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Abstract 13 

In the last decade, genome-scale metabolic models have been increasingly used to study plant 14 

metabolic behavior at the tissue and multi-tissue level under different environmental conditions. 15 

Quercus suber, also known as the cork oak tree, is one of the most important forest communities of 16 

the Mediterranean/Iberian region. In this work, we present the genome-scale metabolic model of the 17 

Q. suber (iEC7871), the first of a woody plant. The metabolic model comprises 7871 genes, 6231 18 

reactions, and 6481 metabolites across eight compartments. Transcriptomics data was integrated into 19 

the model to obtain tissue-specific models for the leaf, inner bark, and phellogen, with specific 20 

biomass compositions. The tissue-specific models were merged into a diel multi-tissue metabolic 21 

model to predict interactions among the three tissues at the light and dark phases. The metabolic 22 

models were also used to analyze the pathways associated with the synthesis of suberin monomers. 23 

Nevertheless, the models developed in this work can provide insights into other aspects of the 24 

metabolism of Q. suber, such as its secondary metabolism and cork formation. 25 

Keywords: Cork Biosynthesis, Quercus suber (Cork Oak), Genome-scale Metabolic Model, 26 

Multi-tissue diel cycle model, Secondary Metabolism, Suberin 27 

1. Introduction 28 

The cork oak, Quercus suber L., is a characteristic tree of the Mediterranean/Iberian landscape 29 

ecosystem. The tree forms a thick bark of cork (phellem) containing high levels of aliphatic suberin, 30 
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aromatic suberin, extractives (waxes and tannins), and polysaccharides (Graça, 2015). Cork properties 31 

are so unique that this material is used in diverse applications from the common bottle-stopers to 32 

spacecrafts built by NASA and European Space Agency (ESA), providing insulation solutions to deal 33 

with extreme conditions. The aliphatic suberin component has particular interest since it provides 34 

waterproof, light, elastic, and fire-retardant properties to cork (Vaz et al., 2011; Pereira, 2015). Only 35 

the outer bark is separated from the trunk during the harvest, which enables the regeneration and 36 

allows using the tree as a renewable biological resource. Cork extraction can continue in the same tree 37 

for more than a century every 9 years. A cork oak tree with 234 years old, debarked 20 times, is now 38 

a living icon being elected European tree of the year 2018 (https://www.treeoftheyear.org/Previous-39 

Years/2018). 40 

Phellem is produced by the phellogen (cork cambium), involving the proliferation of phellogen 41 

derivates cells which undergo to differentiate into cork cells through cell expansion, deposition of 42 

suberin and waxes, and an irreversible senescence program ending with cell death. The first debarking 43 

occurs when the tree has 18-25 years old. This first harvested cork, known as “virgin” cork, produced 44 

from the original phellogen, yields poor-quality cork. The original phellogen is then replaced by a 45 

traumatic phellogen that proliferates to originate a new cork layer. From the third debarking onwards, 46 

a higher quality cork with high economic value is obtained - reproduction cork (or “amadia”) (Graça & 47 

Pereira, 2004). Cork growth and quality are dependent on the genome of each tree but it is also 48 

strongly dependent on the environment, such as water availability, temperature, pests, and diseases. 49 

The cork oak tree represents one of the most relevant broadleaved forest resources in the 50 

Mediterranean basin (Portugal, Spain, Algeria, Morocco, France, Italy, and Tunisia), having a 51 

substantial socio-economic and ecological impact on these countries. This tree species can generally 52 

live over 200 years, which implies a capacity to bear with biotic stresses like bacteria, fungi and insects, 53 

as well as abiotic stresses like drought, floods and fires (Acácio et al., 2007; Kim et al., 2017). 54 

Due to its economic interest in Portugal, a national consortium was created to first sequence the 55 

transcriptome (Pereira-Leal et al., 2014) and recently to full sequence the genome of Quercus suber 56 

(Ramos et al., 2018). The genome sequence's availability allows the application of systems biology 57 

tools to study this species' metabolic behavior. 58 

Genome-scale metabolic (GSM) models aim at depicting the whole metabolic network of an organism. 59 

Such models have been widely used for metabolic engineering purposes, mainly with prokaryotes and 60 

yeasts. Among other applications, GSM models can be used to analyze an organism's metabolic 61 

behavior in different environmental and genetic conditions, including the effect of gene knock-outs 62 

and over/under-expressions (Dias & Rocha, 2015). Curated models have proven to accurately predict 63 
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complex organisms' metabolic behavior in diverse areas of knowledge, from biotechnological or 64 

environmental to medical applications (Fong et al., 2005; Bordbar et al., 2011; Agren et al., 2014; 65 

Jerby-Arnon et al., 2014; Zhang & Hua, 2016). Genome-scale modelling in plants is much more 66 

challenging than in prokaryotes. The struggle starts in the annotation of the complex genomic content, 67 

in which the function of a significant number of genes is still unknown. Also, the subcellular 68 

compartmentalization, tissue differentiation, and interactions between tissues are complex in plants. 69 

Nevertheless, in the last decade, the number of published GSM models of plants has increased 70 

considerably. Organisms, like Arabidopsis thaliana (Dal’Molin et al., 2010; Cheung et al., 2013), Zea 71 

mays (maize) (Saha et al., 2011; Seaver et al., 2015), Oryza sativa (rice) (Poolman et al., 2013; 72 

Lakshmanan et al., 2013) have more than one model available. Considering the importance of plants 73 

in terms of nutrition, biofuels, and their capability to produce a variety of secondary metabolites, it is 74 

not surprising that studies for plant genome-scale model reconstruction will increase, parallel to the 75 

growth in the number of sequenced species. The utilization of user-friendly tools designed for this 76 

purpose, like metabolic models reconstruction using genome-scale information (merlin) (Dias et al., 77 

2015), accelerates the reconstruction process. 78 

This paper describes the first reconstruction of iEC7871, a Genome-scale metabolic model for the cork 79 

oak tree, and as far as we know, the first published GSM model of a tree. Besides the generic GSM, 80 

we present tissue-specific models and a multi-tissue metabolic model that can be used to study the 81 

metabolic behavior of Q. suber.  82 

2. Results 83 

2.1. Genome Annotation 84 

A GSM model for Q. suber based on an up-to-date genome annotation was reconstructed in this work.  85 

A Basic Local Alignment Search Tool (BLAST) (Altschul et al., 1990) search against the Swiss-ProtKB 86 

(Apweiler et al., 2011) database allowed to identify similarity results for 47,199 out of the 59,614 87 

genes available in the genome (Ramos et al., 2018). A second BLAST search against UniProtKB/TrEMBL 88 

allowed obtaining hits for 12,415 genes, while 590 had no results. 89 

As detailed in the Materials and Methods section, merlin‘s “automatic workflow” tool annotates genes 90 

based on the homologous gene records taxonomy. Most enzyme-encoding genes were annotated 91 

based on A. thaliana gene records (82%). Organisms not included in the annotation workflow 92 

represent 16% of gene annotations, and only 1% were annotated using Quercus genus’ gene records. 93 

