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EvoSPL: Uma abordagem evolutiva para a adoção de linhas de produtos de software na 
indústria automotiva 

 
 
 

Resumo 
 
Algumas empresas desenvolvem uma família de produtos, criando a oportunidade de reutilizar e diferenciar 

os produtos da família. Na prática, o desenvolvimento e a evolução de tais produtos são normalmente 

realizados de maneira ad-hoc e as mudanças estão espalhadas por todos os artefactos de uma família. 

Porém, no longo prazo, tais abordagens ad-hoc apresentam grandes desvantagens para a manutenção e a 

evolução. Assim, é necessária uma reutilização sistemática. As linhas de produtos de software (SPLs) são 

amplamente adotadas pela indústria como uma ideia chave para reutilização sistemática. Para migrar os 

produtos existentes para uma SPL, especialmente na indústria automóvel, os profissionais precisam de uma 

abordagem completa. 

 
Nesta tese, apresentamos uma abordagem evolutiva, denominada EvoSPL, para gerir a evolução de SPLs. 

Além disso, a abordagem EvoSPL adota um processo sistemático de reengenharia que é composto por três 

fases principais: engenharia reversa, engenharia direta e mapeamento. A fase de engenharia reversa captura 

as partes comuns e variáveis dos produtos existentes no Feature Model (FM), que representa uma SPL no 

domínio automóvel. A fase de engenharia direta inicia os produtos restantes de uma família (que não foram 

usados na fase de engenharia reversa) na SPL e, em seguida, trata da sua evolução sempre que um cliente 

solicita um novo produto individual. A fase de mapeamento específica que fragmentos de código 

implementam cada feature do FM atual, usando a arquitetura de referência como um artefacto intermediário. 

 
A abordagem EvoSPL é suportada por alguns níveis de automação. Especificamente, a fase de mapeamento 

é suportada por uma ferramenta chamada friendlyMapper. A avaliação da abordagem EvoSPL é realizada no 

domínio automóvel, usando um estudo de caso de tamanho industrial na Bosch Company. Uma avaliação 

quantitativa e qualitativa foi usada para avaliar a abordagem num contexto industrial real. Além disso, a 

avaliação demonstra as capacidades da ferramenta friendlyMapper para realizar o mapeamento com 

sucesso. Os resultados revelam que a abordagem EvoSPL é útil para apoiar de forma eficaz e eficiente uma 

adoção e evolução de uma SPL num exemplo real da área automóvel. 

 
Palavras-chave: modelos de recursos, re-engenharia, linhas de produtos de software. 
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EvoSPL: An evolutionary approach for adopting software product lines in the automotive 
industry 

 
 

Abstract 
 
Companies often develop and evolve a products family, which creates the opportunity to reuse and differentiate 

the products in the family. In practice, the development and evolution of such products are typically performed 

in an ad-hoc manner. Thus, a systematic reuse is required. Software Product Lines (SPLs) have largely been 

adopted by industry as a key idea for systematic reuse. To migrate the existing products of a family into an 

SPL, especially in the automotive industry, practitioners still lack an end-to-end approach. 

In this thesis, we present an evolutionary approach, named EvoSPL, for managing consistently the evolution 

of SPLs in the automotive domain. The EvoSPL approach adopts a systematic re- engineering process that is 

composed of three main phases: reverse engineering, forward engineering, and mapping. The reverse 

engineering phase captures the commonality and variability of existing products in the (current) Feature Model 

(FM). In addition, this phase contributes with a feature identification method and feature model derivation 

method. The forward engineering phase bootstraps the remaining products of a family into the SPL, and then 

handles its evolution whenever a new individual product is requested. The mapping phase relates each feature 

of the current FM to its locations in the implementation code, using the reference architecture as an 

intermediate artifact, which helps to propagate the changes from the higher levels of abstraction (FM) to the 

lower ones (code), while preserving the consistency between them. 

The thesis is an industrial research describing an approach that handles the evolution of SPLs in a setting 

where the domain architecture is common within a products family. However, we believe that the EvoSPL 

approach could be applicable and useful in other industrial domains that fulfil the conditions of our approach. 

The mapping phase is supported by a tool called friendlyMapper. The evaluation of the EvoSPL approach is 

performed in the automotive domain using an industrial- sized case study at Bosch Car Multimedia company. 

A quantitative and qualitative evaluation was used to evaluate the approach within a real industrial context. 

Moreover, the evaluation demonstrates the friendlyMapper tool capabilities to perform the feature mapping 

successfully. The results reveal that the EvoSPL approach is useful for software engineers to effectively and 

efficiently support an SPL adoption and evolution in the automotive domain. 

Keywords: feature mapping, feature models, re-engineering, software product lines. 
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Chapter 1

Introduction

1.1 General information

Some companies in the market need to handle multiple products that have some charac-
teristics in common [Alv+10]. In fact, many products in a specific industrial domain have
the same application architecture, the same execution platform, and a similar market
segment [SCC16]. A products family typically specifies a set of similar products that are
derived from a common platform and possess specific functionalities (features) to meet
particular customer requirements. Each member of a products family is called a prod-
uct. As a products family (i.e., all its products) can satisfy a certain market segment,
each product is developed to address a specific set of customer needs within that market
segment [LSR07].

The products of a family share a set of common assets, while each product contains a
variable asset that makes it unique [LSR07]. A new product can be built by reusing
the shared assets to obtain benefits like a shorter time-to-market and a higher quality,
provided that these assets have already been developed, tested and used. An asset refers
to any artifact that is part of the software development process, such as a requirements
document, an architecture specification, a product description, a domain model, and
programming code [AR12]. Thus, not only code can be reused, but other artifacts can
also be reused.

Software Product Lines (SPLs) aim to support the development of a whole family of
products through systematic reuse of the shared assets [CN01]. Companies consistently
report that SPLs yield significant improvement in productivity, time to market, quality,
and customer satisfaction [GM09]. Whenever a set of products is developed in a setting
where ad-hoc reuse practices are common (i.e., without an explicit concern with respect
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to variability and commonality), we consider that they do not constitute an SPL. The
family of products in an SPL share a common set of features while allowing variability
to satisfy different customer needs [Alv+10] [GM09] [Ra�3] . Variability allows choosing
between different options, which we call variants. The variability is presented over all the
artifacts of an SPL, including for example the requirement documents [Dav+13] [Ach+12]
[Rab+10], the design models [EBB04] [Alf+08] [BM07], and the code [ES+12] [ZCA17].

SPL engineering (SPLE) provides concepts, mechanisms, and tools to support the de-
velopments of SPLs. In practice, the introduction of SPLE often begins when a given
company finds itself with a successful family of products [LSR07]. Typically, traditional
development approaches apply ad-hoc mechanisms to introduce the variability. For in-
stance, a common and simple way to create products is to copy and adapt the existing
products using a clone-and-own approach [RCC13]. Clone-and-own approaches promise
low initial costs for creating products as the existing code is easily reused. However, they
also come with major drawbacks for maintenance and evolution, since changes need to
be synchronized among several products of a family [Dub+13] [RDR03]. SPLs provide
solutions to these problems, because commonality is defined only once and the change in
an SPL also needs to be applied only once. Therefore, the migration of a set of cloned
products into an SPL would be enough solution to replace such ad hoc-reuse [Fen+17]
[Kru01].

Commonality denotes features that are part of each product in exactly the same form.
Variability enables the development of customized products, by reusing predefined assets.
Hence, variability of an SPL distinguishes its products. Example 1.1 illustrates what we
mean by commonality and variability.

Example 1.1: commonality and variability in the mobile phone system
The ‘mobile phone’ products family offers users a common ‘connectivity’ feature. This
feature is part of each mobile phone product sold to any customer. At the same time,
it offers users a choice of connectivity (options/variants). The customers of a ‘mobile
phone’ product can choose the connectivity type that includes ‘Bluetooth’ or ‘WI-FI’ of
the ‘mobile phone’ product when required.

Due to the need of dealing with large size and complex product families in the long-term,
the companies must handle them in a systematic fashion [BP14]. A prerequisite for sys-
tematic reuse in SPLs is the ability to identify commonality and variability in terms of
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features, which helps to specify explicitly the evolutionary changes for the products of a
family [MP14] [MP07] [bastarrica2019software]. In this context, commonality and vari-
ability of a set of products are managed in terms of features. A feature represents an
increment in the functionality that is useful and valuable to some stakeholders. Features
describe the functional (the main target of our approach) as well as the quality charac-
teristics of the systems under consideration [Fen+17]. A feature in an SPL is in a single
place, but shared amongst many products, hence, changes to the implementation only
must be performed once. Consequently, the effort for synchronizing product variants in
an SPL is reduced.

Feature modeling is a well-established means for the domain engineering of a products
[Ra�3] [Dav+13] [ZCA17] [Sch+12]. Normally, FMs are widely used to capture the com-
mon and variable features of SPLs. It leads to a clearer definition of the features supported
by an SPL and the dependencies among them. FMs have been suggested as a suitable
technique to abstractly describe the overall migration and evolution of the SPLs. Besides,
an FM models the commonality and variability of a given SPL by specifying in a parent-
child structural hierarchy features of its products [Dav+13]. FMs are typically used to
generate and to validate the individual product configurations and to provide support for
the domain analysis [Dav+13] [Ach+12] [ZCA17]. Depending on the abstraction level, a
feature may refer to a prominent or distinctive user-visible characteristic or functionality
of a product [Sch+12] [Dav+13]. Each valid configuration of features represents a product
in the SPL, which includes a selection of optional features to accommodate the specific
demands of customers in a particular domain [Ra�3].

1.2 Thesis domain

SPLs have been commercially applied in many industry domains [BP14], including embed-
ded and automotive systems [Men+09] [RW05]. This research work deals with variability
of a (software-based) products family in the automotive domain, which is implemented
using the industrial C/C++ programming language. A survey reveals that C/C++ is
the most popular and used programming language in the automotive industry [Men+09].
Normally, variability is realized in the code of such families using preprocessing direc-
tives, which cause a high complexity in the code [RW05]. In consequence, the products
of a family get more difficult to understand and to maintain, which can easily lead to
inconsistent changes and high complexity in the family.
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The automotive industry faces many complex challenges in variability management, due
to its hard products domain [RE14]. In addition, the approaches used in the automotive
domain tend to extend existing functionality in an evolutionary manner rather than to
develop a new functionality from scratch [WW02]. Thus, numerous research papers point
out the necessity to use requirements to manage the variability. Unfortunately, most
of them do not consider or give attention to requirements documents written in a NL
[Men+09]. Even though such documents are more favorable to be used to manage the
variability of a products family [LSS17], as they enable to manage and map variability
from the beginning of an SPL life cycle. Hence, we present the EvoSPL approach to close
this gap.

1.3 Motivation

There are three main factors that are important in SPLE [GM09]. The first factor is
commonality and variability management in the same series of a large family of products.
It refers to eliciting and communicating the commonality and variability in requirements
to stakeholders. The second factor is traceability of commonality and variability from
requirements to the code. It refers to relating between a requirement/feature (as rele-
vant for variability management) and its implementation in the code. The final factor is
managing and tracking reuse of the code across different products, usually driven by the
previous two factors.

There is no single best approach that is suitable for all product families, since each family
has a unique context that includes elements like scope, company, and market strategy
[Wij03]. As these elements can change over time, the SPL approach must also change
accordingly. To investigate the current state of SPLs evolution, a systematic literature
review is presented in [SCC16]. The results show that there is no agreement about SPLs
formalization; what assets can evolve, or how and when they evolve. Case studies are
quite popular, but, unfortunately, few industrial-sized cases are publicly available. Also,
few of the proposed techniques offer tool support.

Additionally, most approaches still lack support requirements written in a natural lan-
guage (NL) [Alv+10]. Thus, there is a clear need to develop an approach that supports
SPLs evolution using the requirements written in a NL. There is no clear consensus on
how SPLs evolve, including which artifacts are considered and how they can evolve. It is
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also not totally clear what formalisms, techniques, and methods should be used to support
the process [Alv+10]. Thus, we conducted this research work to provide an approach that
supports the SPLs evolution in a changing context. The approach is intended to be used
to manage evolution for both the SPL and its products (existing products of a family) as
well as the new products that arise throughout the SPL lifecycle.

1.4 Challenges in the research topic

Generally, companies apply an approach called clone-and-own mechanism (also referred
as cloning or branching) to create a new product (see Fig. 1.1). With this approach,
the artifacts of existing products are copied to be the basis of a new product, which are
then modified. Cloning requires no major upfront investments and it is straightforward.
This makes it a common and flexible software customization technique in the short term
[SCC16].

Figure 1.1: Cloning and branching approaches.

However, cloning does not favor reuse in the long term, and it has its downsides. When
the number of products increases in a family, changes can have a complex impact on the
entire family and inconsistencies are unavoidable and may lead to further inconsistencies
until the changes are propagated to the entire products of a family. All this makes the
maintenance of the products or the family much harder [Ra�3]. This increases complexity
and cost when developing various products and puts the developers into problems, such
as the inconsistency of a family and finding the implementation of a feature in the code
[Bor09].

SPLs have proven to help the companies in organizing product families at a low cost
and in the short term with high quality [RCC13] [Tan+10]. In practice, the developing
organizations face a choice between starting SPLs from scratch or considering approaches
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which evolve SPLs when migrating the existing products (after their success in a market
segment) [Fis+14] [Dus15] [Mac+14] [Kru01] [Alv+05].

The adoption of an SPL-based approach in the automotive industry has many challenges.
Initially, migration of the multiple products into an SPL often requires commonality and
variability to be considered [MP14], because they are important concerns in a family
development [JT00]. Hence, we identify challenge 1:

“it is required to identify commonality and variability of the product family that will
form an SPL”.

Once this has been completed, challenge 2 is important

“the variability between the products needs to be captured using specific variability
models” [MP07].

This model defines the available variants. The features represent an SPL in a way that
is meaningful to different stakeholders, which make FMs a suitable candidate to describe
an SPL and support its overall evolution [MSC14]. Besides, FMs are popular SPL assets
that describe the commonality and variability of a family of products [Dav+13]. Thus,
the industry has successfully adopted FMs for very large SPLs [BCH15]. For example, all
mobile phones allow the users to make calls. Thus, this feature is obviously shared among
all the mobile products and constitutes a commonality for them. The mobile phones
allow different connectivity methods like ‘Bluetooth’ and ‘WI-FI’ and this differentiates
the product in some way with respect to the others in the same family [LSR07] [Ra�3].

In the automotive domain and probably in many other domains as well, the considerations
that influence FMs derivation is extremely complex and, at the same time, need to be
documented as clearly as possible for later reference [RW05]. Furthermore, when it comes
to complex systems, specifically in the automotive domain, managing such systems just
using the requirements documents becomes nearly impossible [WW02]. Many research
address management of the variability at the design-code-levels [Ra�3] [BM07] [She+11]
[vauttierdocumenting] [urtadodocumenting] [Zia+12] [AT02] [Wan+09] [CD12] [JB08].
Thus, we identify challenge 3:

“managing variability, especially at the requirements-level is still a core issue and has
received less attention” [IRB14] [LSS17].
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Requirements engineers in the automotive domain aim to specify requirements at a de-
tailed and technical level [Bra+14]. At the same time, variability is available in the re-
quirements and system specification [Men+09]. So, relevant information can be extracted
from these requirements [Ape+18]. After a long-term investment, software producers need
to migrate more products to an SPL. They need to regularly update the SPL whenever
new specific market requirements arise. Therefore, we present challenge 4:

“software engineers need to evolve an SPL to reflect new and changed requirements for
its products or to add a new product (not currently covered by the SPL)” [Bor09].

This can require changes in the whole SPL. For that, software engineers need to handle
the evolution of an SPL in a systematic way. During the evolution of a given SPL, it
is necessary to refactor some artifacts, such as FMs and code [ZB12]. For instance, in
the automotive industry, managers constantly make decisions about future evolution, like
“the ABS warning lamp is introduced with the new product”. With a rising number of
features, feature changes, and evolution steps, the systematic evolution of an SPL becomes
essential. Earlier works suggest FMs as a suitable means of abstraction to describe the
overall evolution of an SPL. So, our challenge 5 is:

“there is only very little support for evolution of the feature-oriented modelling of an
SPL so far” [Bot+10].

Evolving SPLs is risky because it might impact many products [Nev+11]. So, during
evolution to transform the products into an SPL or introduce new products, which gives
rise to challenge 6:

“during evolution of an SPL, it is important to make sure that the behavior of existing
products is not affected”.

Thus, further processing like refactoring is necessary. It is a good practice to extend
the definition of refactoring (usually applied to software programs) to be applied in con-
text of SPLs [Ach+11] [Alv+06b]. The traditional notion of refactoring does not handle
appropriately the variability. Such traditional refactoring notion does not handle FMs
appropriately, or transformations involving multiple products of the same SPL. Also, it
does not guarantee the configurability improvement in an SPL. For that, we consider
challenge 7:
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“an appropriate variability-aware refactoring technique could be used to transform the
multiple products into an SPL or to refine the SPL after it has been established at the

feature model-level” [Alv+06b] [Lie+15].

Refactorings or refinements specify several change operations to the structure of an SPL,
to improve (maintain or increase) its configurability without changing the observable
behavior of its original products. The changes include not only the FM itself, but also
the mappings and associated assets. For instance, a new mandatory feature can be safely
added to an FM, if it is already part of all products. The same feature can be converted
to an optional feature later.

In the context of an SPL evolution, many change requests are raised over time and all of
them must be integrated into an existing SPL in a consistent and coordinated way. Thus,
challenge 8 is:

“it is required to define links between the related artifacts of an SPL”.

For instance, we need to map features to their implementation [ES+12] [XXJ12] [ESSD14].
This problem is addressed by the feature location, which leads to challenge 9:

“software engineers need to identify and trace variability locations across the scattered
code of a products family”.

To work towards this, it is not only important to understand the code that is relevant to
an SPL and locating the variability (features) in this code, but also to consider challenge
10:

“to refine the FM and mapping links when the changes occur”.

In accordance with the challenges described above, this thesis proposes an approach for
SPLs evolution. This approach includes activities taking care of migration and change
of a products family. We propose the EvoSPL approach concepts based on the results
of the review introduced by Marques et al. in [Mar+19] and based on investigation and
discussion of a sample products family in the automotive system at Bosch Car Multimedia
(the Bosch company at Braga).
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1.5 Objective

The main objective of this Ph.D. thesis is to propose an approach (EvoSPL) that helps to
adopt SPLs in the automotive industry. The approach aims to help companies in the auto-
motive industry (1) to evolve a given SPL, focusing on migration of the existing products
of a family that were delivered to customers in the past, and (2) to use the bootstrapped
SPL as a base to evolve it with new products, to get the resulting SPL. The approach de-
scribes a re-engineering process towards managing the evolution of SPLs in a setting where
the domain architecture (i.e., reference architecture) is common to a family of products,
which was developed without considering a systematic approach. The approach explores
how variability of a products family can be managed at the requirements-level and how
the mapping of features to different types of artifacts (requirements document, reference
architecture, and source code) can be established. The approach provides a systematic
process with some level of automation.

The EvoSPL approach offers the software engineers a stepwise process to switch from
scenarios where the products of a family are managed with ad-hoc approaches into sce-
narios where commonality and variability are explicitly addressed using variability models.
There are several variability models that could be applied here, and in this research work,
we use an FM.

This Ph.D. thesis is an industrial research, describing a case where we handle the vari-
ability of a products family, developed to satisfy a range of customers in the automotive
industry. The use of an industrial-sized case study allows us to validate the work in
what concerns the usefulness, effectiveness, efficiency and applicability of the proposed
approach. The results provide initial positive insights about the approach with respect
to those criteria.

1.6 Problem statement

SPLs evolve over time. One practical problem is that during SPLs evolution, (1) the
variability and interdependencies between products should be taken into consideration.
In addition, (2) the artifacts, especially the code, become difficult to understand, to use,
and to maintain. Typically, more problems arise over time with an implicit or already
lost about the consistency and the supported variability.
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For decades, C has been the preferred language for developing automotive industrial sys-
tems. The variability mechanisms offered by the C preprocessor directives are simple. The
experience with large-scale and evolved SPLs shows that the respective variability tends
to become overly complex, due to the variability realization with conditional compilation
(#ifdef blocks). In cases of extracting the variability from such automotive families, the
C preprocessor directives can be easily abused, leading to situations in which the code is
hard to understand, and all possible individual products are extremely difficult to ana-
lyze [TR13]. A support for the variability at code-level is provided by a small number of
concepts and tools [Men+09], but they do not consider the specific requirements of the
automotive domain.

With respect to the challenges to support the initiation of an SPL from the set of existing
products family and to support its evolution (the main objective, which exists due to the
lack of evolutionary approaches), this thesis is motivated by the following problems.

P1. To analyze and identify the similarities and differences among multiple products of a
family at requirements-level.

P2. To model the commonality and variability of a products family and its evolutionary
changes (at a higher level of abstraction) in a systematic way, using a variability model.

P3. To bootstrap the existing products of a family into an SPL.

P4. To evolve the already established SPL to encompass new products, keeping the
existing products valid in the SPL.

P5. To use a proper refactoring technique in an SPL, so that it considers new requirements
but still considers the previous ones.

P6. To preserve consistency among artifacts involved in the SPL evolution. This requires
one to establish a traceability that maintains the consistency among requirements, fea-
tures, and code. Thus, features need to be mapped to their places in the artifacts of an
SPL (especially the code), allowing the changes of an SPL at higher levels of abstraction
(e.g., an FM) to be propagated to lower ones (the code).

As these problems accumulate, it is worth handling evolution in a systematic way, by
explicitly specifying the evolutionary changes of a set of existing products family into
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the SPL and by integrating new requirements that arise during the new product request
directly into the SPL [Ach+12].

1.7 Hypotheses

In accordance with the problems stated above, our thesis formulates the following main
hypothesis.

Main hypothesis. It is possible to recommend an approach that supports a re-engineering
process to migrate a family of products (using its requirements document written in NL)
into an SPL. In addition, it is possible to evolve the SPL after it has been established. This
hypothesis addresses the main objective of this thesis. To confirm this main hypothesis,
it is required to prove the hypotheses from H1-H6. Fig. 1.2 presents the relation between
the research problems and the hypothesis.

H1. It is possible to develop a semi-automatic difference analysis approach that identifies
the differences between the requirements documents of two products that are parts of the
same family.

H2. It is possible to specify commonality and variability among the members of a products
family (e.g., as feature modeling) in the automotive domain with explicit variability model
(i.e., an FM).

H3. It is possible to capture and specify the observed changes in the requirements of
existing products of a family in a systematic way, during analysis of evolution of an SPL.

H4. It is possible to specify changes in the requirements of a new product during an
SPL evolution (i.e., to extend an SPL with the new product, whenever there is enough
implementation similarity among the products and a new one).

H5. It is possible to apply the appropriate refactoring technique, to bootstrap an initial
SPL from the existing products, and to extend the bootstrapped SPL to encompass
another product, at the feature-model level.



12 Chapter 1. Introduction

H6. It is possible to relate the artifacts that are relevant for variability management, like
mapping requirements documents and an FM to its documentation in the reference ar-
chitecture, and to its implementation in the code, while preventing inconsistencies among
them.

1.8 Contributions

The thesis presented in this research work contributes with an approach named Evolutionary
Software Product Line (EvoSPL). The approach supports SPLs evolution using migra-
tion of the existing products into an SPL and considering the changed requirements for
its products. The contribution of this thesis is rooted in the issues that were identified in
the products family from the automotive industry that the author investigated at Bosch
Car Multimedia company. Additionally, based on the concepts, foundations, and results
of the review that appears in [Mar+19].

Figure 1.2: Thesis hypotheses mapped to the research problems.

This thesis contributes with an approach to SPLs evolution that uses a variability mod-
elling, a catalog of change (evolutionary) operators, and a semi-automatic tool to support
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the mapping that guarantees the consistency between an FM and the code of a products
family. The contributions of this thesis are incorporated in the approach phases, as well
as in the evaluation case study. This helps to observe if it is possible to use the EvoSPL
approach in solving the problems that are introduced in section 1.6.

Our research contributes to the knowledge of software engineering related to SPLs evolu-
tion using systematic reuse by providing the following characteristics.

� A difference analysis designed to fit product families is provided that analyzes and
compares the multiple products of a family (two different versions at the same
time). It accepts as input requirements documents written in NL (were delivered
as a side result of ad-hoc reuse) and identifies the similar and variable requirements
between the two documents at once. As previous works have shown great potential
in the requirement artifact of SPLs, thus, choosing them for a difference analysis
approach is viable. Furthermore, the difference analysis results in the change terms
of requirements, for performing variability analysis of a products family.

� A variability analysis dedicated to the EvoSPL process is presented that identifies
commonality and variability (among the products of a family) in terms of features.
It analyzes the variability of requirements documents to identify common and vari-
able requirements, to support their presentation in terms of common and optional
features. Furthermore, it identifies relationships among the requirements in terms
of dependencies among features. The variability analysis introduces novel feature
identification method and an FM construction method.

Both contributions (mentioned above) allow to capture the variability to a variabil-
ity model (i.e., an FM), which influences the migration and the evolution processes.

� A stepwise SPL bootstrapping, which guides the software engineers to bootstrap the
remaining products of a family into an SPL, is presented. Besides, an SPL evolution,
which guides the software engineers to evolve the family with a new product (upon
new customer request), is presented as well.

� A refactoring-based scenario that supports a concept for specifying refactoring of
FMs is introduced. Part of the scenario adopts a work that presents a set of sound
refactorings for FMs in SPLs context [Alv+06b].

� A novel feature mapping solution of an SPL is developed. This solution is based
on the use of the reference architecture as a centric point, for tracing variability
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from features to the code. For instance, the mapping between an FM and its imple-
mentation code, as well as maintaining the mapping of an FM and code whenever
features change occurs. Besides, mapping features to the lines code, especially if
they were only derived from requirements, is a non-trivial task.

Thus, the feature mapping presented in this thesis: (1) defines and maintains the
traceability definition in a backward direction from a feature to the requirements
that specify this feature, by taking into account the specification of each require-
ment and (2) traces features to the different types of artifacts (especially to the
implementation code) of a products family. In combination, those traces specify the
complete traceability definition between features to the requirements specification,
the reference architecture, and the code.

� A tool named friendlyMapper supports the mapping phase of the EvoSPL approach
presented in this thesis. The tool aims to support the changes. It automates the
mapping between features belonging to the FM to the code fragments belonging to
the code. The tool uses traceability links of the traceability tree. These traces are
established between each feature of the FM and a set of code fragments that satisfy
this feature. This tool helps to propagate the changes at higher-levels of abstraction
(requirements and FM) to lower one (code) and to preserve the consistency between
them.

� The contributions of the EvoSPL approach have been evaluated in an industrial-
sized case study with a products family of the automotive industry. The evaluation
contributes to apply and validate with a real set of products family. Within the
industrial case study, which has been conducted at Bosch Car Multimedia company,
a qualitative analysis, including interviews, observations, and surveys have been
applied. Furthermore, a quantitative analysis using an empirical treatment has
been applied. The evaluation investigates the applicability of our approach for a
real set of customer products and gets feedback from the software engineer at the
company.

1.9 Thesis structure

The remainder of this thesis is structured as follows.

� Chapter 2 introduces the background and foundations of this thesis. It discusses
SPL basic concepts and the related refactoring technique.
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� Chapter 3 presents the approaches related to the topic of this thesis for better
understanding the state-of-the-art in this area.

� Chapter 4 provides an overview of the EvoSPL approach. It presents the structure,
input, output, and key concept of the approach.

� Chapter 5 presents the reverse engineering phase, including the appropriate differ-
ence analysis and variability analysis activities that are dedicated for SPLs. More-
over, the chapter introduces the feature model synthesis activity that represents the
variability among a set of products belonging to the same family in a systematic
way, which leads to facilitate the migration process.

� Chapter 6 presents the forward engineering phase. This chapter explains bootstrap-
ping and evolution of an SPL. The former involves adding a set of available products
into an SPL, and the latter extends the SPL to encompass a new product. For that,
this chapter educates refactoring concepts that are aware of an SPL context.

� Chapter 7 presents the mapping phase; it describes a technique to trace features to
their places in the code. Moreover, it explains how to deliver a reference document
to store the mapping results.

� Chapter 8 describes the evaluation of the EvoSPL approach, using an industrial-
sized case study, including different evaluation types to prove correctness of the
thesis-hypotheses.

� Chapter 9 concludes the thesis by providing a summary for the EvoSPL approach
and suggestions for future improvement.
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Chapter 2

Background

This chapter presents the background needed to understand the proposed approach. It
uses the concepts, practices, approaches, and contributions from the valuable topics of
mainly software engineering and informatics. The following sections introduce these topics
categorized in re-engineering, software product lines, and natural language processing. In
addition, this chapter presents techniques and concepts related to our approach and used
during the evaluation.

2.1 Re-engineering

Re-engineering is an important activity in software engineering to prevent software sys-
tems from turning into legacy systems and losing value over time [DDN02]. When we
need to update the software to keep it up to date, without impacting its functionality, it
is called software re-engineering. It is a thorough process where the design of software is
changed, and programs are re-written. Re-engineering is “the examination and alteration
of a subject system to reconstitute it in a new form and the subsequent implementation
of the new form”, as defined by Chikofsky and Cross [CC90].

As shown in Fig. 2.1, re-engineering is a combination of reverse engineering and forward
engineering [CC90]. Reverse engineering involves analysing a given system in order to
determine its components and the relations between those components [CC90]. It also
involves the creation of alternative representations of the system, usually at a higher level
of abstraction. It can occur at any stage in the software development life cycle. Forward
engineering is the process of moving through the stages of design, starting at the highest
level of abstraction moving to a specific implementation [CC90].
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Figure 2.1: Re-engineering of software systems.

The concept of re-engineering is well-suited in the context of the SPLs. Rarely SPLs start
from scratch. Instead, they usually start from a set of existing products that undergo a
re-engineering process, as presented in [Alv+05]. Initially by using reverse engineering to
extract variation from existing products and then by using forward engineering to adapt
the newly created SPL (called in this thesis the resulting SPL) to encompass other variant
products. Existing approaches extract FMs from a high level of abstraction (e.g., product
description, requirements, etc.) [IRB14] [Dav+13] and from a low level of abstraction
(i.e., source code) [AM14] [Zia+12].

2.2 Software product line and products family

A products family refers to a set of similar products that are derived from a common
platform and possess specific features (functionality) to meet particular customer require-
ments. Each individual member within a products family is called a product [KS98]. SPLs
are used in industry to develop a family of similar software products from a common set
of shared assets. An SPL is “a set of software intensive systems that share a common,
managed set of features satisfying the specific needs of a particular market segment or
mission and that are developed from a common set of core assets (artifacts) in a prescribed
way” [CN01].

An SPL is now a popular approach for variability management and software reuse in soft-
ware engineering [Mar+17]. Software reuse is the process of creating new products from
existing ones, rather than building products from scratch [Kru92]. SPLs have received
increasing attention within the software engineering community, especially from industry.
An SPL can be seen as a family of products that have been developed with an explicit
concern about commonality and variability, during the development process [Ra�3].
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SPLs have been used successfully by industry to promote reuse. For example, several
reports from large companies such as, Bosch, Nokia, and Philips observe benefits with
their use, especially with respect to the reduction in time to market [Wan+12]. Because of
long term dealing with product families, companies need to handle them in a systematic
way. Therefore, SPLs can be a suitable option in this case.

Software product line engineering SPLE provides concepts, mechanisms, and tools to
support the developments of SPLs. It has proven to empower organizations to develop a
diversity of similar products at lower cost, in shorter time, and with higher quality, when
compared with the development of single systems [PBDL05]. SPLE is an inter-disciplinary
concept to develop software applications (software-intensive systems and software prod-
ucts) using platforms and mass customisation. A platform is any base of technologies
on which other technologies or processes are built. Mass customisation is the large-scale
production of products tailored to individual customers’ needs [PBDL05].

SPLE Process SPLE is a two-phases approach which consists of domain engineering and
application engineering, as shown in Fig. 2.2, the domain Engineering handles the com-
mon parts among the similar products of a family. The main task of domain engineering
is to build the SPL architecture consisting of a core asset and the software variant fea-
tures, while the application engineering focus on the derivation of the new products by the
different customizations of software variant features applied onto the core asset [Ape+18]
[Ape+13]. While commonalities and variabilities are handled mostly in domain engineer-
ing, product-specific parts are handled exclusively in application engineering. This is
shown in Fig. 2.2.

Evolutionary SPL adoption There are two different approaches for adopting an SPL
approach: revolutionary and evolutionary SPL adoption, according to Bosch [Bos02]. In
the revolutionary approach, a company introduces an SPL from scratch that is designed as
a set of SPL product members and further members that are planned for the future. In the
evolutionary approach, the SPL is derived from a set of existing product members (e.g.,
the EvoSPL approach proposed in this thesis). The revolutionary approach allows taking
future product variants into account and planning for a broader scope of the SPL. In
contrast, the evolutionary approach allows for a more focused and less complex adoption
of the SPL approach.

Variability management In an SPL, variability management is a key activity that usually
affects the degree to which it is successful. SPLE exploits variability management (the
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Figure 2.2: Overview of an engineering process for software product lines [Ape+13].

commonality and variability) of the products that belong to an SPL and systematically
handles the variation (i.e., the differences) among those products [MP14]. This is achieved
through the identification and management of commonality and variability in the artifacts
of a set of products, such as requirements, architectures, components, and test cases.
Variability management defines and manages the commonality and variability among the
members of a products family. At the same time, it represents a major challenge during
the development and evolution of SPLs [SSW09].

Commonality is a property shared by all the products of the SPL [MP14]. For example, all
mobile phones allow users to make calls. Variability of the SPL defines how the different
products of the SPL can vary [Met+07]. Products of the SPL may differ in terms of fea-
tures and requirements they fulfil. For example, some mobile phones may include mobile
Bluetooth connectivity, others not. Also, the ‘e-shops’ SPL that supports ‘search’, ‘order
product’ and ‘return product’ features. The ‘search’ and ‘order product’ are common
features that their specification (in requirements document) and implementation (in the
code) are required to exist in all the products of the ‘e-Shop’ SPL. The ‘return product’
is an Optional feature that may appear or not in the specification and implementation of
the products [IRB14].
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Feature models FMs are one of the most popular models for describing variability of an
SPL [Dav+13]. An FM documents the features of an SPL and their relationships. Fea-
tures constitute the basic building blocks of FMs. Depending on the level of abstraction
and artifacts described, features may refer to a prominent or distinctive user-visible char-
acteristic of a product (i.e., an increment in a software code base) [Ape+18] [Dav+13].
In the context of this thesis, a feature represents an increment in functionality that is
important to some stakeholder.

A recent survey of variability modelling revealed that FMs are by far the most frequently
used notation in industry [Ber+13]. Academics, researchers, and industry have developed
tools to specify them graphically or textually and automate their analysis, configuration
or transformation [Beu12] [Pur] [Big]. FMs were first introduced in the Feature-Oriented
Domain Analysis (FODA) method by Kang in 1990 [Kan+90]. Feature diagrams define
an FM as a hierarchy of features and constraints among them. A feature diagram is a
graphical notation to specify an FM. It is a tree whose nodes are labelled with feature
names [Kan+90].

To switch to SPLE starting from a collection of existing products, the first step is to
extract the FM that describes the SPL. This implies to identify the products family’s
common and variable features. Reverse engineering of an FM for a products family is
essential [Zia+12]. Variability should be expressed through a relationship between two
features. The features of an FM are [Wan+12]: (1) relationships of variability in the given
domain (the Optional feature ‘Camera’ of Fig. 2.3) and (2) relationship of dependency
(the ‘Camera’ feature requires the ‘Bluetooth’ feature of Fig. 2.3). The semantics of
variability and dependency relationships on an FM are described in Fig. 2.4). It is worth
to mention that we called relationships of variability and relationship of dependency in
this thesis as parent-child relationship (including variability-pattern of the feature) and
dependency-relationship respectively. An FM defines which feature combinations lead to
valid products within the SPL. The individual features are depicted as labelled boxes and
are arranged in a tree-like structure.

Fig. 2.3 shows a small example of the FM of an SPL from the ‘mobile phone’ domain
(related to Example 1.1). The root feature of the tree is called ‘Phone’. There is always
exactly one root feature that is included in every valid program configuration (or tree).
A feature is said to be Common (or mandatory) if it is presented in all the products of a
family. Contrarily, a feature that does not appear in all the products of a family is called
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Optional [BM07]. The FM supports the common ‘Connectivity’ feature with optional
support for ‘Camera’. The ‘Connectivity’ feature is available either as ‘Bluetooth’ or as
‘WI-FI’. Features can also be grouped in ‘Or’ / ‘or-groups’ (like ‘Bluetooth’ and ‘WI-FI’)
or ‘Alternative’ / ‘xor-groups’ (i.e., alternatives relation). The dependency relationships
can be defined between features in the model like (1) ‘requires’ (selecting a feature requires
to select another feature), for example, ‘Camera’ requires ‘Bluetooth’, or (2) ‘excludes’
(two features mutually exclude each other). [Dav+13] [UV] [She+11].

Figure 2.3: The feature model example from the mobile phone domain.

Figure 2.4: Relationship semantics of the feature model adapted from [ML04].

Feature location Feature location concept often well- known as feature mining or
feature identification [AM14]. In general , feature location is the activity of identifying
code units that implements functionality (feature) in a software system [Dit+13] , and
it is one of the most important and common activities performed by developers during
software maintenance [XXJ12] [ESSD14]. Feature location in a collection of a products
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family consists in identifying a group of code units that constitutes its implementation.
This group of code units must either be present in all products (case of a common feature)
or in some but not all products (case of an optional feature) [Zia+12].

Feature location techniques mainly use different types of analysis, such as textual, static,
and dynamic analysis [Ra�3] [Zia+12] [XXJ12] [ESSD14]. For achieving better results,
hybrid approaches combine two or more types of analysis, like textual, static and dynamic
analysis, with the aim of using one type of analysis to compensate for the limitations of
another [Zha+06]. One more concept related to the feature location is traceability link
presented below.

Traceability It defines and maintains relationships between artifacts involved in the
software life cycle [GF94] in forward and backward directions. For example, it could be
defined from requirements to code and from code to requirements. An important step in
re-engineering the individual products of a family into an SPL, for systematic reuse, is
to identify code units that implement a particular feature across products (see Fig. 2.5).
This mapping between features and corresponding code units (called in our research as
code fragments) is known as traceability links. Traceability links can be used to (1) bridge
the gap between problem space and solution space of the SPL (see Fig. 2.6) and to (2)
facilitate products derivation from SPL core assets [Val+17] [BBM05].

Figure 2.5: The problem and solution space of software product line engineer [BBM05].

In software systems with highly changed nature of requirements, traceability has become
a critical issue. Thus, several research papers are presented over past years on traceability
from problem space to solution space in traditional software development and evolution
[DPG15]. This traceability is even more challenging in SPLE [PBDL05].

The terms problem space and solution space have been previously introduced in [BBM05].
The problem space is related to requirements. It specifies needs of the SPL domain and
describes the features provided by the SPL from a customer perspective. The solution
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space relates to implementation of the SPL and describes the variability in the program
from the perspective of the developers [BBM05]. As shown in Fig. 2.6, the problem space
generally refers to specifications of the products established during the domain analysis
and requirements engineering phases, whereas the solution space refers to the concrete
products created during the architecture, design and implementation phases. All the
developed artifacts collectively form the SPL infrastructure.

Figure 2.6: Traceability between the problem and solution space of software product line
engineer [BBM05].

Refactoring Traditional refactoring (code refactoring or program refactoring) describes
the task of restructuring the source code of a program to improve its internal quality with-
out changing its external behaviour [CC90]. It can be considered as one task to perform
in context of re-engineering [CC90]. Refactoring is usually motivated by noticing a code
smell [Tuf+15], like an identical or very similar code (duplicated code ) exists in more than
one location. However, the traditional definition of program refactoring does not consider
SPLs specific characteristics (e.g., SPLs configurations and FMs). Moreover, traditional
refactoring usually transforms one program to another and does not consider merging the
two programs. Thus, there is a need to consider refactoring in the SPL context, in which
FMs are refactored, in addition to regular program refactoring [Alv+06b].

SPLs refactoring In context of the SPL, refactoring is a process which increases the
quality of the reference architecture, an FM, and core assets of the SPL, but keeps its
functionalities unchanged [THMH16a]. According to [Alv+06b], an SPL refactoring is “a
change made to the structure of an SPL in order to improve (maintain or increase) its
configurability, make it easier to understand, and cheaper to modify without changing
the observable behaviour of its original products”. An SPL refactoring involves not only
program refactoring, but also an FM refactoring. An FM refactoring is “a transforma-
tion that improves the quality of an FM by improving (maintaining or increasing) its
configurability” [Alv+06b].



24 Chapter 2. Background

SPLs evolution Because of long term, size, and complexity, companies dealing with prod-
uct families and SPLs need to deal with evolution in a systematic fashion [SB99]. SPLs
evolve when there are changes in the requirements (e.g., customers’ requirements evolve
continuously), product structure or the technology being used [bastarrica2019software].

Compared to single software evolution, SPLs evolution remains more difficult compared
to single software evolution, the SPL evolution is more complicated because the SPL
changes impact two levels: the level of products and the level of the core assets. Indeed,
the requirements changes must be propagated in the two levels, which requires a well un-
derstanding of the change and accurate determination of its impact. Different approaches
have been proposed for managing SPL assets and some also address how evolution affects
these assets [SB99]. Further detailed explanation of SPLs evolution is presented in section
3.1, where we couple the topic with the related works.

