time-dependent mechanical (viscoelastic) features with 

the organs or tissues that they will contact with. Tests such as DMA experiments in simulated 

physiological conditions, as presented in this work, may constitute a valuable tool for this 

evaluation.  

The results in Figure 5.7 indicates that crosslinking do not influence significantly the damping 

properties of the chitosan membranes. Moreover, for all formulations analysed, tan δ is 
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almost temperature independent, indicating that neither physical transition nor relaxation 

process take place within this temperature range. 
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Figure 5.7 Storage modulus, E’, and loss factor ,tan δ, at 1 Hz of neutralised chitosan 

membranes non-crosslinked (CTS) (a), with crosslinker chitosan amine groups molar ratio of 

1% (CTS01) (b) and 10% (CTS10) (c), measured in ISS. 

 

5.4.5 Cytotoxicity 

 

Cells cultured in contact with the extracts of the materials after 72 hours displayed normal 

morphology when observed in an inverted light microscope. The results for the MTT test 

performed after 72 hours of contact of the extraction medium with cells are shown on Table 

5.2, and allowed to assay, though qualitatively, the cellular viability. The percentage of cell 

viability plotted is related to the control, considering the control (cells with DMEM with 1% 

antibiotic/antimycotic and 10% FBS) to have 100% viability. 
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Table 5.2 MTT test and total protein quantification of neutralised chitosan membranes non-

crosslinked (CTS) and with crosslinker to chitosan amine groups molar ratio of 1% (CTS01), 

10% (CTS10) and 20% (CTS20). Data represents mean ± standard deviation of at least 

three samples 

Sample MTT value (%) * Total Protein (µg)  

controlŦ -- 105.5 ± 22.9 

CTS 74.9 ± 9.7 126.6 ± 23.9 

CTS01 74.0 ± 9.3 87.8 ± 13.5 

CTS10 75.4 ± 7.5 129.7 ± 15.8 

CTS20 67.7 ± 9.9 132.0 ± 17.0 

 
* viability related to the control, which is scored 100% 
Ŧ 
Control: Cells with culture medium 

 

All the samples present a viability percentage around 80%, which means that these materials 

do not exert a cytotoxic effect over the cells. It seems that growing concentrations of 

glutaraldehyde tend to have a negative effect over cell viability, although for the tested 

concentrations cell viability is maintained at a very good percentage (see Table 5.2). It is 

known from previous cytotoxic studies performed that increasing the glutaraldehyde 

concentration increases the cytotoxicity of the membranes (data not shown). Moreover, a 

similar trend was reported for collagen crosslinked with glutaraldehyde 33. The results 

obtained can be considered as a good indicator of the biocompatibility of the tested 

materials, since it is known that for biodegradable polymers their degradation tends to induce 

a severe cytotoxic effect due to a pH drop (as for instance for polylactides and 

polyglycolides) 23.  

As for the total protein quantification, Table 5.2 shows that only the cells in contact with the 

extract of the sample containing 1% glutaraldehyde as crosslinking agent (CTS01) displayed 

a slight smaller total protein content than the control. The other three samples (CTS, CTS10 

and CTS20) displayed an even higher amount of total protein than the control. A possible 

explanation for this result is that the crosslinking strength of the membranes crosslinked with 

1% of glutaraldehyde (CTS01) is lower than in the other conditions were glutaraldehyde is 

used as a crosslinker and, in this way, more leachables are obtained during the extraction in 

DMEM culture medium. So, the membranes non-crosslinked (CTS) would not leach 

components resulting from reaction with glutaraldehyde, while membranes crosslinked with 

10 and 20% of glutaraldehyde (CTS10 and CTS20) would not leach those products in such 

an extent as in the formulation CTS01. In being so, the leachables of the formulation CTS01 
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will somehow inhibit the cellular activity, quantified by the protein production, but not 

diminishing their viability, as seen by MTT test. 

The relation between the two tests (MTT and total protein quantification) is not, of course, 

straightforward, but some conclusions can be drawn from the comparison. The MTT test 

shows that all the conditions display similar viability patterns, around 80% when compared 

with the control, with the exception of the formulation CTS20 (a result in accordance with 

previous results obtained), that displays a level of 70% of viability. However, the total protein 

quantification shows that some of the conditions presented higher protein content than the 

control itself. This result can be explained by the fact that some of the leachables might in 

fact stimulate the activity of cells. In this way, the results between the two tests are perfectly 

complementary and coherent. Although further biocompatibility tests are needed, it is 

possible to say that the tested membranes have shown to be suitable for biomedical 

applications. 

 

5.5 Conclusions 

 

Different chitosan based membranes could be developed. A method was implemented to test 

tensile mechanical properties of chitosan-based membranes in ISS and 37ºC, in order to 

simulate body conditions. The mechanical resistance to stretching decreased sharply when 

swollen in an aqueous environment, mainly due to the high hydration equilibrium degree of 

chitosan materials. However, neutralised chitosan membranes and membranes crosslinked 

with small amounts of glutaraldehyde become more flexible, making them suitable for some 

biomedical applications, that could be wound dressing or as a barrier-membranes keeping 

space for bone regeneration and preventing the in-growth of undesirable connective tissue. 

Moreover, dynamic mechanical analysis in temperature scan mode confirmed the 

mechanical stiffness dependence on the temperature of crosslinked chitosan membranes. 

This dependence increased with the crosslinking degree. All formulations were found to be 

relatively stable in ISS up to 60 days. In fact, the weight loss was never superior than 12% 

and the membranes have kept its mechanical integrity.  

All membrane formulations exhibit a viscoelastic behaviour which could have advantages in 

the mechanical compatibility with the tissues to be repaired.  

The cell culture cytotoxicity studies performed indicate that there is a good interaction of the 

tested materials with the cells. The biochemical tests confirm that the viability of cells in 

contact with the extracts is maintained. In some cases an increased biochemical activity of 

cells is observed, which can be correlated indirectly with cell proliferation. In fact, the 

biological performance of the membranes seems to indicate that they can be used on the 
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proposed biomedical applications, although further cytocompatibility studies must be carried 

out before moving into any type of animal experimentation. 
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Chapter 6 

Transport of small anionic and neutral solutes through chitosan 

membranes: dependence on crosslinking and chelation of divalent 

cations 

 

6.1 Abstract 

 

Chitosan membranes were prepared by solvent casting and crosslinked with glutaraldehyde 

at several ratios under homogenous conditions. The crosslinking degree, varying from 0 to 

20%, is defined as the ratio between the total aldehyde groups and the amine groups of 

chitosan. Permeability experiments were conducted using a side-by-side diffusion cell to 

determine the flux of small molecules of similar size, but holding different chemical moieties, 

either ionised (benzoic acid, salicylic acid and phthalic acid) or neutral (2-phenylethanol) at 

physiological pH. The permeability of the different model molecules revealed to be 

dependent on the affinity of those structurally similar molecules to chitosan, i.e., related to 

the partition coefficient determined in an independent experiment. The permeability of the 

salicylate anion was enhanced by the presence of metal cations commonly present in 

biological fluids, such as calcium and magnesium, but remained unchanged for the neutral 2-

phenylethanol. This effect could be explained by the chelation of metal cations on the amine 

groups of chitosan, which increased the partition coefficient. The crosslinking degree was 

also correlated with the permeability and partition coefficient. The change in the permeation 

properties of chitosan to anionic solutes in the presence of these metallic cations is an 

important result, and should be taken into consideration when trying to make in vitro 

predictions of the drug release from chitosan based controlled release systems. 

 

This chapter is based on the following publication: 

Ricardo M.P. da Silva, Sofia G. Caridade, Julio San Román, João F. Mano; Rui L. Reis. 

Transport of small anionic and neutral solutes through chitosan membranes: dependence on 

crosslinking and chelation of divalent cations (submitted). 
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6.2 Introduction 

 

Chitin is a structural polysaccharide of the cell wall of fungi and of the exoskeleton of most 

invertebrates, of which crustaceans are the major source for the industry 1. The chitin 

similarities to cellulose encompass function, chemical structure and abundance. It is 

estimated as being one of the most abundant natural macromolecules in the biosphere 1. 

Besides its importance as building and structural material in biological organisms, chitin is 

becoming a key raw material in engineering and emergent technologies, largely due to its 

soluble derivative, chitosan. Chitosan has been proposed for a large number of applications 

in the biomedical field 2-11, in great part owning to its biocompatibility, biodegradability and 

non-toxicity 12. In fact, this natural derived polymer has been proposed for controlled drug 

release devices 2, 3, rate controlling membranes in transdermal delivery systems 4, 5, 

biomaterials 6-8 and tissue engineering 9-11. Although, it was found that native chitosan 

membranes do not support cell adhesion and proliferation 13, 14, we have recently be able to 

render chitosan membranes surface properties appropriate for cell adhesion and behaviour 8, 

9. Recent strategies, incorporated growth factors in chitosan-based scaffolds demonstrated 

the usefulness of the chitosan permeability for the local drug controlled release inside the 

scaffolds 15-17. On the other hand, survival of ex vivo constructed tissues after transplantation 

is often limited by insufficient oxygen and nutrient supply. Strategies aiming at the 

improvement of neovascularization of engineered tissues are considered a key issue 18, 19. 

Scaffolds can work as an additional route for the elimination of excreted toxic products and 

for the supply of nutrients, if those molecules can permeate through the polymeric support. 

Although, this would not constitute a truly alternative strategy for the improvement of 

neovascularization of engineered tissues, it would help on the survival of the tissue 

engineered transplants. 

Both in tissue engineering and drug delivery strategies the knowledge and control of the 

permeability of chitosan-based materials is very important. On the other hand, the well-

known ability of chitosan to complex with divalent cations 20-23 can interfere with the 

permeability of anionic molecules through chitosan materials in physiological medium. In fact, 

human blood plasma possess typical Ca2+ and Mg2+ concentration of 2.5 and 1.5 mM 24. To 

our knowledge, until now the studies on the permeability of chitosan to several model drugs 

and solutes have ignored this hypothesis. In the present study, we tested the influence of the 

binding ability of divalent cations on the permeation of small anionic solutes and its 

dependence on the crosslinking degree. 

Finally, the importance of studying the influence of ionic species able to complex with 

polyelectrolytes on the permeability is not limited to the chitosan-based permeable system 
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that is presented as a case-study. In fact, there is a broad list of other polyelectrolytes, both 

polysaccharides 25-27 and synthetic polymers 28-30, which are able to form complexes with 

multivalent ions. Polyelectrolyte hydrogels are important systems for controlled drug release 

applications, due to their (pH and electric) stimuli-responsive nature 31-33. 

 

6.3 Materials and methods 

 

6.3.1 Purification and characterisation of chitosan 

 

Chitosan (CTS) raw-material obtained from crab shells was purchased from Sigma-Aldrich 

(USA) and purified by re-precipitation. First, the chitosan was dissolved in an aqueous acetic 

acid solution (1% w/v) at ~1% (w/v). The solution was filtered through a Whatman® ashless 

filter paper (20-25 µm) to remove the insoluble material and producing a clear solution. This 

solution was precipitated adding a NaOH solution (final pH ~ 8) forming a white gel, which 

was sieved to remove the exuded liquid and thoroughly rinsed with distilled water, until no 

changes on the pH were detected. The chitosan gel was further washed/dehydrated with 

ethanol, freeze-dried, ground to powder and dried at 60ºC overnight. All other reagents were 

used without further purification. 

The chitosan average molecular weight was of found to be 790 kDa by viscometry in 

CH3COOH 0.5 M/ NaCH3COO 0.2 M, according to the Mark-Houwing theory (k = 3.5x10
-4; a 

= 0.76) 34. The degree of N-deacetylation (DD) was found to be 93.3% by means of 1st 

derivative UV spectrophotometry, using both glucosamine (GluN) and N-acetylglucosamine 

(GluNAc) standards for calibration 35. 