A more detailed analysis of the genome annotation is available in Supplementary File 1. 94 
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2.2. Model Properties 95 

The metabolic model is mass balanced and can predict growth in phototrophic and heterotrophic 96 

conditions. These conditions were defined by setting the photon and CO2 (phototrophic) or sucrose 97 

(heterotrophic) as the sole energy and carbon sources, respectively. Additionally, the model requires 98 

𝑁𝐻3 or 𝐻𝑁𝑂3, 𝐻3𝑃𝑂4, 𝐻2𝑆𝑂4, 𝐹𝑒2+, and 𝑀𝑔2+ to produce biomass.  99 

The general properties of the cork oak model and other five published plant models – A. thaliana 100 

(Chung et al., 2013; Seaver et al., 2015), Z. mays (Saha et al., 2011; Seaver et al., 2015), and Glycine 101 

max (soybean) (Moreira et al., 2019) - are presented in table 1. 102 

Table 1. General properties (genes, reactions, metabolites, and compartments) of the Q. suber model, and other five 103 
published plant GSM models. Only generic models were considered here. 104 

 Quercus 

suber (this 

work) 

Arabidopsis 

thaliana 

(Chung et 

al., 2013) 

Arabidopsis 

thaliana 

(Seaver et 

al., 2015) 

Zea mays 

(Saha et al., 

2011) 

Zea mays 

(Seaver et 

al., 2015) 

Glycine max 

(Moreira et 

al., 2019) 

Genes 7871 1475 5184 1563 13,279 6127 

Reactions 6231 1895 6399 1970 6458 2984 

Metabolites 6481 1761 6236 2129 6250 2814 

Compartments 8 6 9 6 9 5 

 105 

The Cork Oak model comprises 7871 genes, 6231 reactions (enzymatic, spontaneous, and transport), 106 

708 exchange reactions, and 6476 metabolites distributed across eight subcellular compartments – 107 

the cytoplasm, mitochondria, plastid, endoplasmic reticulum, Golgi apparatus, vacuole, peroxisome, 108 

and the extracellular space. The number of genes, reactions, and metabolites of the Cork Oak model 109 

are only comparable with the A. thaliana and Z. mays models developed by Seaver (Seaver et al., 110 

2015). 111 

The reactions and metabolites present in the cork oak model were compared with the ones present 112 

in the models developed by Chung for A. thaliana (Chung et al., 2013), and Saha for Z. mays (Saha et 113 

al., 2011) (Supplementary File 2), as the reactions and metabolites available in these models have the 114 

same identifiers (KEGG (Kanehisa & Goto, 2000)) as our model. 115 
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 116 

Figure 1. Venn diagram of reactions (left) and metabolites (right) included in the Q. suber, A. thaliana, and Z. mays models. 117 

A total of 3196 unique reactions and 2883 unique metabolites were identified across the three models. 118 

The cork oak model includes 1117 reactions that are not present in the other two - Figure 1. It has 124 119 

reactions in common only with the Maize model and 179 only with the A. thaliana model. The maize 120 

and A. thaliana models share 380 reactions, and 964 were found in the three models. The metabolites 121 

analysis shows similar behavior. This analysis is detailed in Supplementary File 2 Tables S5-S6.  122 

The reactions only available in the Cork Oak model (called unique reactions in the following) were 123 

further analyzed to assess the annotation of the genes and pathways associated with them. This 124 

analysis is detailed in Supplementary File 2 Table S7. In agreement with the remaining genome 125 

annotation, 82% of the genes encoding enzymes that catalyze these reactions were annotated based 126 

on A. thaliana genes’ annotations. The remaining 18% were annotated by gene records of organisms 127 

not accounted for in the annotation workflow. KEGG pathways with more unique reactions are 128 

presented in Table 2. The 34 pathways with at least 10 unique reactions can be divided into 7 main 129 

areas of the KEGG metabolism: 8 pathways representing ‘Lipid metabolism’, 7 the ‘aminoacid 130 

metabolism’ and ‘carbohydrate metabolism’, 6 the ‘Xenobiotics biodegradation metabolism’, 3 the 131 

‘Metabolism of cofactors and vitamins’ and ‘Biosynthesis of other secondary metabolites’ and 1 the 132 

‘Metabolism of terpenoids and polyketides’. Spontaneous reactions and reactions not associated with 133 

any pathway were not considered. 134 

 135 

 136 

 137 

 138 
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Table 2. Number of reactions included in the cork oak model that were not identified in the A. thaliana (Cheung et al., 2013) 139 
and Z. mays (Saha et al., 2011) models for each pathway (so-called unique reactions). Only pathways with more than 10 140 
unique reactions were included in this table. The complete table is available in Supplementary File 2 S7. The KEGG pathways 141 
were organized according to the 7 main areas of KEGG metabolism: 1- Xenobiotics biodegradation and metabolism; 2- Lipid 142 
metabolism; 3- Metabolism of cofactors and vitamins; 4- Amino acid metabolism and Metabolism of other amino acids; 5- 143 
Metabolism of terpenoids and polyketides; 6- carbohydrate metabolism; 7- Biosynthesis of other secondary metabolites 144 

  KEGG Pathway Number of unique 

reactions 

1  Metabolism of xenobiotics by cytochrome P450 38 

2  Steroid hormone biosynthesis 38 

3  Ubiquinone and other terpenoid-quinone 

biosynthesis 

34 

4  Tryptophan metabolism 32 

1  Steroid biosynthesis 24 

4  Tyrosine metabolism 23 

4  Cysteine and methionine metabolism 22 

1  Drug metabolism - cytochrome P450 21 

2  Fatty acid metabolism 21 

2  Glycerophospholipid metabolism 20 

2  Inositol phosphate metabolism 19 

5  Brassinosteroid biosynthesis 17 

2  Cutin, suberine and wax biosynthesis 17 

1  Drug metabolism - other enzymes 17 

4,6  Amino sugar and nucleotide sugar metabolism 16 

3  Porphyrin and chlorophyll metabolism 16 

2  Arachidonic acid metabolism 16 

4  Arginine and proline metabolism 16 

3  Nicotinate and nicotinamide metabolism 15 

4  Cyanoamino acid metabolism 14 

6  Butanoate metabolism 14 

7  Betalain biosynthesis 14 

1  Benzoate degradation 13 

6  Fructose and mannose metabolism 11 

6  Glyoxylate and dicarboxylate metabolism 11 

6  Ascorbate and aldarate metabolism 11 

2  Sphingolipid metabolism 11 

7  Phenylpropanoid biosynthesis 10 

7  Flavonoid biosynthesis 10 

6  Propanoate metabolism 10 

2  Fatty acid biosynthesis 10 

6  Galactose metabolism 10 

1  Chlorocyclohexane and chlorobenzene degradation 10 

4  Lysine biosynthesis 10 
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The unique reactions identified are associated with 122 different KEGG pathways, from which 54 had 145 