Difference analysis It specifies the differences between different versions (variants)
of an artifacts, such as approaches for program differencing (e.g., [AOH04]), common
source code versioning systems, or text file comparison (e.g., [Difa] [Difb]) that compare
text differences between two (or more) text-based files. A difference between two models
can be used to compare two veirsions (variants) of models in terms of added, removed,
and modified elements and stores the result in a difference model [AOH04]. Specifying
changes is relevant in context of evolution and in context of variability, like to specify the
differences among multiple products of a family in an SPL [IF19] [SHA12].

Change operators A change operator describes an operation performed on a model
(e.g., an FM) to fulfil a change. Change operators are one of the basic concepts to specify
changes. For example, Alves et al. [Alv+06b] and Seidle et al. [SHA12] define a set of
change operators on FMs in context of SPL refactoring and evolution. The difference
analysis concept can be combined with change operators to model evolution of an SPL,
as presented in [Ple+12].

Migration towards SPLE In practice, a company starts thinking to introduce SPLE,
when it finds itself with a family of products after some success in a market segment. In
this case, when thinking of adopting SPLE, besides starting from scratch, the company
can consider an approach that focuses on migration of the existing products of a family
towards an SPL [Wag14]. Such approach is related to re-engineering (section 2.1), where
assets (or artifacts) are extracted from existing products and re-engineered to contributes
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a resulting SPL [Ass+17] [Ass15]. Those types of approaches that take existing products
into account are mostly classified as an evolutionary approach [Bos00].

2.3 Natural language processing

Li et al, [DL18] define natural language processing (NLP) as a way for computers to
analyse, understand, and derive meaning from human language. Using NLP, developers
can organize and structure knowledge to perform tasks such as automatic summarization,
translation, or relationship extraction. The objective of NPL is to let computers perform
useful tasks involving human language, like enabling human-machine communication,
improving human-human communication, or simply doing useful processing of text or
speech [DL18] [AH06] .

NLP analysis NL analysis is a subtopic in the field of computer linguistics [ID10].
NLP analysis is the application of NL analysis to further extend the analysis of program
structure and semantics. The analysis of a NL text may have three levels, as shown below.
During these levels many techniques and tools can be applied by specialists.

� Level 1. Morphological analysis focuses on the words’ structure [Tel00].

� Level 2. Syntactic analysis deals with the relationships between words in a sentence,
deciding which classification group the word belongs to, according to a grammar,
such as stems, root words, prefixes, and suffixes. [ID10].

� Level 3. Semantic analysis (or parsing) is built upon the results of the other two
levels. It aims at defining words and sentences meaning based on the knowledge
of their structure, relationships and role (e.g., studying meaning of individual word
and the combination of individual words) [ID10].

Language processing To improve text analysis, there is a need for processing terms
extracted from text [ID10]. On the following , we will shortly discuss the processing
methods that have been proven to be valuable in the context of NLP in general [SKL08].

� Splitting involves separating strings into individual terms using information, like un-
derscores, hyphens , capitals (CamelCase), or numerical digits ([0-9]). For example,
splitting ”getProductCopies” string to {“get”, “Product”, “Copies”}.

� Filtering involves removing useless words. For example, filtering {“get”, “Product”,
“Copies”} to {“Product”, “Copies”}).
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� Stemming involves transforming a term to the stem of a word. For example, trans-
forming {“Product”, “Copies”} to {“Product”, “Copy”}.

NLP in reverse engineering Li et all. [LSS17] briefly introduced how NLP techniques
are generally used, with a specific focus on feature identification and variability extraction
in SPLs. The general process presented below is shown in Fig. 2.7.

Figure 2.7: General process for applying natural language processing techniques in reverse
engineering variability from natural language documents [LSS17].

1. Text pre-processing involves transforming NL documents into types of words that
can be identified and analysed easily by computers. In particular, NL documents
are divided into words, phrases, symbols, or other meaningful elements (e.g., using
tokenization). Additionally, these elements can be tagged with their type of word,
like noun, verb, and object. In addition, as stop words (e.g., ”the”, ”at”) lack any
linguistic information, they are removed in this phase.

2. Term weighting which can be adopted optionally to estimate the significance of
terms in NL documents, by calculating the frequency of their occurrence in different
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NL documents. This can be performed using two commonly used techniques: Term
Frequency-Inverse Document Frequency and C-NC value.

3. Semantic Analysis is an optional step that is typically used to gain semantic infor-
mation. Several techniques can be used in this step. Certainly, Vector Space Model
and Latent Semantic Analysis techniques are widely used to conduct a semantic
analysis.

4. Post-processing performs further analysing of the transformed data in order to iden-
tify features and extract variability information. In this step, various methods can
be used, such as, Clustering Approaches and Association Rule Mining. Cluster
approaches are adopted to group similar features with a feature being a cluster of
tight-related requirements. Association Rule Mining is used to discover agreements
among features across products, and to augment and enrich the initial product pro-
file. By the end of the post-processing, various outputs can be obtained, such as a
feature list or an FM.

Text-based parsing In NLP, the initial step is parsing the sentence in a particular lan-
guage (e.g., English) based on the grammar, in order to help understanding the meaning
of a sentence and extracting a specific words (e.g., extracting the behaviours from the
textual descriptions [IRB14]) [Sib+13]. Text-based parsing is a process that takes a given
series of text and separates it into smaller terms or phrases conforming to the rules of a
formal grammar. The application of text-based ranges from document parsing to deep
learning NLP. The most important text parsing technique is called word tokenization.

Word tokenization Tokenization is the process of converting a text into smaller pieces
of tokens based on certain rules (e.g., semantic roles [IRB14]). Using regular expression,
own rules can also be created. Tokenization can be accomplished using an NLP parser
and has an important role in text pre-processing tasks. For example, it helps in mapping
parts of speech, finding and matching common words, cleaning text, and getting the data
ready for advanced text analytics techniques.

Parser The program that develops the grammatical structure of the sentence is called
parser. For example, a group of words which is a series of words (phrases) and which word
is the subject or objects of a verb and generates the grammar tree of it [Cor]. For example,
first the statements are analysed, and their constituents are labelled with semantic roles,
which have special importance to functionality: (1) Agent – Who performs? (2) Action
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(the sentence’s predicate or verb) – What is performed? (3) Object – On what objects it
performed? (4) Instrument – How is it performed? (5) Temporal modifier – When is it
performed? And (6) Adverbial modifier – In what conditions is it performed? [IRB14].

Therese are several methods for parsing process explained as follows [Sib+13]: (1) Top-
Down Parsing is done by parsing a sentence starts from complete component (e.g., full
sentence) to the smallest component (e.g., until we get the smallest component of the
sentence that is the word). (2) Bottom-Up Parsing is done by taking one word at a time
from a given sentence, to be assembled into larger components and done continuously
until it forms sentences (i.e., began by a backward process with the sentence being parsed
using the grammar rules until it reaches the start symbol).

2.4 Evaluation

In order to evaluate the contribution of this thesis (EvoSPL approach and friendlyMapper
tool), we present an empirical case study of two parts: we conducted a case study following
the guidelines, which are presented in [Lin+15] [Kit96], and we performed a validation
part, where we show and discuss the obtained results. The concepts that are used in both
parts are presented in this section.

Case study In the area of software engineering and information technology, there
has been some interest in methodology of case studies, which are a standard method of
empirical study in various sciences, such as medicine and psychology [Kit96]. Case study
is a suitable research methodology for software engineering research, since it allows the
effect of new methods and tools to be assessed in realistic situations [LSS05].

The case study methodology is well suited for many kinds of software engineering research,
as the objects of study (e.g., new method) are hard to study in isolation. Case study was
originally used primarily for exploratory and descriptive purposes [Fly06]. For evaluation,
case studies that can provide valuable insights into why a new technology results in better
products is needed [Kit96]. However, in this thesis we concentrate on presenting the ‘which
better’ type case study, to provide valuable insights into why the EvoSPL approach results
in better results than the baseline approach adopted in the automotive domain.

According to the guidelines of Runeson et al. [RH09], there are a set of major process
steps (phases) to be undertaken, when conducting a case study. In the (1) design phase
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objectives are defined and the case is planned. (2) Data collection is first planned with
respect to data collection techniques and data sources, and then conducted in practice.
Methods for data collection include, for example, interviews and observation. During the
(3) data analysis phase, quantitative analysis (e.g., hypothesis testing) and qualitative
analysis (e.g., chain of evidence) or one of them can be conducted. During the analysis
it is important to maintain a chain of evidence from the findings to the original data. In
the (4) reporting phase report is used to communicate findings of the study. The report
should include sufficient data and examples to allow the reader to understand the chain
of evidence. It is worth mentioning that a plan for a case study (design phase) at least
contains the objective, case, theory, research questions, methods, and finally selection
strategy elements [RH09].

Paired t-test The paired t-test, called sometimes the dependent sample t-test, is
used to compare two means (i.e., means of two groups) that are from the same individual,
object, or related units [Sta]. The two means can represent things, such as, a measurement
taken under two different conditions (e.g., completing a test under a ”control” condition
and an ”experimental” condition) or measurements taken from two groups of a subject
or experimental unit (e.g., measuring performance of a team before and after adopting a
new approach) [Ken].

Paired t-test can only be used when comparing the means of two groups, where the groups
come from a single population (e.g. measuring before and after an experimental treat-
ment). The paired t-test assumes your data are independent, (approximately) normally
distributed, and have a similar amount of variance within each group being compared.
You can test the difference between these two groups using a t-test [Scr].

Paired t-test is often used in hypothesis testing to determine whether a process or treat-
ment actually has an effect on the population of interest (e.g., software developers), or
whether two groups are different from one another. There are main steps in hypothesis
testing, presented as follows [Scr].

1. State your research hypothesis as a null (Ho) and alternate (Ha) hypothesis.

2. Collect data in a way designed to test the hypothesis.

3. Perform an appropriate statistical test.

4. Decide whether the null hypothesis is supported or refused.

5. Present the findings in your results and discussion section.
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Chapter 3

Related work

This chapter gives an overview of the related works and approaches for the evolution of
SPLs, as focused by this thesis and its contributions. To give the reader some guidance,
Fig. 3.1 shows areas of the related work aligned with the main phases of the EvoSPL
approach.

3.1 SPLs evolution

As any piece of software, an SPL evolves over time. Its evolution process can be viewed
either from an organizational perspective or from a process-oriented perspective. Prac-
tically, an SPL evolves whenever there are changes in (1) the requirements (i.e., changes
to requirements lead to changes in the feature model), (2) the family structure, or (3)
the technology being used. These new and changed requirements originate from sev-
eral sources, such as customers using the products, future needs to be predicted by the
company, and the introduction of new products into the SPL. Different approaches have
been proposed for managing the artifacts of an SPL and some also address how evolution
affects these artifacts [bastarrica2019software]. Existing mapping studies have focused
on specific aspects of SPLs evolution and the nature of their processes, but there is no
cohesive body of work that gives an overview of the area as a whole.

Marques et al. [SB99] provide answers to the research questions formulated to evaluate
the approaches of an SPL evolution (using a set of 60 primary studies). The research was
performed over workshops, conference and journal papers. Marques et al. show that the
related area to the evolution of an SPL is maturing.

Challenges of an SPL adoption Marques et al. [SB99] reported open challenges that
cause low adoption of SPL approaches in industry, such as: (1) the lack of research on
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Figure 3.1: Areas of the related work aligned with the main phases of the EvoSPL ap-
proach.

traceability between the different artifacts of an SPL (this makes it difficult to completely
assess the consequences of evolution on an SPL), and (2) the nonexistence of publicly
available large industrial case studies that can be used by the industry as a starting
point. Marques et al. believe that the SPL community needs to work together to improve
the state of the art and to create methods and tools that support the evolution of SPLs
in a more comparable manner. The EvoSPL approach presented in this thesis conforms
to these conclusions and contributes a solution to tackle the open challenges presented by
Marques. Hence, this thesis proposes a systematic approach called EvoSPL to manage
the open challenges to the adoption of SPLs in the automotive industry.

Types of SPLs evolution Laguna and Crespo [LC13] and Montalvillo and Díaz [LC13]
survey the different types of SPLs evolution. According to these two surveys, the first
type depends on re-engineering of legacy systems (the existing products) into an SPL, as
well as refactoring the existing products into the future SPL [LC13]. The second type
depends on supporting the evolution of an SPL as a result of changes in requirements
[MD16]. The EvoSPL approach proposes a re-engineering process to migrate the existing
products into an SPL and then supports its evolution using an SPL refactoring.

SPL evolution process The software evolution process is quite challenging, since a
balance between software quality and software structure must be maintained. Software
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quality must be preserved while the software structure tends to upgrade over time. Botter-
weck and Pleuss [BP14] and Montalvillo and Díaz [MD16] identify the following challenges
of SPLs evolution: (1) there are different types of artifacts defined at different levels of
abstraction and with variability issues, (2) there is a high number of interdependencies
between the artifacts, (3) an SPL usually has a longer lifespan than a single product, and
finally, (4) an SPL is larger and more complex than its individual products. The approach
presented in this thesis contributes to these open challenges and provides insights about
the solutions.

Bayer et al. [Bay+99] developed the PuLSE methodology, a general framework for SPLE.
The framework covers the evolution and maintenance of SPLs using PuLSE-EM (evolution
and management). Based on the information provided as a result of other PuLSE com-
ponents, PuLSE-EM provides an effective mechanism to propagate the change requests
-e.g., product configuration history and product line architecture (PLA) history, which
turn up during the construction and usage phases to the responsible components with
adaptation. The PuLSE-EM and EvoSPL approaches both aim to enable the adoption of
SPLs within an industrial context.

Abstraction level in the SPLs evolution SPLs evolution can be defined at different
levels of abstraction, ranging from high-level artifacts, like requirement documents and
architectural models, as presented by Garg et al. [Gar+03] to low-level artifacts, like
code and test cases, as presented by Wijnstra [Wij03]. Like our approach, Pleuss et al.
[Ple+12] present a model-driven approach to manage the evolution of an SPL at feature-
level. Our approach defines the evolution of an SPL at a high-level of abstraction (i.e.,
at the requirement-level) and then propagates the changes to a lower one (i.e., the code
implementation).

Safe evolution of SPLs Neves et al. [Nev+11] describe several safe evolution templates
that the developer can use when working with SPLs. For this, Neves et al. rely on an
SPL refined notion that preserves the original behavior of the products of a family. This
notion helps to evolve an SPL safely, by simply improving its design or even by adding a
new product while preserving the existing ones.

Neves et al. [Nev+11] present a study performed to evaluate the evolution of two SPLs
using the templates. The results of the study show that the templates can address the
modifications performed in safe evolution scenarios of the both SPLs. Similar to this
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research work, the EvoSPL approach adopts a safe evolution scenario that can be used
when evolving an SPL. This scenario depends on refactorings of SPLs. With the EvoSPL
approach, the refactoring specification is aligned to the fundamental catalog of refactorings
proposed by Alves et al. [Alv+06b]. The catalog includes the notations for specifying
refactoring in a comprehensible manner. Furthermore, these notations are applicable to
an FM to perform the transformation that improves and increases its configurability.

Model evolution and change Different models can be used to capture the changes
between two model versions (e.g., two model variants) in terms of added, removed, and
modified elements. In this context, Martinez et al. [Mar+14] contribute the MoVaC
approach that compares a set of model variants and identifies both the commonality
and variability in the form of features. Using a graphical representation, the MoVaC
approach explicitly visualizes the common and variable features to users. The approach
is validated on two case studies to demonstrate its applicability to any kind of EMF-
based model (EMF - Eclipse Modeling Framework). In this thesis, the EvoSPL approach
matches the requirements documents of two products at once and generates intermediate
documents that identify the commonality and variability among them in terms of features.
The EvoSPL approach adopts a visualization technique that expresses the commonality
and variability of the generated documents in the form of colors and keywords.

SPLs evolution: an industrial experience Livengood [Liv11] describes an industrial ex-
perience to evolve an SPL of multifunction printers. The evolution is based on modifying
the variability model in ways that alter the constraints and other relationships among
variations. Livengood concludes that evaluating the impact of such changes on multi-
function printers is difficult in practice and is an unsolved problem for the case described.
Livengood believes that further research is required to solve such a problem. For that,
he offers further research questions that may help in establishing further research. The
EvoSPL approach contributes a solution for the research question (unsolved problem)
presented in [Liv11]; “Can we improve traceability from the variability model to the de-
velopment artifacts?” The EvoSPL approach supports a tool that automatically maps
features belonging to the variability model (i.e., the current FM) to the respective code
fragments, using the reference architecture as an intermediate artifact. Besides, the tool
automatically updates the mapping links, upon the changes that affect an FM, to keep
them consistent. The tool was evaluated using an industrial-sized products family and
the result reveals that can be used successfully with a real products family.
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The research work presented by Botterweck et al. [Bot+10] is motivated by requirements
of the automotive industry. Hence, Botterweck et al. focus on evolving automotive
parking assistants of a sample SPL. The authors developed an approach for feature-
oriented modelling of SPLs evolution. Based on the sample SPL, the authors provide (1)
a framework that includes modelling languages for SPLs evolution and (2) a catalog of
evolution operators for the FMs. The presented approach provides the foundations for
many evolution scenarios and consistency checking.

Botterweck et al. [Bot+10] specify the commonality and variability between the models
over the time. For this purpose, the authors use a special kind of FMs, called EvoFM, to
model the long-term evolution of an SPL. The FM of an SPL at a specific evolution step
corresponds to a specific configuration of EvoFM. Consequently, the approach presents
the evolution of the SPL in a compact view by using a sequence of EvoFM configurations
over time.

In the literature, there are various approaches that support a tool for the SPLs evolution,
e.g., [Rom+13] [Liu+07] [Dhu+08]. In practice, most of them address evolution based on
the existing PLA of a products family [Gom06] [Gar+03] [Gar+03] [Ach+11], while other
approaches design the PLA from scratch [SOB02] [SO01]. Some works address evolu-
tion in variability/feature model [Bot+11] [SSA14] [Pas+10] and code [Bot+11] [SSA14]
[Pas+10]. Further approaches focus on pairs (or more) of artifacts that can evolve together
[GF13] [ZCA17] [Gom13] [Men+09] [Wu+12].

Requirements evolution in SPLs Montalvillo et al. [MD16] present the results of a
mapping study in the context of requirements evolution in SPLs, by answering the research
questions formulated to this study. For the purpose of this work, the authors cover the
evolution, which is triggered by requirement changes (not by bug fixing or refactoring).
The authors wish such review can work as a starting point for practitioners to direct them
in the field of an SPL evolution and to report their efforts in the whole field.

The evolution of requirements specification is a key activity of SPLs. This evolution is
critical due to the necessity of dealing with common and variable requirements, not only
for a single product but for the whole family of products. Oliveira et al. [OA15] propose
the FeDRE approach, which provides support to evolve the requirements specification of
an SPL in a systematic way.
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Oliveira et al. also present the FeDRE2 approach, which provides support to evolve the
requirements specification of SPL. The approach evolves the FM and the use case spec-
ification from an SPL according to the user’s needs. It also provides detailed guidelines
on how to evolve an FM and their related use case specifications. The approach is com-
posed of three main tasks. The first task is to identify the evolutionary scenario for the
requirements specification of an SPL. The second one is to perform the evolution for
the requirements specification of the SPL. The final task is to update the Traceability
Matrix, which stores the relationship among features and use cases. The approach has
several steps to be executed to evolve the requirements of an SPL. Thus, through the
proposed approach, the SPL requirements can be evolved in a safe way, keeping its trace-
ability within the other artifacts. We believe (as authors of this thesis) FeDRE2 provides
a solution to make it easier to achieve the intended evolution of requirements within SPLs.

Peng et al. [Wu+12] present a case study that can work as a starting point to understand
the evolution of requirements in an SPL. The authors claim that software requirements are
negotiated and may be guided by design of the existing software architecture, especially in
the process of SPLs development. Using a case study in the industry, the authors propose
a classification of requirements change (from the viewpoint of architectural impact of the
SPL development in practice) and analyze the potential relationships between require-
ment change types and architecture evolution types. The authors find that requirement
changes, in SPLs development, happen regularly and an architect may need more careful
considerations before deciding to respond to it.

3.2 Migration towards SPLs

Today, many companies have highly diverse product families [BCH15]. These compa-
nies offer different products with different feature sets, to address more granular market
segments and differentiate their products from the competitors’ ones. Typically, the prod-
ucts of a family are somehow similar; hence they have a relatively large set of common
functionalities (or features) and variants that make each product unique [LSR07]. This
creates the opportunity to reuse and differentiate the products in a family. There are
several approaches that describe processes for SPLs evolution. Numerous approaches fo-
cus on migration of the existing products towards the SPL (or extracting an SPL of the
existing products).
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Martinez et al. [Mar+15a] present an approach that automatically migrates the exist-
ing similar model variants into an SPL. The approach, named MoVa2PL, considers the
identification of the commonality and variability in model variants. It provides end-to-
end solutions that satisfy the required requirements when building a bottom-up approach
that supports the SPLs adoption. The first requirement is feature location, which re-
quires analyzing and comparing the existing model variants to identify commonality and
variability in terms of features. The second is re-engineering, which requires a transfor-
mation of the model variants into an SPL. For instance, the variability model is created
using information of the identified features and the discovered constraints. The EvoSPL
approach presents a solution that supports the SPLs adoption in the automotive domain.
In general, the approach migrates the existing products of a family into the resulting
SPL. Firstly, it identifies features and the constraints among them to construct the cur-
rent FM, which represents a given SPL and ensures valid product configurations for the
family. Secondly, the EvoSPL approach evolves the existing SPL to encompass a (new)
product.

Alves et al. [Alv+06b] present a method for extracting an SPL of the existing products
and evolving the extracted SPL to encompass other products. The method systematically
supports a strategy that uses the refactorings expressed in terms of simpler programming
laws. Although the evaluation of this research work was conducted in the mobile game
domain, the authors believe that the method is not only valid for mobile applications, but
also other highly variant domains should benefit from the method. The EvoSPL approach
applies a similar concept, since it supports the bootstrapping of existing products into
an SPL and extending the bootstrapped SPL to encompass a new product. During this
process, refactorings are performed to maintain the existing products and to add new
products. The EvoSPL approach relies on the SPL refactoring that involves an FM
defined by Alves et al. in [Alv+06b].

Martinez et al. [Mar+17] present a bottom-up technology for reuse, named BUT4Reuse.
The technology is a generic and extensible open source framework that aims to support
SPLs adoption. It can be used in different scenarios and with different types of software
artifacts of a products family (e.g., requirements, models, or code). Also, the tool accepts
to add different concrete techniques or algorithms for the relevant activities of SPLs
adoption.

Martinez et al. [Mar+15b] believe that the practitioners lack end-to-end support, for
bottom-up SPLs adoption, where a set of artifact variants already exists. To overcome
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this challenge, Martinez et al. [Mar+15b] propose a generic and extensible framework
called BUT4Reuse, and they assess its generic and extensible properties by implementing
a variety of extensions. The authors introduce a framework for a bottom-up approach to
SPLE with the aim to reduce the current high upfront investment required for a systematic
reuse (end-to-end adaptor). The framework has been evaluated in the scenario of adopting
an SPL approach of the existing Eclipse products family.

However, in this thesis, we believe that the automotive domain has specific requirements
and it is suitable to dedicate this domain with an approach that takes its specific charac-
teristics into consideration. Thus, the EvoSPL approach proposes a bottom-up approach
with the objective to reduce the upfront investment required for a systematic reuse adop-
tion in the automotive industry. Besides, the approach has been evaluated in the scenario
of adopting an SPL approach of the existing products family in the automotive domain.
Other approaches that aim to support the evolution of SPLs while focusing on migration
are, e.g., [Fen+17] [Ass15], some of them describe industrial case studies, e.g., [Mus+18]
[BLL08].

Managing variability in the FMs Metzger and Pohl [MP07] consider that a prerequisite
to managing variability of SPLs is the explicit documentation of the variability. Thus,
they present a tutorial on modeling and managing the variability of SPLs. The authors
explain how to consistently handle the variability throughout the SPLE process and across
all development artifacts. Moreover, the authors introduce a framework for SPLE. The
EvoSPL approach conforms to this direction and explains how to consistently handle
variability using a dedicated variability model (i.e., the current FM) throughout the SPLE
process and across all development artifacts of a products family.

FMs and variability extraction Beuche [Beu15] presents a tutorial providing the required
concepts on how to use FMs to manage the variability in SPLs. The tutorial presents an
explanation about the role of FMs in SPLE, such as how FMs can be used to manage
development and configuration of the products. Beuche and Papajewski [BPSP04] support
the work appears in [Beu15] with a CONSUL tool. The tool supports the variability
management that covers all the phases of domain analysis within almost all software
development processes. The tool uses (extended) FMs as a main model for (1) describing
the commonality and variability and (2) communication between developers of software
artifacts to be managed. The tool has been proven to be an effective solution. Similar
to this work, the EvoSPL approach manages variability in SPLs and its evolution using
a sequence of the current FM with some level of automation.
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Kramer et al. [KSRB13] believe that the variability knowledge expressed in an FM though
may not be understandable to the end user. In practice, explanations have been shown to
improve the intelligibility of software and improve user trust. Thus, this work presents how
the variability of SPL based products can be explained to end-users using explanations
composed from explanatory knowledge added to the enhanced FMs.

Martinez et al. [Mar+15a] address the problem of automating analysis of the existing
similar model variants and migrating them into an SPL. In [Mar+15a] the authors describe
the MoVa2PL approach to support a solution for the problem, by considering identification
of the commonality and variability in the model variants, as well as extraction of the
model-based SPL of features identified on these variants.

In this work, the authors address simultaneously in a single framework (an end-to-end
solution and a bottom-up approach) both requirements (1. Feature identification and 2.
Re-engineering) to extract an SPL of model variants. Similar to this work, the EvoSPL
approach adopts a re-engineering process (end-to-end-solution) that supports analyzing
and comparing existing products to identify the commonality and variability in terms of
features. In contrast to Martinez’s work, the EvoSPL approach uses requirement doc-
uments artifacts (i.e., that are developed using ad-hoc reuse techniques) to identify the
commonality and variability among the products of a family by means of an FM. More-
over, as (new) products are added to the SPL, the FM is refined to reflect the existence of
the new features. Al-Msie’Deen [AM14] proposes an automatic-based approach to identify
features in the code and organize the identified and documented features (assign a name
of the feature) into an FM.

Extract the variability from conditional compilation code In practice, conditional compi-
lation directives (#ifdef blocks) are one of the most widely used mechanisms to implement
variability (i.e., annotating feature code). Using conditional compilation directives, Couto
et al. [CVF11] describe an experiment to extract eight complex and relevant features from
the ArgoUML tool, in order to generate the SPL. Furthermore, Zhang and Becker [ZB12]
present a model-based process that works on large scale SPLs. It automatically extracts
both the variability and variability model from preprocessor code. The extraction pro-
cess is based on the automatic parsing of the optional code implemented by conditional
compilation directives. The variability tree indicates the dependencies between variations
and modularizes these variations with a hierarchical structure. The extraction process is
presented with concrete measurement results from the industrial case study.
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SPL bootstrapping Regarding SPLs adoption in the marketplace, Li et al. [Li+16]
are motivated from two perspectives. The first perspective is related to the need for
research activities that adopt realistic case studies to evaluate (extractive) SPL adoption
techniques. The second is related to the large and high scale study of reuse practice in an
industry that is now growing among all others within the software engineering community.
Therefore, Li et al. [Li+16] present a mining process of Android products with the
objective of identifying families of apps in the market. The EvoSPL approach is motivated
with the same perspectives presented in [Li+16]. Thus, our approach contributes an
industry-based case study for evaluating SPLs adoption in the automotive industry. Also,
our approach focuses on the practice of systematic software reuse in the industry.

Alves et al. [Alv+06b] and Tanhaei et al. [THMH16a] use SPLs refactoring to perform
a process that involves bootstrapping existing products into an SPL and extending an
existing SPL to encompass another product. In both cases, real case studies in the mobile
game domain and the health domain are used to evaluate the work.

Reverse engineering of the FMs Al-Msie’Deen et al. [Ser+13] [urtadodocumenting]
[UV] propose an automatic approach (1) to mine features from the code of a products
family , (2) to document the mined feature implementations by giving them names and
descriptions, and (3) to extract the FM of product configurations based on Formal Con-
cept Analysis. To validate the approach, the authors apply it on several case studies.
The evaluation results show the relevance and performance of the proposed approach, as
most of the features and their associated constraints are correctly identified. Other ap-
proaches aim to reverse engineer an FM from other artifacts of a products family, such as
architectural models [Ach+11], UML models [CD12], and informal products description
[Dav+13].

3.3 Variability analysis

Generating variability from natural language requirements Schulze et al., [LSS17]
present the results of a systematic literature review covering the approaches (that ap-
pear in 29 papers) to extract features and variability from NL requirements. The review
allows the authors to make several observations. For instance, they observe that Soft-
ware requirements specification (SRS) is frequently used as a main input for the feature
and variability extraction from NL documents. However, the review reported that the
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applicability of such documents in practice is questionable. Requirements specification
document (RSD) is also has the same usage.

Bakar et al. [BKS15] conduct a systematic literature review on feature extraction from
the requirements expressed in a NL. Both reviews reveal the same observation concerning
the use of SRS as a main input for the feature and variability extraction. The EvoSPL
approach also conforms to this observation, and it uses NL requirements documents (i.e.,
SRS) as an input to extract variability when conducting the case study at Bosch Car
Multimedia company. Moreover, the EvoSPL approach contributes to evaluate the appli-
cability of the SRS document in the extraction process, as questioned by Schulze et al.
[LSS17].

Itzik et al. [IRB14] suggest a method to generate FMs from requirements or textual
description of the products. The method considers stakeholders needs and preferences
when generating the FM for the given tasks. In this work, the authors suggest an approach
that measures the semantic similarity, extracts variability, and automatically generates
FMs (that represent structural or functional perspectives of the given context). The
EvoSPL approach adopts some of the concepts presented in [IRB14] to generate the
current FM from the requirements documents of a given products family. Our approach
analyses and pares the variability terms of requirements, and it adopts the semantic roles
that have special importance to the automotive industry to identify features.

As FM construction can be tedious and time-consuming, many researchers have previously
developed techniques to extract FMs from sets of formally specified software requirements
specifications for families of existing products. For instance, Davril et al. [Dav+13]
present a novel approach to automate the constructing of an FM from a set of available
and informal descriptions.

Acher et al. [Ach+12] propose a semi-automated tool-supported process to extract the
variability of a family of products. An automated technique to synthesize FMs based
on merging a set of products descriptions was developed. Acher et al. aim at easing the
transition from product descriptions expressed in a tabular format to FMs, accurately rep-
resenting them. The authors reported preliminary experiments based on publicly available
data that appears in [HTM09].

Fine-grained and coarse-grained granularity Fine-grained granularity, like adding
a statement in the middle of a method, normally pollutes the code with annotations.
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Typically, an SPL implementation supports features with coarse-grained granularity, like
the ability to add entire methods. Furthermore, some existing SPLs could benefit from
fine-grained extensions to reduce code replication or improve readability. Though many
SPLs can and have been implemented with the coarse-grained granularity of existing ap-
proaches. However, the fine-grained granularity extensions are essential, when extracting
the features of a products family. Thus, Kästner et al. [KAK08] analyze the effects of
feature granularity in SPLs and present a tool, called CIDE, which allows features to
implement coarse-grained and fine-grained extensions in a concise way.

Manage variability using the background colors The CIDE [KAK08] enhances feature
management with a tool support. It is based on preprocessor semantics, but it uses
the background colors instead of code statements, and it provides the possibility to hide
features to avoid code pollution. For instance, the tool indicates the features with different
background colors. Thus, developers can directly recognize whether the code fragment is
associated with a specific feature. In case of a code fragment is associated with multiple
features (i.e., nested preprocessor statements), it mixes the according background colors.
For example, it mixes the red and blue colors in purple. Using two case studies, the authors
show that CIDE simplifies SPLs development compared to the traditional approaches.

In EvoSPL, a feature specifications and implementations are allowed in the requirements
document and code, respectively, with a fine-grained and coarse-grained granularity. Be-
sides, our approach not only provides a visualization technique that identifies the variabil-
ity (common/variable requirements and features) of a products family with colors, but it
also relates a feature to the corresponding code fragments, considering a coarse-grained
and fine-grained implementation of the existing code.

Feature identification Ziadi et al. [Zia+12] propose an approach to automate feature
identification from the code of a set of products. The proposed approach is composed of
three steps, as follows. The first step retrieves a model from the code of each product
and decomposes the model into a set of atomic pieces. The second step uses an algorithm
to produce the feature candidates. The third step manually produces the final set of
features of the SPL, which will serve as the basis to build an FM. After conducting
the experiments to evaluate the approach, the authors suggested that the approach is
promising but requires more work. For instance, he recommended proposing guidelines
that support the building of FMs. The EvoSPL approach presented in this thesis proposes
a method (called FIM) that identifies feature candidates from the requirements document
of the products, and then the approach uses them as a base to construct the current FM.
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Name suggestions during the feature identification Al-Msie’Deen [AM14] exploits the
feature related code and use cases in documenting the identified feature, by providing
a name and description. The feature related code and use cases contain together the
external functionalities with textual descriptions of these functionalities.

Martinez et al. [Mar+16b] propose a process, named VariClouds that helps domain ex-
perts to assign a name for a feature during the feature identification. The VariClouds can
be used to understand semantics behind the identified different blocks during analysis of
a products family. The process, which works with different types of artifacts (i.e., models
or code), is based on interactive word cloud visualizations, to provide name suggestions
for these blocks. The VariClouds defines two phases for the domain experts. The first
phase prepares word clouds (created using the words from any set of elements), and the
second phase obtains the blocks (using the block identification algorithm) and lets the
domain experts use the interactive word clouds to name each block.

The EvoSPL approach proposes a method that suggests a name during feature identi-
fication using the text-based parsing and NL technique. Our approach (1) analyses a
requirement statement and identifies the main terms that have an important semantics
of the automotive domain, (2) performs normalization on the parsed terms of each state-
ment, and (3) assigns one of these terms to the feature. The software engineers can decide
about the name of the feature name, to either accept it or reject the name. In case of
rejection, the software engineers propose a proper name and then the EvoSPL approach
investigates the consistency between the proposed name and the requirement statement
to decide on the final name of a feature. This reworked as many times as possible to
resolve the conflicts concerning the feature name until the proposed name turned into an
agreement.

Managing variability on the code-level Mengi et al. [Men+09] believe that the current
approaches for modeling and managing variability on code-level do not consider specific
requirements of the automotive domain. For that, Mengi et al. describe an approach that
links the variability model with the code. The basic idea behind the work is to shift the
work steps into the variability model, to model, manage variability, and implement their
variables in the code.

The EvoSPL approach presented in this thesis complies with the work presented in
[Men+09] and contributes a solution to tackle its future work. The EvoSPL approach
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investigates the earlier artifacts of the development process, including requirements doc-
ument and shared software architecture of a products family to explore the variability.

Managing variability of the SPL architecture According to Garage et al. [Gar+03],
there is a lack of support for managing the evolution of SPLs architecture. Hence, they
provide a tool to tackle this problem. The presented tool environment Ménage provides an
architect with the (visual) ability to specify and evolve the architecture of an SPL as new
product architectures are added or existing product architectures are modified or removed.
The EvoSPL approach manages variability in a setting where the reference architecture
is shared for the products of a family. The EvoSPL uses the reference architecture to
relate explicitly each feature of the current FM to its implementation code fragments in
the code.

Model-based evolution At the SPL-level, changes to requirements lead to changes in
the variability model. Many models are used to manage the evolution of SPLs. Feature
modeling is the most commonly used one, like the evolutionary FM presented by Pleuss
et al. in [Ple+12]. UML diagrams, like class diagrams, component diagrams, state col-
laboration diagrams [Gom13], use case diagrams [OA15] and state diagrams and sequence
diagrams [Liu+07], are also used. Other UML diagrams such as are used as well. The
EvoSPL approach uses the current FM, to keep track of similarities and differences of the
SPL under consideration and to deal with modifications that are made to the SPL over
time.

Understanding feature evolution As features represent an SPL in a way that is mean-
ingful to different stakeholders, Xue et al. [XXJ10] suggest that understanding of how
features evolved in a products family is a prerequisite to transition from ad-hoc to sys-
tematic reuse. Hence, Xue et al. propose a method that assists the analysts in detecting
changes that affect features of the product during its evolution. Xue et al. apply a model
differencing algorithm to identify the evolutionary changes that occurred to features of the
multiple products of a family. The authors evaluate the effectiveness of the approach on a
family of medium-size financial systems. The evaluation demonstrates that the approach
yields good results. Using the EvoSPL approach, the evolution is modeled as a sequence
of changes that are applied to the current FM, which present a conceptual modelling of
the evolution and changes in SPLs.

Modelling evolution of SPLs: change operators The change operators performed on
variability models (e.g., FMs) is a basic concept to specify changes in an SPL. Botterweck
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et al. [Bot+10] provide a feature-based approach to model the variability over time and
a catalogue of change operators on FMs. Their approach models the overall evolution of
an SPL focusing on variability in time. The basic idea behind this approach is to use a
special kind of FM called EvoFM. Each EvoFM at a certain point of time can be described
as a composition of fragments. The changes within fragments (e.g., changing a feature
from common to optional or adding a new feature) are specified by change operators
associated with the fragment. Hence, the overall evolution of an FM can be represented
as a sequence of EvoFM configurations.

The research presented by Botterweck et al. is motivated by characteristics of the auto-
motive industry. The authors focus on SPLs of embedded systems, in particular control
systems in an automotive environment (i.e., the sample SPL of evolving automotive park-
ing assistants). The authors assume that such systems are created with approaches from
Model-based Engineering of Embedded Systems and the implementation is described in
a domain-specific (modelling) language for embedded systems, such as Simulink.

Both Xue et al. [XXJ10] and Botterweck et al. [Bot+10] propose a set of evolution oper-
ators (feature changes) to describe all the possible changes on an FM (e.g., add, remove,
and modify). The EvoSPL approach presented in this thesis is aligned with the works
presented in [Bot+10] [XXJ10]. Hence, our approach expresses various change operators
that are applicable to the current FM and the existing SPL. The change operators are
used in the process of our approach to refine the current FM twice: (1) when bootstrap-
ping the remaining products of a family into the initial SPL and (2) when extending the
bootstrapped SPL to encompass a new product. The EvoSPL approach is motivated by
the requirements of the automotive industry, in particular the sensors of control systems.
The basic idea of the EvoSPL approach is to capture the variability and evolution of
the automotive domain families at the requirements-level, in forms of a sequence of the
current FMs.

Flexible tool-based approach with industrial examples Research on SPLs often neglects
the handling of documents such as contracts, technical documents, or user manuals. In
practice, stakeholders often need to adapt these documents in SPLs. To address this
issue, Rabiser et al. [Rab+10] implement the DOPLER approach and tooling suites to
model the variability of documents in SPLE and to present variability to users in product
derivation.
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The DOPLER approach comprises four steps: (1) elicit and analyze the variability in
documents, (2) create or adapt variability models, (3) choose or develop a variability
mechanism and a corresponding generator for domain-specific document formats, and
(4) generate the documents with variability information. Rabiser et al. [Rab+10] applied
successfully the described approach (DOPLER and DocBook tool suites) on two industrial
SPLs with different level of maturity. Both industrial partners plan to integrate the
DOPLER approach in their process.

Managing variability and traceability via specifications Ghanam and Maurer [GM09]
describe a case where they handled variability in the domain of intelligent home systems
to satisfy a range of requirements for the industrial partner. The work delves into how
the variability and traceability of requirements can be managed via executable specifica-
tions. This approach has been evaluated through a case study provided initial insights
on its feasibility and usefulness. Ghanam and Maurer present three main factors at play
in SPLE: 1) commonality and variability management of requirements; 2) traceability of
commonality and variability from the requirements to the code; and 3) managing and
tracking reuse of code across members of a products family, usually driven by the previ-
ous two factors. The EvoSPL approach presented in this thesis proposes a re-engineering
approach that consists of three main phases: 1) reverse engineering; 2) forwarded engi-
neering; and 3) mapping. The phases explore into the factors to accumulate a solution
that satisfies all of them (factors).

Variability-modelling practices in the industrial SPLs Existing studies regarding an SPL
practice mostly describe in general with little focus on variability modelling. Nair [Nai13]
conducts a qualitative study on practices of the variability-modelling in the medium-and
large-scale companies. The study uses two empirical methods: surveys and interviews.
Nair investigates the practices and experiences of the companies under the consideration,
regarding variability-modelling, with the aim to gather information on methods, strate-
gies, and tools used to create and manage the variability models. Additionally, he aims
to gather information on the perceived value, characteristics and challenges of the vari-
ability modelling. The results in [Nai13] reveal that variability models are often created
by re-engineering existing products into an SPL. In addition, the results show that the
challenges were related mainly to the visualization and evolution of the variability models
and dependency management. Nair concludes that the adoption of SPLs and variabil-
ity modelling have forced developers to think in terms of SPLs scenario rather than a
product-based scenario.
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Clone detection (identify features in forks) In practice, code forking (or clone-and-own)
is a commonly used approach in the industry; where a new product is created by cloning
the existing ones. Several studies have investigated the practices of forking in open source
and industrial development of SPLs [Dub+13] [NM11] [SSW15]. Generally, these studies
reveal the discussed problems, but did not provide any solutions. Zhou et al. [Zho+18] and
Rubin et al. [Rub+12] propose a solution that mitigating the disadvantages of the forking
mechanism while exploiting the advantages. They propose an approach that identifies the
changes and feature implementation in forks. Zhou et al. [Zho+18] introduce an INFOX
approach that automatically identifies and labels features within the larger change of a
fork.