 

6.3.2 Preparation of chitosan membranes by solvent casting 

 

The chitosan solution was prepared by dissolving chitosan (1 wt.%) in 1 wt.% acetic acid 

solution. Glutaraldehyde (GA) solutions at concentrations ranging from 0.1 M to 5 x 10-4 M 

were prepared. The amount of chitosan amine groups (NH2) (GluN units) can be determined 

using the following expression: 
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where Ma = 203 g/mol and Mg  = 161 g/mol are the molecular weights of the GluNAc and 

GluN units within the copolymer, m(CTS) is dry weight of chitosan in grams and n(GluN) is the 

molar amount of amine groups in that weight of chitosan. 

Then, defining the crosslinking degree (x) as the percentage of aldehyde (CHO) groups with 

respect to the initial free NH2 groups (CHO/NH2 ratio), we can write: 
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where V(GA) and C(GA) are respectively the volume and concentration of the glutaraldehyde 

solutions. Actually, the crosslinking degree defined by equation 6.2 is the reagents feed ratio, 

since the real crosslinking efficiency depends upon the chemical conversion and on the 

occurrence of other parallel reactions, which can form either any or longer crosslinks.  

The glutaraldehyde solution volume added to a certain amount of the previous chitosan 

solution was kept constant. The several crosslinking degrees were obtained by only 

changing the concentration of glutaraldehyde, according to equation 6.3. In this way, the 

reaction volume and polymer concentration was kept constant for all the samples, varying 

only the molar amount of glutaraldehyde added. The glutaraldehyde solutions was added 

dropwise during 5 min under gentle stirring and the resultant solutions were let quiescent for 

about 1 h to remove any air bubble formed. Non-crosslinked chitosan membranes (CTS00) 

were prepared in the same way, but no glutaraldehyde solution was added. Solutions were 

poured into Petri dishes and dried at room conditions. The resultant membranes were 

neutralised in NaOH 0.1 M solution for 10 min, washed thoroughly with distilled water and 

dried again. Samples were labelled according to their crosslinking degree as CTS[x(%)]. For 

instance, samples with x = 0.1%, 1% and 20% were labelled as CTS0.1, CTS01 and CTS20, 

respectively. 

 

6.3.3 Fourier Transform infrared spectroscopy with attenuated total reflection (FTIR -

ATR) 

 

Membranes of both non-crosslinked chitosan (CTS00) and crosslinked at the highest ratio 

(CTS20) were analysed by infrared spectroscopy to assess the proposed mechanisms for 

the reaction of chitosan with glutaraldehyde, which may depend on the reaction conditions 20, 
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36, 37. Spectra were recorded in an IRPrestige 21 FTIR spectrophotometer from Shimadzu 

(Kyoto, Japan) with the attenuated total reflection accessory (128 scans, resolution 4 cm-1). 

 

6.3.4 X-ray diffraction (XRD) 

 

The morphology of the membranes was analysed recording the wide-angle X-ray scattering 

(WAXS) pattern in a Philips PW1710 reflection diffractometer (Almelo, the Netherlands), with 

a step (2θ = 0.02º) scanning time of 2 s and Cu-Kα-radiation generated at 40 kV and 30 mA. 

 

6.3.5 Water contact angle measurements 

 

The influence of the glutaraldehyde crosslinking on the hydrophilicity of the materials was 

assessed evaluating the surface wettability by water contact angle measurements. Static 

contact angle measurements were carried out by the sessile drop method using a contact 

angle meter OCA 15+ with high-performance image processing system from DataPhysics 

Instruments (Filderstadt, Germany). A drop (1 µL) of water was added by a motor driven 

syringe at room temperature. Two different samples of each material were used and at least 

three measurements were carried out for each sample. 

 

6.3.6 Equilibrium swelling studies 

 

The water uptake measurements were undertaken in two different buffer systems, both at pH 

7.4 and ionic strength 0.154 M. Phosphate buffer saline (PBS) solution was prepared 

dissolving PBS tablets from Sigma in a suitable amount of water (NaCl 0.137 M; KCl 0.0022 

M; phosphate buffer 0.01M; pH 7.4 at 25ºC). A second solution (TRIS-Ca2+/Mg2+) was 

prepared with 1.5mM of MgCl2 and 2.5 mM CaCl2, to give the typical Ca
2+ and Mg2+ 

concentration of this cations in the human blood plasma 24. This solution was buffered with 

0.01M TRIS and adding HCl until pH was 7.40 ± 0.05 at 25ºC. Ionic strength was corrected 

with NaCl to give 0.154 M.  

The equilibrium water uptake was determined immersing previously weighted chitosan 

membranes in these buffer systems at 37 ± 1 ºC. We previously found that the water uptake 

kinetics is very fast, reaching the equilibrium in less than 15 min 6. After around 4 h, 

equilibrated samples were blotted with filter paper to remove the adsorbed water and 
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weighted immediately. The equilibrium water uptake (WUeq) was calculated using the 

following equation: 

0

0

W

WW
WU eq

−
=             (6.4) 

where W0 is the initial weight of the sample and W is the weight of the swelled sample. 

 

6.3.7 Permeation studies 

 

The permeation studies were performed using an in-house built side-by-side diffusion cell 

(see Figure 6.1). Membranes were previous equilibrated in the respective buffer solution and 

mounted between the half-cells of the receptor and donor compartments (1 cm2 area of 

diffusion). The receptor compartment fluid was continuously pumped through a flow-through 

quartz cuvette with optical pathway (l) of 1 cm. The absorbance at a maximum wavelength 

(different for each solute) was monitored in a UV-1610 Shimadzu spectrophotometer. The 

volume of the monitoring system (tubing and quartz cuvette) was calibrated before each 

experiment and it was found to vary between 2.84 and 2.90 ml. The monitoring system was 

filled with fresh buffer and air bubbles were purged before each measurement. The inlet and 

outlet tubing was connected to the receptor cell previously filled with 2.2 ml of fresh buffer. 

Then, the diffusion cell was immersed in a thermostatic bath at 37.0 ± 0.1ºC. Finally, the 

donor cell was filled with 2.2 ml of the buffer solution containing the respective solute and the 

absorbance recorded. The solutions in both cells were stirred by magnetic bars at 800 rpm to 

eliminate the boundary layer effect. In preliminary experiments, we confirmed that the 

calculated permeability was kept constant above 400 rpm. 

The permeability of the chitosan membranes was evaluated for small molecules of similar 

size, but holding different chemical moieties, either ionised (anionic) or neutral at 

physiological pH (see Figure 6.2). Moreover, solutes with different ionic charges were tested 

by choosing monoprotic and diprotic acids that are fully ionised at that pH (see Table 6.1). 

The solutions of the anionic solutes, such as benzoic acid (BA), salicylic acid (SA), phthalic 

acid (Ph), were prepared at 5 mM, 2 mM and 5 mM, respectively. Since these molecules at 

the working concentration are able to change the pH of the buffer solution, this was further 

corrected to pH 7.4 with NaOH solution. The solution of 2-phenylethanol (PE) was prepared 

at a concentration of 10 mM. The different concentrations used took into consideration the 

different molar absorptivities, in order to allow the detection of the solutes at the early stages 

of permeation experiments (see Table 6.1). The flux rate of those model molecules was 

determined in both PBS and buffered TRIS-Ca2+/Mg2+ solutions, the same used in the water 
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uptake experiments. After each assay, the swollen membrane thickness was taken as a 

mean of five values at different points measured with a low-pressure micrometer. 
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Figure 6.1 Schematic representation of the in-house built side-by-side diffusion cell. 
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Figure 6.2 Chemical structures of the model solutes used in the permeation studies. 

 

Table 6.1 Acidity constants (pKa), wavelength of maximum UV absorbance (λmáx), molar 

absorptivity (ε) at λmáx for the different model solutes and optical pathway (l ) of the flow-

through cuvette 

Solute pKa1 pKa2 λmáx (nm) 1/(εl) (mM) 

benzoic acid (BA) 4.2038 - 270  1.747 

salicylic acid (SA) 3.2338 - 297 0.2816 

phthalic acid (Ph) 2.7339 4.7839 273 1.192 

2-phenylethanol (PE) - - 258 5.244 
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6.3.8 Determination of the partition coefficients 

 

The partition coefficient (K) was considered the ratio of the solute concentration in the liquid 

fraction absorbed by each sample (Cm) to that in the bulk solution (Cs) 
40: 

s

m

C

C
K =              (6.5) 

It was determined in both PBS and buffered TRIS-Ca2+/Mg2+ solutions. First the membrane 

samples were equilibrated for 48 h in a solution of each model molecule at a concentration 

(Cs) 5 times higher than that used in the permeation experiments. The pH of the buffer 

solutions was corrected to pH 7.4 with NaOH solution after the solubilisation of each acid 

solute. When compared with the amount of membrane sample, the volume of the 

concentrated solution was higher enough to consider that Cs did not vary during the solute 

uptake stage. The membrane was removed from the concentrated solution and the excess of 

liquid was removed blotting the membrane with filter paper. The water uptake of each sample 

was determined as described for the equilibrium water uptake experiments. Loaded 

membranes were immersed in fresh buffer and this procedure was repeated until no further 

release was observed by UV spectrophotometry. The amount of the solute uptake was 

calculated as the total cumulative release and Cm determined accordingly. 

 

6.4 Results and discussion 

 

6.4.1 Analysis of the crosslinking reaction 

 

Several mechanisms have been proposed for the reaction of chitosan with glutaraldehyde, 

the simplest involving the formation of one Schiff base between one of the aldehyde groups 

and an amine group of chitosan, remaining the other aldehyde group free 20, 37. This aldehyde 

group may react with other chitosan chains to form a crosslink, but can also remain free, 

immobilised within the formed polymer network 37. A third mechanism may encompass the 

polymerisation of gluraldehyde which would form longer crosslinking bridges 20, 37. Roberts et 

al 36 found that under several reaction conditions only a very small proportion (< 0.15%) of 

the aldehyde groups undergone an aldol condensation reaction leading to α,β-unsaturated 

aldehyde groups. In turn, Monteiro et al 20 found evidence of double ethylenic bonds above a 

certain glutaraldehyde/chitosan proportion. In our study, the ratio CHO/NH2 should be low 

enough to keep the glutaraldehyde polymerisation at a very small proportion. The infrared 

spectrum of the membranes with the highest crosslinking degree (CTS20) is quite similar to 
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the spectrum of the non-crosslinked membrane (CTS00) (Figure 6.3). In the chitosan 

spectrum, the band at 1651 cm-1 (amide I) is assigned to the remaining acetyl groups of 

chitosan and the NH2 characteristic absorption band is observed at 1591 cm
-1 (amide II). In 

the spectrum of CTS20 the amide I band increases proportionally to the amide II band. The 

contribution of the imine (C=N) bond at around 1660 cm-1 20, 37 from the formed Schiff bases 

upon crosslinking superimpose the amide I band of chitosan, leading to that change in the 

spectrum. 
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Figure 6.3 FTIR-ATR spectra of non-crosslinked chitosan membranes (CTS00) and at the 

highest crosslinking degree (CTS20). 

 

On the other hand, it is not observed the signal of the carbonyl groups at around 1720-1730 

cm-1. Since in this region of the spectrum of chitosan did not present any absorption band, 

this constitutes a good indication that under this homogeneous reaction conditions, most of 

the glutaraldehyde molecules established crosslinks between chitosan chains, being involved 

in the formation of two Schiff bases. It should be notice that under heterogeneous reaction 

conditions it has been reported the appearance of this CHO band 37. Finally, the water 

contact angle almost did not change with the reaction with glutaraldehyde molecules (Table 

6.2), indicating that the overall hydrophilicity of the membranes was not affected. 

 

Table 6.2 Water contact angle of non-crosslinked chitosan membranes (CTS00) and at the 

highest crosslinking degree (CTS20) (average ± standard deviation) 

Sample Contact angle (º) 

CTS00 93.2 ± 2.1 

CTS20 91.0 ± 0.9 
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6.4.2 Morphological characterisation of chitosan membranes 

 

Chitosan is a semi-crystalline polymer from which several polymorphs have been mentioned 

in the literature 41-43. Chitosan molecular weight 42, DD 44 and different membrane processing 

methods gave origin to substantial variations in the presence and amounts of the different 

polymorphs 42, 43.  

