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Ensaios Sobre Concorrência Hospitalar e Regulação

Resumo

Esta tese analisa o comportamento estratégico de hospitais em mercados regulados e concorrenciais.

No capítulo 2, é apresentado um modelo dinâmico em que os tempos de espera aumentam quando a

procura por cuidados hospitalares excede a oferta; os pacientes escolhem um hospital tendo em conside-

ração os tempos de espera; e os hospitais são alvo de penalizações àqueles associadas. Tais penalizações

reduzem os tempos de espera, mas políticas que fomentam a livre escolha dos pacientes têm o efeito con-

trário. Estes resultados são robustos a diferentes métodos de resolução, à estrutra das penalizações e à

formalização da utilidade dos pacientes. Mais, ainda que as penalizações sejam mais eficazes na redução

dos tempos de espera quando a sua estrutura é linear, o efeito negativo da escolha é mitigado por penali-

zações quadráticas. Estas conclusões são parcialmente derivadas da calibração do modelo com tempos

de espera e elasticidades observados no Serviço Nacional de Saúde inglês. Os capítulos 3 e 4 dedicam-se

à inércia na procura por cuidados hospitalares, que, de acordo com a recente literatura empírica, resulta

do efeito conjunto de custos de mudança e da persistência das preferências dos doentes. No capítulo

3, desenvolve-se um modelo com dois hospitais semi-altruístas e detentores de procura retida no qual o

efeito da redução de custos de mudança (exógenos) no bem-estar dos pacientes depende da tecnologia

de produção dos hospitais e do seu grau de altruísmo. Se a substituibilidade (complementaridade) entre

qualidade e volume de tratamentos for suficientemente fraca (forte) relativamente ao altruísmo, a quali-

dade média e a utilidade agregada dos doentes caem. Adicionalmente, se os hospitais forem capazes de

os controlar, os custos de mudança serão máximos e o mercado perfeitamente segmentado. O capítulo 4

trata da relação entre escolhas de hospital presentes e futuras gerada pela inércia da procura e investiga

o efeito das expectativas dos pacientes na qualidade dos cuidados de saúde. Pacientes com expectativas

míopes escolhem um hospital observando apenas variáveis presentes; pacientes ingénuos prevêem in-

corretamente o futuro, assumindo que a qualidade se manterá inalterada; e pacientes racionais prevêem

a evolução da qualidade. Conquanto seja mais alta na presença de pacientes ingénuos do que na de

míopes, a qualidade oscila entre ser máxima ou mínima sob expectativas racionais. Este resultado aplica-

-se igualmente aos ganhos de saúde dos doentes, sugerindo que a racionalidade nem sempre os beneficia.

Palavras-chave: concorrência hospitalar; custos de mudança; expectativas racionais; regulação; tem-

pos de espera.
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Essays on Hospital Behaviour and Regulation

Abstract

This thesis analyses the behaviour of competing hospitals in regulated markets. Chapter 2 presents

a dynamic model where waiting times increase if demand exceeds supply; patients choose a hospital

based in part on waiting times; and hospitals incur waiting time penalties. Whereas policies based on

penalties will lead to lower waiting times, policies that promote patient choice will instead lead to higher

waiting times. These results are robust to different game-theoretic solution concepts, designs of the hospi-

tal penalty structure, and patient utility specifications. Furthermore, waiting time penalties are likely to be

more effective in reducing waiting times if they are designed with a linear penalty structure, but the coun-

terproductive effect of patient choice policies is smaller when penalties are convex. These conclusions

are partly derived by calibration of the model based on waiting times and elasticities from the English

National Health Service. Chapters 3 and 4 analyse demand inertia in hospital markets, which, recent

empirical evidence indicates, results from switching costs and persistent patient preferences. Chapter 3

offers a model with two semi-altruistic hospitals with inherited demand, where the effect of lower (exoge-

nous) switching costs on patient welfare depends on the hospitals’ technology and degree of altruism: if

cost substitutability (complementarity) between quality and output is sufficiently weak (strong) relative to

altruism, average quality and aggregate patient utility decrease. Additionally, if the hospitals can set the

switching costs incurred by their patients, the unique equilibrium is characterised by maximum switching

costs and perfect history-based market segmentation. Chapter 4 deals with the link between current and

future choices of hospital generated by demand inertia, and investigates the effect of patient expectations

on quality provision. Myopic patients choose a hospital based on current variables alone, forward-looking

but naïve patients take the future into account but assume that quality remains constant, and forward-

looking and rational patients foresee the evolution of quality. While it is higher under naïve than myopic

expectations, quality provision under rational expectations may be highest or lowest. This result also holds

for patients’ health gains, suggesting that rationality does not always benefit patients.

Keywords: hospital competition; rational expectations; regulation; switching costs; waiting times.
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1. Introduction

Promoting competition has become a staple of the regulation of healthcare markets in the western world

over the past three decades (Siciliani et al., 2017). Provided that benefits—not necessarily monetary—from

treating additional patients exist and that these are free to choose their preferred provider, the primary aim

of competition is to elicit lower prices and higher quality of care as providers strive to attract demand. Since

the seminal contribution of Arrow (1963), however, it has been recognised that healthcare markets differ

from most private good markets and that these differences imply that results from those other markets,

like the benefits of competition, may not necessarily carry over to healthcare ones. Those differences

lie not only in the demand and supply sides of the market simultaneously but also in the ubiquitousness

of regulation. On the demand side, notable examples are the uncertainty about future health needs

and the difficulty in assessing the quality of care. On the supply side, examples of those differences

are the departure from pure profit-maximisation and competition on non-price attributes. Regulators or

welfarist policymakers, in turn, have manifold objectives and enact a variety of policy interventions. From

a public health perspective, those objectives often include fostering patient welfare and health gains,

which requires, for example, expanding market coverage, improving the quality of care, and reducing

patients’ costs besides out-of-pocket expenditures, like travelling costs or the mismatch between a patient’s

diagnosis and the provider’s specialty mix. This entails incentivising some behaviours and discouraging

others, while maintaining market conditions sufficiently attractive for providers. To do this, the regulator’s

toolkit extends from imposing legal requirements, increasing payments, or fine-tuning payment schemes to

less stringent—though not less powerful—approaches, as promoting patient choice to toughen competition.

Despite the growing importance of primary care, hospitals continue to be a key provider of healthcare

and persist as the most prominent provider of specialised and acute care. This thesis, a collection of self-

contained essays, explores the strategic interaction between hospitals when they operate in a competitive

setting where particular phenomena of the demand and supply of healthcare are considered. Addition-

ally, it explains how regulation affects the behaviour of competing hospitals and to what extent policy
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interventions conflict and yield the intended outcomes.

The analyses presented in chapters 2–4 are based on models that share the same duopolistic and spa-

tial framework, where prices are regulated and patients are insulated from out-of-pocket expenses. These

overarching modelling choices reflect characteristics of competitive hospital markets that guide this thesis:

the reduced number of hospitals in most patients’ choice set (Gutacker et al., 2016); the importance of

horizontal differentiation, which may have a clinical interpretation or capture the long-established salience

of geographical differentiation (for example, Tay, 2003; Varkevisser et al., 2012; Gutacker et al., 2016);

and a focus on non-price competition. Regarding this last-mentioned aspect, competition plays out on a

vertical dimension in the three models. They also share the departure from pure profit-maximisation as

the hospitals’ objective and include similar functional forms to represent the technology of treatment pro-

duction. How each chapter develops this common framework by formalising particular attributes relevant

for the research question in consideration, however, differs a great deal.

Chapter 2 considers an objective, observable, and negative form of quality upon which hospitals rely

to compete: waiting times. In hospital markets with no significant out-of-pocket expenses and where ca-

pacity constraints are binding, waiting times act as non-monetary prices and bring demand and supply into

equilibrium by acting as a rationing device. This market stabilisation mechanism is welcome, but bring-

ing a hospital market into equilibrium through waiting times is welfare-decreasing if those waits become

excessively long. As waiting times delay the benefits of medical treatment and force patients to undergo

a period of less-than-achievable health status, they reduce patient welfare and thus become a deserving

target of policy intervention once they exceed values deemed acceptable by some clinical metric. While

increased activity and hence shorter waiting times might generally be encouraged through higher (activity-

based) payments, growing healthcare costs call for alternative policies. In chapter 2, we investigate the

effectiveness of two commonly adopted policies in reducing waiting times; namely, waiting time penalties

and the enhancement of patient choice of provider. This chapter’s major contribution is to analyse hospital

competition on waiting times in a framework where the waiting time-generating process—i.e., the dynamic

evolution of supply and demand—is explicitly modelled. Importantly, it is this modelling approach that un-

covers the link between patient choice policies, supply, and waiting times in the presence of penalties (or,

more generally, provider disutility of waiting time). More specifically, by modelling explicitly the evolution

of waiting times as a function of the demand and supply of treatments, we reveal the role of activity as an

instrument to avoid tougher penalties and the implications for waiting times of its weakening by increased

patient choice.

2



The two subsequent chapters adopt a broader definition of quality of care and deal with the existence

of demand inertia (also referred to as choice persistence or loyalty) in the hospital industry, which has

only recently been reported in the empirical literature. In a context where patients are free to choose their

preferred provider, demand inertia, to the extent that it reflects patients’ inability to adjust to changes in the

environment, brings into question whether competition is in fact taking place; at least, in markets where

patient-hospital relationships have already been built up. Chapter 3 considers such a mature market with

asymmetrically split inherited demand, and explores one particular driver of inertia, switching costs. The

chapter analyses the effect of facilitated switching on quality provision and patient welfare, whether it

results intentionally from competition-enhancing policies, like the removal of obstacles to patient choice,

or emerges, for example, as a side effect of the adoption of sharable Electronic Health Records (EHR).

Similarly to that of chapter 2, the analysis assumes a short-run policy perspective, and this perspective is

short-run in that the effect of facilitated switching is never of a magnitude such that market dominance is

altered. We therefore focus on the reduction of market concentration. In addition to looking at the largely

unexplored observation of patient inertia, this chapter’s main methodological contribution is to advance

a modelling of inertia that maps on the recent empirical evidence, which shows that it results from both

switching costs and persistent horizontal patient preferences. This allows us to explain how the effect of

lower switching costs interacts with the volatility of patient preferences; namely, how demand may flow to

the lower-quality hospital when switching is facilitated and patients hence adjust their choice of provider

according to their changing preferences. The chapter closes with a model extension that shows that, when

hospitals are endowed with the ability to control their patients’ switching costs, they are indeed capable

of transforming the market structure, giving rise to local monopolies with full market coverage.

Chapter 4 offers a longer-run analysis as it is primarily concerned with the intertemporal implications

of demand inertia. By linking present and future choices of hospital, inertia implies that whether patients

anticipate the future and how sophisticated their foresight is play a role in hospital markets. In other words,

how patients form their expectations about future health needs and the quality of care affects the competi-

tiveness of hospital markets. We argue and formalise the notion that demand inertia and expectations are

inextricable, revealing that quality provision is governed by the tension between the hospitals’ incentive

to build market share, which will be partly retained due to inertia, and the responsiveness of demand to

quality, which dictates how effective it is in attracting patients in the first place and is crucially determined

by patient expectations. This chapter considers and models the limiting case of rational expectations and

then builds on the behavioural literature to model two additional types of patient expectations based on

3



departures from full rationality reported therein: present bias and the imperfect assessment of healthcare

attributes. This is the first of the chapter’s major contributions: to model expectations in the context of pa-

tient choice of hospital and to study the impact different types of expectations on the hospitals’ incentives

to provide quality. The other major contribution is to relate the results derived from a theoretical model

of hospital competition to the novel literature on ‘behavioural hazard’ in healthcare by discussing those

results in light of the effect of rationality (or lack thereof) on patients’ health gains.

Finally, chapter 5 summarises the main results and their interpretations and discusses limitations and

how to overcome them within the scope of future research.

Chapters 2–4 frequently adopt identical notation and variable names; all references made in each

chapter relate to variables and expressions defined within it.
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2. Dynamic Hospital Competition Under Rationing

by Waiting Times1

2.1 Introduction

Waiting times for non-emergency (elective) treatments are a key health policy concern across OECD coun-

tries, such as Australia, Canada, Ireland, Finland, Norway, Portugal, and the United Kingdom. Mean

waiting times range between 50 and 150 days across countries for common procedures such as cataract

surgery, hip and knee replacement, hernia, hysterectomy, and prostatectomy (Siciliani et al., 2014). Al-

though some countries like Finland and the UK have had successes in 2000–2005 in reducing waiting

times from high levels (e.g., more than 150 days on average for hip and knee replacement), waiting times

have stalled in most countries since the financial crisis and have slowly started to rise again in some

countries. In countries like Chile, Poland, and Estonia, waiting times for hip and knee procedures are still

above one year (OECD, 2017).

Waiting times are a major source of dissatisfaction for patients since they postpone health benefits,

may worsen symptoms, deteriorate patients’ conditions, and lead to worse clinical outcomes. In response

to the dissatisfaction that they generate, governments have taken a variety of measures to reduce waiting

times. Many OECD countries have adopted some form of maximum waiting time guarantees (Siciliani,

Moran, and Borowitz, 2013). However, the design and implementation of these guarantees can differ

significantly across countries.

Two common approaches are to link maximum wait guarantees either to penalties or to competition

(and patient choice) policies. The first approach was followed by Finland and England, which combined

maximum waiting times with sanctions for failure to fulfil the guarantee. Targets with penalties were

1 This chapter is co-authored with Luigi Siciliani and Odd Rune Straume and was published in the Journal of Health Economics as Sá, L., Siciliani, L.,
and Straume, O.R. (2019) Dynamic hospital competition under rationing by waiting times. Journal of Health Economics, 66, 260–282. https://doi.org/
10.1016/j.jhealeco.2019.06.005 .
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introduced in England in 2000–05 with political oversight from the Prime Ministerial Delivery Unit and the

Health Care Commission. Senior health administrators risked losing their jobs if targets were not met. As a

result, the proportion of patients waiting over six months was reduced by 6–9 percentage points (Propper,

Sutton, et al., 2008). In 2010, maximum wait guarantees became a patient entitlement codified into the

NHS Constitution, establishing a patient right to a maximum of 18 weeks from GP referral to treatment.

In Finland, waiting time guarantees were combined with targets as part of the Health Care Guarantee in

2005, subsequently included in the 2010 Health Care Act. A National Supervisory Agency supervised

the implementation of the guarantee through targets and penalised municipalities failing to comply. The

number of patients waiting over six months was reduced from 12.6 per 1000 population in 2002 to 6.6

per 1000 in 2005 (Siciliani, Moran, and Borowitz, 2013).

The second approach involves combining maximum waiting time guarantees with patient choice and

competition policies. For example, in Denmark, if the hospital foresees that the maximum waiting time

guarantee will not be fulfilled, the patient can choose another public or private hospital. In Portugal, when

a patient on the waiting list reaches 75% of the maximum guaranteed time, a voucher that allows the

patient to seek treatment at any other provider, including private sector providers, is issued. In several

countries, like England and Norway, patients are free to choose any provider within the country (Siciliani

et al., 2017).

From an economics perspective, waiting times act as a non-price rationing device to bring into equi-

librium the demand for and the supply of health care in publicly-funded health systems. Many countries

with a National Health Service or public health insurance combine the absence of co-payments with the

presence of capacity constraints. As a result, an excess demand arises, which translates into a waiting

list. One way to bring the demand for and the supply of treatments into equilibrium is to rely on waiting

times. As argued by Lindsay and Feigenbaum (1984), Martin and Smith (1999), and Iversen (1993,

1997), waiting times tend to discourage demand if patients give up the treatment or opt for treatment in

the private sector. Waiting times may also influence positively the supply of health services if altruistic

providers exert greater effort and treat more patients when waiting times are higher.

In the present study, we investigate whether competition and patient choice policies play a useful role

in reducing waiting times, and the extent to which such a role is altered in the presence of penalties for

providers with long waits. Our model is dynamic to capture a key feature of the waiting time phenomenon.

Waiting times tend to increase when demand for treatment is higher than the supply of treatment so that

new patients are added to the waiting list. Similarly, waiting times tend to reduce when more patients are

6



removed from the waiting list than those added. A second feature of our model is that hospitals compete

for patients, with hospitals with lower waiting times attracting more patients.

The combination of a dynamic approach with strategic interactions across providers calls for a differential-

game approach. Although we solve the model for both open-loop and closed-loop decision rules (Dockner

et al., 2000), our main analysis is based on the arguably more realistic feedback (closed-loop) solution,

where hospitals can observe (and react to) waiting times at each point in time, implying that supply de-

cisions can be continuously revised based on the evolution of waiting times. Under open-loop decision

rules, hospitals compute their optimal supply paths at the beginning of the game and are restricted to

follow such plans thereafter. It seems plausible that hospitals can adjust supply over time in response to

the dynamics of waiting times (own and those of rival hospitals).

To model the demand for healthcare faced by each provider, we use a Hotelling approach with two

hospitals located at each endpoint of the unit line segment. We adopt a general specification, which allows

for two types of patients who differ in the valuation of their outside option (e.g., to seek treatment in the

private sector or to forego treatment altogether), which in turn implies different net benefits, high and low,

from hospital treatment. Hospitals compete on the segment of demand with high benefit, while they are

local monopolists on the demand segment with low benefit.

Our main aim is to investigate the effect of policies that facilitate patient choice, commonly interpreted

as policies that stimulate competition, and how such policies interact with policies based on waiting time

penalties. Within our analytical framework, patient choice policies are modelled as a reduction in patients’

transportation costs, which makes each hospital’s demand more responsive to changes in waiting times

and is a standard competition measure in spatial competition models. The effect of such policies is studied

in contexts where waiting time penalties are either linear in waiting times or convex in waiting times, with

the marginal penalty increasing with waiting.

We obtain several policy relevant findings. Importantly, we find that policies to increase patient choice

lead to higher steady-state waiting times as long as hospitals suffer a disutility from positive waiting times.

Increased patient choice makes demand more responsive to changes in waiting times, which implies

that a unilateral reduction in waiting time at one hospital will lead to a larger demand increase for this

hospital. This implies, in turn, that it becomes more difficult for each hospital to reduce waiting times

through a unilateral increase in the supply of treatments. In other words, patient choice policies reduce

the effectiveness of treatment supply as an instrument to reduce waiting times. The policy implication of

this result is that patient choice policies are counterproductive, in terms of reducing waiting times, in the

7



presence of waiting time penalties. Moreover, higher waiting penalties make patient choice policies even

more counterproductive. We also show that a combined policy of more patient choice and higher waiting

time penalties will lead to higher waiting times if the waiting time penalty is sufficiently high to begin with.

The above described results are derived analytically for the case of constant marginal provider disutility

of waiting time; for example, because of linear waiting time penalties. For the case of convex waiting time

penalties, a closed-form solution cannot be obtained, and our results are therefore numerically derived.

To make the results more salient, we calibrate our model based on waiting times observed in the English

National Health Service (NHS) for a common treatment (cataract surgery). The calibration is also informed

by demand elasticities which have been estimated in the empirical literature (Martin and Smith, 1999;

Sivey, 2012).

The calibration output shows that our main result, that patient choice policies lead to higher waiting

times, also carries over to the case of convex waiting time penalties. This comes as no surprise since

the intuition behind this result does not rely on the shape of the provider disutility function but rather on

the responsiveness of demand to waiting times. Not only is this result robust to the design of the waiting

time penalty structure, it holds under a fairly general patient utility specification and is independent of the

choice of game-theoretic solution concept, as it arises also under open-loop decision rules.

However, under closed-loop rules (where hospitals can observe and react to waiting times at each

point in time), convex waiting time penalties introduce an additional strategic effect by creating dynamic

strategic substitutability in supply. This implies that lower treatment supply by one hospital will be optimally

met by increased supply by the competing hospital, which dampens the initial increase in waiting time

caused by the supply reduction. This strategic substitutability gives each hospital an incentive to reduce

its supply in order to ‘free-ride’ on the subsequent supply increase by the other hospital. The policy

implication of this result is that, all else equal, waiting time penalties are likely to be more effective in

reducing waiting times if they are designed with a linear penalty structure. On the other hand, we also

show that the counterproductive effect of patient choice policies is smaller when penalties are convex

instead of linear, which gives rise to yet another inherent conflict between these two policies. Waiting

time penalties are more effective if they are linear, but linear penalties make patient choice policies more

counterproductive.

The rest of the chapter is organised as follows. In the next section, we present a brief overview of the

literature and explain how we contribute to it. In section 2.3, we present the model, whereas the main

analysis, based on the closed-loop solution, is given in section 2.4. Section 2.5 considers patient welfare.
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Section 2.6 examines the robustness of our main result to non-linear patient utility in waiting time and

distance. Finally, section 2.7 provides concluding remarks, including a discussion of how our main results

relate to the empirical literature on patient choice and waiting times.

2.2 Related Literature

Our study brings together two different strands of the theoretical literature. The first is the literature that

investigates the role of waiting times in the health sector. As mentioned above, the idea that waiting times

may help bringing the supply and the demand for healthcare into equilibrium goes back to Lindsay and

Feigenbaum (1984) and Iversen (1993). Iversen (1997) also investigates whether allowing patients to

be treated in the private sector will reduce waiting times in the public sector and shows that the answer

depends on the demand elasticity for public treatment with respect to waiting time. Demand and supply

responsiveness to waiting times are estimated by Martin and Smith (1999) using English data, and they

find that demand is generally inelastic (with an elasticity of about −0.1).

There are also normative analyses in this strand of the literature. Hoel and Sæther (2003) show that

concerns for equity can make it optimal to have a mixed system of public and private provision with a

positive waiting time in the public sector, though March and Schroyen (2005) find, through a calibration

exercise, that the welfare gains of a mixed system might be quite low. Gravelle and Siciliani (2008a,

2008c) investigate the scope for waiting time prioritisation policies across and within treatments and find

that prioritisation is generally welfare improving even in a setting where the provider can only observe some

dimensions of patient benefit. Gravelle and Siciliani (2008b) also show that rationing by copay tends to

be welfare improving relative to rationing by waiting. All the above studies use a static approach assuming

that demand and supply adjust instantaneously to reach equilibrium. One exception is Siciliani (2006),

who investigates the behaviour of a monopolist in a dynamic set-up. We model waiting time dynamics in

a similar way but critically allow for strategic interactions across providers to investigate the role of patient

choice and competition.

The second strand of the literature relates to hospital competition with fixed prices. Though most of this

literature consists of studies using a static framework, there is a limited but growing literature that models

hospital competition in a dynamic framework. It focuses, however, on incentives for quality provision rather

than on waiting times.2 Brekke et al. (2010, 2012) find that, if quality is modelled as a stock variable

2 See Brekke et al. (2014) for a review of the theoretical literature on hospital competition under regulated prices.
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which increases if quality investments are higher than its depreciation, or if demand is sluggish so that

an increase in quality only partially translates into an increase in demand, then quality is higher under

the open-loop solution if hospitals face increasing marginal treatment costs. Equilibrium quality instead

coincide under the two solution concepts if marginal treatment costs are constant. Siciliani, Straume, and

Cellini (2013) suggest that these results can be overturned in the presence of altruistic preferences, so

that quality is higher under the closed-loop solution.

Our modelling of waiting times differs analytically from these previous contributions because the state

variable (i.e., waiting time) of the rival enters the dynamic constraint of the maximisation problem of each

provider. This is not the case when quality is modelled as a stock (as in Brekke et al., 2010) because

neither the state nor control variable of the rival provider enters the quality stock function. It is also not

the case when demand is modelled as sluggish (as in Brekke et al., 2012, or Siciliani, Straume, and

Cellini, 2013) because demand depends on the control variable of the rival, not the state variable. Thus,

because of these fundamental differences in the dynamic nature of the problems, the results from models

of dynamic quality competition do not automatically carry over to the case of waiting times. In other words,

if we want to study the effects of patient choice and competition on waiting times in a dynamic context, we

cannot simply interpret waiting time as ‘negative quality’ and apply the results from the above mentioned

studies of dynamic quality competition.

As previously mentioned, in the main bulk of the theoretical literature on hospital competition, the

theoretical framework is a static one. To our knowledge, Brekke et al. (2008) were the first to deal with

waiting times. Similarly to the present study, they identify a potentially positive relationship between

patient choice and equilibrium waiting times. However, the underlying mechanisms are very different. In

the static model (Brekke et al., 2008), hospitals choose waiting times to influence demand and in turn

revenues. Increased competition (patient choice) makes demand more responsive to changes in waiting

time, which then becomes a more effective tool for each hospital to steer demand in the desired direction.

If hospitals are semi-altruistic, the equilibrium is such that price is below marginal cost (for the marginal

treatment). Hospitals might therefore have an incentive to reduce demand, and waiting times become a

more powerful tool to achieve this when patient choice increases, paving the way for a positive relationship

between patient choice and equilibrium waiting times.

In the present dynamic approach, more competition also makes demand more responsive to waiting

times, but then the similarities end. Hospitals choose treatment supply but cannot directly control waiting

times. The supply decision is instead used as an instrument to affect waiting times, and this instrument
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becomes less effective with increased patient choice. This is why more competition leads to higher waiting

times in our dynamic setting, and the underlying mechanism is not related to price being below marginal

cost in equilibrium, although this feature is also present here. Thus, the present study is not just a

dynamic version of Brekke et al. (2008), in the sense that the results rely on the same mechanisms

placed in a dynamic context. Rather, placing the analysis in a dynamic framework allows us to uncover

newmechanisms that are uniquely related to the dynamic process that generates changes in waiting times.

In this sense, the present dynamic analysis complements and reinforces the previous results based on a

static framework.

More recently, Chen et al. (2016) developed a two-period signalling model in which they analyse the

effect of waiting time report cards (i.e., the public reporting of waiting times) on the supply decisions and

waiting times of two hospitals. Waiting times report cards increase competition in the market by providing

patients with information and, hence, making demand responsive to waiting times. This generally gives

hospitals incentives to increase their service rates (supply) up to the point where the marginal revenue

equals the marginal cost, causing waiting times to fall in equilibrium. However, if the exogenous hospital

qualities differ and are unknown to some patients, an incentive to use long waiting times as a signal for

treatment quality arises for the high-quality hospital. Chen et al. (2016) show that the competitive effect (to

attract patients) induced by waiting time report cards outweighs the signalling effect, so that both hospitals’

waiting times are shorter than when there are no report cards, thus establishing a negative link between

increased competition and waiting times (regardless of whether hospital qualities differ or are identical,

which is the case that is equivalent to our analysis).

Their model shares with ours the feature that hospitals may only affect waiting times indirectly through

supply but, crucially, assumes that hospitals face no form of disutility of waiting time. In the present

analysis, increased supply is used not only to increase revenues but also to reduce waiting times and,

hence, the disutility thereof. Increased supply reduces waiting times, which, in turn, attracts patients and

thus dampens the initial decrease in waiting times. This demand response is stronger the greater is the

degree of patient choice in the market. Higher demand responsiveness weakens the incentive hospitals

have to increase supply and this is why the negative relationship between increased competition (patient

choice) and waiting times fails to arise in the presence of hospital disutility of waiting time.
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2.3 The Model

Consider a duopolistic healthcare market in which hospitals, indexed by i and j, are located at each

endpoint of the unit line segment [0, 1]. There are N potential patients uniformly distributed on the line

segment. In every period t, each of these patients may benefit from treatment at either of the two hospitals.

In order to consume one unit of treatment, patients bear no out-of-pocket expenditures at the hospital but

face expenses (or disutility) in the form of travelling costs. Furthermore, patients are required to join a

waiting list and therefore suffer a disutility of waiting.

There are two types of patients, differing with respect to the value of their outside option (i.e., the

utility of not being treated by either of the two hospitals). Whereas a share β of the patients are assumed

to have no valuable outside option, the remaining share (1 − β) have a strictly positive outside option

k > 0. For simplicity, we assume that these shares are constant along the line segment. The difference

between these two patient types can be attributed either to a difference in illness severity, which creates

a difference in the utility of being untreated, or to a difference in the ability to seek treatment elsewhere

(e.g., in a private market or abroad), for example, due to differences in income or wealth.

Both types of patients make utility-maximising treatment consumption decisions, taking into account

travelling costs as well as the length of time between the moment they join the waiting list and that when

treatment is supplied (i.e., the waiting time). The utility in period t of a patient with no valuable outside

option, who is located at x ∈ [0, 1] and chooses Hospital i, located at zi, is given by

u(x, zi, t) = v − wi(t)− τ |x− zi|, (2.1)

where v is the gross valuation of treatment, wi(t) is the waiting time at Hospital i in period t, and τ is

the marginal disutility of travelling. The marginal disutility of waiting is normalised to one, which allows τ

to be interpreted as the marginal disutility of travelling relative to waiting. The equivalent utility in period t

of a patient with a strictly positive outside option is

u(x, zi, t) = v − k − wi(t)− τ |x− zi|. (2.2)

For patients with a positive outside option, we assume that k is sufficiently high such that some of these

patients will strictly prefer the outside option to being treated by any of the two hospitals in the market.

This implies that the relevant choice for each of these patients is between seeking treatment at the most

preferred hospital or exercising the outside option. We will refer to this as the monopolistic segment of
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the market. For all the patients without a valuable outside option, we assume that utility is maximised by

seeking treatment at one of the hospitals. These patients therefore constitute the competitive segment

of the market. By concentrating on cases where the competitive segment is fully covered, whereas the

monopolistic segment is only partially covered, we ensure that total demand is elastic with respect to

waiting times, implying that waiting times have a rationing effect on demand.

2.3.1 Demand for hospital treatment

In the competitive segment, the patient who is indifferent between seeking treatment at Hospital i and

Hospital j is located at xC(t), implicitly given by

v − wi(t)− τxC = v − wj(t)− τ(1− xC), (2.3)

yielding

xC(t) =
1

2
+

wj(t)− wi(t)

2τ
. (2.4)

In the monopolistic segment, the patient who is indifferent between demanding treatment at Hospital i

and consuming his or her outside option is located at xi
M(t), implicitly given by

v − wi(t)− τxi
M = k, (2.5)

yielding

xi
M(t) =

v − k − wi(t)

τ
. (2.6)

A similar expression can be obtained for Hospital j: xj
M(t) = (v − k − wj(t))/τ .

With a total mass N of patients in the market, demand faced by Hospitals i and j is a weighted sum

of demand from the competitive and the monopolistic segments and is respectively given by

Di(wi(t), wj(t)) = N [βxC(t) + (1− β)xi
M(t)] (2.7)

and

Dj(wi(t), wj(t)) = N [β(1− xC(t)) + (1− β)xj
M(t)]. (2.8)

2.3.2 Hospital objectives and treatment supply

In each period t, Hospital i treats Si(t) patients. Hospitals are financed by a third-payer (e.g., a regulator

or insurer) that offers a prospective payment p for each unit of treatment supplied and a lump-sum transfer
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T . The instantaneous objective function of Hospital i is assumed to be

Πi(t) = T + pSi(t)− C(Si(t))− Φ(wi(t)). (2.9)

The cost of supplying hospital treatments is given by an increasing and strictly convex cost function

C(Si(t)) = γ
2
Si(t)

2, with γ > 0. The convexity of the cost function captures an important feature

in the context of waiting times, namely that hospitals face capacity constraints.3 The function Φ(wi(t))

captures the provider disutility of having positive waiting times. The disutility of waiting time is monetary

if the hospital faces penalties levied by the regulator or reductions in funding. Alternatively, it is non-

monetary if the hospital takes into the account the reputational damage of reporting long waiting times,

or if the hospital is subject to a more stringent monitoring regime by the regulator. We assume that the

disutility of waiting time takes the linear-quadratic form

Φ(wi(t)) = α1wi(t) +
α2

2
wi(t)

2, (2.10)

with α1 ≥ 0 and α2 ≥ 0. Whether waiting times penalties have a linear or non-linear effect on hospital

utility depends on the institutional context. In settings where hospital managers can lose their jobs when

waiting times become very long, penalties are arguably non-linear, with the marginal penalty increasing

with waiting. This may also be the case in health systems where health regulators have mechanisms that

escalate from warning messages to agreeing and monitoring action plans with the providers. Other health

systems may instead gradually penalise hospitals with longer wait through a proportionate reduction in

revenues.

Hospital targets are set for broad areas of care, typically all elective (non-emergency) care. Only in

recent years some more stringent maximum waiting times have been specified for prioritised areas of care,

such as cancer patients or certain cardiac surgeries (Siciliani, Moran, and Borowitz, 2013). Although our

model is specified for a specific treatment which is reimbursed with DRG price p, any increase in supply

for a specific treatment will contribute to reduce waiting times and help to satisfy the targets across all

elective care. In subsection 2.4.3, we calibrate the model for a specific treatment, cataract surgery. We

choose this procedure because it has high volume and is correlated with waiting times for other high-

volume procedures (such as hip and knee replacement; Siciliani et al., 2014). It has also similar demand

elasticity to waiting across all elective care (Martin and Smith, 1999; Sivey, 2012).

3 A strictly convex treatment cost function captures the case of smooth capacity constraints, where capacity can be increased, but only at an increasing
marginal cost.
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Waiting times evolve dynamically over time according to

dwi(t)

dt
= ẇi(t) = θ[Di(wi(t), wj(t))− Si(t)] (2.11)

and
dwj(t)

dt
= ẇj(t) = θ[Dj(wi(t), wj(t))− Sj(t)], (2.12)

where θ > 0 relates changes in waiting times to the difference between the demand faced by each

hospital and its activity (i.e., changes in the waiting list). Under this formulation, waiting times increase

when current demand exceeds current supply and vice versa, and the speed at which waiting times respond

to changes in demand or supply is given by θ.