Tairas et al. [TGB06] describe a stand-alone clone detection tool, called CloneDR that is
integrated into Eclipse. The tool can identify the sections of a code that are duplicated in
the program and shows the visualization of clone detection results. Besides, the tool can
help users to identify certain characteristics of the clones, by graphically isolating clone
groups across a list of source files. The EvoSPL approach presented in this thesis uses
Beyond Compare tool, to quickly and easily compare folders and text-based files of the
code, which helps to identify commonality and variability among the code modules of a
products family. Furthermore, EvoSPL uses the tool to compare text-based files of the
code artifact of two products and to detect clones between them. However, managing
clones have been addressed in the context of FMs for the first time in [Rab+16].

3.4 Refactoring

In practice, adopting SPLs does not start from scratch, but rather start with bootstrap-
ping existing products into an SPL and extending the SPL to encompass another (new)
product. One way to achieve this is to use refactoring. Alves et al. [Alv+06b] propose
a catalog of sound refactoring for FMs, to guarantee configuration improvement. Each
refactoring consists of two temples (left-hand side and right-hand side template). The
catalog applies refactoring whenever the left-hand side template is matched by a given
FM. The catalog supports a set of operations (e.g., a change made to the FM) to be ap-
plied to the FM that preserve (maintain or increase) the products of an SPL unchanged.
The authors evaluate the proposed refactoring notation in a real case study in the mobile
domain.
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Usually, an FM is used to keep track of similarities and differences among products of
the SPL. Thus, Tanhaei et al. [THMH16a] propose a framework for refactoring SPLs,
which helps keep an SPL consistent with its related FM. Tanhaei et al. introduce a
set of refactoring patterns that are applicable to the FM and the SPL (i.e., resulting in
features being added to or eliminated from the SPL, like adding a feature to the FM).
Furthermore, the authors introduce the required algorithms to implement a tool that
performs refactoring on the FMs. The aim of this framework is to use the proposed
refactoring patterns in modifying the artifacts of an SPL (as the reference architecture,
FM, design, and code) in a way that keeps all the product configurations valid. The
authors evaluate the applicability of the framework presented in this work, using a real-
world case study (real-word SPL).

In the case study, the authors investigate the ’Medio SPL’ to find the refactoring oppor-
tunities that can be applied to this SPL. The ’Medio SPL’ consists of four products, three
products are derived from the existing versions (products) of the SPL and the fourth
one is an upcoming product (a new product) schedule for being developed in the near
future. Using these products, the authors used two teams in evaluating the framework.
The first team uses the framework presented in [THMH16a] to perform refactoring on the
SPL. The second team is an external team that does not use the framework to find and
perform refactoring on the SPL (they suggested refactoring to ’Medio SPL’). The authors
compared the performance of the two teams. The results of the case study reveal that the
framework can find refactoring opportunities in the FM that the second team (the team
they did not use the framework to perform refactoring) cannot find. Finally, the authors
concluded the benefits of using their framework in refactoring the ’Medio SPL’.

Tanhaei et al. in [THMH16b] propose a safe framework that supports refactoring of an
FM. The authors define some of the important refactoring rules on the FM and provide
tools that enable the users to add new rules. The authors propose a way to assess
the correctness of an FM refactorings. The framework converts every FM instance to
an Alloy model, and then uses Alloy Analyzer to evaluate the correctness of the edits
performed on it. Calheiros et al. [Cal+07] present a code refactoring tool, named FLiPEx,
which can be used to extract products in the context of developing mobile game SPLs.
Similar to [Alv+06b] [THMH16a], Barba proposes a notion and catalogue of refactoring
for SPLs (that works for any FM). The catalogue contains transformation templates that
separately deal with FMs. The notation guides and improves the safety of the derivation
and evolution of SPL processes.
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3.5 Mapping in the context of SPLs

SPLE and SPL evolution require mapping features to their implementation. This problem
is addressed by the feature location [Mar+16a]. In the context of SPLs, the mapping
between features and implementation artifacts can be established by a kind of tracing
links. Traceability relates the artifacts relevant to variability management, like mapping
between an FM and the code. Vale et al. [Val+17] perform a study to understand
the state-of-the-art in traceability of SPLs, which leads to indicating areas for further
research. The authors concluded that (1) SPL traceability is maturing and requires further
investigation, and (2) defining and maintaining of the trace links require much effort, so
there is a need for tool support.

Tool support Zheng et al. [ZCA17] propose an approach to address feature-architecture
mapping and architecture-code mapping. The approach can trace a feature of an SPL
(modeled on this work using a feature tree) and the code, and it can automatically update
the architecture and the code to maintain their conformance whenever feature changes
occur. The authors develop an Eclipse-based toolset named xLineMapper to support the
approach presented in [ZCA17]. The tool set includes (1) a graphical modeling tool, (2)
a code generator, (3) an annotation processor, and a (4) code visualizer. The approach
presented in [ZCA17] may require several changes to be made to the code, to adopt the
approach. In contrast, the EvoSPL approach presented in this thesis uses feature map-
ping activity, to relate each feature of the current FM using the reference architecture
as a centric point. In contrast to the work in [ZCA17], our approach does not require
upfront effort from the software engineers to adopt the steps of the approach. The feature
mapping activity is supported with friendlyMapper tool that automate the mapping pro-
cess between features and code fragments. Besides, it automatically updates the mapping
whenever changes occur to the current FM.

Meinicke et al. [Mei+16] provides an Eclipse-based tool, called FeatureIDE. The work
aims to tackle multiple challenges with preprocessors, such as code comprehension, feature
traceability, separation of concerns, and program analysis. With FeatureIDE, instead of
focusing on one particular preprocessor (CPP), the authors provide tool support, which
can easily be adopted for further preprocessors (Antenna, and Munge).The mapping phase
of the EvoSPL approach is supported with a tool called friendlyMapper that reads XML
file and imports it to the tool environment. The tool reads the features from the XML
file and establishes the tracing links that relate each feature to its implementation code
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fragments. However, all the FMs presented in the thesis are designed with FeaturIDE
editor [Kas+09] [Bot+11] [KA11].

Feature location According to Martinez et al. [Mar+16a], feature location for software
families is a research field that is becoming more mature with a high diversity of tech-
niques. Martinez et al. propose a publicly available framework and benchmark, called
EFLBench that provides a common ground for this field. The benchmark is based on the
Eclipse releases and it is designed to support research on software reuse in the context
of SPLs. The EFLBench is publicly available and supports all the tasks for techniques
of the feature location, like integration, benchmark construction and benchmark usage.
However, the authors have shown examples of usage of the benchmark with the Eclipse
products family for analyzing four different feature location techniques, and they have
discussed the evaluation of one of the feature location techniques using (randomly gener-
ated) sets of Eclipse products. In this direction, the EvoSPL approach presents a process
that satisfied the requirements of feature location identified by Martinez et al.

Martinez et al. [Mar+15b] illustrate a methodology to describe the extraction of an
SPL of the existing products. The method consists of the following numbered steps:
(i) preparation of artifact of the products, (ii) feature identification and location, (iii)
feature model creation, and (iv) reusable artifact extraction. The approach presented
in [Mar+15b] does not assume a complete upfront knowledge of the existing features
throughout the artifact of the products. In this work, the authors aim to have an explicit
list of the features within the scope of the family of products. For that, they adopt
the work in [Mar+14] to automatically identify the implementation blocks that represent
a feature and assign them a proper name (feature name), using information retrieval
techniques [Mar+16b].

In contrast to the default assumption in [Mar+15b], regarding the non-availability of
features, the authors explain another scenario. As if the features are known in advance,
and their presence and absence in the artifacts is known, feature location can be performed
directly after creating the feature list. The feature list model contains a list of features
with the reference to the artifact variants that have or implement each feature. In the
written works, there are many works of approaching feature location, e.g., [Ser+13] [Ra�3]
[XXJ12].

Feature location techniques According to Ra’Fat Al-Msie’Deen [AM14], feature loca-
tion techniques aim at locating artifacts of a products family that implement a specific
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feature. Al-Msie’Deen contributes a new approach to mine (identify/find) features from
the (object-oriented) code of a set of a products family. The approach is based on three
techniques to do the work: Formal Concept Analysis, Latent Semantic Indexing, and
analysis of structural code dependencies.

The mappings between use case diagrams and FMs Inside the SPL community, features
have been widely used to model variability. From a user perspective, use cases are also
widely used to model the functionality of systems. Significant work has been done to relate
variability and use case models. Bragança and Machado [BM07] present an approach that
maps use cases to features in a formal way and describe a possible implementation of the
approach (to automate the transformation from UML use case to FMs). The contribution
of this work was inspired in the works appeared in [GFd98] [Gom05].

The issue of relating use cases and features is not new. Grisset al. [GFd98] propose
an approach to extract functional features from the domain use case model. They also
explain how the structure of the FM can be created according to the structure of the use
case model (i.e., by using the «include» and «extend» relationships). There are others
similar approaches that relate use cases and features, e.g., [EBB05].

Integrating feature and architecture Models Janota et al. [JB08] provide a formal
foundation that integrating the FM and the architecture model of a family of products
(i.e., by providing a formalization of dependencies between features and components).
Such integration between the models helps to tackle the risk of inconsistencies between
them (i.e., the feature model might allow feature configurations that are not realizable by
the architecture) and offers a better understanding of the modeled concepts. For instance,
the approach offers support to formalize models for features and their implementations,
which can be utilized to provide automated feedback (i.e., additional information) to the
software engineer who uses such models.

Tracing variability from features to artifacts of the SPL Díaz et al. [DPG15] focus on
traceability between artifacts resulting from the domain analysis and architecture of an
SPL (i.e., the traceability between the FM and the PLA model). Díaz et al. present a
solution for tracing the variability from the features to the architecture of an SPL (PLA)
taking variations in components and variations inside components of the architecture
(both external and internal architecture variability) into account. The solution is sup-
ported by the Featured-PLA model framework, which has been deployed in an industrial
project on Smart Grid [AW05].
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The mapping phase of the EvoSPL approach provides a tool, called friendlyMapper. The
tool relates each feature of the current FM to its implementation code fragments in the
code using software architecture as a bridge. Besides, it constructs the traceability tree
that maintains the tracing links between feature and code fragments, whenever feature
changes occur. We evaluated the tool as a part of a case study conducted at Bosch Car
Multimedia company. The results reveal that our approach, including friendlyMapper, is
both applicable and capable to support the evolution of product families in the automotive
industry.
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Chapter 4

EvoSPL approach

4.1 Approach overview

This chapter presents the approach proposed by this thesis and explains its process and
main phases. To tackle the challenges of evolving an SPL that takes the existing prod-
ucts of a family into account (re-engineering), this thesis proposes an evolution-based
approach named EvoSPL. The approach considers a process which evolves an SPL from
the existing products of a family and focuses on the migration of the existing artifacts
(namely requirements document). The basic idea of our approach is to model an SPL
and its evolution, by focusing on and describing the commonality and variability in the
requirement documents of a products family. Thus, in EvoSPL, evolution of an SPL is
represented as a sequence of FMs at different points. At each point, the approach refines
an FM with the features of a (new) product.

The approach (i) delivers detailed similarity and difference analysis between the products
of a family, (ii) detects commonality and variability among the products of a family, and
(iii) supports a systematic migration process of a products family. Consequently, this
helps to manage variability and to consistently evolve the SPL under consideration. The
information related to the process, activities, techniques, and contributions of the EvoSPL
approach is detailed in the upcoming chapters.

4.2 The approach main phases

Fig. 4.1 depicts the EvoSPL approach at a relatively high-level of abstraction. The three-
phase approach aims to adopt the SPL in a given context. The phases are reverse en-
gineering, forward engineering, and mapping. Each phase of the approach has specific
activities (not shown in Fig. 4.1) to be performed according to the process of the EvoSPL



4.2. The approach main phases 53

approach. The FM works as a common model that is shared among all the phases. Phase
1 derives it, phase 2 upgrades and refines it, and phase 3 maps it to code.

The first phase (reverse engineering) uses requirements documents of two products of the
same family to derive an FM, in order to support the explicit variability management of an
SPL. This phase applies a difference analysis that compares the requirements document
of each product against each other to detect similarities and differences between them.
Then, this phase applies the variability analysis and feature model synthesis to generate
the current FM, which is an FM that has been derived from two products and reflects
the initial SPL and partially the future SPL.

Figure 4.1: EvoSPL approach main phases.

The second phase (forward engineering) starts with the bootstrapping activity. This
activity uses the current FM and requirements document of another product, to bootstrap
(one by one) the remaining products (the ones that were not used in the first phase) into
the initial SPL. The bootstrapping activity initially uses the current FM that has been
derived from two products and refines the current FM when required (e.g., upon adding a
product to the initial SPL under the consecration). Besides dealing with bootstrapping,
this phase also needs to deal with the evolution of an SPL. For that, the evolution activity
evolves the bootstrapped SPL with a new product according to new user’s needs. Both
activities refine the current FM in accordance with features of a (new) product.

The first two phases of the EvoSPL approach perform a semi-manually activities with
tools support that have been adopted by other researchers. The final phase (mapping)
of the approach supports an automated mapping for artifacts of the SPL (i.e., tool sup-
port). In order to facilitate the adoption of SPLs that reflect the need of the customers
and perspective of the software team, our approach allows a manual intervention of the
software engineers in performing the EvoSPL activities.
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4.3 The EvoSPL approach

This section describes the main activities, inputs, outputs of the EvoSPL approach. The
approach aims to provide a consistent variability management and a variability-aware
refactoring technique towards moving into an SPL. The approach process comprises the
main phases and sub-phases of the approach. In addition to pre- and mid- processing
activities to initiate and integrate the main phases.

4.3.1 Definitions

The following are definitions of the main terms that are used by the EvoSPL approach.

Feature The definition presented here for the feature introduces a flexible support of
the approach to generate the FM in a given case. A feature is a unit of functionality that
satisfies a set of requirements, including components, hardware, technologies, services, or
other functionalities that are provided by the products of a family to satisfy customer
needs [BKS15]. Our approach assumes that features represent decisions (variations) and
provide configuration options (the products of a family). When generating a products
family, a feature can be common (shared by all the products of a family) or optional
(differ between the products of a family) [Dav+13]. In consequence, a set of products
generated from a systematic modeling of features is called an SPL.

Products Family A products family refers to a set of similar products that are derived
from a common platform and have specific features/functionalities to meet particular
customer requirements that target a certain market segment [DJT01]. All products share
some common structures, technologies, and /or components, which form the platform of
the products family.

Product A product is an individual member within a products family that is devel-
oped to address a specific set of customer needs within the market segment. A product
has a collection of artifacts that implement the features of a single software product.
These artifacts are copied (or developed) and modified (or customized) to satisfy specific
requirements.

When applying the EvoSPL approach, we assume that a product is developed by cloning
either the initial release product or another product in the family that is more suitable,
and by adapting it to satisfy specific customer needs [DJT01]. Practically, the initial
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release product is cloned from the platform artifacts, including requirements document
and code, then it is customized (the customization technique is not mattered to our
research). Thus, we guarantee the minimum required similarities among the products of
a family to apply our approach.

Initial release product The initial release product is a software product of the family that
is cloned from the platform artifacts and customized to satisfy customer needs. Normally,
the initial release is called the first release product and developed to be used by the first
customer.

Variation In EvoSPL, variation represents a place in which variability occurs among
the products of a family. Typically, the place can be a text fragment in the statement of
the requirements document, a component of the reference architecture, or a fragment of
the code that implements variability of a products family.

Variant The term variant appears in our approach to represent available alternatives
for a variation place. Each variant specifies or implements one or more statements of the
requirements document, component of the reference architecture or code fragments of the
code of a products family.

Variations and variants are used to define the variability of an SPL. Thus, it is essential
to be able to identify variations and variants in a systematic manner. In the following, we
provide an example that explains both concepts from the customer and the model view.
The variability in ‘connectivity’, from the custom view shown on the left of Fig. 4.2, has
two methods (‘Bluetooth’, ‘WI-FI’). A mobile phone company wants to develop mobile
phones in different connectivity methods; therefore, a variation ’connectivity’ is defined
in the model view. The company develops mobile phones with ‘Bluetooth’ and ‘WI-FI’
connectivity methods, therefore the variants ‘Bluetooth’ and ‘WI-FI’ are defined in the
model view on the right of Fig. 4.2.

SPL terms As shown in Fig. 4.3, the initial SPL term refers to the SPL that has been
extracted using two products of a family (P1 and P2), in reverse engineering phase. The
foreword engineering phase involves bootstrapping the remaining products of a family (P3)
into the initial SPL, to establish the bootstrapped SPL, and extending the bootstrapped
SPL to encompass new product (NewP), to deliver the resulting SPL. The resulting SPL
can be extended to encompass another product when required. The resulting SPL is
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Figure 4.2: Relationship between variability in the customer view and in the model view.

used in the mapping phase to map features of the current FM that models this SPL to
the code, to preserve the consistency among them, using the reference architecture as an
intermediate artifact.

Figure 4.3: The SPL terms used by the EvoSPL approach.

4.3.2 Inputs and outputs of the EvoSPL approach

The following artifacts are the input of the EvoSPL approach.

Requirements Document A requirements document is an artifact containing all known
requirements to a certain product of a family. Our approach uses requirements docu-
ments that are documented using NL text (e.g., English) and organized according to a
previously established format (with predefined sections). It is written to allow customers
to understand what the product will do, in order to later allow the software engineers
to use their expertise to provide a solution to the requirements. An SRS and RSD are
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the most popular documents written to specify a software product from a user’s and
producer’s point-of-view [BKS15]. Some additional information in a tabular format that
may appear in the requirement document is accepted by the EvoSPL approach. However,
the requirements models (e.g., UML diagrams and flowcharts) are not accepted by our
approach.

Code The implementation code is an artifact organized in modules (packages). Each
module consists of one or more source files, which have been evolved over the years
and implemented with C-C++ language. We assume that the code uses the following
mechanisms to implement and realize variability.

� C-C++ preprocessors directives, like file inclusion, macros definition (#define and
#undef), and conditional compilation with #ifdef blocks. For the rest of this thesis
and for brevity, we use #ifdef blocks to also includes the related directives of #ifdef,
#ifndef, #if, #endif, #else and #elif.

� Conditional execution, like if-else blocks and switch blocks.

Reference architecture The reference architecture of a products family is taken into
consideration, since it includes the variability documented in the variability model (i.e.,
the current FM). Typically, this artifact represents a core architecture of the resulting
SPL, which is originally shared among the individual products of a family. The reference
architecture, in our approach, consists of common and variable software components (cor-
responding to software modules), for example, variable architecture components reflect
the differences among the products of a family. These differences (variations) appear in
both the design and implementation respectively.

With respect to the outputs of the approach, different types of artifacts are produced,
including.

Single master document A single master document (SMD) is an artifact that consoli-
dates the variability information of a products family into a single document.

Features list The features list (FL) is an artifact that contains a list of features of
the product(s) with the references to the requirement statements that have/implement
each feature, the variability-pattern of each feature, and the relationships and constraints
among the features.
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The current FM The current FM is a primary artifact to model the initial SPL and the
bootstrapped SPL and its evolution at a specific point, to support the delivery of the final
SPL. Each point represents an evolution step of the SPL, using the current FM, beyond
evolving the SPL with a (new) product.

Traceability tree The traceability tree is an artifact that stores the tracing links between
the current FM and code. Each tracing link maps a feature to the corresponding code
fragments that implement this feature, which enables the current FM and code to be
linked and to be evolved consistently.

4.4 Requirement engineering in the automotive domain

Typically, requirement engineers in the automotive domain express the requirements at a
detailed and technical level. Requirements at the different levels of abstraction are ranging
from goals to detailed technical requirements, including hardware details that need to be
included in the requirements document [Bra+14]. High-level requirements (e.g., RSD)
provide a justification for detailed requirements and support the understanding of the
requirements. Low-level requirements (e.g., a use case description) are detailed, and they
need to provide enough information for implementing the system correctly.

Automotive development is in general too complex to be managed by requirements doc-
uments written in NL (e.g., textual requirements) alone [WW02]. Definitely, this does
not mean that textual requirements are unnecessary, but at the same time using just the
textual requirements in automotive development is clearly insufficient. However, due to
the large size, variety, and complexity of the automotive development, a good model (no-
tation, method, and tooling) is necessary to describe the automotive features and variants
to handle variability at a higher abstraction level.

4.5 The primary input artifact of the EvoSPL approach

The adoption of SPLE to support the systematic reuse of software-related artifacts of a
products family is challenging, time-consuming and error-prone [IRBW15]. Considering
that requirements drive many development methods and activities, this thesis introduces
an approach that uses requirements, as presented in textual requirements, to analyze the
variability of a products family. Typically, requirements documents that are written in
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NL may be structured in various forms. According to a review presented in [LSS17],
SRS is frequently used as an input for feature and variability extraction. The struc-
ture of such documents (is designed by other research as RSD) may contain valuable
information, such as for grouping features or establishing parent-child relationships. Due
to considerable progress in NLP, we use requirements documents, typically in the SRS
format, as a primary artifact for feature and variability extraction (see chapter 5). A
variety of information, including commonality and variability, can be extracted from such
requirements.

Existing approaches focus mainly on code to extract the variability of a products family
[LSS17]. In this work, we decide that an effort may be required for using requirements
documents to extract variability, due to the missing traceability links from the code.

Software developers typically focus on requirements engineering documents. This is not
surprising, since such documents are the traditional interface both internally across de-
partments or projects and externally to suppliers [WW02]. In fact, the entire development
process (and especially a formal contract) is based on documents and their exchange. The
automotive domain has strong requirements in the development process. System specifi-
cation and system development have to be consistent. , in this thesis, we argue that the
use of requirements documents as input to the EvoSPL approach guarantees two main
outcomes: (1) generalizes the use of our approach, since such document is of central
importance when developing software in the automotive domain, and (2) reflects the au-
tomotive domain consistently, which helps to systematically manage variability among a
products family of this domain.

Given the importance of requirements documents as an initial development artifact, we
argue that extracting variability from such an artifact helps to map features to the other
artifacts (i.e., the reference architecture and code). Since our research work focuses on
the automotive domain, the Controller Area Network (CAN) Matrix document is also an
acceptable input format. More explanation will be offered for the CAN Matrix in the
cases study chapter (chapter 8).

There are different kinds of requirement artifacts in terms of text and various kinds
of models, like textual requirements specification, user manuals, use cases, and FMs.
Traditional requirements models (e.g., use cases) in their basic forms are mostly not able
to document variability as required by SPLE [PBDL05]. FMs are one of the most abstract
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popular ways to model variability in SPLs. In domain analysis, FMs can be used by
requirements analysts to negotiate the capabilities of the system with the users [Kan+90].
Therefore, requirements documents are the most important source of information that
may be used as an input to the EvoSPL approach to derive an FM.

For the rest of this thesis, we refer to the textual requirements documentation and NL
that are used as primary inputs to the EvoSPL approach as requirements documents (e.g.,
SRS, RSD, or CAN Matrix).

Variability in textual Requirements Textual requirements express variability by certain
keywords or phrases. Example 4.1 illustrates text fragments ‘either’ and ‘or’ in which
requirements variability has been made explicit by highlighting the ‘connectivity’ variation
and its variants ‘Bluetooth’ or ‘WI-FI’ methods.

Example 4.1: variability in textual requirements
The ‘connectivity’ of mobile phone shall be equipped with either ‘Bluetooth’ or ‘WI-FI’
methods.

4.6 Approach process overview

The process diagram in Fig. 4.4 shows how to handle evolution of an SPLs in the EvoSPL
approach. The process of our approach includes activities (the main activities have a white
background color, and pre- and mid- processing activities have a gray background color)
taking care of migration, adaptation, and change. The process begins with the initial
(prepossessing) activity study domain according to a particular products family, like the
domain-specific issues (i.e., notations, techniques, or process steps) [WW02]. Normally,
in the automotive domain, there are many requirements documents used to specify sensor
and customer needs. Hence, we take into account the selection of the proper artifacts of
the intended family, which results in (another pre-processing) activity elicit artifacts.

The difference analysis activity captures and identifies the similarities and differences
between two products of a family. This activity (i) writes the requirements document
(e.g., SRS) of each product into a set of atomic requirements (ARs), (ii) gives each AR a
unique id, and (iii) stores ARs of each product in the so-called requirements specification
(RS). Furthermore, (iv) this activity uses a proper text-based comparison tool to perform
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Figure 4.4: EvoSPL approach main activities.

pairwise comparison to specify the common and optional ARs between the RS of each
product. The comparison concerns the changes between them in terms of matched, added,
deleted, and modified ARs.

The variability analysis activity performs further processing and identifies the common-
ality and variability between the two products (i.e., using the RS of each product). The
variability analysis activity (i) specifies common and optional ARs, (ii) stores them in
a variability document (VD) of each product, and finally (ii) stores them in a SMD. A
SMD represents an initial adequate view of the commonality and variability of a products
family, since the products are related to the same family and share the same software
architecture (reference architecture). Furthermore, this activity (iii) transfers and orga-
nizes the variability information into a FL. The feature model synthesis activity maps the
variability information from the FL into the current FM, and it derives and synthesizes
the initial version of an FM, which is called at this point the current FM. Once this ac-
tivity has been completed, the model review activity is performed by software engineers,
to confirm that the current FM models the initial SPL.

The bootstrapping activity aims to add the remaining products of a family (one by one)
to the initial SPL ending with the resulting SPL. This activity (i) uses the requirements
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document of a given product, (ii) derives the features of that product, (iii) stores them in
a FL, and finally, this activity (iv) refines the current FM to encompass features of the
product. The bootstrapping activity uses the feature model refactoring scenario, which
applies predefined steps to refine the current FM with the features of a (new) product.
The scenario uses a catalogue of sound FM refactorings to perform the transformations
that improve and increase configurability of the current FM [Alv+06b].

The evolution activity evolves the bootstrapped SPL to encompass a new product once
it has been bootstrapped. This activity aims to add the features of a new product to
the current FM. It (i) uses the requirements document of a new product, (ii) derives
features of the product, (iii) stores them in a FL, and finally, this activity (iv) evolves
the current FM to encompass the features of a new product using the feature model
refactoring scenario. Continually, this activity updates the current FM with features of
a new product upon request. The activities of bootstrapping and evolution require the
feature model refactoring scenario. These activities aim to create the resulting SPL and
evolve it. As a side result, they support change and evolution. Finally, the mapping
activity relates a feature with its code-level implementation, through a kind of tracing
links. This activity uses the reference architecture of a products family as an intermediate
artifact to establish the links. Using this activity, the tracing links are stored in the
traceability tree, and are updated whenever feature changes occur.

Furthermore, Fig. 4.5 depicts the process diagram that relates the EvoSPL approach main
activities to (1) the phases and (2) the main artifacts used, created or modified by each
activity. The EvoSPL approach assumes the existence of a products family and their arti-
facts including the requirements document, reference architecture, and code. The artifacts
and the other documents, like a SMD, an RS, and the current FM go through different
activities. Different phases in this process are reverse engineering, forward engineering,
and mapping. These phases are represented on the diagram by partitions rendered as
horizontal ’swimlane diagram’.

4.7 Software Product Line factors and the EvoSPL approach

There are three main factors at play in SPL engineering: 1) commonality and variability
management that aims to identify commonality and variability of requirements; 2) trace-
ability of commonality and variability from requirements to the code; and 3) managing
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Figure 4.5: EvoSPL process diagram relates the main activities with the phases and the
main artifacts.

and tracking reuse of code among the products of a family, usually driven by the previous
two factors. The approach presented in this thesis proposes a re-engineering approach
that consists of three main phases: 1) reverse engineering; 2) forwarded engineering; and
3) mapping. The phases of the EvoSPL approach contribute to an SPL in the automotive
industry that takes the factors mentioned in this section into consideration.

This thesis deals with variability at the requirements-level of a products family in the
automotive domain. Besides, it considers the code-level when applying the mapping phase,
in specific, it focuses on the code implemented by the industrial C-C++ programming
language, because they are the most widely used languages in the automotive domain.
Variations are implicitly modeled by implementing C-C++ pre-processing directives. In
this way, variable (conditional) compilation results in a specific product variant. Support
for variations at code-level are provided by a few numbers of concepts and tools [Men+09],
but they do not consider the specific requirements of the automotive domain. The EvoSPL
approach considers such documents.

4.8 The site map of the approach

The EvoSPL approach helps software developers in handling variability and evolution of a
products family. For this purpose, the approach supports a three-phase process. As shown
in Fig. 4.6, the first and second phases (reverse engineering and forward engineering) cover
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the problem space. The final phase (mapping) covers the solution space. The problem
space includes requirements documents and the current FM artifacts, and it helps to
capture and manage the variability of a family. Furthermore, it supports the possibility
to deliver a specific product.

The mapping phase links the problem space to the solution space, including the reference
architecture and code. The mapping phase is supported by a tool that aims to relate
artifacts of the problem space to artifacts of the solution space. Furthermore, the mapping
process aims to create the relationships between the artifacts of the problem space with
the ones of the solution space and keep them updated. This is a concern that is continued
in two different scenarios (1) when linking the artifacts for the first time and (2) whenever
changes occur in the problem space artifacts.

Figure 4.6: The site map of the EvoSPL approach.

Our approach aims to shift the work steps to the FM, which helps to manage variability
at a high-level of abstraction and to avoid working on the code that gets more difficult to
understand, to maintain, and to integrate changes. For instance, during the investigation
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of the artifacts of a products family at Bosch Car Multimedia company, while performing
the case study, we have found out that identifying the variability that is scattered in the
code is very hard and time consuming.

4.9 Tool support for feature mapping

As Fig. 4.6 illustrates, among the three phases of the EvoSPL approach, only the mapping
phase is supported by a tool developed specifically to automate the mapping activity of
this phase. The tool, named friendlyMapper, semi-automatically maps the current FM to
the code artifacts that are related to the products family under consideration. The tool
focuses on evolution of the current FM of a products family, its implementation code, and
the mapping between them using the reference architecture as an intermediate artifact.

To preserve the consistency of a given FM, the friendlyMapper accepts several operations,
like adding a feature and removing a feature that the software engineers perform when
they wish to change that FM. The friendlyMapper can read the current FM (i.e., XML
file). In general, the changes to the current FM can have impact only on itself (e.g.,
changing an optional feature to mandatory or mandatory to optional), or they can also
affect the mapping links (e.g., add feature or remove feature). In the latter case, the tool
automatically updates the mapping to keep them consistent.

4.10 Assumptions and limitations

This section presents the assumptions and the limitations of this thesis. First sub-section
clarifies the assumptions that are required as a precondition to conduct this thesis (see
Fig. 4.7). Then, the next sub-sections discuss the limitations of the approach and the
automated tool, which only covers the third phase of the approach (see Fig. 4.8).

4.10.1 Assumptions

Feature The EvoSPL approach assumes that the feature represents a functional unit
that acceptable to users and developers, satisfies the requirements, and represent the
characteristics, actions, functions, technologies or services of a products family [XXJ12]
[ESSD14] [IRB14].
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Our approach assumes features represent decisions and provide configuration options (the
products of a family). When generating a products family, the features can be common
(shared by all the products of a family) and optional (differ between the products of a
family) [Dav+13]. In consequence, a set of products generated from a systematic modeling
of features is called an SPL.

Figure 4.7: The assumptions of the EvoSPL approach.

Feature implementation The approach considers that a feature is implemented at
the code-level, using the industrial C-C++ programming language. Thus, features are
implemented based on the project hierarchical level of the code elements (according to
programming grammar), ranging from the higher hierarchical implementation level, such
as (sub) packages, source files, and routines, to lower hierarchical implementation levels,
such as statements and expressions.

The EvoSPL approach assumes that a feature is implemented with a set of code fragments
(feature-related-code fragments) of the code elements mentioned above. Besides, a feature
always has the same implementation in all products where it is present. The approach
also assumes that a feature-related-code fragment includes an implementation associated
with more than one feature.

A products family The EvoSPL approach assumes that the products of a family
and the new one, in the automotive domain, are created with ad-hoc reuse (i.e., cloning
or branching). It assumes also that the implementation of the products of a family at
the code-level is written in C-C++ based language. It is also assumed that the domain
requirements are described using NL (e.g., ’English’) and presented in a textual format,
such as SRS documents [BKS15].
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Using our approach, it is assumed that a set of existing products family is often available
as a starting point for building the resulting SPL. Additionally, the understanding of
how features evolved in the products family is a prerequisite of the transition from ad-hoc
into the systematic reuse using an SPLE. Our approach assumes the process of cloning (or
branching) a (new) product of a family is performed using the initial release product. The
initial release product is a product that often evolved from the platform developed and
successfully used by the first customer and then modified according to customer needs.
However, if another product in the family is more suitable, as taken as a basis, then it
can be chosen.

Furthermore, it is assumed that the minimum number of the required products of a family
to perform the process of our approach successfully are three products of a family and
a new one. The new product is scheduled for being developed in the near future upon
receiving a new customer request.

Variability realization It is assumed that the variability of the code is handled using
C-C++ pre-processor directives [Men+09], such as conditional compilation directives,
macro definition, and predefined macro names and conditional execution, such as if-else
and switch blocks.

The architecture of a products family The approach assumes the evolution of an SPL
is performed in a setting where a family of products has a reference architecture (which
represent the architecture of all products), and the products were developed without
considering a systematic approach.

SPL adoption decision Our work assumes that the decision to extract an SPL from a set
of existing products family has been taken by the practitioners in the automotive domain.
The EvoSPL approach does not check the possibility and convenience of such a decision,
like business and organizational issues. For example, the cost estimation and benefits. It
is assumed all these issues are out of scope of this thesis. Our approach supports a process
that helps to adapt an SPL in the automotive domain, which may influence practitioners
to take the decision to adopt a systematic reuse using SPLE and to avoid the precautions
of such adoption.

Validity of software engineer decision Our work assumes that the software engineer can
make valid decisions when required by the process of the EvoSPL approach. For instance,
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concerning the name of the identified feature, software engineers can manually confirm or
assign a name of the identified feature. The approach does not support any validation of
the software engineer decisions (e.g., when they approved the output models).

Input of the approach It is assumed that each product of a family has a known
requirement document presented in the NL and used as a main input to our approach
[IRBW15]. Our approach assumes that the requirement document may occur in various
forms. According to review in [LSS17], our approach assumes that SRS/RSD will be
frequently used as the primary input artifact to extract variability and identify features.
Besides, it also assumes that some additional information in a tabular format is accepted.

4.10.2 Limitation of the approach

Automation The adoption of SPLs can be fully automated, completely manual, or
somewhere in between. The automation of the EvoSPL approach, in this thesis, is lim-
ited to adoption of the tools that are already developed/available and used by another
research (e.g., [Thü+14] [Difa]). Exceptionally, the third phase of the approach is par-
tially automated. Due to the fact that the automotive domain has special requirements,
the software engineers in this domain have frequently been dealing with variability in
documents in the past, and they know which manual adaptations have been more rele-
vant. Thus, for two reasons, some steps of the EvoSPL approach are performed manually.
The first reason, technically a fully automated SPL adoption is not possible in general.
The second one, to allow the intervention of software engineers in the process of EvoSPL
approach when needed or required.

The derived FM In our work, the derived FM does not define all the features of a
product family and all the constraints among the features with 100%. The reason behind
this limitation is that some features and their selection constraints are not detected. Our
work limits the explanation of dependency-relationships among features of the current
FM to mentioning it in through the manuscript. It does not present this relationship in
the illustrative example or industrial case study.

Generality of the approach The evaluation of the EvoSPL approach is conducted
only in the automotive domain, we argue that the process and method addressed here are
valid for the automotive industry in general. We also conducted one case study in the
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automotive domain, but we believe that other highly variant domains could benefit from
our approach.

Difference analysis technique The EvoSPL approach can handle pairwise comparison
of a products family. The approach compares and analyses requirements documents of
two products at the same time. However, the approach adopts a tool that can compare
two (up to three) documents together. Our approach enables software engineers to use
any tool that compares two versions of a document and specifiers the parts that have
remained the same and the difference parts between them (e.g., [Difa], [Dra]).

Figure 4.8: The limitations of the EvoSPL approach.

4.10.3 Limitation of the tool

The friendlyMapper tool presented in this thesis uses a particular artifact (i.e., traceabil-
ity tree) to map explicitly every feature of the current FM to the code fragments that
implement this feature (at the code-level). The tool is not able to map a feature to its
places in the reference architecture. The tool can automatically read features of the cur-
rent FM from XML file and maintain them in the traceability tree. At the same time, the
tool is not able to access the code fragments that implement a feature. Thus, it requires
the software engineer to manually enter the name of the feature-related-code fragments
(i.e., routine name) in the traceability tree.

The tool uses tracing links that relate and store the feature to its implementation code
fragments in the traceability tree and updates the tracing links whenever feature changes
occur. However, the automatic update of the code is required to maintain its coherence
with features. This is a limitation of our approach that we plan to address in the future.
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4.11 An illustrative example: ATM products family

As an illustrative example, we consider four products of the ATM family. Three products
of a family and a new one. The new product is scheduled for being developed in the near
future upon receiving a new customer request. These software products are developed by
ourselves. It is worth mentioning that these software products are developed by clone-
and-own technique based on the initial release product [San]. The purpose of this example
is to illustrate the main phases of our approach (which are explained in the upcoming
chapters). The ATM family allows a user to perform different kinds of ATM transactions.
The products of an ATM family represent a small case study.

As shown in Table 4.1, Product 1 supports common features among all the products
(core features): ‘check_balance’, ‘withdraw_cash’, ‘deposit_cash’, and ‘quit_transac-
tion’. Product 2 supports ‘convert_currency’ together with the core ones. Product 3 has
the core features of Product 1 and new ‘show_balance_screen’, ‘withdrawal_cash_limit’
and ‘transfer_money’ features. ProductNew supports ‘show_balance_report’ and ‘pay_ser-
vice’ features (in addition to previous optional features except ‘convert_currency’ the
feature), together with the core ones.

The FM in Fig. 4.9 shows the current FM of the ATM products family as manually
designed using FeatureIDE editor. This FM represents a basic FM without cross-tree
constraints. In this example, we used the products of ATM family (and the related
artifacts that we have developed) to better explain some parts of our work (we use the
same example to explain the steps of the EvoSPL approach in the upcoming chapters).
However, we only use the requirements documents, reference architecture, and code of
the products of the ATM family as an external input of the EvoSPL approach and thus
we do not know features in advance.

Table 4.1: Features set of each product of the ATM family.

product
name features of the product

Product 1 {check_balance, withdraw_cash, deposit_cash, quit_transaction}
Product 2 {check_balance, withdraw_cash, deposit_cash, quit_transaction, convert _currency}

Product 3 {check_balance, withdraw_cash, deposit_cash, quit_transaction, show_balance_screen,
withdraw_ cash _limit, transfer_money}

ProductNew {check_balance, withdraw_cash, deposit_cash, quit_transaction, show_balance_screen,
withdraw_cash_limit, transfer_money, show_balance_report, pay_service}
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Figure 4.9: The current FM of the ATM products family.
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Chapter 5

EvoSPL: Reverse engineering phase

The adoption of an SPL requires (1) analyzing commonality and variability of the exist-
ing artifacts and (2) tracking the changes that were introduced to these artifacts. This
chapter describes the reverse engineering phase of the EvoSPL approach that contributes
to support what is required in (1) when adopting an SPL practice. The reverse engi-
neering phase is divided into three main activities that aim to identify and document the
commonality and variability of the products of a family in the form of a variability model
(i.e., the current FM). This phase allows for managing the variability of the products of
a family at requirements-level using requirements documents artifact. The main output
of the reverse engineering phase is the current FM, which has been derived using the
activities of this phase.

As shown in Fig. 5.1, the EvoSPL approach starts off with the reverse engineering phase,
which uses the difference analysis activity and variability analysis activity to specify what
the common is and variable between two products. Besides, it uses the feature model
synthesis activity to deliver the current FM for the initial SPL. This phase is conducted
through a variety of semi-automatic approaches to define the common and variable re-
quirements of a products family and to derive and synthesize an FM, namely, the current
FM of an SPL under consideration. Furthermore, this phase introduces three novel meth-
ods. The first one is a feature identification method, the second one is a feature naming
method, and the last one is dedicated to an FM construction.

Figure 5.1: EvoSPL process: reverse engineering phase.
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Modelling variability in the EvoSPL Modelling variability is an important step in an
SPL practice. There are many different approaches of variability modelling, each with a
different focus and goal. The EvoSPL approach adopts the common approach that aims
to express variability in terms of common and optional features, a process called feature
modelling. It uses FMs (called in this research the current FM) and their graphical
representation as feature diagrams, because they are currently the most popular form of
variability models.

The EvoSPL approach uses the reverse engineering phase to derives the current FM that
owns the following characteristics.

� In characteristic 1, the current FM can be used by software engineers to negotiate
the capabilities of the product with the users (in case the requirements documents
are within the domain of the products). Our approach focuses on extracting the
functional features that represent the customer needs.

� In characteristic 2, the current FM identifies Common, Optional, Or, and Alterna-
tive features.