five or fewer unique reactions. “Steroid hormone biosynthesis”, “Metabolism of xenobiotics by 146 

cytochrome P450”, “Ubiquinone and other terpenoid-quinone biosynthesis”, and “Tryptophan 147 

metabolism” are the pathways with more unique reactions, having 32 to 38 reactions unavailable in 148 

the maize and A. thaliana models. 149 

Several of these reactions can be related to species-specific reactions reflecting the cork oak 150 

uniqueness and differences from non-woody plants. Although the reactions are cork oak specific, they 151 

belong to pathways already present in other species. Some unique reactions are associated with 152 

pathways essential for trees and belong to the secondary metabolism responsible for wood and cork 153 

production, such as “Phenylpropanoid biosynthesis”, “Flavonoid biosynthesis”, “Fatty acid 154 

biosynthesis”, “Metabolism of xenobiotics by cytochrome P450”, and “Cutin, suberine and wax 155 

biosynthesis”. 156 

2.3. Tissue-specific models 157 

Transcriptomics data were integrated into the generic model using troppo (Ferreira et al., 2020) to 158 

obtain tissue-specific models. Leaf, Inner bark, Reproduction or traumatic Phellogen, and Virgin 159 

Phellogen were selected because of their influence on tree growth and cork production.  160 

Different biomass formulations for each tissue (Figure 2) were determined, according to experimental 161 

data available in the literature and other plant GSM models. The detailed biomass composition for 162 

each tissue is available in Supplementary File 3. 163 

 164 

Figure 2. Biomass composition of the leaf, inner bark, and phellogen determined using data retrieved from published plant 165 
GSM models and available experimental data. The biomass composition and the respective data sources are detailed in 166 
Supplementary File 3. 167 

As explained in the Materials and Methods section, the biomass was formulated by creating “e-168 

Metabolites”, representing the macromolecular composition of each tissue. Each macromolecule (e.g. 169 
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e-RNA) is associated with a reaction responsible for producing it from its precursors (e.g. ATP, GTP, 170 

CTP, UTP). 171 

The leaf macromolecular contents were determined using A. thaliana models (Dal’Molin et al., 2010; 172 

Arnold & Nikoloski, 2014). The cell wall sugar content was included in the e-Carbohydrate 173 

composition, while lignin was included in the e-Lignin composition. The monomer contents of DNA, 174 

RNA, and protein were determined using the biomass tool available in merlin. The fatty acid, lipid, and 175 

carbohydrate compositions were determined using experimental data for Q. suber or closely related 176 

organisms when species-specific data was not available (Koiwai et al., 1983; Nouairi et al., 2006; 177 

Passarinho et al., 2006). The lignin, carbohydrate, suberin, and wax contents and composition in the 178 

inner bark and phellogen were determined using available experimental data (Pereira, 1988; Lourenço 179 

et al., 2016). 180 

The Cofactors component includes a set of universal cofactors and vitamins (Xavier et al., 2017). These 181 

compounds were included in the biomass of each tissue. Nevertheless, the leaf “e-Cofactor” reaction 182 

also comprises a set of pigments, such as chlorophylls and carotenoids, determined according to 183 

experimental data (Garcia-Plazaola, 1997). 184 

The formulation of tissue-specific biomass composition is critical to obtain tissue-specific models and 185 

predict each tissue's metabolic behavior and the interactions among them. The leaf is mainly 186 

composed of carbohydrates and protein. The inner bark also presents high amounts of carbohydrates 187 

and a significant content of lignin. The phellogen also exhibits considerable amounts of these 188 

macromolecules, but suberin is the one with the highest representation. 189 

For tissue-specific model construction, reactions encoded by genes identified as “not expressed” were 190 

removed from each tissue-specific model. The number of genes and reactions decreased in rather 191 

different proportions, as troppo operates at the reaction level (See Material and Methods section 4.3). 192 

Table 3 shows the number of reactions and metabolites in the generic model and each tissue-specific 193 

model. 194 

 195 

 196 

 197 

 198 

 199 
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Table 3. General properties of the generic and tissue-specific GSM models. Genes were predicted based on the cork oak 200 
genome and then used to develop the GSM model. The reactions were divided according with the respective metabolic role: 201 
metabolic (enzymatic and spontaneous) and transport, and the respective compartment. The number of genes, metabolites, 202 
and reactions were determined in the generic model and in each tissue-specific model, generated with troppo. 203 

Component Generic Model Leaf Inner Bark 
Phellogen 

(reproduction) 

Phellogen 

(virgin) 

Genes 7871 7125 7004 7069 7044 

Metabolites 6481 5222 5056 5239 5226 

Exchange reactions 708 574 545 590 577 

Reactions 

(metabolic) 
6231 4514 4533 4589 4516 

• Enzymatic/ 

Spontaneous 
4961 3528 3589 3572 3554 

• Transport 1270 986 944 1017 962 

• Extracellular 176 119 120 142 140 

• Plastid 1355 984 939 947 934 

• Cytoplasmic 1644 1151 1177 1171 1172 

• Mitochondria 722 532 568 517 518 

• Peroxisome 296 219 220 206 205 

• Vacuole 130 87 76 93 90 

• Endoplasmic 

Reticulum 
583 391 443 453 451 

• Golgi 

Apparatus 
55 45 45 43 44 

 204 

The number of metabolic reactions is quite similar among the four tissue-specific models. 205 

Nevertheless, the number of reactions in the leaf model's plastid is slightly higher than in the other 206 

models, while in the endoplasmic reticulum, the opposite behavior can be observed. The reproduction 207 

phellogen model presents a higher number of transport reactions than the remaining ones. To assess 208 

potential differences in the metabolism of the reproduction and virgin phellogen, in silico simulations 209 

with parsimonious flux balance analysis (pFBA) (Lewis et al., 2010) and flux variability analysis (FVA) 210 

were performed (Supplementary File 4 – Table S1). 211 

The number of metabolic reactions associated with each pathway is available in Supplementary File 2 212 

Tables S8-S9. The number of reactions associated with the “Arachidonic acid metabolism”, 213 

“Brassinosteroid biosynthesis”, and “Drug metabolism – cytochrome P450” pathways are higher in the 214 

inner bark and phellogen than in the leaf. The “Cutin, suberin and wax biosynthesis” pathway is mostly 215 

represented in the phellogen. As expected, the “Carotenoid biosynthesis” pathway is present in the 216 

leaf, while in the remaining tissues, the number of reactions is more limited. No significant differences 217 

were identified between the number of reactions in each pathway between the reproduction and 218 

virgin phellogen models. 219 
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2.4. Model Validation 220 