We are implicitly assuming that the waiting time at each hospital is positive in every period. The

hospital objective function depends on the hospital’s supply decision, which is given by the number of

treatments performed by Hospital i in period t, Si(t). The objective function does not instead depend

directly on demand, which is given by the number of patients added to Hospital i’s waiting list in period

t, Di(wi(t), wj(t)). If Si(t) < Di(wi(t), wj(t)), there is a net increase in the waiting list and the

(expected or average) waiting time increases. On the other hand, if Si(t) > Di(wi(t), wj(t)), there is a

net reduction in the waiting list and the waiting time therefore falls. In either case, as long as the waiting

list is not emptied, the number of treatments performed in period t is given by the hospital’s supply of

treatments. Demand for treatments only affects the actual number of treatments indirectly through waiting

times, which in turn affect each hospital’s optimal supply decisions, as we will show later.

We assume that the hospitals maximise their payoffs over an infinite time horizon and have a common

constant discount rate, ρ. Formally, the maximisation problem of Hospital i is given by

max
Si(t)∈R+

0

∫ ∞

0

e−ρtΠi(t)dt

subject to ẇi(t) = θ[Di(wi(t), wj(t))− Si(t)],

ẇj(t) = θ[Dj(wi(t), wj(t))− Sj(t)],

wi(0) = wi0 > 0,

wj(0) = wj0 > 0.

Although, in reality, hospitals do not plan their activity over an infinite time horizon, we argue that this

is a reasonable approximation if hospitals are regarded as lasting institutions. Managerial and medical

structures are periodically replaced, but the hospital’s mission—to provide care given its production tech-
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nology and the regulatory scheme it faces—is likely to remain the same over long periods of time. This is

likely if hierarchies are substituted by others with similar objective functions.

2.3.3 Solution concepts

There are two main solution concepts established by the differential-game literature (see Dockner et al.,

2000). Under the open-loop solution, hospitals either compute their optimal supply paths at the beginning

of the game and are restricted to follow such plans thereafter, or they may observe the state of the world

(i.e., waiting times) only at t = 0 and cannot therefore condition their actions (i.e., supply) on these

observations thereafter. In both cases, strategies are time-profiles that specify the supply to be provided

at each point in time.

If, besides current time, hospitals observe waiting times in every period and factor them in their

decision making, a closed-loop solution arises. Under this solution concept, Hospital i’s supply is a

function of the contemporaneous waiting times in each t. While the closed-loop solution is informationally

more demanding, it involves weaker commitment since hospitals are allowed to adjust supply as waiting

times evolve.

The appropriateness of each solution concept depends on the assumptions regarding the players’

information set as well as commitment requirements. The open-loop solution implies that hospitals have

no information concerning waiting times once the game starts or are committed to the supply plans

computed at the beginning of the game, which might be considered an excessively stringent assumption.

Due to regulatory requirements, hospitals periodically collect and report data on waiting times, upon

which their activity may be conditioned.4 Moreover, a setting in which hospitals adjust activity according

to waiting times is more realistic and relevant for policy-making.5 Thus, although the closed-loop solution

is computationally much more demanding, it is based on a set of assumptions that are arguably more

realistic and we will therefore conduct our main analysis under the assumption that hospital behaviour is

characterised by closed-loop decision rules.

4 See Siciliani, Moran, and Borowitz (2013) for a description of waiting times regulatory arrangements and policies across OECD countries.
5 This need not be the case of other analyses of hospital behaviour. The case of quality competition as analysed in, for example, Brekke et al. (2010)

provides a setting in which the open-loop solution might be, at least, as appropriate. If hospitals devise investment plans that ought to be followed for long
periods of time, meaning that their discretion is strongly restricted, their actions (investment decisions) are as if they are not conditional on the state of the
world (the stock of quality).
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2.4 Treatment Supply and Waiting Times in the Closed-Loop

Solution

Suppose that hospitals are able to observe the evolution of waiting times and make supply decisions

dependent on current waiting times. When solving for the closed-loop solution, we restrict attention to

Markovian stationary strategies, whereby the controls (i.e., supply decisions) at time t depend only on the

current values of the states (i.e, the waiting times), which summarise the history of the game. We also

focus on a symmetric equilibrium with non-negative waiting times and a partially covered monopolistic

segment.

We will present our results distinguishing between two different cases, namely constant and increasing

marginal provider disutility of waiting time. As mentioned above, which case is more plausible depends on

the institutional context and this may differ across countries or even within a country at different points in

time. For example, one could argue that in England in 2000-2005 the marginal disutility was increasing in

waiting times when senior health administrators risked losing their jobs if targets were not met. This would

be the case if small deviations from the target would only lead to additional monitoring from the regulator,

but a large deviation from the target would culminate into the hospital CEO being dismissed. In contrast,

the marginal disutility of waiting time could be constant if deviations from a target led to a proportionate

reduction in hospital income, which was implemented later in England. Therefore, both scenarios are

important from a policy perspective. We discuss them in turn, starting with the case of constant marginal

disutility, which allows us to obtain closed-form solutions for equilibrium supply and waiting times.

2.4.1 Constant marginal provider disutility of waiting time

Suppose that the disutility of waiting time is given by (2.10) with α1 > 0 and α2 = 0. In this case, it

can be shown (see Appendix 2.A.1) that the optimal supply rule for each hospital at time t is equal to the

steady-state supply, SCL, and given by

Si (t) = Sj (t) = SCL =
p

γ
+

2θτα1

γϕ
, (2.13)

where

ϕ = θ(2− β)N + 2τρ− (θβN)2

θ(2− β)N + 2τρ
∈ (0, 1). (2.14)

In other words, the optimal supply rule is independent of waiting times. We thus obtain the following result:
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Proposition 2.1. If the marginal provider disutility of waiting time is constant, the equilibrium is charac-

terised by constant supply of treatments over time.

This result is explained by the lack of strategic interaction between the hospitals when waiting time

disutility is linear in waiting times. A unilateral increase in supply by Hospital i leads to an initial reduction

in waiting times at this hospital. This will shift demand from the rival hospital and therefore will also reduce

the waiting time at Hospital j. However, if α2 = 0, the reduction in waiting time at Hospital j does not

affect the hospital’s marginal disutility of waiting time, so that the hospital will not respond by changing its

supply.6

The intuition behind each hospital’s optimal supply rule is perhaps easier gained by re-writing (2.13)

as

p+
2θτα1

ϕ
= γSi. (2.15)

On the one hand, a marginal increase in supply (i) generates more revenues and (ii) reduces the waiting

time and its associated disutility. These two elements of the marginal benefit of supply are given by the

two terms on the left-hand side of (2.15). On the other hand, increasing supply is costly, with the marginal

cost of supply given by the right-hand side of (2.15). Each hospital offers a supply of treatments such that

the marginal benefit is exactly offset by the marginal cost. This trade-off is key to understanding the main

intuition behind most of our subsequently derived results.

It also follows directly from (2.15) that, in an interior-solution equilibrium, each hospital operates at a

level where the price-cost margin is negative, implying that the marginal patient is unprofitable to treat.7

This is a result of the disutility of waiting time, which gives each hospital an incentive to expand supply

beyond the level where the price is equal to marginal treatment costs.

The corresponding steady-state waiting time is given by8

wCL =
τ

(1− β)N

{
N

[
β

2
+ (1− β)

(
v − k

τ

)]
− p

γ
− 2θτα1

γϕ

}
. (2.16)

We can see directly from (2.16) that the steady-state waiting time is decreasing in p and α1, which is

very intuitive. A higher price (p) makes the marginal patient more profitable (or less unprofitable) to treat,

6 When α2 = 0, our differential game belongs to the class of the so-called linear-state games, which is characterised by the coincidence between the
time path of controls and states under the open- and closed-loop solution concepts. The calibration in subsection 2.4.3 illustrates this general result.

7 Notice that, when treatment costs are strictly convex, a negative price-cost margin for the marginal patient does not imply that the price-cost margin is
negative for the average patient.

8 In Appendix 2.A.1, we show that a sufficiently large γ ensures that the steady-state is characterised by non-negative waiting times and a partially covered
monopolistic segment.
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whereas a higher waiting time penalty (α1) increases the disutility of waiting time. In both cases, the

hospitals have stronger incentives to increase supply and equilibrium waiting times will therefore go down.

Patient choice and waiting times

How does the degree of patient choice affect steady-state supply and waiting times? In our framework,

the degree of patient choice can be inversely measured by the parameter τ , which is a standard (inverse)

measure of competition intensity in the hospital competition literature that is based on models of spatial

competition. A reduction in τ makes demand more responsive to changes in waiting times, thus reflecting

a higher degree of patient choice.

The effect of a marginal change in τ on the steady-state waiting time and supply can be expressed as

∂wCL

∂τ
= −

(1− β)xCL
M + τ

N
∂SCL

∂τ

1− β
< 0, (2.17)

where xCL
M =

(
v − k − wCL

)
/τ is the location of the indifferent patient in the monopolistic segment,

and
∂SCL

∂τ
= Nθ2α1

(1− β)[Nθ(2− β) + 4τρ]θN + (2− β)(τρ)2

2γ(Nθ + τρ)2[N(1− β)θ + τρ]2
> 0, (2.18)

allowing us to establish the following result:

Proposition 2.2. If the marginal provider disutility of waiting time is constant, a higher degree of patient

choice leads to lower treatment supply and higher waiting times in the steady-state.

The negative relationship between τ and wCL is a consequence of two effects that work in the same

direction. First, there is a direct demand effect. A reduction in τ increases total demand (and hence

demand for each hospital) since a larger number of patients in the monopolistic segment chooses to

opt for treatment (at the nearest hospital). A higher demand directly increases the waiting time at each

hospital. This effect is given by the first term in the numerator of (2.17), and the size of this effect is

smaller the larger the relative size of the competitive segment, β.

The second effect is related to how τ affects the demand responsiveness to waiting times in the

competitive segment of demand, and is thus more directly related to the patient choice interpretation of

the parameter τ . This is an indirect effect that works through changes in each hospital’s incentive to affect

waiting times through its treatment supply decision. Each hospital can lower its waiting time by increasing

the supply of treatments, and the effect of a unilateral increase in treatment supply on the waiting time

is given by a direct and an indirect (feedback) effect. For a given demand, an increase in treatment
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supply will reduce the waiting time. However, a lower waiting time will increase demand and therefore

dampen the initial reduction in the waiting time. Crucially, the strength of this feedback effect depends

on how strongly demand responds to waiting time changes. A lower τ makes demand more responsive

to changes in waiting times, which increases the feedback effect and therefore makes treatment supply

a less effective instrument to reduce waiting times. Consequently, this reduces the marginal benefit of

treatment supply and gives each hospital an incentive to reduce the supply of treatments. This effect is

captured by the second term in the numerator of (2.17).

Notice that the effect of a reduction in τ on steady-state supply does not depend on the direct demand

effect, only on the indirect effect through demand responsiveness. Consider the special case of no waiting

time disutility, α1 = 0. In this case, the second effect vanishes, since the hospitals have no incentives to

adjust supply in order to affect waiting times. A reduction in τ will not affect the hospitals’ supply decisions

and waiting times increase only because of higher demand (i.e., waiting times increase only through the

first of the two above mentioned effects). Thus, it is the presence of waiting time disutility (α1 > 0)

that causes a negative relationship between patient choice and treatment supply. This has potentially

interesting policy implications which we will explore in the following.

Combining patient choice policies with waiting time penalties

Suppose that policymakers aim at reducing hospital waiting times. Two commonly suggested policy op-

tions is to either directly target the perceived problem by introducing (or increasing) waiting time penalties,

or to stimulate patient choice (e.g., by public reporting of waiting times) with the aim of achieving lower

waiting times through increased intensity of competition between the hospitals. In our model, as Propo-

sition 2.2 shows, only the former policy works, whereas the latter policy is counterproductive. Moreover,

the former policy makes the latter policy more counterproductive. All else equal, the larger the waiting

time penalties, the larger is the increase in steady-state waiting times as a result of more patient choice.

Many countries have introduced both choice policies and waiting time penalties. While our analysis

shows that these two policies have counteracting effects on treatment supply and waiting times, it remains

to show what determines the direction of the overall effect in a context where the two policies are combined.

Consider, therefore, a policy package consisting of a marginal increase in the degree of patient choice

combined with a marginal increase in the waiting time penalty. The resulting effect on steady-state waiting
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times is given by

∂wCL

∂α1

− ∂wCL

∂τ
=

1

N (1− β)

[
(1− β)NxCL

M + τ

(
∂SCL

∂τ
− 2θτ

γϕ

)]
. (2.19)

If we exclude the demand effect of lower travelling costs, thus focusing exclusively on the patient choice

interpretation of τ , the overall effect of this dual policy on waiting times is given by the sign of the second

term in the square brackets of on the right-hand side of (2.19). It can easily be shown that the sign of this

effect is positive, implying higher waiting times, if

α1 >
(Nθ + τρ) ((1− β)Nθ + τρ) ((2− β)Nθ + 2τρ) τ

Nθ (Nθ (1− β) ((2− β)Nθ + 4τρ) + (2− β) τ 2ρ2)
. (2.20)

Thus, a combined policy of increased patient choice and higher waiting time penalties is more likely

to yield higher waiting times (and lower treatment supply) if the disutility of waiting time is sufficiently

high to begin with. The reason is that the marginal effect of a higher waiting time penalty on waiting

times is constant (as we can see from (2.16)), whereas the marginal effect of increased patient choice on

waiting times is increasing in the disutility of waiting times. Consequently, the counterproductive effect of

increased patient choice dominates for sufficiently high values of α1. It can also be shown that, unless

β is very close to 1, the right-hand side of (2.20) is decreasing in θ and approaches τ as θ → ∞. This

implies that the scope for a waiting time increase as a result of the combined policy is larger the faster

waiting times adjust to changes in supply.

If we interpret the waiting time disutility as reflecting only waiting time penalties, we can summarise

the above policy analysis as follows:

Proposition 2.3. Suppose that waiting time penalties are linear in waiting times. In this case, (i) the

counterproductive effect of patient choice policies on treatment supply and waiting times is larger the

higher the waiting time penalty. Furthermore, (ii) a combined policy of increased patient choice and

higher waiting time penalties has an ambiguous effect on treatment supply and waiting times, but is more

likely to be counterproductive the higher the initial waiting time penalty.

2.4.2 Increasing marginal provider disutility of waiting time

Suppose that the disutility of waiting time is given by (2.10) with α1 > 0 and α2 > 0. In this scenario,

a closed-form solution of supply and waiting times cannot be obtained. Our game belongs to the class of

linear-quadratic differential games wherein the state variables enter the objective function quadratically,
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while they enter the dynamic constraints linearly. Although the closed-loop solution of linear-quadratic

games may generally be computed analytically, this is not always assured. This is the case of our model

whose particular structure features both state variables entering the dynamic constraints and has algebraic

properties that limit the tractability of its closed-loop solution.

We are, however, able to solve for the solution numerically. To make the analysis more salient and

policy relevant, we take this constraint as an opportunity to calibrate the model based on real data and

available empirical evidence. The rest of this subsection characterises some general features of the

solution, and the next one provides the calibration of the closed-loop solution.

Proposition 2.4. If the marginal provider disutility of waiting time is increasing, the optimal closed-loop

supply rule for Hospital i is given by:

Si(wi, wj, t) =
p− θ(ω1 + ω3wi(t) + ω5wj(t))

γ
, (2.21)

where ω3 < 0 is required by the concavity of the value function and ω5 ∈ Ω.

See Appendix 2.A.2 for the definition Ω and proof of Proposition 2.4.

In contrast to the case of constant marginal disutility of waiting time, a dynamic strategic interaction is

present when the marginal disutility is increasing. This implies that the equilibrium supply of Hospital i at

time t depends both on own waiting time, wi (t), and the waiting time at Hospital j, wj (t). Considering

first the relationship between optimal treatment supply and own waiting time, ω3 < 0 implies that an

increase in the waiting time of Hospital i increases the hospital’s optimal treatment supply. The reason is

that a longer waiting time increases the hospital’s marginal disutility of waiting time and therefore increases

the marginal benefit of supply.

The relationship between the treatment supply at Hospital i and the waiting time at Hospital j is

determined be the sign of ω5. Although it is not possible to unambiguously determine the sign of ω5

analytically (see Appendix 2.A.2), our calibration results provided in the next subsection show that ω5 is

negative for all the parameter configurations considered. If ω5 is negative, then hospitals’ supply decisions

are characterised by strategic substitutability, ∂Si(wi, wj)/∂wj > 0, for which we provide the following

intuition. Consider a unilateral increase in supply by Hospital i. This leads to lower waiting times at

Hospital i, which in turn shifts demand from Hospital j to Hospital i, causing a reduction in waiting times

also at Hospital j. A lower waiting time at Hospital j reduces its marginal disutility of waiting time, and

thus its marginal benefit of supply. Hospital j will therefore optimally respond by reducing its supply of

treatments. In other words, a supply increase by Hospital i triggers a supply decrease by Hospital j.
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The above described strategic interaction has important implications for the supply incentives of each

hospital. Consider once more a unilateral increase in supply by Hospital i, which leads to an initial

reduction in waiting time at this hospital. However, because of strategic substitutability, Hospital j will

respond by reducing its supply, as explained above. The subsequent increase in waiting time at Hospital j

shifts some demand towards Hospital i, thereby dampening the initial reduction in the waiting time caused

by the supply increase of Hospital i. Thus, dynamic strategic substitutability lowers the marginal benefit

of treatment supply, giving each hospital an incentive to reduce its own supply in order to ‘free-ride’ on

the subsequent supply increase of the rival hospital.

In Appendix 2.A.2, we also show that, if the initial waiting times are the same in both hospitals or

if the average initial waiting time equals the steady-state waiting time, then waiting times, supply and

demand in both segments of the market converge monotonically to the steady-state. In this case, if

the condition |ω3| > |ω5| holds, the equilibrium path to the steady-state is characterised by periods of

increasing (decreasing) hospital activity and increasing (decreasing) waiting time, which is in line with

Siciliani (2006) in a monopoly setting. Notice that |ω3| > |ω5| implies that the own waiting time effect

on hospital activity is larger than the effect of the waiting time of the competing hospital, which is both

intuitive and confirmed by our calibration exercise below.9

However, non-monotonic convergence may also arise. In Appendix 2.A.2 we show that, if the average

initial waiting time is above (below) the steady-state waiting time, the hospital with the shortest (longest)

initial waiting time might experience a non-monotonic convergence along the equilibrium path, with the

waiting time first increasing (decreasing) before decreasing (increasing) towards the steady-state. One

policy implication is that short-run provider performance on waiting times may not be representative of its

long-run one.

2.4.3 Calibration

We calibrate the model using data from the English NHS on cataract surgery, which is a common non-

emergency procedure across OECD countries (Siciliani et al., 2014). Our two key variables in the model

are the steady-state waiting time and supply.

Waiting time data for cataract surgery is obtained from the Hospital Episode Statistics published by

NHS Digital. Table 2.1 reports the mean and median waiting times (in days) for a cataract procedure

9 Additionally, it follows from equations (2.53) and (2.54) in Appendix 2.A.2 that |ω3| > |ω5| is a sufficient (but not necessary) condition for convergence
to be verified.
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provided either by NHS hospitals or the independent sector (private hospitals treating publicly-funded

patients).10

Table 2.1: Evolution of Waiting Times for Cataract Procedures in the English NHS

Financial year 2011-12 2012-13 2013-14 2014-15 2015-16 2016-17

Mean waiting time 66 67 71 70 70 70

Median waiting time 59 60 63 62 59 58

Waiting times have remained relatively stable in recent years. They coincide with a period in which

NHS England (the main regulator) did not specify performance standards for non-emergency care (The

King’s Fund, 2017). We interpret this as a regime where no significant penalties have been imposed

on providers with longer waits. Within our model this corresponds to the special case when there is no

hospital disutility of waiting time (α1 = α2 = 0). We therefore use the data in Table 2.1 as a measure of

waiting times in a steady-state with no penalties, which we denote by superscript s. To make the analysis

consistent with the study of Propper et al. (2010), we employ the mean waiting time, measured in months,

and focus on the financial year 2016-17, giving ws = 2.3.

According to the National Schedule of Reference Costs from NHS Improvement, 234 NHS providers

performed 286, 596 cataract procedures in the same year.11 This gives a monthly average of approxi-

mately 100 procedures per provider, so that Ss = Ds = 100.

On the supply side, two key parameters are the tariff for a cataract surgery (the DRG-type price) and the

marginal cost of treatment. From the National Schedule of Reference Costs, the national tariff in 2016-17

for a cataract procedure was 731 . We set p = 731. Given that the first-order condition Ss = p/γ

has to hold (when α1 = α2 = 0), we recover the parameter related to the marginal cost of treatment,

γ = 7.31.

On the demand side, the key parameters are the potential demand, the size of the competitive seg-

ment, the demand responsiveness, the gross valuation of treatment, and the value of the outside option.

These parameters are less easy to obtain but we infer them in the following way. According to OECD

(2018), 10.5% of the UK population was covered by private health insurance in 2015. We assume that

10 Healthcare Resource Group (HRG) code BZ02Z, Phacoemulsification Cataract Extraction and Lens Implant, in the HRG4 classification system. In
2011-12, episodes were grouped according to the HRG3.5 version, and the corresponding HRG code is B13.

11 The National Schedule of Reference Costs is detailed according to the HRG4+ classification system, which presents a more thorough description of
cataract episodes than the HRG4. Focusing on Phacoemulsification Cataract Extraction and Lens Implant, the HRGs considered are BZ34A, BZ34B, and
BZ34C in HRG4+.
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patients with private insurance opt for private treatment and that publicly-funded cataract procedures ac-

count for about 90% of the market.12 Given that the steady-state supply in each hospital is Ss = 100,

potential demand across the two hospitals is then given by N = 222.

Sivey (2012) estimates a demand elasticity for cataract surgery across NHS providers that is approx-

imately −0.1. The waiting time elasticity of demand evaluated at the steady-state values and N = 222

gives
∂Di(wi(t), wj(t))

∂wi(t)

ws

Ds
= −N(2− β)

2τ

ws

Ds
= −222(2− β)

2τ

2.3

100
= −0.1. (2.22)

We do not know how large is the competitive segment. In order to account for patient heterogeneity, we

conduct the analysis for three different values, β = {0.2, 0.5, 0.8}. We start by assuming β = 0.2, so

that the competitive segment accounts for 20% of potential demand and is therefore relatively small, and

then check how the results differ when it is 50% and 80% (relatively large). If β = 0.2, then, from (2.22),

the demand elasticity implies that τ = 45.954. Moreover, from the demand equation evaluated at the

steady-state,

Ds = N

[
β

2
+ (1− β)

(
v − k − ws

τ

)]
, (2.23)

we can recover the difference between the gross valuation of treatment and the value of the outside option:

v − k = 22.4308. If β = 0.5, then, from (2.22), we obtain τ = 38.295 and, from (2.23), we obtain

v − k = 17.653. If β = 0.8, then, from (2.22), we obtain τ = 30.636 and, from (2.23), we obtain

v − k = 10.028. We have thus recovered the demand-side parameters for β = {0.2, 0.5, 0.8}.

We adopt a discount factor of 0.95 per year and take each period t as one month. The monthly

discount rate is therefore ρ = 0.004 (computed from e−12ρ = 0.95).

In the steady-state, it takes one month for Hospital i to treat 100 patients. This implies that, if 10

additional patients are added to the list, the waiting time will increase by 0.1months (about 3 days). More

formally, from the dynamic constraint,∆ws ≈ θ∆(Ds−Ss), which gives θ = ∆ws

∆(Ds−Ss)
= 0.1

10
= 0.01

in the neighbourhood of the steady-state.

We are interested in understanding provider behaviour in the presence of penalties. We therefore need

to identify plausible values for α1 and α2 under a penalty regime. In order to do this, we make use of the

open-loop solution, for which we can derive a closed-form solution for the steady-state waiting time when

α2 > 0 (see Appendix 2.B). We denote variables in the open-loop steady-state by the superscript OL.

Propper et al. (2010) find that the introduction of waiting time penalties in the English NHS in 2000-05

12 This is an approximation since some patients without private insurance may also obtain private care if they pay out of pocket and some with private
insurance may not seek private care if they face co-payments.
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reduced the mean waiting time by 13 days (i.e., 0.43 months). Although this estimate refers to an earlier

period, it provides us with a plausible order of magnitude if such penalties were re-introduced in 2016-17.

We then use this figure to compute the difference between the steady-state waiting time in the model with

no disutility of waiting time and the open-loop steady-state waiting time, which is given by

ws−wOL = 2.3− γϕτ

(1− β)γϕN + 2θτ 2α2

{
N

[
β

2
+ (1− β)

(
v − k

τ

)]
− p

γ
− 2θτα1

γϕ

}
= 0.43.

(2.24)

Inserting the above described parameter values when β = 0.2, the solution to (2.24) has one degree of

freedom and is given by

α2 = 30.5274− 0.53486α1. (2.25)

All α1 and α2 that satisfy (2.25) yield a reduction of 0.43months in the open-loop steady-state waiting

time compared to the case with no disutility of waiting time. We consider three disutility structures: (i) linear

disutility (α2 = 0), yielding α1 = 57.0826; (ii) quadratic disutility (α1 = 0), yielding α2 = 30.5274;

and (iii) an intermediate case in which α1 =
57.0826

2
and α2 =

30.5274
2

.

We insert all parameter values and solve the system (2.38)–(2.40) in Appendix 2.A to yield ω1, ω3,

and ω5, which are plugged into (2.59) to obtain the closed-loop steady-state waiting time. With ω1, ω3,

ω5, andwCL, we use (2.21) to retrieve the closed-loop steady-state supply. For the open-loop steady-state

waiting time and supply, we insert the parameter values into equations (2.75) and (2.77) in Appendix 2.B.

The same steps were then repeated for β = 0.5 and β = 0.8.

Linear versus convex waiting time disutility

The results generated by the above described calibration procedure are summarised in Table 2.2.

Our calibration results confirm that, as explained in subsection 2.4.2, the dynamic interaction intro-

duced by increasing marginal disutility of waiting time leads to longer steady-state waiting times. As the

waiting time disutility becomes more convex (i.e., more weight is placed on the quadratic term), the longer

is the waiting time and the lower is supply in the closed-loop steady-state. The reason is simply that a

more convex disutility function increases the magnitude of each hospital’s supply response to changes in

the waiting time, which reinforces each hospital’s incentive to reduce supply in order to provoke a supply

increase by the rival hospital, which in turn benefits the former hospital in the form of a lower waiting

time. This result has potentially interesting policy implications, as it suggests that linear penalties are

more effective in reducing waiting times, all else equal. Notice also that the importance of the design of
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Table 2.2: Calibration Results for a Waiting Time Elasticity of Demand of −0.1

β α1 α2 wOL wCL SOL SCL ω3 ω5

0.2 57.0862 0 1.8700 1.8700 101.6620 101.6620 0 0

0.2 28.5431 15.2637 1.8700 1.8703 101.6620 101.6609 −164.6061 −8.3753

0.2 0 30.5274 1.8700 1.8705 101.6620 101.6600 −321.6537 −15.3715

0.5 39.2269 0 1.8700 1.8700 101.2464 101.2464 0 0

0.5 19.6143 10.4885 1.8700 1.8720 101.2464 101.2402 −119.1899 −19.2189

0.5 0 20.9769 1.8700 1.8734 101.2464 101.2353 −233.5920 −36.3039

0.8 13.5675 0 1.8700 1.8700 100.6232 100.6232 0 0

0.8 6.7837 3.6277 1.8700 1.8755 100.6232 100.6147 −52.3298 −20.3702

0.8 0 7.2553 1.8700 1.8795 100.6232 100.6077 −102.5480 −38.9404

the penalty structure is larger for higher values of the competitive segment, β. This is intuitive, since the

strategic substitutability relies on the existence of a competitive segment, wherein changes in the waiting

time at one hospital affect demand faced by the rival hospital. Thus, a larger relative size of the competitive

segment will magnify the effects of strategic substitutability.

Besides confirming that they coincide when α2 = 0, another key insight from Table 2.2 is that the

difference in waiting times under the open- and closed-loop solutions is very small (less than 1%) when

α2 > 0. This suggests that, even with non-linear penalties, the less computationally demanding open-loop

solution offers a close approximation of the closed-loop one.

Higher waiting time elasticity of demand

One may worry that the results from Table 2.2 are due to the low demand elasticity. We therefore extend

the analysis under the assumption that the waiting time elasticity is higher. We consider two additional

cases. First, we assume that the elasticity is −0.2, twice as large, which is the highest that has been

reported in studies for England (see Iversen and Siciliani, 2011, for an overview). Second, we assume

that the elasticity is −1. This is an upper bound. There is only one study from Australia which provides

such a large estimate (Stavrunova and Yerokhin, 2011), and this is consistent with the features of the

Australian health system where more than half of the population is treated privately. Tables 2.3 and 2.4

provide the results for waiting time elasticities of demand of−0.2 and−1, and they are derived following
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the steps detailed above. We see that an increase in the waiting time elasticity of demand reinforces

the relative effectiveness of linear (as opposed to convex) waiting time penalties. Still, the quantitative

difference between steady-state waiting times in the open- and closed-loop solutions remains small.

Table 2.3: Calibration Results for a Waiting Time Elasticity of Demand of −0.2

β α1 α2 wOL wCL SOL SCL ω3 ω5

0.2 218.4948 0 1.8700 1.8700 103.3237 103.3237 0 0

0.2 109.2474 58.4211 1.8700 1.8703 103.3237 103.3212 −322.1649 −16.7563

0.2 0 116.8421 1.8700 1.8705 103.3237 103.3193 −629.5163 −31.3129

0.5 148.9097 0 1.8700 1.8700 102.4928 102.4928 0 0

0.5 74.4548 39.8154 1.8700 1.8722 102.4928 102.4791 −231.9189 −38.3288

0.5 0 79.6308 1.8700 1.8738 102.4928 102.4683 −454.4837 −72.3946

0.8 49.2070 0 1.8700 1.8700 101.2464 101.2464 0 0

0.8 24.6037 13.1571 1.8700 1.8762 101.2464 101.2272 −98.9201 −39.8422

0.8 0 26.3142 1.8700 1.8807 101.2464 101.2115 −193.7462 −76.1410

Table 2.4: Calibration Results for a Waiting Time Elasticity of Demand of −1

β α1 α2 wOL wCL SOL SCL ω3 ω5

0.2 5265.7273 0 1.8700 1.8700 116.6184 116.6184 0 0

0.2 2632.8636 1407.9485 1.8700 1.8703 116.6184 116.6049 −1581.6013 −83.7851

0.2 0 2815.8969 1.8700 1.8706 116.6184 116.5947 −3090.4383 −156.5665

0.5 3561.6215 0 1.8700 1.8700 112.4638 112.4638 0 0

0.5 1788.8108 952.3052 1.8700 1.8724 112.4638 112.3893 −1132.2781 −190.9560

0.5 0 1904.6104 1.8700 1.8741 112.4638 112.3307 −2218.7774 −360.6664

0.8 1126.6109 0 1.8700 1.8700 106.2319 106.2319 0 0

0.8 563.3055 301.2329 1.8700 1.8769 106.2319 106.1257 −469.2457 −194.4604

0.8 0 602.4657 1.8700 1.8818 106.2319 106.0397 −918.7196 −371.5998
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Higher waiting times and hospital heterogeneity

We now investigate whether our calibration results are robust to providers with longer waiting times. We

simulate scenarios in which the baseline waiting time is 50% higher (i.e., ws = 3.45). This is in line with

Sivey (2012), who finds that the standard deviation of waiting times for cataract patients is about half of

the mean wait.

Since long waiting times may be observed both at hospitals with high and low volumes, we recalibrate

the model with the higher baseline waiting time (ws = 3.45) and set steady-state supply respectively at

Ss = 300 (high volume) and Ss = 50 (low volume) in Tables 2.5 and 2.6. This is in line with HES data

that reveal significant dispersion in hospital volumes even at the upper tail of the waiting times distribution

across all procedures.13

By repeating the steps outlined at the beginning of subsection 2.4.3, we obtain the results in Tables

2.5 and 2.6, which show that the effect of linear versus convex penalties is qualitatively similar to our

previously derived results (in Tables 2.2–2.4). And again, the waiting times under the open-loop solution

are very similar to those under closed-loop solution.

Table 2.5: Calibration Results for Larger Hospitals and a Higher Baseline Waiting Time

β α1 α2 wOL wCL SOL SCL ω3 ω5

0.2 79.3777 0 3.0200 3.0200 303.3237 303.3237 0 0

0.2 39.6889 13.1420 3.0200 3.0202 303.3237 303.3224 −209.9135 −10.6351

0.2 0 26.2840 3.0200 3.0203 303.3237 303.3214 −413.6013 −20.3550

0.5 54.9493 0 3.0200 3.0200 302.4928 302.4928 0 0

0.5 27.4747 9.0976 3.0200 3.0212 302.4928 302.4860 −152.6061 −24.3845

0.5 0 18.1951 3.0200 3.0222 302.4928 302.4803 −301.2599 −47.0010

0.8 19.7392 0 3.0200 3.0200 301.2464 301.2464 0 0

0.8 9.8696 3.2681 3.0200 3.0232 301.2464 301.2374 −68.5619 −26.0926

0.8 0 6.5362 3.0200 3.0258 301.2464 301.2294 −135.3564 −50.6886

13 In 2016-17, the standard deviation of finished consultant episodes for hospitals above the 90th percentile of the waiting times distribution was over
three times larger than the mean.
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Table 2.6: Calibration Results for Smaller Hospitals and a Higher Baseline Waiting Time

β α1 α2 wOL wCL SOL SCL ω3 ω5

0.2 13.2296 0 3.0200 3.0200 50.5539 50.5539 0 0

0.2 6.6148 2.1903 3.0200 3.0202 50.5539 50.5537 −34.9856 −1.7725

0.2 0 4.3807 3.0200 3.0203 50.5539 50.5536 −68.9335 −3.3925

0.5 9.1582 0 3.0200 3.0200 50.4155 50.4155 0 0

0.5 4.5791 1.5163 3.0200 3.0212 50.4155 50.4143 −25.4343 −4.0641

0.5 0 3.0325 3.0200 3.0222 50.4155 50.4134 −50.2100 −7.8335

0.8 3.2899 0 3.0200 3.0200 50.2077 50.2077 0 0

0.8 1.6449 0.5447 3.0200 3.0232 50.2077 50.2062 −11.4270 −4.3488

0.8 0 1.0894 3.0200 3.0258 50.2077 50.2049 −22.5594 −8.4481

Patient choice and waiting times

One of our main aims is to analyse the relationship between patient choice and waiting times. In line

with the analysis in subsection 2.4.1, we therefore conduct comparative statics with respect to the pa-

tient choice parameter τ . The fourth and fifth columns of Table 2.7 show the effects (on steady-state

waiting times and supply) of a 10% reduction in τ , with all other parameters kept unchanged from our

main calibration analysis, which implies that the results displayed in Table 2.2 serve as a reference point

of comparison. In the last two columns of Table 2.7, we report the equivalent effects of a combined

policy package, where a 10% reduction in τ is accompanied by a 10% increase in waiting time penalties

(equivalent to the last part of the analysis in subsection 2.4.1).