� In characteristic 3, the current FM identifies the variability-pattern (i.e., Common,
Optional, Or, and Alternative) of each feature.

� In characteristic 4, in addition to the variability-pattern, the current FM identifies
feature-relationship. The parent-child relationship between features and dependency-
relationship (cross-tree constraints) are allowed.

All the characteristics are explained in detail within the manuscript of this chapter.

5.1 Difference analysis activity

This section explains the difference analysis that is designed to fit product families of
the automotive domain. This activity supports the necessary analysis of similarities and
differences among the products of a family using two products of a family at once. This
activity consumes the requirements document of each product and delivers an initial
document that represents the individual similarities and differences for each product of
a family. Using a proper text-based difference analysis (e.g., a text-based comparison
tool), this activity captures and detects the similar and different observed text items in
the matched requirements documents.
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The activity in brief Understanding the modifications from one product to another
starts with identifying the differences of their specifications. As shown in Fig. 5.2, the
difference analysis activity (i) takes as input the requirements documents of two products
of a family, (ii) writes the requirements documents of each product into a document that
adopts rules and formats, named an RS. Next, this activity (iii) detects the similarities
and differences between the RS of each product, and (iv) organizes (requires software
engineering intervention) the comparison results in an RS of each product.

Figure 5.2: EvoSPL process: difference analysis activity.

Specific requirements of the difference analysis activity According to the EvoSPL
approach, there are specific requirements to support the difference analysis activity to
improve the matching between requirements documents, and they are.

R1. It is required to understand the domain of the products family and consult project
manager and development team regarding the general information of the family under
the consideration.

R2. Many software engineers change the names given to signals, services, and technolo-
gies while customizing the requirements document to adapt the requirements of a new
customer. Changing the names indicates unrelated and irrelevant differences that can be
considered as a modification for the difference analysis of the resulting SPL, when match-
ing the requirements documents against each other. To mitigate this, it is required to
unify the name of signals, services, and technologies among the requirements documents
of a family under the consideration.

R3. It is required to ignore irrelevant differences for the variability of the resulting SPL,
like filtering formatting changes and editing beautifying of requirements documents.

R4. It is required to specify the relevant variability items to be considered when matching
requirements documents. This can be determined by software engineers during the study



5.1. Difference analysis activity 75

Table 5.1: An example of relevant variability items of the requirements document in the
automotive industry.

variability item examples
document release information date, product number, revision number
message structure message layout, number of bits, error handling

message signals signal label, signal description, signal designation,
signal status, signal counter, signal values

domain activity. Table 5.1 lists an example of relevant variability items in requirements
documents of the automotive domain that are considered by our approach. We do not
claim for completeness, but we believe they are valuable in the matching process.

R5. It is required to guarantee that the products of a family used by our approach are
reliable and working, compiled, and executed independently.

R6. Before starting the difference analysis activity of the EvoSPL approach for the first
time, it is required that software engineers select one of the products to match as the initial
release product and another one needs to be the product with the most functionalities
(features) among all the products of a family. The software engineers of a family can
decide about the products in the domain analysis and artifacts election activities.

The difference analysis steps Using two products of a family, this activity consumes
the requirement document of each product to apply the difference analysis steps that are
defined for the EvoSPL approach as follows.

Step 1.1 rewrites the requirements document of each product into a set of ARs structure.

Atomic requirement structure AR in this research work is an object with a unique identi-
fier (id) and self-contained statement (statement) about the properties and functionalities
of a product under consideration. To rephrase the text of requirements document into
AR structure, our approach adopts a specific format (guidelines) that is presented by
Fernandes et al. in [FM16]. The following examples show RS that follow the guidelines.



76 Chapter 5. EvoSPL: Reverse engineering phase

atomic requirements
id statement
R1 Perform ATM transactions.
R1.1 ATM checks balance.
R1.1.1 ATM shows the balance on screen.
R1.1.2 ATM shows the balance on report.
R1.2 ATM withdrawals cash.
R1.2.1 ATM withdrawals cash with a limit.
R1.2.2 ATM withdrawals cash without limit
R1.3 ATM deposits cash.

Step 1.2 stores the new structure of the requirement document into an RS document. The RS
is then considered for comparison with the RS of another product.

RS preparation Using the EvoSPL approach, software engineers can manually edit and review
the ARs of an RS using a proper word processor (e.g., document formats of a popular office
suite like Microsoft Word can be used). The software engineer experts who are familiar with the
varying among a products family need to analyze such existing documents. Such experts have
frequently been dealing with variability in documents in the past and they know which parts in
the text have most relevant details that may contain possible variations [Rab+08].

Step 1.3 performs a text-based (line-based) comparison that matches the RS of each product
against each other, to specify the similar and variable ARs between them inform of change
terms. The result is the similar and different ARs between the matched RS documents (distance
between the documents). By the end of this step and for simplicity, the matching results are
stored in the RS document of each product. Since the similarity and variability are specified
using change terms beside each AR, this reduces redundancy and avoid inconsistencies between
the documents.

Change terms of the ARs According to EvoSPL approach, RS of each product are scanned
and compared to specify the changes between them. The comparison concerns the change in
terms of matched, added, deleted and changed ARs, which called change terms of the ARs.
There are no restrictions regarding the technique used for text-based comparison. However, the
technique should be flexible to highlight both the similarities and the differences between the
documents (e.g., RS documents).

According to the EvoSPL approach, matched ARs identify similar requirements existed in both
RS documents (both products). The three types of differences added, deleted and changed ARs
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identify the modifications between two products. Both added and deleted identify differing ARs
existed in one of the RS documents, where changed identifies differing ARs existed in both. The
concept of change terms of the ARs is used to determine the variability-pattern of the AR (see
Variability-pattern of the AR of section 5.2.1)

RS structure Fig. 5.3 depicts the structure of an RS by the end of the difference analysis
activity. Each product has one RS that contains many interdependent ARs, where each AR
has a unique id and written statement. AR is the building blocks of each RS and it presents
the similarity and difference (the change terms) of the products that have been selected as an
input to the difference analysis activity. Moreover, a set of ARs may specify a feature and the
relationships among them, which correspond directly to the notations used to build the current
FM in future and which enable a clear understanding of the features of a products family.

Figure 5.3: EvoSPL process: requirements specification structure.

5.2 Variability analysis activity
This section describes the variability analysis activity dedicated to the EvoSPL process, to
support the variability management of an SPL. As shown in Fig. 5.1, the variability analysis
activity follows the difference analysis activity. Typically, it is the basic activity when adopting
an SPL from the existing products [PBDL05]. The main purpose of the variability analysis
activity is to support the design of variability of the products of a family iteratively into the
current FM, by identifying the commonality and variability among them. The variability analysis
activity aims to create a FL that describes the commonality and variability of a products family
in terms of features and decides about its representation in the resulting SPL in a given context.
The outcome of the variability analysis activity is used to feed the feature synthesis activity.
This activity derives and constructs the current FM owned specific characteristics explained
earlier in this chapter (see Modelling variability in the EvoSPL).

The activity in brief In general, the variability information at requirements-level is organized
in the requirements document artifacts of a products family. In the variability analysis activity,
important observations can be made to specify difference analysis between multiple products in
the context of variability. As shown in Fig. 5.4, the variability analysis activity (i) receives the RS
documents of the current used products (the products of a family that were used in the difference
analysis activity) as an input, (ii) specifies the commonality and variability between them, as
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well as stores the result in a VD of each product, and finally (iii) returns the commonality and
variability of the VDs into a SMD (see VD and SMD). This leads later to (iv) identify features
and store them in a FL. This activity is the longest in the reverse engineering phase and it
consists of four main macro steps: variability presentation, visualization technique, features
identification, and variability transformation.

Figure 5.4: EvoSPL process: variability analysis activity.

VD and SMD Equivalently, a VD and SMD contain the analysis of commonality and variabil-
ity of the products of a family at requirements-level. Compared to the SMD, the VD involves
the individual information related to commonality and variability of a specific product of a fam-
ily (commonality and variability on product-level), where a SMD represents an initial adequate
view of commonality and variability of the products family (commonality and variability on a
products family-level).

Figure 5.5: EvoSPL process: A variability document and single master document struc-
ture.

5.2.1 Variability presentation macro step

The variability presentation macro step reads from the VDs of two products and uses the visu-
alization technique (section 5.2.2), which proposed for the context of the EvoSPL approach, to
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organize commonality and variability into a SMD. This is based on the facts that the products
of a family are related to each other and have enough similarities. In addition, they almost have
a reference architecture. Fig. 5.5 depicts the structure of a VD, SMD, and their interrelation by
the end of variability presentation macro step.

When the matching in the difference analysis activity is done, the resulting matched documents
(the RS documents) are further processed in the variability analysis activity to identify the actual
commonality and variability of the products family (see Table 5.2). The latter activity adopts the
variability presentation macro step to guide a consistent variability design, by comparing the VD
of each product against each other, identifying the common and variable parts (ARs) between
them, and then storing the results into a SMD. The following are the variability presentation
steps.

Step 2.1 assigns the variability-pattern of each AR and stores them in a VD of each product.

Variability-pattern of the AR The ‘common’ ARs represent the commonality (common textual
requirements) among the products of a family and the ‘optional’ ones represent the variability
(variable textual requirements). Based on the definition of change terms of the ARs: matched,
added, deleted, and changed presented earlier in this chapter (see Change terms of the ARs),
the EvoSPL approach defines the variability-pattern of the AR as explained in Table 5.2.

Step 2.2 compares (matches) the VD of each product against each other.

Step 2.3 transfers the ‘common’ AR into a SMD without alteration and labels the AR with a
‘common’ keyword.

Step 2.4 transfers the ‘optional’ AR into a SMD and labels it with an ‘optional’ keyword.
Furthermore, it specifies the VD and the product that the AR belongs to.

Step 2.5 transfers the ‘or-group’ / ‘xor-group’ AR into a SMD under its parent AR (see Parent
AR below) and labels the AR with ‘or-group’ / ‘xor-group’ keyword. Furthermore, it specifies
the VD and the product that the AR belongs to.

Step 2.6 repeats step 2.3 to step 2.5 until the final AR is reached.

Parent AR In the EvoSPL, a parent AR is an AR that contains all the ARs contributing
to the same textual entity. The entity represents a heading (title), type, category, technology-
specific, signal, service that appears in the requirements document of a product and transfer to
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Table 5.2: Variability-pattern of the atomic requirement.

variability-pattern change term description
‘common’ matched AR is included in both RS documents.

‘optional’
added,
deleted,
changed

AR is part of a group of ARs
that are existing in the other RS
documents, and if their parent’s AR is included,
at least one of those ARs is included in the RS.

‘or-group’ changed

AR is part of a group of ARs
that are existing in the other RS
documents, and if their parent’s AR is included,
at least one of those ARs is included in the RS.

‘xor-group’ changed

The AR is part of a group of ARs
that are existing in the other RS
documents, and if their parent’s AR is included,
exactly one of those ARs is included in the RS.

the VD as a side result of the difference analysis activity. Typically, the ARs have shared terms
among each other and with the parent AR that they belong to. The software engineers can use
the text-based parsing (see Text-based parsing below) to investigate such terms. The parent
AR can be mandatory, if it includes requirements from all input VDs or optional otherwise.
The EvoSPL approach uses a text-based parsing to extract terms from the ARs separately and
identify the relationships among them, if they share similar terms. These relationships are then
used to investigate the relationships among ARs and to recommend a grouping of the related
ARs.

Related ARs The visualization technique and the feature identification macro steps require
identifying the related ARs and parent AR. Thus, the EvoSPL approach supports investigating
the relationships among the ARs using the following resources: (1) domain analysis of the
related products of a family, which performed during domain analysis activity, (2) requirements
documents, which is originally used as an input to the difference analysis activity, (3) the domain
requirements engineers can often help to identify the related ARs, and (4) the text-based parsing.
The EvoSPL approach requires the software engineers to provide a final decision to confirm about
grouping of the ARs.

Relationships among the ARs In the EvoSPL, software engineers can investigate the rela-
tionships among the ARs to group them together and then to identify the parent AR. Listening
1 of the illustrative example (section 5.4) explains this concept for two ARs. In particular, it is
recommended to analyze the relationships among the ARs of a SMD (all the explanation is also
applicable for the documents that adopts the AR structure) iteratively, where a single iteration
comprises of (i) scanning the ARs of a SMD, (ii) performing initial grouping of the ARs, (iii)
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investigating the relationships among the ARs to identifying the related ARs and the parent
ARs.

Initial grouping of the ARs The software engineer can initially apply a grouping to any set
of ARs of a document that adopts an AR structure. For example, grouping two or more ARs
that have shared terms or dependency. The key of the following recommendations is to enable
software engineers in their role to group ARs

1. Software engineers can group the ARs originated from the same section or subsection of
requirements document into a group.

2. Software engineers can group the ARs originated from the same paragraph of requirements
document into a group.

3. Software engineers can group the ARs originated from a consecutive order of sentences of
requirements document into a group.

4. Software engineers can group the ARs originated from a compound sentence of require-
ments document into a group. Normally such a sentence represents or/alternative ARs
that are related to a parent AR.

5. Software engineers can group the ARs originated from sentences that explain a title (or
heading) of requirements document into a group.

6. Software engineers can group the ARs that originated from sentences explaining a service,
technology, signal, action or scientific term of the requirements document into a group.

7. Software engineers can group the ARs that have shared terms and dependencies into a
group.

Investigating the relationships among the ARs Considering the results of an initial grouping
of the ARs (see Initial grouping of the ARs), software engineers can investigate the relationships
among ARs in the same group, to find out the related ARs (and parent AR), as follows.

1. Software engineers scan the ARs in the same group separately.

2. Software engineers use the text-based parsing (see Text-based parsing) to extract terms
from each AR (see Extract terms from the ARs).

3. Software engineers build a set of terms of each AR and try to find commonalities (e.g.,
shared terms) among them.
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4. Software engineers study and specify the relationships among the terms of each group of
the ARs.

5. Software engineers identify related ARs and then determine the parent ARs.

Text-based parsing Our approach uses a text-based parsing technique to extract terms from
the ARs separately (i.e., NLP). First, the software engineers identify the sequences of terms
(important words that have variability – related information, present functionality, or feature)
in each AR of the same group. Each term forms a unit representing a token defined in the
grammar of a sentence. Thus, the parsing provides a set of terms of each AR represented in a
document (e.g., a VD or SMD). The experts who are familiar with the variability among the
products of a family need to analyze the terms. Such experts have frequently been dealing with
variability in the documents in the past and they know which terms have most relevant details
that may contain possible grouping of the ARs. At this point, the experts can extract terms
from each AR in the same group and detect the relationships among them.

Extract terms from the ARs Software engineers can 1) parse (i) functions (ii) actions (or
verbs), (iii) objects, including instruments, technologies, services, and signals, (iv) parameters
(or attributes), but they can ignore their values unless the value influences an action (e.g., a
value that influence calibration of the sensor), and (vi) capabilities. Also, characteristics are
taken into consideration. Next, they 2) apply normalization on the parsed terms of each AR
prior investigating the relationships among them.

Normalization The text-based parsing in the EvoSPL approach uses a term processing
to normalize the extracted strings and receive more valuable terms [SKL08]. The proposed
processing includes.

� Splitting by separating the extracted terms when required with a dash (or space) in
between, like “messageSiganl” to “message” and “signal”.

� Stemming by removing the suffix from a word and reducing it to its root word, like using
singular terms only “messages” to “message”, “transfers” to “transfer”, or “transferring”
to “transfer”.

� Filtering by excluding the non-essential terms, like removing terms with less than three
characters or stop words like ’the’, ’is’, ’at’, ’which’, and ’on’.

5.2.2 Visualization technique macro step
This section presents the visualization technique that is dedicated to the variability analysis
activity of the EvoSPL approach. The technique aims to improve visibility of the commonality
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and variability in the delivered documents of the approach (e.g., a VD, SMD, and FL), which
consequently helps to identify features and their variability-patterns (i.e., common and optional
features) in the documents [Mar+14]. The EvoSPL approach uses a semi-automated technique
that requires software engineer’s intervention and a word processor that is equipped with a
predefined theme color palette (e.g., the theme color palette of the Microsoft Word). As shown
in Fig. 5.12 and Table 5.4, the visualization technique helps to display variability information
in the EvoSPL approach and supports the following capabilities.

1. The visualization technique colors the common and variable (different) ARs in green and
yellow bars respectively. Each bar visualizes an AR and the length of the bar depends on
the length of the statement.

2. The visualization technique uses keywords such as ‘Common’, ‘Optional’, ‘Or’, and ‘Alter-
native’ to define the variability-patterns of the ARs. An ‘Or’ and ‘Alternative’ symbolize
‘or-group’ and ‘xor’ group respectively.

3. The visualization technique colors the related ARs (or grouped together, see related ARs)
with the same color.

4. The visualization technique colors parent-feature and its related child-feature with the
same color.

5. The visualization technique assigns each feature (parent-feature and its’ child-feature) the
same color of the ARs that contribute to this feature.

5.2.3 Feature identification macro step
The EvoSPL approach does not assume a clear upfront knowledge of the existing features
throughout artifacts of a products family. Feature identification macro step identifies features
of the SMD. This macro step is applicable to any document that adopts the AR structure (See
Atomic requirement structure).The feature identification macro step performs the following fea-
ture identification steps.

Step 2.7 (text-parsing) analyses each AR in a SMD and identifies its constituents with the vari-
ability term role. This step specifies the terms within each AR that have important variability
information (features and dependencies among them) to the future SPL. Finally, this step re-
sults in a set of terms for each AR. Each term or a collection of terms in the set may represent
a feature. This depends, finally, on domain engineer’s confirmation.

Variability term role Using our approach and following some concepts presented by Ridzik
and Reinhartz-berger [IRB14], software engineers can parse ARs through actions, functions, and
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services. They can use the following variability terms role, which have special importance to the
functional perspective of variability of the automotive industry, including: tr1. Who performs?
(e.g., sensor), tr2.What is performed? (action/verb - e.g., calibrates), tr3. On what object is
it performed? (e.g., angle), tr4. How is it performed? (instrument - e.g., calibration value),
and tr5. What condition is performed? (e.g., flag=1). Besides, software engineers can use
objects (tr3), including the following: names and types of technologies, services, and signals.
Additionally, they can use tr6. capabilities, parameters, and characteristics.

Step 2.8 (naming features) suggests a proper name for the feature from the set of the extracted
terms of each AR, using the naming features method (NFM).

Naming features method NFM method takes into consideration (1) the software engineers’
preferences, (2) the appropriate perspectives of variability, and (3) the set of terms of each AR.
Besides, this method considers specific resources when giving a proper name for the feature.
The method (i) gives a meaningful feature name (see Feature name guidelines below) and (ii)
consults the domain expert and project manager for the revision and confirmation. In case of
rejection, the software engineers ask the domain expert and the project manager to (iii) propose
a proper name and then they (iv) investigate the consistency of the name to decide on the
final name of a feature. This reworked as many times as possible to (vi) resolve the conflicts
concerning the feature name until the proposed name turned into an agreement.

Resources The resources that help software engineers when giving a proper name for the
feature are: (i) the requirements documents of the products of a family, (ii) code, including the
related modules, routines, variables or constant names, and comments – usually the code has
meaningful names provided by the developers, and (iii) domain experts, domain requirements
engineers, and a project manager.

Feature name guidelines Basically, it cannot be assumed to find a clear name of the feature
inside the description and implementation of a products family. For the purpose of assigning
meaningful names for the features that are used to build the current FM, software engineers can
use the following guidelines.

1. Software engineers can use requirements documents and components of the reference ar-
chitecture as a guidance to suggest a proper name for the feature. Besides, they use the
code related modules, routines, variables or constant names, and comments.

2. Software engineers can follow the perspective of domain requirements engineer and project
manager to suggest a proper name for the feature.
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3. Software engineers apply normalization (see Normalization) on the parsed terms of each
AR, prior giving a name for the feature.

4. Software engineers give a unique name for each feature.

Give a unique name The name of a feature can be any free-form text that describes the
feature [XXJ10]. The software engineers can give a name of the feature as follows: irst, they
can choose from the extracted terms of each AR. Next, they keep the name of technologies,
hardware, instruments, signals, actions, condition flags, services and attributes of the AR with-
out alternation. In other words, they can use them to suggest a name of the feature. In case a
free-form text of the feature has two words, they can separate terms with a dash (or underscore)
character in between.

Step 2.9 (variability identification) identifies and organizes the variability information of the
SMD, to fit its transformation into a FL (as a pre-step to feature model synthesis activity) using
the feature identification method (see Feature identification method).

Variability information The variability information of a SMD is identified and organized in
three main dimensions: (i) the feature name, which is the main building block of the current
FM (valid combinations of the features present a unique product), (ii) variability-pattern of the
feature that identifies the type of feature and its representation in the current FM, and (iii)
feature-relationship that defines valid connections between the features.

Variability-pattern of the feature The variability-pattern of the features: Common (or manda-
tory), Optional, as well as Or, and Alternative are determined by our approach, based on ARs
of the input VDs. This can be abstracted as follows.

1. The feature can be ‘Common’, if it includes ARs from all input VDs (i.e., two VDs).

2. The feature can be ‘Optional’, if it includes ARs from one or more VDs but not all of
them.

3. The feature can be an ‘Or’, if it includes AR within at least two ARs grouped under the
same parent AR in a SMD and originated from one or more VDs.

4. The feature can be ‘Alternative’, if it includes AR within at least two ARs grouped under
the same parent AR in a SMD and originated from different input VDs.

Feature identification method The EvoSPL approach contributes a novel method, named
feature identification methods (FIM) to perform variability identification of a document that
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adopts the AR structure (see Atomic requirement structure). The method identifies the features
and their variability-pattern and feature-relationship in the SMD and summarizes them in a FL.
Fig. 5.6 depicts the main stages in the FIM: foundation, variability knowledge, variability rules,
and process.

Stage 1 (foundation) is a collection of basics that constructs FIM and facilitates its applicability
on the ARs of a SMD or document that adopts the AR structure.

F1 FIM is built on domain analysis of the existing product families.

F2 FIM uses an FM concept in the SPL.

F3 FIM is somewhat based on the inference rule methods, specifically, the forward chaining
[Chi06] [RJN16].

Stage 2 (variability knowledge - VK) is a collection of facts that are applied sequentially to each
AR of a SMD (see below).

1. A set of ARs identifies a feature.

2. A parent AR forms a parent-feature.

3. A set of ARs forms a ‘Common’ or an ‘Optional’ solitary feature, whenever they have one
value and do not carry options or alternatives.

4. A set of common ARs represents a ‘Common’ feature.

5. A set of variable ARs represents an ‘Optional’ feature.

6. Grouped ARs except the parent AR in the same group form child-feature.

7. AR forms a ‘feature group’ feature whenever it consists of a set of ‘or-group’ or ‘xor-group’
ARs.

8. AR forms an ‘Or’ feature, whenever it is within a group of ARs (‘or-group’), and at least
one or more ARs (options) can be included in a product. This can be observed by software
engineers while scanning the SMD.

9. AR forms an ‘Alternative’ feature, whenever it is within a group of ARs (‘xor-group’),
and just one AR (option) can be included in a product. This can be observed by software
engineers while scanning the SMD.
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Stage 3 (variability rules - VR) are a collection of rules that have an if-then statement format.
The if-then statement consists of two sides, on the left-hand side is if-side and on the right-hand-
side is then-side. We can apply the rule on an AR whenever the left-hand side of a VR matches
a given AR (see below).

R1: If an AR is a parent-feature, then it has a parent-child relationship with features of the
same group.

R2: If an AR is a child-feature, then it has a parent-child relationship with the parent-feature
of the same group.

R3: If an AR has an ‘or-group’ variability-pattern, then it forms an ‘Or’ feature with the ‘feature
group’ of the same group, and it is contained by an ‘or-group’ with the ARs of the same group.

R4: If an AR has an ‘xor-group’ variability-pattern, then it forms an ‘Alternative’ feature with
the ‘feature group’ of the same group, and it is contained by an ‘xor-group’ with the ARs of the
same group.

R5: If an AR requires another AR to be included, then it has a ‘requires’ relationship with that
AR.

R5: If an AR requires another AR to be excluded, then it has an ‘excludes’ relationship with
that AR.

Stage 4 (process) works on the ARs of a SMD and updates them sequentially. As shown in
Fig. 5.6, FIM starts the first iteration by using the VK and applies them sequentially on each
AR until the last AR in the SMD is reached. In case, one of the VK is not satisfied (does
not match an AR) it will be skipped. After the ARs of the SMD are updated by the VK, the
FIM starts the second iteration, by using the VR. The method searches ARs until one of them
matches the left-hand side of one VR and then applies the right-hand-side of this VR on that
AR. The FIM stops whenever it reaches the last AR in the SMD. Now the SMD is updated with
variability information that makes it rich enough to feed the variability transformation macro
step.

5.2.4 Variability transformation macro step
The variability transformation macro step transfers the identified variability of a SMD (or a
document that adopts the AR structure) and organizes it into a FL in terms of features. FL is
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Figure 5.6: EvoSPL process: process structure of feature identification method.

a list of features with the references to the ARs that have/implement each feature. Besides, the
list presents the variability of each feature in a three-dimensional format (1. feature name, 2.
variability-pattern, and 3. feature-relationship). Thus, the content of a FL is used directly as
an input to feature model synthesis activity. This macro step adopts the following variability
transformation steps.

Step 2.10 creates a FL content iteratively by scanning the ARs of the SMD and expressing the
variability in each iteration as follows.

1. Feature name that has a specific and meaningful name presented its role in the resulting
SPL and for human uses.

2. A set of ARs that contributes to specify each feature.

3. Variability-pattern of each feature (see Variability-pattern of the feature).

4. Feature-relationship that specifies the relationship between a feature and other features
(see Feature-relationship).

Step 2.11 resides a child-feature under their parent-feature.

Step 2.12 resides an ‘Or’ / ‘Alternative’ feature under their parent-feature (i.e., feature-group).

Feature-relationship The relationships between a feature and other features in a FL are
defined as: a (1) parent-child relationship, like ‘Mandatory’ – child feature is required, ‘Optional’
– child feature is optional, ‘Or’ – at least one of the features must be selected, and ‘Alternative’
– one of the features must be selected. In addition, a (2) dependency-relationship (or cross-tree
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constraints) are allowed, like ‘requires’ – the selection of ‘feature A’ in a product implies the
selection of ‘feature B’, and ‘excludes’ – ‘feature A’ and ‘feature B’ cannot be part of the same
product.

As shown in Fig. 5.7, a FL can have a set of features, where each feature has a predefined
variability- pattern and feature-relationship. A feature is categorized as: a parent-feature and
child-feature. Moreover, in this list, a feature is related to one or more ARs that are responsible
for the feature specifications in a SMD. The documentation of features with the related require-
ments (i.e., ARs) enables a quick understanding of the functionality of each and explains the
role of this feature in a products family.

Figure 5.7: EvoSPL process: features list structure.

5.3 Feature model synthesis activity
The feature model synthesis activity constructs the current FM that represents the variability
of the input documents (i.e., requirements documents) of the EvoSPL approach. In specific, this
activity transforms the variability of a FL into the current FM (see Feature modelling below).
To this end, the software engineers’ and customers’ needs are taken into consideration, since our
approach uses requirements document artifacts as an input, and it allows software engineers’
intervention while performing the process of the approach.

Feature modelling The current FM is a tree that represents common and variable features
in the extracted SPL and is graphically described through the feature diagram notations, which
specifies all products of a family through a hierarchical tree structure. The nodes of the current
FM show features and edges define the relationships between features.
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The activity in brief This activity (i) consumes a FL, (ii) maps the variability information
from the FL to an FM and (iii) delivers the current FM that represents the initial SPL in a
specific context. The final output of this activity is presented in FeatureIDE format [Thü+14].
This activity helps software engineers to manually design the current FM using FeatureIDE
editor that draws, updates, and exports the model.

The feature model synthesis activity maps a FL to the current FM, to deliver a model (i.e., the
current FM) that contains the following elements.

1. The feature name identifies the feature and it is put inside the respective symbol (repre-
sented by a rectangle) in the tree of the current FM.

2. The variability-pattern of a feature indicates one of the patterns that are presented in the
variability-pattern of the feature (see Variability-pattern of the feature).

3. The feature-relationship that produces configurations of features defined as a combination
of products work successfully under a given SPL (see Feature-relationship).

Feature model construction To construct the current FM that represents the variability found
in the input requirements documents, the role of software engineers is to use FeatureIDE editor
(or any proper feature modelling editor) for designing the current FM (see The current FM tree).
To construct the current FM, software engineers need to perform the steps as follows (Fig. 5.8
exemplifies the steps through a simple FM ‘mobile phone family’). First, software engineers
(step 3.1) specify and draw the root feature of the feature diagram (see Feature diagram). Next,
they (step 3.2) start with the first feature in a FL, (step 3.3) pick the feature name and draw
it inside the respective symbol (rectangle) inside the feature diagram of FeatureIDE editor, and
(step 3.4) define the variability-pattern of the feature.

Next, they need to (step 3.5) draw the feature’s child-feature (if exists) and (step 3.6) define the
feature-relationship between them. The tree of the FeatureIDE models the variability-pattern
and parent-child relationship of the features. Software engineers need to perform these steps until
they reach the last feature in the FL. Finally, they need to (step 3.7) use the propositional logic-
method capability of the tool (see Constraint dialog) to express the dependency-relationship
inside the current FM.

By the end of the feature model synthesis activity of the reverse engineering phase, the software
engineers can derive the current FM that defines which feature combinations lead to valid
products within the initial SPL, for the first time. Besides, they can refine and redesign the
current FM in the forward engineering phase when required.
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Figure 5.8: Constraints Dialog of the FeatureIDE.

The current FM tree The current FM is a tree that contains a set of features of the extracted
SPL and their relationships. A feature can be decomposed into more features that are Common,
Optional, Or, and Alternative. As shown in the left-hand side of Fig. 5.8, the root of the tree
represents the root feature (i.e., Phone feature). First, the root feature is the main root of the
tree. Hence, there is always exactly one roof feature of the tree, and it is taken from the name
of the SPL (‘Phone’).

Typically, the remaining nodes of the tree represent a solitary feature (e.g., Camera feature),
feature group (e.g., Connectivity feature), or grouped feature (e.g., Bluetooth feature). A soli-
tary feature can be Mandatory (e.g., Connectivity feature) or Optional (e.g., Camera feature),
and it can be composed of none (e.g., Camera) or more solitary features, as well as feature
groups (e.g., Connectivity feature). A feature group (e.g., Connectivity feature) consists of a set
of grouped features (alternative features). A set of grouped features can be contained by an ‘Or’
relation (e.g., Bluetooth and WI-FI features) or an ‘Alternative’ relation. The first one forces to
choose one grouped feature or more. The second one forces to choose only one grouped feature.
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However, the EvoSPL approach considers the parent-feature originated from a common parent
AR, where this AR within a group of all the ARs of a SMD, and it has a parent-child relationship
with all ARs of a SMD, as the root feature. Normally, the root feature appears in the first row
of a SMD and FL (see Table 5.3 and Table 5.4).

Feature diagram As shown in the left-hand side of Fig. 5.8, the feature diagram is the
graphical representation of the current FM. The diagram presents the root feature of the tree
(e.g., Phone), features (e.g., Connectivity), variability-pattern of the feature (e.g., filled circle
on the top of the rectangle), and feature-relationship (e.g., ’Connectivity’ feature has a parent-
child relationship with the ‘Bluetooth’ feature). The variability-pattern of a feature depicted as
follows.

� with a filled circle at the child end of the relation for a Common (Mandatory) feature.

� with an empty circle at the child end of the relation for an Optional feature.

� as filled arcs for features forms an ‘Or’ relation.

� as empty arcs for features forms an ‘Alternative’ relation.

Besides, it also shows the overall constraints/dependency-relationship. The legend provides
information about the elements used in the feature diagram.

Constraints dialog To express the constraint (dependency-relationship) inside the current FM
(e.g., Camera implies Bluetooth), software engineers can formulate such constraint using the
Constraint dialog of FeatureIDE. As shown in the right-hand side of Fig. 5.8, the constraints
window is a text editor with auto-completion supported, auto-validity check and other tools
[Git].

To create constraints inside the feature diagram that models the current FM, the Constraints
dialog of FeatureIDE supports (i) a list of available features and a filtering method for this list,
(ii) a list of available operators, including, Not, and Or, Implies, Iff, and parentheses (always
used in pairs), (iii) a free-text editor where you can formulate constraints according to the
grammar, and (iv) the dialog’s control buttons where the user can save or abort a constraint.

5.4 An illustrative example of the reverse engineering phase: ATM
products family

The illustrative example presented in chapter 4 will be used all over the phases of the EvoSPL
approach. Thus, to preliminary illustrate the reverse engineering phase of the EvoSPL approach,
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we consider two requirements document files of the ATM products family. One of the require-
ments documents belongs to Product 1 (initial release product) and the other one belongs to
Product 3 (see R4 of Specific requirements of the difference analysis activity above). Next, we
apply the steps of the reverse engineering phase on the documents, and we derive and construct
the current FM (see Fig. 5.13) that models variability of the given requirements documents of
the ATM products family. We explain the reverse engineering phase by following step-by-step
what is presented in this chapter as below.

Difference analysis activity

Step 1.1 rewrites the requirements document of each product (Product 1 and Product 3) into
ARs structure.

Step 1.2 stores the new structure of the requirement document into an RS document. The RS
of Product 1 is then considered for comparison with the RS of Product3 (see Fig. 5.9).

Figure 5.9: EvoSPL process: difference analysis activity: requirement specifications doc-
uments of Product 1 and Product 3.

Step 1.3 performs a text-based (line-based) comparison that matches the RS of each product
against each other, to specify the similar and variable ARs between them inform of change terms.
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The result is similar and different ARs in the matched RS documents. By the end of this step
and for simplicity, the matching results are stored in the same RS document of each product
(see Fig. 5.10).

Figure 5.10: EvoSPL process: difference analysis activity: requirements specification
documents with the change terms of the atomic requirements.

Variability analysis activity

Step 2.1 assigns the variability-pattern of each AR and stores them in the VD of each product.
Fig. 5.11 depicts the VDs with the variability-pattern of each ARs.

Step 2.2 compares (matches) the VD of each product against each other.

Step 2.3 transfers the ‘common’ AR of the VDs into the SMD without alteration and labels the
AR with a ‘common’ keyword (see Fig. 5.12).

Step 2.4 transfers the ‘optional’ AR of the VDs into the SMD and labels the AR with an
‘optional’ keyword. Furthermore, it specifies the VD and the product that the AR belongs to
(see Fig. 5.12).
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Figure 5.11: EvoSPL process: variability analysis activity: variability documents with
the variability-pattern of each atomic requirement.

Figure 5.12: EvoSPL process: variability analysis activity: single master document.

Step 2.5 transfers the ‘or-group’ / ‘xor-group’ AR into a SMD under its parent AR and labels
the AR with ‘or-group’ / ‘xor-group’ keyword. Furthermore, it specifies the VD and the product
that the AR belongs to (see Fig. 5.12).
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Step 2.6 repeats step 2.3 to step 2.5 until the last AR of the VDs is reached.

Next, as shown in Fig. 5.12, the visualization technique capabilities 1 and 2 can be applied on
the SMD as follows.

� The visualization technique colors the common and variable (different) ARs in green and
yellow bars respectively. Each bar visualizes an AR and the length of the bar depends on
the length of the statement. For instance, the technique colors R2 and R2.1 with green
and yellow bars, respectively.

� The visualization technique uses keywords such as ‘common’, ‘optional’, ‘or’, and ‘alter-
native’ to define the variability-patterns of each AR. An ‘or’ and ‘Alternative’ symbolize
‘or-group’ and ‘xor’ group respectively.

Step 2.7 (text-parsing) analyses each AR in the SMD and identifies its constituents with the
variability term role (see Variability term role).

Step 2.8 (naming features) suggests a proper name for the feature from the set of the extracted
terms of each AR, using NFM (see Naming features method)

Step 2.9 (variability identification) identifies and organizes the variability information of the
SMD, to fit its transformation into a FL (as a pre-step to feature model synthesis activity) using
FIM (see Feature identification method). Table 5.3 depicts the SMD updated by FIM.

Step 2.10 creates the FL content iteratively by scanning the ARs of the SMD and expressing
variability in each iteration as follows (see Table 5.4).

1. Feature name that has a specific, meaningful name presented its role in an SPL and for
human uses.

2. A set of ARs that contributes to the same feature.

3. Variability-pattern of each feature (see Variability-pattern of the feature).

4. Feature-relationship that specifies the relationship between a feature and other features
(see Feature-relationship).
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Step 2.11 resides child-feature under their parent-feature (see Table 5.4).

Step 2.12 resides an ‘Or’ / ‘Alternative’ feature under their parent-feature (i.e., feature-group).

Listening 1:
Relationships among the ARs:

R3
’common’

ATM withdraws the cash.

R3.1
’optional’

ATM withdraws the cash with limit.
VD3\Product 3

Extract (parse) the terms of each AR:
R3= {ATM, withdraws, cash}
R3.1= {ATM, withdraws, cash, limit}
Apply normalization on the terms (e.g., remove ‘s’ from withdrawals term).
Investigate the relationships between the terms of R3 and R3.1:
R3= {ATM, withdraw, cash}
R3.1= {ATM, withdraw, cash, limit}
1. Shared terms = {ATM, withdraw, cash} being an indicator of a relationship between R3 and
R3.1.
2. R3.1 explains R3.
R3 and R3.1 are related ARs.
R3 is mandatory/common parent AR
End of Listing 1

As shown in Table 5.4, the visualization technique capabilities 3,4, and 5 can be applied on the
FL as follows.

� The visualization technique colors the related ARs with the same color.

� The visualization technique colors a parent-feature and its related child-feature with the
same color.

� The visualization technique assigns each feature (a parent-feature and its’ child-feature)
the same color of ARs that contributes to this feature.

Feature model synthesis activity - Feature model construction
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Table 5.3: EvoSPL process: variability analysis activity: single master document updated
by the feature identification method.

The SMD of VD1 and VD3 - (atomic requirements)
id statement terms\feature name\variability-pattern

R1
‘common’
parent AR

Perform ATM transactions.

R1 = {perform, ATM, transaction}
feature name= ATM _transaction
variability-pattern= ‘Common’
parent-feature
R1 has a parent-child relationship with R2, R2.1, R3,
R3.1, R4, R5, R6
root feature

R2
‘common’
parent AR

ATM checks the balance.

R2 = {ATM, check, balance}
feature name= check_balance
variability-pattern= ‘Common’
parent-feature
R2 has a parent-child relationship with R2.1

R2.1
‘optional’

ATM shows the balance on screen.
VD3\Product 3

R2.1 = {ATM, show, balance, screen}
feature name=show_balance_screen
variability-pattern= ‘Optional’
child-feature
R2.1 has a parent-child relationship
with R2

R3 ‘common’
parent AR ATM withdraws the cash.

R3 = {ATM, withdraw, cash}
Feature name= withdrawal_ cash
variability-pattern= ‘Common’
parent-feature
R3 has a parent-child relationship with R3.1

R3.1
‘optional’

ATM withdrawals the cash with a limit.
VD3\Product 3

R3.1= {ATM, withdraw, cash, limit}
Feature name= withdrawal_ cash_ limit
variability-pattern= ‘Optional’
child-feature
R3.1 has a parent-child relationship with R3

R4
‘common’ ATM deposits the cash.

R4 = {ATM, deposit, cash}
Feature name= deposit_cash
variability-pattern= ‘Common’
child-feature
R4 has a parent-child relationship with R1

R5
‘optional’

ATM transfers the money.
VD3\Product 3

R5= {ATM, transfer, money}
Feature name= transfer_money
variability-pattern= ‘Optional’
child-feature
R5 has a parent-child relationship with R1

R6
‘common’ ATM quits the transaction.

R6= {ATM, quit, transaction}
Feature name= quit_transaction
variability-pattern= ‘Common’
child-feature
R6 has a parent-child relationship with R1
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Table 5.4: EvoSPL process: variability analysis activity: features list.

Features list
Root feature: ATM transaction
Feature 1:
name= check_balance: {R2, R2.1}
variability-pattern= Common
parent-child relationship with R1
child-feature: Feature 2
Feature 2:
name= show_balance_screen: {R2.1}
variability-pattern= Optional
parent-child relationship with R2
child-feature: none
Feature 3:
name= withdraw_cash: {R3, R3.1}
variability-pattern= Common
parent-child relationship with R1
child-feature: Feature 4
Feature 4:
name= withdraw_cash_limit: {R3.1}
variability-pattern= Optional
parent-child relationship with R3
child-feature: none
Feature 5:
name= deposit_cash: {R4}
variability-pattern= Common
parent-child relationship with R1
child feature: none
Feature 6:
feature name= transfer_money: {R5}
variability-pattern= Optional
parent-child relationship with R1
child-feature: none
Feature 7:
name= quit_transaction: {R6}
variability-pattern= Common
parent-child relationship with R1
child feature: none
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To construct the current FM that represents the variability found in the input requirements
documents of Product 1 and Product 3, as depicted in Fig. 5.13, the role of software engineers is
to use FeatureIDE editor for designing the current FM. To construct the current FM, software
engineers need to (step 3.1) specify and draw the root feature (‘ATM_ transaction’) of the
feature diagram. Next, they (step 3.2) start with the first feature in the FL (‘check_balance’),
(step 3.3) pick the feature name and draw it inside the respective symbol (rectangle) inside the
feature diagram (of FeatureIDE editor, and they (step 3.4) define the variability-pattern of the
feature (Common - filled circle on the top of the rectangle).