The models developed in this work were tested to guarantee that no biomass or energy is produced 221 

without energy input in each condition. The general and tissue-specific metabolic models were 222 

validated by analyzing the fluxes of in silico simulations in photoautotrophic, heterotrophic, and 223 

photorespiratory conditions. The results for model’s validation are available in detail in Supplementary 224 

File 5 Tables S1-S6 and Fig. S1-S2. All models are able to grow in heterotrophic conditions, while in 225 

photoautotrophic and photorespiratory conditions only the general and leaf models produce biomass. 226 

As expected, the photoautotrophic growth is supported by the assimilation of CO2 by RubisCO using 227 

light as energy source. The predicted photon uptake flux was 53.68 𝑚𝑚𝑜𝑙 ∙ 𝑔𝐷𝑊−1 ∙ ℎ−1 for a 228 

biomass production fixed at 0.11 h-1 (see Materials and Methods). In heterotrophic conditions using 229 

sucrose as carbon source, the tricarboxylic cycle (TCA) and the oxidative phosphorylation become 230 

more active providing energy to sustain growth. The metabolic response to photorespiration was also 231 

assessed in the leaf model. In these conditions, the ‘Glyoxylate and dicarboxylate metabolism’ 232 

pathway, which includes the reactions associated with photorespiration, becomes more active to 233 

recycle carbon skeletons (Supplementary File 5 Fig. S1).  234 

Quantum yield (amount of CO2 fixed per mol of photons) and assimilation quotient (CO2 fixed per O2 235 

evolved) are common measures of photosynthetic efficiency. Thus, these parameters were 236 

determined for the leaf model. In photoautotrophic conditions, the photon yield was calculated as 237 

0.078 𝑚𝑚𝑜𝑙𝐶𝑂2/𝑚𝑚𝑜𝑙𝑝ℎ𝑜𝑡𝑜𝑛, which is within the range reported for Q. suber (0.051 – 0.089 238 

𝑚𝑚𝑜𝑙𝐶𝑂2/𝑚𝑚𝑜𝑙𝑝ℎ𝑜𝑡𝑜𝑛) at different light conditions and times of the year (Vaz et al., 2010, 2011). 239 

Photon yield was also assessed in photorespiration by varying the ratio of carboxylation/oxygenation 240 

activity of Rubisco using nitrate and ammonia as nitrogen source (Supplementary File 5 Fig. S2). The 241 

results show that the model is able to predict a lower photosynthetic efficiency in drought conditions 242 

(carboxylation/oxygenation < 3.0), and when using nitrate as nitrogen source. In silico simulations 243 

predict an assimilation quotient of 0.76 and 0.93  𝑚𝑚𝑜𝑙𝐶𝑂2/𝑚𝑚𝑜𝑙𝑂2 with nitrate and ammonia as 244 

nitrogen source, respectively. These values are similar to the ones predicted in other plant leaf GSM 245 

models (Poolman et al., 2013, 2014). 246 

The inner bark and phellogen metabolic models produce all the metabolites defined in their biomass 247 

composition in heterotrophic conditions (Supplementary File 5 Tables S4-S6), using sucrose as carbon 248 

source and obtaining energy through the TCA and oxidative phosphorylation. As expected, these 249 

models are not able to grow in photoautotrophic conditions as several genes associated with 250 

photosynthesis were considered as not expressed by troppo, thus, the respective reactions were 251 

removed. 252 
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2.5. Diel Multi-tissue model 253 

A diel multi-tissue metabolic model was generated to analyze the metabolic interactions between leaf, 254 

inner bark, and phellogen at the two phases of the diel cycle: light (day) and dark (night). Common 255 

pools were created to connect the different tissues for the light and dark phases. The diel multi-tissue 256 

GSM model comprises 28,426 reactions and 29,489 metabolites. This model allows the uptake of 257 

minerals, such as 𝐻𝑁𝑂3 and 𝐻3𝑃𝑂4 through the inner bark since the root was not considered. The 258 

light/dark uptake ratio of nitrate was constrained to 3:2, as suggested in other diel GSM models 259 

(Cheung et al., 2014; Shaw & Cheung, 2018). The exchange of oxygen and carbon dioxide is only 260 

allowed in the leaves, where photons can be uptake in the light phase. FVA and pFBA were computed, 261 

setting as objective function the minimization of photons uptake for photorespiratory conditions. 262 

Figure 3 depicts both the relevant transport reactions between tissues, and the metabolites stored 263 

between the light and dark phases. The suberin, lignin, and cell wall sugars synthesis pathways are 264 

also portrayed. The detailed simulation results are available in Supplementary File 4 – Tables S2-S3. 265 
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 266 

Figure 3. Schematic representation of the metabolic routes towards cork formation. Photons and gases exchanges take place 267 
in the leaf, while the uptake of inorganic ions was assumed to happen in the inner bark. Sucrose and amino acids produced 268 
in the leaf are transported into the inner bark, and then to the phellogen, where they are used for the suberin and lignin 269 
biosynthesis (besides the other biomass components). The differences in the metabolism in the day and night phases are 270 
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only represented for the leaf since, according with in silico simulations, the pathways used in the inner bark and phellogen 271 
was similar in the two phases of the diel cycle. The representation is based on pFBA and FVA predictions. 272 

3. Discussion 273 

3.1. Comparison with other models 274 

A. thaliana and Z. mays are reference organisms for C3 and C4 plants; thus, several models for these 275 

organisms are available. Nevertheless, such models for less studied plants are also becoming available 276 

(Grafahrend-Belau et al., 2013; Yuan et al., 2016b; Pfau et al., 2018; Moreira et al., 2019; Shaw & 277 

Maurice Cheung, 2019). The iEC7871 was compared with A. thaliana and Z. mays models that provide 278 

KEGG identifiers, which facilitates the comparison. 279 

The cork oak model presents 1117 reactions and 945 metabolites not available in the other two 280 

models. Interestingly, the annotation of the genes associated with most of these reactions was based 281 

on A. thaliana’s homologs. The information available in Swiss-Prot for such species is exceptionally 282 

high, while this information is scarce for woody plants, which may lead to wrong and missing gene 283 

annotations as Q. suber is significantly different from A. thaliana. Another obstacle is the presence of 284 

incomplete EC numbers. For instance, over 300 genes were initially annotated with incomplete EC 285 

numbers associated with Cytochromes P450. 286 

The KEGG Pathways associated with these reactions were also analyzed. The pathways with the higher 287 

number of unique reactions are associated with the metabolism of xenobiotics, terpenoids, and other 288 

secondary metabolites. Also, the “Tryptophan metabolism” and “Tyrosine metabolism” pathways 289 

include the secondary metabolism of these amino acids, such as the quinolinic acid production, 290 

dopamine, and its derivates. 291 

When classified according to the main areas of the metabolism in KEGG, the pathways representing 292 