In qualitative terms, the effects of increased patient choice on steady-state waiting times and supply,

as shown in the fourth and fifth columns of Table 2.7, confirm that the result stated in Proposition 2.2

generalises beyond the case of constant marginal disutility of waiting time. Regardless of the shape of the

hospitals’ waiting time disutility function, a reduction in τ leads to higher steady-state waiting times.14

However, even if more patient choice increases steady-state waiting times for all parameter configu-

rations considered in Table 2.7, there is a clear pattern showing that this effect is quantitatively smaller

if the waiting time disutility is more convex. The reason is that a reduction in τ has two counteracting

14 In the open-loop solution, for which a closed-form solution can be derived also in the case of increasing marginal waiting time disutility (see Appendix
2.B), it is also easily shown that a reduction in τ leads to higher steady-state waiting times for all parameter values that are compatible with equilibrium
existence.
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Table 2.7: Steady-State Effects of Policy Reforms

Patient choice1 Joint policy2

β α1 α2 ∆%wCL ∆%SCL ∆%wCL ∆%SCL

0.2 57.0862 0 111.86 −0.15 109.98 0

0.2 28.5431 15.2637 102.24 0.61 99.67 0.82

0.2 0 30.5274 94.15 1.25 91.14 1.49

0.5 39.2269 0 86.27 −0.11 84.39 0

0.5 19.6143 10.4885 78.76 0.33 76.41 0.47

0.5 0 20.9769 72.52 0.70 69.87 0.85

0.8 13.5675 0 45.34 −0.05 43.45 0.01

0.8 6.7837 3.6277 41.25 0.07 39.23 0.12

0.8 0 7.2553 37.93 0.17 35.85 0.23

110% reduction in τ

210% reduction in τ and 10% increase in α1 and/or α2

effects on steady-state supply when α2 > 0. On the one hand, a lower τ makes treatment supply a less

effective instrument to reduce waiting times, as previously explained, which gives each hospital an incen-

tive to reduce their supply. On the other hand, a lower τ also increases demand (from the monopolistic

segment), which—all else equal—leads to higher waiting times. If the disutility of waiting time is strictly

convex (i.e., if α2 > 0), such increase in waiting time increases the marginal disutility of waiting time

and therefore increases the marginal benefit of supply. In other words, with a strictly convex waiting time

disutility function, the waiting time increase due to increased patient choice is partly dampened by the

hospitals’ incentives to increase supply in response to higher waiting times. Indeed, the fifth column in

Table 2.7 shows that steady-state supply increases for the parameter configurations with α2 > 0.

This illustrates another aspect of the inherent conflict between waiting time penalties and patient

choice policies, as previously discussed in subsection 2.4.1. On the one hand, waiting time penalties are

more effective in reducing waiting times when they are designed as linear penalties (as shown by Tables

2.2–2.6). On the other hand, the counterproductive effect of patient choice policies on waiting times is

larger when penalties are linear (as shown by Table 2.7).

The last two columns of Table 2.7 show the effects of a policy package where the increased in patient
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choice is combined with a (10%) increases in waiting time penalties. Not surprisingly, this dampens the

increase in waiting times induced by more patient choice. However, we see that the patient choice effect

clearly dominates, implying that such a policy package leads to an overall increase in steady-state waiting

times.

2.5 Patient Welfare

In this section, we briefly investigate the effect of choice policies on overall patient welfare. In the symmetric

steady-state equilibrium, overall patient welfare, denoted by U , is given by the sum of patients’ utility

U = 2Nβ

∫ 1
2

0

(v − wCL − τx)dx+ 2N(1− β)

∫ xCL
M

0

(v − k − wCL − τx)dx, (2.26)

and the effect of lower travelling costs is

∂U

∂τ
= −2DCL∂w

CL

∂τ
−N

[
β

4
+ (1− β)(xCL

M )2
]
. (2.27)

The first term is negative and captures the utility loss due to longer waiting times endured by all

patients. The second term is positive and captures the utility increase from lower travelling costs, which

we interpret more broadly as simpler access to healthcare. Note that there is a third term since an increase

in waiting times reduces demand at the margin, but given that the marginal patient is indifferent between

treatment and no treatment, this has no effect on welfare. Therefore, the effect of choice policies on overall

welfare is indeterminate and is positive only if the direct effect of easier access overcomes the utility loss

from longer waiting times.

The above approach takes a utilitarian perspective. Suppose that a health authority or regulator (a

Ministry of Health) is only interested in the health component of patient welfare (Gravelle and Siciliani,

2008c). This approach has been sometimes referred as the extra-welfarist approach since it ignores

non-health components which affect patient utility. Aggregate health patient benefit, denoted B, at the

symmetric steady-state, is

B = 2Nβ

∫ 1
2

0

(v − wCL)dx+ 2N(1− β)

∫ xCL
M

0

(v − k − wCL)dx, (2.28)

and the effect of lower travelling costs is

∂BW

∂τ
= −2DCL∂w

CL

∂τ
+ 2(v − k − wCL)

∂SCL

∂τ
. (2.29)
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If providers’ penalties are linear in waiting times, patient choice policies increase waiting times for each

patient and reduce supply with fewer patients gaining a health benefit from treatment, thus unambiguously

reducing aggregate health benefits.

If providers’ penalties are non-linear in waiting times, choice policies simultaneously increase waiting

times and supply. Therefore, the effect on aggregate health benefit is in principle ambiguous. However,

our calibration exercise shows that the supply effect is a second-order effect and that patient choice reduces

aggregate health benefit also when α2 > 0. In more detail, Table 2.8 reports the percent change in B

and U induced by a 10% reduction in τ , which is computed using the welfare values associated with

Tables 2.2 and 2.7.

Table 2.8: Steady-State Effects of a 10% Reduction in Travelling Costs on Patient Welfare

β α1 α2 ∆%wCL ∆%SCL ∆%U ∆%B

0.2 57.0862 0 111.86 −0.15 −9.81 −10.04

0.2 28.5431 15.2637 102.24 0.61 −8.10 −8.52

0.2 0 30.5274 94.15 1.25 −6.66 −7.23

0.5 39.2269 0 86.27 −0.11 −8.26 −9.22

0.5 19.6143 10.4885 78.76 0.33 −6.70 −8.08

0.5 0 20.9769 72.52 0.70 −5.38 −7.12

0.8 13.5675 0 45.34 −0.05 −1.71 −5.88

0.8 6.7837 3.6277 41.25 0.07 −0.69 −5.31

0.8 0 7.2553 37.93 0.17 0.15 −4.84

2.6 Robustness

In order to facilitate analytical tractability, our model has a linear-quadratic structure. One implication is

that patient (dis)utility is assumed to be linear in waiting times, and travelling costs are linear in distance.

Here we will briefly evaluate whether our main result—that more patient choice leads to increased waiting

times—is robust to a relaxation of these assumptions. Unfortunately, it is only possible to perform these

robustness checks in the context of the open-loop solution. However, our previous analysis has shown

that the open-loop solution is a very close approximation of the closed-loop solution in our setting. The two
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solutions coincide if α2 = 0, and our calibration results show that the two solutions concepts produce

quantitatively almost identical results if α2 > 0. More importantly, the positive relationship between

patient choice and waiting times does not depend on the choice of the solution concept.

2.6.1 Non-linear patient disutility of waiting

Suppose that, in the patient utility functions (2.1) and (2.2), we replacewi with a strictly increasing function

f (wi). Total demand for Hospital i is then given by

Di(wi, wj) = N

{
β

[
1

2
+

f(wj)− f(wi)

2τ

]
+ (1− β)

[
v − k − f(wi)

τ

]}
. (2.30)

Let wOL be the steady-state waiting time in the open-loop solution. In Appendix 2.B.1, we show that this

solution exists if f (·) is either concave or convex with a sufficiently low degree of convexity. Furthermore,

we also show that, under the conditions of equilibrium existence, ∂wOL/∂τ < 0. Thus:

Proposition 2.5. Regardless of whether patient utility is concave or convex in waiting time, the steady-

state waiting time in the open-loop solution, if it exists, is increasing in the degree of patient choice.

This result is not surprising, given the intuition behind the previously derived positive relationship

between patient choice and steady-state waiting times, which is related to the responsiveness of demand to

changes in waiting times. As long as increased patient choice makes demand more responsive to changes

in waiting times, it becomes more difficult for each hospital to curb waiting times by unilaterally increasing

supply, which in turn leads to longer steady-state waiting times at both hospitals. This mechanism only

requires that patient utility decreases with longer waiting times; it does not depend on whether patient

utility decreases at a faster or slower rate when waiting times increase. Thus, we conjecture that the

result stated in Proposition 2.5 also holds in a closed-loop setting.

2.6.2 Non-linear patient disutility of travelling

Consider next the case where, in the patient utility functions (2.1) and (2.2), we replace |x − zi| with a

strictly increasing function g (|x− zi|). This generalisation prevents a closed-form derivation of demand.

However, by the Implicit Function Theorem, we can derive the demand responsiveness to waiting time as

∂Di(wi(t), wj(t))

∂wi(t)
= −N

τ

(
β

τ [g′(xC(t)) + g′(1− xC(t))]
+

(1− β)

g′(xi
M (t)))

)
< 0 (2.31)
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and
∂Di(wi(t), wj(t))

∂wj(t)
=

Nβ

τ [g′(xC(t)) + g′(1− xC(t))]
> 0. (2.32)

Still using τ as an inverse measure of the degree of patient choice, we derive (see Appendix 2.B.2) the

following result:

Proposition 2.6. (i) The steady-state waiting time in the open-loop solution is increasing in the degree

of patient choice if the patient disutility of travelling is either concave or not strongly convex in travelling

distance. (ii) In the case of constant marginal provider disutility of waiting time, the open-loop steady-state

waiting time is increasing in the degree of patient choice if it exists.

Thus, unless patient utility is strongly convex in travelling distance, our main result holds also in the

case of non-linear patient disutility of travelling. And it always holds in the case of linear waiting time

penalties, given that the open-loop solution exists. The general condition stated in Proposition 2.6 covers,

for example, the empirical specification of Sivey (2012), who assumes that the utility of English cataract

patients is a function of the natural log of travel time.

2.7 Concluding Remarks

We have investigated whether increased competition through patient choice policies play a useful role

in reducing waiting times and the extent to which such a role is altered in the presence of penalties

for providers with long waits. Our main results suggest, perhaps surprisingly, that increased patient

choice leads to higher waiting times and that patient choice policies are therefore counterproductive in

this respect. Furthermore, in the presence of waiting time penalties, we have shown that larger penalties

make patient choice policies even more counterproductive.

The counterproductive effect of patient choice policies follows from the fact that increased patient

choice makes each hospital’s demand more responsive to changes in waiting times, which in turn makes

it harder for each hospital to reduce waiting times by unilaterally increasing supply. In other words,

increased patient choice makes each hospital’s supply decision a less effective instrument to reduce

waiting times, thereby leading to higher waiting times in equilibrium. This is a highly robust result which,

in qualitative terms, does not depend on the choice of game-theoretic solution concept (closed-loop versus

open-loop), nor on the design of the waiting time penalty structure (linear versus convex penalties). We

have also shown that this result is robust to a fairly general patient utility specification. The result holds
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when patients’ disutility of waiting is non-linear, and it also holds when patients’ disutility of travelling is

non-linear (though not too strongly convex).

While our main result might perhaps appear counterintuitive, it is consistent with a recent empirical

study which shows that the introduction of patient choice policies in England since 2006 led to an increase

in waiting times for hip and knee replacement (with one additional rival increasing waiting times by about

3-4%) and had no effect on waiting times for coronary bypass (Moscelli et al., 2019a) or the proportion

of patients waiting more than three months (Gaynor et al., 2013, footnote 16). Our results are also in

line with a study which showed that, for hip and knee replacement, hospitals facing more competition

had higher readmissions (Moscelli et al., 2019b). Therefore, it appears that waiting times and quality

worsened for some elective treatments, despite the improvements found for heart attack mortality and

overall mortality (Cooper et al., 2011; Gaynor et al., 2013) and for hip fracture mortality (Moscelli et al.,

2018).

Our findings are instead in contrast with the older study by Propper, Burgess, and Gossage (2008),

which found that competition in the late nineties reduced waiting times in England. However, this result

was obtained in a different institutional setting than the one covered in our study. Patients had no or very

limited choice. Hospitals prices were not fixed, but negotiated between health authorities and providers.

Clinical quality measures were not available to the funders so that providers competed for funding from

health authorities based on prices and waiting times.

As mentioned in the Introduction of this chapter, countries like Denmark and Portugal have introduced

patient choice policies. Although there is no evaluation study, in Denmark, waiting times reduced to some

extent following the introduction of patient choice (and other) policies. These however can be explained

by an expansion in capacity since the use of private providers to treat publicly-funded patients increased

from 2 to 4% (Siciliani, Moran, and Borowitz, 2013). Moreover, in Denmark, hospitals did not face any

direct penalties for longer waiting times. In Portugal, preliminary evidence from 2016–2017 suggests that

following the introduction of choice policies, median waiting time for first outpatient consultation increased

in five specialties and reduced in two specialties (Simões et al., 2017). This suggests that choice policies

did not have the intended effect of stimulating higher supply.

In summary, our model and analysis suggest that although policies based on provider penalties will

have the intended effect in reducing waiting times, policies which stimulate patient choice and competition

will not.
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Appendix 2.A Closed-Loop Solution

Given the linear-quadratic structure of our model, we conjecture that the value function for Hospital i takes

the form:

V i(wi, wj) = ω0 + ω1wi + ω2wj +
ω3

2
w2

i +
ω4

2
w2

j + ω5wiwj. (2.33)

This value function must satisfy the Hamilton-Jacobi-Bellman (HJB) equation for Hospital i, which is given

by15

ρV i(wi, wj) = max
{
T + pSi −

γ

2
S2
i − α1wi −

α2

2
w2

i + θ
∂V i

∂wi

(Di − Si) + θ
∂V i

∂wj

(Dj − Sj)

}
.

(2.34)

Maximisation of the right-hand side of the HJB equations yields:

Si(wi, wj) =
p− θ(ω1 + ω3wi + ω5wj)

γ
. (2.35)

Substituting Hospital i’s supply rule and the analogous supply rule for Hospital j into the HJB equation,

together with (2.7)–(2.8), we obtain:

ρV i(wi, wj) = T +p

[
p− θ(ω1 + ω3wi + ω5wj)

γ

]
− γ

2

[
p− θ(ω1 + ω3wi + ω5wj)

γ

]2
−α1wi

− α

2
w2

i + θ(ω1 + ω3wi + ω5wj)

[
β

(
1

2
+

wj − wi

2τ

)
N + (1− β)

(
v − k − wi

τ

)
N

− p− θ(ω1 + ω3wi + ω5wj)

γ

]

+ θ(ω2 + ω4wj + ω5wi)

[
β

(
1

2
+

wi − wj

2τ

)
N + (1− β)

(
v − k − wj

τ

)
N

− p− θ(ω1 + ω3wj + ω5wi)

γ

]
, (2.36)

15 To save notation, we omit the time index t in all subsequent expressions.
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which can be rewritten as{
T +

p2

2γ
+ σ(ω1 + ω2) +

θ2

2γ
ω2
1 +

θ2

γ
ω1ω2 − ρω0

}
+wi

{
−
[
ρ+

θ(2− β)N

2τ

]
ω1 +

θβN

2τ
ω2 + σ(ω3 + ω5) +

θ2

γ
ω1ω3 +

θ2

γ
ω1ω5 +

θ2

γ
ω2ω5 − α1

}
+ wj

{
θβN

2τ
ω1 −

[
ρ+

θ(2− β)N

2τ

]
ω2 + σ(ω4 + ω5) +

θ2

γ
ω1ω4 +

θ2

γ
ω1ω5 +

θ2

γ
ω2ω3

}
+ w2

i

{
−
[
ρ

2
+

θ(2− β)N

2τ

]
ω3 +

θ2

2γ
ω2
3 +

θβN

2τ
ω5 +

θ2

γ
ω2
5 −

α2

2

}
+ w2

j

{
−
[
ρ

2
+

θ(2− β)N

2τ

]
ω4 +

θ2

γ
ω3ω4 +

θβN

2τ
ω5 +

θ2

2γ
ω2
5

}
+ wiwj

{
θβN

2τ
(ω3 + ω4)−

[
ρ+

θ(2− β)N

τ

]
ω5 +

2θ2

γ
ω3ω5 +

θ2

γ
ω4ω5

}
= 0, (2.37)

where σ = θβN
2

+ θ(1− β)
(
v−k
τ

)
N − θ

γ
p.

For the equality to hold, the terms in curly brackets in the above equation have to be equal to zero.

Since the last three terms depend only on ω3, ω4, and ω5, we focus on the system of three equations and

three unknowns given by:

−
[
ρ

2
+

θ(2− β)N

2τ

]
ω3 +

θ2

2γ
ω2
3 +

θβN

2τ
ω5 +

θ2

γ
ω2
5 −

α2

2
= 0, (2.38)

−
[
ρ

2
+

θ(2− β)N

2τ

]
ω4 +

θ2

γ
ω3ω4 +

θβN

2τ
ω5 +

θ2

2γ
ω2
5 = 0, (2.39)

θβN

2τ
(ω3 + ω4)−

[
ρ+

θ(2− β)N

τ

]
ω5 +

2θ2

γ
ω3ω5 +

θ2

γ
ω4ω5 = 0. (2.40)

2.A.1 Constant marginal provider disutility of waiting time

Consider first the closed-loop solution under constant marginal waiting time disutility. When α2 = 0,

the system of equations (2.38)–(2.40) has a single candidate solution for which the value function is not

convex with respect to wi. The remaining five candidates have ω3 > 0 and cannot therefore constitute

a solution the hospital’s maximisation problem. The solution that yields a linear—hence, concave—value

function with respect to wi is ω3 = ω4 = ω5 = 0. This linearity of the value function with respect to

waiting times is not surprising given the linear structure of the game when α2 = 0. Setting ω3 = ω5 = 0

in (2.35), Hospital i’s optimal supply rule becomes

Si(wi, wj) =
p− θω1

γ
, (2.41)
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implying that supply is constant, and thus independent of waiting times, in each t.

With ω3 = ω4 = ω5 = 0, (2.37) simplifies to:{
T +

p2

2γ
+ σ(ω1 + ω2) +

θ2

2γ
ω2
1 +

θ2

γ
ω1ω2 − ρω0

}
+ wi

{
−
[
ρ+

θ(2− β)N

2τ

]
ω1 +

θβN

2τ
ω2 − α1

}
+ wj

{
θβN

2τ
ω1 −

[
ρ+

θ(2− β)N

2τ

]
ω2

}
= 0. (2.42)

Since the last two terms depend only on ω1 and ω2, we focus on the 2× 2 system and solve for ω1. The

solution is given by

ω1 = − τα1 [2ρτ + θ(2− β)N ]

2 [ρτ + θ(1− β)N ] [ρτ + θN ]
= −2τα1

ϕ
. (2.43)

Inserting the expression for ω1 into the optimal supply rule for hospitals i and j yields Si = Sj = SCL

as given by (2.13) in subsection 2.4.1. Using this result, the closed-loop steady-state waiting time is

derived from the equations of motion (2.11)–(2.12), with ẇi(t) = ẇj(t) = 0. Simple algebra shows

that wi = wj = wCL as given by (2.16) in subsection 2.4.1.

From (2.16), the steady-state waiting time is positive if and only if p ≤ p, given by

p = γN

[
β

2
+ (1− β)

(
v − k

τ

)]
− 2θτα1

ϕ
. (2.44)

Furthermore, in order to have a partially covered monopolistic segment in the steady-state, the following

condition must be satisfied:

0 <
v − k − wCL

τ
<

1

2
. (2.45)

The lower bound is satisfied if p > p, given by

p =
βγN

2
− 2θτα1

ϕ
, (2.46)

whereas the upper bound is satisfied if p < γN
2
− 2θτα1

ϕ
, which always holds if p < p. Thus, an interior-

solution equilibrium (i.e., positive waiting times with a partially covered monopolistic segment) requires

p ∈ P = (max{0, p}, p). Since p > p for β ∈ (0, 1), P is non-empty if p > 0, which requires that γ

is sufficiently large.

2.A.2 Increasing marginal provider disutility of waiting time

When α2 > 0, the solution to (2.38)–(2.40) depends on the root of a sixth degree polynomial, precluding

the computation of an analytical solution. Assume, for now, that a solution exists and that it is such that

(2.21) in Proposition 2.4 constitutes a Markov Perfect Nash Equilibrium.
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From (2.38), two candidate solutions for ω3 (as functions of ω5) ensue:

ω3 =
γ

θ2


[
ρ

2
+

θ(2− β)N

2τ

]
±

√[
ρ

2
+

θ(2− β)N

2τ

]2
− 2θ2

γ

[
θ2

γ
ω2
5 +

θβN

2τ
ω5 −

α2

2

] .

(2.47)

A solution to Hospital i’s maximisation problem is attained if the value function is concave with respect

to wi, which requires ω3 < 0. The greater root (unambiguously positive) is therefore ruled out. For the

smaller root to be negative, the second term under the square-root must be positive, which is true for

ω5 ∈ (ω5, ω5), with

ω5 = − γ

2θ2

θβN
2τ

+

√(
θβN

2τ

)2

+
2θ2α2

γ

 < 0, (2.48)

ω5 = − γ

2θ2

θβN
2τ

−

√(
θβN

2τ

)2

+
2θ2α2

γ

 > 0. (2.49)

Additionally, in order for (2.21) to be a Markov Perfect Nash Equilibrium, the value function must be

bounded from above. A necessary and sufficient condition for this requirement to hold is that waiting

times converge in equilibrium. Inserting (2.7), (2.8), (2.21), and the analogous supply rule for Hospital j

into (2.11)–(2.12) yields the following system of differential equations:

ẇi

θ
=

[
−(2− β)N

2τ
+

θ

γ
ω3

]
wi+

[
βN

2τ
+

θ

γ
ω5

]
wj+N

[
β

2
+ (1− β)

(
v − k

τ

)]
−
(
p− θω1

γ

)
,

(2.50)
ẇj

θ
=

[
βN

2τ
+

θ

γ
ω5

]
wi+

[
−(2− β)N

2τ
+

θ

γ
ω3

]
wj+N

[
β

2
+ (1− β)

(
v − k

τ

)]
−
(
p− θω1

γ

)
.

(2.51)

The Jacobian of (2.50)–(2.51) is

JCL = θ

− (2−β)N
2τ

+ θ
γ
ω3

βN
2τ

+ θ
γ
ω5

βN
2τ

+ θ
γ
ω5 − (2−β)N

2τ
+ θ

γ
ω3

 (2.52)

and its eigenvalues are

s1 = θ

[
−N

τ
+

θ

γ
(ω3 − ω5)

]
(2.53)

and

s2 = θ

[
−(1− β)N

τ
+

θ

γ
(ω3 + ω5)

]
. (2.54)

A sufficient condition for waiting times to converge is that both eigenvalues are negative. Then, s1 < 0 if

ω5 > −γN
θτ

+ ω3 and s2 < 0 if ω5 <
γ(1−β)N

θτ
− ω3.
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Using the expression for ω3 as a function of ω5, (2.47), the necessary condition s1 < 0 ∧ s2 <

0 ∧ ω3 < 0 is satisfied if ω5 ∈ Ω =
(
max{ω5, ω5

′},min{ω5, ω5
′}
)
, where

ω5
′ =

γ

6θ2

ρ− 2θβN

τ
−

√(
ρ− 2θβN

τ

)2

+
12θ2

γ

[
γN

θτ

(
ρ+

θ(1− β)N

τ

)
+ α2

] < 0,

(2.55)

ω5
′ =

γ

6θ2

−(ρ+ 2θβN

τ

)
+

√(
ρ+

2θβN

τ

)2

+
12θ2

γ

[
γ(1− β)N

θτ

(
ρ+

θN

τ

)
+ α2

] > 0.

(2.56)

Thus, provided that a solution to (2.38)–(2.40) exists, it constitutes a Markov Perfect Nash Equilibrium

(or closed-loop equilibrium) if ω5 ∈ Ω. Finally, an equilibrium with ω5 = 0 is ruled out by inspection of

(2.38)–(2.40).

The eigenvalues given by (2.53)–(2.54) also provide confirmation that the supply rules derived in

the previous subsection, under constant marginal disutility of waiting time, constitute a Markov Perfect

Nash Equilibrium. It is straightforward to see from (2.53) and (2.54) that s1 < 0 and s2 < 0 when

ω3 = ω5 = 0.

Transitional dynamics

In order to analyse the convergence to the steady-state in the closed-loop solution, we turn to its open-loop

representation. That is, we derive time-profiles of the waiting time, supply, and demand from the optimal

closed-loop supply rule. Let the superscript CL denote the closed-loop steady-state. The eigenvalues

governing the system of differential equations (2.50)–(2.51), s1 and s2, are respectively associated with

the eigenvectors ν1 = c1 [ 1 −1 ]T and ν2 = c2 [ 1 1 ]T , with c1, c2 ∈ R. Setting c1 = c2 = 1, the

solution of the system of differential equations (2.50)–(2.51) takes the form:

wi(t) = C1e
s1t + C2e

s2t + wCL, (2.57)

wj(t) = −C1e
s1t + C2e

s2t + wCL, (2.58)

where C1 and C2 are arbitrary constants. The closed-loop steady-state waiting time wCL is retrieved by

setting ẇi = ẇj = 0 in (2.50)–(2.51) and solving for wi and wj . This yields

wCL =
N
[
β
2
+ (1− β)

(
v−k
τ

)]
−
(

p−θω1

γ

)
(1−β)N

τ
− θ

γ
(ω3 + ω5)

. (2.59)

41



Inserting the initial conditions wi(0) = w0i and wj(0) = w0j into (2.57)–(2.58) and solving for C1 and

C2 gives C1 =
w0i−w0j

2
and C2 =

w0i+w0j

2
− wCL. Then, waiting times at Hospital i converge to the

steady-state according to:

wi(t) =

(
w0i − w0j

2

)
es1t +

(
w0i + w0j

2
− wCL

)
es2t + wCL. (2.60)

Consider, now, the dynamics of supply and demand. Inserting (2.60) and the analogous equation for

wj(t) into (2.21) yields:

Si(t) =
θ

γ

[
(ω5 − ω3)

(
w0i − w0j

2

)
es1t − (ω3 + ω5)

(
w0i + w0j

2
− wCL

)
es2t
]

+
p− θ[ω1 + (ω3 + ω5)w

CL]

γ
. (2.61)

Using (2.7), (2.60), and the analogous equation for wj(t), the dynamics of demand faced by Hospital i

in the competitive and monopolistic segments are respectively given by

Di
C(t) = βN

[
1

2
+

(
w0j − w0i

2τ

)
es1t
]

(2.62)

and

Di
M(t) =

(1− β)N

τ

[
v − k − wCL +

(
w0j − w0i

2

)
es1t +

(
wCL − w0i + w0j

2

)
es2t
]
.

(2.63)

If w0i = w0j , it follows from equations (2.60)–(2.63) that the dynamics of waiting times, supply, and

demand are uniquely governed by s2, and convergence is thus monotonic. By the same token, if the initial

waiting times differ but their average equals the steady-state waiting time wCL, dynamics are uniquely

governed by s1, and convergence is monotonic as well in this case. Note, additionally, that demand in

the competitive segment always converges monotonically to βN/2.

For the transitional dynamics in the closed-loop solution under constant marginal disutility of waiting

time, simply set ω3 = ω5 = 0 in equations (2.60)–(2.63). Constant hospital activity over time for α2 = 0

is then confirmed by (2.61).

Non-monotonic convergence

Equations (2.60)–(2.63) show that convergence to the steady-state depends on two, possible opposing,

forces. It depends on whether a hospital’s initial waiting time is longer than that of the rival, and whether

the average initial waiting time in the market differs from the steady-state waiting time. When these
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two conditions hold, the possibility of non-monotonic convergence arises. To see why non-monotonic

convergence might occur, consider the equilibrium dynamics of waiting times described in (2.60). If the

average initial waiting time is above (below) the steady-state, the first two terms have opposite signs for the

hospital with the shorter (longer) waiting time. In both cases, whether or not non-monotonic convergence

emerges depends on the relative size and speed of convergence (to zero) of each of those terms.

Differentiating (2.60) with respect to time and equating to zero yields a single critical point given by

t∗ =

(
1

s1 − s2

)
ln

[
−s2
s1

(
w0i + w0j − 2wCL

w0i − w0j

)]
, (2.64)

where s1 and s2 are given by (2.53) and (2.54). Convergence is non-monotonic for Hospital i if and only

if t∗ ∈ R+. With s1, s2 < 0, the first factor in (2.64) is negative if |s1| > |s2|. Thus, t∗ ∈ R+ if and

only if the second factor in (2.64) is defined and is negative, which requires that the expression in the

square brackets lies between 0 and 1. It is possible to derive some easily interpretable conditions for this

expression to be positive. Since − s2
s1

< 0, we must have w0i+w0j−2wCL

w0i−w0j
< 0. Two cases then arise:

1. If the average initial waiting time is above the steady-state waiting time, the numerator is positive,

and w0i+w0j−2wCL

w0i−w0j
is negative only if Hospital i has an initial waiting time below that of Hospital j.

2. If the average initial waiting time is below the steady-state waiting time, the numerator is negative,

and w0i+w0j−2wCL

w0i−w0j
is negative only if Hospital i has an initial waiting time above that of Hospital j.

Therefore, when the average initial waiting time is above (below) the steady-state waiting time, it is the

hospital with the shortest (longest) waiting time that exhibits non-monotonic convergence, provided that

|s1| > |s2| and − s2
s1

(
w0i+w0j−2wCL

w0i−w0j

)
∈ (0, 1).

To conclude the proof, we consider the shape of (2.60). Evaluating its second-order derivative with

respect to t at t∗ yields the following results:

1. If (w0i + w0j > 2wCL) ∧ (w0i < w0j), then w
′′
i (t

∗) < 0 simplifies to:(
s1
s2

)2

e(s1−s2)t∗(w0i − w0j) < −(w0i + w0j − 2wCL). (2.65)

Diving both sides by (w0i − w0j) reverses the inequality sign. Then, using (2.64), the inequality

becomes s1
s2

> 1, which is true.

2. If (w0i + w0j < 2wCL) ∧ (w0i > w0j), then w
′′
i (t

∗) > 0 simplifies to:(
s1
s2

)2

e(s1−s2)t∗(w0i − w0j) > −(w0i + w0j − 2wCL). (2.66)
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Diving both sides by (w0i − w0j) does not reverse the inequality sign. Then, using (2.64), the

inequality becomes s1
s2

> 1, which is true.

Hence, if |s1| > |s2|, − s2
s1

(
w0i+w0j−2wCL

w0i−w0j

)
∈ (0, 1), and the average initial waiting time is above

(below) the steady-state waiting time, the dynamics of the waiting time at the hospital with the shortest

(longest) initial wait has a unique maximum (minimum). This implies that the waiting time at the hospital

with the shortest (longest) initial wait first increases (decreases) before decreasing (increasing) towards

the steady-state.

Appendix 2.B Open-Loop Solution

Let µi(t) and λi(t) denote, respectively, the costate variables associated with the dynamic equations of

wi(t) and wj(t), given by (2.11) and (2.12), respectively, for Hospital i. That is, µi(t) is associated with

Hospital i’s waiting time and λi(t) with that of the rival. The current-value Hamiltonian is

Hi = T + pSi(t)−
γ

2
Si(t)

2 − α1wi(t)−
α2

2
wi(t)

2

+ µi(t)θ[Di(wi(t), wj(t))− Si(t)] + λi(t)θ[Dj(wi(t), wj(t))− Sj(t)]. (2.67)

Candidates for optimal supply pathSi(t) and costate trajectoriesµi(t) andλi(t)must satisfy ∂Hi/∂Si(t) =

0, µ̇i(t) = ρµi(t)− ∂Hi/∂wi(t), and λ̇i(t) = ρλi(t)− ∂Hi/∂wj(t). More extensively:

p− γSi(t) = θµi(t), (2.68)

µ̇i(t) =

[
ρ+

θ(2− β)N

2τ

]
µi(t)−

θβN

2τ
λi(t) + α1 + α2wi(t), (2.69)

and

λ̇i(t) =

[
ρ+

θ(2− β)N

2τ

]
λi(t)−

θβN

2τ
µi(t). (2.70)

The solution must also satisfy the transversality conditions

lim
t→∞

e−ρtµi(t)wi(t) = 0 and lim
t→∞

e−ρtλi(t)wj(t) = 0. (2.71)

Optimality is established by concavity of the current-value Hamiltonian with respect to Si(t) and wi(t).