Samuels 41 reported that chitosan has two distinct crystal forms, both orthorhombic. The 

crystal type I has the strongest reflection at 2θ = 11.4º, whereas the type II crystal strongest 

reflection falls at 2θ = 20.1º. As can be observed in Figure 6.4, the non-crosslinked chitosan 

membranes (CTS00) showed the strongest reflection at 2θ ≈ 20º and a weaker reflection at 

2θ ≈ 10º, according to the typical chitosan diffractogram. Moreover, it was also possible to 

observe a reflection at around 2θ ≈ 15º. Ogawa et al 42, 43 described that annealed chitosan 

membranes cast from acetic acid and neutralised with NaOH may also present an anhydrous 

crystal form exhibiting a strong reflection at 2θ ≈ 15º. The crosslinking of chitosan under 

homogenous conditions produce a gradual effect on the WAXS patterns, manifested by a 

decrease in the reflection at 2θ ≈ 15º already noticed at low degrees of crosslinking (CTS0.5) 

and the weakening and disappearance of reflections at 2θ ≈ 10º and 2θ ≈ 15º on 

approaching the maximum crosslinking degree (CTS20). Surprisingly, the reflection at 2θ ≈ 

20º related to the type II crystal did not disappear, showing that the chitosan membranes 

retain the semi-crystalline morphology up to a crosslinking degree of 20%. 
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Figure 6.4 WAXS diffraction patterns for chitosan membranes with crosslinking degrees 

ranging from 0 up to 20%. 

 

These results do not agree with our previous findings 6 that crystallinity was highly depressed 

for lower crosslinking degrees and that for higher degrees membranes were completely 
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amorphous. Nevertheless, those membranes had been prepared from chitosan with lower 

DD 6, which can explain the difference in the results. 

 

6.4.3 Chitosan membranes equilibrium swelling degree and the influence of 

crosslinking 

 

The chitosan membranes equilibrium water uptake increased steadily until a crosslinking 

degree of approx. 10% (CTS10), oppositely to what would be expected (see Figure 6.5). It is 

well documented that as higher is the crosslinking degree of a hydrogel, as lower is its 

swelling ratio. Crosslinking reduces the number average molecular weight between 

crosslinks and the mesh size, imposing restrictions to the entrance of water molecules and to 

the polymer chains relaxation 45, 46. In fact, a further increase in the crosslinking degree of the 

chitosan membranes was effective in lowering the equilibrium water uptake. 
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Figure 6.5 Water uptake (equation 6.4) of chitosan membranes in function of the crosslinking 

degree, either determined in PBS solution or in buffered TRIS-Ca2+/Mg2+ solution. Data 

represents mean ± standard deviation for n=3. 

 

This atypical behaviour of the chitosan membranes at the low range crosslinking degrees 

have been already described in one of our previous works in which membranes were 

prepared using chitosan with lower DD 6. That result had been well correlated with a sharp 

reduction in the crystallinity degree already noticeable for faintly crosslinked membranes 6. In 

the herein reported results the decrease in the crystallinity, which is only related to the 

disappearance of reflections at 2θ ≈ 10º and 2θ ≈ 15º (Figure 6.4), can also explain the 

increase in the equilibrium water uptake shown in Figure 6.5. Chitosan chains possess a 

large number of chemical moieties able to perform hydrogen bonds, and then it is reasonable 
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to consider that a certain number of hydrogen bonds may be disorderedly established 

between polymer chains in the amorphous regions. It is also reasonable to considering that 

the absorbed water in the swollen state did not disrupt all these physical crosslinks. In fact, at 

low activities water sorption in chitosan membranes occur on polymer-specific sites 47 until a 

limit of 2 water molecules per monomer unit. Above this limit, the sorption behaviour is 

consistent with the formation of clusters of water molecules 47. Water molecules may bind 

both on hydroxyl and amino groups 48, which suggests that those polymer-specific sites are 

the pyranosyl side substituents and confirm that not all of these groups able to hydrogen 

bond are available to bind water molecules. Being so, the introduction of small amounts of 

crosslinker produces steric hindrance, which can reduce the ability of the polymer to 

establish intermolecular hydrogen bonds, enhancing the water molecules accessibility. The 

hydration water uptake should depend simultaneously on the balance between crystallinity, 

hydrogen bonding between chitosan chains in the amorphous phase and the crosslinking 

degree. 

Finally, the equilibrium water uptake was insensitive to the presence of Ca2+ and Mg2+ in the 

buffer solution. The well-known ability of chitosan to form complexes with divalent cations 21, 

22 did not influence the water uptake ability, at least at the physiological concentrations of 

calcium and magnesium.  

 

6.4.4 Permeability of chitosan membranes 

 

The diffusive mass transport is described by the Fick’s first law: 

dy

dC
DJ −=             (6.6) 

where J is the flux, D is the diffusion coefficient, C is the solute concentration and y is the 

distance in the direction perpendicular to the membrane. 

The simplest solution of the diffusion equation can be obtained at the steady-state, where 

flux is a constant and it can be maintained if the solute concentration is kept constant at the 

both donor (CD) and receptor (CR) half-cells. The Fick’s first law may be then rewritten as: 

)(
0

)(
RD

RD CC
PCC

DKJ −=
−

−
−=

δδ
        (6.7) 

where K is the partition coefficient (equation 6.5), δ is the membrane thickness and P the 

permeability, such as: 

DKP =              (6.8) 

The solute flux can be determined measuring the concentration in the receptor compartment, 

using the following equation: 
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







=

dt

dC

A

V
J RR             (6.9) 

where VR is the volume of the receptor half-cell (including the volume of the UV 

spectrophotometry monitoring system) and A is the membrane useful mass transfer area.  

The initial permeation stage is termed the lag time, when the drug is not detected in the 

receptor compartment. After the lag time, the concentration gradient inside the membrane is 

completely developed and the steady-state permeation stage is observed. At this pseudo-

steady-state the concentration can be considered to vary linearly with time, this is, the flux is 

approximately constant 40, 49, 50. The assumption is valid for the sink conditions, which are 

maintained while RD CC >> , this is: 

DRD CCC ≈−             (6.10) 

Typical curves of the early permeation stage of the studied drugs through chitosan 

membranes are shown in Figure 6.6, normalised by the membrane thickness, which show a 

linear profile without a measurable lag time. This means that flux is constant within that time 

interval and that the sink conditions are maintained. The slope of the permeation curves was 

estimated by linear regression at that early release stage (correlation factor > 0.99). 
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Figure 6.6 Typical curves of the variation of the concentration (CR) of salicylic acid in the 

receptor compartment normalised by the membrane thickness (δ). 

 

The permeability, P, was then calculated combining and rearranging equations 6.7, 6.9 and 

6.10 to obtain: 

D

RR

Cdt

dC

A

V
P

δ








=            (6.11) 

where CD is taken as the initial concentration at the donor compartment.  
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Figure 6.7 Permeability (a), partition (b) and apparent diffusion (c) coefficients of benzoic 

acid (BA), salicylic acid (SA), phthalic acid (Ph) and 2-phenylethanol (PE), determined for the 

chitosan membranes in either PBS solution or in buffered TRIS-Ca2+/Mg2+ solution. Data 

represents mean ± standard deviation for n = 3 (*p < 0.01; **p < 0.05). 
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The apparent diffusion coefficients (D) were determined using equation 6.8, considering the 

propagation of random errors associated with the experimental measurement of K and P. In 

Figure 6.7 it possible to observe the values of D, K and P for permeation of the different 

solutes through non-crosslinked chitosan membranes (CTS00).  

The permeability of the different model solutes (see Figure 6.7a) increased according to the 

following sequence: SA > PE > Ph ~ BA. The great difference in the permeability of salicylic 

acid with respect to the other molecules is mainly due to its higher affinity to the chitosan 

matrix, as confirmed by its much higher partition coefficient (see Figure 6.7b). Chitosan 

membranes do not hold charged amine groups at the physiological pH 51, thus electrostatic 

interactions are not expected to occur directly with the charged anionic solutes. The affinity of 

the model solutes to the membrane should be related to other type of interactions. On the 

other hand, chitosan has the ability to form charged complexes with divalent cations 21, 22. 

Interestingly, the buffer system that included Ca2+ and Mg2+ at the typical concentrations in 

the human blood plasma, induced an increase in the permeability of the anionic solutes (SA, 

Ph and BA), but did not have a statistically significant effect on the neutral one (PE) (Figure 

6.7a). In the case of SA, the increase in the permeability in the presence of divalent ions can 

be again correlated with the increase in the partition coefficient.  

The side-by-side diffusion cell was also used to evaluate the transport properties of the low 

molecular weight molecules through chitosan membranes with different crosslinking degrees. 

The SA was chosen to evaluate the effect of crosslinking in the permeation properties of 

chitosan membranes (see Figure 6.8). 

The permeability of chitosan membranes to the SA followed the same tendency of the 

equilibrium water uptake, increasing until a crosslinking degree of approx. 5% (CTS05) and 

then decreasing steadily until 20% (Figure 6.8a). The permeability measured in the presence 

of Ca2+ and Mg2+ in the buffer solution followed the same tendency, but it presented higher 

values for each sample. The permeability measured in the presence or the absence of those 

cations differs of the same value throughout the crosslinking degree scale. The apparent 

diffusion coefficient showed a similar dependence on the crosslinking degree, but the 

difference between the two buffer solution groups decreased with the crosslinking degree, 

converging for higher crosslinking degrees (Figure 6.8c). On the other hand, the partition 

coefficient of the SA increased almost linearly with the crosslinking degree from 0 up to 20%. 

It is interesting to notice that the partition coefficients measured in the different buffers also 

seem to converge to the same value as the crosslinking degree increases (Figure 6.8b). This 

result gives a strong indication that the higher affinity of SA to the chitosan membranes in the 

presence of Ca2+ and Mg2+ at the physiological concentration is directly related to the 

complexation of these divalent cations with the chitosan. In fact, It has been reported that 

crosslinking chitosan with glutaraldehyde decreases the Cu2+ binding capacity 20. 
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Figure 6.8 Permeability (a), partition (b) and apparent diffusion (c) coefficients of salicylic 

acid determined in either PBS solution or in buffered TRIS-Ca2+/Mg2+ solution as a function of 

the membranes crosslinking degree. Data represents mean ± standard deviation (n = 3). 
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This should not be surprising, because the several mechanisms proposed for the complex 

formation involve bounding of the metal ion to one or several amine groups 21, 23, which 

availability decrease as the crosslinking degree increases. The change in the permeation 

properties of chitosan to anionic solutes in the presence of these metallic cations is an 

important result and should be taken into consideration in the in vitro predictions of the drug 

release from chitosan based controlled drug release systems. Moreover, the influence of 

these divalent cations on the permeation properties of chitosan, if generalised to other 

polyelectrolytes able to form ionic complexes, can also raise concerns on how the ionic 

environment at the physiological conditions will affect the final performance of controlled drug 

release devices based on these polyelectrolytes. 

 

6.5 Conclusions 

 

Although the crosslinking of chitosan under homogenous conditions produce a gradual effect 

on the WAXS patterns, manifested by a weakening and disappearance of reflections at 2θ ≈ 

10º and 2θ ≈ 15º, the reflection at 2θ ≈ 20º related to the type II crystal did not disappear, 

showing that the chitosan membranes retain the semi-crystalline morphology up to a 

crosslinking degree of 20%. 