‘Lipid metabolism’, ‘aminoacid metabolism and carbohydrate metabolism’, and ‘Xenobiotics 293 

biodegradation metabolism’ were the most represented regarding reactions that are only present in 294 

iEC7871. 295 

The high number of reactions and metabolites only available in the cork oak model is most likely 296 

associated with different reasons: the approach followed to develop the GSM model; the information 297 

available at each reconstruction time; the metabolic differences between the three species; the 298 

inclusion of pathways associated with secondary plant metabolism. 299 

3.2. Secondary Metabolism Pathways 300 

Plants produce a wide range of compounds through their secondary metabolism, whose function 301 

includes defense against abiotic and biotic stress or beneficial interactions with other organisms (Isah, 302 

2019). Many secondary metabolites have central roles in the pharmaceutical, cosmetics, perfume, 303 

dye, and flavor industries. Despite the recent advances in the investigation of plant secondary 304 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 2, 2022. ; https://doi.org/10.1101/2021.03.09.434537doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.09.434537


14 
 

metabolism, detailed knowledge of these pathways is restricted to a few species (Isah, 2019), such as 305 

A. thaliana, O. sativa, and Z. mays. These pathways are not always complete or available in biological 306 

databases, implying an additional effort to find information regarding genes, reactions, and 307 

metabolites associated with secondary plant metabolism. Although there is still much to learn about 308 

these compounds and respective biosynthetic pathways, genome-scale modelling can provide insights 309 

into a given organism's potential to produce secondary metabolites. The cork oak model 310 

reconstructed in this work includes reactions associated with the biosynthesis and metabolism of 311 

several secondary metabolites, steroids, and drugs. 312 

The “Metabolism of xenobiotics by cytochrome P450” includes 38 reactions not found in the A. 313 

thaliana and Z. mays models considered in the Results section. This pathway represents a set of 314 

reactions, mostly associated with the cytochrome P450, responsible for the response to the presence 315 

of toxic xenobiotics. The model includes the complete routes for the degradation of benzopyrene, 316 

aflatoxin B1, and nicotine-derived xenobiotics. The cytochrome P450 family has been described being 317 

highly upregulated in developing phellem tissues (Lopes et al., 2020). 318 

The model presents all the necessary reactions to produce jasmonic acid and its derivates, usually 319 

called jasmonates, through the “alpha-Linoleic acid metabolism” pathway. These plant hormones are 320 

associated with the regulation of growth and developmental processes, stomatal opening, inhibition 321 

of Rubisco biosynthesis, and nitrogen and phosphorus uptake (Wasternack & Hause, 2013; Ruan et 322 

al., 2019). The “Steroid biosynthesis” pathway is essentially complete, enabling the production of 323 

steroids like ergosterol, cholesterol, and stigmasterol. The enzymes associated with the synthesis of 324 

calcitetrol and secalciferol (animal hormones) are the only ones whose encoding genes were not found 325 

in the genome of Q. suber. Although these hormones are usually synthesized by animals, they were 326 

already identified in a few plants (Aburjai et al., 1998; Boland et al., 2003; Jäpelt & Jakobsen, 2013). 327 

The biosynthetic pathway for the synthesis of gibberellins is also available in the model. Although the 328 

regulatory effect of hormones and steroids cannot be quantitively evaluated in stoichiometric models, 329 

the presence of their biosynthetic pathways, connected to the core network, can be used as a source 330 

of information regarding the potential to produce a certain hormone or steroid. 331 

Although this model contains a considerable amount of information regarding secondary metabolism, 332 

further curation of these pathways would improve the connectivity of the model and reduce the 333 

existing gaps. 334 

3.3. Suberin, Lignin, and Waxes Biosynthesis 335 

As mentioned before, suberin is the major component of phellogen, while its abundance is residual in 336 

the leaf and inner bark (Figure 2). The phellogen also contains significant amounts of lignin and waxes. 337 
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The biosynthesis pathway of the monomers of these cork components in the model is represented in 338 

Figure 4. 339 

The synthesis of the aliphatic suberin monomers is associated with the KEGG’s “Cutin, suberin, and 340 

wax biosynthesis” pathway. Fatty acids are exported from the plastid and imported into the 341 

endoplasmic reticulum, where these can be elongated to originate long-chain and very long-chain 342 

fatty acids. Cytochromes P450, especially of the CYP86A family, are responsible for catalyzing several 343 

reactions that synthesize suberin monomers. CYP86A1 and CYP704B1 are responsible for the ω-344 

hydroxylation of long-chain fatty acids, while CYP86B1 acts on very-long chain fatty acids. 345 

Epoxide hydrolases (EC: 3.3.2.10), ω-oxo-fatty acid dehydrogenases (EC: 1.2.1.-), ω-hydroxy-fatty acid 346 

dehydrogenases (EC: 1.1.1.-), and peroxygenases (EC: 1.11.2.3) can act in the ω-hydroxy acid in 347 

different combinations, to originate the diverse α,ω-dicarboxylic, poly α,ω-dicarboxylic, and 348 

polyhydroxy-fatty acids. The genome annotation and the model manual curation allowed identifying 349 

38 genes encoding epoxide hydrolase, five encoding ω-hydroxy-fatty acid dehydrogenase, and six 350 

encoding peroxygenases. Nevertheless, no genes encoding ω-oxo-fatty acid dehydrogenase were 351 

available in any database; thus, the reactions catalyzed by this enzyme were added without gene 352 

association. 353 

The polymerization process is still not completely understood but it likely involves esterification 354 

reactions through glycerol-3-phosphate acyltransferases (GPAT), producing acylglycerol esters. This 355 

family of enzymes was identified as a key step in suberin/cork polymerization and the expression level 356 

of GPAT5 gene is higher in June, which corresponds to a period of higher phellogen activity (Marum 357 

et al., 2011). Acylglycerol esters are then secreted through the Golgi secretory pathway and ABC 358 

transporters (which are overexpressed in phellem (Lopes et al., 2020) and incorporated in the suberin 359 

glycerol polyester (Vishwanath et al., 2015). The aliphatic suberin polyester transport and assembly 360 

were simplified in the model and represented through a reaction converting the determined 361 

precursors (Supplementary File 3 – Table S6) into the macromolecular representation of suberin: “e-362 