Inserting the definition of demand (2.7) and the optimality condition for supply (2.68) into the dynamic

constraint (2.11) yields

ẇi(t) = θN

[
β

(
1

2
+

wj(t)− wi(t)

2τ

)
+ (1− β)

(
v − k − wi(t)

τ

)]
− θ

(
p− θµi(t)

γ

)
.

(2.72)
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The Jacobian matrix of the symmetric system of equations (2.69), (2.70), and (2.72) is:

JOL =


− θ(1−β)N

τ
θ2

γ
0

α2 ρ+ θ(2−β)N
2τ

− θβN
2τ

0 − θβN
2τ

ρ+ θ(2−β)N
2τ

 (2.73)

and has characteristic polynomial

P (s) = −s3+

(
2ρ+

θN

τ

)
s2+

(
α2θ

2

γ
+

(
θβN

2τ

)2

−
[
ρ+

θ(2− β)N

2τ

] [
ρ− θ(2− 3β)N

2τ

])
s

− θ(1− β)N

τ

[
ρ+

θN

τ

] [
ρ+

θ(1− β)N

τ

]
− α2θ

2

γ

[
ρ+

θ(2− β)N

2τ

]
. (2.74)

Since P (s) is a third-degree polynomial whose factorisation is unfeasible, solving analytically for its

roots yields little insight into the nature of the eigenvalues. According to the fundamental theorem of

algebra, P (s) has exactly three roots (real or complex). The coefficients of the cubic term and constant

term are negative, while the coefficient of the quadratic term is positive. Although the sign of the coefficient

of the linear term is ambiguous, it still follows that P (−s) has a single change of sign—either between

the second the the first powers or between the latter and the constant term. Thus, by Descartes’ Rule of

Signs, P (s) has a single real negative root, which implies that the steady-state is a saddle point.

Let the superscript OL denote the symmetric open-loop steady-state in which wi(t) = wj(t) =

wOL, µi(t) = µj(t) = µOL, and Si(t) = Sj(t) = SOL. Setting ẇ(t) = µ̇(t) = λ̇(t) = 0 in

equations (2.69), (2.70), and (2.72) and solving for the steady-state waiting time and costate variable

gives

wOL =
γϕτ

(1− β)γϕN + 2θτ 2α2

{
N

[
β

2
+ (1− β)

(
v − k

τ

)]
− p

γ
− 2θτα1

γϕ

}
(2.75)

and

µOL = −2τ

ϕ
(α1 + α2w

OL), (2.76)

where ϕ is defined by (2.14) in subsection 2.4.1. The corresponding steady-state supply is

SOL =
p

γ
+

2θτ
(
α1 + α2w

OL
)

γϕ
. (2.77)

The open-loop steady-state is characterised by a positive waiting time and a partially covered monop-

olistic segment if p ∈ P = (max{0, p},min{p1, p2}), where

p =
β

2
γN − 2θτ

ϕ
[α1 + α2(v − k)] , (2.78)
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p1 = γN

[
β

2
+ (1− β)

(
v − k

τ

)]
− 2θτα1

ϕ
, (2.79)

and

p2 =
γN

2
− 2θτ

ϕ

[
α1 + α2

(
v − k − τ

2

)]
. (2.80)

From (2.75), the waiting time is positive if and only if p ≤ p1. Then, in order to have a partially covered

monopolistic segment in the steady-state, the following condition must be satisfied:

0 <
v − k − wOL

τ
<

1

2
. (2.81)

The lower bound is satisfied if p > p, as defined by (2.78). Note that pmay be negative, but p ∈ R+ must

hold. Thus, p > max{0, p}. The upper bound, in turn, is satisfied if p < p2. Since p1 > 0 ∧ p1 > p,

P is non-empty when p1 < p2. Conversely, p2 only verifies p2 > p, as it may be negative. If p2 < 0,

parameters are such that p < p2 < 0 < p1. Then, P is non-empty when p2 < p1 if and only if p2 > 0,

which holds for a sufficiently large γ.

From (2.75), we derive

∂wOL

∂τ
= −

(1− β)xOL
M + τ

N
∂SOL

∂τ

1− β + 2θτ2α2

γϕN

< 0, (2.82)

where

∂SOL

∂τ
= Nθ2(α1 + α2w

OL)
(1− β)[Nθ(2− β) + 4τρ]θN + (2− β)(τρ)2

2γ(Nθ + τρ)2[N(1− β)θ + τρ]2
> 0 (2.83)

is the marginal effect of τ on steady-state supply for a given waiting time. Thus, regardless of whether the

marginal provider disutility of waiting time is constant or increasing, more patient choice leads to higher

steady-state waiting times.

2.B.1 Non-linear patient disutility of waiting

Suppose that hospital demand is given by (2.30) in subsection 2.6.1. Defining the Hamiltonian as before,

the optimality conditions in the symmetric steady-state are now given by

p− γSOL = θµOL, (2.84)[
ρ− θ

∂Di(w
OL)

∂wi

]
µOL − θ

∂Dj(w
OL)

∂wi

λOL + α1 + α2w
OL = 0, (2.85)
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and [
ρ− θ

∂Dj(w
OL)

∂wj

]
λOL − θ

∂Di(w
OL)

∂wj

µOL = 0. (2.86)

Using (2.30) and (2.85)–(2.86) to solve for µOL and λOL, we obtain

µOL = −τ

2

2ρτ + θ(2− β)N ∂f(wOL)
∂w[

ρτ + θ(1− β)N ∂f(wOL)
∂w

] [
ρτ + θN ∂f(wOL)

∂w

](α1 + α2w
OL) < 0 (2.87)

and

λOL =

[
θβN ∂f(wOL)

∂w

2ρτ + θ(2− β)N ∂f(wOL)
∂w

]
µOL < 0. (2.88)

Using the dynamic constraint, (2.30), and (2.84), the steady-state waiting time is then implicitly defined

by

N

[
β

2
+ (1− β)

(
v − k − f(wOL)

τ

)]
− p− θµOL

γ
= 0. (2.89)

Existence requires that the second-order conditions of the hospitals’ maximisation problem are sat-

isfied. These are given by ∂2Hi/∂S
2
i ≤ 0, ∂2Hi/∂w

2
i ≤ 0, and (∂2Hi/∂S

2
i )(∂

2Hi/∂w
2
i ) −

∂2Hi/∂Si∂wi ≥ 0. Since ∂2Hi/∂S
2
i = −γ and ∂2Hi/∂Si∂wi = 0, concavity of the Hamiltonian

requires that
∂2Hi

∂w2
i

= −α2 −
[
θ(2− β)N

2τ
µi −

θβN

2τ
λi

]
∂2f

∂w2
i

≤ 0. (2.90)

Evaluated at the steady-state, this expression becomes

− α2 +

[
ρτ(2− β) + 2θ(1− β)N ∂f(wOL)

∂w

]
θN(α1 + α2w

OL)

2
[
ρτ + θ(1− β)N ∂f(wOL)

∂w

] [
ρτ + θN ∂f(wOL)

∂w

] ∂2f(wOL)

∂w2
≤ 0 (2.91)

If ∂2f
(
wOL

)
/∂w2 ≤ 0, the second-order conditions are always satisfied, whereas, if ∂2f

(
wOL

)
/∂w2 >

0, the second-order conditions are satisfied if α2 > 0 and the degree of convexity of f is sufficiently small.

More specifically, the second-order conditions are satisfied if

∂2f(wOL)

∂w2
≤

2
[
ρτ + θ(1− β)N ∂f(wOL)

∂w

] [
ρτ + θN ∂f(wOL)

∂w

]
ρτ(2− β) + 2θ(1− β)N ∂f(wOL)

∂w

α2

θN(α1 + α2wOL)
. (2.92)

Implicitly differentiating (2.89) with respect to wOL and τ yields

∂wOL

∂τ
= −

(1− β)xOL
M − τθ

Nγ
∂µOL

∂τ

(1− β)∂f(w
OL)

∂w
− τθ

Nγ
∂µOL

∂wOL

< 0, (2.93)
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where xOL
M = (v − k − f(wOL))/τ > 0 is the location on the indifferent patient in the monopolistic

segment, and where

∂µOL

∂τ
= −∂f(wOL)

∂w

θNΓ(wOL)(α1 + α2w
OL)

2
[
ρτ + θ(1− β)N ∂f(wOL)

∂w

]2 [
ρτ + θN ∂f(wOL)

∂w

]2 < 0, (2.94)

∂µOL

∂wOL
= −τ

2

[
2ρτ + θ(2− β)N ∂f(wOL)

∂w

]
α2[

ρτ + θ(1− β)N ∂f(wOL)
∂w

] [
ρτ + θN ∂f(wOL)

∂w

]
+

∂2f(wOL)

∂w2

τθNΓ(wOL)(α1 + α2w
OL)

2
[
ρτ + θ(1− β)N ∂f(wOL)

∂w

]2 [
ρτ + θN ∂f(wOL)

∂w

]2 ≤ 0, (2.95)

and

Γ(wOL) = (ρτ)2(2− β) + 4ρτθ(1− β)N
∂f(wOL)

∂w
+ θ2(1− β)(2− β)N2

(
∂f(wOL)

∂w

)2

> 0.

(2.96)

To show that (2.95) is always non-positive in the steady-state equilibrium, notice that the right-hand side

of (2.95) is increasing in ∂2f
(
wOL

)
/∂w2, while the second-order conditions dictate that ∂2f

(
wOL

)
/∂w2

must be sufficiently low (cf. (2.92)). Replacing ∂2f
(
wOL

)
/∂w2 in equation (2.95) with the right-hand

side of (2.92), which is the maximum value of ∂2f
(
wOL

)
/∂w2 that still ensures equilibrium existence,

yields

∂µOL

∂wOL
= −

ρθ(τβ)2N ∂f(wOL)
∂w

α2

2
[
ρτ + θ(1− β)N ∂f(wOL)

∂w

] [
ρτ + θN ∂f(wOL)

∂w

] [
ρτ(2− β) + 2θ(1− β)N ∂f(wOL)

∂w

] ≤ 0.

(2.97)

This implies that ∂µOL/∂wOL ≤ 0, and thus ∂wOL/∂τ < 0, for every specification of f (w) that is

compatible with equilibrium existence under open-loop rules.

2.B.2 Non-linear patient disutility of travelling

Suppose the patient utility function is redefined as indicated in subsection 2.6.2. The optimality conditions,

evaluated at the symmetric steady-state, are the given by (2.84) and[
ρ+

θβN

2τg′
(
1
2

) + θ(1− β)N

τg′ (xOL
M )

]
µOL − θβN

2τg′
(
1
2

)λOL + α1 + α2w
OL = 0, (2.98)

and ρ+ θβN

2τg′
(
1
2

)
+ θ(1−β)N

τg′(xOL
M )

λOL − θβN

2τg′
(
1
2

)µOL. (2.99)
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Using (2.98) and (2.99) to solve for µOL and λOL, we obtain:

µOL = −τ

2

2g′
(
1
2

)
ρτ + θβN +

2g′( 1
2)θ(1−β)N

g′(xOL
M )[

ρτ + θ(1−β)N

g′(xOL
M )

] [
g′
(
1
2

)
ρτ + θβN +

g′( 1
2)θ(1−β)N

g′(xOL
M )

](α1 + α2w
OL) < 0. (2.100)

and

λOL =

 θβN

2g′
(
1
2

)
ρτ + θβN +

2g′( 1
2)θ(1−β)N

g′(xOL
M )

µOL < 0. (2.101)

Using the dynamic constraint and (2.84), the steady-state waiting time is implicitly defined by

N

[
β

2
+ (1− β)xOL

M

]
− p− θµOL

γ
= 0. (2.102)

Existence requires that the second-order conditions of the hospitals’ maximisation problem are sat-

isfied. These are given by ∂2Hi/∂S
2
i ≤ 0, ∂2Hi/∂w

2
i ≤ 0, and (∂2Hi/∂S

2
i )(∂

2Hi/∂w
2
i ) −

∂2Hi/∂Si∂wi ≥ 0. Since ∂2Hi/∂S
2
i = −γ and ∂2Hi/∂Si∂wi = 0, concavity of the Hamiltonian

requires that
∂2Hi

∂w2
i

= −α2 +

[
θ(1− β)N

τ

g′′(xi
M)

[g′′(xi
M)]2

∂xi
M

∂wi

]
µi ≤ 0. (2.103)

Evaluated at the steady-state, this expression becomes

− α2 −

[
θ(1− β)N

τ 2
g′′
(
xOL
M

)
[g′ (xOL

M )]3

]
µOL ≤ 0. (2.104)

If g′′
(
xOL
M

)
≤ 0, the second-order conditions are always satisfied, whereas, if g′′

(
xOL
M

)
> 0, the

second-order conditions are satisfied if α2 > 0 and the degree of convexity of g is sufficiently small.

Implicitly differentiating (2.102) with respect to wOL and τ yields

∂wOL

∂τ
= −

N(1− β)
∂xOL

M

∂τ
+ θ

γ
∂µOL

∂τ

N(1− β)
∂xOL

M

∂wOL + θ
γ
∂µOL

∂wOL

(2.105)

where
∂xOL

M

∂τ
= − g(xOL

M )

τg′ (xOL
M )

< 0, (2.106)

∂xOL
M

∂wOL
= − 1

τg′ (xOL
M )

< 0, (2.107)

∂µOL

∂τ
= −

[
∆1 −∆2

g′(xOL
M )g′′(xOL

M )
[g′(xOL

M )]2

]
(α1 + α2w

OL)[
ρτ + θ(1−β)N

g′(xOL
M )

]2 [
g′
(
1
2

)
ρτ + θβN +

g′( 1
2)θ(1−β)N

g′(xOL
M )

]2 , (2.108)
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∆1 =

[
4g′
(
1

2

)
ρτ + θβN +

2g′
(
1
2

)
θ(1− β)N

g′ (xOL
M )

][
g′
(
1

2

)[
θ(1− β)N

g′ (xOL
M )

]2
+

(θN)2β(1− β)

g′ (xOL
M )

]

+
2
[
g′
(
1
2

)
ρτ
]2
θ(1− β)N

g′ (xOL
M )

+ g′
(
1

2

)
(ρτ)2θNβ > 0, (2.109)

∆2 = g′
(
1

2

)[
4g′
(
1

2

)
ρτ + 2θβN +

2g′
(
1
2

)
θ(1− β)N

g′ (xOL
M )

] [
θ(1− β)N

g′ (xOL
M )

]2
+

2
[
g′
(
1
2

)
ρτ
]2
θ(1− β)N

g′ (xOL
M )

+

[
2g′
(
1

2

)
ρτ + θβN

]
(θN)2β(1− β)

g′ (xOL
M )

> 0, (2.110)

∂µOL

∂wOL
= −α2τ

2

2g′
(
1
2

)
ρτ + θβN +

2g′( 1
2)θ(1−β)N

g′(xOL
M )[

ρτ + θ(1−β)N

g′(xOL
M )

] [
g′
(
1
2

)
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If g′′
(
xOL
M

)
≤ 0, the expressions on the right-hand side of (2.108) and (2.111) are unambiguously

negative, which implies that ∂wOL/∂τ < 0 for every concave function g. If instead g′′
(
xOL
M

)
> 0, a

negative sign of ∂µOL/∂τ and ∂µOL/∂wOL, which implies ∂wOL/∂τ < 0, requires that g′′
(
xOL
M

)
is

sufficiently low.
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3. Hospital CompetitionWith SwitchingCosts: Qual-

ity, Patient Welfare, and Market Segmentation

3.1 Introduction

Free choice of hospital is becoming widespread. While, in the United States, it has been a structural

feature of the health care system in general and the hospital industry in particular, in Europe, where

the sector is more tightly regulated, there is a general move towards the removal of constraints on the

ability of patients to choose a hospital according to their preference (Siciliani et al., 2017). Although wider

choice is increasingly common, there is one choice-related phenomenon whose implications have until

recently received little or no attention from policymakers and from the literature on hospital choice and

competition: the observation that patients tend to choose a hospital and repeatedly demand treatment

from it regardless of whether the episodes of care are related. In other words, the idea that patient inertia

(i.e., choice persistence or loyalty) exists in the hospital industry.

The premise underlying the benefits of free choice is that ‘money will follow the patients’, rewarding

the more efficient providers. With patients often insulated from costs by third-party payers (i.e., private or

social insurance and public provision of health care), competition in hospital markets is expected to play

out through channels other than prices. Ranging from the effectiveness of treatment to patient satisfac-

tion, quality of care is arguably a key variable. Accordingly, the assumption underlying free choice—and

supported by empirical evidence—is that patients can recognise quality and value it.1

Patient inertia then poses a question regarding quality provision. If patients are free to choose, able

to recognise quality, value it, and are nonetheless strongly attached to a specific provider, what incen-

1 For example, Tay (2003) presents empirical evidence that quality is an important determinant of patient choice of hospital. Varkevisser et al. (2012)
find that patients are sensitive to differences in quality as measured by public ratings and that hospitals with a good reputation and low readmission rates
attract more patients. Gutacker et al. (2016) report that patients choose hospitals that improve their self-reported health, although more conventional quality
measures (readmission and mortality rates) are less important in determining patient choice of hospital. Relatedly, Gaynor et al. (2016) find that demand
sensitivity to mortality rates increased substantially in England after the 2006 choice reform.
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tives (or conditions) do hospitals have to carry out costly quality investments? To the extent that quality

affects patient utility and that inertia reflects some degree of patients’ inability to adjust to changes in the

environment, another question ensues: how does reduced inertia affect patient welfare? The first part

of this chapter addresses these questions from a policy perspective: it investigates whether policies that

reduce exogenous switching costs, a driver of inertia, play a useful role in improving quality provision and

patient welfare. An additional, related question arises when switching costs are endogenously determined:

how are the incentives for investing in quality affected by the hospitals’ ability to set switching costs? The

second part of this chapter tackles this question by modelling the hospitals’ strategic and joint decisions

of quality and switching costs. Therefore, this chapter’s main contribution is to explore the broader role

of switching costs (and inertia more generally) in the context of hospital competition.

Evidence that patients are significantly more likely to demand treatment from a hospital they have

previously visited is gradually emerging from studies on patient choice of hospital. Jung et al. (2011)

estimate that the probability of a hospital being chosen for a future hospitalisation is 64 percentage points

higher if the hospital was previously used. Shepard (2016) finds that patients are 5 times more likely to

choose a hospital where they received outpatient care in the previous year. Raval and Rosenbaum (2018)

report that the probability of a woman choosing a hospital for childbirth increases from 40% to 72% if

she has previously given birth at that hospital. Irace (2018) finds that the hospital visited in the previous

episode of care is 3.4 times more likely to be chosen for coronary artery bypass grafting (CABG) than an

otherwise identical hospital. The two last-mentioned studies further show that patient inertia is explained by

persistent unobserved patient heterogeneity (or persistent unobserved preferences) and state dependence.

Unobserved heterogeneity denotes the case in which patients have strong and persistent preferences

for a hospital that are generally unobservable to the empirical researcher. For patients with persistent

horizontal preferences, repeated use of the same hospital is simply the utility-maximising behaviour. State

dependence, on the other hand, refers to the causal impact of past on current decisions.

When switching providers is costly, past use of a hospital affects the utility patients derive from treat-

ment at different hospitals in the present and hence influence their current choice. There are several

reasons why switching costs bring about state dependence in the context of patient choice of hospital.2

First, patients incur monetary and time costs to transfer their medical records between providers. Sec-

ond, some procedures are hospital-specific investments in that patients undergo medical procedures that

are intertemporally linked and might be rendered useless if the patient switches providers and treatment

2 Raval and Rosenbaum (2018) in effect equate state dependence with switching costs.
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is restarted. This is the case, for instance, when a patient who started treatment at a different hospital

is subjected to diagnostic tests at the new facility. Third, patients may find it optimal to repeatedly visit

a hospital they have satisfactorily used in the past instead of risking an untested alternative. Assessing

hospital quality is a demanding and complex task, and repeating past choices might be the optimal be-

haviour. Finally, patients may simply value an ongoing and close relationship with a provider. In this case,

switching costs are the premium patients are willing to pay for familiarity with a given hospital, either in

terms of a higher price or lower quality.3

Both switching costs and persistent preferences result in patient inertia, but the degree to which

patient choice of hospital may be influenced by policy depends on the source of inertia being targeted.

While policymakers have little or no influence over idiosyncratic preferences, there is arguably more scope

for policy intervention if repeated use results from switching costs.

The adoption of shareable Electronic Health Records (EHR), electronic records of an individual patient’s

history of contact with the health care system (Oderkirk, 2017), has the potential to reduce switching costs.

If these result mainly from the costs of transferring medical records between hospitals, EHR are likely to

have a large impact. In a network of shared EHR, a patient’s medical history can be readily retrieved even

if the patient is visiting a hospital for the first time. Although to a lesser extent, shared EHR are likely to

mitigate other forms of switching costs. The availability of test results from multiple sources increases

the compatibility of treatment among providers by opening the possibility that patients are spared from

duplicate procedures. Furthermore, patients may feel less uncertain about the effectiveness of treatment

at a hospital they have not used before when their medical history is accessible since the accuracy of

diagnosis and the adequacy of treatment are generally increasing in the amount of information available.

By the same token, patients may feel more familiar with health care professionals whom they have not

contacted before if these professionals can easily learn their medical history.

Throughout the chapter, a reduction in switching costs may be interpreted as the result of a policy

based on the market-wide adoption of shareable EHR.4 This is not, however, the only possible interpreta-

tion. In the hospital competition literature that is based on models of spatial competition, travelling costs

parameters are a standard measure of the degree of patient choice and competition intensity (see, for

example, Brekke et al., 2011). This chapter offers an alternative measure. By specifically reflecting a

3 The interview-based study of Dutch patients’ choice of hospital of Victoor et al. (2016) corroborates these hypotheses. Patients reported that knowledge
of their medical history, trust in their physician, and familiarity as some of the reasons why they sought treatment from the hospital they had previously used.

4 A move towards the implementation of shareable EHR systems is already noticeable in several countries. According to Oderkirk (2017), 23 out of 28
surveyed OECD countries reported they were implementing or had implemented one country-wide EHR system in 2016. The potential of EHR systems to
reduce switching costs, however, is often overlooked, and the emphasis is placed on their benefits to medical research and cost savings.

53



situation wherein switching is facilitated, a reduction in switching costs may also be interpreted as the

adoption of a broader scope of patient choice policies (Siciliani et al., 2017). For instance, quality infor-

mation made increasingly available in the public domain, a staple of choice policies, might reduce the

uncertainty about quality at alternative hospitals.

To model the demand for health care faced by each provider, we use a Hotelling approach with two

semi-altruistic hospitals located at each endpoint of the unit line segment. All patients have previously

visited one of the two hospitals and are currently tied to that hospital. These patients form the inherited

demand each hospital faces. Within our analytical framework, the modelling of patient inertia maps on the

recent empirical evidence. A fraction of patients have persistent horizontal preferences (i.e., their current

location on the unit line segment equals their inherited location), whereas the remaining patients have

preferences that are newly drawn from a uniform distribution. Under regulated prices, patients choose a

hospital based on their horizontal preferences, on the quality level offered by each hospital, and, crucially,

on the switching cost they incur if they demand treatment from the hospital they have not previously used.

We obtain several findings regarding the unintended effects of lower (exogenous) switching costs on

patient welfare, which we define below as average quality and aggregate patient utility. The main mech-

anism through which quality provision is affected is related to the lock-in effect of switching costs when

inherited demand is asymmetric. By reducing the number of locked-in patients, lower switching costs shift

demand from the hospital with higher to the hospital with lower inherited demand, as patients switch to

reduce the mismatch between their locations and that of the chosen hospital. The effect of this demand

adjustment on quality provision at each of the two hospitals depends on the technology of production of

hospital treatments—i.e., whether there is cost substitutability or complementarity between quality and

output—and on the hospitals’ degree of altruism. If there is cost substitutability, both the marginal cost

and the marginal altruistic benefit from quality are increasing in current demand. When switching is facil-

itated, the marginal cost and the marginal benefit from quality decrease at the high-volume hospital (i.e.,

the hospital with higher inherited demand), whereas they increase at the low-volume one. If the degree

of cost substitutability is sufficiently high relative to the degree of altruism, the change in the marginal

cost dominates, and switching costs reductions are generally beneficial. Although quality may fall at the

low-volume hospital, it unambiguously increases at the high-volume one, contributing to higher average

quality and aggregate patient utility. Conversely, if cost substitutability is sufficiently weak (or cost comple-

mentarity sufficiently strong) relative altruism, switching costs reductions may have more harmful effects.

While quality is certain to increase at the low-volume hospital, lower switching costs lead to lower quality
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at the high-volume hospital, hurting the majority of patients in the market; consequently, average quality

and total patient utility may also decrease. Importantly, the relationship between hospital-level quality,

average quality, and total patient utility is not straightforward. Even if lower switching costs lead to higher

quality at both hospitals and higher aggregate utility, average quality may nonetheless fall owing to the

redistribution of patients between hospitals.

When hospitals can set the switching costs their inherited patients incur, local monopolies arise and

the market is perfectly segmented according to the history of patient-hospital relationships. The intuition

behind this result is simple. Because the marginal inherited patient is always beneficial to treat, setting

maximum switching costs and hence retaining all inherited patients is a strictly dominant strategy for each

hospital. This, in turn, implies that the incentives for quality provision change a great deal. Quality ceases

to be an instrument to attract demand, and it is only offered above the minimum required threshold for

altruistic reasons, provided that the hospitals are sufficiently altruistic. If cost substitutability is strong

relative to altruism, then imposing switching costs and quality provision are substitutable strategies for

each hospital. Setting maximum switching costs allows hospitals to retain all of their previous patients

while offering minimum quality and hence avoiding quality provision costs completely.

The rest of the chapter is organised as follows. The next section offers an overview of the literature on

patient inertia and explains how this chapter relates to it. In section 3.3, we describe how inertia shapes

demand and discuss the assumptions underlying hospital preferences and production. In section 3.4, the

model is solved for the Nash Equilibrium, and equilibrium quality and demand are characterised. Section

3.5 investigates the effect of switching costs on patient welfare. In section 3.6, we consider endogenous

switching costs. Finally, section 3.7 offers concluding remarks and discusses policy implications.

3.2 Related Literature

This chapter brings together two different strands of the literature. The first is the scarce but growing

empirical literature on choice persistence in the hospital industry. To the best of our knowledge, Jung et

al. (2011) were the first to look at patient-level inertia. They model a hypothetical choice for a surgical

procedure of patients with a recent hospitalisation including a prior use indicator as a covariate. They

find that previous use increases the probability of a hospital being chosen by 64 percentage points, which

indicates the presence of strong choice persistence. Shepard (2016) studies adverse selection and moral

hazard in health care plan choice. To investigate whether patients with a propensity to choose high-quality,
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high-cost hospitals self-select into more generous plans, he first estimates a choice model which also

includes a prior use indicator. Past use again emerges as a strong predictor of patient choice, increasing

the probability of a hospital being chosen by five times to approximately 40%.

Past use coefficients capture both state dependence and persistent unobserved patient heterogeneity.

Two recent studies with distinct approaches attempt to disentangle these two sources of inertia. Using

data on choice of hospital for childbirth, Raval and Rosenbaum (2018) corroborate the earlier findings.

When previous use is taken into account, the predicted share of women expected to return to a hospital

increases from 40% to 72%. They then estimate a choice model with hospital-patient fixed effects, which

capture the effect of persistent preferences. This allows them to interpret the coefficient on the past use

indicator as the switching cost. The inclusion of fixed effects roughly halves this coefficient, thus indicating

the presence of both patient heterogeneity and switching costs. Using those estimates, they argue that

switching costs account for approximately 40% of patient inertia. Differently, Irace (2018) makes use of

quasi-exogenous shocks that induce patients to switch hospitals. He finds that patients who are admitted

at a hospital they have never visited before during an emergency are more likely to choose that hospital

in subsequent episodes of care than otherwise identical patients. This points to the presence of state

dependence. Additionally, patients who return to the hospital they had been using before the emergency

are more likely to choose that facility repeatedly, suggesting that unobserved heterogeneity also plays a

role. Similarly, patients forced to try a new hospital during a temporary closure owing to a natural disaster

are less likely to return to the hospital they had been using than patients who did not seek hospital care

during the closure. This too is indicative of state dependence.5

Importantly, Irace (2018) also looks at welfare. In a counterfactual scenario with no switching costs, he

estimates an expected mortality 3% below the observed mortality rate. This reduction in mortality results

only from a more efficient distribution of patients among hospitals as patients switch to higher-quality

providers; hospital quality is held fixed, and feedback effects between demand and quality are ruled out.

This chapter considers these feedback effects and reveals that it is precisely the patients’ increased ability

to switch (and hence reduce mismatch costs) that, under some conditions, undermines the positive effect

of lower switching costs on welfare through higher quality provision (cf. section 3.5.1).

The second strand of the literature is that on theoretical models of hospital competition under regulated

5 Specifically, this is indicative of first-order state dependence, meaning that the loyalty state of the patient is determined by the immediately preceding
episode of care. If first-order state dependence is driven by switching costs, this implies that patients incur those costs if they switch to a hospital other than
the one used in the preceding episode of care, even if they had visited that hospital before. The model we present below may indeed be interpreted as dealing
with first-order state dependence.
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prices. Before turning to studies that specifically include some form of inertia in demand, consider the

analysis of competition between semi-altruistic providers of Brekke et al. (2011). In a spatial model of

hospital competition where patients choose a hospital based on the level of quality offered and their

horizontal preferences, lower travelling costs increase demand responsiveness to quality changes. The

effect on quality depends on whether the marginal patient is profitable to treat and on whether this effect

reinforces or offsets the altruistic incentive to treat that patient. If the degree of altruism is sufficiently

strong, the marginal patient is so unprofitable to treat that the financial incentive to avoid her dominates,

and quality falls in equilibrium. Brekke et al. (2012) and Siciliani, Straume, and Cellini (2013) investigate

an information-related form of patient inertia. In both studies, demand adjusts sluggishly to changes

in quality. Because health care quality is neither easily nor immediately observable, only a fraction of

patients become aware of quality changes, and, consequently, only a fraction of any potential change

in demand is realised. With pure profit-maximising providers, Brekke et al. (2012) show that a reduced

degree of sluggishness increases quality. The intuition for this result is simple. Less sluggish beliefs

make demand more responsive to quality changes, and, with a positive payment-cost margin, this gives

providers incentives to increase quality. Siciliani, Straume, and Cellini (2013) show that this result may be

overturned if providers are semi-altruistic. Like in Brekke et al. (2011), the effect of reduced sluggishness

depends on the financial and altruistic incentives to attract patients. If the per-treatment payment is

sufficiently below unit costs, the former dominates, and less sluggishness leads to lower quality.

The effect of lower travelling costs, which may be interpreted as increased patient choice, and the

effect of reduced demand sluggishness are qualitatively identical in these studies: they rely on the re-

sponsiveness of demand to quality. In the model with exogenous switching costs we present below, the

mechanism through which facilitated switching affects quality is different. When switching costs fall, de-

mand flows from the high- to the low-volume hospital. Because they depend on demand, both the marginal

cost and the marginal benefit from quality change at each hospital in a way that is not related to demand

responsiveness.

In a different institutional setting, Gravelle and Masiero (2000) analyse quality competition between

horizontally differentiated, pure profit-maximising primary care providers in a model with exogenous switch-

ing costs. They find that quality is independent of switching costs, which is not surprising given the prop-

erties of their model. First, switching costs enter the demand functions additively and thus affect neither

demand responsiveness to quality nor, consequently, the marginal revenue. Second, the marginal cost

of quality is independent of demand. Our model shares with theirs only the former feature. By adopting
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a more flexible cost function and considering semi-altruistic hospitals, both the marginal cost and the

marginal benefit from quality depend on demand and hence on switching costs.

3.3 The Model

Two hospitals, indexed i = H,L, are located at either endpoint of the unit line segment [0, 1]. Let

Hospital H be located at 0 and Hospital L at 1. Locations on the line segment reflect the characteristics

and preferences for elective hospital treatment supplied in this market. The line segment may be thought,

for example, as the geographical space or the disease space. In the former case, a patient’s location on

the line is simply her residence or workplace, while the location of a hospital is simply the place where its

facilities were built. In the latter case, a patient’s location on the line is a medical condition or a diagnosis,

and the location of a hospital is the speciality mix (i.e., the treatments and services) it offers.

Patients have a gross valuation of treatment v > 0 and demand a single unit of treatment from one of

the hospitals. They are arrayed with unit density along the line segment and incur a travelling or mismatch

cost τ per unit of distance between their location and that of the chosen hospital. Patients bear no out-of-

pocket expenses either owing to public provision of health care or to (social or private) health insurance

coverage. Note that this last-mentioned feature is analytically equivalent to having hospitals charge the

same regulated price. Patients derive utility from the quality of treatment, qi, to which hospitals resort

to attract demand. There is a lower bound q on treatment quality that represents the minimum quality

hospitals are allowed to offer, with qi < q being interpreted as malpractice. For simplicity, q is taken to be

equal to zero. We assume throughout that the gross valuation of treatment is v > τ , so that the market

is always fully covered.

The history of patient relationships with the two neighbouring hospitals is as follows: σH patients

visited Hospital H in the preceding episode of care, while the remaining σL = 1 − σH patients visited

Hospital L. The two hospitals differ uniquely with respect to σi.