The equilibrium water uptake and the permeability of chitosan membranes followed a similar 

tendency, increasing until an intermediate crosslinking degree (10% and 5%, respectively) 

and then decreasing. The buffer system that included Ca2+ and Mg2+ at the typical 

concentrations in the human blood plasma, induced an increase in the permeability of the 

anionic solutes, but did not have any effect on the neutral one. The higher affinity of SA to 

the chitosan membranes in the presence of Ca2+ and Mg2+ at the physiological concentration 

seems to be directly related to the complexation of these divalent cations with chitosan. The 

permeation properties of chitosan to anionic solutes dependence on the presence of such 

metallic cations is an important result, which should be taken into consideration when trying 

to make in vitro predictions of the drug release from chitosan-based controlled release 

systems. We also hypothesise that a similar effect of these metallic cations can also be 

found in hydrogels prepared from other polyelectrolyte sources able to form ion-polymer 

complexes. 
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Chapter 7 

Poly(N-isopropylacrylamide) surface grafted chitosan membranes 

as a new substrate for cell sheet engineering and manipulation 

 

7.1 Abstract  

 

The immobilisation of poly(N-isopropylacrylamide) (PNIPAAm) on chitosan membranes was 

performed in order to render membranes with thermo-responsive surface properties. The aim 

was to create membranes suitable for cell culture and in which confluent cell sheets can be 

recovered by simply lowering the temperature. The chitosan membranes were immersed in a 

solution of the monomer that was polymerised via radical initiation. The composition of the 

polymerisation reaction solvent, which was a mixture of a chitosan non-solvent (isopropanol) 

and a solvent (water), provided a tight control over the chitosan membranes swelling 

capability. The different swelling ratio, obtained at different solvent composition of the 

reaction mixture, drives simultaneously the monomer solubility and diffusion into the 

polymeric matrix, the polymerisation reaction rate, as well as the eventual chain transfer to 

the side substituents of the pyranosyl groups of chitosan. A combined analysis of the 

modified membranes chemistry by proton nuclear magnetic resonance (1H-NMR), Fourier 

Transform spectroscopy with attenuated total reflection (FTIR-ATR) and X-ray photoelectron 

spectroscopy (XPS) showed that it was possible to control the chitosan modification yield 

and depth in the solvent composition range between 75% and 100% of isopropanol. Plasma 

treatment was also applied to the original chitosan membranes in order to improve cell 

adhesion and proliferation. Chitosan membranes, which had been previously subjected to 

oxygen plasma treatment, were then modified by means of the previously described 

methodology. A human foetal lung fibroblast cell line was cultured until confluence on the 

plasma treated thermo-responsive chitosan membranes and cell sheets were harvested 

lowering the temperature. 

 

 

This chapter is based on the following publication: 

Ricardo M.P. da Silva, Paula M. López-Pérez, Carlos Elvira, João F. Mano, Julio San 

Román, Rui L. Reis. Poly(N-isopropylacrylamide) surface grafted chitosan membranes as a 

new substrate for cell sheet engineering and manipulation (submitted). 



Chapter 7 - Poly(N-isopropylacrylamide) surface grafted chitosan membranes 

128 

7.2 Introduction 

 

Poly(N-isopropylacrylamide) (PNIPAAm) is a soluble polymer in cold water that present a 

sudden precipitation upon heating above the lower critical solution temperature (LCST), at 

around 32ºC in pure water 1-3. This transition involves the breakage of intermolecular 

hydrogen bonds with the water molecules, which are replaced by intramolecular hydrogen 

bonds amongst the dehydrated amide groups. Subsequently, the PNIPAAm molecules 

assume a globule conformation, exposing the hydrophobic isopropyl groups to the water 

interface 4, 5. Therefore, when immobilised onto a solid substrate, the LCST behaviour of 

PNIPAAm render the surface with thermo-responsive wettability 6. The temperature control 

over the wettability of the PNIPAAm grafted substrates has been used to modulate protein 

adsorption 7-9 and confluent cells cultured on such substrates can be recovered as a 

contiguous cell sheet just by lowering the temperature 6, 10-12. In conventional cell culture on 

tissue culture polystyrene (TCPS), cells are harvested disaggregating the extracellular matrix 

(ECM) through the enzymatic action of trypsin and by simultaneously chelating the Ca2+ and 

Mg2+  ions with ethylenediaminetetraacetic acid (EDTA). However, non-specific proteases 

may damage critical cell surface proteins, such as ion channels and receptors, which 

constitute a major drawback of this cell harvesting method 13-17. Besides that, the recovery of 

the cells, together with the intact newly deposited ECM, represents an increased therapeutic 

potential with respect to the same single cells harvested by the conventional proteolytic 

methods, unable to keep cells confluence.  

The so-called cell sheet engineering has been mainly performed using TCPS dishes grafted 

with PNIPAAm 6, which are rigid non-swollen supports. The confluent cell sheets cultured in 

these thermo-responsive substrates present relatively long detachment times. Several 

attempts have been made to accelerate the thermal harvesting process, such as grafting 

PNIPAAm onto porous supports 18 and co-grafting PNIPAAm with poly(ethylene glycol) 

(PEG) 19. The potential of cell sheet engineering in the regenerative medicine field has been 

fostered by the development of manipulation techniques which allow transferring the fragile 

cell sheets from the thermo-responsive culture substrate to the desired place 20-22. Single cell 

sheets has been transplanted directly to human patients for cornea regeneration tissues 23, 

but they can also be layered in order to recreate thicker tissue-like constructs with homotypic 

24 or heterotypic 22 cells. However, the number of cell sheets that can be effectively layered 

without core ischemia or hypoxia is limited, because of restrictions on the delivery of 

nutrients and accumulation of metabolic wastes 11. The thermo-responsive surfaces 

fabricated to harvest intact cell sheets can also be used to keep the multilayered cell sheets 

in culture for a certain period of time and to allow the thermal recovery of the thicker 
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constructs. It should be noticed that the thermo-responsive PNIPAAm grafted TCPS 

substrates commonly used to culture single cell sheets are impermeable, which would 

decrease the rate of elimination of metabolic wastes and of nutrients supplying, since the 

construct side facing the culture surface would be wasted as a potential mass transfer area. 

In this work, we propose a methodology to grafted PNIPAAm on chitosan membranes aiming 

at being used as novel substrates for cell sheet engineering and manipulation. Chitosan is 

the soluble derivative of chitin obtained by N-deacetylation, which biocompatibility and non-

toxicity make it an excellent candidate as a raw material in the biomedical field 25. Chitosan 

has been proposed for a range of controlled drug release formulations 26, 27, as rate 

controlling membranes in transdermal delivery systems 28, 29, as a biomaterial 30-32 and for 

tissue engineering 33-37. We previously developed chitosan membranes that possess 

adequate permeation properties for the rapid elimination or delivery of small molecules 38. 

The use of these membranes grafted with PNIPAAm, if able to functioning as substrate for 

the thermal recovery of confluent cell sheets, would increase the mass transfer area for 

nutrients and metabolic wastes, hopefully supporting the culture of thicker layered cell sheet 

constructs. Moreover, the PNIPAAm grafted chitosan membranes reported herein will also 

be useful to transfer the cell sheets directly to the host site with minimal manipulation. Finally, 

fully hydrated chitosan membranes should be easily adaptable to several anatomical shapes, 

owning to its mechanical flexibility 30. 

 

7.3 Materials and methods 

 

7.3.1 Chitosan material and other reagents 

 

Chitosan raw-material from crab shells were purchased from Sigma-Aldrich and purified prior 

to use. Chitosan was dissolved at ~1% (w/v) in an aqueous acetic acid solution (1% w/v). 

The solution was filtered to remove the insoluble material. The clear solution obtained was 

precipitated adding a NaOH solution to form a white gel, which was sieved to remove the 

exuded liquid. This gel was thoroughly washed with distilled water (until no changes on the 

pH were detected), further washed/dehydrated with ethanol, freeze-dried, ground to powder 

and dried at 60ºC overnight. N-isopropylacrylamide (NIPAAm) (Acros-Organics) was 

recrystallised from a n-hexane/diethyl ether (5:1) mixture and dried overnight to remove 

residual solvent. All other reagents were used without further purification. 

The chitosan average molecular weight was of found to be 660 kDa by viscometry in 

CH3COOH 0.5 M/ NaCH3COO 0.2 M, according to the Mark-Houwing theory (k = 3.5x10
-4; a 
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= 0.76) 39. The degree of N-deacetylation (DD) was found to be 65.4% by means of 1st 

derivative UV spectrophotometry, using both glucosamine (GluN) and N-acetylglucosamine 

(GluNAc) standards for calibration 40. 

 

7.3.2 Preparation of chitosan membranes by solvent casting 

 

The chitosan solution was prepared by dissolving chitosan (1% wt.) in acetic acid solution 

(1% wt.). The solutions were carefully stirred in order to avoid the formation of any air bubble, 

poured on Petri Dishes (5 mg of chitosan/cm2) and dried at room temperature in a dust free 

environment. The resultant membranes (thickness approx. 50 µm) were neutralised in NaOH 

0.1 M solution for 10 min and washed thoroughly with distilled water. The obtained 

membranes (CTS) were hold in a frame and dried again, presenting a smooth surface 

without the typical wrinkles derived from the material shrinking during the drying process. 

 

7.3.3 Swelling of chitosan membranes in mixtures of isopropanol and water 

 

The swelling of chitosan membranes in mixtures of a non-solvent (isopropanol) and a solvent 

(water) was determined by immersing previously weighted chitosan membranes in mixtures 

of these solvents at compositions varying from pure water to pure isopropanol. After around 

2 h, equilibrated samples were blotted with filter paper to remove the adsorbed solvent and 

weighted immediately. The equilibrium swelling ratio (Seq) was calculated using the following 

equation: 

( ) 100%
0

0 ×
−

=
W

WW
Seq           (7.1) 

where W0 is the initial weight of the sample and W is the weight of the swelled sample. 

 

7.3.4 Surface modification by plasma treatment 

 

In one of our previous works 32, plasma treatment of chitosan membranes was very effective 

on improving the viability and proliferation of osteoblast-like cells. In this sense, the surface 

of some chitosan membranes was modified by plasma treatment according to that procedure 

32, before PNIPAAm grafting. Briefly, the plasma treatment was performed using a radio 

frequency (13.56 MHz) Plasma Prep5 equipment from Gala Intrument. Samples were 

exposed to O2 plasma at 30 W of power during 15 min. The pressure in the reactor was 
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maintained under 20 Pa by regulating the gas flow. The samples were only further processed 

after 48 h in order to assure that free radicals formed during the plasma treatment have been 

quenched. 

 

7.3.5 PNIPAAm grafting onto and into chitosan membranes 

 

The monomer (NIPAAm) was dissolved in several compositions of these isopropanol/water 

mixtures varying in the volume ratio from (50:50) to pure isopropanol (100:0). The initiator, 

2,2’-Azobis-isobutyronitrile (AIBN), was dissolved in each solvent mixture used in the 

respective monomer solution. Chitosan membranes were immersed in the monomer 

solutions. Both monomer and initiator solutions were deoxygenated under slow nitrogen flow 

for 10 min. The polymerisation was initiated adding the AIBN solution to the monomer 

solutions and the reaction was performed at 60ºC under N2 atmosphere for 18h. The 

volumes of NIPAAM and AIBN solutions give a final monomer concentration of 0.25 g/mL 

and AIBN to NIPAAm molar ratio of 1%. The grafted membranes were washed thoroughly 

with water/acetone (25:75) to remove un-reacted monomer and unbound polymer. Samples 

were labelled as iPrOH100, iPrOH90, iPrOH75 and iPrOH50, according to the volume of 

isopropanol used in the non-solvent/solvent mixture composition. The same PNIPAAm 

grafting procedure was also applied to plasma treated chitosan membranes at an 

isopropanol/water composition of 75:25 (P-iPrOH75). 

 

7.3.6 Assessment of chitosan membranes chemical modification 

 

PNIPAAm grafted membranes were analysed by Fourier Transform Infrared spectroscopy 

with the attenuated total reflection (FTIR-ATR) to assess the existence of major chemical 

changes occurring at lower depth. Spectra were recorded in a Perkin-Elmer (Waltham, USA) 

Spectrum One spectrophotometer (32 scans, resolution 4 cm-1). Proton nuclear magnetic 

resonance (1H-NMR) was used to estimate the total amount of grafted PNIPAAm, which 

were thought to be detectable for samples in which grafting reaction was performed in 

solvents with higher water content. Around 10 mg of each membrane sample was dissolved 

in 1 ml of 0.4% (w/v) of deuterium chloride (DCl) in D2O solution at room temperature. 