Suberin”.  363 
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 364 

Figure 4. Biosynthetic pathway of suberin, waxes, and lignin monomers. The C:16 and C:18 fatty acids produced in the plastid 365 
are transported to the endoplasmic reticulum, where they can be elongated and unsaturated, and follow the suberin 366 
monomer biosynthesis pathway. Cytochromes P450 (CYPs), peroxygenases, epoxy hydroxylases, ω-oxo-fatty acid 367 
dehydrogenases, ω-hydroxy-fatty acid dehydrogenases catalyze successive reactions to produce the aliphatic monomers. 368 
Farnesyl diphosphate, produced from isopentenyl diphosphate provided by the cytosolic mevalonate (MVA) pathway or by 369 
the plastidic methylerythritol phosphate (EMP) pathway is used as the initial precursor of steroids in the ER. 2,3-370 
Epoxysqualene is converted into sterols and terpenoids, monomers of the wax component of the phellogen. The 371 
phenylpropanoid pathway uses phenylalanine produced in the leaf’s chloroplasts, to produce cinnamate. The pathway 372 
follows in the cytosolic surface of the endoplasmic reticulum, and then in the cytosol, producing the lignin monomers. 4CL – 373 
4-Coumarate CoA ligase, AMO: β-amyrin monooxygenase, C3H: p-coumarate 3-hydroxylase, C4H: cinnamate 4-hydroxylase, 374 
CAD: cinnamyl alcohol dehydrogenase, CCR: cinnamoyl-CoA reductase, COMT: Caffeoyl-CoA O-methyltransferase, EH: 375 
epoxide hydroxylase, FDFT: farnesyl diphosphate farnesyltransferase, FS: friedelin synthase, HFADH: ω-hydroxy-fatty acid 376 
dehydrogenase, LS - lupeol synthase, OFADH: ω-oxo-fatty acid dehydrogenase, PAL: phenylalanine ammonia lyase, PO: 377 
peroxygenase, SQE: squalene monooxygenase. The IDs of the reactions catalyzed by these enzymes can be found in Table 378 
S10 of Supplementary File 2. 379 

Waxes are also an important cork component and are composed essentially of sterols and terpenoids 380 

(Castola et al., 2005). These are produced through the “Steroid biosynthesis” pathway in the 381 

endoplasmic reticulum. The initial precursor, farnesyl diphosphate, is synthesized in the cytosolic 382 

mevalonate pathway or by the plastidic methylerythritol phosphate pathway. Farnesyl diphosphate 383 

farnesyltransferase and squalene monooxygenase convert farnesyl diphosphate into 2,3 – 384 
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epoxysqualene. This triterpenoid can be converted into cyclic tripterpenoids, such as friedelin and 385 

lupeol, or can be used to produce phytosterols like β-sitosterol, through a longer pathway. 386 

The cork contains a considerable amount of lignin, although this polymer is present in other tissues. 387 

The synthesis of the respective monomers (guaiacyl lignin, hydroxyphenyl lignin, and syringyl lignin) is 388 

described in the KEGG’s “Phenylpropanoid biosynthesis” pathway. Phenylalanine is the main 389 

precursor of this pathway that occurs mostly in the cytoplasm. It is converted to cinnamic acid by 390 

phenylalanine ammonia-ligase (EC: 4.3.1.24). Cinnamate monooxygenase, caffeate 391 

methyltransferase, and ferulate-5-hydroxylase are responsible for the successive conversion of 392 

cinnamic acid to coumarate, ferulate, hydroxyferulate, and sinapic acid, in the cytosolic surface of the 393 

endoplasmic reticulum. These metabolites can be converted into lignin monomers in a three-step 394 

process catalyzed by coumarate-CoA ligase (EC: 6.2.1.12), cinnamoyl-CoA reductase (EC: 1.2.1.44), and 395 

cinnamyl-alcohol dehydrogenase (EC: 1.1.1.195). Through the polymer assembly in the cell wall, 396 

peroxidases (EC: 1.11.1.7) convert the guaiacyl, hydroxyphenyl, and syringyl alcohols into guaiacyl, 397 

hydroxyphenyl, and syringyl lignins, respectively. The linkages between aliphatic and aromatic suberin 398 

were not included in the model since these macromolecules are represented in the biomass 399 

separately. 400 

3.4. Tissue-specific models 401 

A generic metabolic model comprises all the reactions catalyzed by all the enzymes encoded in an 402 

organism's genome. However, this approach does not account for the regulatory network present in 403 

each organ, tissue, or cell in different environmental conditions. The integration of transcriptomics 404 

data in a GSM model allows obtaining metabolic models closer to the in vivo phenotype of the 405 

respective tissue or condition. 406 

Transcriptomics data for the leaf, inner bark, and phellogen were integrated into the generic model, 407 

originating three tissue-specific models. The biomass of each tissue was determined using data 408 

available in the literature and other metabolic models. The leaf macromolecular composition was 409 

mostly based on previously published GSM models. Quantitative information regarding the leaf 410 

composition of Q. suber would be useful to increase the model's reliability and improve predictions. 411 

The composition of the inner bark and the phellogen was based on experimental data available for Q. 412 

suber. While the inner bark is mostly composed of lignin and carbohydrates, the phellogen also 413 

comprises suberin and waxes. Suberin is composed of glycerol, ferulic acid, and diverse alkanols, fatty 414 

acids, hydroxy acids, ω-hydroxy acids and α,ω-dicarboxylic acids. Waxes are composed of terpenes, 415 

such as friedelin, and sterols, like β-sitosterol. Although the cork bark contains tannins (mostly 416 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 2, 2022. ; https://doi.org/10.1101/2021.03.09.434537doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.09.434537


18 
 

ellagitannins) (Cadahía et al., 1998), these compounds were not included in the biomass since their 417 

biosynthetic pathways are poorly understood and not available in the used biological databases. 418 

The number of reactions and metabolites on each subcellular compartment was compared across the 419 

three tissues. The number of transport reactions in the Reproduction Phellogen is visibly higher than 420 

in the other tissues, including the Virgin Phellogen. These reactions are essentially associated with the 421 

transport of steroids and hormones. Based on BLAST searches against TCDB, the genes associated with 422 

these reactions are auxin (phytohormone required for cell division (Perrot‐Rechenmann & Napier, 423 

2005)) efflux pumps. An analysis of the pathways available in the Reproduction and Virgin Phellogen 424 

models, followed by in silico simulations did not allow to identify significant differences between 425 

them. The cork oak phellogen's transcriptional profile allows inferring that the flavonoid route is 426 

favored in bad quality cork, while the lignin and suberin production pathways are preferred in good 427 

quality cork production (Teixeira et al., 2018). A recent study reported a higher expression of genes 428 

associated with fatty acid biosynthesis and elongation in reproduction cork (Lopes et al., 2020). 429 

Although it was reported that the macromolecular composition of reproduction and virgin cork could 430 

be similar, the precursors of suberin and extractives are significantly different (Pereira, 1988). Hence, 431 

a biomass composition specific to the virgin phellogen should be defined, including the tannin content, 432 

to allow the observation of metabolic differences between the two models. 433 

3.5. Diel multi-tissue model 434 

Tissues and organs of multicellular organisms do not perform their metabolic functions individually. 435 

Instead, they interact with each other by exchanging sugars, amino acids, hormones, and others. In 436 

plants, the simplest example is the sucrose formation in the leaves and its transport across all other 437 

organism tissues. Multi-tissue GSM models allow analyzing the dependencies between tissues in 438 

terms of biomass precursors, carbon skeletons, nitrogen, sulfur and phosphorus sources, and the 439 

energy required for their translocation and proton balance (Bordbar et al., 2011; Zakhartsev et al., 440 