Patient inertia is modelled in the style of Klemperer (1987). A fraction µ of patients have preferences

for treatment characteristics that are independent of the history of the game. These patients are uniformly

distributed along [0, 1] and may be interpreted as patients who now reside or work in a different place

or patients who have developed another, unrelated, disease. If they decide to demand treatment from

the hospital they have not used in the preceding episode of care, these patients incur an exogenous
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switching cost s.6 The remaining 1−µ patients have unchanged preferences for treatment characteristics

and choose the same hospital as before. The location of these patients on the line segment equals

their past location: those who previously used Hospital H are uniformly distributed along [0, σH ], and

those who previously used Hospital L are uniformly distributed along [σH , 1]. The model thus maps on

the empirical analyses of choice persistence of Raval and Rosenbaum (2018) and Irace (2018): both

persistent preferences and switching costs (state dependence) induce inertia.

Since patients are tied to the hospitals, we refer to σi as Hospital i’s inherited demand. It should be

emphasised that we consider a one-period model and that the issue of how the inherited hospital-patient

relationships are formed is not formally addressed.7 One possible interpretation for asymmetric inherited

demand is the case of a former local monopolist whose incumbency has not been eroded. Indeed, we

show in section 3.4 that patient inertia causes asymmetric market shares to persist even with otherwise

identical hospitals. For clarity of exposition and without loss of generality, let σH > σL. Hence, Hospital H

denotes the high-volume hospital (i.e., the hospital with higher inherited and current demand) and Hospital

L denotes the low-volume hospital.

3.3.1 Patient utility and demand

Consider the different groups of patients in turn. A fraction µσH of patients sought treatment from Hospital

H in the past and now have preferences for treatment characteristics that are uniformly distributed along

the line segment [0, 1]. The patient who was previously treated at Hospital H and is now indifferent

between seeking treatment at Hospital H and Hospital L is located at x̂|H , given by

v + qH − τx = v + qL − τ(1− x)− s (3.1)

or, explicitly,

x̂|H =
1

2
+

qH − qL + s

2τ
. (3.2)

6 More realistically, one may conjecture that patients have different switching costs. The main feature upon which most of the subsequently derived
results hinge—the fact that the hospital with larger inherited demand has a demand advantage—would indeed be present in a model with heterogeneous
switching costs. The simpler formulation we adopt preserves that feature and additionally allows for a richer specification of horizontal patient preferences,
while still keeping the analysis tractable.

7 Following Klemperer (1995), we interpret this as a ‘mature market’, in which a patient’s relationship with a hospital has already been built up. Multi-
period switching cost models are common in the literature on price competition that analyses ‘bargain-and-then-ripoffs’ behaviour, whereby firms charge
low prices early on to build a large market share and then exploit locked-in consumers by charging higher prices. More recently, single-period models have
been used to study the implications for policymaking of firms having captive consumers in a variety of fields, rather than firms’ incentives to engage in the
above-mentioned behaviour, which resembles more closely the objective of this chapter. For examples of such models, see Gehrig et al. (2011) and Shy and
Stenbacka (2016).
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Of these, hospitals H and L serve respectively µσH x̂|H and µσH(1−x̂|H) patients. Additionally, Hospital

H serves all of these patients if qH > qL + τ − s and none if qH < qL − τ − s. Similarly, a fraction

µσL of patients sought treatment from Hospital L in the past and now have preferences for treatment

characteristics that are uniformly distributed along the line segment [0, 1]. The patient who was previously

treated at Hospital L and is now indifferent between seeking treatment at Hospital H and Hospital L is

located at x̂|L, given by

v + qH − τx− s = v + qL − τ(1− x) (3.3)

or, explicitly,

x̂|L =
1

2
+

qH − qL − s

2τ
. (3.4)

Of these, hospitals H and L serve respectively µσLx̂|L and µσL(1− x̂|L) patients. Additionally, Hospital

H serves all of these patients if qH > qL + τ + s and none if qH < qL − τ + s. The lock-in effect

of switching costs is straightforward to see from (3.2) and (3.4). Hospital H may offer a quality level s

units below that of Hospital L and still get half of its previous patients with changing preferences, whereas

it has to offer a quality premium of s to get half of the patients with changing preferences who are tied

to Hospital L. Finally, fractions (1− µ)σH and (1− µ)σL of patients have unchanged preferences and

again choose hospitals H and L. Combining demand from the two types of patients, it may be easily shown

that total demand facing Hospital i is given by

Di(qi, qj) =
µ

2τ
[τ + qi − qj + (σi − σj)s] + (1− µ)σi, i, j = H,L; i ̸= j; (3.5)

provided that |qH − qL| < τ − s.8 Notice how inertia shapes demand: both hospitals have some captive

patients owing to preference persistency, and the hospital with higher inherited demand has a demand

bonus simply because switching hospitals is costly for patients.

3.3.2 Hospital objectives

Hospitals simultaneously and independently choose quality levels to maximise a weighted sum of profits

and aggregate patient benefit. Formally, Hospital i maximises:

Ωi(qi, qj) = T + p̃Di(qi, qj)− C[qi, Di(qi, qj)] + αB[qi, Di(qi, qj)], i, j = H,L; i ̸= j;

(3.6)

8 Switching only occurs in equilibrium if s < τ , so that the preferences for treatment characteristics of some patients outweigh the switching cost.
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where T denotes a lump-sum transfer that ensures that a no-liability constraint is satisfied, and p̃ denotes

the per-treatment payment through which a third-party payer (e.g., a regulator or insurer) prospectively

finances hospitals; C[qi, Di(qi, qj)] is the cost of producingDi(qi, qj) units of treatment with quality qi;

B[qi, Di(qi, qj)] is the total net benefit of patients treated at Hospital i; and α > 0 captures the degree

of altruism.

Treatment production costs are given by

C[qi, Di(qi, qj)] = (cqi + k)Di(qi, qj) +
γ

2
q2i , i, j = H,L; i ̸= j; (3.7)

where c ≶ 0 measures either the degree of cost substitutability or complementarity between quality and

output, k > max{0,−cqi} is the minimum unit cost of treatment, and γ > 0 gives the importance

of the fixed investment cost. If c > 0, a certain level of quality is more costly to achieve when more

patients are treated (i.e., the marginal cost of quality is increasing in demand). Hospital production hence

exhibits cost substitutability between quality and output. This is a reasonable assumption if quality results

from the investment in medical equipment and highly skilled staff. For example, offering an additional

diagnostic test amounts to an increase in quality and requires a fixed investment in equipment and/or

staff but also increases the cost of diagnosing each patient. If c < 0, the more patients a hospital treats,

the less costly it is to provide each additional unit of quality (i.e., the marginal cost of quality is decreasing

in demand). Quality and output are cost complements, which suffices, in this analytical framework, to

establish a positive relationship between demand and quality. Such link, observed in hospital production

and well documented in the literature, is often referred to as the volume-outcome relationship. These

positive returns to hospital volume are generally attributed to learning-by-doing or quality-enhancing scale

economies, which capture the idea that health care providers become increasingly efficient as the number

of times they perform a certain procedure rises. Hentschker and Mennicken (2018) and Avdic et al. (2019)

present recent empirical evidence of volume-outcome effects. In particular, the latter show that this positive

and causal relationship is the result of learning-by-doing, with a significant share of the effect ascribed to

current experience. Although their results suggest that cumulated experience also plays a role, they are in

line with the earlier findings of Gaynor et al. (2005), who show that the effect of volume on outcome largely

occurs contemporaneously. The cost function specification (3.7) therefore reflects this contemporaneous

link.

Hospitals are assumed to have semi-altruistic preferences in the sense that they care, to some extent,

about the utility their patients derive from treatment. In the hospital industry, the departure from pure profit-
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maximisation may arise from the structure of hospitals, wherein a managerial hierarchy and a medical

one coexist. Physicians have long been recognised as acting, at least to some degree, in the interest of

their patients, and hospital behaviour may then be thought as reflecting physician behaviour subject to a

budget constraint imposed by managers.9 The aggregate benefit to patients treated at hospitals H and L

is respectively given by

BH [qH , DH(qH , qL)] = µσH

∫ x̂|H

0

(v + qH − τx)dx

+ µσL

∫ x̂|L

0

(v + qH − τx− s)dx+ (1− µ)

∫ σH

0

(v + qH − τx)dx (3.8)

and

BL[qL, DL(qH , qL)] = µσH

∫ 1

x̂|H

[v + qL − τ(1− x)− s]dx

+ µσL

∫ 1

x̂|L

[v + qL − τ(1− x)]dx+ (1− µ)

∫ 1

σH

[v + qL − τ(1− x)]dx. (3.9)

It is instructive to see how semi-altruistic preferences affect incentives to provide quality. Differentiating

(3.8) and (3.9) with respect to qH and qL respectively, one may show after some manipulation that the

marginal altruistic benefit from quality is given by

∂Bi[qi, Di(qi, qj)]

∂qi
=

µ

4τ
(2v + qi + qj − τ − s) +Di > 0, i, j = H,L; i ̸= j. (3.10)

There is a twofold effect on aggregate patient benefit (at the hospital level). A marginal increase in quality

simultaneously expands demand and increases the utility of each patient. These two effects are respec-

tively captured by the two terms on the right-hand side of (3.10).

Finally, we make the following restrictions on parameter values:

c > cmin ≡ max
{(

α− 2τγ

µ

)
,

(
3α

4
− τγ

µ

)
,

(
2α

3
− 2τγ

3µ

)}
(3.11)

and

σH − σL < min
{
1,

τ − s

|α− c|ϕ

}
, (3.12)

where

ϕ =
2[τ − (τ − s)µ]

µ
[
2τγ
µ

− (2α− 3c)
] > 0. (3.13)

9 See Brekke et al. (2011) and Siciliani, Straume, and Cellini (2013) for a discussion of the assumption of semi-altruism in the general literature on
health care supply and in the context of competition between health care providers in particular.
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Condition (3.11) imposes that the degree of cost substitutability is sufficiently strong or the degree of cost

complementarity is sufficiently weak so that the second-order conditions of the hospitals’ maximisation

problems are satisfied and the solution is economically meaningful. Condition (3.12) ensures that the

demand function (3.5) holds in equilibrium with strictly positive quality, which requires that the difference

in inherited demand faced by the two hospitals is not too large. This, in turn, implies that equilibrium quality

levels are such that neither hospital is chosen by all of its previous patients with changing preferences

(i.e., switching occurs in equilibrium at both hospitals).

3.4 Inherited Demand, Quality, and Market Dominance

Using (3.7) and (3.10), maximisation of Ωi with respect to qi yields the first-order condition

µ

2τ

[
p− cqi + α

(
2v + qi + qj − τ − s

2

)]
+ (α− c)Di − γqi = 0, i, j = H,L; i ̸= j;

(3.14)

where p = p̃ − k. The marginal benefit from quality is given by the increase in revenues (µp̃/2τ )

and in total patient surplus, and it includes an efficiency gain (cDi) when c < 0. The marginal cost of

quality includes the cost of treating additional patients (µ(cqi + k)/2τ ) and the marginal cost of quality

investments (γqi), as well as the increase in total treatment costs (cDi) when c > 0.

Inserting Di and Dj as defined in (3.5) into the pair of equations given by (3.14) and solving for qi

yields the candidate equilibrium quality levels10

q∗i = max

{
0,

p+ (α− c)
[
τ − s− (α− 2c)ϕ

2

]
+ α

(
v − τ+s

2

)
2τγ
µ

− (α− c)
+ (α− c)ϕσi

}
, i, j = H,L.

(3.15)

Suppose first that c > 0. It follows immediately from (3.15) that Hospital H offers lower quality than

Hospital L if cost substitutability is stronger than the hospitals’ altruism. Both the marginal cost and the

marginal altruistic benefit from quality depend positively on current demand, which, in turn, depends

positively on inherited demand. Hospital H has both a higher marginal cost of quality (because providing

quality is more costly when more patients are treated) and a higher marginal altruistic benefit (because

10 If the cost function is sufficiently convex in quality, Ωi is concave in the region in which (3.5) holds and the second-order conditions are satisfied.
Concavity of Ωi requires that γ − µ

2τ

(
3
2
α− 2c

)
> 0, which is always true given (3.11). This, however, does not suffice to show that (3.15) defines

a Nash Equilibrium. Hospitals may unilaterally deviate from those strategies by choosing a quality level outside the range in which (3.5) holds. It must be
ensured that no hospital would prefer to serve only its captive patients with fixed preferences. If µ is large enough and s is sufficiently small, deviation is not
beneficial and (3.15) defines a Nash equilibrium. Klemperer (1987), Beggs and Klemperer (1992), and To (1996) provide the analogous argument in the
case of multi-period price competition. In the remainder of the analysis, we focus on strictly positive quality levels, which requires that p̃ is high enough.
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higher quality increases the utility of more patients). Which of these effects dominates depends on the

size of α and c. If c < 0, the result is clear-cut. Under cost complementarity, Hospital H has a higher

marginal altruistic benefit and a lower marginal cost of quality. It will thus offer higher quality.

Having derived the optimum quality levels, one may now look at demand. Proposition 3.1 below

describes how inertia shapes demand and how it counteracts or strengthens the effect of quality as a

demand shifter.

Proposition 3.1. In equilibrium, quality and demand are characterised as follows:

1. if c < c, then q∗H > q∗L and DH(q
∗
H , q

∗
L) > σH ;

2. if c < c < α, then q∗H > q∗L and 1
2
< Di(q

∗
H , q

∗
L) < σH ;

3. if c > α, then q∗H < q∗L and 1
2
< DH(q

∗
H , q

∗
H) < σH ;

where c = 2τ [α−(τ−s)γ]
2τ+(τ−s)µ

< α.

Proof. Follows directly from (3.15) and the comparison between σH andDH evaluated at the equilibrium

quality levels.

It is instructive to characterise the mechanism underlying the results of Proposition 3.1 in detail,

as it sheds light on the interplay between quality provision, horizontal preferences, and switching costs,

thus facilitating the interpretation of subsequently derived results. Recall that some patients (with changing

preferences) face a strong mismatch between their preferences and the horizontal attributes of the hospital

they are tied to, and they hence opt to switch. As explained above, if c < α, Hospital H offers higher

quality. For a value of c sufficiently below α, the quality difference is large enough to outweigh the demand

loss caused by the mismatch between patient preferences and the hospital’s attributes. Owing to its high

quality, Hospital H attracts more patients who previously used Hospital L than those who switch from

it, strengthening its position as market leader. Depending on the threshold value c, this may occur with

a sufficiently low degree of cost substitutability (when c > 0) or may require sufficiently strong cost

complementarity (when c < 0). For intermediate degrees of cost substitutability or complementarity,

Hospital H offers higher quality but not sufficiently high to attract enough patients to compensate for those

who switch. Demand faced by this hospital declines, but it nonetheless amounts to more than half of

the market. Finally, if cost substitutability is stronger than the hospitals’ altruism, Hospital H offers lower

quality, which reinforces the demand loss due to horizontal preferences. Patient inertia, however, ensures

64



that it will retain higher demand and thus implies that the hospital with higher inherited demand will retain

its position as market leader regardless of the values of c and α.

3.5 The Effect of Switching Costs on Patient Welfare

To investigate the effect of facilitated switching on patient welfare, defined below as average quality and

aggregate patient utility, one needs first to characterise the effect of lower switching costs on hospital-level

quality. The effect of a marginal change in switching costs on equilibrium quality is given by

∂q∗i
∂s

= − α/2
2τγ
µ

− (α− c)
+

(α− c)(σi − σj)
2τγ
µ

− (2α− 3c)
, i, j = H,L; i ̸= j. (3.16)

Lower switching costs affect quality directly through the change in patient utility. In the presence of

switching costs, the altruistic incentive to attract patients who were previously treated at the neighbouring

hospital is weaker since the utility of these patients is reduced by an amount s. From (3.10), the lower

the switching cost, the stronger is the altruistic incentive the two hospitals have to increase quality. We

shall henceforth refer to this as the patient utility effect.11 There is also a demand effect, which can easily

be seen from (3.5). All else equal, lower switching costs shift demand from the high- to the low-volume

hospital, and therefore change the marginal cost and the marginal benefit from quality. Unlike the patient

utility effect, the demand effect affects hospitals differently, and its sign and magnitude depend on the

strength of cost substitutability/complementarity relative to the degree of altruism. The effect of lower

switching costs on hospital-level quality is formalised as follows.

Proposition 3.2. Provided that the cost function is sufficiently convex in quality, there exist two threshold

values of c, cHH ∈ (cmin, α) and cHL > α, such that a reduction in switching costs leads to (i) lower

quality at the high-volume hospital and higher quality at the low-volume hospital if c < cHH ; (ii) higher

quality at both hospitals if cHH < c < cHL; and higher quality at the high-volume hospital and lower

quality at the low-volume hospital if c > cHL. Additionally, the threshold values cHH and cHL and the

distance (cHL − cHH) are increasing in µ and decreasing in τ .

See Appendix 3.A for a proof and the definitions of cHH and cHL.

Consider Hospital H. Under cost substitutability, the marginal cost and the marginal benefit from

quality change with demand in the same direction. The demand shift from the high- to the low-volume
11 Alternatively, this change in the marginal benefit from attracting patients who were previously treated at the rival hospital may be interpreted as a

change in ‘patient acquisition’ costs.

65



hospital decreases both the hospital’s marginal cost and marginal altruistic benefit. If c > α, the change

in the marginal cost outweighs the change in the marginal altruistic benefit. This implies that the demand

reduction contributes to higher quality. The demand effect thus reinforces the effect of increased patient

utility (due to a lower s), and lower switching costs have a clear-cut positive effect on quality. If c < α

instead, the change in the marginal altruistic benefit dominates, and lower demand leads, all else equal,

to lower quality. In this case, the patient utility and the demand effects go in opposite directions. In the

presence of volume-outcome effects, a particular case of c < α, this last-mentioned result naturally caries

over. The underlying mechanism, however, differs slightly, as the demand shift leads to a lower marginal

benefit and to a higher marginal cost of quality. For values of c sufficiently close to α, the demand effect

is small, and the patient utility effect dominates. Hence, lower switching costs lead to higher quality even

if c < α. Conversely, if there is sufficiently strong cost complementarity or, possibly, sufficiently weak

cost substitutability, then the demand effect dominates, and lower switching costs lead to lower quality.

The analysis of Hospital L is analogous.

Proposition 3.2 reveals that there is a set of values of c for which no patient is left worse off in

terms of (changes in) quality provision after a reduction in switching costs. In addition, there is more

scope for a quality increase at both hospitals in response to a reduction in switching costs when there

are fewer patients with persistent horizontal preferences or travelling/mismatch costs are lower. When

fewer patients have persistent preferences (higher µ) or travelling/mismatch costs are lower (lower τ ),

demand is more responsive to quality. Also, Hospital H’s switching cost-induced demand advantage

from patients with changing preferences is greater. Increased demand responsiveness implies that the

altruistic incentive to attract patients (when s falls) is stronger because a marginal increase in quality will

have a larger impact on demand. A greater demand advantage implies that, when switching costs fall, the

resulting demand shift is stronger. Consequently, the above-mentioned patient utility and demand effects

are simultaneously reinforced by a higher µ or a lower τ . The change in the demand effect dominates

for Hospital H, whereas the change in the patient utility effect dominates for Hospital L. Thus, at Hospital

H, a higher c is required for the utility effect to offset the demand effect, while, at Hospital L, a higher c

is required for the demand effect to dominate. Because this outcome is more pronounced for the latter

hospital, the set of values for which lower switching costs increase quality at both hospitals widens. This

suggests that there is increased scope for lower switching costs to have no adverse effects in terms of

quality changes at the hospital level in markets where patients have greater geographical mobility, where

there is stronger substitutability between hospitals or where patients’ preferences are more volatile.
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Finally, it is interesting to see how the results in Proposition 3.2 change with the hospitals’ degree of

profit-orientation. If hospitals are pure profit-maximisers (i.e., α = 0), the patient utility effect vanishes,

and the sign of the demand effect is uniquely determined by c and inherited demand. Thus, if hospitals

are pure profit-maximisers, it is certain that some patients will enjoy lower quality after a switching costs

reduction. Notice also that the implications of semi-altruistic hospital preferences are not straightforward.

On the one hand, they create a set of values of c for which lower switching costs improve quality provision

at both hospitals and open the possibility that quality increases at the high-volume hospital when quality

and output are cost complements (i.e., when cHH < c < 0). On the other hand, they allow for a

quality decrease at the high-volume hospital when quality and output are cost substitutes (i.e., when

0 < c < cHH ), implying that lower switching costs hurt the majority of patients in a situation where

reduced market concentration would otherwise be beneficial.

We are now in a position to characterise the effect of lower switching costs on patient welfare.

3.5.1 Average quality

Hospital-level quality being affected differently implies that lower switching costs have heterogeneous

effects on patients. To grasp the overall effect of a switching costs reduction on quality enjoyed by

all patients in the market, define average quality as the sum of qualities weighted by current demand,

q = q∗HDH(q
∗
H , q

∗
L) + q∗LDL(q

∗
H , q

∗
L). The effect of a marginal change in switching costs on average

quality is given by

∂q

∂s
= (q∗H − q∗L)

∂D∗
H

∂s
+

∂q∗H
∂s

D∗
H +

∂q∗L
∂s

D∗
L =

(α− c)ϕ(σH − σL)
∂D∗

H

∂s
− α/2

2τγ
µ

− (α− c)
+

(α− c)(σH − σL)(D
∗
H −D∗

L)
2τγ
µ

− (2α− 3c)
, (3.17)

where
∂D∗

H

∂s
=

µ

2τ

[
2(α− c)

2τγ
µ

− (2α− 3c)
+ 1

]
(σH − σL) > 0. (3.18)

Lower switching costs have a twofold effect on average quality. First, there is a patient redistribution effect

as a reduction in switching costs always decreases market concentration by shifting demand from the

high- to the low-volume hospital.12 Importantly, the sign of this redistribution effect depends on the initial

quality difference. Second, as analysed above, quality changes at the hospital level, and these changes

12 ∂D∗
H

∂s
> 0 if c > − 2τγ

µ
, which always holds given (3.11).
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are weighted by each hospital’s demand. The effect of lower switching costs on average quality may be

stated as follows.

Proposition 3.3. Provided that the cost function is sufficiently convex in quality, there exists a threshold

value of c, given by cq ∈ (cmin, α) and implicitly defined by

α/2
2τγ
µ

− (α− cq)
=

2[τ − (τ − s)µ](σH − σL)
2(α− cq)

(
2τγ
µ

+ cq

)
τ
[
2τγ
µ

− (2α− 3cq)
]2 , (3.19)

such that a reduction in switching costs leads to lower average quality if c < cq. Furthermore, cq ∈

(cHH , α) if

s >
τ

µ

 2τγ
µ

− (2α− 3cHH)

2(σH − σL)
(

2τγ
µ

+ cHH

) − (1− µ)

 , (3.20)

with cHH as given by the greater root in (3.31) in Appendix 3.A.

Proof. See Appendix 3.B.

If c > α, Hospital H offers lower quality, but a reduction in switching costs induces a quality increase.

When switching costs fall, some patients switch from Hospital H to Hospital L, going from a lower- to a

higher-quality hospital. All else equal, this leads to higher average quality. This effect is reinforced by the

quality changes at the hospital level. Equation (3.16) implies that |∂q∗H/∂s| > |∂q∗L/∂s| for c > α.

Since Hospital H treats more patients and its quality response is stronger, the weighted quality increase at

Hospital H always dominates the weighted quality change at Hospital L. Thus, lower switching costs lead

to higher average quality even if quality falls at Hospital L.

If c < α instead, it is Hospital L which offers lower quality. In this case, the demand adjustment

contributes to lower average quality as patients switch from the higher- to the lower-quality hospital. A

lower s, however, elicits a quality increase at Hospital L and an a priori indeterminate change in quality

for the majority of patients in the market (those at Hospital H). Only for a value of c sufficiently below α,

is the weighted increase in quality at Hospital L dominated by the patient redistribution effect, possibly in

conjunction with a (weighted) reduction in quality at Hospital H.

Crucially, a reduction in quality at the high-volume hospital is not a necessary condition for lower

switching costs to have a negative impact on average quality. If the initial quality difference is large

enough and patients switch from the higher- to the lower-quality hospital, there exists a set of values of c

for which the redistribution of patients suffices to reduce average quality. The following result therefore

ensues from Proposition 3.3.

68



Corollary 3.1. Provided that switching costs are initially sufficiently high, lower switching costs reduce

average quality while increasing quality at both hospitals if cHH < c < cq.

To grasp why high initial switching costs are required to achieve an initial quality difference such that

the redistribution effect outweighs the quality increases at the hospital level, recall that higher switching

costs allow Hospital H to retain a greater demand advantage. It is this demand advantage that leads to

a higher marginal benefit from quality—which dominates the higher marginal cost when 0 < c < α or

is indeed reinforced by the lower marginal cost when c < 0—, and hence to higher quality at Hospital

H. The greater is the demand advantage, the higher is the quality premium offered by Hospital H when

c < α. If the initial switching costs are high enough, then the quality difference is so large that some

patients switching from Hospital H to Hospital L suffices to reduce average quality.

Finally, note that, under the assumption of semi-altruistic hospitals, the negative effect of lower switch-

ing costs on average quality arises for a sufficiently weak degree of cost substitutability or may instead

require a sufficiently strong degree of cost complementarity. Conversely, if hospitals are pure profit-

maximisers, lower switching costs always lead to lower (higher) average quality in the presence of cost

complementarity (substitutability).

3.5.2 Aggregate patient utility

Up until this point, the analysis of the effect of lower switching costs has focused mainly on quality pro-

vision; however, switching costs affect patient welfare through other channels. Consider now a more

comprehensive measure of patient welfare, aggregate patient utility, defined as W = BH + BL, with

BH and BL as given in equations (3.8)–(3.9). The effect of a marginal change in switching costs on total

patient utility is given by

∂W

∂s
=

∂q∗H
∂s

D∗
H +

∂q∗L
∂s

D∗
L − µ

[
σH(1− x̂|H) + σLx̂|L

]
+ (q∗H − q∗L)

∂D∗
H

∂s

+ µτ

[
σH(1− 2x̂|H)

∂x̂|H

∂s
+ σL(1− 2x̂|L)

∂x̂|L

∂s

]
+ µs

(
σH

∂x̂|H

∂s
− σL

∂x̂|L

∂s

)
. (3.21)

Lower switching costs have a fivefold effect on total utility. First, lower switching costs elicit changes in

hospital-level quality. Second, there is a direct utility gain for the patients who switch because doing so

becomes less costly. Third, a redistribution of demand occurs as patients switch from the high- to the

low-volume hospital. Fourth and fifth, total travelling/mismatch costs change indeterminately and, all else

equal, total switching costs increase because more patients switch. These effects are respectively given
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by the terms on the right-hand side of (3.21). It turns out that the three last-mentioned effects cancel out,

and equation (3.21) can be rewritten as

∂W

∂s
= − α/2

2τγ
µ

− (α− c)
+
(α− c)(σH − σL)(D

∗
H −D∗

L)
2τγ
µ

− (2α− 3c)
−µ

[
σH(1− x̂|H) + σLx̂|L

]
. (3.22)

Thus, the total effect of a switching costs reduction on patient welfare is uniquely determined by the

increase in the utility of patients who switch and the weighted changes in quality at the hospital level. The

effect of lower switching costs on aggregate utility may be stated as follows.

Proposition 3.4. Provided that the cost function is sufficiently convex in quality, there exists a threshold

value of c, given by cW ∈ (cmin,min{cHH , cq}) and implicitly defined by

α/2
2τγ
µ

− (α− cW )
+

µ

2

(
1− s

τ

)
=

2[τ − (τ − s)µ](σH − σL)
2(α− cW )

[
2τγ
µ

− (α− 2cW )
]

τ
[
2τγ
µ

− (2α− 3cW )
]2 ,

(3.23)

such that lower switching costs reduce aggregate utility if c < cW .

Proof. See Appendix 3.C.

For given quality, lower switching costs always lead to higher patient welfare through the increase in

the utility of patients who switch. If c > α, the weighted quality increase at Hospital H dominates the

weighted change in quality at Hospital L, and the total impact of lower switching costs on aggregate utility

is clearly positive. If c < α, welfare can only decrease if the weighted reduction in quality at Hospital H is

such that it outweighs the weighted increase in quality at Hospital L and the direct patient utility gain, which

requires a value of c sufficiently below α. Thus, differently from the case of average quality, a reduction

in quality at Hospital H is a necessary condition for patient welfare to fall when a utilitarian approach is

adopted.

Additionally, recall that the weighted reduction in quality at Hospital H must only dominate the weighted

increase in quality at Hospital L, net of the negative demand adjustment effect, for switching costs to reduce

average quality. Conversely, for switching costs to reduce total utility, the weighted reduction in quality at

Hospital H must outweigh two counteracting effects. This implies that the value of c below which lower

switching costs reduce total utility is less than the value of c below which lower switching costs reduce

average quality. In other words, the decrease in quality at Hospital H must be stronger to reduce total

utility than it must be to reduce average quality, if required at all. The following result may therefore be

established.
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Corollary 3.1. Lower switching costs reduce average quality but increase aggregate patient utility if

cW < c < cq.

Again, semi-altruistic hospital preferences have an uncertain impact on welfare. The negative effect

of lower switching costs on aggregate utility may materialise even in the presence of a sufficiently weak

degree of cost substitutability when hospitals are semi-altruistic. If hospitals are pure profit-maximisers,

however, then lower switching costs only reduce aggregate utility in the presence of sufficiently strong cost

complementarity. Moreover, recall that, for lower switching costs to reduce average when hospitals are

pure profit-maximisers, any degree of cost complementarity suffices.

3.6 Endogenous Switching Costs and Market Segmentation

In this section, we relax the assumption of exogenous switching costs and allow hospitals to set the

switching cost their inherited patients incur if they decide to switch. Thus, besides setting qi, Hospital i

now sets si as well. For clarity of exposition, we interpret Hospital i’s ability to control si as its ability

to restrict its patients’ access to their medical records or use and exchange thereof. In other words, si

reflects the extent to which Hospital i practices data blocking.13

Proceeding analogously to section 3.3.1, it may be shown that total demand facing Hospital H is again

given byDH(qH , qL) = µσH x̂|H + µσLx̂|L + (1− µ)σL, with s replaced by sH and sL, respectively,

in the expressions for x̂|H and x̂|L as given by equations (3.2) and (3.4). Since DL(qH , qL) = 1 −

DH(qH , qL), total demand facing Hospital i may be written more explicitly as

Di(qi, qj) =
µ

2τ
[τ + qi − qj + σisi − σjsj] + (1− µ)σi, i, j = H,L; i ̸= j; (3.24)

provided that sL − τ < |qH − qL| < τ − sH .14

From the hospitals’ perspective, aggregate patient benefit is

BH [qH , DH(qH , qL)] = µσH

∫ x̂|H

0

(v + qH − τx)dx

+ µσL

∫ x̂|L

0

(v + qH − τx− sL)dx+ (1− µ)

∫ σH

0

(v + qH − τx)dx (3.25)

13 For example, the U.S. Department of Health and Human Services defines information blocking in health care as a ‘practice by a health care provider
that is likely to interfere with access, exchange, or use of electronic health information’.

14 As before, switching from both hospitals only occurs in equilibrium if the preferences for treatment characteristics of some patients outweigh the
endogenously set switching costs.
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and

BL[qL, DL(qH , qL)] = µσH

∫ 1

x̂|H

[v + qL − τ(1− x)− sH ]dx

+ µσL

∫ 1

x̂|L

[v + qL − τ(1− x)]dx+ (1− µ)

∫ 1

σH

[v + qL − τ(1− x)]dx. (3.26)

It is easily seen from (3.24)–(3.26) that a unilateral increase in switching costs has a simple demand

retention effect. All else equal, a higher si increases demand from inherited patients (with changing

preferences), thus increasing revenues, aggregate patient benefit, and treatment production costs. Unlike

quality provision, there is no direct cost from increasing switching costs; only the indirect cost of treating

additional inherited patients. In turn, this implies that each hospital’s optimum level of switching cost is

uniquely determined by the sign of the marginal payoff of inherited demand; or, in other words, by whether

treating the marginal inherited patient is beneficial. This assertion is formalised by the following first-order

conditions for hospitals H and L. Using equations (3.24)–(3.26), maximisation of (3.6) with respect to si

yields
µσH

2τ

[
p+ (α− c)qH + α(v − τ x̂|H)

]
≷ 0 (3.27)

and
µσL

2τ

[
p+ (α− c)qL + α[v − τ(1− x̂|L)]

]
≷ 0. (3.28)

Importantly, the above pair of first-order conditions reveals that, while the sign of the marginal payoff

of inherited demand is independent of si, it depends on qi.15 Thus, from each hospital’s perspective, the

optimum switching cost will either be minimum (si = 0) or maximum (si → ∞) depending on whether

the hospital offers a quality level such that the marginal inherited patient becomes financially unprofitable

to treat to an extent that the hospital finds it optimal to avoid that patient.

The unique equilibrium with non-negative quality provision when switching costs are endogenous is

presented in the following proposition.

Proposition 3.5. If hospitals can set the switching costs their inherited patients incur, the unique equilib-

rium with non-negative quality provision and full market coverage is characterised by maximum switching

costs (s∗i → ∞), perfect history-based market segmentation (Di = σi), and q∗i = max
{
0, (α−c)σi

γ

}
.

Proof. See Appendix 3.D.

15 Note that si indeed enters the expressions for x̂|H and x̂|L on the left-hand side of (3.27)–(3.28). The full market coverage assumption, however,
ensures that the third term on the left-hand side of each of conditions (3.27)–(3.28) is always positive.
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To grasp the mechanism driving the results presented in Proposition 3.5, notice that retaining the

marginal patient through a unilateral increase in switching costs is always beneficial when α > c. In this

case, the marginal altruistic incentive to increase si dominates the cost of treating the marginal inherited

patient for all si, and hospitals, therefore, have incentives to retain all of these patients by setting maximum

switching costs. Each hospital becomes a monopolist on its base of previous patients, and quality affects

only the utility of captive patients and treatment production costs. Strictly positive quality provision arises

for uniquely altruistic motives as α > c implies that the hospitals’ valuation of the utility their captive

patients derive from quality provision outweighs the cost of treating them.