PNIPAAm spectrum was obtained dissolving in D2O. The 
1H-NMR spectra were acquired in a 

VARIAN INOVA-300 (300MHz) spectrometer. 
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7.3.7 X-Ray photoelectron spectroscopy (XPS) 

 

Possible chemical changes occurred on the surfaces after the modification were evaluated 

by XPS. The spectra were obtained using an ESCALAB 200A instrument from VG Scientific 

(UK) with PISCES software for data acquisition and analysis. A monochromatic Al-Kα 

radiation (hν=1486.60 eV) operating at 15 kV (300 W) was used. The measurements were 

performed in a constant Analyser Energy mode (CAE) and take off angle of 90º relative to 

the sample surfaces. Survey spectra were acquire using a pass energy of 50 eV, over a 

binding energy range of 0 to 1100 eV, and were used to calculate the elemental composition 

of the surfaces. Element atomic percentages were calculated from the integrated intensities 

of the survey spectra using the sensitivity factor of the instrument data system. High 

resolution spectra for different regions (C1s, O1s and N1s) were obtained using a pass 

energy of 20 eV and were peak-fitted using a least-squares peak analysis software, 

XPSPEAK version 4.1, using the Gaussian/Lorenzian sum function. Background counts were 

subtracted using a linear baseline and the sample charging was corrected assigning a 

binding energy of 285.0 eV to the saturated hydrocarbons C1s peak. 

 

7.3.8 Water uptake kinetics and equilibrium hydration degree 

 

The water uptake measurements were undertaken in phosphate buffer saline (PBS) solution, 

prepared dissolving PBS tablets from Sigma in a suitable amount of water (NaCl 0.137 M; 

KCl 0.0022 M; phosphate buffer 0.01 M; pH 7.4 at 25ºC). The water uptake was determined 

immersing previously weighted chitosan membranes in buffer solution at 37 ± 1ºC. After each 

time period samples were blotted with filter paper to remove the adsorbed water and 

weighted immediately. The calculation of the water uptake (WU) was also based on equation 

7.1. The equilibrium hydration degree (WUeq) in PBS solution was taken as the last point of 

the water sorption kinetic curves. 

 

7.3.9 Cell culture 

 

A human foetal lung cell line (MRC-5), an immortalized cell line with fibroblast-like 

morphology, was obtained from European Collection of Cell Cultures (ECACC, UK) and was 

used in the cell culture studies. The cells were cultured in Dulbecco’s Modified Eagle’s 

Medium (DMEM; Sigma-Aldrich, Inc, USA) supplemented with 10000 U/ml penicillin-G 

sodium, 10000 µg/ml streptomycin sulfate and 25 µg/ml amphotericin B in a 0.85% saline 
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(Gibco, Invitrogen Corporation, UK) and 10% of heat-inactivated fetal bovine serum (FBS; 

Biochrom AG, Germany) in a humidified atmosphere with 5% of CO2 at 37ºC. Membranes 

were cut with 14 mm diameter and placed onto 24 well culture plates. Prior to culturing, all 

samples were sterilized by adding 1 ml of 70% ethanol aqueous solution for 90 minutes and 

subsequently washed with sterile phosphate buffered saline solution (PBS, Sigma Chemical 

Co., USA) to remove the remaining ethanol. Cells were seeded on the materials at a 

concentration of 7x104 cells/ml, 1 ml per well and incubated for 10 days, time at which the 

cells seeded on plasma treated materials (P-iPrOH75) were 100% confluent. 

 

7.3.10 Cell sheet detachment and assessment of the cell viability 

 

After 10 days of culture, plates were removed from the incubator and observed by light 

microscopy. The cells cultured on the different samples were continuously observed to 

assess the eventual detachment from the surface at room temperature (c.a. 16ºC). Cell 

viability was assessed after Calcein AM staining. A 2:1000 Calcein AM solution was 

prepared with DMEM culture medium and 1000 µl were added to each sample culture. Plates 

were incubated for 15 minutes at 37ºC in a humidified atmosphere of 5% CO2 and cell 

fluorescence examined in an Axioplan Imager Z1 from Zeiss.  

 

7.4 Results and discussion 

 

7.4.1 Isopropanol-water mixtures solvent uptake 

 

The control of the swelling capability of the chitosan membranes can be tightly achieved by 

changing the composition of isopropanol and water mixtures. As it can be observed in Figure 

7.1, the swelling equilibrium degree varies linearly with the volume composition of the solvent 

mixtures for concentrations of isopropanol higher than 10%. The swelling decreases steadily 

with increasing proportions of isopropanol. On the other hand, the membranes did not swell 

at all for the pure non-solvent. This result should allow engineering membrane surfaces with 

different grafting yields and depths, by changing simultaneously the monomer uptake by the 

membranes (solubility), diffusion into the polymer matrix and the monomer reaction rate on 

the surface or inside the swollen membranes. Of course, the solvent composition is restricted 

to the isopropanol volume ratio (higher that 50%) in which monomer and initiator are soluble 

at the polymerisation temperature (60ºC). 
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Figure 7.1 The equilibrium swelling ratio (Seq) of chitosan membranes in mixtures of 

isopropanol and water at varying compositions represented in function of the isopropanol 

volume ratio. 

 

7.4.2 Assessment of chitosan membranes chemical modification 

 

The FTIR spectrum of PNIPAAm presents two intense bands at 1650 cm-1 and 1544 cm-1 

(Figure 7.2a), which are related to the amide groups. The first is assigned to the stretching 

vibration of C=O group (amide I), whereas the second corresponds to the bending vibration 

of NH and the symmetric stretching of N-C=O (amide II). The three bands appearing at 2972, 

2932, and 2874 cm-1 can be assigned to the stretching vibration of the C-H bonds from the 

isopropyl groups and polymer backbone. The band at 2972 cm-1 is particular intense.  

In the chitosan membranes (CTS) spectrum (Figure 7.2b), amide II band is observed at 1590 

cm-1. The intensity of the band at 1645cm-1, which is assigned to stretching vibration of 

carbonyl group (amide I), is in good agreement with the low deacetylation degree of the used 

chitosan. The bands assigned to the stretching vibration of C-O-C linkages in the 

polysaccharide structure appear at 1151, 1060, 1027 and 895 cm-1. The weak bands at 2927 

and 2874 cm-1 correspond to the stretching vibration of the C-H bonds.  

The non-swollen membranes modified in pure isopropanol exhibit an infrared spectrum very 

similar to the non-modified membranes (CTS) (Figure 7.2b). Nevertheless, it does not mean 

that the surface has not been modified, because in the FTIR-ATR technique the penetration 

depth of the IR radiation beam is around 1 - 5 µm into the polymer membrane at each 

internal reflection 41. Therefore, information cannot be inferred if the modification only affects 

the topmost layers of the sample, as it would be expected for the non-swollen membranes. 
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Figure 7.2 (a) FTIR-ATR spectrum of PNIPAAm; (b) comparative spectra of non-grafted 

chitosan membranes (CTS) and grafted in mixtures of isopropanol and water at varying 

compositions (iPrOH100, iPrOH90, iPrOH75 and iPrOH50). 

 

In the membrane samples modified in an isopropanol content higher than 90% a shoulder or 

band appears at the amide II region between 1590 and 1548 cm-1 (see Figure 7.2b), which 

becomes more intense as the solvent swelling ratio increases (from 100% to 50% of 

isopropanol), indicating a gradual increase in the amount of PNIPAAm. In fact, in the 

spectrum of iPrOH50 the amide II band suffered a displacement to 1548 cm-1, which is 

consistent with the wave number of that band in PNIPAAm. It is also observed an increase 
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on the intensities of the amide I band that can be explained due to the cumulative 

contribution of PNIPAAm amide groups (C=O) and of the chitosan acetyl groups (C=O). 

Furthermore, the relative intensity of the characteristic chitosan C-H stretching bands at 2874 

and 2927 cm-1 changed gradually and a new band appears at 2972 cm-1 (iPrOH50), which 

corresponds to the particularly intense C-H stretching band in the PNIPAAm spectrum. The 

described spectral changes point out an increase in the amount of PNIPAAm in a superficial 

region of the membranes (1-5 µm) when going from iPrOH90 to iPrOH50, i.e., when 

increasing the polymerisation solvent swelling ratio.  

The 1H-NMR spectroscopy results (Figure 7.3) give quantitative information with respect to 

the bulk modification yield. PNIPAAm pure homopolymer (see Figure 7.4) was previously 

dissolved in D2O and the proton chemical shifts (δ) were assigned: δ 1.00 (-CH3, isopropyl 

group), 1.42 (-CH2-, polymer chain), 1.78 (-CH-, polymer chain) and 3.76 (-CH-, isopropyl 

group). Only the first 2 peaks are well resolved from the chitosan spectrum. On the other 

hand, the chitosan peak assigned to the H2 proton (δ 2.95) of the GluN units is the only peak 

well resolved both from the PNIPAAm spectrum and from the HOD signal.  

 

0123456 ppm
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Figure 7.3 1H-NMR spectra of non-grafted chitosan membranes (CTS) and grafted in 

mixtures of isopropanol and water at varying compositions (iPrOH100, iPrOH90, iPrOH75 

and iPrOH50). 
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Figure 7.4 Chemical structures of chitosan and PNIPAAm 

 

We used the PNIPAAm peak from the isopropyl –CH3 groups (6 protons) to estimate the 

amount of this polymer relative to the amount of chitosan, which in turn was estimated using 

the GluN H2 proton signal and the DD value. It is clear from Figure 7.3 that PNIPAAm is 

undetectable for the samples treated under solvent conditions less favourable for swelling 

(iPrOH90 and iPrOH100). This means that the modification for low and non-swelling 

conditions, respectively, is much more superficial, as it would be expected. In turn, the 

relative amount of PNIPAAm is considerable high for iPrOH75 (5.3 wt. %) and only increases 

a little for iPrOH50 (5.5 wt. %), indicating a much higher modification depth of these 

membranes. 

 

7.4.3 Surface analysis by X-Ray photoelectron spectroscopy (XPS) 

 

The surface chemical composition of modified (iPrOH75 and iPrOH100) and non-modified 

membranes (CTS) was evaluated by XPS analysis. Table 7.1 shows the elemental 

composition of the surfaces (at%) extracted from the survey spectra. Carbon, oxygen and 

nitrogen appeared as major components for all the samples, as it was expected considering 

the chemical structure of chitosan and PNIPAAm (Figure 7.4). Some impurities (Ca, Cl and 

Zn) were also found, in very low percentage (< 0.5%) in the composition of some of the 

samples and were not considered for the element analysis. After the grafting, a polymer 

chain (-CH2-CH-) is introduced on the membranes surface and as it was expected, the C1s 

percentage increased in the modified samples compared with the untreated one.  

 

Table 7.1 Elemental composition (at%) of untreated chitosan membranes (CTS) and 

modified materials (iPrOH75 and iPrOH100) calculated from the XPS survey spectra 

Element CTS iPrOH75 iPrOH100 

C1s(at%) 65.13 77.49 74.29 

O1s(at%) 29.15 21.01 22.47 

N1s(at%) 5.72 1.50 3.24 
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Figure 7.5a shows the binding energy region corresponding to C1s peak (279.8-191.9 eV) for 

CTS samples. The peak-fitting was performed according with the chitosan chemical 

structure. The peak at 285.0 eV was assigned to C-H and C-C chemical bonds of the 

chitosan backbone. The second peak at 286.4 eV corresponded to C-OH, C-O and C-N-C=O 

carbons and, finally, the peak centred at 287.6 eV was assigned to O-C-O and N-C=O from 

the acetylated rings. It was not possible to perform the deconvolution of the band 

corresponding to C-NH2 bond, because amines are reported to induce small chemical shifts 

(around 0.6 eV) 42 and the band should be superimposed by the band of the hydrocarbons 

chemical bonds in chitosan, observed at 285.0 eV. 

In the case of linear PNIPAAm, it is expected a C1s spectra containing four peaks, allocated 

in the same position that chitosan peaks. Peaks at 285.0 eV and around 285.4 eV should be 

associated to hydrocarbons in the polymeric backbone. The peak corresponding to C-N-C=O 

should be situated around 286.5 eV and the carbon from the carbonyl group (N-C=O) should 

be allocated around 288.0 eV 43, 44. 