Figure 5.13: EvoSPL process: feature model synthesis activity: the current FM.

Next, they need to (step 3.5) draw its’ child-feature (‘show_balance_screen’) and (step 3.5)
define the feature-relationship between them (‘check_balance’ feature has a parent-child rela-
tionship with the ‘show_balance_screen’). The tree of the FeatureIDE models the variability-
pattern and parent-child relationship of the features. Software engineers need to perform these
steps until they reach the final feature (‘quit_transaction’) in the FL. Finally, they need to
(step 3.7) use the propositional logic-method capability of the tool to express the dependency-
relationship inside the current FM. This example does not consider the dependency-relationship
between the features of the current FM. Thus, we can ignore the final step.
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Chapter 6

EvoSPL : Forward engineering phase

The adoption of an SPL requires (1) analysing commonality and variability of the existing
artifacts and (2) tracking the changes that were introduced to these artifacts. As introduced
earlier, the reverse engineering phase supports what is required in (1), and this chapter presents
the forward engineering phase that contributes to support what is required in (2), when adopting
an SPL practice. Thus, the forward engineering phase follows the reverse engineering phase and
allows to transform the remaining set of products of a family into the already extracted SPL,
namely the initial SPL. Furthermore, this phase contributes to adapting the bootstrapped SPL
with a new product, to deliver the resulting SPL.

Fig. 6.1 presents the forward engineering phase that is subdivided into two activities: the (1)
bootstrapping and (2) evolution. The activities provide steps to avoid the problems that might
occur when evolving SPLs. Both activities use the feature model refactoring scenario to refine the
current FM when required. The scenario adopts a set of refactoring notions that are important
for safely evolving the existing SPL (the initial, bootstrapped, or resulting SPL) by simply
improving its design or even by adding (new) products while preserving the existing ones.

Figure 6.1: EvoSPL process: forward engineering phase.

6.1 Bootstrapping activity
Evolving the initial SPL with the requirements of one product of a family requires to consider
both the initial SPL and the variability of the artifacts. The requirements of a product need
to be propagated to the current FM and then to the initial SPL, which leads to keeping the
consistency between them. Thus, the bootstrapping activity supports adding the remaining set
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of products family into the already extracted SPL (i.e., the initial SPL), one by one. Hence, it
requires to refine the current FM with variability information (features) of the selected product,
according to domain experts’ decision or request.

The activity in brief The bootstrapping activity (i) uses the requirements document of the
selected product of a family, (ii) identifies the features of this product, and (iii) stores them in a
FL. Finally, it (iv) evolves the current FM with features stored in the FL of the product using
the feature model refactoring scenario (section 6.3). This activity adopts the bootstrapping
steps to perform the bootstrapping process.

The bootstrapping steps Using one product of a family, this activity consumes the requirement
document of the product (one of the remaining set of a product family) at once, to apply the
bootstrapping steps that are defined for the EvoSPL approach as follows.

Step 1.1 rewrites the requirements document of the product into a set of ARs (see Atomic
requirement structure of reverse engineering phase in Chapter 5 ).

Step 1.2 stores the new structure of the requirement document in an RS document (see RS
preparation of reverse engineering phase in Chapter 5). The RS is then considered for comparison
with the SMD of a product family.

Step 1.3 performs a text-based (line-based) comparison that matches the RS of the product
against the SMD, to specify the similar and variable ARs of the product (see Change terms of
the reverse engineering phase in Chapter 5). The result is similar and different ARs between
the matched documents (distance between the documents). By the end of this step and for
simplicity, the matching results are stored in the same VD of the product.

Step 1.4 assigns the variability-pattern of each AR (see Variability-pattern of the AR of the
reverse engineering phase in Chapter 5) and stores them in a VD of the product.

Step 1.5 applies the visualization technique capabilities 1, 2, and 3 (see Visualization technique
macro step of the reverse engineering phase in Chapter 5) on the VD of the product.

Step 1.6 applies the feature identification macro step (see Feature identification macro step of
the reverse engineering phase in Chapter 5) on the VD of the product.

Step 1.7 applies the variability transformation macro step (see Variability transformation macro
step of the reverse engineering phase in Chapter 5) on the VD of the product.
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Step 1.8 applies the feature model refactoring scenario (section 6.3), to refine the current FM
with features of the product stored in the FL of this product.

The steps are repeated until all the products of a family are considered, and the bootstrapped
SPL is delivered. Hence, the bootstrapping activity involves bootstrapping a set of products that
need to be added to the initial SPL to deliver the bootstrapped SPL. Hence, the bootstrapping
activity may use the bootstrapping steps many times to restructure the initial SPL to encompass
the (remaining) set of the products (one by one).

6.2 Evolution activity
In the EvoSPL, a part of its evolution-based process is to adapt the bootstrapped and result-
ing SPL, including its related FM (i.e., the current FM ) with new requirements that would
modify its structure (e.i., introduce a new feature or functionality to the current FM), while
the functionality and capability of the existing SPL are not affected. The EvoSPL approach
includes the evolution activity to handle a continuous refinement of the resulting SPL (already
extracted and bootstrapped using our approach) based on the changes done on the current FM
in a way that has no impact on the validity of the resulting products. The evolution activity
(1) evolves the bootstrapped SPL to encompass a new product, by refining the current FM with
the requirements (features) of the new product and delivers the resulting SPL. The evolution
activity (2) evolves the resulting SPL with another new product whenever required.

The activity in brief The evolution activity (i) uses the requirements document of a new
product upon receiving a new customer request, (ii) identifies features of the new product, and
(iii) stores them in a FL. Finally, it (iv) evolves the current FM with features of the new product
listed in a FL, using the feature model refactoring scenario (section 6.3).

The evolution steps The evolution activity consumes the requirement document of a new
product, to apply the evolution steps that are defined for the EvoSPL approach as follows.

Step 2.1 rewrites the requirements document of the new product into a set of ARs (see Atomic
requirement structure of reverse engineering phase in Chapter 5).

Step 2.2 stores the new structure of the requirement document in an RS document (see RS
preparation of reverse engineering phase in Chapter 5). The RS is then considered for comparison
with the SMD of a product family.

Step 2.3 performs a text-based (line-based) comparison that matches the RS of the new product
against the SMD, to specify the similar and variable ARs of the new product (see Change terms
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of the ARs of reverse engineering phase in Chapter 5). The result is similar and different ARs
between the matched documents (distance between the documents). By the end of this step and
for simplicity, the matching results are stored in the same RS of the new product.

Step 2.4 assigns the variability-pattern of each AR (see Variability-pattern of the AR of reverse
engineering phase in Chapter 5) and stores them in a VD.

Step 2.5 applies the visualization technique capabilities 1, 2, and 3 (see Visualization technique
macro step of reverse engineering phase in Chapter 5) on the VD of the new product.

Step 2.6 applies the feature identification macro step (see Feature identification macro step of
reverse engineering phase in Chapter 5) on the VD of the new product.

Step 2.7 applies the variability transformation macro step (see Variability transformation macro
step of reverse engineering phase in Chapter 5) on the VD of the new product.

Step 2.8 applies the feature model refactoring scenario (section 6.3), to refine the current FM
with the features of the new product stored in the FL of the new product.

It is worth a mention that the evolution activity steps can be used whenever it is required to
encompass the resulting SPL with a new product.

6.3 Feature model refactoring scenario
The bootstrapping activity and the evolution activity uses the feature model refactoring scenario
designed for the EvoSPL approach. The scenario applies predefined steps to refine an FM
(i.e., the current FM) with the features of a (new) product. The scenario adopts a set of
sound refactoring for FMs (see Feature model refactoring below) to perform the transformations
that guarantees configurability improvement of the current FM. The feature model refactoring
scenario addresses a set of steps required when evolving the existing SPL with features of a
(new) product with a focus on FMs refactoring.

On the level of a products family, (new) products can be added. Basically, adding (new) products
should not require any changes to the other products and the SPL. However, in practice, a
specific type of changes of requirements (features) in the products of an SPL and their impact
require to promote those changes to a variability model (i.e., the current FM) and then to the
SPL level. For instance, common functionality (feature) can be made variable if it should be
excluded from some products. Thus, the feature model refactoring scenario uses FMs refactoring
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to refine the current FM with (new) requirements of (new) product(s) that are not supported by
the existing SPL. For example, a new common feature can be added to the current FM only if
it represents a common functionality among all the products of a family and a common feature
can be converted to an optional feature if it no longer appears in all the products.

However, the feature model refactoring scenario uses a sequence of FMs (namely, the current FM
is refined many times when required upon the changes occur) to keep track of modifications to the
existing SPL. The feature model refactoring scenario consists of small steps (see Feature model
refactoring steps below) that may lead to changes in the existing SPL, resulting in features being
added to or eliminated from the existing SPL. The EvoSPL approach proposes this scenario to
keep the existing SPL and its products consistent with the current FM. The scenario adopts
various refactoring notations applicable to FMs (i.e., the current FM). Additionally, it adopts
several changes include adding a new feature, eliminating a feature, or changing a common
feature to an optional feature and vice versa.

Feature model refactoring steps The EvoSPL approach adopts the SPL refactoring process
that may affect only the current FM and consider refactoring of a single FM at once. So far,
as described before, the variability analysis activity deals with the requirements document of
a (new) product to derive its features and create a FL that contains the features of the (new)
product. The feature model refactoring scenario merges the features of the (new) product to
the current FM. Thus, to import a (new) product into the existing SPL, the feature model
refactoring scenario adopts the following steps.

Step 1 reads a feature (top to down) from the FL and compares the feature to nodes of the
current FM.

Step 2 matches this feature including its variability information (feature name and variability-
pattern) with nodes of the current FM. The model is traversed to identify a node with a match
as well as with a different variability information.

Step 3 checks the result of the match status. The feature model refactoring scenario considers
the following status.

Status (1): a feature appears Optional in the current FM and, at the same time, appears
Common in the FL of a (new) product. This leads to keeping the current FM unchanged.

Status (2): a feature appears in the current FM with the same variability information. This
leads to keeping the current FM unchanged. So, the refactoring notations are only applied in
case of differences in the variability information between a feature and the current FM.
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Table 6.1: Feature changes in the current feature model.

feature changes in the current FM
1. Add a new Common feature to the current FM.
2. Add a new Optional feature to the current FM.
3. Add a new Or (or-group) feature to the current FM.
4. Add a new Alternative (xor-group) feature to the current FM.
5. Remove a feature from the current FM (see Removing a feature).
6. Convert Optional feature into Common feature in the current FM.
7. Converting Or (or-group) into Alternative (xor-group).
8. Converting Alternative (xor-group) into Or (or-group).

Status (3): a feature requires a change to the current FM (see Table 6.1). This leads to applying
proper refactoring notations (see A catalog of sound FM refactoring below) to the current FM.

Feature changes The feature model refactoring scenario of the EvoSPL approach proposes a
list of feature changes to evolve the current FM. As shown in Table 6.1, it defines eight types of
changes. However, it is possible to define other types of feature changes. Our approach can be
easily extended to handle new types of feature changes.

Removing a feature Removing a feature from the current FM, a situation where the upcoming
new products no longer use this feature. Thus, this feature is a good candidate to remove from
the current FM. Thus, by removing a feature from the current FM, the artifacts related to that
feature, such as implemented modules, the reference architecture, feature mapping, and related
code should be changed in such a way that the consistency of the resulting SPL remains intact.
Removing or adding a feature to the current FM may include or exclude some pieces of code,
especially whenever a feature is linked to some code fragments throughout feature mapping. Our
approach supports a tool that updates such feature mapping, based on the changes occurring
to the fearers (section 7.3).

Feature model refactoring The EvoSPL approach adopts an FM refactoring that involves a
transformation, which improves the quality of the current FM, by maintaining or increasing its
configurability. For example, consider the current FM at point1 and point 2. So according to
the definition of an FM refactoring that is adopted by our approach, the current FM at point2
refactors the current FM at point1 if and only if all valid configurations of the current FM at
point1 are valid configurations of the current FM at point2. Fig. 6.2 depicts the current FM
at two points. It describes the language of an ATM machine. In the left-hand side, the ATM
supports Arabic or English language. Suppose that we would like to refactor the left-hand side
model (the current FM at point 1) to the right-hand side model (the current FM at point 2), by
adding a new alternative. So, we can have an additional language (Portuguese) in the resulting
model, while still maintaining the earlier configurations.
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Figure 6.2: Feature model refactoring example.

The left-hand side model has two valid configurations: {Language, Arabic},{ Language, En-
glish}. The right-hand side model has the same configurations of the left-hand side model plus
the {Language, Portuguese} configuration. This ensures correctness of the refactoring depicted
in Fig. 6.2, since the right-hand side model improves the configurability of the LHS model. To
apply such FM refactoring on the current FM of the EvoSPL whenever required, we present a
catalog of sound FM refactoring (see A catalog of sound FM refactoring).

A catalog of sound FMs refactoring The feature model refactoring scenario depends on a
catalog of sound FM refactoring proposed by Alves et al. [Alv+06b]. According to the definition
of SPL refactoring, a catalog involves FM refactoring and offers a number of sound unidirectional
and bidirectional FM refactoring. As shown in Fig. 6.3, each refactoring consists of two templates
(patterns) of FMs, one on the left-hand side and the other on the right-hand side. The feature
model refactoring scenario applies a refactoring whenever the left template is matched by a given
(part of) the current FM. The refactoring template only shows the differences between the FMs.
Moreover, a dashed line on top of a feature indicates that this feature may have a parent feature.
A dashed line below a feature indicates that this feature may have additional sub-features. The
adopted catalog of refactoring by our approach is summarized in Appendix A.

Figure 6.3: Refactoring 5 - catalog of sound feature model refactoring [Alv+06b].

Unidirectional refactoring Table 6.2 presents some FM refactoring in order to refine the current
FM whenever the changes occur. For instance, Refactoring 5 (see Fig. 6.3) allows adding new
feature D to an xor-group to increase the alternatives between B and C. This refactoring is
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Table 6.2: Summary of unidirectional feature model refactoring.

Refactoring Name Refactoring Name
1 Convert Alternative to Or 7 Convert Mandatory to Optional
2 Collapse Optional and Or 8 Convert Alternative to Optional
3 Collapse Optional and Alternative to Or 9 Pull up node
4 Add Or between Mandatory 10 Push down node
5 Add new Alternative 11 Remove formula
6 Convert Or to Optional 12 Add Optional node

the general version of the specific refactoring that can be applied in cases, such as the specific
refactoring shown in Fig. 6.2 The feature model refactoring scenario uses Refactoring 5 to the
specific models depicted in Fig. 6.2 by matching the variables A, B, C and D with the specific
features Language, Arabic, English, and Portuguese, respectively. Note that there is no dashed
line below D in the right-hand side of this refactoring because it only introduces a new feature
without sub-features. The other lines of right-hand side are necessary to preserve the feature
matched by the dashed line on the left-hand side.

Refactoring 5 is sound because the resulting model contains all the configurations from the
original one, also allowing a configuration containing A and D in the absence of B and C. Hence,
this transformation improves a model by increasing its configurability. It is worth mentioning
that all the refactoring presented in Table 6.2 (see Appendix A.1 also) can be applied from right
to left but not the reverse. Besides, most of them can be applied similarly in context with more
than two features, such as Refactoring 2 and Refactoring 5.

Bidirectional refactoring Table 6.3 presents a set of bidirectional refactorings (B- Refactorings)
for FMs. A bidirectional refactoring is a special case of FM refactoring that maintain the
configurability of a model. Theoretically, if two FMs have the same configurability (semantics),
we can always relate them by applying B-Refactoring. It also defines two FM templets, although
being applicable in both directions. For example, B-Refactoring 1 relates Alternative and Or
relations, it and works from left to right allows converting Alternatives to Or relation along with
two formulas establishing the same constraints. Similarly, by applying the transformation from
right to left, it allows converting Or to Alternative (see Appendix A.2).

The root feature of an FM always appeared in all valid configurations. Practically, some of
the previous transformations may not be useful, since they convert a valid FM to another
that is not a tree, such as B-Refactoring 4. They are important for theoretical reasoning. In
practice, developers should only be aware of the FM refactoring catalog shown in Table 6.2 (see
Unidirectional refactoring).
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Table 6.3: Summary of bidirectional feature model refactoring.

B-Refactoring Name
1 Replace Alternative
2 Replace Or
3 Replace Mandatory
4 Replace Optional

This chapter presents only some B-refactoring. The list of all such refactorings and a proof
that they are complete can be found in [Alv+06a]. The completeness proof shows that, for any
two semantically equivalent FMs, there is a strategy consisting of consecutive applications of
B-refactoring such that it transforms one FM to another. This result means their refactorings
are sufficiently expressive for the FM language that we consider in the EvoSPL approach.

Properties of the catalog The EvoSPL approach chooses the catalog of sound refactorings in
order to apply an FM refactoring, since the catalog (1) can be seen as a high-level API, which
is much easier to use (based on template matching). Semantics for FMs are encoded in the
Prototype Verification System (PVS), which is a formal specification language. Using the PVS
theorem prover, all the proposed refactorings are proved with respect to a formal semantics
[Ghe+06]. We think that using the PVS (2) gives a chance for proposing other FM refactoring.
Both, the formalization and proofs that are guaranteed in the catalog of sound refactoring, are
important in order (3) to increase the reliability when refactoring SPLs, as presented in the
illustrative example and case study.

6.4 An illustrative example of the forward engineering phase:
ATM products family

This section continued with the illustrative example explained in the earlier chapters, to clarify
the forward engineering phase. The example combines the bootstrapping and evolution activi-
ties. Using the ATM products family, this section started from a scenario in which we derived
the current FM from two products (Product 1-initial release and Product 3) in the reverse engi-
neering phase (section 5.4). Now, we have another product of the family and a new one needs to
be developed in the near future. From this initial scenario, we have two goals: 1) to bootstrap
the existing product (Product 2) into the initial SPL and 2) to react the bootstrapped SPL
to encompass a new product (ProductNew) of the family, to deliver the resulting SPL. Both
goals involve refining the current FM with features of the new (product), which requires the
refactoring notation for SPL in terms of FMs.
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To provide a clear picture of the example, this section presents a sequence of the current FM at
different points as follows.

Point 1. The current FM that is already derived and constructed, using two products of the
ATM products family, namely Product 1 and Product 3 (section 5.4).

Point 2. The current FM that is refined with the features of a product of the ATM products
family, namely Product 2.

Point 3. The current FM that is refined with the features of a new product planned to be added
to the ATM products family, namely ProductNew. Point 2 and Point 3 show the current FM as
a sequence of refactoring points based on the features of the (new) product, which determines
the refactoring opportunities of the current FM.

6.4.1 The current FM at point 1
Point 1 shows the current FM that is derived by the reverse engineering phase using the require-
ments documents of two products (Produc1 and Product 3). Fig. 5.13 depicts the current FM
at this point.

6.4.2 The current FM at point 2: bootstrapping activity
Using Product 2 of the ATM products family, the bootstrapping activity consumes the require-
ment document file of the product (one of the remaining set of the ATM product family), to
apply the bootstrapping steps that are defined for the EvoSPL approach as follows.

Step 1.1 rewrites the requirements document of Product 2 into a set of ARs.

Step 1.2 stores the new structure of the requirement document in an RS document. The RS
of Product 2 shown in Fig. 6.4 is then considered for comparison with the SMD of the ATM
products family (see Fig. 6.5).

Step 1.3 performs a text-based (line-based) comparison that matches the RS of Product 2 against
the SMD of the ATM products family, to specify the similar and variable ARs of the product.
The result is similar and different ARs between the matched documents. By the end of this step
and for simplicity, the matching results are stored in the same RS of Product 2, as shown in
Fig. 6.5.
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Figure 6.4: EvoSPL process: bootstrapping activity: requirements specification document
of Product 2.

Step 1.4 assigns the variability-pattern of each AR and stores them in the VD of Product 2.
Fig. 6.6 depicts the VD with the variability-pattern of each AR.

Step 1.5 applies the visualization technique capabilities 1 and 2 on the VD of Product 2. The
VD looks as shown in Fig. 6.7.

Step 1.6 applies the feature identification macro step on the VD of Product 2. The VD looks as
shown in Table 6.4.

Step 1.7 applies the variability transformation macro step on the VD of Product 2 and organizes
it into a FL in terms of features. The FL of Product 2, which delivers as a result of applying
the variability transformation macro step and the visualization technique capabilities 3, 4, and
5, looks as shown in Table 6.5 .

Step 1.8 applies the feature model refactoring scenario, to refine the current FM with features
of Product 2. This step involves bootstrapping Product 2 into the initial SPL (to deliver the
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Table 6.4: EvoSPL process: bootstrapping activity: variability document of Product 2
updated by feature identification method.

Product 2 :
VD 2 : atomic requirements
id statement terms\feature name\variability-pattern

R1 ‘common’ Performs ATM transaction.

R1 = {perform, ATM, transaction}
feature name= ATM_transaction
variability-pattern= ‘Common’
R1 has a parent-child relationship with
R2, R3, R4, R6,R7
root feature

R2 ‘common’ ATM checks the balance.

R2 = {ATM, check, balance}
feature name= check_balance
variability-pattern= ‘Common’
child-feature
R2 has a parent-child relationship with R1

R2.1 ‘optional’

R3 ‘common’ ATM withdraws the cash.

R3 = {ATM, withdraw, cash}
feature name= withdraw_cash
variability-pattern= ‘Common’
child-feature
R3 has a parent-child relationship with R1

R5 ‘optional’

R6 ‘common’ ATM quits the transaction.

R6= {ATM, quit, transaction}
feature name= quit_transaction
variability-pattern= ‘Common’
child-feature
R6 has a parent-child relationship with R1

R7 ‘optional’ ATM converts between the currencies.

R7= {ATM, convert, currencies}
feature name= convert_currency
variability-pattern= ‘Optional’
child-feature
R7 has a parent-child relationship with R1
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Table 6.5: EvoSPL process: bootstrapping activity: features list of Product 2.

Features list of Product 2
Root feature: ATM transaction
Feature 1:
name= check_balance: {R2}
variability-pattern= Common
parent-child relationship with R1
child feature: none
Feature 2:
name= withdraws_cash: {R3}
variability-pattern= Common
parent-child relationship with R1
child feature: none
Feature 3:
name= deposit_cash: {R4}
variability-pattern= Common
parent-child relationship with R1
child feature: none
Feature 4:
name= quits_transaction: {R6}
variability-pattern= Common
parent-child relationship with R1
child-feature: none
Feature 5:
name= convert_currency: {R7}
variability-pattern= Optional
parent-child relationship with R1
child-feature: none
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Figure 6.5: EvoSPL process: bootstrapping activity: requirements specification of Prod-
uct 2 and the SMD with the change terms of each atomic requirement.

bootstrap SPL) using the feature model refactoring scenario. The tracing of the feature model
refactoring scenario steps is presented in Table 6.6.

Refactoring point 1.1 of the current FM The ‘convert_currency’ feature appears Optional in
the FL of Product 2 and does not exist in the current FM of the ATM products family. This
leads to add ‘convert_currency’ feature to the current FM using Refactoring 12, which allows to
add new Optional feature to the current FM. Fig. 6.8 shows the current FM in refactoring point
1.1 that is refined using the feature model refactoring scenario, in the bootstrapping activity.
Red asterisk is placed next to the refactoring point to indicate an alteration in the current FM.
However, this leads to propagating the feature changes from Product 2 to the current FM and
then to the initial SPL.

6.4.3 The current FM at point 3: evolution activity
The evolution activity consumes the requirement document of ProductNew, to apply the evolu-
tion steps that are defined for the EvoSPL approach as follows.

Step 2.1 rewrites the requirements document of the ProductNew into a set of ARs (see Fig. 6.9).
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Table 6.6: Tracing of the feature model refactoring scenario steps during the bootstrapping
activity.

Step Feature variability information Status
Step 1
Step 2
Step 3

Feature 1:
name= check_balance
variability-pattern= Common

Status 2
Leads to keep the current FM unchanged.

Step 1
Step 2
Step 3

Feature 2:
name= withdraw_cash
variability-pattern= Common

Status 2
Leads to keep the current FM unchanged.

Step 1
Step 2
Step 3

Feature 3:
name= deposit_cash
variability-pattern= Common

Status 2
Leads to keep the current FM unchanged.

Step 1
Step 2
Step 3

Feature 4:
name= quit_transaction
variability-pattern= Common

Status 2
Leads to keep the current FM unchanged.

Step 1
Step 2
Step 3

Feature 5:
name= convert_currency
variability-pattern= Optional

Status 3
A feature requires a change to the current FM
(see Table 6.2 )
The feature ‘convert_currency’ requires
‘add a new Optional feature
to the current FM (see Refactoring point 1.1
of the current FM)

Step 4 The final feature in the FL ‘convert_currency’ of Product 2 is reached.

Step 5 There is no feature that appears common in the current FM and does not appear
in the FL of Product 2.
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Figure 6.6: EvoSPL process: bootstrapping activity: variability document of Product 2
with the variability-pattern of each atomic requirement.

Step 2.2 stores the new structure of the requirement document in an RS document. The RS of
NewProduct is then considered for comparison with the SMD of the ATM products family, as
shown in Fig. 6.10.

Step 2.3 performs a text-based (line-based) comparison that matches the RS of NewProduct
against the SMD of the ATM products family, to specify the similar and variable ARs of the
product. The result is similar and different ARs between the matched documents. By the end
of this step and for simplicity, the matching results are stored in the same RS of NewProduct,
as shown in Fig. 6.10.

Step 2.4 assigns the variability-pattern of each AR and stores them in the VD of NewProduct.
Fig. 6.11 depicts the VD with the variability-pattern of each AR.

Step 2.5 applies the visualization technique capabilities 1 and 2 on the VD of NewProduct. The
VD looks as shown in Fig. 6.12.
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Figure 6.7: EvoSPL process: applying the visualization technique on the variability doc-
ument of Product 2.

Figure 6.8: The current FM of the ATM products family in refactoring point 1.1.

Step 2.6 applies the feature identification macro step on the VD of ProductNew.

Step 2.7 applies the variability transformation macro step on the VD of NewProduct and orga-
nizes it into a FL in terms of features. The FL of NewProduct delivered as a result of applying
the variability transformation macro step and the visualization technique capabilities 3, 4, and
5 looks as shown in Table 6.7.

Step 2.8 applies the feature model refactoring scenario, to refine the current FM with features
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Table 6.7: EvoSPL process: evolution activity: features list of ProductNew.

Features list of ProductNew
Root feature: ATM transaction
Feature 1:
feature name= check_balance: {R2,
R2.1, R2.2}
variability-pattern= Common
parent-child relationship with R1
child-feature: Feature 2 and Feature 3

Feature 6:
name= deposit_cash: {R4}
variability-pattern= Common
parent-child relationship with R1
child feature: none

Feature 2:
name= show_balance_sceen: {R2.1}
variability-pattern= Common
parent-child relationship with R2
child-feature: none

Feature 7:
name= transfer_money: {R5}
variability-pattern= Common
parent-child relationship with R1
child-feature: none

Feature 3:
name= show_balance_report: {R2.2}
variability-pattern= Optional
parent-child relationship with R2
child-feature: none

Feature 8:
name= quit_transaction: {R6}
variability-pattern= Common
parent-child relationship with R1
child-feature: none

Feature 4:
name= withdraw_cash: {R3, R3.1}
variability-pattern= Common
parent-child relationship with R1
child-feature: Faeture 5

Feature 9:
name= pay_service: {R8}
variability-pattern= Optional
parent-child relationship with R1
child-feature: none

Feature 5:
name= withdraw_cash_limit: {R3.1}
variability-pattern= Common
parent-child relationship with R3
child-feature: none
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Figure 6.9: EvoSPL process: evolution activity: requirement specification of ProductNew

of ProductNew. This step involves adding ProductNew to the bootstrapped SPL, to deliver the
resulting SPL, using the feature model refactoring scenario. The tracing of the feature model
refactoring scenario steps is presented in Table 6.8

Refactoring point 2.1 of the current FM The ‘show_balance_report’ feature appears Optional
in the FL of ProductNew, and it does not exist in the current FM of ATM products family. This
leads to add ‘show_balance_report’ feature from the FL to the current FM, using Refactoring
12. Fig. 6.13 shows the current FM in refactoring point 2.1 that is refined using the feature model
refactoring scenario, in the evolution activity. Red asterisk are placed next to the refactoring
points, to indicate alterations in the current FM. Furthermore, as shown in Fig. 6.14, the current
FM at refactoring point 2.1.1 refactors the current FM at refactoring point 2.1 by replace
Optional to Or (B-Refactoring 2).
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Table 6.8: Tracing of the feature model refactoring scenario steps during the evolution
activity.

Step Feature variability information Status
Step 1
Step 2
Step 3

Feature 1:
name= check_balance
variability-pattern= Common

Status 2
Leads to keep the current FM unchanged.

Step 1
Step 2
Step 3

Feature 2:
name= show_balance_sceen
variability-pattern= Common

Status 3
A feature requires a change to the current FM
(see Table 6.2).
The feature ‘show_balance_report’ requires
add a new Optional feature
to the current FM (see Refactoring point 2.1
of the current FM).

Step 1
Step 2
Step 3

Feature 3:
name= show_balance_report
variability-pattern= Optional

Status 3
A feature requires a change to the current FM
(see see Table 6.2).
The feature ‘show_balance_report’ requires
add a new Optional feature
to the current FM (see Refactoring point 2.1
of the current FM).

Step 1
Step 2
Step 3

Feature 4:
name= withdraw_cash
variability-pattern= Common

Status 2
Leads to keep the current FM unchanged.

Step 1
Step 2
Step 3

Feature 5:
name= withdraw_cash_limit
variability-pattern= Common

Status 1
Leads to keep the current FM unchanged.

Step 1
Step 2
Step 3

Feature 6:
name= deposit_cash
variability-pattern= Common

Status 2
Leads to keep the current FM unchanged.

Step 1
Step 2
Step 3

Feature 7:
name= transfer_money
variability-pattern= Common

Status 1
Leads to keep the current FM unchanged.

Step 1
Step 2
Step 3

Feature 8:
name= pay_service
variability-pattern= Optional

Status 3
A feature requires a change to the current FM
(see see Table 6.2).
The feature ‘pay_service’ requires
add a new Optional feature
to the current FM (see Refactoring point 2.2
of the current FM)

Step 4 The final feature in the FL ‘pay_service’ of Product New is reached.

Step 5 There is no feature that appears common in the current FM and does not appear
in the FL of Product New.
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Figure 6.10: EvoSPL process: evolution activity: requirements specification of NewProd-
uct and the SMD with the change terms of each atomic requirement.

Refactoring point 2.2 of the current FM This refactoring point adds to the next version of
the current FM the ‘pay_service’ feature from the FL of ProductNew, using Refactoring 12.
Fig. 6.15 shows the current FM in refactoring point 2.2 that is refined using the feature model
refactoring scenario, in the evolution activity. Red asterisk are placed next to the refactoring
points, to indicate alterations in the current FM. Relative to Refactoring point 1.1, the current
FM in those refactoring points has many changes to the existing SPL based on the changes of
ProductNew.

The reverse engineering phase and forward engineering phase of EvoSPL approach derived suc-
cessfully the current FM of the ATM product family. This model represents the ATM resulting
SPL. The mapping phase will be used to relate each feature of the current FM to its implemen-
tation code fragments of the code.
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Figure 6.11: EvoSPL process: evolution activity: variability document of ProductNew
with the variability-pattern of each atomic requirement.
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Figure 6.12: EvoSPL process: applying the visualization technique on the variability
document of ProductNew.

Figure 6.13: The current FM of the ATM products family in refactoring point 2.1.

Figure 6.14: The current FM of the ATM products family in refactoring point 2.1.1.
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Figure 6.15: The current FM of the ATM products family in refactoring point 2.2.
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Chapter 7

EvoSPL: Mapping Phase

This chapter describes the final phase of the EvoSPL approach. It presents the mapping phase
that has an important role in feature mapping. It focuses on mapping the artifact coming from
the previous EvoSPL phases, the current FM, to the other artifacts of the resulting SPL, the
reference architecture and code. This mapping helps to synchronize changes of the current FM
with the implementation code, to avoid inconsistencies between them. Thus, this activity relates
each feature of the current FM to their locations in the implementation code, using the reference
architecture as an intermediate artifact. As shown earlier in Fig. 4.1, the mapping phase follows
the forward engineering phase and offers an explicit mapping from the problem space to the
solution space of the resulting SPL. The mapping phase is supported by a tool, called friendly
Mapper. The tool uses a particular artifact (i.e., traceability tree) as a solution for mapping
features belonging to the current FM to code fragments belonging to the implementation code.
As shown in Fig. 7.1, this phase uses only one activity to implement the mapping process.

Figure 7.1: EvoSPL process: mapping phase.

7.1 Feature mapping activity
This section describes the feature mapping activity dedicated to the EvoSPL process, to support
the feature mapping of the resulting SPL. The activity assumes that features are derived and
known upfront, using the previous phases of the EvoSPL approach. As shown in Fig. 7.1,
this activity consumes the current FM of the resulting SPL. In addition to the current FM, it
consumes the reference architecture, which will be explained in the reference architecture title
(see Reference architecture below). It also consumes the code. The feature mapping activity
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delivers the traceability tree artifact that not only defines the traceability links (see Traceability
links below) between each feature and its code fragments, but also it updates the traces whenever
a feature change occurs in the current FM, to preserve consistencies among them.

Activity in brief Having the resulting SPL that owns the reference architecture and the
current FM, as well as each product of the family has its implementation code that is cloned
from the initial release product and then customized according to customer needs. The mapping
between the current FM and the reference architecture is established first, as a centric point, to
manage the relationship between the current FM and code, in addition to keep the current FM
and code conformance whenever feature changes occur (for more information, see The problem
below). As shown in Fig. 7.2, the feature mapping activity (i) takes as an input (see The input
and output below) the current FM, reference architecture, and code artifacts, (ii) uses features
of the current FM, (iii) traces each feature to its parts of the most upper layer of the reference
architecture (see Role of the reference architecture below) and finally (iv) traces the feature
from the identified part of the reference architecture to it is corresponding units of the code (see
Reference architecture and the code below).

In this way (i.e., the explanation of the previous paragraph), only that units of the identified parts
(instead of the entire code base) are analysed to find the code fragments that are responsible for
the feature implementation. This leads to (vi) identify the code fragments that implement the
feature and store them in the traceability tree (see Traceability tree below). This activity consists
of three main macro steps of which the last two macro steps are automated: feature- architecture
mapping macro step, feature-code mapping macro step, and feature mapping conformance macro
step. However, these macro steps require predefined criteria to be applied successfully (see key
criteria to apply the feature mapping below).

The feature mapping activity of the Evo SPL approach applies its macro steps on the most upper
layer of the reference architecture, according to the general architecture depicted in Fig. 7.3, it
works specifically on Layer 3. Simply, this layer contains the common and variable parts that
distinguish each product from the other. For instance, the companies of the automotive domain,
usually, customize and configure the modules of the implementation code that are corresponding
to the components of the most upper layer (e.g., application layer) where needed, to develop a
new product of the family.

Variability and the reference architecture Commonality and variability is captured, at
requirements-level, during the reverse engineering phase of the EvoSPL process, which leads
to identify the common and variable features (of the resulting SPL) inform of the current FM.
The reference architecture includes the variability (variations and variants in form of subsystems
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Figure 7.2: EvoSPL process: feature mapping activity.

Figure 7.3: EvoSPL process: general structure of the reference architecture of the resulting
SPL in the layered architecture pattern.

and components) documented in the current FM. It provides the architectural design of separate
products architectures.

Reference architecture The reference architecture includes in its structure the commonality
and variability of the resulting SPL documented in the current FM. The EvoSPL approach
dedicates its process to product families that have the reference architecture in forms of a
layered architecture pattern (see Layered architecture below). It is worth considering this pattern
because of its desirable properties for SPLs [Gom11].

Fig. 7.3 shows the general structure of the reference architecture of a products family, which is at
the same time the architecture of the resulting SPL that has been extracted from the products of
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this family, using the process of the EvoSPL approach. The development view is used to model
the architecture structure in layers, subsystems, and components (see Subsystem and component
below). It is the main means to decompose the system according to the development view,
incorporating the high-level decomposition of the software system into subsystems, components
and their relationships (see Fig. 7.4). Hence, this view is the most important one to capture
commonality and variability.

Consequently, the variable parts (subsystems and components) of the reference architecture
closely correlate with the elements of the current FM (see Fig. 7.5). Typically, the subsys-
tems and components in the (most) upper layer deal with external variability (the variability
related to customer and the product requirements). They are only present when the customer
needs them. External variability (we called it in this manuscript as variability) is the target
variability of the EvoSPL approach. External variability directly contributes to customer sat-
isfaction as customers are aware of this kind of variability and can select those options that
serve their needs best. Thus, different stakeholder needs are a cause of external variability.
Based on this we are going to continue the explanation of the remaining proposed feature map-
ping steps.

Figure 7.4: EvoSPL process: general representation of layers and subsystems of the ref-
erence architecture of the resulting SPL.

We assume in this work that the architect provides restrictions on configurations that are allowed
and those that are not, which influences the possible product configurations of the resulting SPL.
For instance, the architect uses lists to denote which components are common and which are
variable or optional. Moreover, the design structure of the reference architecture normally has
several notations to present commonality and variability in the architecture. For instance, a
solid line depicts the common part of the architecture. Optional and variant parts are depicted
with dotted lines. Another important tool for restricting the number of configurations is the use
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of components design. Detailed design is part of development, which must obey the architecture,
incorporating the code.

Layered architecture In a layered architecture, normally, each layer has an internal struc-
ture consisting of subsystems and components [PBDL05]. Within each layer the variability is
determined by the variation in the functionality provided, and by the variation in the function-
ality provided by the layer below it. In order to design for reusability, the architect typically
determines subsystems in such a way that the required variability is encapsulated within their
internal components design. This assignment is fixed for all products of the SPL (i.e., the re-
sulting SPL). The structure depicted in Fig. 7.3 includes three layers, namely Layer 1, Layer 2
and Layer 3, each of which has an internal structure consisting of subsystems and components
(see Fig. 7.4). Each layer has a specific role and responsibility within the resulting SPL. The
layers can be characterized as follows. Layer 1 is the lowest software layer. Its main task is to
make the higher software layers independent. It supports a core set functionality (i.e. platform
software) of the entire SPL (the common platform for developing architecture). The common
platform consists of a set of subsystems and components that exist in the entire SPL products
and they enable the creation of new products from the reusable parts (common subsystems and
components). This will be the basis for Layer 2. Up to this level all the architecture parts should
be common sense and thus are specified.

Layer 2 represents the second level of abstraction, and it provides the subsystems that include
components for a basic domain specific functionality (i.e., basic software). Based on this knowl-
edge every company can customize their own company-specific architectural model in Layer 2.
Regarding Layer 3, it is the most upper layer of the reference architecture. It allows for various
combinations of additional specific functionality (i.e., customer specific software) or sometimes
the same functionality in a different context for a product or a set of products. It provides
subsystems where each of them is assigned to a functionality that is supposed to be matching
the requirements specification and implementation code of the involved functionality, for that it
includes components for a specific functionality. In general, Layer 3 of the layered architecture
and especially for SPLs contains the product specific part. Normally this layer has a specific part
that provides all product specific configurations to other layers, where necessary and provides
project specific extensions, if requested by the product and if supported by the platform. In
other words, it allows us to determine the specific requirement of a product within the products
family, to satisfy a specific customer’s needs [Bro+09].

A layered software architecture allows the architect to create independent subsystems and com-
ponents that address a specific part of the functionality of the whole family. The components
communicate through well-defined interfaces that allow for high-performing implementations.
This means that all the components are interconnected but do not depend on each other.
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Figure 7.5: The main structure of the mobile phone SPL and their relationship with the
current FM.

Subsystems and components Layers and subsystems enable the architect to group similar
components. A subsystem is decomposed into a collection of interacting components. In partic-
ular, a large part of architecture variability is captured in the subsystems and the components
design. The subsystem design denotes the high-level decomposition of the software system into
subsystems and their relationships. The structure itself is valid for the entire SPL [PBDL05].

As shown in Fig. 7.4, the subsystems and components within a layered architecture are organized
into horizontal layers, each layer performing a specific role within the software system. Although
the layered architecture pattern does not specify the number and types of layers that must
exist in the pattern, most layered architectures consist of four standard layers: presentation
(application), business, persistence, and database. Thus, smaller applications may have only
three layers, whereas larger and more complex ones may contain five or more layers.

As depicted in Fig. 7.4, the architecture structure shows a general presentation of layers and
subsystems of the resulting SPL. The layers: Layer 1, Layer2, and Layer 3 are present in each
product of the resulting SPL. Variability becomes clear in the subsystems and their internal
structure (components). The subsystems in Layer 3 deal with variability. They are only present
when the customer requires them. So, for example, a product without any functionality related
to subsystem 3 has no such subsystem.

In the layered architecture depicted in Fig. 7.4, each subsystem is assigned to a layer matching
the abstraction level of the involved functionality. This assignment is fixed for all products of
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the resulting SPL. In order to identify variability, software engineers typically can determine the
subsystems that encapsulate the required variability within their internal components design.
Consequently, the variable parts of the subsystems design closely agree with the elements of the
current FM. Typically, the subsystems in the most upper layer (layer 3) deal with variability.
They are only present when the customer needs them. Subsystem is decomposed into a collection
of interacting components.