When α < c, the indirect marginal cost of si outweighs the marginal altruistic benefit, making it a

priori ambiguous whether hospitals will continue to retain all of their inherited patients. Suppose initially

that quality provision by Hospital i is sufficiently high to make the marginal inherited patient so costly to

treat that doing so becomes detrimental from the hospital’s perspective (i.e., ∂Ωi/∂si < 0). However, the

hospital would only offer such quality level if attracting a ‘new’ patient (i.e., a patient who chose Hospital j in

the past) were sufficiently more beneficial than retaining an inherited one. This, in turn, would only be true

if Hospital i set a switching cost so high that it retained a share of its inherited patients large to the extent

that the hospital, owing to its semi-altruistic preferences, preferred to ‘internalise’ the switching cost of a

new patient to ‘internalising’ the travelling/mismatch costs of its inherited patients. These two conditions

are clearly incompatible.16 Then, if Hospital i offers a quality level such that the marginal inherited patient

is (always) beneficial to treat, it will again find it optimal to retain all of its inherited patients by setting

maximum switching costs. Once total lock-in is implemented, quality provision by each hospital ceases

to be an instrument to attract new demand. In this case, switching costs and quality provision become

perfectly substitutable strategies for each hospital because either a higher si or a higher qi yields only

additional demand from inherited patients. The difference between these two strategies lies in the costs

of enacting each of them. Besides the cost of treating an additional patient, an increase in switching costs

is costless, while quality provision, conversely, also requires a fixed investment and implies an increase

in the cost of treatment of all patients. Hospitals are thus better off by setting maximum switching costs

and minimum quality (i.e., qi = 0), avoiding quality provision costs entirely.

Therefore, setting maximum switching costs is a strictly dominant strategy, and each hospital always

16 This relationship is more easily illustrated by the case of profit-oriented hospitals and cost substitutability between quality and output, which implies
c > α = 0. For such a hospital, the benefit from treating an additional patient, inherited or new, is the same, and no patient is profitable to treat if p < cqi.
Only in this case, does the hospital prefer to avoid all of its inherited patients and to impose no switching costs. However, if no patient is profitable to treat,
the hospital would have never offered such a quality level in the first place.
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finds it optimal to become a monopolist on its base of previous patients independently of the relative size

of α and c and the degree of asymmetry in inherited demand. Interestingly, the ability to control their

inherited patients’ switching costs allows hospitals to replicate the limiting case of a market where all

patients have fixed preferences for treatment characteristics (i.e., µ = 0).

Finally, these results allow for a brief thought experiment. Suppose that the market is initially char-

acterised by local monopolies as described in Proposition 3.5. Suppose also that a policy capable of

preventing hospitals from imposing switching costs is implemented; for example, the prohibition of data

blocking. In this case, it is reasonable to assume that patients would nonetheless incur some switching

costs, not controlled by the hospitals, and a good approximation of this scenario would be the model of

section 3.3. Let us then consider the welfare implications of breaking up those local monopolies. Provided

that the prospective payment is sufficiently high, introducing de facto competition is generally beneficial

to patient welfare. If α < c, any prospective payment that elicits positive quality leads to higher average

quality—which is null under local monopolies—, and even a moderately high prospective payment yields

the same outcome if α > c. In the case of aggregate patient utility, a welfare improvement is more easily

achieved. By granting patients the ability to adjust their choice of hospital according to their changing

preferences, such a policy reduces the asymmetry in the market and thus leads to lower aggregate travel-

ling/mismatch costs. Importantly, this reduction in travelling/mismatch cost more than compensates for

the newly generated switching costs, which implies that, even if only a marginal increase in quality results

from breaking up the local monopolies, the impact on total patient utility is positive.

3.7 Discussion and Concluding Remarks

Employing a duopoly model that maps on the recent empirical evidence on choice persistence in the

hospital industry, this chapter explored the role of switching costs in the context of hospital competition.

First, it investigated the effect of lower exogenous switching costs on the quality of elective hospital treat-

ments and patient welfare. Second, it analysed how quality provision and market structure are affected

by hospitals’ ability to impose switching costs on their patients.

While lower exogenous switching costs always reduce market concentration, the impact on quality

provision depends crucially on the technology of production of hospital treatments and the hospitals’

degree of altruism. This result challenges the standard prediction that reduced market concentration

is always welfare-improving. Once features that are characteristic, although not exclusive, to the health
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care industry are taken into account—in this chapter, the departure from pure profit-maximisation and the

existence of cost complementarity between quality and output, the so-called volume-outcome effects—,

standard results may fail to arise. Whether lower switching costs are a by-product of the adoption of

shared EHR or result intentionally from patient choice policies, there may be unintended consequences.

When the degree of cost substitutability between quality and output is low relative to the degree of altruism

or when there is cost complementarity, switching costs act as ‘minimum volume standards’ for the high-

volume hospital, ensuring that high quality is provided. In other words, the lock-in effect of switching costs

grants the high-volume hospital the demand advantage that allows it to offer higher quality. In this case,

facilitated switching triggers a patient outflow at the high-volume hospital, despite its higher quality, which

leaves the majority of patients in the market worse off in terms of quality provision, contributing to lower

average quality and aggregate utility. These results from the first part of the chapter have several policy

implications which are discussed in the following.

First, the adverse effects of lower switching costs may require cost complementarity to materialize.

This suggests that knowledge of hospital production attributes is key to anticipating the effect of lower

switching costs. Hentschker and Mennicken (2018) report a negative effect of volume on mortality rates

in the case of German hip replacement patients. Avdic et al. (2019) also find a positive effect of volume

on quality, with the results pointing towards a stronger effect for more complex types of advanced cancer

surgery. Rachet-Jacquet et al. (2019), conversely, find no effect of volume on patient-reported health

outcomes for hip replacement patients in the English NHS. Such mixed empirical evidence in turn suggests

not only that lower switching costs may have heterogeneous effects at the sub-hospital level (e.g., at the

speciality or department level) but also that the institutional setting may play a role.

Second, perhaps surprisingly, average quality might fall even if lower switching costs lead to higher

quality at the hospital level owing to a demand redistribution effect. In his empirical study, Irace (2018)

identifies a demand redistribution effect, which consists in patients switching to higher-quality hospitals in a

counterfactual scenario where switching costs are absent. Our model shows that such demand adjustment

may also occur in the opposite direction. To reduce the mismatch between their horizontal preferences

and the attributes of the chosen hospital, patients may indeed switch to lower-quality hospitals. If the

quality differential is initially large enough, this effect dominates and lower switching costs reduce average

quality. This illustrates an important point regarding policies aimed at reducing switching cost-induced

inertia. They affect both the hospital-side (via quality provision) and the patient-side of the market (via

their ability to adjust), and these two effects may be conflicting. While lower switching costs may trigger
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a quality increase, which all else equal leads to higher patient welfare, they also increase patients’ ability

to adjust to changes in their horizontal preferences (or diagnostic), which in turn may drive them toward

lower-quality hospitals. A direct implication of this result is that, besides the evolution of quality at the

hospital level, the redistribution of patients among hospitals should be considered within the scope of

policy evaluation.

Third, different measures of patient welfare yield distinct conclusions. We have shown that lower

switching costs might increase total patient utility while reducing average quality. If policymakers are

mostly concerned with clinical outcomes and indicators, the average quality will arguably be a more ap-

propriate measure of welfare and lower switching more likely to be deemed welfare-decreasing. If, con-

versely, policymakers care about patient welfare more broadly—considering, for example, patient disutility

of switching as well as clinical quality—, lower switching costs might be regarded as more beneficial.

Consider, finally, the case of endogenous switching costs analysed in the second part of the chapter.

Maximum switching costs and the emergence of local monopolies are strong theoretical results. Under

the EHR and data blocking interpretation of si, however, these results are in line with the findings on

‘information silos’, data systems that exchange no data with similar systems, presented by Miller and

Tucker (2014). They show that hospitals facing a greater commercial cost from allowing data outflow,

those belonging to larger hospital systems, are less likely to exchange patient information externally with

other hospitals, thereby creating information silos. The driver of this behaviour is the prospect that a more

efficient information flow may cause patients to switch to rival hospitals. Thus, to the extent that data

blocking can be interpreted as a form of endogenous switching costs, the local monopolies described in

Proposition 3.5 may also be interpreted as information silos.

Appendix 3.A Proof of Proposition 3.2

From equation (3.16), let the effect of a marginal change in switching costs on equilibrium quality at

Hospitals H and L be written, respectively, as

q∗′H(c) = − α/2
2τγ
µ

− (α− c)
+

(α− c)(σH − σL)
2τγ
µ

− (2α− 3c)
(3.29)

and

q∗′L (c) = − α/2
2τγ
µ

− (α− c)
− (α− c)(σH − σL)

2τγ
µ

− (2α− 3c)
, (3.30)
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where primes denote derivatives with respect to s. Solving q∗′H(c) = 0 and q∗′L (c) = 0 yields, respectively,

the two pairs of candidate solutions

cHH = α− 4τγ(σH − σL) + 3αµ

4µ(σH − σL)

±
√

8τγ(σH − σL)[2τγ(σH − σL) + αµ] + (αµ)2[9− 8(σH − σL)]

4µ(σH − σL)
(3.31)

and

cHL = α− 4τγ(σH − σL)− 3αµ

4µ(σH − σL)

±
√

8τγ(σH − σL)[2τγ(σH − σL)− αµ] + (αµ)2[9 + 8(σH − σL)]

4µ(σH − σL)
. (3.32)

Consider, first, the two candidate solutions to q∗′H(c) = 0. Start by noting that the discriminant is

always positive, which implies that both roots are real. To show that the smaller root is not in the admissible

set of values of c, (cmin,∞), it suffices to show that it is less than any of the arguments on the right-hand

side of (3.11). This is true if, for example, the following inequality holds:

α− 4τγ(σH − σL) + 3αµ

4µ(σH − σL)

−
√
8τγ(σH − σL)[2τγ(σH − σL) + αµ] + (αµ)2[9− 8(σH − σL)]

4µ(σH − σL)
<

2α

3
− 2τγ

3µ
. (3.33)

The above inequality can be written as

4τγ(σH − σL)

3
+

[
3− 4(σH − σL)

3

]
αµ

+
√

8τγ(σH − σL)[2τγ(σH − σL) + αµ] + (αµ)2[9− 8(σH − σL)] > 0, (3.34)

and it is always satisfied. Hence, the smaller root is ruled out. For the larger root to be in the admissible

set of values of c, it must be greater than each of the three arguments on the right-hand side of (3.11).

The corresponding three inequalities can be, respectively, written as

√
8τγ(σH − σL)[2τγ(σH − σL) + αµ] + (αµ)2[9− 8(σH − σL)] > |4τγ(σH − σL)− 3αµ|

⇐⇒ 8(σH − σL)αµ(4τγ − αµ) > 0, (3.35)

8(τγ)2 + 2τγαµ− (αµ)2 > 0, (3.36)

and

(σH − σL)(4τγ − αµ)[4(σH − σL)τγ + (2 + σH − σL)αµ] > 0. (3.37)
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The three inequalities hold simultaneously if γ > αµ
4τ
. Given (3.11), the denominators on the right-hand

side of (3.29) are positive, which implies that the solution to q∗′H(c) = 0 in (cmin,∞) must be less than

α. This solution is therefore in (cmin, α), and it is given by the greater root in (3.31).

Finally, note that the lower bound on c simplifies to cmin = 2α
3
−2τγ

3µ
if γ > αµ

4τ
. With limc→c+min

q∗′H(c) =

∞ and limc→∞q∗′H(c) = −(σH − σL)/3 < 0, existence and uniqueness of cHH in (cmin,∞) imply

that q∗′H(c) > 0 for cmin < c < cHH .

Consider, now, the two candidate solutions to q∗′L (c) = 0. Note that the discriminant is always

positive, and both roots are therefore real.17 Note again that, given (3.11), the denominators on the right-

hand side of (3.30) are positive, and the solution to q∗′L (c) = 0 in (cmin,∞) must therefore be greater

than α. Thus, in order to show that the solution is uniquely given by the larger root, it suffices to show that

this root is greater than α, while the smaller root is less than α. These two conditions hold simultaneously

provided that

√
8τγ(σH − σL)[2τγ(σH − σL)− αµ] + (αµ)2[9 + 8(σH − σL)] > |4τγ(σH − σL)− 3αµ|,

(3.38)

which simplifies to

8(σH − σL)αµ(2τγ + αµ) > 0, (3.39)

revealing that it is always satisfied. The solution to q∗′L (c) = 0 is therefore in (α,∞), and it is given by

the greater root in (3.32).

With limc→c+min
q∗′L (c) = −∞ and limc→∞q∗′L (c) = (σH −σL)/3 > 0, existence and uniqueness

of cHL in (cmin,∞) imply that q∗′L (c) > 0 if c > cHL.

It remains to show that cHH , cHL, and the distance cHL − cHH are increasing in µ and decreasing

in τ . These results follow immediately from

∂cHH

∂µ
=

τγ

µ2

(
1− 4τγ(σH − σL) + αµ√

8τγ(σH − σL)[2τγ(σH − σL) + αµ] + (αµ)2[9− 8(σH − σL)]

)
> 0,

(3.40)

∂cHL

∂µ
=

τγ

µ2

(
1− 4τγ(σH − σL)− αµ√

8τγ(σH − σL)[2τγ(σH − σL)− αµ] + (αµ)2[9 + 8(σH − σL)]

)
> 0,

(3.41)

17 Note that the discriminant is [4(σH − σL)τγ]
2 − 8(σH − σL)τγαµ+ (αµ)2[9 + 8(σH − σL)] > 0∀γ > 0.
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∂(cHL − cHH)

∂µ
=

τγ

µ2

(
4τγ(σH − σL) + αµ√

8τγ(σH − σL)[2τγ(σH − σL) + αµ] + (αµ)2[9− 8(σH − σL)]

− 4τγ(σH − σL)− αµ√
8τγ(σH − σL)[2τγ(σH − σL)− αµ] + (αµ)2[9 + 8(σH − σL)]

)
> 0, (3.42)

∂cHH

∂τ
= −µ

τ

∂cHH

∂µ
< 0, (3.43)

∂cHL

∂τ
= −µ

τ

∂cHL

∂µ
< 0, (3.44)

and
∂(cHL − cHH)

∂τ
= −µ

τ

∂(cHL − cHL)

∂µ
< 0. (3.45)

Note that the term on the right-hand side of (3.42) is positive since

[4τγ(σH − σL) + αµ]2{8τγ(σH − σL)[2τγ(σH − σL)− αµ] + (αµ)2[9 + 8(σH − σL)]}

− [4τγ(σH − σL)− αµ]2{8τγ(σH − σL)[2τγ(σH − σL) + αµ] + (αµ)2[9− 8(σH − σL)]}

= (σH − σL)(4αµ)
2{[4(σH − σL)τγ]

2 + (αµ)2 + 8τγαµ} > 0. (3.46)

Appendix 3.B Proof of Proposition 3.3

Using equations (3.5), (3.17), and (3.18), the effect of a marginal change in switching costs on average

quality may be written as

q′(c) = − α/2
2τγ
µ

− (α− c)
+

2[τ − (τ − s)µ](σH − σL)
2(α− c)

(
2τγ
µ

+ c
)

τ
[
2τγ
µ

− (2α− 3c)
]2 , (3.47)

where prime denotes the derivative with respect to s.

Following the proof of Proposition 3.2 in Appendix 3.A, let γ > αµ
4τ
. Under this condition, the lower

bound on c simplifies to cmin = 2α
3
− 2τγ

3µ
.

Note that c > cmin implies that the expressions 2τγ
µ

− (α − c) and 2τγ
µ

+ c on the right-hand side

of (3.47) are positive. Thus, if a solution to q′(c) = 0 exists in (cmin,∞), it must be in (cmin, α). Let

cq denote such solution.
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Existence of cq follows from the Intermediate Value Theorem, given that q′(c) is continuous in (cmin,∞)

and that limc→c+min
q′(c) = ∞ and q′(α) = − αµ

4τγ
< 0.

To show that cq is unique, we proceed in three steps: (i) we show that the graph of q′(c) first

approaches the horizontal axis from above as c increases in (cmin, α); (ii) we show that q′(c) has either

one or three roots in (cmin, α); and (iii) we show that there exists one solution to q′(c) = 0 which is

not in (cmin, α), implying that there can only be one solution in (cmin, α).

Because limc→c+min
q′(c) = ∞, q′(c) is continuous in (cmin, α), and there is at least one cq, the

smallest possible value of cq is obtained when the graph of q′(c) first approaches the horizontal axis from

above.

Note now that q′(α) = − αµ
4τγ

< 0 implies two possible shapes of the graph of q′(c) for values of c

greater than the smallest possible cq. If the graph of q′(c) does not cross the horizontal axis again, cq is

unique. This occurs if q′(c) is always decreasing or if it has a minimum for some value of c greater than

the smallest possible cq. If the graph of q′(c) does cross the horizontal axis once more (implying that

q′(c) becomes positive), then it must cross the horizontal axis at least a third time because q′(α) < 0.

Note that the solutions to q′(c) = 0 are the roots of a third degree polynomial. Hence, q′(c) has either

one or three real roots in (cmin, α).

If there is only one root, cq is unique. If there are three solutions and one is not in (cmin, α), then, from

above, there can only be one solution in (cmin, α). That is, cq is unique. Existence of a solution to q′(c) =

0 which is not in (cmin, α) is established as follows. Given that q′(c) is continuous in
(
α− 2τγ

µ
, cmin

)
and that lim

c→(α− 2τγ
µ )

+q′(c) = −∞ and limc→c−min
q′(c) = ∞, by the Intermediate Value Theorem,

there exists at least one solution to q′(c) = 0 in
(
α− 2τγ

µ
, cmin

)
. Thus, cq is unique.

This concludes the proof that cq ∈ (cmin, α) is implicitly defined by (3.19). Existence and uniqueness

of cq in (cmin,∞), together with limc→c+min
q′(c) = ∞ and q′(α) < 0, imply that that q′(c) > 0 if

c < cq.

It remains to prove that cq ∈ (cHH , α) if (3.20) is verified. Given that cq is unique and that q′(α) < 0,

by the Intermediate Value Theorem, q′(cHH) > 0 suffices for cq > cHH . Formally,

q′(cHH) > 0 ⇐⇒ q′q(cHH) > q∗′H(cHH). (3.48)

This condition may be rewritten as

2[τ − (τ − s)µ](σH − σL)
2(α− cHH)

(
2τγ
µ

+ cHH

)
τ
[
2τγ
µ

− (2α− 3cHH)
]2 >

(α− cHH)(σH − σL)
2τγ
µ

− (2α− 3cHH)
. (3.49)
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Solving for s yields (3.20). This concludes the proof of Proposition 3.3.

Appendix 3.C Proof of Proposition 3.4

The proof of Proposition 3.4 is analogous to that of Proposition 3.3.

Using equations (3.2), (3.4), (3.5), and (3.22), the effect of a marginal change in switching costs on

total patient welfare may be written as

W ′(c) = −

[
α/2

2τγ
µ

− (α− c)
+

µ

2

(
1− s

τ

)]

+
2[τ − (τ − s)µ](σH − σL)

2(α− c)
[
2τγ
µ

− (α− 2c)
]

τ
[
2τγ
µ

− (2α− 3c)
]2 , (3.50)

where prime denotes the derivative with respect to s.

Following the proof of Proposition 3.2 in Appendix 3.A, let γ > αµ
4τ
. Under this condition, the lower

bound on c simplifies to cmin = 2α
3
− 2τγ

3µ
.

Note that c > cmin implies that the expressions 2τγ
µ

− (α−c) and 2τγ
µ

− (α−2c) on the right-hand

side of (3.50) are positive. Thus, if a solution toW ′(c) = 0 exists in (cmin,∞), it must be in (cmin, α).

Let cW denote such solution.

Existence of cW follows from the Intermediate Value Theorem, given that W ′(c) is continuous in

(cmin,∞) and that limc→c+min
W ′(c) = ∞ and W ′(α) = −

[
αµ
4τγ

+ µ
2

(
1− s

τ

)]
< 0.

To show that cW is unique, we proceed in three steps: (i) we show that the graph of W ′(c) first

approaches the horizontal axis from above as c increases in (cmin, α); (ii) we show that W ′(c) has

either one or three roots in (cmin, α); and (iii) we show that there exists one solution to W ′(c) = 0

which is not in (cmin, α), implying that there can only be one solution in (cmin, α).

Because limc→c+min
W ′(c) = ∞, W ′(c) is continuous in (cmin, α), and there is at least one cW ,

the smallest possible value of cW is obtained when the graph of W ′(c) first approaches the horizontal

axis from above.

Note now that W ′(α) = −
[

αµ
4τγ

+ µ
2

(
1− s

τ

)]
< 0 implies two possible shapes of the graph of

W ′(c) for values of c greater than the smallest possible cW . If the graph of W ′(c) does not cross the

horizontal axis again, cW is unique. This occurs ifW ′(c) is always decreasing or if it has a minimum for

some value of c greater than the smallest possible cW . If the graph of W ′(c) does cross the horizontal
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axis once more (implying that W ′(c) becomes positive), then it must cross the horizontal axis at least a

third time because W ′(α) < 0. Note that the solutions to W ′(c) = 0 are the roots of a third degree

polynomial. Hence, W ′(c) has either one or three real roots in (cmin, α).

If there is only one root, cW is unique. If there are three solutions and one is not in (cmin, α), then,

from above, there can only be one solution in (cmin, α). That is, cW is unique. Existence of a solution

to W ′(c) = 0 which is not in (cmin, α) is established as follows. Given that W ′(c) is continuous

in
(
α− 2τγ

µ
, cmin

)
and that lim

c→(α− 2τγ
µ )

+W ′(c) = −∞ and limc→c−min
W ′(c) = ∞, by the

Intermediate Value Theorem, there exists at least one solution toW ′(c) = 0 in
(
α− 2τγ

µ
, cmin

)
. Thus,

cW is unique.

Existence and uniqueness of cW in (cmin,∞), together with limc→c+min
W ′(c) = ∞ andW ′(α) <

0, imply that W ′(c) > 0 if c < cW .

It remains to prove that cW ∈ (cmin,min{cHH , cq}). First, W ′(c) > 0 requires that q∗′H(c) > 0.

From the proof of Proposition 3.2 in Appendix 3.A, q∗′H(c) > 0 for c < cHH . Then it must be that

cW < cHH . Second, given that cq is unique and that q′(α) < 0, by the Intermediate Value Theorem,

q′(cW ) > 0 implies that cq > cW . Formally,

q′(cW ) > 0 ⇐⇒ q′q(cW ) > W ′(cW ). (3.51)

This condition may be rewritten as

2[τ − (τ − s)µ](σH − σL)
2(α− cW )2

τ
[
2τγ
µ

− (2α− 3cW )
]2 > −µ

2

(
1− s

τ

)
, (3.52)

which is always satisfied. From the proof of Proposition 3.3 in Appendix 3.B, cq ≶ cHH . Hence, this

concludes the proof that cW ∈ (cmin,min{cHH , cq}) is implicitly defined by (3.23).

Appendix 3.D Proof of Proposition 3.5

Maximisation of Hospital i’s objective function (3.6) with respect to si and qi, with Di and Bi given by

equations (3.24)–(3.26), yields, after manipulation, the following first-order conditions:

p+ (α− c)qH + α(v − τ x̂|H) ≷ 0, (3.53)

p+ (α− c)qL + α[v − τ(1− x̂|L)] ≷ 0, (3.54)
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µ

2τ

[
p+ (α− c)qH + α(v − τ x̂|H) +

ασL(sH − sL)

2

]
+ (α− c)DH = γqH , (3.55)

µ

2τ

[
p+ (α− c)qL + α[v − τ(1− x̂|L)]−

ασH(sH − sL)

2

]
+ (α− c)DL = γqL. (3.56)

Full market coverage for qi ≥ 0 implies that the third term on the left-hand side of each of conditions

(3.53) and (3.54) is always positive, which in turn implies that the sign of the expressions on the left-hand

side of each of those conditions is independent of si. Thus, if an equilibrium exists, it will be characterized

by minimum (i.e., ∂Ωi/∂si < 0 and s∗i = 0) or maximum (i.e., ∂Ωi/∂si > 0 and s∗i → ∞) switching

costs.

If α > c, it follows immediately that ∂Ωi/∂si > 0. With s∗i → ∞, no patient switches, and

Di = σi; thus, equations (3.55) and (3.56) fail to define the equilibrium quality levels. Maximization of

(3.6) with respect to qi when Di = σi yields q∗i = (α−c)σi

2
.

To show that this is the unique equilibrium with non-negative quality provision also when c > α, we

first rule out other candidate equilibria and then compute the equilibrium by construction.

Start by noticing that equation (3.24) holds when one or both hospitals set switching costs equal to

zero, so that (3.55)–(3.56) continue to define equilibrium quality levels. Suppose Hospital H sets sH = 0.

This is the case if the left-hand side of equation (3.53) is negative (i.e., ∂ΩH/∂sH < 0). Inserting (3.53)

into (3.55) shows that the latter equation is only satisfied with qH ≥ 0 for sL < 0, which cannot be

true. Conducting the analogous steps for Hospital L and the pair of equations (3.54)–(3.56), as well as

considering sH = sL = 0 simultaneously, yields the same result. Thus, an equilibrium characterized by

non-negative quality provision, if it exists, must have si > 0∀i = H,L.

Suppose now that Hospital L sets a positive sL such that none of its inherited patients switches

(i.e., ∂ΩH/∂sH > 0). In this case, equations (3.55)–(3.56) no longer define equilibrium quality levels,

because (3.24) fails to hold. Total demand facing Hospital H is now given byDH = µσH x̂|H+(1−µ)σH .

The first-order condition defining the optimum sH continues to be given by (3.53), but the first-order

condition defining the optimum qH is now given by

µσH

2τ

[
p+ (α− c)qH + α(v − τ x̂|H)

]
+ (α− c)DH = γqH . (3.57)

Because (α− c)DH < 0, qH ≥ 0 requires that the expression on the left-hand side of (3.53) is strictly

positive, implying sH → ∞. Again, fixing Hospital H’s strategy deriving Hospital L’s best response yields

the analogous result.
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Therefore, si → ∞ is Hospital i’s best response to sj → ∞, and (sH → ∞, sL → ∞) is the

unique Nash Equilibrium with non-negative quality provision and full market coverage.
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4. Quality Provision in Hospital Markets With De-

mand Inertia: The Role of Patient Expectations1

4.1 Introduction

Motivated by the observation that patients tend to choose a hospital and repeatedly demand treatment from

it, even during unrelated episodes of care, recent empirical literature provides evidence of demand inertia

in hospital markets (Jung et al., 2011; Shepard, 2016; Raval and Rosenbaum, 2018; Irace, 2018). Like

travelling distance and quality of care, prior utilisation emerges as a key determinant of hospital choice,

and its effect has been shown to result both from persistent patient preferences and from switching costs

(Raval and Rosenbaum, 2018; Irace, 2018). Persistent preferences denote the time-invariant horizontal

preferences some patients have for hospital characteristics. Absent significant changes in the market,

and upon realising that their tastes or health needs have remained constant, repeated utilisation of the

same hospital may be the optimal behaviour for these patients.

Preference persistency, however, does not fully explain the magnitude of demand inertia. Even when

their preferences change, patients may still find it optimal to choose the same hospital repeatedly if switch-

ing is costly, and there is a variety of reasons why switching costs arise in hospital markets. First, there

may be monetary and opportunity costs incurred by patients in order to have their medical records trans-

ferred across providers. Second, because evaluating hospital quality is a time-consuming and complex

task, switching costs may reflect the risk of trying an untested, alternative provider. Third, switching costs

might arise from the need to undergo duplicate procedures, such as diagnostic tests, when patients restart

treatment after switching providers. Fourth, switching costs may also be the premium patients are willing

to pay, either in terms of higher prices or lower quality, for familiarity with their chosen hospital. Switching

costs therefore induce state dependence; i.e., a causal impact of current on future choices. If switching

1 This chapter is co-authored with Odd Rune Straume.
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is costly, choosing a particular hospital in the present has an impact on the utility patients will derive from

treatment at different hospitals in their choice set in the future, thereby affecting their current choice.2

Both sources of demand inertia create a link between the choices patients make at different points in

time. If the choices patients make are intertemporally linked, these choices will be affected by whether or

not patients anticipate the future, as well as the degree of sophistication of their foresight—what we refer

to as patient expectations. If patient preferences were completely independent across time and switching

costs inexistent, meaning that there would be no intertemporal link, current choices would be unaffected

by whether and how patients anticipate future ones. In other words, the role of patient expectations and

demand inertia are inextricable.

In this chapter, we analyse a hospital market where switching costs and persistent horizontal patient

preferences generate demand inertia and investigate how different types of patient expectations affect

quality provision by two competing hospitals. In the context of patient choice of hospital, rational expec-

tations imply that patients take the future into account and are able to correctly assess the evolution of

the determinants of their choices. In our framework more specifically, where demand inertia is present,

forward-looking and rational patients know that they will demand hospital care in the future with some

positive probability, anticipate that their preferences may change over time, are aware of the lock-in effect

of switching costs, and foresee future quality. Regarding the last-mentioned aspect, these patients not

only know that higher quality attracts higher demand in the present and that part of this demand will be

locked-in, but also predict how this locked-in demand affects future quality. In turn, understanding the

link between current and future quality, via demand, requires some knowledge of hospital objectives and

technology.

Departures from fully rational behaviour may occur because patients are present-biased or because

they have incorrect beliefs about the link between current and future quality (Baicker et al., 2015). We

look at present-bias by considering myopic patients, who ignore the future and base their choice of hospital

on current observable variables only. We also look at incorrect beliefs about future quality by allowing for

the possibility that patients are forward-looking but naïve. In this case, the difference from full rationality

lies not in whether patients anticipate the future but in how they do it. Similarly to forward-looking and

rational patients, forward-looking but naïve ones anticipate the possibility of having persistent preferences

and the existence of switching costs. They fail, however, in foreseeing future quality. Because predicting

the evolution of hospital quality is cognitively complex or because the information required to carry out

2 See section 3.1 for an in-depth discussion of switching costs in hospital markets.
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such a task is unavailable, these patients are naïve in the sense that they resort to the simple rule-of-thumb

of expecting that quality will remain constant.

To study the demand for hospital care when there is inertia, we present a two-period model where

patients choose a hospital based on the level of quality offered, their horizontal preferences, and, possibly,

a switching cost. In the second period, patients who remain in the market either have new or the same

preferences as in the first period and incur a switching cost if they decide to demand treatment from the

hospital they did not choose previously. In the first period, all patients are new in the market, implying that

there are no switching costs and that horizontal preferences affect first-period utility only to the extent that

they represent contemporaneous tastes. If patients are forward-looking, however, their choices are also

conditioned on what might happen in the second period; namely, the possibility that their preferences may

change and that they might want to switch (i.e., patients may see themselves tied to the ‘wrong’ hospital)

and the evolution of the quality difference between the two hospitals. It is therefore in the first period that

patient expectations play a role in determining the demand for hospital care and hence in affecting the

incentives for quality provision.

To make the analysis of the evolution of quality more comprehensive, we assume that the hospitals

are motivated and allow for both cost substitutability and complementarity between quality and output in

hospital production. If the degree of cost substitutability is sufficiently strong, higher demand increases

the marginal cost of quality provision. This, in turn, implies that higher quality in the present foretells

lower quality in the future or, more specifically, that a current unilateral quality increase reduces the

future quality difference. A current unilateral quality increase yields a demand advantage, which, owing

to inertia, partially carries over into the future, increasing the marginal cost of quality and thus reducing

the incentives for quality provision. Similarly, if there is cost complementarity (or if the degree of cost

substitutability is sufficiently weak), higher demand reduces the marginal cost of quality and implies that

a current unilateral quality increase widens both the current and the future quality differences.3 This link

between present and future quality, and the fact that only rational patients observe it, partly explain our

results.

We show that patient expectations affect quality provision only through the responsiveness of de-

mand to quality, with higher responsiveness leading to higher quality provision. While demand is always

more responsive when patients are forward-looking but naïve than when patients are myopic, demand re-

3 In this case, naturally, the lower the degree of cost complementarity is or the higher the degree of cost substitutability is, the smaller is the magnitude
of the increase in the future quality difference caused by a current quality increase.
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sponsiveness under rational expectations depends on the actual relationship between present and future

quality. The more rational patients anticipate a current quality increase to be offset (or more than offset)

in terms of the future quality difference, the less attracted by it these patients are. This is why demand

responsiveness to quality is decreasing (increasing) in the degree of cost substitutability (complementarity)

when patients are rational. Consequently, demand responsiveness and quality under rational expectations

are ranked highest, lowest, or in between the cases of forward-looking but naïve and myopic expectations,

depending on the degree of cost substitutability/complementarity.

This first main result has important implications for patient utility. In a symmetric equilibrium, the type

of which we focus our analysis on, expectations affect aggregate patient utility uniquely through quality.

Thus, when we rank quality according to the type of expectations, we are also raking patient utility. This

implies that full rationality does not necessarily make patients better off.

Our second main result relates to the effect of demand inertia on quality provision and its connection

with patient expectations. We show that, compared with the benchmark of a market without demand

inertia, quality provision is determined by two additional effects. First, there is a pro-quality effect of com-

petition for market share, because current demand is valuable in the future and will be partially locked-in.

Second, there is a patient foresight effect, capturing the size of demand responsiveness under the different

types of patient expectations relative to the benchmark. The foresight effect vanishes when patients are

myopic and reinforces the competition effect when they are forward-looking but naïve. It may instead out-

weigh the competition effect if patients foresee that a unilateral quality increase will yield a sufficiently large

reduction in the future quality difference. Rational expectations and strong cost substitutability are there-

fore necessary (but not sufficient) conditions for demand responsiveness to be low enough to dominate

the competition effect and quality to be lower than in a market without inertia.