Figures 7.5b and 7.5c show the C1s region for the samples iPrOH75 and iPrOH100, 

respectively. The intensity of the band corresponding to the hydrocarbon bonds increases in 

both cases compared with CTS (Table 7.2), providing evidence that PNIPAAm polymer 

chains have been introduced on the surface through the modification procedure. In the case 

of the sample iPrOH100, this result had not been possible to confirm using less surface 

sensitive techniques such as FTIR-ATR, showing that the PNIPAAm chains grafting occurred 

at a very superficial level (the FTIR-ATR penetration depth of the FTIR-ATR analysis is in the 

range of 1 - 5 µm 41).  

The binding energy region corresponding to O1s peak (394.0-404.0 eV) for chitosan is 

showed in Figure 7.5d. The peak at 531.5 eV was assigned to carbonyl oxygen (N-C=O) 

presented in the N-acetyl-glucosamine rings. Oxygen atoms involved in hydroxyl bonds (C-

OH) were included in the peak appearing at 532.8 eV. The peak at 533.3 eV was identified 

as characteristic of the O-C-O bonds.  

PNIPAAm only posses one oxygen atom per polymer molecule been involved in amide 

bonds (N-C=O). Therefore, after the grafting, it was expected an increase in the peak 

allocated around 531.5 eV relatively to the peaks contained single C-O bonds. As can be 

observed from values showed in Table 7.2, when the modification is performed using 

isopropanol at 75% (Figure 7.5e) the first peak became much more intense, corroborating 

the PNIPAAm grafting. On the other hand, when 100% isopropanol was used for the grafting 

reaction (Figure 7.5f), this increase was not so drastic showing that the grafting occurred but 

at lower extent. 
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Figure 7.5 XPS high resolution spectra for C1s (left) and O1s (right). From top to down: 

CTS, iPrOH75 and iPrOH100 

 

Table 7.2 C1s and O1s core levels composition (%) for CTS, iPrOH75 and iPrOH100 

C1s core level O1s core level 

Bond CTS iPrOH75 iPrOH100 Bond CTS iPrOH75 iPrOH100 

C-C; C-H 33.0 75.3 63.4 N-C=O 14.0 52.8 27.0 

C-O; C-N-C=O 38.8 14.8 22.4 C-OH 56.6 47.2 73.1 

N-C=O; O-C-O 28.3 9.9 14.1 O-C-O 29.4 0.0 0.0 
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7.4.4 Chitosan membranes equilibrium hydration degree 

 

The chitosan membranes water uptake kinetics (Figure 7.6) in PBS solution was very fast, 

the equilibrium hydration degree (WUeq) being achieved in less than 5 min. It is interesting to 

notice that the non-modified chitosan membranes (CTS) presented the higher WUeq of 

approx. 160% and that it decreases from iPrOH100 to iPrOH75, being lower for membranes 

polymerised at higher swelling solvent conditions. During the NIPAAm polymerisation the 

growing polymer chains predictably occupy the spaces created by the swelling in the reaction 

solvent. Being so, the conditions that induce higher swelling rates should allow for the 

entrance of higher amounts of newly formed polymer. Interestingly, the WUeq is inversely 

related to the amount of PNIPAAm chains that entered the chitosan membranes pre-

established molecular network. 
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Figure 7.6 (a) Water uptake kinetics in PBS solution (37ºC) of non-grafted chitosan 

membranes (CTS) and grafted in mixtures of isopropanol and water at varying compositions 

(iPrOH100, iPrOH90, iPrOH75 and iPrOH50). Data represents mean ± standard deviation for 

n=3 

 

On the other hand, the iPrOH50 equilibrium hydration degree was higher than that of 

iPrOH75, oppositely to what would be expected. Nevertheless, although the monomer and 

initiator are both soluble at the polymerisation conditions of isopropanol at 50% and 60ºC, the 

polymerised NIPAAm precipitates partially, which may explain such discontinuity in the 

tendency of equilibrium hydration degree. The precipitation of the newly formed PNIPAAm 

also explains why the bulk grafting yield calculated by 1H-NMR is quite similar for both 
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iPrOH50 and iPrOH75 samples, although the swelling of the chitosan membranes in 

isopropanol at 50% is twice than that determined at 75%. 

 

7.4.5 PNIPAAm covalent grafting versus chain entanglement 

 

The immobilisation of PNIPAAm chains on the membranes may take place by means of 

covalent bonds, formed by transfer reactions of the growing PNIPAAm radicals to the side 

substituents of the pyranosyl groups of chitosan. In radical polymerisation, the growth of 

each radical proceeds by successive addiction of monomer units until interrupted by one of 

the chain termination mechanisms, such as for instance chain transfer. Chain transfer 

reactions may occur towards the solvents, initiator, monomers, impurities or other molecules 

present in the reaction system, in an extent that depends on the chain transfer constant of 

each individual component, according to the Mayo equation 45. It has been reported that 

grafting of poly(vinyl acetate) to poly(vinyl alcohol) occurs through a chain transfer 

mechanism 46. Moreover, it was found that poly(acrylic acid-co-acrylamide) chains may be 

grafted onto starch-based polysaccharides by transfer reactions of the growing radicals on 

the side substituents of the pyranosyl cycles 47. In fact, chain transfer seems to be an 

important mechanism on the grafting of PNIPAAm onto chitosan membranes. The XPS core 

level spectra for C1s and O1s show that PNIPAAm is grafted on the surface of non-swollen 

chitosan membranes (iPrOH100), in which chain entanglement is not an expected 

mechanism for PNIPAAm chains immobilization. In fact, the non-swollen nature of these 

samples (iPrOH100) should not allow the penetration of the growing radical and the samples 

were thoroughly washed with water/acetone to remove the non-grafted PNIPAAm. In the 

other samples (iPrOH50, iPrOH75, P-iPrOH75 and iPrOH90), polymer chains physical 

entanglement can not be discharged as a possible mechanism for PNIPAAm immobilization. 

Nevertheless, according to the Mayo theory 45, grafting through chain transfer reaction should 

be favoured inside the membrane, because chitosan (chain transfer agent) concentration is 

much higher in the interior of the swollen members than at the surface level, oppositely to the 

solvent concentration, which is higher at the membranes surface. 

 

7.4.6 Cell sheet detachment and assessment of the cell viability 

 

The non-modified chitosan membranes (CTS) showed poor cell adhesion and proliferation 

(see Figure 7.7). The few viable cells adhered on the CTS sample surface after 10 days of 

culture did not present the typical fibroblast-like morphology, being quite round and sparsely 
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distributed. The poor cell adhesion and proliferation on chitosan membranes have been 

previously reported 32, 48. The iPrOH50 membranes presented very similar results (not 

shown). In turn, the cells cultured on the membranes modified using solvent compositions 

varying from 75% to 100% of isopropanol presented the typical elongated fibroblastic 

morphology. Moreover, it was possible to observe regions on the surface of these samples 

where cells reach the confluence, but also regions with only few adhered cells. Although the 

modification with PNIPAAm improved the surface properties in terms of cell behaviour, they 

did not present adequate cell proliferation to reach confluence all over the samples surface, 

within the pre-determined culture period. As our aim is to be able to create cell sheets, which 

can be harvested by simply lowering the temperature, cell confluence is a critical parameter 

to achieve. In one of our previous works 32, plasma treatment was very effective on improving 

the viability and proliferation of osteoblast-like cells. In this sense, in this work we used the 

same PNIPAAm grafting procedure on plasma treated chitosan membranes (P-iPrOH75). 

Fully confluent and viable cell sheets were formed on this sample after 10 days of culture 

(see Figure 7.7). As it can be observed in Figure 7.8, the confluent cell sheets were 

harvested from the modified thermo-responsive chitosan membranes (P-iPrOH75) keeping 

the cultured cells at room temperature (c.a. 16ºC). Although it was not possible to reach 

100% confluence on the other PNIPAAm modified chitosan membranes (iPrOH50, iPrOH75, 

iPrOH90 and iPrOH100), we were able to observe the low temperature detachment of some 

single cells and smaller patches of confluent cells. 

 

 

Figure 7.7 Fluorescence microscopy of viable human foetal lung fibroblast cells stained with 

Calcein AM solution in DMEM culture medium and after 10 days of culture on both non-

modified chitosan membranes (CTS) and PNIPAAm grafted (iPrOH90, P-iPrOH75 and 

iPrOH100). 
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Figure 7.8 Light microscopy sequence (a → f) of the detachment, at room temperature (ca. 

16ºC), of a confluent cell sheet grown on the PNIPAAm grafted chitosan membranes  

(P-iPrOH75). 

 

7.5 Conclusions 

 

The control of the swelling capability of the chitosan membranes could be tightly achieved by 

changing the composition of isopropanol and water mixtures, providing a suitable mean to 

tailor the modification yield and depth. The changes in the FTIR-ATR spectra point out to an 

increase in the amount of PNIPAAm in a superficial region of the membranes (1-5 µm) by 

means of increasing the polymerisation solvent swelling ratio. PNIPAAm was not detected in 

the 1H-NMR spectra of the samples modified at low (iPrOH90) and non-swelling conditions 

(iPrOH100), revealing that the modification occurs mainly at superficial level, as it would be 

expected. In turn, the grafting yield calculated by 1H-NMR is considerable high for iPrOH75 

(5.3 wt. %) and iPrOH50 (5.5 wt. %), indicating a much deeper modification of these 

membranes. The XPS core level spectra for C1s and O1s show that PNIPAAm is grafted on 

the surface of non-swollen chitosan membranes (iPrOH100), in which chain entanglement is 

not an expected mechanism for PNIPAAm chains immobilization.  

The immobilisation of PNIPAAm chains on these membranes should take place by transfer 

reactions of the growing PNIPAAm radicals to the side substituents of the pyranosyl groups 

of chitosan. In the other samples (iPrOH50, iPrOH75, P-iPrOH75 and iPrOH90), polymer 

chains physical entanglement can not be discharged as a concomitant mechanism for 

PNIPAAm immobilization. 
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The plasma treated chitosan membranes grafted with PNIPAAm (P-iPrOH75) produced fully 

confluent viable cell sheets after 10 days of culture. The confluent cell sheets were harvested 

from the thermo-responsive chitosan membranes (P-iPrOH75) by lowering the temperature. 

Although it was not possible to reach 100% confluence on the other PNIPAAm modified 

chitosan membranes, we were able to observe the low temperature detachment of some 

single cells and smaller patches of confluent cells. 

The use of chitosan membranes, which possess adequate permeation properties for the 

rapid elimination or delivery of small molecules 38, would increase the mass transfer of 

nutrients and metabolic wastes, hopefully supporting the culture of thicker layered cell sheet 

constructs. Finally, fully hydrated chitosan membranes are flexible 30 and they should be 

easily adaptable to several anatomical shapes, facilitating the transfer of either single cell 

sheets or layered cell sheet constructs directly to the host site with minimal manipulation. 

 

7.6 Acknowledgements 

 

This work was partially supported by the Portuguese Foundation for Science and Technology 

(FCT), through funds from the POCTI and/or FEDER programmes and through the 

scholarship SFRH/BD/6862/2001 granted to Ricardo M. P. da Silva. Paula M. López-Pérez 

acknowledges EU Marie Curie Actions, Alea Jacta EST (MEST-CT-2004-008104) for 

providing her PhD Grant. This work was carried out under the scope of the European NoE 

EXPERTISSUES (NMP3-CT-2004-500283) and was also partially supported by the 

European Union funded STREP Project HIPPOCRATES (NMP3-CT-2003-505758). 

 

7.7 References 

 

1. Fujishige, S.; Kubota, K.; Ando, I., Phase-transition of aqueous-solutions of poly(N-

isopropylacrylamide) and poly(N-isopropylmethacrylamide). Journal of Physical Chemistry 

1989, 93, (8), 3311-3313. 

2. Kubota, K.; Fujishige, S.; Ando, I., Single-chain transition of poly(N-

isopropylacrylamide) in water. Journal of Physical Chemistry 1990, 94, (12), 5154-5158. 

3. Scarpa, J. S.; Mueller, D. D.; Klotz, I. M., Slow hydrogen-deuterium exchange in a non-

alfa-helical polyamide. Journal of the American Chemical Society 1967, 89, (24), 6024-6030. 