The component design provides an internal structure that describes the configurations of com-
ponents. Fig. 7.4 illustrates the documentation of variability by the subsystems and component
design of the most upper layer. Each component may realise a common or optional functionality
(feature), or it may realise a variant and is thus only present in a product that provides the
functionality for the corresponding variant.

The EvoSPL approach focuses on the documentation of variability in subsystems of the most
upper layer (Layer 3) of the reference architecture. The internal structure of this layer consists
of subsystems and components. The subsystems in the most upper layer deal with variability
that is only present when customers request them. The internal structure of each subsystem
may contain common components for the common functionality (common feature) but also there
are special components only for variations (optional and grouped features). Fig. 7.5 exemplifies
the most upper layer of the ‘mobile phone’ SPL (and the corresponding current FM) with
some services from two subsystems: ‘connectivity phone’ and ‘camera phone’. The ‘connectivity
phone’ subsystem comprises ’connectivity’, ‘ Bluetooth phone’ and ‘WI-FI phone’ components.

The ‘camera phone’ subsystem has the ‘camera phone’ component. The ‘connectivity phone’
subsystem has the common component ‘connectivity’ for the common ‘Connectivity’ feature and
special components only for the variants. The ‘Connectivity’ feature describes the connectivity
type provided by the ‘connectivity phone’ subsystem. The variability in this subsystem offers an
alternative with two variants that appear in the current FM as ‘Bluetooth’ and ‘WI-FI’. Each of
them is realised by a separate component inside the internal design of the ‘connectivity phone’
subsystem. The former variant is realised by the ‘Bluetooth phone’ separate component, and
the latter is realised by the ‘WI-FI phone’ separate component. Note that the optional ‘Camera’
feature is present at one place of the ‘camera phone’ subsystem in the variable presence of the
optional component ‘camera phone’.

Notations are used to improve the understandability of the design, as shown in Fig. 7.5, the parts
in solid lines compose the common part of the structure. Optional and variant parts are depicted
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by dotted lines. The structure determines the generic parts of the resulting SPL, namely the ‘con-
nectivity phone’ subsystem as well as the optional one the ‘camera phone’ subsystem. Subsys-
tems are drawn by the use of a package notation (or rectangle) and components are drawn by the
use of a component notation (or round rectangle). We are going to use these notations for the entire explanation of this thesis.

However, this thesis supports an SPL evolution in the automotive domain, for that and normally,
the layered architecture with several levels of abstraction fits this concept. The abstraction levels
of such architecture allow us to model variability as appropriate, where each level represents a
different model of the same products of the family, involving a unique set of components and
compositions that are applicable only to a view that abstracts from certain details of implemen-
tation.

Finally, another strong reason makes it worth considering a layered (software) architecture is
the fact that it describes the software architecture of AUTomotive Open System ARchitecture
(AUTOSAR). AUTOSAR is a global development partnership of automotive interested parties
[Wik]. It supports an open and standardized software architecture for the automotive domain.
Thus, the EvoSPL approach applies its process on product families in the automotive domain,
where normally, those families adopt AUTOSAR. Besides, many companies in the automotive
domain, such as BMW, Bosch, Ford, General Motors, and Toyota agreed on using it, which
makes our approach general and more applicable.

Fortunately, the EvoSPL approach has been deployed at Bosch Car Multimedia company. The
case study performed in the company, putting our approach into practice to develop the resulting
SPL from an automotive family that has AUTOSAR architecture adopted by the company for
a long time in producing its products to automotive consumers. The evaluation section (section
7.3.3) presented in this chapter includes a detailed explanation for AUTOSAR.

Traceability links Traceability links represent the relationships between each feature belonging
to the current FM and code fragments belonging to the code of the resulting SPL (see Feature-
related-code fragments below). The relationships are established between each feature and
the code fragments that are responsible for its implementation in the code (feature-related-
code fragments). A traceability link has one-to-many relationships; hence each feature may be
implemented by one code fragment or more. In this regard, the feature mapping activity creates
a particular artifact to store the relationships, called the traceability tree (see Traceability tree
below), and it defines the rules that govern the creations of these relationships. These rules are
called tracing rules (see Tracing rules below).

Feature-related-code fragment The traceability tree relates features (of the current FM) and
code fragments (of the code), using traceability links. Each link relates a feature to a set of code
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fragments that implement this feature. Each feature-related-code fragment is defined, in this
work, as a code portion that maintains feature implementation. A code portion is a software
unit, such as routine, statement, and expression.

The problem During the evolution of the resulting SPL, the current FM and code can
easily become inconsistent in terms of variability [CHGZ+12] [CH+14] [Nev+11] [Gal+11] .
For example, the code may keep feature-related-code fragments that are related to a feature
previously removed from the current FM. Besides, these artifacts are typically developed and
evolved independently during the evolution of the resulting SPL in a way that breaks their
conformance with the reference architecture. This problem may occur primarily in the forward
engineering phase of the EvoSPL approach, whenever feature changes occur, while there are
no mapping links among the artifacts of the resulting SPL, like the current FM, reference
architecture, and code. Normally, whenever a feature change occurs (e.g., add a new requirement
or feature) a software developer often manually inspects the code to identify the related changes
and update them accordingly.

Moreover, a feature represents user-visible characteristics that distinguish the products in the
problem space, and a set of feature-related-code fragments implements features in the solution
space. To preserve both spaces consistent with each other, whenever changes occur in the
resulting SPL, it is worth to map them to each other.

The input and output The feature mapping activity requires the following inputs, to apply its
macro steps: (1) features of the current FM (during automation of the mapping phase process,
features are taken from the XML file related to the feature tree, which represents the current
FM), (2) the development view structure of the reference architecture that contain the variability
information (subsystems and components), and (3) the code of the resulting SPL. This activity
processes the inputs and produces (macro step 1) the traceability links that map each feature
to its design place (subsystem or component) in the reference architecture, (macro step 2) the
traceability links that map subsystems and components of the reference architecture to their
corresponding packages and modules of the code, and finally (macro step 2 ) the traceability
tree that stores the relationships of each feature to its code fragments of the code.

Besides, (macro step 3) the traceability tree reflects the updates of the relationships whenever
change occurs in the current FM. Then based on the traceability tree, the developer can use
a proper approach to update the code. This is not the focus of our work, since the research
question is how to map the current FM to the reference architecture and code.

Role of the reference architecture In this step of our work, we have the resulting SPL that has
been extracted and evolved from the products of a family, which has several product variants and
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a new one (or more). Normally, each of them has a specific number of modules that implement
the product in the code-level. On the one hand, some modules are common (shared) within the
products of a family and those modules comprise the common base of the resulting SPL. On
the other hand, some modules are variable (different) within the products of a family, and they
are the source of variety for the resulting SPL. As described earlier, the reference architecture
in our work has a layered architecture pattern (i.e., consists of layers). Each layer contains a set
of parts (subsystems and components), where the common parts are shared within the products
of a family and the variable ones are making a product different from another one in the family
and the resulting SPL.

In practice, a set of common parts of the reference architecture are usually the base of a products
family, which comprises the basis for the resulting SPL design and implementation. Normally,
and in our work, the common parts of the reference architecture and their related parts in
the code, are corresponding to common features, where the variable parts are corresponding to
optional features of the current FM. The role of the reference architecture is to describe the com-
monality and variability parts among the products of a family and, as such, to provide a common
overall structure of the resulting SPL. In custom, the most upper layer of the reference archi-
tecture contains the variable parts. They present specific customer and project requirements,
which determine associated parts in the code that should be considered in terms of related fea-
tures. As shown in Fig. 7.6, the feature mapping activity assumes that each subsystem and its
integral components of the reference architecture are often implemented as a sub-package and
its internal modules of the implementation code. In this work, we mainly focus on variable parts
that clearly show the variability of the resulting SPL.

Figure 7.6: EvoSPL process: mapping between the reference architecture and code (com-
ponent to module).
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As shown in Fig. 7.6, the round rectangles and connections drawn with solid lines represent
core (common) components (and modules) of the resulting SPL. In contrast, the ones drawn
with dashed lines represent variable components (and modules) of the resulting SPL (optional
features). Variable components (provide all project-specific configurations to other components,
where necessary) and their related modules (which mainly in our case includes C-C++ files)
represent the area that the feature mapping activity uses to investigate (find) features positions
in the implementation code. Usually, a reference architecture also includes the definition of
relations among components (interfaces, dependency, hierarchy, etc.). These relations are not
considered in our approach, even though they may contain variability information, but the target
of our approach is the feature mapping to the code, hence, the approach only uses the reference
architecture as a centric point.

Reference architecture and the code The reference architecture defines the architectural
structure for a set of related products (of the resulting SPL) [Gar+03]. As explained before,
the reference architecture contains common parts (subsystems and components) and their corre-
sponding parts (packages and modules) of the code shared within a products family/the resulting
SPL. Also, they comprise the common base (a set of core functionality) of the resulting SPL.
At the same time, the reference architecture and code contain variable parts and their corre-
sponding parts of the code. The variable parts make each product different from the other.
The common and variable parts in both artifacts (the reference architecture and code) can be
defined in terms of variability model realized in our case by the current FM [Gom13].

key criteria to apply the feature mapping Generally, the usage of feature mapping activity
macro steps is possible due to the reference architecture structure. In this title, we present the
criteria to check in the working environment, regarding the resulting SPL, prior applying the
feature mapping.

Criteria 1. The reference architecture of the resulting SPL should have a decomposition style
that forms a layered architecture pattern. Such a layer should provide an interface offering
services between the layers. Layers have strict ordering such that a higher layer is only allowed
to use the next lower layer.

Criteria 2. The reference architecture is typically modelled as subsystems and components. Some
of them are presented in all the products (commonality) and the others are variable (bound to
customer and product requirements). Components can be connected through interfaces that
restricts the number of component configurations.
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Criteria 3. A functionality (feature) is typically assigned to a subsystem or component of the
reference architecture that encapsulates the implementation of functionality from the automotive
domain. This assignment is fixed on the resulting SPL.

Criteria 4. Each product of the resulting SPL accompanies with a code that follows the project
hierarchical level structure explained in the Implementation code elements title.

7.1.1 Feature- architecture mapping macro step
The feature-architecture mapping macro step presents a solution to map features of the current
FM to the reference architecture. This solution aims to define the concept of traceability between
the current FM and reference architecture. This macro step identifies the feature-related-arch-
elements (arch is the abbreviation for architecture), namely the feature-related-subsystems and
feature-related-components of the reference architecture. This macro step also uses the trace-
ability links to document the relation between features and the feature-related-arch-elements.
The links enable, for instance later, to search only the feature-related-modules of the code that
are corresponding to the feature-related-components of the reference architecture (instead of the
entire code base), to find the code fragments that are responsible for the feature implantation.

Practically, our approach considers that feature mapping to the reference architecture is straight-
forward, based on the following reasons. First, the structure of the reference architecture is
predefined and agreed by the team developer (or company) of a product family. Second, the
architect designed the reference architecture to fulfil almost all the requirements given for a
products family. Finally, detailed design of the reference architecture is part of development
and produces the code, which almost obeys the architecture, incorporating the code view. The
developer can identify from the design of the reference architecture the components that encap-
sulate the common and specific functionality for the products of a family. Thus, the feature-
architecture mapping macro step follows the structure of the reference architecture as a guidance
to find the intended feature-related-arch-elements using the following steps.

Step 1.1 provides a traceability link between features of the current FM and the layer of the
reference architecture that contains variability and customer (project) specific requirements. As
shown in Fig. 7.7, normally, the most upper layer (layer 3) is the target and proper layer to
perform the feature mapping.

Step 1.2 provides traceability links between each feature of the current FM and the feature-
related subsystem of the most upper layer. This step retrieves a set of the ARs that specify the
feature and uses the statement parts of them to determine the feature-related subsystem (see
Feature-related-design below).
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Figure 7.7: EvoSPL process: feature-architecture mapping macro step.

Step 1.3 provides traceability links between each feature of the current FM and the feature-
related component in the subsystem that is already identified for the feature, when required.
This step uses the retrieved ARs that specify the feature and uses them, but this time, to
determine the feature-related component (see Feature-related-design below).

Step 1.4 stores the traceability links of each feature to its feature-related-arch-elements in a
document.

As shown in Fig. 7.7, this macro step consumes the features of the current FM and the reference
architecture and delivers a document that contains the list of features of the current FM and
their feature-related-arch-elements. This document will be used as an input to the feature-code
macro step.

Feature-related-design Basically, a large part of the commonality and variability in the
reference architecture originates mainly from the commonality and variability in requirements.
The architect determines how requirements, including variability, are reflected in the reference
architecture. Thus, step 1.2 and step 1.3 (1) define and maintain the traceability definition in a
backward direction from a feature to the ARs that specify this feature, by taking into account
the statement of each AR (see Feature-requirements mapping below). Then step 1.2 and step
1.3 (2) uses this traceability to realize feature-related-arch-elements that document the feature
while ensuring that they satisfy the product requirements.

Feature-requirements mapping Defining the ARs of each feature involves a backward mapping
from features of the current FM to ARs of the FL. Fig. 7.8 illustrates the basic steps for
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performing the backward mapping from a features to its related ARs, in order to finally map
the feature to feature-related-arch-elements. The five steps are as follows.

Figure 7.8: EvoSPL process: feature-requirements and feature-related-arch-elements map-
ping.

1. Identify a set of ARs of the feature from the FL.

2. Document the identified AR that belongs to the feature.

3. Relate each AR to its corresponding statement part from the RS document.

4. Specify the functionality information of a set of ARs belonging to the feature.

5. Assign feature to feature-related-arch-elements.

Steps 2 and 3 are repeated until all the ARs have been considered.

A set of ARs may specify a feature of the current FM. Each AR (see Atomic requirement
structure of the reverse engineering chapter) has a statement part that (partially) shares to
specify a specific functionality of the product. A set of ARs specify one functionality (feature) of a
product of the resulting SPL, which has a corresponding design in the reference architecture that
models this functionality. Thus, step 1.2 can map a feature to its related feature-related-arch-
elements (subsystems and components) that encapsulates its functionality, based on (1) feature-
requirements mapping, (2) architect of the reference architecture can give a useful information
and consultation regarding this issue, and (3) the name of a feature can be used to support such
mapping. According to the guidelines of our approach, the feature has a meaningful name that
reflects a clear property or functionality of the resulting SPL.
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7.1.2 Feature-code mapping macro step
The feature-code mapping macro step aims to satisfy the main goal of the feature mapping
activity. It maps features of the current FM to the code of the resulting SPL, but not the
reverse. It establishes a kind of traceability link between each feature and its implementation
code fragments, using the reference architecture structure design, which has been investigated
in the feature-architecture mapping macro step, as a guidance. Mainly, this macro step uses the
output document of the feature-architecture mapping macro step to locate each feature of the
current FM to its implementation positions in the code. The feature-code mapping macro step
consists of the following steps.

Step 1.5 investigates the code characteristics and code variability nature of the products of the
resulting SPL.

The code characteristics The feature mapping activity assumes that one way to achieve
a successful mapping between the reference architecture and code is to ensure that the code
reflects the abstract concepts shown on the reference architecture design, which can be achieved
by supporting subsystems and components design in its layers. Thus, the Evo SPL approach
deals with the code of the resulting SPL that has the following characteristics.

� The code of each product is organized by a main package, which marks the product name,
as well as composed of other packages, where each of them corresponds to a layer of the
reference architecture.

� The package corresponding to the most upper layer of the reference architecture has
sub-packages (sub-package is a package within the main package). Each sub-package
corresponds to a subsystem of the reference architecture. Normally, this package has a
unique and common name among all the products, as well as it has a name identifier close
to the name of the most upper layer of the reference architecture.

� Each sub-package contains one or more modules (a piece of software that has a specific
functionality), where each module has a specific functionality of the product and corre-
sponds to a specific component of the reference architecture.

� Each module contains one or more different source files shared to implement the function-
ality of the module and can be edited separately.

� Each source file has a name that reflects its functionality and reflects the module and
sub-package that the source file belongs to. The source files correspond to internal design
of the component. They are the target place of the feature-code mapping macro step, to
search for the feature implementation.
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� The implementation code elements (see Implementation code elements below) follow the
programming naming convention, which is a set of rules for choosing the character se-
quence to be used for identifiers that denote package, source file, routines, and other
entities (local and global variables) in code and documentation. By convention a com-
pany, especially in the automotive domain, uses its reserved domain names for its package,
source file, routine, and attribute names, which closely correlates with the reference ar-
chitecture.

Fig. 7.9 exemplifies an example that illustrates the implementation code characteristics and
Fig. 7.10 exemplifies, with the same example, how the code view correlates with the reference
architecture. The main package (phoneProduct 1) hosts the entire code implementation of the
product and has the product name. Each sub-package (e.g., phoneConevtivity) encapsulates
the source files (e.i., connect1Blutooth.cpp and connect2Blutooth.cpp) members related to a
specific module (i.e., connectBlutooth), which allows us to divide the product into discrete units
of functionality. A product can have one or many modules and one module may use another
module as a dependency. Each module can be independently built, tested, and debugged. In
our case, the code view (see Code view below) obeys the development structure of the reference
architecture and has a relation with its elements.

Figure 7.9: An example that illustrates the implementation code characteristics.

For example, as shown in the lower side of Fig. 7.10, the ‘phoneConnectivity’ sub-package of the
‘phoneProduct1’ main package corresponds to the ‘connectivity phone’ subsystem of the refer-
ence architecture in the upper side of the same Figure. The sub-package and its corresponding
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subsystem follow the conventional name standards that give names reflect both the functionality
and relation between them.

The code view The products of the resulting SPL have a code implementation that follows
a file system hierarchy, which obeys the reference architecture, incorporating the code view.
The code view presents the code artifacts after development and determines the interrelations
between them as follows.

� The resulting SPL consists of products, each product has a platform implementation code
that contains common sub-packages (e.g., ‘phoneConnectivity’ sub-package corresponds
to ‘connectivity phone’ system of Fig. 7.10) that reside in the main package and reflects
the resulting SPL core assets. The main package also contains other sub-packages (e.g.,
‘phoneCamera’ sub-package corresponds to ‘camera phone system’ of Fig. 7.10) that re-
flects the product specific requirements and configuration.

� The implementation code platform relies on hierarchical file systems to manage the code
view that closely correlates with the development view of the reference architecture. The
strategy is as follows.

1. Each layer corresponds to a package that has a name. The name reflects the layer
name and contains other sub-packages. It is worth to mention that the feature
mapping activity focuses on the most upper layer, in consequence, it focuses on the
package that corresponds to this layer, to search for features-related-code fragments.

2. Each sub-package corresponds to a subsystem of the reference architecture and has
a name that reflects the subsystem name and contains other modules.

3. Each module corresponds to a component of the reference architecture and has a
name that reflects the component name and contains source files that implement the
functionality of the module.

4. Each source file consists of routines and other software units (variables, statements
and expressions).

5. A set of routines (function or method) from one source file or more corporates to
perform a specific functionality. Normally, routines use the local and global variables
as well as expressions and statements to fulfil a complete runnable implementation.

Fig. 7.10 shows in the lower side the code implementation of ‘phoneProduct 1’ (one product of
the ‘mobile phone’ SPL presented earlier in this chapter). The code implementation follows a
file system hierarchy. The code view presented in the lower side of Fig. 7.10 obeys the reference
architecture presented in the upper side of the same figure. The product code implementa-
tion resides in the ‘phoneProduct1’ main package and consists of two sub-packages, namely
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Figure 7.10: The interrelation between code view and the reference architecture.

‘phoneConnectivity’ and ‘phoneCamera’. Each sub-package has a unique name that has two
parts. The first part reflects its functionality and the second part reflects its parent package.
For example, the ‘phoneConnectivity’ performs a functionality related to phone connectivity
(‘connectivity’) and its parent package is ‘phoneProduct’. The ‘phoneConnectivity’ sub-package
corresponds to the ‘connectivity phone’ subsystem of the reference architecture. Both have
approximately a common name identifier that reflects their relationship.

As shown in the lower side of the figure, each sub-package contains one module. Each of them
performs a specific unit of functionality, as well as, each of them corresponds to a specific
component in the reference architecture (e.g., the ‘connectBlutooth’ module corresponds to the
‘Bluetooth phone’ component), as shown in the upper part. The source files are stored in a
module, and they implement its specific functionality. Source files contain the code that is doc-
umented by the internal design of the component, which is out the scope of this research work.
The ‘connect1Bluetooth.cpp’ share with the ‘connect1Bluetooth.cpp’ source file in the ‘connect-
Blutooth’ module to implement the module functionality. Based on the above explanation, the
‘Connectivity’ feature of the current FM (shown in the upper part of Fig. 7.10) has a traceability
link with ‘connectivity phone’ subsystem’ of the reference architecture, which can be used as a
guidance to trace the feature to the ‘phoneConnectivity’ sub-package. The ‘phoneConnectivity’
sub-package is searched to locate the ‘Connectivity’ feature implementation inside its contents.
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The code variability nature As mentioned in the previous chapters, this thesis deals with
product families of the automotive domain that have been implemented in C-C++ programming
language. In order to find features positions in the code. Step 1.5 reviews and analyses the
variability nature of the code. This analysis helps to achieve an understanding on how code
works and implements variability (features). The code variability investigation results in the
following observations.

1. The pre-processor code supports file inclusion (#include), macros constant (#define),
and conditional compilation. In practice, mainly, the code uses #ifdef blocks for vari-
ability realization, where code variants are conditionally included or excluded by #ifdef
statements.

2. While variations using Conditional Compilation are implemented as #ifdef blocks in the
code, the Conditional Execution is used also as if-else blocks. If there are more than two
alternatives, then the variation is implemented as a switch block. It is often used for
realizing features that are configured after compilation (e.g., using a configuration file).

3. While the code of the source files is coarse-grained with routines, the implementation of
routines is fine-grained, because they are implemented as if-else blocks and conditional
code blocks. The conditional compilation implements fine-grained variability by inclusion
or exclusion of #ifdef-blocks within the code of source files , as well as it includes many
individual programming statements (variable declarations and expressions).

4. Many features can be enabled/disabled for the product, in the configuration file of the
code that relates to this product. Once the product is created the product-specific configu-
ration or modification must be done using file inclusion. Normally, this inclusion contains
a configuration and setting some values for the features. Hence, we are interested in
features and its related code fragments, these files are not a valuable source for feature
identification.

5. The macro definitions and #ifdef blocks are the most-frequently-used features of the pre-
processor. The #ifdef blocks have been used to delimit the optional code associated with
each feature, such as #ifdef and #endif to surround the code fragments.

6. The macro constants are defined with directive #define and are normally assigned values.
Then the constants are used in #ifdef statements, which allow #ifdef blocks to be com-
piled conditionally into the corresponding code fragments. Generally, #ifdef block can be
mapped to a variation that is either optional or an alternative feature.

7. The code fragments that are responsible for a specific feature implementation may crosscut
several files and routines of the code.
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Implementation code elements The feature mapping activity assumes that the implementation
code relies on hierarchical file systems to manage source files based on project hierarchical level of
code elements, which implement features ranging from higher hierarchical implementation level
according to (C-C++) programming grammar, such as packages, source files, and routines to
lower hierarchical implementation levels, such as statements and expressions. The hierarchical
level of code elements that implement features are viewable as the following software units.

� Package/sup-package/module contains entirely all the source files that perform a specific
functionality as implementing a set of features.

� Source file contains entirely all the routines and pre-processor directives (that exist in C-
C++, including #ifdef, #ifndef, and #else) as implementing a set of features. Basically,
these directives indicate to the programmer whether code fragments they delimit should
be passed to the compiler or not. In this way, it is possible to generate a product from
the resulting SPL with optional features indicated by software developers.

� Routine in source file implements a feature (i.e., signature and body). The routine may
combine the implementation of more than one feature. At the same time, a feature
implementation may crosscut several routines, which is based mainly on the code nature.

� Attribute implements or share to implement a feature.

� Statement implements or shares to implement a feature, including method calls, assign-
ments, conditional statements, loop statements, etc.

� Expression implements or shares to implement a feature (e.g., the expression of an if or
loop statement).

Fig. 7.11 presents the resulting SPL with four products, namely P1, P2, P3 and P4. Using con-
ditional compilation, macro constants are defined with the directive #define and are undefined
with #undef directive, as depicted in the left-hand side and right-hand side of the figure. Then
the constants are used in an #ifdef statements, as depicted in the middle of the figure.

To implement variability in the resulting SPL, constant definition and undefinition usually oc-
curs in product code (P1, P2, P3 and P4), while constant usage usually occurs in core code,
as shown in Fig. 7.11. In this way, when the core code is reused and instantiated by products,
different variant elements in #ifdef blocks are conditionally compiled into corresponding prod-
uct code. According to macro constants definition occurs in each product, when the core code
is reused, the resulting SPL will have the following product configurations: P1: {connectivi-
tyPhone, Bluetooth}, P2: {connectivityPhone, Bluetooth, camera}, P3 {connectivityPhone ,
WIFI}, and P4 {connectivityPhone , WIFI, camera}.
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Figure 7.11: An example of variability realization in C code using the conditional compi-
lation.

Step 1.6 creates five tracing rules that define how relationships can be established between
features of the current FM and code fragments of the code. In other words, the rules restrict a
feature of the current FM that can be traced to which code fragment(s) of the code.

Tracing rules The tracing rules defines how to relate features belonging to the current FM to
code fragments belonging to the code. The rulers restrict for the feature how to find the places
of its implementation code fragment(s). The tracing rules results in traceability links. Each
traceability link relates one feature to its implementation code fragments. The tracing rules
defines the restrictions to create traceability links that consider variability. From the current
FM side, the variability is specified by means of optional and alternative features. From the code
side, the variability is specified by (1) means of relationship between variable components and its
corresponding modules of the code and (2) variability realization mechanisms of the code, such
as conditional compilation (see The code variability nature). Based on the traceability links
that have been established in the feature-architecture mapping macro step and its resulting
document, the tracing rules can be defined as follows.

1. Tracing rule (1). All the features of the current FM can trace to a package (i.e., the
package corresponds to the most upper layer of the reference architecture) containing the
implementation of a specific product requirements inside the main package of a product
or more.

2. Tracing rule (2). A feature can trace to the sub-package corresponding to the feature-
related-subsystem.

3. Tracing rule (3). A feature can trace to the specific module corresponding to the feature-
related component in the subsystem that is already identified for the feature.
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4. Tracing rule (4). A feature can trace to a set of source files related to the module that is
already identified for the feature.

5. Tracing rule (5). A feature can trace to a set of routines, statements, and expressions
related to the source file that is already specified for the feature.

As a side result of the tracing rules, we give the following recommendations for a feature location
title presented in step 1.7.

� Normally, each source file of a module implements a set of related features (i.e., parent-
feature and its child-feature).

� Normally, each routine of a source file implements a specific feature or a set of related
features. Also, a feature implementation may crosscut many routines in the same file or
in other files of the same (or another) module.

� Constants, variables, and expressions (which are situated either in the source files or in
the routines) may implement a feature. In other words, a feature implementation may be
mapped to a single constant, statement and expression or their combinations.

� Normally, common code fragments implement a common feature.

� Naturally, conditional compilation directives implement an optional or alternative feature.
They are annotated using #ifdef blocks, depending on its evaluation, the feature-related-
code fragments are either included for compilation or not.

� Normally configuration files reveal optional features. Those files contain the constraints
and dependencies of features, and they contain directives that run a specific feature that
makes each product unique.

� Comparing the code of source files of two products, using a proper compression tool,
reveals obviously optional and alternative features. Alternative features cannot be imple-
mented in more than one product.

Step 1.7 investigates and locates the feature positions in the code. This step uses feature
location of the EvoSPL, to locate feature- related-code fragments that are responsible for feature
implementation.

Feature location Given the products of the resulting SPL that has some complexity as well as
the current FM. In this context, knowledge about features of the resulting SPL can be scattered
across the code that somehow is organized. If this is the case, step 1.7 performs feature location
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and utilizes the following resources, to enrich the feature location process (1) the configuration
files, (2) the requirements documents, and (3) the code comments (contain rich documentation
that helps to find feature implementation in the code). Software engineers can find feature places
(i.e., feature-related-code fragments) through a manual analysis of the code assisted by Eclipse
IDE, using the following feature location steps.

1. Use Eclipse to import packages of the products of a family into its local development
workspace. Our approach does not require any changes to code of a specific products
family.

2. Label each feature of the current FM with its related product (see Labelling the current
FM below).

3. Use the current FM, which has been labelled with feature-related-product and the trace-
ability links that are established as a result of the tracing rules of step 1.6, to find the fea-
ture positions (feature-related-code fragments) in the code of the feature- related-product.

4. Prepare feature-related-terms, which are a set of terms (target words) related to or have
a great significance to feature (see Feature-related-terms below).

5. Search the code of the feature-related- product for the feature-related-terms and retrieve
the feature-related-code-fragments. The search process targets the code in the source files
of the feature-related-product labelled in the current FM. The search process uses the
search capability of the Eclipse, to locate and return feature-related-code fragments. The
Eclipse IDE search capability highlights the feature-related-code fragments using code
visualization capability of the same IDE (see Eclipse below).

6. Relate the feature with feature-related-code fragments, once a matching appears, by high-
lighting the places of the code that matched the feature- related-terms.

Labelling the current FM Fig. 7.12 summarizes our objective. On the one hand, it contains
the features of the resulting SPL, and on the other hand, it has a label besides each feature. The
label specifies the feature-related-product that have (implement) each optional and alternative
features. Software engineers can use the FL of each product to fill the labels. Software engineers
can follow one of the two strategies listed below when labelling each feature.

1. Software engineers can label a common feature with the initial release product (e.g., using
‘i’ character).

2. Software engineers can label an optional or alternative feature with one of the products
that have (implements) this feature. The EvoSPL assumes that a feature has the same
implementation in all the products of the resulting SPL.
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Figure 7.12: The current FM labelled with feature-related-products.

Feature-related-terms Software engineer can prepare and review a set of terms related to
each feature from artifacts of the feature-related product, like the manual guide, requirements
document as well as RS document - ARs and commenting code may contain meaningful terms.
The code comments contain a rich documentation that helps to collect significant feature-related-
terms that help to specify the feature-related-code-fragments. For example, a set of predefined
feature-related-terms may include the feature name itself, technology, signal, service, capability,
and attribute.

Commenting the code Commenting code is a practice that normally uses single-line notes
throughout the code. These notes are called comments. A code comment is a piece of human-
readable text that is written in the source to explain something about the code. The following
is an example of code commenting.

Example 6.1: a code comment
// increment variable comment
variable++;

Step 1.8 creates traceability links from the feature to its positions in the code. Each traceability
link represents a relation between a feature and the set of code fragments implementing the
feature.

Step 1.9 stores the traceability links in the traceability tree (see Traceability tree below).

Repeats step 1.7 to step 1.9 until all the features of the current FM are considered.

However, it is difficult to ensure that the feature location can find all the feature positions in
the code and the feature-code mapping macro step can trace each feature to all the feature-
related-code fragments. Multiple passes and search through the code is required to mitigate
such difficulties.
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Eclipse The EvoSPL approach uses Eclipse, which is an integrated development environment
(IDE) used in computer programming [Ecl], to perform the steps of feature-code mapping macro
step. Eclipse primary use is for developing Java applications, but it may also be used for
developing applications in other programming languages, including C-C++. Following Eclipse
IDE terminology, each product is called a package. Thus, we suggest using search capabilities
of the Eclipse IDE to locate feature-related-code fragments using the following stages.

Stage 1. The initiation stage uploads product packages to Eclipse workspace. Apart from this
stage is to configure the search setting; the contain text; the match case of the search (cases
sensitive, regular expression, or whole text); and search scope (e.g., workspace).

Stage 2. The searching stage uses feature-related-terms (target words) to search the packages
for feature-related-code fragments. Eclipse search capability lists all the feature-related-code
fragments that are containing ‘target words’ occurrences. During this stage, software develop-
ers can take notes related to features and features dependencies (constraints) to verify their
conformance with ones that are derived using reverse engineering phase.

Stage 3. The documentation stage stores the relation between feature and feature–related-code
fragments in the traceability tree.

Traceability tree Our approach maps the abstraction traceability gap between features and
code of the resulting SPL, by relating them in an artifact called traceability tree. This helps
software developers to avoid the difficulty of maintaining consistency between the current FM
and the code that evolves independently. The traceability tree is a kind of dropdown tree starting
its third level at feature. It allows software engineers to trace each feature to the feature-related-
code fragments with their positions, just by dropping down each level, starting at SPL project,
the resulting SPL package, features, and moving toward code fragments. The traceability tree
provides many traceability links. Each link relates a feature to the feature-related-code fragments
(see window 1 of Fig. 7.27).

The EvoSPL approach presents the evolution of the resulting SPL as a sequence of the current
FM at different points. At each point, the approach refines the current FM with the features of a
new product. Thus, another important capability of our approach is maintaining the traceability
links in the traceability tree (automatically) when a feature change occurs (e.g., feature added or
removed). The new features of the traceability tree are presented with red color, to give software
engineers an alert to update the feature-related-code fragments whenever features change occur,
which enables the current FM and the code of the resulting SPL to be linked and to be evolved
consistently. Thus, we develop an Eclipse-based tool, named friendlyMapper, to support the
concept of feature-code traceability links through the traceability tree. This and other potential
capabilities of the tool are discussed in section 7.3.
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7.1.3 Feature mapping conformance macro step
The feature mapping conformance macro step maintains the current FM and code conformance
whenever feature changes occur (e.g., add new feature). This macro step can (automatically)
update the traceability links of the traceability tree, to maintain the coherence between features
and code fragments, when existing features are changed. The feature mapping conformance
macro step works on the already established traceability links of the traceability tree. It works
in case of features change occurring in the current FM. Thus, it (Step 1.10) applies the predefined
steps for each case as follows.

Case 1 (add feature). Whenever a feature change occurs to the current FM , which involves
adding a new feature, then the feature mapping conformance macro step (1) adds this feature
to the features level of the traceability tree, (2) gives the new feature a red color, and (3) creates
new links from the new feature to feature-related-code fragments.

Case 2 (delete feature). Whenever a feature change occurs to the current FM , which involves
deleting a feature, then the feature mapping conformance macro step (1) deletes this feature
from the features level of the traceability tree, and (2) removes all the tractability links from
this feature to feature-related code fragments of the traceability tree.

An important capability of friendlyMapper tool (section 7.3) is creating and maintaining a fea-
ture and feature-code fragments relationship. It supports operations such as creating traceability
links, adding traceability links, and removing traceability links. All the changes occurring to
the current FM are automatically reflected and saved in the traceability tree. Thus, further
explanation for the feature mapping conformance macro step is presented in the tool support
section of this chapter.

7.2 An illustrative example of the mapping phase: ATM products
family

This section presents the illustrative example of the mapping phase. It provides further clari-
fications of the EvoSPL approach, based on the previous illustrative example presented in the
earlier chapters. This example supports the feature mapping of the ATM resulting SPL, which
has been extracted and evolved during the previous phases of the EvoSPL approach. Con-
sider the four products, including the features set of each product (shown in the upper side of
Fig. 7.13), the current FM (shown in the lower side of Fig. 7.13), and the reference architecture
(shown in Fig. 7.14), this example aims to apply the feature mapping activity and delivers the
traceability tree artifact. The traceability tree not only defines the traceability links between
each feature of the current FM and feature-code fragments of the code, but also it updates the
traces when a feature change occurs in the current FM, to preserve consistency among them.
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Figure 7.13: Features set of the products and the current FM of the ATM resulting SPL.

The mapping between the current FM of the ATM resulting SPL and the reference architecture
is established first, as a centric point. Fig. 7.14 shows the general structure of the reference
architecture of the ATM resulting SPL that has been extracted from the products of the same
family, using the process of the EvoSPL approach. The development view is used to model
the architecture structure in layers, subsystems, and components. The reference architecture
composed of three layers: (1) resource management layer, (2) system service layer, and (3) the
ATM transaction layer (the most upper layer). The mapping phase focuses on the most upper
layer of the reference architecture to perform its unique feature mapping activity, which consists
of three macro steps.

Figure 7.14: General reference architecture of the ATM resulting SPL.
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Fig. 7.15 exemplifies the ‘ATM Transaction’ most upper layer of the reference architecture
with some services from four subsystems: ‘Balance Transaction’, ‘Cash Transaction’, ‘Service
Transaction’, and ‘Transaction Synchronization’. The ‘Balance Transaction’ subsystem com-
prises ‘Balance Checking’, ‘Screen’ and ‘Report’ components. The ‘Cash Transaction’ subsystem
has ‘Cash Withdrawal’, ‘Withdrawal Limit’, and ‘Cash Deposition’ components. The ‘Service
Transaction’ subsystem contains ‘Money Transfer’, ‘Currency Conversion’ and ‘Service Payment’
components. Finally, the ‘Transaction Synchronization’ subsystem owns ‘Quit Transaction’ and
‘Change Transaction’ components.

Figure 7.15: The ‘ATM Transaction’ most upper layer of the reference architecture.

The ‘Balance Transaction’ subsystem has the common ‘Balance Checking’ component for the
common ‘check_balance’ feature and special components only for the variants. The ‘check_bal-
ance’ feature describes the way provided by the ‘Balance Transaction’ subsystem to check and
show the balance. The variability in this subsystem offers an alternative with two variants that
appear in the current FM as ‘show_balance_screen’ and ‘show_balance_report’. Each of them
is realised by a separate component inside the internal design of the ‘Balance Transaction’ sub-
system. The former variant is realised by the ‘Screen’ separate component, and the latter is
realised by the ‘Report’ separate component. Thus, the main objective of this example is to
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show, in detailed steps, how to map features of the current FM to the corresponding feature-
related-code fragments of the ATM resulting SPL, using the reference architecture shown in
Fig. 7.14 and Fig. 7.15.

Feature- architecture mapping macro step

The feature-architecture mapping macro step follows the structure of the reference architecture
( Fig. 7.14 and Figure Fig. 7.15) as a guidance to find the intended feature-related-arch-elements
(feature-related-subsystem and feature-related-component) using the following steps.

Step 1.1 provides a traceability link between features of the current FM and the ‘ATM Trans-
action’ layer of the reference architecture. As shown in Fig. 7.16, the ‘ATM Transaction’ layer
is the target and proper layer to perform the feature mapping.

Figure 7.16: Traceability link between the features of the current FM and the ‘ATM
Transaction’ most upper layer of the reference architecture.

Step 1.2 provides traceability links between features of the current FM and the feature-related
subsystem of the ‘ATM Transaction’ layer.

Step 1.3 provides traceability links between each feature of the current FM and the feature-
related component in the subsystem that is already identified for the feature, when required.

Step 1.2 and step 1.3 uses feature-requirements mapping, to assign feature_related_arch_elemts
(feature-related subsystem and feature-related component) of each feature, as follows.

1. Identify the set of ARs of the feature from the FL.

2. Document the identified AR that belongs to the feature.

check_balance: {R2, R2.1, R2.2}
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3. Relate each AR to its corresponding statement part from the RS document.

R2: ATM checks the balance.
R2.1: ATM shows the balance on screen.
R2.2: ATM shows the balance on report.

4. Specify the functionality information of a set of ARs belongs to the feature.

5. Assign feature to feature-related-arch-elements.

The feature represents a functionality related to balance checking.

Step 1.4 stores the traceability links of each feature to its feature-related-arch-elements in a
document.

The ‘check_balance’ feature is related to:
’Balance Transaction’ subsystem.
’Balance Checking’ component.

Steps 1.1 to step 1.4 are explained using the ‘check_balance’ feature. The same process can
be applied to all features of the current FM. Fig. 7.17 contains the traceability links from each
feature of the current FM to feature-related-arch-elements.

Figure 7.17: The document that contains the traceability links from each feature of the
current FM to feature-related-arch-elements.
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Table 7.1: Products of the ATM resulting SPL and the corresponding packages.

product name main package package corresponds to
the ‘ATM Transaction’ layer

Product1 atmProduct1 atmTransaction
Product2 atmProduct2 atmTransaction
Product3 atmProduct3 atmTransaction
ProductNew atmProductNew atmTransaction

Table 7.2: Sub-packages of the ATM resulting SPL and the corresponding subsystems of
the reference architecture.

sub-package name subsystem name
balanceTransaction Balance Transaction
cashTransaction Cash Transaction
serviceTransaction Service Transaction
transactionSynchronization Transaction Synchronization

Feature-code mapping macro step

Step 1.5 investigates the code characteristics and the code variability nature of the products of
the ATM resulting SPL.

The Evo SPL approach can deal with the code of the ATM resulting SPL, since it is satisfied
the following characteristics.

� The code of each product is organized by a main package, which marks the product name,
as well as it is composed of other packages, where each of them corresponds to a layer of
the reference architecture. The ‘atmTransaction’ main package corresponds to the ‘ATM
Transaction’ most upper layer of the reference architecture and has a unique and common
name among all the products, as well as it has a name identifies close to the name of the
‘ATM Transaction’ layer of the reference architecture as shown in Table 7.1 .

� The ‘atmTransaction’ package has sub-packages. Each sub-package corresponds to a
subsystem of the reference architecture, as shown in Table 7.2 .

� Each sub-package contains one or more modules, where each module has a specific func-
tionality of the product and corresponds to a specific component of the reference archi-
tecture, as shown in Table 7.3.