2016). The introduction of light and dark phases allows predicting features that are not possible in 441 

continuous light models, such as the accumulation and utilization of carboxylic acids (Cheung et al., 442 

2014). 443 

The leaf, inner bark, and phellogen models were merged into a multi-tissue GSM model. Light and 444 

dark phases were considered to present the metabolic differences that occur in these two phases. 445 

Other tissues or organs, such as the root and xylem, could also be considered and included in the 446 

multi-tissue model. Nevertheless, this work's scope is related to the metabolism of cork precursors 447 

and including more tissues would increase the complexity of the model unnecessarily. 448 
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The most significant differences between the light and dark phases of metabolism were identified in 449 

the leaf (Supplementary File 4 – Tables S8-S9), due to the photosynthesis and photorespiration 450 

pathways. 451 

In the light dependent reactions, carbon dioxide is fixed through the Calvin Cycle, forming 452 

carbohydrates, and consequently, the carbon skeletons for the synthesis of the remaining biomass 453 

components. A fraction of the carbohydrates produced here (mainly starch) is stored and used as 454 

energy source when needed. The storage of starch is more efficient in the model than sucrose, 455 

glucose, or fructose. Whereas starch is mobilized in plastids, soluble sugars are accumulated in the 456 

vacuole, implying an energetic cost to its transport. The model produced malate in the dark (light 457 

independent reactions), which is used at day (light dependent) by the malic enzyme to produce 458 

pyruvate and obtain reducing power (NADPH). Citrate was also produced at night (light independent 459 

reaction) through the tricarboxylic cycle (TCA) and used to feed the diurnal TCA and provide carbon 460 

skeletons for the amino acid metabolism. This behavior is in agreement with the previously published 461 

diel GSM model for A. thaliana (Cheung et al., 2014). 462 

Nitrate provided by the inner bark is transported into the leaf and is then converted into ammonia. In 463 

the plastids, ammonia is used to incorporate nitrogen through the glutamine synthetase-glutamate 464 

synthase pathway. 465 

Sucrose and amino acids are exported from the leaf and then imported by proton symport by the inner 466 

bark. The proton balance of the common pool is maintained by plasma membrane ATPases. In the 467 

inner bark, sucrose is used as an energy and carbon source to produce the biomass components. As 468 

mentioned before, the inner bark biomass is mainly composed of carbohydrates, lignin, and protein. 469 

Hence, pathways associated with the synthesis of cell wall precursors (“Amino sugar and amino 470 

nucleotide metabolism”, “Starch and sucrose metabolism”, and “Phenylpropanoid biosynthesis”) are 471 

the most relevant in this tissue. 472 

The remaining sucrose and amino acids produced in the leaves are transported to the phellogen. The 473 

reversible sucrose synthase activity allows sucrose conversion into UDP-glucose, which is used to 474 

produce other cell wall components, and fructose that follows the glycolytic pathway to produce 475 

pyruvate. A fraction of it is transported into the plastid and converted by pyruvate dehydrogenase 476 

into acetyl-CoA, the fatty acids precursor. As mentioned above, fatty acids are elongated and suffer a 477 

series of hydroxylation, epoxidation, and peroxidation reactions in the endoplasmic reticulum. 478 

Ferulate, another precursor of suberin, is produced through the “Phenylpropanoid biosynthesis” 479 

pathway, with phenylalanine serving as a precursor. The glycerol 3-phosphate used for the 480 

esterification reactions is produced from glycerone phosphate produced through glycolysis. 481 
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The diel multi-tissue GSM model developed in this work is a useful framework capable of providing 482 

insights into the metabolism of Q. suber at a global level. It can be used to study the biosynthetic 483 

pathways of suberin, lignin, waxes, and many other compounds. 484 

Conclusions 485 

In this work, we present the first genome-scale metabolic model of a woody plant. The iEC7871 was 486 

based on knowledge retrieved from genomic information, biological databases, and literature. It can 487 

simulate the Cork Oak tree's metabolic behavior in phototrophic and heterotrophic conditions, as well 488 

as photorespiration. This model comprises the pathways of the central metabolism and several 489 

pathways associated with the secondary metabolism reproducing the formation of the major 490 

components of cork. 491 

The integration of transcriptomics data allowed obtaining tissue-specific models for the leaf, inner 492 

bark, and phellogen. These models were merged to obtain a multi-tissue GSM model that comprises 493 

the diel cycle's dark and light phases. 494 

This GSM model comprehends the four main secondary metabolic pathways participating in cork 495 

production: acyl-lipids, phenylpropanoids, isoprenoids, and flavonoids. The lipid biosynthesis pathway 496 

is required for the biosynthesis of the linear long-chain compounds forming the aliphatic suberin 497 

domain, which share upstream reactions with waxes biosynthesis. The phenylpropanoid metabolism 498 

is needed for the biosynthesis of the cork aromatic components, which share reactions with wood 499 

lignin.  500 

The metabolic models developed in this work can be used as a tool to analyze and predict the 501 

metabolic behavior of the tree and evaluate its metabolic potential. Metabolic modelling methods can 502 

be applied, including dynamic approaches, to study the changes in this tree's metabolism over time 503 

and environment. 504 

4. Materials and Methods 505 

4.1. Software 506 

merlin v4 was used to support the reconstruction process, while COBRApy v0.20.0 (Ebrahim et al., 507 

2013) was used to perform all simulations and analyses of the GSM model, as well as generate the diel 508 

multi-tissue model. The simulations were performed using the CPLEX v128.0.0 solver. 509 

The Troppo (Ferreira et al., 2020) python package was used to integrate the transcriptomics data in 510 

the metabolic model, originating tissue-specific models. 511 
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FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), Sickle (Joshi & Fass, 2011), 512 

Bowtie2 (Langmead & Salzberg, 2012), FeatureCounts (Liao et al., 2014), and edgeR (Robinson et al., 513 

2009) were used to process the transcriptomics data. 514 

4.2. Metabolic Reconstruction 515 

The “Automatic workflow” tool, available in merlin, was used to perform the genome annotation by 516 

assigning EC numbers to enzyme encoding genes based on BLAST searches against Swiss-Prot and 517 

TrEMBL. 518 

A draft metabolic network was assembled by loading KEGG’s metabolic information and integrating 519 

the genome annotation. KEGG reactions associated with enzymes identified in the genome annotation 520 

stage were included in the model, as well as spontaneous reactions. 521 

Transport reactions were automatically generated using the TranSyT (Lagoa et al., 2021) tool. 522 

Nevertheless, additional transport reactions were added if reported in the literature, or if necessary 523 

for the model functionality. The subcellular location of proteins was predicted using the WolfPsort 524 

tool. Additionally, LocTree3 (Goldberg et al., 2014) and ChloroP 1.1 (Emanuelsson et al., 1999) were 525 

used to verify protein locations during the manual curation stage. 526 

The leaf, inner bark, and phellogen biomass compositions were based on previously published plant 527 