4. Baysal, B. M.; Karasz, F. E., Coil-globule collapse in flexible macromolecules. 

Macromolecular Theory and Simulations 2003, 12, (9), 627-646. 



Chapter 7 - Poly(N-isopropylacrylamide) surface grafted chitosan membranes 

145 

5. Graziano, G., On the temperature-induced coil to globule transition of poly-N-

isopropylacrylamide in dilute aqueous solutions. International Journal of Biological 

Macromolecules 2000, 27, (1), 89-97. 

6. da Silva, R. M. P.; Mano, J. F.; Reis, R. L., Smart thermoresponsive coatings and 

surfaces for tissue engineering: switching cell-material boundaries. Trends in Biotechnology 

2007, 25, (12), 577-583. 

7. Yamato, M.; Konno, C.; Kushida, A.; Hirose, M.; Utsumi, M.; Kikuchi, A.; Okano, T., 

Release of adsorbed fibronectin from temperature-responsive culture surfaces requires 

cellular activity. Biomaterials 2000, 21, (10), 981-986. 

8. Huber, D. L.; Manginell, R. P.; Samara, M. A.; Kim, B. I.; Bunker, B. C., Programmed 

adsorption and release of proteins in a microfluidic device. Science 2003, 301, (5631), 352-

354. 

9. Duracher, D.; Veyret, R.; Elaissari, A.; Pichot, C., Adsorption of bovine serum albumin 

protein onto amino-containing thermosensitive core-shell latexes. Polymer International 

2004, 53, (5), 618-626. 

10. Shimizu, T.; Yamato, M.; Kikuchi, A.; Okano, T., Cell sheet engineering for myocardial 

tissue reconstruction. Biomaterials 2003, 24, (13), 2309-2316. 

11. Yang, J.; Yamato, M.; Kohno, C.; Nishimoto, A.; Sekine, H.; Fukai, F.; Okano, T., Cell 

sheet engineering: Recreating tissues without biodegradable scaffolds. Biomaterials 2005, 

26, (33), 6415-6422. 

12. Kikuchi, A.; Okano, T., Nanostructured designs of biomedical materials: applications of 

cell sheet engineering to functional regenerative tissues and organs. Journal of Controlled 

Release 2005, 101, (1-3), 69-84. 

13. Yamada, N.; Okano, T.; Sakai, H.; Karikusa, F.; Sawasaki, Y.; Sakurai, Y., 

Thermoresponsive polymeric surfaces - control of attachment and detachment of cultured-

cells. Makromolekulare Chemie-Rapid Communications 1990, 11, (11), 571-576. 

14. Ide, T.; Nishida, K.; Yamato, M.; Sumide, T.; Utsumi, M.; Nozaki, T.; Kikuchi, A.; 

Okano, T.; Tano, Y., Structural characterization of bioengineered human corneal endothelial 

cell sheets fabricated on temperature-responsive culture dishes. Biomaterials 2006, 27, (4), 

607-614. 

15. Nakajima, K.; Honda, S.; Nakamura, Y.; Lopez-Redondo, F.; Kohsaka, S.; Yamato, M.; 

Kikuchi, A.; Okano, T., Intact microglia are cultured and non-invasively harvested without 

pathological activation using a novel cultured cell recovery method. Biomaterials 2001, 22, 

(11), 1213-1223. 

16. Von Recum, H. A.; Okano, T.; Kim, S. W.; Bernstein, P. S., Maintenance of retinoid 

metabolism in human retinal pigment epithelium cell culture. Experimental Eye Research 

1999, 69, (1), 97-107. 



Chapter 7 - Poly(N-isopropylacrylamide) surface grafted chitosan membranes 

146 

17. Canavan, H. E.; Cheng, X. H.; Graham, D. J.; Ratner, B. D.; Castner, D. G., Cell sheet 

detachment affects the extracellular matrix: a surface science study comparing thermal liftoff, 

enzymatic, and mechanical methods. Journal of Biomedical Materials Research Part A 2005, 

75A, (1), 1-13. 

18. Kwon, O. H.; Kikuchi, A.; Yamato, M.; Sakurai, Y.; Okano, T., Rapid cell sheet 

detachment from poly(N-isopropylacrylamide)-grafted porous cell culture membranes. 

Journal Of Biomedical Materials Research 2000, 50, (1), 82-89. 

19. Kwon, O. H.; Kikuchi, A.; Yamato, M.; Okano, T., Accelerated cell sheet recovery by 

co-grafting of PEG with PIPAAm onto porous cell culture membranes. Biomaterials 2003, 24, 

(7), 1223-1232. 

20. Yamato, M.; Utsumi, M.; Kushida, A.; Konno, C.; Kikuchi, A.; Okano, T., Thermo-

responsive culture dishes allow the intact harvest of multilayered keratinocyte sheets without 

dispase by reducing temperature. Tissue Engineering 2001, 7, (4), 473-480. 

21. Shimizu, T.; Yamato, M.; Kikuchi, A.; Okano, T., Two-dimensional manipulation of 

cardiac myocyte sheets utilizing temperature-responsive culture dishes augments the 

pulsatile amplitude. Tissue Engineering 2001, 7, (2), 141-151. 

22. Harimoto, M.; Yamato, M.; Hirose, M.; Takahashi, C.; Isoi, Y.; Kikuchi, A.; Okano, T., 

Novel approach for achieving double-layered cell sheets co-culture: overlaying endothelial 

cell sheets onto monolayer hepatocytes utilizing temperature-responsive culture dishes. 

Journal of Biomedical Materials Research 2002, 62, (3), 464-470. 

23. Nishida, K.; Yamato, M.; Hayashida, Y.; Watanabe, K.; Yamamoto, K.; Adachi, E.; 

Nagai, S.; Kikuchi, A.; Maeda, N.; Watanabe, H.; Okano, T.; Tano, Y., Corneal reconstruction 

with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. New 

England Journal Of Medicine 2004, 351, (12), 1187-1196. 

24. Shimizu, T.; Yamato, M.; Isoi, Y.; Akutsu, T.; Setomaru, T.; Abe, K.; Kikuchi, A.; 

Umezu, M.; Okano, T., Fabrication of pulsatile cardiac tissue grafts using a novel 3-

dimensional cell sheet manipulation technique and temperature-responsive cell culture 

surfaces. Circulation Research 2002, 90, (3), E40-E48. 

25. Kumar, M., A review of chitin and chitosan applications. Reactive & Functional 

Polymers 2000, 46, (1), 1-27. 

26. Wang, C.; Ye, W.; Zheng, Y.; Liu, X.; Tong, Z., Fabrication of drug-loaded 

biodegradable microcapsules for controlled release by combination of solvent evaporation 

and layer-by-layer self-assembly. International Journal Of Pharmaceutics 2007, 338, (1-2), 

165-173. 

27. Prabaharan, M.; Mano, J. F., Chitosan-based particles as controlled drug delivery 

systems. Drug Delivery 2005, 12, (1), 41-57. 



Chapter 7 - Poly(N-isopropylacrylamide) surface grafted chitosan membranes 

147 

28. Siddaramaiah; Kumar, P.; Divya, K. H.; Mhemavathi, B. T.; Manjula, D. S., 

Chitosan/HPMC polymer blends for developing transdermal drug delivery systems. Journal 

Of Macromolecular Science-Pure And Applied Chemistry 2006, A43, (3), 601-607. 

29. Thacharodi, D.; Panduranga Rao, K., Rate-controlling biopolymer membranes as 

transdermal delivery systems for nifedipine: Development and in vitro evaluations. 

Biomaterials 1996, 17, (13), 1307. 

30. Silva, R. M.; Silva, G. A.; Coutinho, O. P.; Mano, J. F.; Reis, R. L., Preparation and 

characterisation in simulated body conditions of glutaraldehyde crosslinked chitosan 

membranes. Journal Of Materials Science-Materials In Medicine 2004, 15, (10), 1105-1112. 

31. Silva, R. M.; Elvira, C.; Mano, J. F.; San Roman, J.; Reis, R. L., Influence of beta-

radiation sterilisation in properties of new chitosan/soybean protein isolate membranes for 

guided bone regeneration. Journal Of Materials Science-Materials In Medicine 2004, 15, (4), 

523-528. 

32. Lopez-Perez, P. M.; Marques, A. P.; da Silva, R. M. P.; Pashkuleva, I.; Reis, R. L., 

Effect of chitosan membranes’ surface modification via plasma induced polymerization on 

the adhesion of Osteoblast-like cells. Journal of Materials Chemistry 2007, 17, (38), 4064-

4071. 

33. Tuzlakoglu, K.; Alves, C. M.; Mano, J. F.; Reis, R. L., Production and characterization 

of chitosan fibers and 3-D fiber mesh scaffolds for tissue engineering applications. 

Macromolecular Bioscience 2004, 4, (8), 811-819. 

34. Silva, G. A.; Ducheyne, P.; Reis, R. L., Materials in particulate form for tissue 

engineering. 1. Basic concepts. Journal of Tissue Engineering and Regenerative Medicine 

2007, 1, (1), 4-24. 

35. Baran, E. T.; Tuzlakoglu, K.; Salgado, A. J.; Reis, R. L., Multichannel mould processing 

of 3D structures from microporous coralline hydroxyapatite granules and chitosan support 

materials for guided tissue regeneration/engineering. Journal of Materials Science-Materials 

in Medicine 2004, 15, (2), 161-165. 

36. Patel, M.; Mao, L.; Wu, B.; VandeVord, P. J., GDNF-chitosan blended nerve guides: a 

functional study. Journal of Tissue Engineering and Regenerative Medicine 2007, 1, (5), 360-

367. 

37. Mano, J. F.; Reis, R. L., Osteochondral defects: present situation and tissue 

engineering approaches. Journal of Tissue Engineering and Regenerative Medicine 2007, 1, 

(4), 261-273. 

38. da Silva, R. M. P.; Caridade, S. G.; San Roman, J.; Mano, J. F.; Reis, R. L., Transport 

of small anionic and neutral solutes through chitosan membranes: dependence on 

crosslinking and chelation of divalent cations. Submitted 2007. 



Chapter 7 - Poly(N-isopropylacrylamide) surface grafted chitosan membranes 

148 

39. Terbojevich, M.; Cosani, A.; Muzzarelli, R. A. A., Molecular parameters of chitosans 

depolymerized with the aid of papain. Carbohydrate Polymers 1996, 29, (1), 63-68. 

40. da Silva, R.; Mano, J.; Reis, R., An exact mathematical description for the 

straightforward determination of the degree of N-acetylation of chitosan by the 1st derivative 

UV spectrophotometry. Submitted 2007. 

41. Ratner, B. D., Surface Properties of Materials. In Biomaterials Science: An introduction 

to Materials in Medicine, Ratner, B. D.; Hoffman, A. S.; Schoen, F. J.; Lemons, J. E., Eds. 

Academic Press: San Diego 1996; pp 21-35. 

42. Briggs, D., Surface analysis of polymers by XPS and static SIMS. Cambridge 

University Press: 1998; p 47-87. 

43. Adem, E.; Avalos-Borja, M.; Bucio, E.; Burillo, G.; Castillon, F. F.; Cota, L., Surface 

characterization of binary grafting of AAc/NIPAAm onto poly(tetrafluoroethylene) (PTFE). 

Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with 

Materials and Atoms 2005, 234, (4), 471-476. 

44. Bullett, N. A.; Talib, R. A.; Short, R. D.; McArthur, S. L.; Shard, A. G., Chemical and 

thermo-responsive characterisation of surfaces formed by plasma polymerisation of N-

isopropyl acrylamide. Surface and Interface Analysis 2006, 38, (7), 1109-1116. 

45. Mayo, F. R., Chain Transfer in the Polymerization of Styrene: The Reaction of Solvents 

with Free Radicals. J. Am. Chem. Soc. 1943, 65, (12), 2324-2329. 

46. Okaya, T.; Fujita, H.; Suzuki, A.; Kikuchi, K., Study on chain transfer reaction of 

poly(vinyl acetate) radical with poly(vinyl alcohol) in a homogeneous system. Designed 

Monomers and Polymers 2004, 7, (3), 269. 