� Each module contains one or more different source files that are shared to implement the
functionality of the module and can be edited separately, as shown in Table 7.4.
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Table 7.3: Sub-packages including the modules of the ATM resulting SPL and the corre-
sponding components of the reference architecture.

sub-package name module name component name

balanceTransaction
balanceCheck Balance Checking
balanceScreen Screen
balanceReport Report

cashTransaction
cashWithdrawal Cash Withdrawal
limitWithdrawal Withdrawal Limit
cashDeposit Cash Deposition

serviceTransaction
transferMoney Money Transfer
convertCurrency Currency Conversion
payService Service Payment

transactionSynchronization quitTransaction Quit Transaction
changeTransaction Change Transaction

Table 7.4: Modules of the of ATM resulting SPL and the source file of each module.

module name source file name
balanceCheck balanceCheck.cpp
balanceScreen balanceScreen.cpp
balanceReport balanceReport.cpp
cashWithdrawal cashWithdrawal.cpp
limitWithdrawal limitWithdrawal.cpp
cashDeposit cashDeposit.cpp
transferMoney transferMoney.cpp
convertCurrency convertCurrence.cpp
payService payService.cpp
quitTransaction quitTransaction.cpp
changeTransaction changeTransaction.cpp
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� Each source file has a name that reflects its functionality and reflects the module and
sub-package that the source file belongs to. The source files corresponding to internal
design of the component. They are the target place of the feature-code mapping macro
step, to search for the feature implementation.

� The implementation code elements follow the programming naming convention, which is
a set of rules for choosing the character sequence to be used for identifiers that denote
package, source file, routines, and other entities (local and global variables) in code and
documentation. The ATM resulting SPL uses its reserved domain names for its pack-
age, source file, routine, and attribute names, which closely correlates with the reference
architecture.

Step 1.6 creates five tracing rules that define how relationships can be established between
features of the current FM and code fragments of the code. In other words, the rules restrict a
feature of the current FM can be traced to which code fragment(s) of the code.

Tracing rule (1). All the features of the current FM can trace to the package containing the
implementation of a specific product requirements inside the main package of a product or more
(i.e., the package corresponds to the most upper layer of the reference Architecture) as follows.

The features of the current FM can trace to the ‘atmTransaction’ package.

Tracing rule (2). A feature can trace to the sub-package corresponding to the feature-related-
subsystem, as presented in Tracing rule(2) title below.

Tracing rule(2)

1. The ‘check_balance’ feature can trace to the ‘balanceTransaction’ sub-package corre-
sponding to the ‘Balance Transaction’ subsystem.

2. The ‘show_balance_screen’ feature can trace to the ‘balanceTransaction’ sub-package
corresponding to the ‘Balance Transaction’ subsystem.

3. The ‘show_balance_report’ feature can trace to the ‘balanceTransaction’ sub-package
corresponding to the ‘Balance Transaction’ subsystem.

4. The ‘withdraw_cash’ feature can trace to the ‘cashTransaction’ sub-package correspond-
ing to the ‘Cash Transaction’ subsystem.

5. The ‘withdraw_cash_limit’ feature can trace to the ‘cashTransaction’ sub-package corre-
sponding to the ‘Cash Transaction’ subsystem.
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6. The ‘deposit_cash’ feature can trace to the ‘cashTransaction’ sub-package corresponding
to the ‘Cash Transaction’ subsystem.

7. The ‘transfer_money’ feature can trace to the ‘serviceTransaction’ sub-package corre-
sponding to ‘Service Transaction’ subsystem.

8. The ‘convert_currency’ feature can trace to the ‘serviceTransaction’ sub-package corre-
sponding to ‘Service Transaction’ subsystem.

9. The ‘pay_service’ feature can trace to the ‘serviceTransaction’ sub-package corresponding
to ‘Service Transaction’ subsystem.

10. The ‘quit_transaction’ feature can trace to the ‘transactionSynchronization’ sub-package
corresponding to ‘Transaction Synchronization’ subsystem.

Tracing rule (3). A feature can trace to the specific module corresponding to the feature-related
component in the subsystem that is already identified for the feature, as presented in Tracing
rule(3) title below.

Tracing rule (3).

1. The ‘check_balance’ feature can trace to the ‘balanceCheck’ module corresponding to
the ‘Balance Checking’ component in the ‘Balance Transaction’ subsystem that is already
identified for the feature.

2. The ‘show_balance_screen’ feature can trace to the ‘balanceScreen’ module corresponding
to the ‘Screen’ component in the ‘Balance Transaction’ subsystem that is already identified
for the feature.

3. The ‘show_balance_report’ feature can trace to the ‘balanceReport’ module correspond-
ing to the ‘Report’ component in the ‘Balance Transaction’ subsystem that is already
identified for the feature.

4. The ‘withdraw_cash’ feature can trace to the ‘cashWithdrawal’ module corresponding to
the ‘Cash Withdrawal’ component in the ‘Cash Transaction’ subsystem that is already
identified for the feature.

5. The ‘withdraw_cash_limit’ feature can trace to the ‘limitWithdrawal’ module corre-
sponding to the ‘Withdrawal Limit’ component in the ‘Cash Transaction’ subsystem that
is already identified for the feature.
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6. The ‘deposit_cash’ feature can trace to the ‘cashDeposit’ module corresponding to the
‘Cash Deposition’ component in the ‘Cash Transaction’ subsystem that is already identi-
fied for the feature.

7. The ‘transfer_money’ feature can trace to the ‘transferMoney’ module corresponding to
the ‘Money Transfer’ component in the ‘Service Transaction’ subsystem that is already
identified for the feature.

8. The ‘convert_currency’ feature can trace to the ‘convertCurrency’ module corresponding
to the ‘Currency Conversion’ component in the ‘Service Transaction’ subsystem that is
already identified for the feature.

9. The ‘pay_service’ feature can trace to the ‘payService’ module corresponding to the ‘Ser-
vice Payment’ component in the ‘Service Transaction’ subsystem that is already identified
for the feature.

10. The ‘quit_transaction’ feature can trace to the ‘quitTransaction’ module corresponding
to the ‘Quit Transaction’ component in the ‘Transaction Synchronization’ subsystem that
is already identified for the feature.

Tracing rule (4). A feature can trace to a set of source files related to the module that is already
identified for the feature, as presented in Tracing rule (4) title below .

Tracing rule (4)

1. The ‘check_balance’ feature can trace to the ‘balanceCheck.cpp’ source file related to the
‘balanceCheck’ module that is already identified for the feature.

2. The ‘show_balance_screen’ feature can trace to the ‘balanceScreen.cpp’ source file related
to the ‘balanceScreen’ module that is already identified for the feature.

3. The ‘show_balance_report’ feature can trace to the ‘balanceReport.cpp’ source file related
to the ‘balanceReport’ module that is already identified for the feature.

4. The ‘withdraw_cash’ feature can trace to the ‘cashWithdrwal.cpp’ source file related to
the ‘cashWithdrawal’ module that is already identified for the feature.

5. The ‘withdraw_cash_limit’ feature can trace the ‘limitWithdrawal.cpp’ source file related
to the ‘limitWithdrawal’ module that is already identified for the feature.

6. The ‘deposit_cash’ feature can trace to the ‘cashDeposit.cpp’ source file related to the
‘cashDeposit’ module that is already identified for the feature.
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7. The ‘transfer_money’ feature can trace to the ‘transferMoney.cpp’ source file related to
the ‘transferMoney’ module that is already identified for the feature.

8. The ‘convert_currency’ feature can trace to the ‘convertCurrency.cpp’ source file related
to the ‘convertCurrency’ module that is already identified for the feature.

9. The ‘pay_service’ feature can trace to the ‘payService.cpp’ source file related to the ‘pay-
Service’ module that is already identified for the feature.

10. The ‘quit_transaction’ feature can trace to the ‘quitTransaction.cpp’ source file related
to the ‘quitTransaction’ module that is already identified for the feature.

Tracing rule (5). A feature can trace to a set of routines, statements, and expressions related
to the source file that is already specified for the feature. This tracing rule can be applied when
performing the feature location steps of step 1.7 below. Since, the source files have fine-grained
implementation. They do not use routines, and they consist of statements, expressions, and
attributes.

Step 1.7 investigates and locates the feature position in the code, using the following feature
location steps.

1. Use Eclipse to import packages of the products of the resulting SPL into its local devel-
opment workspace. Our approach does not require any amount of changes to the code.

2. Label each feature of the current FM with feature-related-product. As shown in Fig. 7.18,
software engineers can follow one of the two strategies listed below when labelling each
feature.

Figure 7.18: The current FM labelled with feature-related-products.

� Software engineers can label the common features with the initial release product
(e.g., using ‘i’ character). For example, the common ‘check_balance’ feature is la-
belled with ‘i’ character. As presented earlier, in the illustrative example of the
reverse engineering phase, Product 1 is the initial release product of the ATM prod-
ucts family.
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� Software engineers can label an optional or alternative feature with one of the prod-
ucts that have (implements) this feature. For example, the optional ‘convert_cur-
rency’ feature is labelled with its feature-related product ‘P2’, where the alternative
‘show_balance_screen’ feature is labelled with its feature-related-product ‘P3’.

3. Use the current FM, which has been labelled with feature-related-product (see Fig. 7.18)
and the traceability links that are established as a result of the tracing rules of step 1.6,
to find the feature positions (feature-related-code fragments) in the code of the feature-
related-product.

4. Prepare the feature-related-terms. Software engineer prepare and review a set of terms
related to each feature from artifacts of the feature-related product, like the manual guide,
requirements document as well as RS (e.g., ARs may contain meaningful terms), and code
(e.g., code comments may contain meaningful terms) of the code. For example, a set of
predefined feature-related-terms may include the feature name itself, technology, signal,
service, capability, and attribute (see Table 7.5 and Table 7.6).

5. Search the code of the feature-related- product for the feature-related-terms and retrieve
the corresponding feature-related-code-fragments. The search process targets the code
in the source files of the feature-related-product labelled in the current FM. The search
process uses the search capability of the Eclipse, to locate and return feature-related-
code fragments. The Eclipse IDE search capability highlights the feature-related-code
fragments using code visualization capability of the same IDE (see Eclipse). As there
is no enough place, on the following, we list some features and the related feature-code
fragments (see Table 7.7 Table 7.8).

6. Relate the feature with feature-related-code fragments, once the matching appears, by
highlighting the places of the code that matched the feature- related-terms (see Fig. 7.19).

Step 1.8 creates the traceability links from the feature to its positions in the code. Each trace-
ability link represents a relation between a feature and the set of code fragments implementing
the feature.

Step 1.9 stores the traceability links in the traceability tree, as shown in Fig. 7.20.

Repeats step 1.7 to step 1.9 until all the features of the current FM are considered.

Feature mapping conformance macro step
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Table 7.5: Feature-related-terms of the ATM resulting SPL.

feature feature-related
-product source feature-related

-terms

check_balance Product 1
manual guide not exist
requirements
document

R2=ATM checks the balance.
{ATM, check, balance}

code
e.g., //show check balance option
on screen
{check, balance}

show_balance_screen Product 3
manual guide not exist

requirements
document

R2.1=ATM shows the balance
on screen
{ATM, show, balance, screen}

code e.g., //show the balance on screen
{show, balance, screen}

show_balance_report ProductNew
manual guide not exist

requirements
document

R2.2=ATM shows the balance
on report.
{ATM, show, balance, report}

code e.g., //show the balance on report
{show, balance, report}

withdraw_cash Product 1
manual guide not exist
requirements
document

R3 = ATM withdraws cash.
{ATM, withdraw, cash}

code

e.g., //show withdraw cash option
on screen
e.g., //enter the amount to withdraw
e.g., // define long withdraw;
{withdraw, cash}

withdraw_cash_limit Product 3
manual guide not exist

requirements
document

R3.1=ATM withdraws cash with
a limit.
{ATM, withdraw, cash, limit}

code
e.g., //show a message to withdraw
cash with a limit
{ATM, withdraw, cash, limit}

deposit_cash Product1
manual guide not exist
requirements
document

R4 = ATM deposits cash.
{ATM, deposit, cash}

code

e.g., //show the deposit cash option
on screen
e.g., //enter the amount to deposit
e.g., // define long deposit;
{deposit, cash}
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Table 7.6: Feature-related-terms of the ATM resulting SPL continued.

feature feature-related
-product source feature-related

-terms

transfer_money Product 3
manual guide not exist
requirements
document

R5 = ATM transfers money.
{ATM, transfer, money}

code

e.g., //show the transfer money
option
on screen
e.g., //enter the amount to transfer
e.g., // define long amount;
{transfer, money, amount}

quit_transaction Product 1
manual guide not exist
requirements
document

R6 = ATM quits the transaction.
{ATM, quit, transaction}

code
e.g., //show the quit transaction
message
{quit, transaction}

convert_currency Product 2
manual guide not exist

requirements
document

R7 = ATM converts between
currencies.
{ATM, convert, currencies}

code

e.g., //show convert currencies option
on screen
e.g., // define long currency;
{convert, currency}

pay_service ProductNew
manual guide not exist
requirements
document

R8 = ATM pays for services.
{ATM, pay, service}

code

e.g., //show pay services option
on screen
e.g., // define char serviceType [10];
{pay, service}
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Table 7.7: Feature-related-code fragments of the ATM resulting SPL.

feature: feature-related -terms feature-related -product
check_balance: {ATM, check, balance} Product 1
feature-related-code fragments : code lines in source file
1. cod-fragment 1: code lines 19-22
do { print f (”********Welcome to ATM
Service**************\n”);
printf(”1. Check Balance\n”);
2. cod-fragment 2: code lines 27-33
printf(”Enter your choice: ”);
scanf(”%d”, &choice);
switch (choice){
case 1:
printf(”\n YOUR BALANCE IN Rs : %lu ”, amount);
break;
3. code-fragment 3: code lines 41-55
else if (withdraw >(amount - 500)) {
printf(”\n INSUFFICENT BALANCE”);}
else {amount = amount - withdraw;
printf(”\n\n PLEASE COLLECT CASH”);
printf(”\n YOUR CURRENT BALANCE IS%lu”, amount);}
4. code-fragment 4: code line 56
printf(”YOUR BALANCE IS %lu”, amount);
feature: feature-related -terms feature-related -product
Withdraw_cash:{ATM, withdraw, cash} Product 1
feature-related-code fragments : code lines in source file
1. cod-fragment 5: code line 6
unsigned long amount=1000, deposit, withdraw;
2. code-fragment 6: code lines 19-23
do{printf (”********Welcome to ATM Service**************\n”);
printf(”2. Withdraw Cash\n”);
3. code-fragment 7: code lines 34-51
case 2:
printf(”\n ENTER THE AMOUNT TO WITHDRAW: ”);
scanf(”%lu”, &withdraw);
if (withdraw % 100 != 0){
printf(”\n PLEASE ENTER THE AMOUNT IN MULTIPLES OF 100”);
}else if (withdraw >(amount - 500)){
printf(”PLEASE COLLECT CASH”);
printf(”YOUR CURRENT BALANCE IS %lu”, amount);}
break;



7.2. An illustrative example of the mapping phase: ATM products family 165

Table 7.8: Feature-related-code fragments of the ATM resulting SPL continued.

feature: feature-related-terms feature-related-product
Deposit_cash:{ATM, deposit, cash} Product 1
Feature-related-code fragments : code lines in source file
1. code-fragment 8: code line 6
unsigned long amount=1000, deposit, withdraw;
2. code-fragment 9: code lines 19-24
do{printf(”********Welcome to ATM Service**************\n”);
printf(”3. Deposit Cash\n”);
3. code-fragment 10: code lines 52-57
case 3:
printf(”\n ENTER THE AMOUNT TO DEPOSIT”);
scanf(”%lu”, &deposit);
amount = amount + deposit;
printf(”YOUR BALANCE IS %lu”, amount);
break;

Figure 7.19: Highlighting the places of the code that matched the feature-related-terms.

Figure 7.20: Traceability tree of the ATM resulting SPL.

The feature mapping conformance macro step maintains the current FM and the code confor-
mance of the ATM resulting SPL, whenever feature changes occur (e.g., add new feature). This
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macro step can (automatically) update the traceability links of the traceability tree (Fig. 7.20),
to maintain the coherence between features and code fragments, when existing features are
changed.

The feature mapping conformance macro step works on the already established traceability links
of the traceability tree. It works in case of features change occur in the current FM. Thus, it
applies predefined steps for each case as follows.

Case 1 (add feature). When a feature change occurs to the current FM, which involves adding
the ‘change_transaction’ and ‘show_message’ features, then the feature mapping conformance
macro step (1) adds the ‘change_transaction and ‘show_message’ features to the features level
of the traceability tree, (2) gives the new features a red color, and (3) creates new links from
the new features to feature-related-code fragments, as shown in Fig. 7.21.

Figure 7.21: Traceability tree of the ATM resulting SPL after adding ‘change_transaction’
and ‘show_message’ features.

Case 2 (delete feature). When a feature change occurs to the current FM , which involves
deleting the ‘show_message’ feature, then the feature mapping conformance macro step deletes
this feature from the features level of the traceability tree, and (2) removes all the tractability
links from this feature to feature-related code fragments of the traceability tree, as shown in
FigureFig. 7.22 and Fig. 7.23.

7.3 Tool support: friendlyMapper

This section presents the friendlyMapper tool, which supports the feature mapping activity
presented in the mapping phase of the EvoSPL approach [Fri]. In specific, it supports the feature-
code mapping and feature mapping conformance macro steps. The tool supports a set of tasks
that can be used by software engineers to create, store, and maintain the relationships between
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Figure 7.22: Traceability tree of the ATM resulting SPL when preparing to delete
‘show_message’ feature.

Figure 7.23: Traceability tree of the ATM resulting SPL after deleting ‘show_message’
feature.

features belonging to the current FM and feature-related-code fragments (i.e., routines) of the
code, using the traceability tree. The tool includes modelling and visualizing the traceability
tree, which consists of traceability links that relate a feature to the feature-related-code fragments
(i.e., routines).

Fig. 7.24 is a screenshot of the friendlyMapper tool. It shows an example of ATM resulting SPL
presented in section 7.2. The figure shows three windows: (1) Traceability tree, (2) Routine
information, and (3) Routine list. The first window (Traceability tree) shows the features of
the current FM taken directly from the XML file related to a feature tree, by selecting ‘Import
features’ when showing a context menu, upon right clicking on the ‘Feature ’ item (see Fig. 7.25).

The second window (Routine information) presents a window that allows software engineers to
enter the routines information of the resulting SPL (e.g., code-fragments of the ATM resulting
SPL), by selecting ‘Routine information’ item when showing the context menu, upon right
clicking on the resulting SPL package (e.g., atmTransaction), as shown in Fig. 7.26. The ‘Routine
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Figure 7.24: Screenshot for the main windows of friendlyMapper.

information’ window allows software engineers to add, update and delete a routine (see window
2 of Fig. 7.24).

Figure 7.25: Import features of the current FM from XML file in friendlyMapper tool.

To add a routine, software engineers can enter the routine information (i.e., sub-package: mod-
ule: source file.cpp: routine name) in the text field labelled with ‘Routine name’ text, and then
they can press the ‘Add’ button associated with window 2 (Routine information) of the tool. To
update a routine name software engineers can select routine from the list labelled with ‘Routine
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list’ text and edit the routine name, when it appeared in the text field labelled with ‘routine
name’ text, and press the ‘Update’ button associated with window 2 (Routine information) of
the tool. To delete a routine from the list, software engineers can select routine from the list
labelled with ‘Routine list’ text and then press the ‘delete’ button associated with window 2
(Routine information) of the tool. In consequence, the routine will be removed from the routine
list.

Figure 7.26: Add routine information of the code in the friendlyMapper tool.

The third window (Routine list) in the figure shows the list of routines of the resulting SPL that
are responsible for a feature implementation in the code. There is another window related to
this window (Routine list), called the ‘Feature routine information’. Fig. 7.24 depicts the fourth
window (Feature routine information), which appears by selecting the ‘Add routine’ item from
the context menu (see Fig. 7.28), when right clicking on ‘Routine’ sub-branch of a feature (e.g.,
check_balance). This window allows software engineers to select a routine that is related to a
specific feature (e.g., check_balance) from the left-hand side list and to add it to the right-hand
side list, using the buttons occupied in the middle position of the two lists . At the same time,
the routine will be added to ‘Routine’ sub-branch of the specified feature on the feature level
(e.g., check_balance), as shown in Fig. 7.27.

Traceability tree of the friendlyMapper The tool uses traceability tree to create and update
the traceability links whenever feature changes occur. The traceability is defined as one-to-many
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Figure 7.27: Feature routine information window of the friendlyMapper tool.

Figure 7.28: Add routine to a specific feature in friendlyMapper tool.

relation (a feature is related to a routine or more). Traceability tree requires (1) features of the
current FM (taken from XML file) and (2) routine information of the code. The tool allows
software engineers to use traceability tree to store and maintain the relationships from a feature
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to the routines. The tool semi-automatically manages the relationship between each feature of
the current FM and routines corresponding to the feature in the code.

As shown in window 1 of Fig. 7.27, traceability tree is a kind of dropdown tree starting its third
level at ‘Feature’ item. When dropping down the ‘Feature’ level, the list of features (which
are imported from the XML file that represents the current FM) appears sequentially. Each
feature has a sub-branch, called ‘Routine’, which show routines that are related to the feature.
Traceability tree maps artifacts of the resulting SPL (the current FM and code) to each other. It
allows software engineers to trace a feature of the current FM to routines just by dropping down
each level, starting at SPL project, the resulting SPL package, features, and moving toward
routines of the selected feature (e.g., check_balance).

Routine information As explained earlier in this chapter a routine is one of the code elements
(software units) that may implement a feature in the feature mapping activity. In addition, the
tracing rules define how to relate features belonging to the current FM to feature-related-code
fragments (e.g., routines) belonging to the code. FriendlyMapper introduces feature-related-
code fragment as a code portion that maintains feature implementation, which is defined in the
tool as a routine.

In friendlyMapper, the traceability tree allows software engineers to trace a feature to routines
with their positions in the code, just by defining the routine location in the resulting SPL main
package, starting at sub-package, module, source file, and moving toward routine name (i.e., sub-
package: module: soucefile.cpp: routine), but it ignores attributes, statements and expressions
(see ‘Routine list’ of window 3 in Fig. 7.24 and Fig. 7.27).

7.3.1 Tool capability
As mentioned earlier in this section, friendlyMapper tool is implemented in this thesis to support
the feature mapping activity and its related macro steps (i.e., feature-code mapping and feature
mapping conformance macro steps). Thus, this subsection presents the main capabilities of the
tool according to them, as follows.

� Feature-code mapping macro step: to support this macro step, the tool is able to perform
the following.

1. Create a new SPL project, by selecting the ‘new project’ item from the context
menu, as depicted in the right-hand side window of Figure 7.28, when right clicking
on ‘SPL’ item (first level of the traceability tree), as depicted in the left-hand side
window of Fig. 7.29.
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Figure 7.29: Sample example of creating and deleting an SPL project in friendlyMapper.

2. Remove an SPL project, by selecting ‘delete project’ item from the context menu,
when right clicking on the project name (e.g., atmTransaction - second level of the
traceability tree), as depicted in the right-hand side window of Fig. 7.29.

3. Import features of the current FM modelled a given resulting SPL, from the XML
file written in a specific format, as shown in Fig. 7.30.

Figure 7.30: The XML file format related to the current FM and accepted by friend-
lyMapper.

4. Create a features list of the traceability tree under the ‘Feature’ item (on the ‘Fea-
ture’ level), as depicted in Fig. 7.25. The result of the features list of the traceability
tree is depicted in window 1 of Fig. 7.24.
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5. Create a traceability link from a feature (e.g., check_balance) of the features list
to one or more routine (e.g., bT: balance Check: balanceCheck.cpp: routine 1), by
selecting ‘Add routine’ item of the context menu, when selecting the feature (see
Fig. 7.27).

� feature mapping conformance macro step: to support this macro step, the tool is able to
perform the following.

1. Update automatically the traceability tree and routine information of the related
screens (windows), whenever changes occur on all the levels (project, features, and
subroutines) of its drop-down tree, which ensures that the features and code are
consistent.

For example, software engineers can relate an existing routine to a selected feature
and the traceability tree automatically shows the new traceability link in its tree.
Also, software engineers can add new routines to ‘Routine lists’, and the tool au-
tomatically updates ‘Routine lists’ in window 2 (Routine information) and window
4 (Routine feature information) of the tool (see Fig. 7.24 and Fig. 7.27) with new
routines.

2. Update the features list of the traceability tree with new features whenever a change
occurs to the current FM, by enabling software engineer to (i) re-import the features
again, by reading the XML file contained the updated features and (ii) give the new
features a red color, to alert software engineers about the existence of the new
features (e.g., change_transaction and show_message), as shown in Fig. 7.31.

3. Remove a feature from the feature list of the traceability tree, by selecting ‘Delete
feature’ from the context menu, when right clicking on the feature name. The
feature will be removed from the features list upon approving the deletion from the
confirmation dialog box, as shown in Fig. 7.32.

4. Add a new traceability link of the traceability tree, by first selecting the feature,
opening its sub-branch - it is indicated with a plus sign (+) in front of the feature
name, and selecting ‘Add routine’ item from the context menu, upon right clicking
‘Routine’ sub-branch of the selected feature. Once window 4 (Feature information
routine) appeared, select the routine from the left- hand-side text and move it to
right-hand side text, using the buttons occupied in the middle position of the sides
(see Fig. 7.28, Fig. 7.27, and Fig. 7.33).

5. Import new features with a red color, to avoid software engineers from missing
updating the code (see Fig. 7.31) .

As shown in Fig. 7.33, the new features of the traceability tree are imported in a red
color. This enables developers to confirm that they update routines of the code and
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Figure 7.31: Features list of the traceability tree after re-importing features from the
XML file including new ones.

Figure 7.32: Delete ‘show_message’ feature from the traceability tree.

provide a feedback on changes made, which helps to preserve consistency between
the current FM and code of the resulting SPL.

6. Change the color of a new feature (e.g., change_transaction) from red to color of
the remaining features in the list of traceability tree, by selecting ‘Activate feature’
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Figure 7.33: Traceability tree after adding a new traceability link from the ‘change_trans-
action’ feature to its corresponding routines.

from the context menu, when right clicking the feature. Fig. 7.34 shows an example
of changing the color of ‘change_transaction’ feature from red color (left-hand side
window) to color (i.e., black) of the features in the list of ‘atmTransaction’ trace-
ability tree (right-hand side window), by select ‘Active feature’, when right clicking
on the feature (middle-side window).

Figure 7.34: Change color of the ‘change_transaction’ feature from red color to black
color.
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7.3.2 An illustrative example: ATM products family: tool support

This subsection introduces the friendlyMapper tool for the same illustrative example presented
in this chapter and the earlier chapters of our thesis, including this chapter. Given the ATM
products family depicted in the lower side of Fig. 7.13 and the current FM modelled ATM
resulting SPL depicted in the upper side of Fig. 7.13 and the XML file repents the model, as
shown in Fig. 7.35. Additionally, taken into consideration Table 7.1 to Table 7.6 as well as
Tracing rule (1) to Tracing rule (5) titles, the tool supports feature-code mapping macro step
(starting at step 1.8) and feature mapping conformance macro step as follows.

Figure 7.35: The XML file represents the ATM current model.

� Feature-code mapping macro step: to support this macro step, software engineer can use
the tool to perform the following.

1. Create a new SPL project, give the project ‘atmTransaction’ title, and import fea-
tures of the current FM from the XML file, as shown in Fig. 7.35 and Fig. 7.36.

2. Add routines of the ATM resulting SPL (feature-related-code fragments), as listed
in Table 7.7 and Table 7.8. Software engineers can right click the ‘atmTransaction’
item, choose ‘Routine information’ menu item from the context menu (see Fig. 7.37),
enter the routine information (i.e., sub-package: module: source file.cpp: routine
name) in the text field labelled with ‘Routine name’ text, and then press the ‘Add’
button associated with window 2 (Routine information) of the tool (see Fig. 7.24).
For routines positions of the ‘atmTransaction’ package, see Table 7.2 to Table 7.4.

3. Create traceability links of the traceability tree as follows.
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Figure 7.36: Features list of the ATM resulting SPL.

I Create a traceability link from the ‘check_balance’ feature to (1) bT: balance
Check: balanceCheck.cpp: routine 1, (2) bT: balance Check: balanceCheck.cpp:
routine 2, and (3) bT: balance Check: balanceCheck.cpp: routine 3, by selecting
‘Add routine’ item of the context menu, upon right-clicking on the ‘Routine’
sub-branch of the ‘check_balance’ feature (see Fig. 7.27). The traceability
links from the ‘check_balance’ feature to its related routines, using the tool,
correspond to the traceability links appearing in row 3 of Fig. 7.20.

II Create a traceability link from the ‘withdraw_cash’ feature to (1) cT: cashWith-
drawal: cashWithdrawal.cpp: routine 5, (2) cT: cashWithdrawal: cashWith-
drawal.cpp: routine 6, and (3) cT: cashWithdrawal: cashWithdrawal.cpp: rou-
tine 7, by selecting ‘Add routine’ item of the context menu, upon right-clicking
on the ‘Routine’ sub-branch of the ‘withdraw_cash’ feature (see Fig. 7.38). The
traceability links from the ‘withdraw_cash’ feature to its related routines, using
the tool, correspond to the traceability links appearing in row 4 of Fig. 7.20.

III Create a traceability link from the ‘deposit_cash’ feature to (1) cT: cashDeposit:
cashDeposit.cpp: routine 8, (2) cT: cashDeposit: cashDeposit.cpp: routine 9,
and (3) cT: cashDeposit: cashDeposit.cpp: routine 10, by selecting ‘Add rou-
tine’ item of the context menu, upon right-clicking on the ‘Routine’ sub-branch
of the ‘deposit_cash’ feature (see Fig. 7.39). The traceability links from the
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Figure 7.37: Add routines using the ‘ Routine information’ menu item of the context
menu.

Figure 7.38: Traceability links of the ‘withdraw_cash’ feature.

‘deposit_cash’ feature to its related routines, using the tool, correspond to the
traceability links appearing in row 5 of Fig. 7.20.
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Figure 7.39: Traceability links of the ‘deposit_cash’ feature.

� Feature mapping conformance macro step: to support this macro step, the tool is able to
perform the following.

1. Update the features list of the traceability tree, by re-importing the features of the
current FM from the XML file, which contains both the features of the ATM resulting
SPL modelled by the current FM and new ones, as a result of refine the current FM
with features of a new product . This involves adding the ‘change_transaction’ and
‘show_message’ features to the features list of the traceability tree. Fig. 7.31 (i.e.,
window 1) depicts the features list of the traceability tree that includes new features
(written in a red color).

2. Add routines of the ‘change_transaction’ and show_message’ features to ‘Routine
list’ list (see Fig. 7.40 and Fig. 7.41 – the routines are highlighted with blue color).

3. Create traceability links from the ‘change_transaction’ feature to its related routines
from ‘Feature routine information’ window (see Fig. 7.33). The traceability links
from the feature to its related routines correspond to row 6 of Fig. 7.21.

4. Create traceability links from the ‘show_message’ feature to its related routine from
‘Feature routine information’ window (see Fig. 7.42). The traceability links from the
feature to its related routines correspond to row 7 of Fig. 7.21.

5. Remove the ‘show_message’ feature and its related routine from the features list
of the ‘atmTransaction’ traceability tree (see Fig. 7.43, Fig. 7.44, and Fig. 7.45).
Fig. 7.43 shows the context menu that contains the ‘delete’ menu item of the
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Figure 7.40: Routines of the ‘change_transaction’ feature.

Figure 7.41: Routines of the ‘show_message’ feature.

‘show_message’ feature. Fig. 7.44 depicts the confirmation dialog that enables soft-
ware engineers to confirm or revert the deletion process. Fig. 7.45 presents the
traceability tree after the deletion task is achieved. Fig. 7.43 and Fig. 7.44 cor-
respond to Fig. 7.22 appeared earlier in section 7.2, and Fig. 7.45 corresponds to
Fig. 7.23 appeared in the same section.

6. Change the color of the ‘change_transaction’ feature from the red color to color
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Figure 7.42: Traceability links from the ‘show_message’ feature to its related routines.

Figure 7.43: Delete the ‘show_message’ feature using ‘Delete feature’ menu item of the
context menu.

of the remaining features of the traceability tree (see Fig. 7.46 and Fig. 7.47), by
selecting the ‘Active feature’ menu item, upon right-clicking the feature .
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Figure 7.44: Confirm the deletion task.

7.3.3 Evaluation
We have evaluated the feature mapping activity and tool support as a part of evaluating our
approach, by conducting a case study at Bosch Car Multimedia company. An existing classical
sensor variants family, called CSVF, is used here for illustration purposes. We have used AU-
TOSAR architecture, which has been adopted by the classical sensor development team (CSDT)
for a long time. Firstly, we have used the current FM, which has been derived during the first
stages of the case study (see Fig. 8.6). Secondly, we have created traceability links in the trace-
ability tree between the features and the feature-related-code fragments (i.e., routines). Thirdly,
we have evolved the traceability tree by updating the traceability links to maintain the coherence
whenever feature changes occur in the current FM. Finally, we have evaluated the performance
of the tool.

Evaluation Objective The overall purpose of the evaluation is to validate that the steps of
the feature mapping activity of the EvoSPL approach generally and the friendlyMapper tool
specifically can be applied in the evolution of a realistic products family, to support feature-code
mapping. Our evaluation is focused on showing that the capabilities of the tool are valid to be
used to support traceability in the SPL context. First of all, we validate if each macro step of
the feature mapping activity and its related steps are feasible. In particular, we are interested in
whether or not they are compatible with a products family that has its own software architecture
(i.e., reference architecture).
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Figure 7.45: Features list of the traceability tree after deleting the ‘show_message’ feature.

We also have measured the number of the changes that need to be made to the code of an
existing products family, to adopt our approach. We want to ensure that the tool and its
underlying concept will not impose significant changes on a system that is developed using C-
C++ programming techniques. Next, we have evaluated the capabilities of the tool including
the creating and maintaining of the feature-code traceability links in the traceability tree. We
have validated if the automatic creates, updates, and deletes operations of the traceability links,
using the tool, works on the traceability tree correctly, and if the current FM and the traceability
tree are consistent whenever a feature change occurs. Additionally, we have evaluated the
performance of our approach (for comparison reasons, we called the feature mapping activity
and the tool-related operations in this section as our approach) is acceptable compared with the
normal approach.

Evaluation methodology We have evaluated our tool-based approach to an industrial C-
based code of the CSVF. The variability in the code is implemented with the C pre-processor
directives. The family has over 40 packages and more than 300 K SLOC. It has been through
more than 3 years of development and has several major releases. The CSDT uses an ad-hoc
reuse approach (i.e., clone-and-own approach), we called it here the normal approach.
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Figure 7.46: Change color of the ‘change_transaction’ feature using ‘Active feature’ menu
item of the context menu.

The normal approach creates a new product branch based on the platform product. It reuses the
platform product and modifies it to satisfy the new customer requirements. The products are
given a specific name, like product and shall be identified by ascending number (e.g., creating
product 111 where the last created product is product 110).

Many features have been added to the family, while the system evolved, such as ‘layout’, ‘calibra-
tion’(or signa_12), ‘fault_type’ (or signal_4), and ‘speed_validation’ (or signal_9). In partic-
ular, many of these features and product-specific configuration settings can be enabled/disabled
in the configuration files (i.e., header files) and using the pre-processor directives (i.e., #ifdef).
This provides an opportunity for us to fully evaluate the approach’s support for real different
members of a products family. Besides, the CSVF has its build tool and the dependency em-
bedded implicitly within the feature’s implementation. In addition, the CSVF is initialized by
a system header file based on the configuration file, and all the modifications are presented in
the project (PRJ) package that is corresponding to the PRJ layer (the most upper layer of the
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Figure 7.47: Features list of the traceability tree after changing the color of the
‘change_transaction’ feature.

AUTOSAR architecture) . All these properties have made CSVF appropriate for our evaluation
given the objective described above.

The evaluation consists of the following three stages presented as follows.

Stage 1. Preparation and environment setup. The first task of the evaluation was to import
the packages of the products related to the CSVF, including the code in the local development
workspace of Eclipse IDE. One advantage of our approach mentioned earlier, it does not require
any amount of changes to the code.

Stage 2. The reference architecture and code investigation, feature tree design (i.e., the current
FM), and traceability links creation in the traceability tree. The ability to identify the features
of the current FM in the code is called feature traceability [Mei+17]. We (1) have started first by
investigating the reference architecture of the CSVF. The CSDT uses AUTOSAR architecture in
expressing different types of variations, such as variations in the module’s interfaces, variations
at the architectural level, and so on. In addition, the relations between the variations are easily
understood by the developers (members) of the CSDT.
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As shown in Fig. 7.48, on the highest abstraction level, AUTOSAR has three software layers:
Application layer (APP and PRJ), Runtime Environment layer (SL, ECUAL, MCAL, and CDD),
and Basic Software layer, which run on a Microcontroller. The application layer is a specific
part of AUTOSAR architecture; this part is presented in all products. At the same time, PRJ
is a specific part of the application layer (every single product is built with its own PRJ layer).

Figure 7.48: AUTOSAR layered architecture.

The PRJ layer is bound to the customer and sensor specifications and provides all project-
specific configurations to other layers, where necessary [Gom13]. After that, we (2) have
traced features of the current FM to feature-related-arch-elements (feature-related-subsystem
and feature-related-component) of the PRJ layer of the AUTOSAR architecture (Feature- ar-
chitecture mapping macro step). Additionally, we (3) have traced features of the current FM
to feature-related-code-fragments, using the reference architecture as an intermediate artifact.
Every subsystem and component in the PRJ layer correspond to a sub-package and module
in the code, respectively. We have begun to identify, for each feature of the current FM, the
feature-related-code fragment of the code, based on the variability information of the reference
architecture.

Finally, we (4) have located the feature-related-code fragments, which are corresponding to a
specific feature in the sub-packages, modules, and source files, including routines, statements,
and expressions of the PRJ main package (folder). The feature identification was mainly based
on (i) the configuration files, (ii) the RSDs, which represent the textual requirement in our case
study, and (iii) the code comments (contain rich documentation that helps to specify feature-
related-code fragments). Feature-related- code fragments were identified through semi-automatic
analysis of the code assisted by Eclipse. We have analysed the variability facts in the pre-
processor code. Then we have used Eclipse IDE to locate the feature-related-code fragments
based on the following observations.
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� The pre-processor code supports file inclusion (include), macros constant (define), and
conditional compilation.

� In particular, many features can be enabled/disabled in the configuration file of the CSVF.

� Once the product is created, the product-specific configuration or modification has to be
done using file inclusion. Normally, this inclusion contains a configuration and setting
some values for the features. Since, we are interested in features and feature-related-code
fragments, these files are irrelevant for the feature identification.

� The macro definitions and conditional compilation are the most-frequently-used features
of the pre-processor. The CPP annotations have been used to delimit the optional code
associated with each feature, such as #ifdef and #endif to surround the code fragments.

� The macro constants are defined with directive #define and are normally assigned values.
Then the constants are used in #ifdef statements, which allow #ifdef blocks to be compiled
conditionally into the corresponding code fragments. Since #ifdef block can be mapped
to a variation, it is either optional or an alternative feature.

� Feature-related- code fragments are scattered over the multiple files and multiple routines.

After the features were identified, we have updated the traceability tree that was created earlier
by either creating the new traceability links or updating the existing traceability links in the
traceability tree whenever the feature changes occur. During this process, the traceability links
were semi-automatically created and updated by the friendlyMapper tool.

Stage 3. Capabilities evaluation. Up to this point, we have the following CSVF artifacts: the
reference architecture (i.e., AUTOSAR), the code consisting of core assets and feature-annotated
code, the current FM, and traceability tree. Next, we have evolved the current FM designed using
FeatureIDE, specifically, we have made a feature change, and we have used the friendlyMapper
tool, to automatically update the traceability links in the traceability tree. Then, we have
executed the updated traceability tree again. We have assessed the feature mapping and tool by
(i) determining the feasibility of the approach, (ii) validating the coherence between the modified
current FM and the traceability tree, (iii) inspecting the functional correctness of the updated
traceability tree, and finally (iv) observing the performance of the tool.

Results In this title, we discuss the assessment of feature mapping activity, including friend-
lyMapper tool, as follows.

First. The feasibility of the approach was validated by the fact that we have successfully finished
the creation process of the traceability links in the traceability tree, and all the functions of
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CSVF are still working correctly in the final system. The reference architecture that we have
used includes 56 components. There are 35 common components representing the basic software
and hardware services application parts of the CSVF. These parts are also not included in the
feature tree and consequently in the traceability tree as they exist in every instance. The
application layer includes 60 features and 21 components. The PRJ layer inside the application
layer contains the product specific requirements and has 4 components. In total, 300 feature-
code relationships were created. This was determined by counting the number of traceability
links in the traceability tree.

On average, each feature is related to five feature-related-code fragments (i.e., routines). All of
them were automatically created in the traceability tree, using the tool, during the evaluation.
We have compared the code base of the CSVF before and after the evaluation in terms of the
numbers of modules, source files, routines, and lines of code (LOC), and we have found that
our approach does not impose changes on the code of the CSVF. The only required changes are
the ones mentioned in the traceability tree to guide software engineers to update the code to
maintain its conformance with change in the requirements. This is the cost of developing and
maintaining the CSVF whenever the feature changes occur.