The intuition behind our third and final result mirrors that which we have just described. We look

at the outcome of a policy aimed at reducing inertia and show that lower switching costs are generally

counterproductive. Lower switching costs reduce the competition effect and thus can only lead to higher

quality if they increase demand responsiveness to the extent that it more than compensates for that

reduction. This turns out to be the case only when patients are rational and a unilateral quality increase

today causes a sufficiently large reduction in the future quality difference.

The rest of the chapter is organised as follows. In the next section, we relate our study to several

strands of literature. In section 4.3, we present the model and, in section 4.4, derive the equilibrium

quality levels in the two-period game. Our primary analysis is given in sections 4.5, 4.6, and 4.7, where
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we explore the role of patient expectations thoroughly, compare quality provision with the benchmark of

a market without demand inertia, and investigate the effect of lower switching costs. Finally, as well as

concluding remarks, section 4.8 provides a discussion of the implications of forward-looking and rational

behaviour to patient utility.

4.2 Related Literature

The recent empirical literature that documents choice persistence in the hospital industry motivates our

study. Jung et al. (2011) estimate that the probability of a hospital being chosen for a hypothetical

hospitalisation is 64 percentage points higher if the hospital was previously used, and Shepard (2016)

finds that patients are five times more likely to choose a hospital where they received outpatient care in the

previous year. Two subsequent studies corroborate these results and show that demand inertia results

from both switching costs (or state dependence) and persistent patient preferences (or unobserved patient

heterogeneity). Raval and Rosenbaum (2018) report that previous use increases the predicted share of

women expected to return to a hospital for childbirth from 40% to 72%. Additionally, they show that the

effect of previous utilisation, the switching cost, falls in magnitude but is statistically robust to the inclusion

of hospital-patient fixed effects, which capture the effect of persistent preferences. More specifically, they

estimate that the effect of switching costs accounts for roughly 40% of demand inertia. Irace (2018) resorts

to quasi-exogenous shocks that induce patients to switch hospitals. He finds that patients admitted at a

hospital they have never visited before during an emergency are more likely to return to that hospital in

subsequent episodes of care. This is indicative of switching costs and is also true for patients forced to

try a new hospital during a temporary closure because of a natural disaster. Conversely, patients who do

return to the hospital they had been using before the emergency are more likely to choose it repeatedly,

which points to preference persistency.

Much earlier, Klemperer (1987) established a framework to analyse price competition in markets with

switching costs where some patients have persistent horizontal preferences. One of the key insights it

provides, and that is well-established in the switching costs literature (Villas-Boas, 2015), is that rational

consumers’ realisation that a higher price in the future follows a lower price in the present makes demand

less elastic, contributing to higher prices. While the analogous result may be present in our model, it

also allows for the possibility that higher quality in the future follows higher quality in the present. When

anticipated by patients, this makes demandmore elastic and reinforces the effect of competition for market
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share induced by switching costs, leading to higher quality provision.4

In the context of quality competition in primary care, Gravelle and Masiero (2000) present a two-period

model where myopic patients incur switching costs. Contrary to our results, they show that quality is unaf-

fected by switching costs. Within the hospital competition literature, two studies consider an information-

related form of inertia. Arising from the complexity of assessing the quality of care, demand sluggishness

implies that, at each point in time, only a fraction of patients become aware of quality changes and hence

only a fraction of any potential change in demand materialises. Weaker sluggishness therefore makes

demand more responsive to quality. With profit-maximising providers and a positive payment-cost margin,

as in Brekke et al. (2012), increased demand responsiveness leads to higher quality. Siciliani, Straume,

and Cellini (2013), however, show that semi-altruistic hospital preferences may overturn this result. In-

creased demand responsiveness leads to lower quality provision if the prospective payment is sufficiently

below unit costs and the financial incentive to avoid patients dominates the altruistic incentive to attract

them.5 Although demand responsiveness to quality also plays a crucial role in our model, our analysis

differs significantly from those of Brekke et al. (2012) and Siciliani, Straume, and Cellini (2013). First,

they model inertia in a multiperiod framework where expectations are unexplored. Second, they focus on

exogenous changes in parameters that affect demand responsiveness and on how this, in turn, impacts

quality provision, given hospital preferences and technology. Here, we mainly investigate how patient

expectations determine demand responsiveness endogenously and show that hospital preferences and

technology may themselves affect demand responsiveness.

To the best of our knowledge, no study has explored the link between patient expectations and choice

of provider. There is, however, a growing empirical literature on healthcare utilisation under nonlinear

health insurance contracts, which sheds light on whether consumers take the future into account in the

broader healthcare context. Brot-Goldberg et al. (2017) study healthcare utilisation by employees who

were required to switch from free full-coverage to a nonlinear, high-deductible insurance plan. They report

that annual utilisation decreases by 17.9% in response to the plan change, and, importantly, it does so al-

most entirely while consumers are still under the deductible (i.e., before coinsurance eligibility). This result

holds even for the sickest of consumers, who should anticipate reaching the coinsurance arm of the plan

with near certainty and thus face lower end-of-year prices. Guo and Zhang (2019) show that, during the

4 For example, Klemperer (1987) shows that prices are always above the no-inertia case if consumers are rational and all of those who bought in the first
period have unchanged preferences. In our model, however, under the same conditions, quality provision may be higher than in a market without demand
inertia owing to the relationship between hospital technology and motivation.

5 Brekke et al. (2011) investigate this mechanism thoroughly. For an overview of the literature on quality competition in healthcare markets, see Brekke
et al. (2014).
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year of childbirth, fathers’ monthly medical care utilisation rises by 11% upon becoming eligible for coin-

surance, despite childbirth being an expected event that contributes a great deal to deductible fulfilment.

Absent liquidity constraints and controlling for health shocks, these fluctuations in healthcare utilisation

are consistent with some degree of myopic behaviour since a fully forward-looking consumer would re-

spond to his expected end-of-year price rather than to the spot price, thereby smoothing consumption over

the year. Myopic behaviour instead implies that consumers perceive changes in coverage as changes in

prices and hence adjust consumption accordingly. Dalton et al. (2020) provide even stronger evidence

of myopic behaviour. They find that consumers completely ignore the future prices of prescription drugs

under Medicare Part D, whose nonlinear contract design includes an initial coverage region followed by

a coverage gap (the ‘doughnut hole’). Drug purchases are initially constant and drop sharply once the

coverage gap is reached, implying an estimated discount rate that is consistent with full myopia (i.e.,

equal to zero). A similar pattern of drug consumption under Medicare Part D may be found in Sacks et al.

(2017), Einav et al. (2015), and Abaluck et al. (2018). In the latter two studies, however, the estimated

discount rates indicate some degree of forward-looking behaviour, which is considerably higher in Einav

et al. (2015). Additional evidence of forward-looking behaviour comes from Aron-Dine et al. (2015). They

find that initial medical care utilisation is lower for employees who join a health insurance plan with an

annual deductible later in the year. Because their deductible is less likely to be reached, individuals who

enrol later face a higher expected end-of-year price. Their lower initial utilisation under the plan therefore

suggests that they do respond to future prices. Interestingly, Aron-Dine et al. (2015) find similar results

for prescription drug consumption under Medicare Part D. Looking at the German public health insurance

system, Farbmacher et al. (2017) also report evidence of forward-looking behaviour. After the introduction

of a one-time co-payment, initial outpatient care demand falls for some consumers, while it is unresponsive

for the relatively sick, who should expect future needs to exceed a single visit and thus be less sensitive

to the co-payment.

4.3 The Model

Consider a healthcare market with two providers, henceforth referred to as hospitals. In each of two

periods, t = 1, 2, the two hospitals, indexed i = A,B, are located at either endpoint of the unit line

segment [0, 1]. Let Hospital A be located at 0 and Hospital B at 1. Locations on the line segment reflect the

characteristics and preferences for elective hospital treatment supplied in this market. The line segment
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may be thought of as a geographical space or a disease space. In the former case, a patient’s location on

the line is simply her residence or workplace, while the location of a hospital is simply the place where its

facilities were built. In the latter case, a patient’s location on the line is a medical condition or a diagnosis,

and the location of a hospital is the speciality mix (i.e., the treatments and services) it offers.

Patients have a gross valuation of treatment v > 0, demand a single unit of treatment from one

of the hospitals in each period, and are arrayed with unit density along the line segment. They incur a

travelling or mismatch cost τ per unit of distance between their location and that of the chosen hospital,

but bear no out-of-pocket expenses either due to public provision of healthcare or to (social or private)

health insurance coverage.6 Patients derive utility from the quality of treatment, qit, to which hospitals

resort to attract demand in each period. There is a lower bound on treatment quality that represents

the minimum quality hospitals are allowed to offer, with quality below this threshold being interpreted

as malpractice. For simplicity, we assume that the lower bound on quality is equal to zero. The gross

valuation of treatment v is high enough so that the market is always fully covered.

Following the empirical analyses of Raval and Rosenbaum (2018) and Irace (2018), we model demand

inertia in the style of Klemperer (1987). In the first period, all patients are new in the market, meaning

that no patient is tied to any of the hospitals. Patients choose a hospital based on their horizontal prefer-

ences and the quality levels offered in the market. In the second period, however, the patient population

consists of three different segments. (i) A fraction λ of the patients leave the market and are replaced by

new patients with the same density and who are also uniformly distributed along the unit line segment.

(ii) Another fraction µ of the existing patients have preferences for treatment characteristics that are inde-

pendent of their first-period preferences (i.e., their location on the unit line is re-drawn at the start of the

second period). These patients are uniformly distributed along [0, 1] and may be interpreted as patients

who now reside or work in a different place or patients who have developed another, unrelated, disease.

We will henceforth refer to them as patients with changing preferences. The parameter µ may, therefore,

be interpreted as an inverse measure of the persistence of patient preferences over time. Patients with

changing preferences who choose to demand treatment from the hospital they have not used in the first

period incur an exogenous switching cost s. (iii) The remaining (1 − λ − µ) patients have unchanged

preferences for treatment characteristics (i.e., their location on the line segment equals the first-period lo-

cation) and choose the same hospital in both periods.7 Thus, we measure demand inertia in two different

6 The latter feature is analytically equivalent to having hospitals charge the same regulated price.
7 As Villas-Boas (2015) suggests, this could be explicitly modelled by adding an infinitely high switching cost for these patients.
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ways: the cost of switching providers (s) and the persistence of patient preferences (1− λ− µ).

In the first period, patients know that they will leave the market with probability λ, have different

preferences in the second period with probability µ, and have persistent preferences with the remaining

probability 1 − λ − µ. These probabilities are independent of the first-period choice of hospital. Under

these assumptions, the utility, in period t, of a patient located at xt who demands treatment from Hospital

i, located at zi, is given by

ut(xt, z
i) = v + qit − τ |xt − zi| − Iis, i, j = A,B; (4.1)

where Ii = 1 in the second period if the patient has changing preferences, chose Hospital i in the first

period, and chooses Hospital j in the second period; Ii = 0 otherwise.8

Hospitals are prospectively financed by a third-party payer (e.g., a regulator or insurer) that offers a

price p̃ for each unit of treatment supplied and a lump-sum transfer, T , which ensures that a no-liability

constraint is satisfied. Total treatment production costs are given by

C
(
qit, D

i
t

)
= (cqit + k)Di

t +
γ

2
(qit)

2, i, j = A,B; i ̸= j; (4.2)

where c ≶ 0 measures either the degree of cost substitutability (if c > 0) or complementarity (if c < 0)

between quality and output, k > max{0,−cqit} is the minimum unit cost of treatment, γ > 0 is a quality

investment cost parameter, andDi
t is the demand for Hospital i in period t (or the number of treatments

produced).

If c > 0, a certain level of quality is more costly to achieve when more patients are treated, implying

that the marginal cost of quality is increasing in demand. In this case, hospital production exhibits cost

substitutability between quality and output. This is a reasonable assumption if quality results from the

investment in medical equipment and highly skilled staff. For example, offering an additional diagnostic

test amounts to an increase in quality and requires a fixed investment in equipment and/or staff but also

increases the cost of diagnosing each patient. On the other hand, if c < 0, the more patients a hospital

treats, the less costly it is to provide each additional unit of quality, and the marginal cost of quality is

decreasing in demand. In this case, quality and output are cost complements, reflecting the positive

relationship between demand and quality observed when, all else equal, high-volume hospitals provide

higher quality and generate better treatment outcomes than low-volume hospitals.9

8 For patients with persistent preferences, x1 = x2.
9 These positive returns to hospital volume are generally attributed to learning-by-doing or quality-enhancing scale economies, which capture the idea

that healthcare providers become increasingly efficient as the number of times they perform a certain procedure rises. For recent empirical evidence of
volume-outcome effects, see Avdic et al. (2019).
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Additionally, we assume that hospitals aremotivated in the sense that they care, to some extent, about

the gross utility their patients derive from treatment. Specifically, we assume that Hospital i ignores the

travelling/mismatch and switching costs of its patients but attaches a weight α > 0, denoting the degree

of provider motivation, to the remaining part of their aggregate utility (v + qit)D
i
t. Per-period payoff of

Hospital i is thus given by

Ωi
t = T + p̃Di

t − C
(
qit, D

i
t

)
+ α(v + qit)D

i
t. (4.3)

For simplicity and without loss of generality, there is no discounting. Furthermore, whereas hospitals have

rational expectations, we allow for different types of patient expectations, which will be detailed later.

Finally, we impose the following restriction on parameter values:

c > cmin = max
{
α− 2τγ

3(λ+ µ)
, α− τγ

}
. (4.4)

This restriction ensures that the second-order condition of the hospitals’ maximisation problems in the sec-

ond period and in a market without demand inertia are satisfied, as well as that the games we consider

have economically meaningful, interior solutions. It simply implies that the degree of cost substitutability

must be sufficiently strong or the degree of cost complementarity sufficiently weak. Throughout the anal-

ysis, we also assume the existence of interior-solution equilibria, i.e., qit > 0, which requires that p̃ is

sufficiently high.

4.4 Equilibrium Quality Provision

In each period, hospitals simultaneously and independently choose quality levels to maximise the total

(present and future) value of a weighted sum of profits and aggregate gross patient utility. First-period

quality levels result in first-period demands, withDA
1 +DB

1 = 1. Second-period quality levels and payoffs

depend on these demands, which fully capture the outcome of the first period. To take into account this

dependence, we solve the game backwards for a pure-strategy subgame-perfect Nash equilibrium.

4.4.1 The second period

Consider the different groups of patients in turn. A fraction λ of patients were not in the market in the

first period and are not therefore tied to any of the hospitals. The new patient who is indifferent between
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seeking treatment at Hospital A and Hospital B is located at x̂, given by

x̂ =
1

2
+

qA2 − qB2
2τ

. (4.5)

Hospitals A and B serve respectively λx̂ and λ(1− x̂) of these patients. Additionally, Hospital A serves

all of these patients if qA2 > qB2 + τ and none if qA2 < qB2 − τ .

A fraction µDA
1 of patients sought treatment from Hospital A in the first period and now have prefer-

ences for treatment characteristics that are uniformly distributed along the line segment [0, 1]. The patient

who was previously treated at Hospital A and is now indifferent between seeking treatment at Hospital A

and Hospital B is located at x̂|A, given by

x̂|A =
1

2
+

qA2 − qB2 + s

2τ
. (4.6)

Hospitals A and B serve respectively µDA
1 x̂|A and µDA

1 (1− x̂|A) of these patients. Additionally, Hospital

A serves all of these patients if qA2 > qB2 + τ − s and none if qA2 < qB2 − τ − s.

Similarly, a fraction µDB
1 of patients sought treatment from Hospital B in the first period and now

have preferences for treatment characteristics that are uniformly distributed along the line segment [0, 1].

The patient who was previously treated at Hospital B and is now indifferent between seeking treatment at

Hospital A and Hospital B is located at x̂|B , given by

x̂|B =
1

2
+

qA2 − qB2 − s

2τ
. (4.7)

Hospitals A and B serve respectively µDB
1 x̂|B and µDB

1 (1 − x̂|B) of theses patients. Additionally,

Hospital A serves all of these patients if qA2 > qB2 + τ + s and none if qA2 < qB2 − τ + s.

Finally, the remaining fractions (1−λ−µ)DA
1 and (1−λ−µ)DB

1 of the patients choose, respectively,

Hospital A and Hospital B in both periods. Combining demand from the three types of patients, it may be

easily shown that total demand facing Hospital i in the second period is given by

Di
2(q

i
2, q

j
2) =

λ+ µ

2τ
(τ+qi2−qj2)+

µ

2τ
(Di

1−Dj
1)s+(1−λ−µ)Di

1, i, j = A,B; i ̸= j; (4.8)

provided that |qA2 − qB2 | < τ − s.10

Taking first-period demand as given, Hospital i maximises

Ωi
2(q

i
2, q

j
2) = T + [p+ (α− c)qi2]D

i
2(q

i
2, q

j
2)−

γ

2
(qi2)

2, i, j = A,B; i ̸= j; (4.9)

10 Switching only occurs in equilibrium if s < τ , so that the preferences for treatment characteristics of some patients outweigh the switching cost.
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where p = p̃− k+ αv. Maximisation of (4.9) with respect to qi2 yields the candidate equilibrium quality

levels

qi∗2 =
p+ (α− c)

[
τ − µs

λ+µ

]
− (α− c)2ϕ

2τγ
λ+µ

− (α− c)
+ (α− c)ϕDi

1, i = A,B, (4.10)

where

ϕ =
2τ(1− λ− µ+ µs

τ
)

(λ+ µ)
[

2τγ
λ+µ

− 3(α− c)
] > 0. (4.11)

The parameter restriction given in (4.4) ensures that the second-order condition is always satisfied,

provided that (4.8) holds. However, this is insufficient to prove that the pair of strategies (4.10) define an

equilibrium in the second-period subgame. It must be ensured that hospitals do not deviate and serve

only their captive patients with fixed preferences, thus choosing a quality level outside the range in which

(4.8) holds. As Klemperer (1987) notes, the deviation is not beneficial if λ + µ is large enough and

the difference between first-period demands is sufficiently small. In the next subsection, we show that a

symmetric pure-strategy candidate subgame perfect equilibrium exists and assume λ+ µ is such that it

indeed is an equilibrium.

Applying symmetry (DA
1 = DB

1 = 1/2), equilibrium quality in the second period becomes

q∗2 =
p+ (α−c)τ

λ+µ

2τγ
λ+µ

− (α− c)
. (4.12)

Before turning to the first-period subgame, one must take into account the inter-period dependence

by analysing the effect of first-period demand on second-period payoffs. In a symmetric equilibrium, it is

given by

∂Ωi
2(q

∗
2)

∂Di
1

= ϕ

(
λ+ µ

τ

)(
τγ

λ+ µ
− α + c

)
[p+ (α− c)q∗2] > 0, i = A,B. (4.13)

Because the marginal patient is always beneficial to treat in the second period (p + (α − c)q∗2 > 0),

first-period demand has an unambiguously positive effect on second-period payoffs. This gives hospitals

an additional incentive to invest in quality in the first period and attract demand, since it will be partially

locked-in.
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4.4.2 The first period

Anticipating the effect of first-period quality choices in the second period, hospitals maximise the present

value of total payoffs. Formally, Hospital i maximises

2∑
t=1

Ωi
t(q

i
1, q

j
1) = T+[p+(α−c)qi1]D

i
1(q

i
1, q

j
1)−

γ

2
(qi1)

2+Ωi
2[D

i
1(q

i
1, q

j
1)], i, j = A,B; i ̸= j.

(4.14)

The first- and second-order conditions of the hospital’s maximisation problem are respectively given by11

[p+ (α− c)qi1]
∂Di

1

∂qi1
+ (α− c)Di

1 − γqi1 +
∂Ωi

2

∂Di
1

∂Di
1

∂qi1
= 0 (4.15)

and

γ − 2(α− c)
∂Di

1

∂qi1
>

(
λ+ µ

τ

)(
τγ

λ+ µ
− α + c

)[
(α− c)ϕ

∂Di
1

∂qi1

]2
+

[
p+ (α− c)qi1 +

∂Ωi
2

∂Di
1

]
∂2Di

1

∂(qi1)
2
, (4.16)

where i, j = A,B and i ̸= j. Applying symmetry and using (4.13), first-period equilibrium quality, q∗1 ,

is implicitly defined by[
p+ (α− c)q∗1 + ϕ

(
λ+ µ

τ

)(
τγ

λ+ µ
− α + c

)
[p+ (α− c)q∗2]

]
∂Di

1

∂qi1
+

α− c

2
= γq∗1.

(4.17)

The term in square brackets is the total payoff (present plus future) of treating an additional patient in

the first period, and it is always positive in equilibrium. Because treating an additional patient is always

beneficial, the incentive to invest in quality depends on how strongly first-period demand responds to

quality changes. This response, as we show below, is determined by patient expectations.

Let expected quality in the second period, qiE(qi1, q
j
1), be functions of first-period quality levels, which

are observable to patients, and consider the first-period choice of hospital of a patient who is located at

y. In the first period, the patient’s utility from choosing Hospital A is (v + qA1 − τy). In the second

period, with probability λ, the patient is not in the market and has zero utility. With probability µ, the

patient remains in the market and has preferences for treatment characteristics uniformly distributed on

[0, 1]. Conditional on having volatile preferences and choosing Hospital A in the first period, the patient

anticipates that, for a given second-period location x, he will choose Hospital A in the second period if

v+qAE−τx > v+qBE−τ(1−x)−s; or, equivalently, if x < 1/2+(qAE−qBE+s)/2τ . Conversely, the

11 To save notation, we omit function arguments whenever there is no ambiguity.
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patient anticipates that he will choose Hospital B and incur the switching cost if x exceeds that threshold.

With probability 1 − λ − µ, the patient has persistent preferences (i.e., he is located at y also in the

second period) and will again choose Hospital A. Then, the expected total utility (first-period utility plus

expected second-period utility) of the patient located at y which results from choosing Hospital A in the

first period is

(v+ qA1 − τy) + µ

 ∫ 1
2
+

qAE−qBE+s

2τ

0
(v + qAE − τx)dx

+
∫ 1

1
2
+

qA
E

−qB
E

+s

2τ

[v + qBE − τ(1− x)− s]dx

+ (1− λ− µ)(v+ qAE − τy).

(4.18)

Analogously, the expected total utility from choosing Hospital B in the first period is

[v+qB1 −τ(1−y)]+µ

 ∫ 1
2
+

qAE−qBE−s

2τ

0
(v + qAE − τx− s)dx

+
∫ 1

1
2
+

qA
E

−qB
E

−s

2τ

[v + qBE − τ(1− x)]dx

+(1−λ−µ)[v+qBE−τ(1−y)].

(4.19)

Equating (4.18) and (4.19) implicitly defines the location of the patient who is indifferent between the

two hospitals. Using the fact that this patient has y = DA
1 (q

A
1 , q

B
1 ), we solve for first-period demands

DA
1 (q

A
1 , q

B
1 ) =

1

2
+

qA1 − qB1
2τ(2− λ− µ)

+

[
1− λ− µ+ µs

τ

2τ(2− λ− µ)

]
(qAE − qBE ) (4.20)

and DB
1 = 1−DA

1 , yielding

∂Di
1(q

i
1, q

j
1)

∂qi1
=

1

2τ(2− λ− µ)
+

[
1− λ− µ+ µs

τ

2τ(2− λ− µ)

]
∂(qiE − qjE)

∂qi1
, i, j = A,B; i ̸= j.

(4.21)

Thus, demand responsiveness to quality in the first period depends in part on patients’ expectations

of how a unilateral quality increase affects the quality difference between the hospitals in the next period.

In the following we will consider three different assumptions regarding patient expectations:

i Myopic patients. If patients are myopic, they fully ignore the second period when making their first-

period choice of hospital. Their decisions are therefore only based on observable first-period vari-

ables (qualities and travelling distance).

ii Forward-looking but naïve patients. In this case, patients take the second period into account

whenmaking their first-period choice of hospital, anticipating the lock-in effect of switching costs and

that their preferences may change, but fail to properly assess the evolution of quality. Specifically,

given the complexity of evaluating hospital quality and, in particular, how future quality depends
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on current demand and hence quality, naïve patients resort to the rule-of-thumb of expecting that

quality is the same in both periods.

iii Forward-looking and rational patients. In this case, patients have rational expectations and

correctly anticipate how quality investments today affect each hospital’s incentives for quality in-

vestments in the future.

4.5 Patient Expectations and Quality Provision

In this section, we analyse how the different types of patient expectations affect each hospital’s incentives

for quality provision. We do so by deriving the demand responsiveness to quality, (4.21), under each

of our three assumptions regarding patient expectations. We then proceed by performing a ranking of

equilibrium quality levels based on these expectations. Notice that patient expectations have no effect

on the second-period decisions, which allows us to focus only incentives for quality provision in the first

period.

4.5.1 Myopic patients

If patients are myopic and ignore the future, demand responsiveness to quality is the same as it would be

if all patients leave the market after the first period (i.e., λ = 1 and µ = 0), which implies that (4.21)

reduces to
∂Di

1(q
i
1, q

j
1)

∂qi1
=

1

2τ
, i, j = A,B; i ̸= j. (4.22)

Thus, with myopic patients, demand responsiveness to quality is the same as in a static version of the

model and demand inertia plays no role.12

4.5.2 Forward-looking but naïve patients

If patients expect first-period quality to prevail in the second period, this implies that ∂(qiE−qjE)/∂q
i
1 = 1,

which in turn implies that (4.21) reduces to

∂Di
1(q

i
1, q

j
1)

∂qi1
=

1

2τ

[
1 +

µs

τ(2− λ− µ)

]
, i, j = A,B; i ̸= j. (4.23)

12 With myopic patients, although demand inertia plays no role in determining the demand responsiveness to quality, it still plays a role in determining
the hospitals’ incentives for quality provision, as can be seen from (4.17). The importance of demand inertia for equilibrium quality provision is analysed in
section 4.6.
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Compared with the case of myopic patients, the presence of patients with naïve expectations intro-

duces three additional effects on the demand responsiveness to quality. First, patients anticipate that they

will also need treatment in the second period, thus having to ‘travel’ twice. This makes quality relatively less

important than travelling/mismatch costs and leads, all else equal, to lower demand responsiveness to

quality. This effect, however, is counteracted by the effect of patients’ naïvety, since they expect a marginal

change in quality to persist in the future; i.e., the benefit of higher quality is also ‘counted twice’. In the ab-

sence of switching costs, these two effects cancel each other. In other words, ∂Di
1(q

i
1, q

j
1)/∂q

i
1 = 1/2τ

if s = 0, regardless of whether patients are myopic or forward-looking but naïve.

However, the presence of switching costs introduces a third effect that makes demand more respon-

sive to quality if patients are forward-looking but naïve. More precisely, the presence of switching costs

increases the relative importance of expected quality differences in the future. To illustrate this mech-

anism, consider the case of a marginal increase in first-period quality by Hospital A with qA1 > qB1 .

While such a quality increase would increase demand for Hospital A, a patient located sufficiently close

to Hospital B would still prefer to remain with that hospital, because the lower travelling costs outweigh

the foregone quality improvement. However, if such a patient is forward-looking, he anticipates that, with

probability µ, his location on the line will not remain the same in the future, but will be randomly drawn

from a uniform distribution. Since the expected value of a uniform distribution on [0, 1] is 1/2, and since

the patient expects that first-period quality differences will persist in the second period, he consequently

expects that, with probability µ, his preferred choice of hospital in the future will be Hospital A and not

Hospital B. However, since s > 0makes it costly to switch from the low-quality to the high-quality hospital

in the future, the patient might find it preferable to choose Hospital A already today, and this choice is

more likely the higher the switching costs. In other words, when patients are naïve and expect quality dif-

ferences to persist, the presence of switching costs increases demand responsiveness to quality because

of patients’ fear of being locked-in to the ‘wrong’ hospital in the future.

4.5.3 Forward-looking and rational patients

If patients have rational expectations, they know that hospitals will set quality according to (4.10) and

therefore anticipate that the quality difference in the second period will be

qiE − qjE = (α− c)ϕ[2Di
1(q

i
1, q

j
1)− 1], i, j = A,B; i ̸= j, (4.24)
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which implies

∂(qiE − qjE)

∂qi1
= 2(α− c)ϕ

∂Di
1(q

i
1, q

j
1)

∂qi1
, i, j = A,B; i ̸= j. (4.25)

Inserting (4.25) into (4.21) and solving for ∂Di
1(q

i
1, q

j
1)/∂q

i
1 yields13

∂Di
1(q

i
1, q

j
1)

∂qi1
=

1

2τ(2− λ− µ)− 2(1− λ− µ+ µs
τ
)(α− c)ϕ

≷ 1

2τ
, i, j = A,B; i ̸= j.

(4.26)

Forward-looking and rational patients not only anticipate that they will be (partially or totally) tied

to their first-period hospital but also correctly anticipate how quality investments in the present affect

future quality. This implies that the responsiveness of demand to quality in the first period depends

on two additional factors, namely provider motivation and technology. These two factors determine the

relationship between demand and themarginal cost of quality provision for each hospital. More specifically,

higher demand increases (reduces) the marginal cost of quality provision if c > (<)α. Under rational

expectations, this has important implications for how a change in the current quality difference between

hospitals informs patients’ beliefs about future quality differences. From (4.25) we see that a unilateral

quality increase by Hospital iwill increase the expected quality difference between Hospital i and Hospital j

in the future only ifα > c, and reduce the expected future quality difference otherwise. Furthermore, since

∂
(
qiE − qjE

)
/∂qi1 is monotonically increasing in α and monotonically decreasing in c, it follows from

(4.21) that the demand responsiveness to quality is also monotonically increasing in α and monotonically

decreasing in c.

In order to illustrate the above stated mechanism, consider for example the case of profit-oriented

hospitals and cost substitutability between quality and output, which implies c > α = 0. In this case, if

patients observe a unilateral quality increase by, say, Hospital A, they will rationally expect that the resulting

shift in demand from Hospital B to Hospital A is going to increase the marginal cost of quality provision for

Hospital A and reduce it for Hospital B, thus resulting in a weakening of Hospital A’s incentives for quality

provision in the future, and a corresponding strengthening of Hospital B’s future incentives for quality

provision, all else equal. Such expectations will make patients more reluctant to switch from Hospital B

to Hospital A following a quality increase by the latter hospital, thus reducing the demand responsiveness

to quality. The opposite logic obviously applies if c < α.
13 Positive demand responsiveness requires that

c > cR = α−
2τγ

3(λ+ µ) +
2(1−λ−µ+µs

τ )2

2−λ−µ

≷ cmin.
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Notice, however, that demand responsiveness with rational patients may be lower than with myopic

patients, even in the case where higher demand reduces themarginal cost of quality provision (i.e., c < α).

In other words, patients may correctly anticipate that a marginal increase in the quality of Hospital i will

increase the future quality difference and still be less attracted by that increase than they would if they

were myopic and ignored the future. A necessary condition for this to happen is that patients expect

that the quality advantage of Hospital i will decrease over time, i.e., that ∂
(
qiE − qjE

)
/∂qi1 < 1, which

implies that quality becomes relatively less important than travelling/mismatch costs for forward-looking

patients.14

4.5.4 The effect of patient expectations on equilibrium quality

We are now ready to summarise the effect of patient expectations on equilibrium quality provision. From

(4.17), we know that equilibrium quality is increasing in demand responsiveness and that this is the only

channel through which patient expectations influence quality provision. Therefore, to establish under which

type of expectations quality is higher, it suffices to compare the magnitudes of the demand responsiveness.

We have shown that demand is more responsive to quality when patients are forward-looking but naïve

than when patients are myopic, implying that quality is higher in the former case.

Depending on how much a first-period quality increase is offset in the second period, demand respon-

siveness (and hence quality) when patients are rational may be lower than when patients are myopic,

higher than when patients are naïve, or lie in between. Recall that, with rational patients, demand respon-

siveness is monotonically decreasing in c. If a first-period quality increase has no effect on the expected

second-period quality difference (i.e., if c = α), demand responsiveness is lower with forward-looking and

rational patients than if patients are either myopic or naïve. Demand will be more responsive to quality

under rational expectations only if a current unilateral quality increase produces a sufficiently large in-

crease in the future expected quality difference between the hospitals. This requires sufficiently weak cost

substitutability (or sufficiently strong cost complementarity).

The above analysis is summarised as follows.

Proposition 4.1. (i) If patients are forward-looking but naïve, equilibrium quality is always higher than

if patients are myopic. (ii) Provided that the cost function is sufficiently convex in quality, if patients are

14 Recall that forward-looking patients anticipate that they may have to ‘travel’ twice, which makes quality relatively less important than travelling/mismatch
costs and contributes to lower demand responsiveness. Only if the future quality difference is sufficiently large, will demand responsiveness be higher than
when patients are myopic.
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forward-looking and rational, equilibrium quality is

1. higher than if patients are naïve if

c < c′ = α− 2τγ
2(1−λ−µ+µs

τ
)(2−λ−µ+µs

τ
)

(2−λ−µ)
+ 3(λ+ µ)

; (4.27)

2. lower than if patients are myopic if

c > c′′ = α− 2τγ
2(1−λ−µ+µs

τ
)2

(1−λ−µ)
+ 3(λ+ µ)

; (4.28)

where max{cmin, cR} < c′ < c′′ < α.

Proof. Follows directly from a comparison of (4.22), (4.23) and (4.23). A sufficiently high γ ensures that

the second-order condition in (4.16) is satisfied for values of c such that the set (max {cmin, cR} , c′) is

non-empty.