47. Elvira, C.; Mano, J. F.; San Roman, J.; Reis, R. L., Starch-based biodegradable 

hydrogels with potential biomedical applications as drug delivery systems. Biomaterials 2002, 

23, (9), 1955-1966. 

48. Zhu, X.; Chian, K. S.; Chan-Park, M. B. E.; Lee, S. T., Effect of argon-plasma treatment 

on proliferation of human-skin-derived fibroblast on chitosan membrane in vitro. Journal Of 

Biomedical Materials Research Part A 2005, 73A, (3), 264-274. 

 

 



149 

Chapter 8 

General conclusions and final remarks 

 

The inherent variability of natural materials demands the establishment of adequate 

purification and characterisation procedures for the natural origin raw-materials. Chitosan is a 

natural-derived polymer procuded by N-deacetylation of chitin, which can be obtained with a 

good purity. For this polymer, the N-deacetylation reaction can be other factor of variability, 

since producers often supply products with quite variable extents of N-deacetylation between 

batches. Although this might be regarded as a shortcoming, this problem can be relatively 

overcome by a careful examination of chitosan properties, such as the degree of N-

acetylation (DA) and the molecular weight, and by keeping the same batch of purified 

materials throughout a closed set of experiments. It is also thought to be highly valuable to 

set up some correction measures of the raw-materials basic properties such as procedures 

for the selective N-acetylation or further N-deacetylation. This allows one not to be so 

dependent on the properties of the supplied chitosan raw-materials, as well as to tailor it to 

each specific application.  

Chitosan was undoubtedly the centre of gravity of this thesis from the viewpoint of the 

materials in study, which justified a greater investment in its characterisation and to control 

its properties. In fact, one entire chapter (chapter 3) is dedicated to the determination of the 

degree of N-acetylation, in which the 1st derivative UV spectrophotometry method is 

improved and compared with the gold-standard 1H-NMR methods. We derived a 

mathematical expression that avoids the use of empiric correction curves for the 

determination of the DA of highly deacetylated samples. The DA is determined directly from 

the mass concentration of chitosan solutions and the 1st derivative value of its UV spectra at 

202 nm (the acetic acid solutions zero crossing point), over the entire range of chitosan DA. 

It was also defined a solid criterion for the absorbance range within which the method 

remains valid. A procedure was also proposed for the accurate mass determination of the 

hygroscopic chitosan. In our opinion, the 1st derivative UV spectrophotometry is a robust, 

accurate and precise technique for the determination of the DA of soluble chitosan samples. 

It presents several advantages such as: (i) it is relatively tolerant to the presence of residual 

acetic acid and protein contaminants; (ii) it only requires a small amount of sample, simple 

reagents and equipments; and (iii) the high value of the 1st derivative of the GluNAc molar 

absorptivity should assure a good accuracy on the determination of the GluNAc residues 

even at very low concentrations (high DA). The values of the DA for several chitosan 

samples for the entire range of the copolymer solubility confirmed the good precision of the 
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method with typical coefficients of variation around 1%. The comparison with an optimised 

1H-NMR determination reiterates the expected fine accuracy of the 1st derivative UV 

spectrophotometry. The proposed approach is important to automate the routine 

determination of the DA at large industrial scale, especially if taking into consideration the 

currently available potent multiwell microplate readers, which allow measuring hundreds of 

samples in just few minutes.  

In what concerns to the applications for regenerative medicine, the first goal of this thesis 

was the development of biodegradable membranes based on chitosan and soybean protein 

isolate (SI) for guided bone regeneration (GBR). The GBR concept consists on the use of 

barrier membranes that prevent the in-growth of non-desired connective tissue, which in 

critical size defects inhibit the formation of new bone through the natural healing process. 

Membranes presenting very interesting morphology and properties could be obtained by 

combining chitosan and SI. The partial insolubility of SI at the processing pH, as well as its 

asymmetric distribution through the transversal section, being the SI insoluble particles more 

concentrated at the mould exposed surface, are desirable features to attain a controlled 

degradation rate in vivo. Furthermore, it can be foreseen a two-step degradation mechanism, 

eventually leading to in situ porous formation, which might be clinically useful. Moreover, 

since in general no remarkable differences were observed for the studied bulk and surface 

properties of the membranes, it might be possible to tailor their degradation and their 

biological response without changing their key properties, by means of controlling the blends’ 

composition.  

Although the chitosan-based membranes were initially thought for GBR, the key aim of the 

thesis (in the viewpoint of the envisaged applications for the developed materials) was a 

relatively new technology so-called cell sheet engineering. Even though relatively 

independent, chapter 5, 6 and 7 converge to that objective. The first two referred to chapters 

are related to the characterization of the chitosan membranes, in order to justify their use as 

underlying substrates to graft PNIPAAm for cell sheet engineering applications. Properties of 

those substrates such as permeability and elasticity can be advantageous to introduce new 

functionalities, like for instances combining with drug delivery strategies, conferring 

mechanical compatibility to the substrates, introducing mechanical stimulus, direct release of 

the cell sheet on the target place, etc. The remaining experimental chapter is specifically 

focused on the cell sheet engineering application.  

In chapter 5, chitosan membranes were prepared, and in some cases crosslinked with 

glutaraldehyde, in order to obtain different degrees of crosslinking. A method was 

implemented to test the tensile mechanical properties of chitosan-based membranes in an 

aqueous solution environment, aiming at simulating physiological relevant conditions. This 

novel method is highly relevant to evaluate the mechanical performance of new biomaterials 
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that present high swelling ratios, since this evaluation both under static and dynamic 

solicitations at an air atmosphere is worthless. Actually, these test conditions are not 

representative of the physiological environments in which the swollen materials have a 

completely different mechanical behaviour. We found that the mechanical resistance to 

stretching decreased sharply when swollen in an aqueous environment, mainly due to the 

high hydration equilibrium degree of chitosan materials. Chitosan membranes and 

membranes crosslinked with small amounts of glutaraldehyde become more flexible, making 

them suitable for some biomedical applications. Moreover, dynamic mechanical analysis in 

temperature scan mode confirmed the mechanical stiffness dependence on the temperature 

of crosslinked chitosan membranes. This dependence increased with the crosslinking 

degree. All membrane formulations exhibit a viscoelastic behaviour which could have 

advantages in the mechanical compatibility with the tissues to be repaired. All formulations 

were found to be relatively stable in isotonic saline solution up to 60 days. In fact, the weight 

loss was never superior than 12% and the membranes have kept its mechanical integrity. 

Another key aspect of biomaterials characterisation addressed in chapter 5 was the 

cytotoxicity screening. The preliminary cell culture cytotoxicity studies performed indicate that 

there is a good interaction of the tested materials with the fibroblast-like cells. The 

biochemical tests confirmed that the viability of cells in contact with the extracts is 

maintained. In some cases an increased biochemical activity of cells is observed, which can 

be correlated indirectly with cell proliferation. The biological performance of the membranes 

seems to pre-indicate that they are suitable to be used in biomedical applications.  

In chapter 6, it was studied the transport of small anionic and neutral molecules across 

chitosan membranes. Chitosan membranes were prepared by solvent casting and 

crosslinked with glutaraldehyde at several ratios. The permeability experiments were 

conducted using a home designed side-by-side diffusion cell to determine the flux of small 

molecules of similar size, both holding different chemical moieties, both ionised at the 

physiological pH (benzoic acid, salicylic acid and phthalic acid) and neutral (2-

phenylethanol). The permeability of the different model solutes revealed to be dependent on 

the affinity of these structurally similar molecules to chitosan, i.e., related to the partition 

coefficient determined in an independent experiment. The equilibrium swelling degree and 

the permeability of chitosan membranes showed a similar tendency, increasing until an 

intermediate crosslinking degree and then decreasing. This atypical behaviour is also 

described in chapter 5 and it was explained by a reduction in the crystallinity as the 

crosslinking degree increases. Finally, the permeability of the salicylate anion was enhanced 

by the presence of metal cations commonly present in biological fluids, such as calcium and 

magnesium, but remained unchanged for the neutral 2-phenylethanol. This effect was 

explained by the chelation of metal cations by the amine groups of chitosan, which increased 
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the partition coefficient. The change in the permeation properties of chitosan to anionic 

solutes in the present of these metallic cations is an important result and should be taken into 

consideration when trying to make in vitro predictions of the drug release from chitosan 

based controlled delivery systems. 

In chapter 7, PNIPAAm was originally immobilised on chitosan membranes to render the 

membranes with thermo-responsive surface properties. The aim was to create membranes 

suitable for cell culture and in which confluent cell sheets can be recovered by lowering the 

temperature. The chitosan membranes were immersed in monomer solutions that were 

polymerised via radical initiation. The composition of the polymerisation reaction solvent, 

which was a mixture of a chitosan non-solvent (isopropanol) and a solvent (water), offered an 

interesting route to obtain a tight control over the chitosan membranes swelling capability, 

providing a suitable way of tailoring the modification yield and depth. It was hypothesised that 

the different swelling ratio, obtained at different solvent composition of the reaction mixture, 

should drive simultaneously the monomer solubility and diffusion into the polymeric matrix, 

polymerisation reaction rate, as well as eventual chain transfer reactions to the side 

substituents of the pyranosyl groups of chitosan. A combined analysis of the modified 

membranes chemistry by 1H-NMR, FTIR-ATR and XPS showed that it was possible to 

control the chitosan modification yield and depth in the solvent composition range between 

75% and 100% of isopropanol. The immobilisation of PNIPAAm chains on the membranes 

modified using 100% of isopropanol should take place by transfer reactions of the growing 

PNIPAAm radicals to the side substituents of the pyranosyl groups of chitosan. In the cases 

were some water was added to the reaction solvent, polymer chains physical entanglement 

can not be discharged as a concomitant mechanism for PNIPAAm immobilisation. Some of 

the membranes were subjected to oxygen plasma treatment before the PNIPAAm 

immobilisation. The plasma treated chitosan membranes grafted with PNIPAAm (using a 

reaction solvent with 75% of isopropanol) produced fully confluent viable cell sheets after 10 

days of culture. The confluent cell sheets were harvested from the modified chitosan 

membranes lowering the temperature. Although it was not possible to reach the complete 

confluence on the other PNIPAAm modified chitosan membranes, it was also possible to 

observe the low temperature detachment of some single cells and smaller patches of 

confluent cells. 

The hypothetic use of chitosan membranes, which were found to be permeable to small 

molecules, would increase the mass transfer of nutrients and metabolic wastes, hopefully 

supporting the culture of thicker layered cell sheet construct. Additionally, fully hydrated 

chitosan membranes are flexible and they should be easily adaptable to different anatomical 

shapes, facilitating the transfer of either single cell sheets or layered cell sheet constructs 

directly to the host site with minimal manipulation. 
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Future work  

 

The scientific and technology development processes are a never-ended journey. Each 

closed research project opens a new range of questions and technological capabilities that 

can be exploited in multiple directions. The work developed in the scope of this thesis is not 

an exception. Herein, we do not intend, and we could never do so, to suggest exhaustively 

the possible directions for future work, but only to highlight some points that might be 

interesting and fruitful to exploit.  

 

As a start point, we should say that, although confluent cell sheets have been successfully 

obtained using the developed thermo-responsive surfaces, further adjustments on the 

chemistry should be considered in order to improve the performance on what concerns to 

cell adhesion and proliferation. These improvements should decrease the time necessary for 

seeded cells to reach confluence and consequently to produce a cell sheet. Other work 

directions might include: 

 

- To study the permeability of larger molecules and to determine the molecular weight cut-off 

of the chitosan membranes;  

- To create full models to accurately describe the diffusional mass transfer across the 

membranes, taking into account the interactions’ kinetics between the chitosan membranes 

matrix and the diffusing molecules;  

- To combine the release of growth factors, differentiation factor or other bioactive agents 

with relevant cell types in cell sheet engineering approaches; 

- To study how the mechanical properties of the underlying substrates affect the functionality 

of cell sheets created with cells of different phenotypes; for instance, which is the influence of 

the underlying substrates mechanical properties in the cardiomyocyte cell sheets pulsation; 

- To set up methodologies to produce thermo-responsive culture dishes inserts at a larger 

scale to be used as routine research instruments. 
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