GSMMs and available literature. The biomass precursors were organized in macromolecules or cell 528 

structures, labelled as “e-Metabolites”. The leaf macromolecular contents were determined using A. 529 

thaliana models (Dal’Molin et al., 2010; Arnold & Nikoloski, 2014). The cell wall sugar content was 530 

included in the e-Carbohydrate composition, while lignin was included in the e-Lignin composition. 531 

The monomer contents of DNA, RNA, and protein were determined using the biomass tool, available 532 

in merlin. The fatty acid, lipid, and carbohydrate compositions were determined using experimental 533 

data for Q. suber or closely related organisms when species-specific data were not available (Koiwai 534 

et al., 1983; Nouairi et al., 2006; Passarinho et al., 2006). The lignin, carbohydrate, suberin, and wax 535 

contents and composition in the inner bark and phellogen were determined using available 536 

experimental data (Pereira, 1988; Lourenço et al., 2016). Suberin was only accounted for in the inner 537 

bark and phellogen. The e-Cofactor component includes a set of universal cofactors and vitamins 538 

(Xavier et al., 2017), which were included in the biomass of each tissue. Nevertheless, the leaf “e-539 

Cofactor” reaction also comprises a set of pigments, such as chlorophylls and carotenoids, determined 540 

according to experimental data (Garcia-Plazaola, 1997). The energy requirements were inferred as 541 

reported by (Yuan et al., 2016a). 542 

Through the whole process, literature, and biological databases, namely KEGG, MetaCyc (Caspi et al., 543 

2020), and BRENDA (Chang et al., 2021), were consulted to retrieve information regarding metabolic, 544 

genomic, and enzymatic information, as described previously (Thiele & Palsson, 2010; Dias et al., 545 
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2019). Briefly, KEGG Pathways allowed identifying reactions that were not included through the 546 

automatic network assembly; MetaCyc was used to identify reactions not available in KEGG; MetaCyc 547 

and BRENDA provided information regarding the reaction’s reversibility and mass-balance. 548 

The validation of the GSM model started by assuring the biomass formation, which was performed 549 

using the BioISO plug-in available in merlin. 550 

The following validation approaches were applied to the model: 551 

1. Growth without photons, carbon, nitrogen, phosphorus, and sulfur sources. 552 

2. Futile cycles and stoichiometrically balanced cycles. 553 

3. Growth rate assessment. 554 

4. Growth with different elemental sources. 555 

5. Capacity to present flux through photosynthesis, respiration, and photorespiration. 556 

The model validation was performed using FBA (Orth et al., 2010), pFBA, and FVA, available in 557 

COBRApy. The general GSM model of Q. suber is available in SBML format in Supplementary File 6. All 558 

the metabolic models developed in this work are available at https://cutt.ly/quercussubermodels. 559 

4.3. Tissue-Specific and multi-tissue Models 560 

Transcriptomics data from different tissues were used to obtain tissue-specific models. The quality of 561 

the transcriptomics data was analyzed using the FastQC software. After trimming the data with Sickle, 562 

Bowtie2 was used to align the trimmed FASTQ files against the reference genome. FeatureCounts was 563 

used to count the mapped reads to each gene. After filtering and normalizing the data with the edgeR 564 

library, datasets with the normalized counts of each gene were obtained. These files were used as 565 

input for troppo, together with the generic GSMM, to generate tissue-specific models. Troppo was run 566 

using the CPLEX solver and the fastcore reconstruction algorithm. A troppo’s integration strategy was 567 

developed to guarantee that the tissue-specific models are capable of producing biomass. The median 568 

of each dataset was used as threshold, and the remaining parameters were kept as default. Troppo 569 

identifies the reactions that should be removed from the generic model, based on the expression of 570 

the genes included in the gene-protein-reaction association of each reaction. Nevertheless, the 571 

reactions that were maintained in the model within this approach kept all of their respective genes. 572 

The carotenoid biosynthesis has two branches, one associated with trans-Phytofluene and the other 573 

with 15,9-dicis-Phytofluene. The enzymes present in the two branches are similar (phytoene 574 

desaturase and zeta-carotene desaturase). However, one of them is dependent on photosynthesis 575 

since it unbalances the plastoquinone/plastoquinol ratio. The other one is stoichiometrically balanced 576 

since it involves successive oxidation and reduction of these quinones. Hence, the presence of the 577 
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second branch was guaranteed in the leaf model since it is essential for the carotenoid production 578 

through the dark phase. 579 

The tissue-specific models obtained using troppo were adapted to account for the light and dark 580 

conditions, by duplicating all reactions and metabolites. Reactions converting sugars (starch, sucrose, 581 

glucose, fructose, malate, citrate, quercitol, and quinate), 18 amino acids, and nitrate between light 582 

and dark were added to the model, based on a previously published approach  (Cheung et al., 2014).  583 

To build the multi-tissue model, the diel tissue-specific models were merged, and common pools 584 

between leaf and inner bark (common pool 1), and inner bark and phellogen (common pool 2) were 585 

created. Since the root was not accounted for, the uptake of water, nitrogen, sulfur, phosphorus, and 586 

magnesium sources was included in the inner bark.  587 

4.4. Simulations 588 

Two different approaches were used to perform simulations with pFBA. The first was to fix the biomass 589 

formation to 0.11 ℎ−1, and set the minimization of the photon uptake as the objective function. In the 590 

second approach, the photon uptake was fixed to 100 𝑚𝑚𝑜𝑙𝑝ℎ𝑜𝑡𝑜𝑛. 𝑔𝐷𝑊
−1. ℎ−1, maximizing the 591 

biomass production. Photorespiration was simulated by constraining the carboxylation/oxygenation 592 

flux ratio (Vc/Vo) of Rubisco (reactions R00024 and R03140) to 3:1 (Weber, 2007). Simulations with 593 

the inner bark, and virgin and reproduction phellogen were performed by maximizing the biomass 594 

production while limiting the sucrose and amino acid uptake to 1 𝑚𝑚𝑜𝑙𝑝ℎ𝑜𝑡𝑜𝑛. 𝑔𝐷𝑊
−1. ℎ−1. 595 

The simulations with the diel multi-tissue GSM model were performed using the restrictions applied 596 

in photorespiration, with the additional constraint of the nitrate light/dark uptake ratio, which was 597 

settled to 3:2 (Cheung et al., 2014; Shaw & Cheung, 2018). 598 

4.5. Accession Numbers 599 

The genome sequence of Quercus suber was retrieved from the NCBI database with the assembly 600 

accession number GCF_002906115.1. The transcriptomics data was retrieved from the EBI database(Li 601 

et al., 2015) (Accession PRJNA392919 for Leaf and Inner Bark; Accession PRJEB33874 for Phellogen). 602 
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simulations for the reproduction and virgin phellogen models, and the transport reactions across 612 

tissues and storage reactions in the diel multi-tissue model. 613 
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