4.6 The Effect of Demand Inertia on Quality Provision

In this section, we investigate how demand inertia affects incentives for quality provision. Our benchmark

case of no demand inertia may be derived by setting (i) λ = 0, µ = 1 and s = 0; or (ii) λ = 1 and

µ = 0. Although analytically equivalent, (i) and (ii) have different interpretations. In the former case,

no patient leaves the market and there are no switching costs, but the preferences of all patients are

reshuffled after the first period. In the latter case, all patients are replaced between periods, and hence

there is no switching. In either case, there is no interaction between periods, patients’ choices of hospital

are independent, and demand is unaffected by expectations. This also illustrates that the role of patient

expectations is unavoidably linked to the presence of demand inertia. Our choice of benchmark, thus,

allows the analysis in this section to be interpreted as an analysis of the effect of patient expectations

relative to a market wherein they play no role.

The first-order condition defining the symmetric equilibrium quality level in a market without demand

inertia is given by
1

2τ
[p+ (α− c)qN ] +

α− c

2
= γqN , (4.29)

yielding

qN =
p+ (α− c)τ

2τγ − (α− c)
. (4.30)
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Since the absence of demand inertia implies that equilibrium quality provision is equal in both periods, it

is not immediately clear how a comparison with a model where equilibrium quality provision might differ

over time should be interpreted. However, notice that equilibrium quality without demand inertia is higher

than second-period quality provision in the presence of demand inertia; i.e., qN > q∗2 . Our analytical

strategy will therefore be to characterise under which conditions this inequality also holds with respect to

first-period quality provision (i.e., qN > q∗1). If q∗1 < qN , we can conclude that the presence of demand

inertia unambiguously leads to a lower quality provision.

Comparing the first-order conditions (4.17) and (4.30), we see that there are two additional effects

influencing quality provision in a market with demand inertia. First, there is a competition effect, given

by the third term in square brackets on the left-hand side of (4.17). Since first-period demand is always

valuable in the second period, hospitals have incentives to invest in quality to build market share. All

else equal, the competition effect always leads to higher quality. Second, there is a patient foresight

effect affecting demand responsiveness, which, in turn, determines how effective a quality increase is in

attracting demand. In general, the foresight effect may either reinforce or counteract the competition effect,

depending on whether patients’ expectations about the second period lead to higher or lower demand

responsiveness relative to a market without inertia.

Combining the two equilibrium conditions, we obtain, after some manipulations,[
γ − (α− c)

∂Di
1

∂qi1

]
(q∗1 − qN) =

(
∂Di

1

∂qi1
− 1

2τ

)
[p+ (α− c)qN ]

+
ϕ

τ
[τγ − (λ+ µ)(α− c)][p+ (α− c)q∗2]

∂Di
1

∂qi1
. (4.31)

Notice from (4.21) that demand responsiveness to quality in a market without inertia is equal to 1/2τ .

The left-hand side of (4.31) is monotonic in q∗1 and qN , and the first-period second-order condition ensures

that the term in square brackets is positive.15 Consequently, q∗1 < qN if the right-hand side of (4.31) is

negative, which requires that

1
2τ

− ∂Di
1

∂qi1

∂Di
1

∂qi1

>
(ϕ/τ)[τγ − (λ+ µ)(α− c)][p+ (α− c)q∗2]

p+ (α− c)qN
. (4.32)

15 Under all of the three types of patient expectations considered, the second-order condition in the first period simplifies to

γ > 2(α− c)
∂Di

1

∂qi1
+

(
λ+ µ

τ

)(
τγ

λ+ µ
− α+ c

)[
(α− c)ϕ

∂Di
1

∂qi1

]2
.
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The above inequality shows that quality is lower than in a market without inertia if the foresight effect

(given by the left-hand side) more than compensates for the competition effect (given by the right-hand

side), which requires that demand responsiveness is sufficiently lower than in a market without inertia

(i.e., sufficiently lower than 1/2τ ). More specifically, equilibrium quality is lower than in the benchmark if

the difference in demand responsiveness—which measures the difference in the effectiveness of a quality

increase in attracting patients—exceeds the relative payoff of demand—which measures how beneficial

that increase is in future terms.16

We state the comparison of quality provision between markets with and without demand inertia in the

following proposition.

Proposition 4.2. Under demand inertia, equilibrium quality is lower than in the benchmark case of a

market without inertia if the following three conditions are all satisfied:

(i) patients are forward-looking and rational,

(ii) c is above a unique threshold in (α,∞), implicitly defined by

1
2τ

− ∂Di
1

∂qi1

∂Di
1

∂qi1

=
(ϕ/τ)[τγ − (λ+ µ)(α− c)][p+ (α− c)q∗2]

p+ (α− c)qN
, (4.33)

where ∂Di
1/∂q

i
1 is given by (4.26), and

(iii) the parameters determining the degree of demand inertia satisfy the following condition:

τ (λ+ µ) (τ (1− λ− µ)− 4sµ) + 2sµ (τ + sµ) > 0. (4.34)

Proof. See Appendix 4.A.

Notice first that the presence of demand inertia can only lead to lower quality provision if patients

have rational expectations. Since myopic patients fully ignore the second period, first-period demand

responsiveness when patients are myopic is the same as in a market without inertia, which implies that

the foresight effect vanishes and quality provision is higher than in the benchmark due to the competition

effect. With forward-looking but naïve patients, demand is more responsive than in a market without

inertia, which implies that the foresight effect is positive and hence reinforces the competition effect.

Since the demand responsiveness may fall below 1/2τ only in case of rational expectations, this is a

necessary but not sufficient condition for quality to be lower than in the benchmark. According to Proposi-

tion 4.2, two more conditions are needed. First, the degree of cost substitutability needs to be sufficiently
16 Notice that by ‘relative payoff of demand’ we refer to the increase in second-period payoffs from treating an additional patient in the first period expressed

in terms of the increase in payoffs from treating an additional patient in a market without inertia.
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strong relative to the degree of provider motivation to ensure that the foresight effect is sufficiently strong

(cf. Proposition 4.1). To grasp why, recall that only if a first-period unilateral quality increase yields a suffi-

ciently large decrease in the second-period quality difference, will demand responsiveness be low enough.

In addition, the demand inertia parameters need to satisfy the condition given by (4.34). It is easily seen

that this condition is always satisfied if the switching costs are sufficiently low (i.e., if s is sufficiently close

to zero). Notice that, for c > α, lower switching costs contribute to reducing both the foresight effect

and the competition effect. It reduces the foresight effect because it reduces the cost of being locked-in

to the ‘wrong’ hospital in the second period, thus increasing the demand responsiveness to quality in the

first period. But it also reduces the competition effect because it weakens the hospitals’ ability to lock in

patients by offering higher quality in the first period. However, it turns out that the reduction in the com-

petition effect is larger than the reduction in the foresight effect, which explains why the third condition in

Proposition 4.2 holds for sufficiently low values of s.

4.7 The Effect of Switching Costs on Quality Provision

In this section, we take a more policy-oriented perspective and investigate how expectations affect the

impact on quality of a policy intervention aimed at facilitating switching, which we measure by a reduction

in s. Switching may be facilitated, for example, by the adoption of a market-wide network of shareable

electronic health records, allowing patients to transfer their medical records between providers easily, or by

the publication of quality indicators in the public domain by regulators, which reduces patients’ uncertainty

associated with trying an alternative provider. Since neither patient expectations nor switching costs affect

second-period quality levels in a symmetric equilibrium, we again focus on the first period.

Implicit differentiation of (4.17) yields

∂q∗1
∂s

=

 (
λ+µ
τ

) (
τγ
λ+µ

− α + c
)
[p+ (α− c)q∗2]

∂Di
1

∂qi1

∂ϕ
∂s

+
[
p+ (α− c)q∗1 + ϕ

(
λ+µ
τ

) (
τγ
λ+µ

− α + c
)
[p+ (α− c)q∗2]

]
∂2Di

1

∂qi1∂s


γ − (α− c)

∂Di
1

∂qi1

, (4.35)

where
∂ϕ

∂s
=

2µ

(λ+ µ)
[

2τγ
λ+µ

− 3(α− c)
] > 0. (4.36)

Lower switching costs generally have a twofold effect on quality. First, because fewer patients will be

locked-in when switching is less costly, lower switching costs reduce the benefit of a marginal increase in
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first-period quality in terms of second-period payoffs. Thus, lower switching costs unambiguously dampen

the competition effect, which, all else equal, leads to lower quality. Second, the effect of lower switch-

ing costs on demand responsiveness—and hence on the extent to which quality is effective in attracting

demand—depends on the type of patient expectations. A priori, these two effects may either reinforce or

counteract each other; however, it immediately follows that lower switching costs will lead to higher quality

only if they make demand sufficiently more elastic.

Myopic patients ignore that they will be (at least partially) locked-in to their first-period provider and

only take into account observable variables that affect their first-period utility when choosing a hospital.

This implies that demand responsiveness is unaffected by switching costs and, in turn, that the change

in quality is uniquely determined by the weakened competition effect. Therefore, lower switching costs

unambiguously lead to lower quality when patients are myopic.

While forward-looking but naïve patients anticipate the lock-in effect of switching costs, they expect

quality to remain constant. Since these patients expect a unilateral quality increase to yield a long-lasting

quality difference, the less locked-in they anticipate to be, the less attracted they are by such an increase. A

lower s implies that ‘correcting’ the first-period choice of hospital in the second period is less costly, which

implies that lower switching costs reduce the relative importance of (present and future) quality differences.

In other words, from the perspective of naïve patients, lower switching costs reduce the benefit of being

locked-in to the ‘right’ hospital (cf. subsection 4.5.2). This leads to lower demand responsiveness and

reinforces the effect of the weaker incentives to invest in quality in terms of second-period payoffs. Thus,

lower switching costs also lead to lower quality when patients are forward-looking but naïve.

When patients have rational expectations, provider motivation and technology again play a role. More

specifically, the effect of switching costs on demand responsiveness depends on whether a unilateral

quality increase today increases or reduces the quality difference in the future, which in turn depends on

the sign of (α− c). Using (4.26), we derive

∂2Di
1

∂qi1∂s
= 4µ(α− c)

ϕ

τ

(
∂Di

1

∂qi1

)2

≷ 0. (4.37)

Inserting (4.37) into (4.35) yields

∂q∗1
∂s

=
ϕ

τ

∂Di
1

∂qi1

 µ

γ − (α− c)
∂Di

1

∂qi1

 [τγ−(λ+µ)(α−c)][p+(α−c)q∗2 ]

τ(1−λ−µ+µs
τ )

+4(α− c)
(
γq∗1 − α−c

2

)
 ≷ 0. (4.38)

If a first-period quality increase by Hospital i increases the expected quality difference between Hospital

i and Hospital j in the second period (i.e., if c < α), lower switching costs reduce demand responsiveness.
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The intuition for this result is similar to that of the case of naïve patients. The less locked-in patients

anticipate to be, the less attracted they are by a quality difference that carries over into the future, since

adjusting their choices in the second period is less costly. Therefore, the two above-mentioned effects go

in the same direction, and lower switching costs again lead to lower quality.

If patients instead expect that a marginal increase in first-period quality by Hospital i will be overturned

in the second period, thus leading to a future reduction in the quality difference between Hospital i and

Hospital j, weaker lock-in makes patients more sensitive to quality in the first period. This happens

when c > α. In this case, rational patients know that a first-period quality increase by one hospital will

increase the marginal cost of quality at that hospital, which implies that the quality difference between

the two hospitals will decrease over time. All else equal, when switching is less costly, patients may take

advantage of such differences by choosing the hospital that offers higher quality in the first period and

reversing their choice in the second period at a lower cost. This is why lower switching costs increase

demand responsiveness in the first period, offsetting the weakened competition effect. If c is initially

such that a first-period unilateral quality increase produces a sufficiently large reduction in the future

quality difference, then a reduction in switching costs increases the patients’ scope for exploiting quality

differences to an extent where the increase in demand elasticity dominates the reduction in the competition

effect, leading to an increase in equilibrium quality provision.

We summarise the above results in the following proposition.

Proposition 4.3. Lower switching costs lead to lower quality if patients are myopic or forward-looking

but naïve, but lead to higher quality if patients are rational and the degree of cost substitutability between

quality and output is sufficiently high.

Proof. See Appendix 4.B.

4.8 Discussion and Concluding Remarks

In this chapter, we argue that demand inertia and patient expectations are inextricable in hospital markets

and investigate their combined effect on quality provision. We start by exploring the behaviour of three types

of patients differing with respect to whether and how they anticipate the future. Myopic patients ignore the

future entirely, forward-looking but naïve patients assume that hospital quality remains constant over time,

whereas forward-looking and rational patients correctly foresee hospitals’ strategic quality investments.
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Using this analysis, we show how patient expectations shape the responsiveness of demand for hospital

care to quality and obtain three main results.

We find that, unless patients are rational and cost substitutability is sufficiently strong, quality provision

is generally higher than in the benchmark of a market without inertia and, simultaneously, policies based

on switching cost reductions are counterproductive. The co-existence of these two results is intuitive.

If demand inertia leads to higher quality provision, weakening it by reducing switching costs is an ill-

advised policy intervention. A closer inspection of our results, however, suggests that the link between

demand inertia, patient expectations, and quality is not that simple. For some parameter values, demand

inertia leads to lower quality and lower switching costs are nonetheless counterproductive.17 In this case,

for intermediate degrees of cost substitutability, rational patients’ foresight of a reduction in the future

quality difference (brought about by a current unilateral quality increase) makes demand responsiveness

low enough to induce hospitals to offer lower quality than in a market without inertia. This same future

reduction in the quality difference, conversely, does not suffice to persuade patients to take advantage of

the present and future quality differences by reversing their choices if switching costs fall, thereby making

demand sufficiently more responsive and triggering higher quality provision.

It is our first main result, based on a quality ranking, whose implications are more far-reaching. By

ranking quality provision according to the type of patient expectations, we reveal that quality is always

higher when patients are naïve than when they are myopic, while the relative position of quality when

patients are rational ranges from highest to lowest, depending on the hospitals’ technology and motivation.

Perhaps surprisingly, these findings are connected to the concept of ‘behavioural hazard’, defined as the

misuse of healthcare and the ensuing welfare losses caused by departures from forward-looking and

perfectly rational patient behaviour (Baicker et al., 2015). Such departures are now well documented

in the literature (cf. section 4.2), but the evidence on their impact on patient utility is less conclusive.

The overall reduction in healthcare utilisation generated by myopic behaviour when compared with fully

forward-looking behaviour reported by Guo and Zhang (2019) is concentrated in elective and preventive

care, with emergency care showing no response. As for the results of Dalton et al. (2020), whereas there is

little difference between fully myopic and fully rational behaviour in terms of quantity, there is a significant

change in the composition of drugs consumed. In conjunction, these pieces of evidence suggest that

the effect of deviations from perfect rationality on patient utility is generally ambiguous. While we do not

study the misuse of healthcare, we do show that different types of patient expectations provide contrasting

17 For example, λ = 0.1, µ = 0.4, τ = 0.7, s = 0.5, p = 10, γ = 5, and α = 1.
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incentives for hospitals to invest in the quality of care, which, in turn, affects patients’ health gains. In the

symmetric equilibrium of our model, patient expectations affect aggregate patient utility uniquely through

first-period quality. This implies that Proposition 4.1 is also a ranking of patient utility according to the

type of expectations and, consequently, that full rationality does not necessarily lead to better outcomes

for patients.

Discussions of the role of rationality commonly focus on the idea that deviations from fully rational

behaviour make consumers act not in their best interest and that firms may find it beneficial to exploit

those deviations. Our results indicate that the reverse might as well hold in hospital markets. To il-

lustrate this point, suppose first that the degree of cost substitutability/complementarity is such that a

unilateral increase in current quality yields a relatively larger increase in the future quality difference; i.e.,

∂
(
qiE − qjE

)
/∂qi1 > 1. In this case, both myopic and naïve patients are less sensitive to current quality

than they would be if they were aware that the larger quality difference in the present foretells an even

larger quality difference in the future. In other words, both myopic and naïve patients fail to comprehend

the true impact of the current unilateral quality increase on their total utility, which makes demand from

these types of patients less responsive to quality. Hospitals thus exploit the lower demand responsive-

ness to offer lower quality, and, as expected, these departures from rationality are detrimental to patients’

health benefits. Conversely, if the degree of cost substitutability is such that a unilateral increase in current

quality yields a reduction in the future quality difference, myopic and naïve patients are more sensitive

to quality than their rational counterparts. Because rational patients foresee the reduction in the future

quality difference and its effect on their total expected utility, they are less sensitive to quality than they

would be if they ignored the future. Myopic and naïve patients, differently, are oblivious to the future quality

reduction and hence overestimate the impact of the current quality increase on their total utility, which

leads to higher demand responsiveness and induces hospitals to invest in quality. In this case, therefore,

the departures from rationality insulate patients from inferior quality provision by hindering the hospitals’

ability to exploit the otherwise lower demand responsiveness.

Appendix 4.A Proof of Proposition 4.2

The proof that q∗1 > qN when patients are myopic or forward-looking but naïve follows directly from

equations (4.22), (4.23), and (4.32).

To establish the conditions under which q∗1 < qN when patients are forward-looking and rational, we
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use equations (4.26) and (4.30) to rewrite, after some manipulation, condition (4.32) as

[2τγ − (α− c)] [τγ − (λ+ µ) (α− c)]

1− λ− µ+ µs
τ

> [2τγ − (λ+ µ) (α− c)]

 (1−λ−µ)[2τγ−3(λ+µ)(α−c)]

2(1−λ−µ+µs
τ )

2

− (α− c)

 .

(4.39)

Let LHS (c) and RHS (c) denote the left-hand and right-hand sides of the above inequality. It is

straightforward to see that LHS(c) and RHS(c) are quadratic functions of c. From

∂LHS (c)

∂c
=

[1 + 2 (λ+ µ)] τγ − 2 (λ+ µ) (α− c)

1− λ− µ+ µs
τ

> 0 (4.40)

and

∂RHS (c)

∂c
=

(1− λ− µ) (λ+ µ)(
1− λ− µ+ µs

τ

)2 [4τγ − 3 (λ+ µ) (α− c)] + 2 [τγ − (λ+ µ) (α− c)] > 0,

(4.41)

we see that LHS(c) and RHS(c) are strictly increasing in (cmin,∞).

Recall, from condition (4.32), that LHS(c) < RHS(c)may only hold if ∂Di
1/∂q

i
1 < 1/2τ , which,

in turn, requires that c > c′′, with c′′ given by equation (4.28) in Proposition 4.1. Then, becauseLHS(c)

and RHS(c) are strictly increasing and convex in c,

LHS(c′′)−RHS(c′′) =
[2τγ − (α− c′′)] [τγ − (λ+ µ) (α− c′′)]

1− λ− µ+ µs
τ

> 0 (4.42)

and

LHS(α)−RHS(α) = 2τµs

(
γ

1− λ− µ+ µs
τ

)2

> 0. (4.43)

LHS(c) < RHS(c) may only be true if c exceeds some unique threshold value in (α,∞) and

∂2LHS (c) /∂c2 < ∂2RHS (c) /∂c2, which is true if the condition in (4.34) holds. The above men-

tioned threshold value is the unique solution to LHS(c) = RHS(c) in (cmin,∞).

Finally, note from (4.39) that this solution is independent of p, as well as that q∗t > 0 if p is sufficiently

high. Thus, the set of values of c such that q∗1 < qN is non-empty and the symmetric pure strategy

subgame perfect Nash equilibrium is characterised by an interior solution if p is sufficiently high.

Appendix 4.B Proof of Proposition 4.3

The proof that ∂q∗1/∂s > 0 when patients are myopic or forward-looking but naïve follows directly from

(4.35), given (4.22), (4.23), and (4.36).
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To prove that ∂q∗1/∂s < 0 if c is sufficiently high and patients are forward-looking and rational in an

interior solution, we proceed in two steps: (i) we prove that positive equilibrium quality in the second-

period subgame ensures that first-period equilibrium quality is also positive; (ii) we prove that there is a

set of values of c such that ∂q∗1/∂s < 0 and equilibrium quality is positive in both periods provided that

p is sufficiently high.

Combining the first-order conditions defining first- and second-period equilibrium qualities and rear-

ranging yields [
γ − (α− c)

∂Di
1

∂qi1

]
(q∗1 − q∗2) =

(
∂Di

1

∂qi1
− λ+ µ

2τ

)
[p+ (α− c)q∗2]

+
ϕ

τ
[τγ − (λ+ µ)(α− c)][p+ (α− c)q∗2]

∂Di
1

∂qi1
. (4.44)

The left-hand side of (4.44) is monotonic in q∗1 and q∗2 , and the second-period second-order condition

ensures that the term in square brackets is positive. Thus, q∗1 > q∗2 if

λ+ µ

2τ
− ∂Di

1

∂qi1
< (ϕ/τ)[τγ − (λ+ µ)(α− c)]

∂Di
1

∂qi1
. (4.45)

The above inequality is clearly satisfied under myopic and naïve patient expectations. Recall that ∂Di
1/∂q

i
1 >

1/2τ under these two types of expectations and that the expression on the right-hand side of (4.45) is

always positive.

Using (4.26), (4.45) is satisfied under rational expectations if

c > α− 2τγ

3(λ+ µ)

[
1 +

(
1− λ− µ+ µs

τ

)
− (λ+ µ)(2− λ− µ)

1 + 2
3

(
1− λ− µ+ µs

τ

) (
λ+ µ− µs

τ

)
− (λ+ µ)(2− λ− µ)

]
. (4.46)

The term in square brackets is greater than 1, implying that the expression on the right-hand side of

(4.46) is below cmin. Thus, regardless of the type of patient expectations, q∗1 > q∗2 ∀ c > cmin =⇒

(q∗2 > 0 =⇒ q∗1 > 0). This concludes the proof of (i).

Notice now that, given the first-period second-order condition and that ∂Di
1/∂q

1
i > 0 for c > cR, the

sign of ∂q∗1/∂s is uniquely determined by the sign of the last factor (in square brackets) in (4.38), which

we now denote by σ. In addition, note that σ < 0 only holds for c > α, given that, from the first-order

condition defining first-period equilibrium quality, γq∗1 − (α− c)/2 > 0.

Let c̃ = α + p(λ+ µ)/τ denote the unique value of c such that q∗2 = 0. Then,

lim
c→c̃−

σ =
γp+

[
(λ+µ)p

τ

]2
1− λ− µ+ µs

τ

− 2

[
(λ+ µ)p

τ

]2
−
[
4(λ+ µ)γp

τ

]
q∗1. (4.47)
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A sufficient condition for limc→c̃− σ < 0 is simply

γp+
[
(λ+µ)p

τ

]2
1− λ− µ+ µs

τ

− 2

[
(λ+ µ)p

τ

]2
< 0, (4.48)

which is true provided that

p >
τ 2γ

(λ+ µ)2
[
2
(
1− λ− µ+ µs

τ

)
− 1
] . (4.49)

Since q∗1 is strictly increasing in p, it follows that limc→c̃− σ < 0 and limc→c̃−(∂q
∗
1/∂s) < 0 if p is

sufficiently high. Then, by continuity of ∂q∗1/∂s in c, there exists a non-empty set of values of c contained

in (α, c̃) such that ∂q∗1/∂s < 0 and the symmetric pure strategy subgame perfect Nash equilibrium is

characterised by an interior solution if p is sufficiently high.
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5. Conclusion

The results of chapters 2–4 contribute to the now vast literature on the idiosyncrasies of competition

between healthcare providers and the unintended outcomes of regulation in these markets.

We have first shown, in chapter 2, that patient choice policies lead to longer waiting times due to a

demand effect and that it is reinforced by the reduced effectiveness of supply as an instrument to avoid

tougher waiting time penalties. By making demand more responsive to waiting times, choice-enhancing

policies diminish the benefit of increased activity in terms of a waiting time penalty reduction because

short waits will attract more patients and thus offset the initial waiting time reduction. This second effect,

importantly, stems directly from regulation—were waiting time penalties absent, it would vanish, and,

while patient choice policies would still lead to longer waits, their effect would be weaker. As expected,

but contrarily to choice policies, penalties work. What is perhaps surprising is that they are more effective

in reducing waiting times when designed with a linear than with a convex structure since the latter reflect

the imposition of harsher penalties for long waits. This is a result of the dynamic strategic substitutability

in supply created by convex penalties and the incentive it gives each hospital to ‘free-ride’ on a rival’s

supply increase. Under convex penalties, hospitals will respond to lower treatment supply by the rival

with increased supply, reducing their waiting times, diverting demand from the rival, and thus curbing the

initial increase in waiting time caused by the supply reduction at the competing hospital. Consequently,

convex penalties yield a unilateral incentive to reduce activity, which leads to longer waits.

Chapter 3 inquired into the possible unintended effects of lower switching costs. The majority of these

effects relate to the benefit of having patients concentrated at a single hospital when there is strong (weak)

cost complementarity (substitutability) between quality and output or provider altruism. In this case, higher

volume begets higher quality. Seeking to use the increased ability to adjust granted by lower switching

costs, some patients are willing to forgo the quality premium offered by high-volume hospitals to reduce

the mismatch between their preferences and the horizontal characteristics of the chosen hospital. This

decrease in market concentration, therefore, not only implies that some patients switch to lower-quality
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hospitals but also that those who remain at high-volume, higher-quality ones will experience a reduction

in the quality of care they receive. Furthermore, such a demand redistribution effect may bring about

unintended consequences that are not related to cost complementarity or provider altruism and hence

quality changes. Even if quality provision increases universally at the hospital level, average quality may

nonetheless fall if a sufficiently large number of patients are driven to lower-quality hospitals. This reduction

in mismatch costs is conceptually welfare-improving, but the extent to which it is desirable depends on

the policymakers’ objectives and, in fact, on its real-word interpretation. If, for example, it reflects a better

match between a patient’s diagnosis and the chosen hospital’s specialty mix, then it is possible that the

demand adjustment at least partially compensates for the forgone quality.

The least policy-oriented of the three, chapter 4 looked at expectations, whose role in the hospital in-

dustry follows from the existence of demand inertia. Accordingly, we have shown that quality provision is

higher than in a market without inertia under both myopic and naïve patient expectations, whereas rational

expectations are a necessary condition for the opposite result to arise. The chapter nevertheless offered

a related policy analysis—only under rational expectations might switching costs reductions be beneficial.

These results are driven by the link between strong cost substitutability and expectations, which deter-

mine the responsiveness of demand to quality. Only rational patients are aware that a unilateral quality

increase in the present foretells a large decrease in the future quality difference when cost substitutability

is sufficiently strong. In this case, demand responsiveness is low, and this is why quality may be lower

than in a market without inertia. It is also in this case that lower switching costs, by providing rational

patients with increased ability to exploit present and future quality differences, increase demand respon-

siveness and yield higher quality. The chapter’s most innovative contribution, however, is the ranking of

quality and patient health gains according to the type of expectations. Again, the results are driven by how

expectations shape demand responsiveness. Naïve patients expect a quality increase to be long-lasting

and are thus more sensitive to quality than their myopic counterparts, triggering higher provision. The re-

sponsiveness of demand from rational patients depends on the actual effect of a present quality increase

on the future quality difference, which these patients observe and depends on the hospitals’ motivation

and technology. Unless the future quality difference increases enough, demand from rational patients is

the least responsive, and quality the lowest. Additionally, in this case, both myopic and naïve patients

are more sensitive to quality than they would be if they correctly anticipated the future quality difference,

which prompts hospitals to offer higher quality, leads to larger health gains, and ultimately implies that

deviations from perfect rationality may be beneficial. For these patients, ignorance is bliss. Chapter 4
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also highlights how idiosyncrasies on one side of the market amplify or mitigate those on the other: the

role of hospital technology and motivation is greatly diminished by the two behavioural deviations from

rationality—present bias and the imperfect assessment of healthcare attributes—, we model as myopic

and naïve patient expectations.

This thesis also offers insights into the pitfalls of regulation. Chapter 2 revealed an inherent conflict

between two common policy interventions in markets where waiting times are a concern: waiting time

penalties and patient choice policies. We demonstrated that the counterproductive effect of patient choice

policies on waiting times is smaller when penalties are convex, whereas waiting time penalties are more

effective in reducing waiting times when they are designed with a linear structure. Taken together, chap-

ters 3 and 4 add to this discussion by revealing that conflict may lie in the scope of the same policy

intervention, as market conditions and time frame matter. Consider a policy aimed at endowing patients

with higher mobility within a health system through facilitated switching. In the static analysis of a mature

and asymmetric market of chapter 3, lower switching costs increase average quality if cost substitutability

is sufficiently strong. In the dynamic analysis of a symmetric market of chapter 4, for equivalently strong

cost substitutability, lower switching costs always lead to lower quality provision if patients have myopic

or forward-looking but naïve expectations; only under rational expectations would lower switching costs

increase quality.

Let us now turn to limitations and the connections thereof to future research. The model presented in

chapter 2 has arguably two main limitations—one conceptual and the other analytical—, which may be, as

we show below, related. The former is the lack of a clear distinction between perceived waiting times, the

figure patients use to make their choice of hospital, and the actual waiting time they experience, which is

obviously only realised ex post and according to which penalties are posteriorly levied. In reality, waiting

times indicators available to patients are often based on actual, historical waiting times data (e.g., average

or median waiting times from referral to treatment in a previous period). Because these same indicators

are commonly used by regulators to compute waiting time penalties, the inclusion of a single waiting time

variable for each hospital is a reasonable assumption. However, if waiting time indicators are based on

data from previous periods, how do current demand and supply affect them and to what extent is this

impact reflected by the dynamic constraint? We address these issues below.

To derive the actual waiting times (used to compute the indicators), one must take into account the

waiting list, and this is related to the model’s analytical limitation: the ‘reduced form’ modelling of the

dynamic equation of waiting times, which posits a positive and linear relationship between changes in
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waiting lists and changes in waiting times. Siciliani (2008), conversely, demonstrates that the relationship

between waiting lists and the actual waiting times is non-linear. While differential games with non-linear

dynamic constraints do not have complete analytical solutions—to the point that even simulations of a

closed-loop solution are precluded—, it is worth exploring the implications of a non-linear alternative spec-

ification both in terms of computation and interpretation. By doing so, we attempt to highlight how future

research within this framework is limited. One such alternative is based on ‘waiting times of patients

treated’ (Siciliani, Moran, and Borowitz, 2013), the actual wait experienced by patients computed once

they are removed from the list. Suppose that in a given period t, the waiting time indicator of a hospital,

which determines the penalty it incurs and is observed by its potential patients, is defined as the exact

wait patients experienced from joining the list in period t − wi(t) − t̂ to receiving treatment in period

t− t̂, where t̂ is a constant denoting the lag between waiting time realisation and its inclusion in published

indicators. Following Siciliani (2008) and adopting the notation of chapter 2, such a waiting time may be

defined as

yi(t− wi(t)− t̂) =

∫ t−t̂

t−wi(t)−t̂

Si(h)dh, (5.1)

where yi(t) is the waiting list. Differentiating with respect to time and using ẏi(t) = Di(t)−S(t) yields

ẇi(t) =
Di(t− wi(t)− t̂)− Si(t− t̂)

Si(t− wi(t)− t̂)
. (5.2)

The above equation is highly non-linear and introducing it in a differential game would render the analysis

intractable. However, it offers an expected yet important insight: increased activity reduces actual waiting

times, whereas higher demand increases them. More importantly, it reveals that the primary mechanism

in our framework with a linear dynamic constraint—namely, that supply is an instrument to avoid penalties

but that the lower waiting times cause a demand increase which offsets the initial waiting time reduction—

is similarly present in the exact, non-linear case. Although the linear specification required to make the

model analytically tractable fails to capture the lag in the effect of demand and supply, it is nonetheless

a good approximation of the dynamics of waiting times (observed and used to impose penalties) in the

realistic cases where waiting times indicators are based on the actual waits of patients treated.

The main limitation of the two models presented in chapters 3 and 4 is the absence of a tension

between a hospital’s incentives to exploit locked-in patients through lower quality and compete aggressively

for new patients, a hallmark of switching costs models. In the model of chapter 3; no patient is new; in the

second period of the model of chapter 4, there is no game to play afterwards so that new patients may then

be exploited; and in the first period of the model of the same chapter, all patients are new. One analytical
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approach to introduce that tension is to model hospital competition in a fully dynamic framework, as in

Beggs and Klemperer (1992) and To (1996). These two studies assume total lock-in—consumers choose

a supplier once new and buy from it in all the subsequent periods they remain in the market—, which

precludes the analysis of preference volatility and switching. Villas-Boas (2006) relaxes this assumption in

a computationally demanding overlapping-generations model, where the effect of switching costs on prices

may only be obtained analytically for the limiting case of marginally positive switching costs. Preliminary

results from a fully fledged overlapping-generations version of chapter 4’s model where patients live for

two periods suggest similar challenges; however, a calibration in the spirit of that of chapter 2 could be

used to make the results more salient.

Finally, it is instructive to discuss how the main results of chapters 3 and 4 would change in the

presence of the tension between exploiting old patients and attracting new ones. To keep the discussion

tractable, consider the above-mentioned overlapping-generations formulation where patients live for two

periods. Given its asymmetry, the model of chapter 3 offers a type of off-steady-state analysis, which makes

the discussion of the effect of lower switching costs in the same terms more complex. Still, one would

expect that, in the presence of a cohort of new patients, a switching costs reduction would also yield the

competition and foresight effects identified in chapter 4. If the latter dominated or if patients were myopic

or naïve (as shown in chapter 4), there would exist an additional force driving quality downwards at both

hospitals, besides the increase in marginal cost at the high-volume hospital. It would thus be possible that

both quality paths would fall and that lower switching costs would more easily decrease (instantaneous)

average quality. In the same framework, in the presence of a cohort of old, locked-in patients, steady-state

quality under the three types of expectations considered in chapter 4 would be lower, but the mechanisms

underlying each type and, crucially, the quality ranking should not change.
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