Second & third. The feature-code coherence and the functional correctness of the updated
CSVF was validated by the project manager. The CSDT have updated the code based on the
traceability links of the traceability tree of the tool, upon feature change occurred in the current
FM. The project manager of CSDT has confirmed that the reference architecture, the current
FM, and code are consistent. We have asked them to automatically-update the traceability tree
after each change (e.g., adding/removing a feature) and to manually-update the code to maintain
its conformance with the current FM. This allowed us to verify the functional correctness of the
updated CSVF, using our tool-based approach.

As an example, the consistency of the traceability tree is verified, by adding a new feature to
the current FM first, after that, we have automatically updated the traceability links of the
traceability tree (i.e., we added new traceability links from the new feature to routines that
implement this feature). For instance, the CSVF can write sensor commands in a message in
several formats. We have added a feature to represent the new message format (i.e., identifi-
cation), then we have asked the software developer of the CSDT to update the code of CSVF,
based on retrieving the traceability links for the new feature from the traceability tree. Fig. 7.49
presents the features of the CSVF and exemplifies (in the right-hand side) the traceability links
between the ‘identification’ new feature (presented in a red color) and its related routines. For
readability’s sake in Fig. 7.49, the features list of the traceability tree is presented in two screen-
shots (left-hand side and right-hand side of Fig. 7.49). Also, ‘signal_4’ and ‘interface support’
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features represent changes of the current FM (i.e., new features) ; thus, the friendly mapper
automatically presented them in a red color, when it has re-imported the features from the
XML file to the traceability tree.

Figure 7.49: Features of the current FM and the traceability links between the ‘identifi-
cation’ feature and the corresponding routines.

If the new message type (i.e., identification) is added to the current FM of the CSVF, the
corresponding routines should be enabled to activate this feature. The software developers have
retrieved the traceability links of the ‘identification’ feature, and then they have updated the
code to maintain the new functionality. As a result, we have used friendlyMapper to add the
new feature to the traceability tree and to assign the new feature to its related routines. With
the new feature completely added to the CSVF artifacts (i.e., the current FM and code), we
have noticed that the updated system replied to the request for reading the new feature from
the XML file representing the current FM. Respecting the confidentiality issues related to the
company, we hide name of signals for the CSVF. The tool is available online in [Fri].

Fourth. Performance evaluation. In terms of performance, all the major operations (e.g., create,
update, and remove traceability links) that we have evaluated have finished rapidly (e.g., in
several seconds). This is a benefit derived from automating the creation and updating of the
traceability links in the traceability tree. To measure our tool-based process that has been
proposed to improve software developer’s performance. Instead of the normal approach that the
company has been adopted. Therefore, we have defined the dependent variable ‘efficiency’, which
is calculated as the ratio between the numbers of right updates of the code according to feature
changes (updates scenarios) and the total time spent on performing the updates scenarios. To
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carry out the experiment, we have asked ten software developers (participants/members) of
the CSDT to perform two trials, in which they had to achieve tasks related (1) to add new
features to the current FM, and then (2) to update the code to maintain its coherence with new
requirements.

In one of the trials, all the participants have used the normal approach to perform the tasks. In
the other trial, the same participants have used our tool-based process to perform the same tasks.
At the end of the two trials, the ‘efficiency’ of each participant performed was calculated. To
determine whether the mean difference of the dependent variable (i.e., efficiency) is considered
to be extremely statistically significant in participants performance between the two approaches
(i.e., when using the normal approach compared to our tool-based approach), a paired t-test
was used with the following hypotheses.

� Ht0: there was no change in the performance of a software developer using our tool-based
approach.

� Ht1: there was a change in the performance of a software developer using our tool-based
approach.

Table 7.9 shows the result of the paired t-test related to comparing the average of the ’efficiency’
for the software developers using the normal approach and using our tool-based approach. The
output provides useful descriptive statistics for the two approaches that we have compared,
including mean and standard deviation, as well as actual results from the paired t-test. Looking
at the mean, we can see the participant who have used our tool-based approach had a higher
’efficiency’ at the end of the experiment compared to those who have used the normal approach.

We can see that there is a mean difference between the two trials of 0.069 with a standard
deviation of 0.0404, where df1=9. We have obtained the t-value of 5.4008, which is greater than
t-critical value, and the p-value of 0.0004. By conventional criteria, this difference is considered
to be extremely statistically significant. As the t-value is greater than the t-critical value and
p-value is less than the threshold (i.e., p < .05). This eventually led to the rejection of the
null hypothesis Ht0 and the acceptance of the alternative hypothesis Ht1. In other words, one
can conclude that the performance of software developers has been improved after using our
tool-based approach.

Moreover, the result reveals that the standard deviation of our tool-based approach (0.0360) is
less than the standard deviation of the normal approach (0.0560). This leads to the conclusion

1DF (Degrees of freedom) is related to your sample size and shows how many ‘free’ data points are
available in your test for making comparisons.
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Table 7.9: Analysis of the objective dependent variable.

df=9 our approach normal approach
mean 0.2660 0.1970
standard deviation 0.0360 0.0560

paried t-test results of the experiment
t-value 5.4008 t-critical value 2.2621
p-value 0.0004 Sd err 0.0130

that there may be a larger gap between one data value and another in the normal approach and
the data values are all close together in our tool-based approach. As we have used the software
developer from different experience/skills and background level, we can conclude that our tool-
based approach helps software developer (1) to achieve convergent performance regardless of
their skills and (2) to avoid difficulties within identifying the SPL evolution scenario.

Threats to Validity There are several validity threats to the evaluation of our tool-based
approach. First, the study is limited to a single products family (i.e., CSVF), and also it is
limited to a single development team (i.e., CSDT). To compensate for this limitation, we plan
to go on evaluating our approach in other companies. Second, during data collection, we have
mostly used a single person (the project manager) to evaluate and review the correctness of our
approach and noting its artifacts. Also, we have only used ten software developers to join the
evaluation. In extending this work we should, of course, include more than one products family
and more software developers with different levels of working experience.

Third, regarding the estimation of the efficiency of our approach and the comparison with the
normal approach, the software developers have made first the tasks with our approach and, later,
they have made it with the normal approach they have used. Repeating a task may affect the
time required to execute them. If both tasks are similar, the second task may be done in less time
than the required, if they make the tasks without previous experience. Fourth, may the members
of CSDT adopt the same viewpoints regarding our approach and we loss of information. This
threat was mitigated by separating the interviews in two sessions and performing each interview
separately. The first session was conducted and documented at the beginning of the month, and
the second session was conducted and documented at the end of the month. Finally, threats to
validity compromise our confidence in stating whether the study’s result is applicable to other
products family, SPLs domains, development teams, and companies.
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Chapter 8

Evaluation

This chapter presents the evaluation of the EvoSPL approach conducted in this thesis. The
evaluation was enacted in a coordination with the hypotheses introduced in chapter 1 of this
thesis. The first section introduces the evaluation concept, the second section describes and
explains the selected case study that we have conducted, to validate our approach, and the final
sections provides the evaluation, obtained results, and threats to validity.

8.1 Evaluation overview
The EvoSPL approach was applied in an industrial-sized case study, in the automotive domain.
In specific, the case study was conducted at Bosch Car Multimedia company, using the CSVF
(see CSVF description below). The members of the CSVF are fully integrated in one platform.
The implementation language used is C. To validate the contributions of this thesis, empirical
study, surveys, interviews, and direct observations of the members of CSDT were performed.
This puts the applicability of the approach, overall process, and results in practice.

Evaluation concept In order to evaluate the Evo-SPL approach, we have conducted a case
study following the guidelines presented in [Lin+15] [KP98]. According to [Lin+15], the case
study is composed of five major process steps to be walked through: planning, design, data
collection, analysis, and reporting. We apply our approach on an (industrial) real case study:
the CSVF. The case study is C-based software systems. We executed all the evaluation steps
on the Windows 7 system, running at 2.4 GHz with 4 GB of RAM.

The selected case study is used to assess the phases of our approach in the field of our study. The
advantage of having an industrial case study that has medium-sized systems is that such systems
implement variability at different levels (package, module, routine, routine body, and attribute).
Furthermore, the industrial case study allows us to put our approach in an environment of
practice for the industry, which nominates it to be a successful example to adopt SPLs in
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medium-sized companies of the automotive domain [IF19]. We used five products for the CSVF.
The selected products (i.e., number of products) are covering all known features of the family.

Fig. 8.1 presents the structure of the evaluation concept. Evaluation questions were defined
for the main hypothesis and empirical study was identified to answer the evaluation questions.
Furthermore, empirical study was undertaken to prove the hypotheses from 1-6 (see Fig. 1.2),
where we have found the empirical study including, survey, interview, and observation are
applicable to the environment of our case study. Details about the evaluation are presented in
the according sections of this chapter.

Evaluation questions The following evaluation questions are derived for the main hypothesis.

Evaluation question 1. Does the EvoSPL approach derive the current FM that models the CSVF
successfully, including, almost, all known features of the family?

Evaluation question 2. Is the EvoSPL approach able to refine the current FM with features of
(new) products successfully?

Evaluation question 3. Is the EvoSPL approach able to map features of the current FM to
feature-related-code fragments of the code (both artifacts are related to CSVF) successfully?

The evaluation process and the empirical study defines the ‘successfully’ expression, as a positive
feedback from CSDT and project manager that the EvoSPL approach is effective, efficient, and
correct, in performing the proposed tasks, while validating the hypotheses and answering the
evaluation questions. Fig. 8.1 depicts the evaluation structure and describes the relationships
among the hypotheses, evaluation questions, and the evaluation criteria and methods.

The evaluation questions stated above were answered with different methods. Fig. 8.1 provides
an overview about the evaluation criteria and evaluation methods. Besides, it determines which
evaluation criteria was targeted with whom (CSDT or PM – project manager). ). Here, ‘indus-
trial case study’ means that (1) the EvoSPL approach was applied to the selected case study
in an industrial company of the automotive domain, and (2) the evaluation questions were an-
swered based on evaluation methods captured within the case study, in cooperation with the
project manager and CSDT. Interview and survey mean that the evaluation question is answered
based on the answers given by CSDT.
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Figure 8.1: Evaluation structure.

8.2 The industrial case study
This section presents the case study that was conducted at Bosch Car Multimedia company.
It is considered as an industrial-sized case study consisting of four stages. The concept of the
evaluation process is inspired by the work explained by Linaker et al. [Lin+15]. We should
mention here that the thesis is an industrial research describing an approach that handled
SPLs evolution and variability in the domain of the automotive systems, to satisfy a range of
requirements, by automotive industrial partners. Moreover, the thesis delves into how variability
can be managed at requirement-level and how traceability of variability models (i.e., the current
FM) to reference architecture and implementation code can be constructed. The industrial-sized
case study was used to evaluate the approach, and it provided initial insights on its usefulness.

8.2.1 The products family used in the study

The story Over the past few decades, many industrial companies, like Bosch, have transitioned
from single-systems development to products family development, in order to increase software
customization, shorten the time-to-market, and improve the quality of products. However, there
are many challenges that companies face with respect to adopting an SPL approach instead of ad-
hoc reuse and in modelling and managing the variations in their product families. For instance,
the need for systematic methods, to identify and exploit variabilities, appropriate modelling
methods that are able to represent thousands of variations, efficient methods to detect and
resolve dependency interactions among variations at different abstraction levels, and techniques
to trace variability information among development artifacts.
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The CSDT at Bosch Car Multimedia company explicitly adapted an ad-hoc reuse (i.e., branch-
ing). The team adopts the AUTOSAR architecture and reuses requirements documents, and
code from earlier, by copying them from the artifacts of the platform (or initial release product).
This is because most of the products are based on platform product. When adopting the ad-hoc
reuse approach, it is often to extract an SPL of products family from the existing products,
which is called reverse engineering [AM14].

CSVF description The CSVF is an industrial C-based code, which is widely used for designing
and implementing sensors of the steering wheels braking systems of the different vehicle models
[Bos]. The variability of the code is implemented with the C pre-processor directives. The CSVF
has been developed and customized by the team for more than 3 years, to satisfy the needs of
different customers in the automotive domain. Moreover, it has around 20 major releases and
includes 50 packages. A number of features have been added and modified, while the product
variants have been evolved over time [Bos].

To conduct this case study, we have used the CSVF, which has the AUTOSAR reference archi-
tecture. We have selected a group set that has five products of the family, based on consultation
of the project manager. Naturally, the selected products cover all features of the family. The
products of the CSVF, which were developed according to the needs of customers in the au-
tomotive domain, and a new product, which was an upcoming product scheduled for being
developed in the near future, upon receiving a new customer request, are presented in Table 8.1.
All the products were cloned from the platform product (or initial release product, which is
often evolved from the platform developed and successfully used by the first customer) and then
modified according to customer needs. To simplify the following discussion, we have assigned a
number for each product of the CSVF and called the upcoming product ‘Product New’.

Variability of the products from the automotive customer perspective The products of the
CSVF1 presented in Table 8.1 covers almost all the functional features (i.e., functional /customer
perspective) of the vehicle models supported by the company. Each of these vehicle models has
its own configuration of mandatory and optional features, while sharing a few common features
with other models of the same vehicle type. To increase product quality and reduce cost and
time-to-market, it is in the best interest of the automotive manufacturer to reuse existing product
artifacts to build vehicle products in a systematic way, using SPLs development.

The main goal of our study was to find out how the EvoSPL approach initiates the resulting
SPL of the CSVF from the individual members of the family and evolves the resulting SPL
whenever a new product request is received. To investigate the development environment, we

1For confidentiality, not all details of the CSVF are provided (e.g., code).
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Table 8.1: CSVF products .

Product no. Product description Package

Product 1 The optional layoutT_1, layoutR_1,
algorithm_1, and flag_1 features enabled. Product1CSVF

Product 2
The optional layoutT_2, layoutR_2,
algprithm_2, signal_4, flag_2, and
signal_ 9 enabled.

Product2CSVF

Product 3

The optional calculation, layoutT_2,
layoutR_2, algorithm_2 and
flag_2 signal _9, signal_10,
value_3, and signal_13 features enabled

Product3CSVF

Product 4
The optional identification, layoutT_1,
layoutR_1, algorithm_1 and flag_1,
signal_10, and value_3 features enabled.

Product4CSVF

ProductNew All optional features enabled. Product5CSVF

have conducted interviews with the key person (i.e., the project manager) that has been involved
in the CSVF for quite some time, and one of the members who has more than three years of
development experience. Furthermore, we have studied requirements documents (i.e., RSD
presented in the development process as CAN Matrix), design documents, and the reference
architecture (i.e., AUTOSAR architecture) that we got from the company.

Fig. 8.2 depicts the current FM of the CSVF resulting SPL as manually defined by the project
manager and CSDT and designed by us, during the first interview. It shows 36 functional re-
quirements (features) and the ‘CSVF_SPL’ root feature. Some features are common, such as
‘diagnosis’, ‘monitoring’ and ‘calculations’ and some features are optional, such as ‘calculations’
and ‘interface_support’, both groups have no child features. The other feature ‘message’ repre-
sents the main functional concerns of the CSVF. It includes two main group features: ‘transmit’
and ‘receive’. Each group consists of several features that specify its layout and signals that
perform the main functionalities of the sensor. Some of them are common (e.g., signal_1) and
some of them as optional (e.g., signal_9). For example, the ‘transmit’ feature has two layouts:
‘layoutT_1’ and ‘layoutT_2’ and has12 child-features (signal_1 to signal_10 and other fea-
tures). The ‘receive’ feature also has two layouts: ‘layoutR_1’ and ‘layoutR_2’ and other has
3 child-features (signal_11 to signal_13). Some features form an ‘xor-group’, such as ‘flag_1 ,
‘flag_2’ and ‘flag_3’, and ‘value_1’, ‘value_2’, and ‘value_3’.
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Figure 8.2: The current feature model for the classical sensor variants family resulting
SPL defined by the project manager.

CAN Matrix For technical issues related to sensors, the requirement documents of the
CSVF are written in an RSD format and called CAN Matrix [Bos]. The CAN Matrix consists of
sections, which are visually separated from each other with a section break, typically consisting
of extra space between the sections, and sometimes also by a section heading for the latter
section. The basic sections of the CAN matrix are presented as follows.

1. The CAN parameters section specifies the technical values related to the CAN Matrix.

2. The messages overview section clarifies the message kind. The CAN Matrix supports
three kinds of messages; transmit , identification, and receive message. The transmit and
receive message are common among the CSVF, but the identification message is varying
among the family. The transmit message (and receive message) and identification message
corresponds to Common feature and Optional feature in the current FM respectively (see
Fig. 8.2)

3. The standard message section lists and explains the signals of the standard message (called
also transmit message), such as angle, speed, counter, and calibration, TRIM, and flag.
The layout of the standard message is an important feature that may vary among the
CSVF. The variation regards layout name and number of bits.

4. The configurations message section specifies the signals that are used to calibrate the
sensor. The layout of this message varies among the CSVF. This message (called also
receive message) includes important signals, such as calibration angle and calibration
command. The calibration command signal calibrates the steering angle sensor by setting
the angle signal to a specific calibration angle value. Some calibration commands are
common, and others are variable. For example, the steering angle sensor can be re-
calibrated (optional feature ‘value_3’) without resetting the calibration. This depends
strongly on both vehicle model and manufacturing settings.
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Finally, it is worth mentioning that the CAN Matrix contains written notes. The notes address
the issues related to signals and specify the constraints and dependencies among them. While
different CAN Matrix documents usually differ from each other, e.g., in the supported message
layout, but their underlying sections are very common, as well as can be written from reusable
documents. Hence, a company offering a variety of product variants ( and the related CAN
Matrix) can adopt an SPL approach to achieve a systematic reuse. The variability between
potential product variants (e.g., CAN Matrix documents) can be captured in a variability model
(e.g., an FM). It defines the available product variants, e.g., different signals, message types,
and layouts support for the CSVF.

There are several variability models that could be applied here. In this case study and to follow
the EvoSPL approach, we use FMs (i.e., the current FM) as a basis for modelling variability.
A mapping is then specified where each feature of the current FM corresponds to one or more
code base artifacts (i.e., module, source file, and routine).

CAN Matric and the current FM A feature in the CAN Matrix is a keyword that has a
semantic and relevant concept to functionalities of sensor or automotive customers, such as
signals, technologies, services, and actions. The current FM, shown in Fig. 8.2, clarifies that
each product must support the standard message (transmit message) and configuration message
(receive message). Both are common/mandatory features, and we have found them documented
in all the CAN Matrix artifacts of the CSVF. A product may include the ‘identification’ message
(optional feature) and must include layout feature (common/mandatory feature) from which
one child feature has to be chosen (‘xor-group’ relation). Since, the ‘identification’ feature is
optional, it is documented only in the CAN Matrix artifact of some products (i.e., Product 4
and ProductNew).

Code and variability realization of the CSVF The research investigation of the code that
belongs to the CSVF reveals that (i) the C files are the type of solution artifact used by the team
(i.e., CSDT), to develop the individual products of the Family. Although the research indicates
that (ii) several mechanisms are being used to realize variability in the code of the CSVF, but
#ifdef blocks and if-statements are the most commonly variability realization mechanism used
by CSDT. The team prefers to limit their use of # ifdef blocks for various reasons. For instance,
they see that too many #ifdef blocks affect code readability. In some cases, alternatives to
#ifdef blocks are used such as by deferring the binding time to runtime in configuration files
(#ifdef blocks supporting static binding time only) or by adding #includes. For that, the second
most common variability realization mechanism used by CSDT in the code implementations is
configuration files.
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Table 8.2: Our approach evaluation Steps.

Step 1 Design of the case study (planning).
Step 2 Preparation for data collection.
Step 3 Execution of the data collection on the case study.
Step 4 Analysis of the collected data and reporting.

Regarding the normal ad-hoc reuse approach adopted by CSDT, originally the platform product
is used and cloned into a second product, which then adapted and evolved on its own to satisfy
customer needs and successfully was used by the first customer (initial release product). The
cloning (branching) continued for several other products, simply by branching with the version
control system, since all the products are related to the integrated platform. The developers used
Beyond Compare tool, to compare the first two products, merged their commonalities to form a
unified code base and realize their variabilities, by introducing variations using the preprocessor
directives. This process continued for the other products; however, it was challenging to reach
a full integration for the reasons related to limitation in Beyond Compare as described by the
interviewees.

8.3 Evaluation of EvoSPL approach
To evaluate the EvoSPL approach using the artifacts of the CSVF and incorporation with
CSDT, we have prepared and performed an empirical case study that includes different evalua-
tion methods (empirical study, observations, survey, and interviews), to answer the evaluation
question stated in section 8.1. As illustrated in Table 8.2, the empirical study consists of four
steps presented as follows.

8.3.1 Design of the case study (Planning )
Good planning is necessary for the success of the case study. Therefore, we planned several
issues.

1. Objective. The objective of the case study is to prove the fitness of the EvoSPL approach
for the automotive domain, using the CSVF. We have planned the case study to be
conducted at Bosch Car Multimedia company, with CSDT, who has previous experience
in the automotive domain development.

2. Treatment. Our case study has one treatment, which is the EvoSPL approach. We have
planned to apply the process of the approach to artifacts of the CSVF, using the same
setting and daily working environment of the team.
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3. Objects. The object of our case study is the CSVF implemented based on AUTOSAR
architecture, and its related artifacts including the CAN Matrix, reference architecture,
and code.

4. Subject. The subjects of the study are the individual members of CSDT and the project
manager. To prove the ‘usefulness’ of our approach, we have chosen the members of the
team with a different level of skills and experience.

5. Method. We have planned to perform our case study in two stages. In the first stage, we
have taken the role of the software engineers and we have applied the EvoSPL approach
on artifacts of the CSVF. During the execution of the EvoSPL approach process, initially,
we have derived the FL and the current FM. After that, we have started bootstrapping
the products of the CSVF to the initial SPL, to get the bootstrapped SPL, and then
we have evolved the bootstrapped SPL with a new product, using the feature model
refactoring scenario, to get the resulting SPL. Finally, we have mapped each feature to
the corresponding feature-related-code fragments.

In the second stage, we have planned to evaluate the EvoSPL approach and the generated
artifacts, as a result of applying our approach, using several data collection methods,
where we have found the empirical study including surveys, interviews, and observations
are applicable to the environment of our case study (see Appendix B). We have arranged
(1) to invite CSDT to join a training session, (2) to apply an empirical study that includes
an empirical evaluation and a survey questionnaire, and finally,(3) to attend individual
interview sessions.

8.3.2 Preparation for data collection
We have prepared many documents suited to the collecting data methods used in the empirical
study. We have designed a PowerPoint Presentation that introduces the EvoSPL approach to
CSDT, in addition, we have prepared a survey that is a part of an empirical study. The survey
consists of 22 questions. These questions were formulated by using a combination of descriptive,
behaviour, and attitudinal questions. The answers were written using ordinal and nominal
scale response format. One of the most important members of CSDT is the project manager,
for that, it is of special importance dedicating her a survey that contains measurement items
related directly to our approach hypotheses.

For the empirical study, we have defined a set of items to be evaluated, by asking CSDT to
perform specific tasks and then answer questions while interacting directly with our approach.
Ideally, to compare the developer’s solutions with the correct solutions, in order to investigate
our hypotheses, we have already defined the correct solutions for the tasks.
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Case Study environment and procedure The study was conducted in the software development
department, during October 2017- October 2018 at Bosch Car Multimedia company. The study
was conducted in two stages. In stage 1, we have taken the role of software engineers and we
have applied the EvoSPL approach on the CSVF, starting with requirement documents (i.e.,
CAN Matrix) of two products of the family. In stage 2, we have evaluated the ‘effectiveness’ and
the ‘efficiency’ of the EvoSPL approach from the point of view of CSDT and we have evaluated
the ‘correctness’ of the EvoSPL approach concerning project manager perspective.

For the direct methods to collect data, we have prepared semi-structured interviews with the
members of CSDT, to get a direct feed-back related to the EvoSPL approach. The interview
dialog was guided by a set of questions (i.e., open questions). Moreover, in order to get a
deeper understanding, we have informed the project manager (and she has informed the team
via a formal email and meeting) that we were investigating how the members of CSDT used
the artifacts of our approach in their normal daily work. We have agreed with them to use the
artifacts of our approach daily for three hour. We have taken notes about the observations.

Summary of the generated artifacts Following the EvoSPL approach activities: difference
analysis, variability analysis, feature model synthesis, bootstrapping, evolution, and feature
mapping, during the execution of the case study, stage 1 were performed as goes after.

� Firstly, the difference analysis and variability analysis steps were applied, and the SMD
and FL of the CSVF were defined, capturing commonality and variability between Product
1 and Product 3 (see R6 of specific requirements of the difference analysis activity in
chapter 5), using the CAN Matrix of each product. The FL of the CSVF contains a list
of features and a reference for the ARs that specify each feature. We have selected one of
the products (Product 1) that match the initial release product and another one (Product
3) that has the most functionalities (features) among all the CSVF.

� Secondly, the current FM was derived, using the steps of the feature model synthesis
activity, representing the CSVF initial SPL, at a high level of abstraction. The model,
shown in Fig. 8.3, presents the common features, such as ‘diagnosis’, ‘monitoring’, ‘mes-
sage’, and the optional one ‘calculation’. The ‘transmit’ feature has two features, involving
‘layout_transmit’ and ‘signals_transmit’, where the ‘layout_transmit’ feature has two al-
ternatives, which are ‘layoutT_1’ and ‘layoutT_2’. This means that the family supports
two different message layouts, one for each product: the first layout is ‘layoutT_1’, which
has five bits and the second one is ‘layoutT_2’, which has seven bits.

Concerning the ‘signals_transmit’ and ‘signals_receiv’ features, each of them consists of
different signals for the products (Product 1 and Product 3). Some of them are common,
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like ‘signal_1’, ‘signal_2’, ‘signal_3’, ‘signal_5’, ‘signal_6’, ‘signal_7’, ‘signal_8’, ‘sig-
nal_11’ and ‘signal_12’, as well as some of them are optional, ‘signal_4’, ‘signal_9’, ‘sig-
nal_10’, and ‘signal_13’, and some of them are within alternative group, like algorithm_1
and algorithm_2 as well as flag_1and flag_2. Finally, ‘signal_12’ is a group feature that
consists of value_1 and value_2 common features, and one optional ‘value_3’ feature.

� Thirdly, after constructing the current FM, it is the time to perform the bootstrapping and
evolution activities. The former involves bootstrapping the remaining products (Product
2 and Product 4) of the family to the CSVF initial SPL, to deliver the CSVF bootstrapped
SPL. The latter entails encompassing the bootstrapped SPL with a new Product (Pro-
ductNew), to come up with the CSVF resulting SPL. Both activities use the feature
model scenario steps to evolve the current FM with requirements (features) of the (new)
products.

Figure 8.3: The derived current FM from Table 8.1.

We have identified and stored the features of Product 2 and Product 4 in a FL of each product.
At this point, we can refine the current FM with features of those products, using the feature
model refactoring scenario steps. Now the SPL is bootstrapped completely and the commonality
and the variability of the CSVF were presented by the current FM, at refactoring point1 and
refactoring point 2 (see Fig. 8.4 and Fig. 8.5).

The current FM at refactoring point 1 Fig. 8.4 depicts the current FM at refactoring point
1, which includes refining the derived current FM shown in Fig. 8.3 with features of Product 2.
We have applied the feature model refactoring scenario on the derived current FM and the FL
of Product 2. The refactoring process results in adding a new optional ‘signal_4’ feature to the
current FM (see Table 6.2). The feature exists in the FL of Product 2 and does not exist in
the derived current FM, which leads to applying the proper refactoring notation (see A catalog
of sound FM refactoring in chapter 6) for the current FM (i.e., Refactoring 12. Add Optional
node).
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Figure 8.4: The current FM at refactoring point 1 from Table 8.1.

The current FM at refactoring point 2 Fig. 8.5 depicts the current FM at refactoring point
2, which includes refining the derived current FM shown in Fig. 8.4 with features of Product 4.
We have applied the feature model refactoring scenario on the derived current FM and the FL
of Product 4. The refactoring process results in adding a new optional ‘identification’ feature
to the current FM (see Table 6.2). The feature exists in the FL of Product 4 and does not
exist in the current FM at refactoring point 1 (Fig. 8.4), which leads to applying the proper
refactoring notation (see A catalog of sound FM refactoring in chapter 6 ) for the current FM
(i.e., Refactoring 12. Add Optional node).

Figure 8.5: The current FM at refactoring point 2 from Table 8.1.

Feature ‘identification’ represents a change at product-level (Product 4), which requires to prop-
agate this change to the SPL-level, by adding ‘identification’ from the FL of Product 4 to the
current FM, using the feature model refactoring scenario. Red asterisk is placed next to the
refactoring points of Fig. 8.5, to indicate alterations in the current FM, which represent the
bootstrapped SPL under construction.

� Fourthly, once the bootstrapping activity is completed, we have performed the evolution
activity, which encompasses the bootstrapped SPL with the new product (i.e., Product-
New). Using the feature model refactoring scenario, we have extended the bootstrapped
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SPL with features of ProductNew. As a necessary and preliminary step, we have derived
and stored features of the ProductNew in the FL.

The current FM at refactoring point 3 and refactoring point 4 The ‘interface_support’ new
feature represents a change in the product-level. As shown in Fig. 8.6, this change was propa-
gated to the SPL-level (adding new features), which requires to add ‘interface_support’ feature
from the FL of ProductNew to the current FM, using the feature model refactoring scenario.
We have used Refactoring 12 ‘add Optional node’ (seeTable 6.2) to refine the current FM at
refactoring point 2 (Fig. 8.5), with features of ProductNew. The same scenario was applied for
‘flag_3’ feature. Fig. 8.6 presents the current FM at refactoring point 3 and refactoring point 4
that models the CSVF resulting SPL. Red asterisk are placed next to the refactoring points of
Fig. 8.6, to indicate alterations in the current FM.

Figure 8.6: The current FM at refactoring point 3 and refactoring point 4 from Table 8.1.

� Fifthly, we have offered a solution to CSDT concerning the most important challenge that
the team faces in their daily work (feature location and feature mapping). Thus, we have
performed the feature mapping activity. Practically, we have traced the artifacts of CSVF
resulting SPL. The solution maps feature of the current FM modelled CSVF resulting SPL
to feature-related-code fragments of the code. Then we have used friendlyMapper tool to
create the features list, to import the feature-related-code fragments (i.e., routines), to
create the traceability links from each feature to corresponding routines, and finally, to
maintain the traceability links whenever a feature change occurs. It is worth remembering
that the feature mapping activity and friendlyMapper are fully explained with a detailed
manner in subsection 7.3.3.

Finally, we have successfully finished the case study design step, by preparing a typical docu-
mentation and readable artifacts of the CSVF resulting SPL, as depicted in Fig. 8.3 - Fig. 8.6
and Fig. 7.49. The EvoSPL approach activities have been applied to the CSVF and the current
FM has been derived, synthesised, and evolved, as shown in Fig. 8.6. At this point, step 2 of the
case study can be started to assess the EvoSPL approach, by the project manager and CSDT.
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8.3.3 Execution of the data collection on the case study

To collect the data, we have conducted an empirical study, and we have used specific data
collection methods, such surveys, interviews and observations. During the empirical study, we
have created a survey. We first have outlined the study; we have defined a set of dependent
variables in the field of empirical research criteria and we have declared the hypotheses.

An empirical study When conducting the empirical case study, we have defined a set of items
to be evaluated, by asking CSDT to perform specific tasks and then answer questions while they
are applying directly the Evo-SPL approach and its related artifacts. Ideally, to compare the
developer’s solutions with a possibly correct solution, in order to investigate our hypotheses and
answer the evaluation questions, we have defined correct solutions for the tasks. For the aim of
evaluating our approach, we have defined five dependent variables and formulated the following
hypotheses (He – Hypothesis of the empirical study) to measure the ‘effectiveness’, ‘efficiency’,
and ‘correctness’ of the EvoSPL approach (the hypotheses are presented in chapter 1).

� He1: the EvoSPL approach is effective.

� He2: the EvoSPL approach is efficient.

� He3: the EvoSPL approach is correct.

Regarding ‘effectiveness’, we have defined (1) ‘effectiveness-SMD’, which is calculated as the ratio
between the number of correct variability retrieval scenarios from the SMD that the member
of CSDT has identified and the total number of the correct retrievals. We have also defined
(2) ‘effectiveness-FM’, which is calculated as the ratio between the number of correct feature
retrieval scenarios from the current FM that the member of CSDT has identified, and the
total number of the correct retrievals. Furthermore, we have defined (3) ‘effectiveness-Evo’ is
calculated as the ratio between the number of correct evolution scenarios to the current FM that
the member of CSDT has performed and the total number of the correct evolutions. Finally,
we have defined (4) ‘effectiveness-TT’, which is calculated as the ratio between the number
of correct traceability links retrieval from the traceability tree that the member of CSDT has
identified whenever feature changes occur and updating the code accordingly scenarios and the
total number of the correct scenarios.

Regarding ‘efficiency’, we have defined (1) ‘efficiency-SMD’ as the ratio between the number
of the correct variability retrieval scenarios from the SMD that the CSDT member identified
and the total time he/she has spent. Also, (2) ‘efficiency-FM’ is computed as the ratio between
the number of the correct feature retrieval scenarios from the current FM that the member of
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CSDT has identified and the total time he/she has spent. Furthermore, (3) ‘efficiency- Evo’ is
calculated as the ratio between the number of the correct evolutions of the current FM that
the member of the CSDT has performed and the total time he/she has spent. Finally, we
have defined (4) ‘efficiency-TT’, which is calculated as the ratio between the number of correct
traceability links retrieval scenarios from the traceability tree that the member of CSDT has
identified, and the total time he/she has spent.

Regarding ‘correctness’, we have defined ‘correctness-EvoSPL’ as the ratio between the number
of positive feedback from the project manager about the validity of the variability information
provided by EvoSPL approach (i.e. artifacts) and the number of questions of the survey that is
written and dedicated to get the feedback of the project manager. To perform the data collection
step, we have walked through the following mini-steps.

Ms1. We have met the members of CSDT (the project manager and seven developers). We have
started the first session, by a training that includes a presentation about the EvoSPL approach,
regarding both the artifacts and capabilities of our approach. For example, most of the members
of the team have no clear idea about feature modelling concepts.

Ms2. We have established the second session; it took four days with eight sessions; we have
established a one-hour session with each individual member of the team. We have introduced
the objective of the study, artifacts of the EvoSPL approach to be used to conduct the case
study, and the tasks.

Ms3. We have performed the empirical case study. In the first 10 minutes, we have taken the
information related developer experience and background in a form (see Appendix B.1), and
then we have given them 3 tasks to perform, using the EvoSPL approach. Each task consists
of 3 tags. The tasks depend on the resulting artifacts of the EvoSPL approach. Practically,
the tasks are related to their normal daily work, while they are using the normal approach, but
during the evaluation, we have asked them to use our approach. Summaries of the given tasks
are contained in Appendix B.2.

We have repeated the analysis for the same tasks, to estimate the ‘efficiency’ dependent variable,
but this time, we have asked the new members of the team, who are under training (have no
long experience on using the normal approach), to perform the tasks, using the normal approach
and our approach. The normal approach is an ad-hoc reuse-based development process, which
is adopted by the company for a long time, to develop the CSVF and satisfy customer’s needs.

Our goal regarding the repetition is to evaluate our approach for the task that may take several
hours to perform using the normal approach, like finding the feature location in the code, in
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order to update its content upon receiving a change. A member with a long term of experience
may remember the feature location, because of the long term of using such code. A trainer
(new member of the team) is a good candidate to participate in the experiment to evaluate the
‘efficiency’ of the EvoSPL approach compared to the normal approach.

Interviews Data collection through interviews is important in our case study. Thus, we have
performed interview-based data collection (i.e., semi-structured interviews), by asking a series
of questions to the members of the CSVF related to EvoSPL approach. We have conducted one
interview with every individual member of the team. The interview dialog was guided by a set
of questions, which are planned in advance, but they were not asked in the same order as they
were listed. We have formulated the interview questions based on the evaluation questions, but
they are of course not formulated in the same way. We have prepared and asked open questions
(i.e., allowing and accepting a broad range of answers and opinions from the members of the
team) and closed questions (i.e., offering a limited set of alternative answers).

We have divided the interview session into a number of stages. First, we have planned the
interview and decided whom to interview. Also, we have decided to meet seven interviewees.
Due to the qualitative nature of our case study, we have selected the interviewed members based
on differences instead of trying to duplicate similarities (e.g., we try to involve members from
different roles and personalities).

Furthermore, before the interviews, we have spent much time on studying the available docu-
mentations, in order to get a good background understanding. The interviews were open and
consisted mostly of encouragement to the interviewed people, to help them explain how things
happened using an ad-hoc reuse approach (branching) and our approach.

Second, we have presented the objective of the interview and the case study, and we have
explained how the data from the interview will be used. Then, we have asked a set of introductory
questions about the background of the interviewed members. After the first stage comes the
second stage (main interview questions), which take up the largest part of the interview. We
have asked each interviewee and we have written down important information. We have asked
the interviewee for an explanation of the points that are related to our approach and baseline
approach. Before closing the interview, we have summarized the major findings of the interview,
in order to get feedback and avoid misunderstanding.

Furthermore, we have established an interview with the project manager, and we have asked her
open questions that are related directly to the correctness and performance of our approach. We
have urged her if the EvoSPL approach can cover the demands of their daily normal work, and
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if our approach can substitute the ad-hoc reuse approach that has been adopted by the team
for a long time.

Observations We have conducted the observations, in order to investigate how the tasks
related to the EvoSPL approach are conducted by the individual members of CSDT. Thus,
we have joined the company as researchers and for the daily normal working hours. We have
monitored a group of the CSVF while they are interacting with our approach, and we have taken
notes. Based on the observations, we have analysed the monitoring sessions. The advantage of
the observation is that they provide a deep understanding of the evaluation that is studied; we
have performed observations in an industrial setting and obtained a high degree of realism.

Survey The main aim of the survey that performed in this empirical study is to generalize
the findings of the proposed approach. Thus, we have performed interviews with the members
of CSDT who cover whatever target population that we have (i.e., difference skills, experiences,
rolls, and personalities). The survey was started when the EvoSPL already has been in use
for a while. The primary means of gathering qualitative or quantitative data are interviews or
questionnaires. Thus, we have collected standard information from members of the team, by
means of a questionnaire. During interviews with each member of CSDT, we have asked them
to answer a questionnaire about EvoSPL approach. Then we have analysed results from the
survey, to derive descriptive and explanatory conclusions towards the hypotheses and answers
for the evaluation questions (section 8.3.4).

We have interviewed the project manager and seven members of CSDT, and we have asked
them about (1) what they think regarding the process and resulting artifacts of the EvoSPL
approach, (2) how process of the EvoSPL approach can improve the team performance, and
(3) if they prefer the EvoSPL approach on the normal approach and why. A sample from all
the members of the team is selected at the company. A questionnaire is constructed to obtain
information that we needed for the proposed research. The questionnaires are answered by the
sample of members of the team. The information collected is then arranged into a form that can
be handled in a quantitative or qualitative manner. The questionnaire provided in Appendix C.

Questionnaires During the interview, we have provided both in paper and electronic form
(i.e., e-mail) questionnaire. The basic method for the data collection through questionnaires is
that we have given the questionnaire together with instructions on how to fill it in, and we have
sent it via email. We have asked the responding members to answer the questionnaire and then
return it to us. We have compared the on-paper form answers to the electronic version answers
that the member has provided, during the empirical study, to make sure the interviewees have
a consistent opinion regarding our approach.
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We have provided multiple-choice questions towards receiving feedback about our approach
and compression to the baseline approach. We have chosen to let interviewees handle the
questionnaires face-to face offers a number of advantages: (1) interview surveys typically achieve
higher response rates, (2) an interviewee generally decreases the number of uncertain answers,
like ‘do not know and ‘no answer’, because he/she can answer questions about the questionnaire,
and (3) it is possible for the interviewee to observe and ask questions. The disadvantage is the
cost and time, which depend on the size of the sample. Fortunately, in our investigation study,
the sample is small.

The survey questionnaire is designed to collect the feedback of the members of CSVF from two
perspectives. First, we have asked the member a series of questions that help us to investigate to
‘what degree the individual member of the team has a positive feedback about the EvoSPL ap-
proach’ concerning feature modelling, feature mapping, and transformation to systematic reuse
(i.e., SPLs). Second, we have asked the member a series of questions to ‘compare the EvoSPL
approach to baseline approach’ concerning efforts to switch to systematic reuse, variability ex-
traction, evolution, and maintenance, as well as degree of reuse and understandability.

8.3.4 Analysis of the collected data and reporting

The case study conducted in this thesis aims to address the applicability of SPLs adoption in
practice and to prove the fitness of the EvoSPL approach in the automotive domain. Thus, an
empirical study of usage, benefit and challenge of the EvoSPL approach was conducted, in a real
setting, using an industrial-sized products family. The evaluation of our approach focuses on
collecting the evidence from the perspective of participants, who are working in the automotive
domain. Thus, our study has a qualitative nature. The analysis of the study helps to obtain
preliminary feedback from the industrial participants regarding the proposed approach.

We have performed a qualitative analysis related to the dependent variables (section 8.3.3) to
prove the hypotheses. The qualitative analysis was undertaken based on the collected data that
was performed earlier (section 8.3.3). Table 8.3 summarises the results of the qualitative analysis
related to the tasks that were performed by the members of the CSVF within the empirical study.

Firstly, we have investigated the ‘effectiveness’ of task 1 (effectiveness-SMD), which is related to
the task of retrieving the variability information from the SMD. We compared the developer’s
solutions with the correct solutions. The result reveals that the developers were able to achieve
a high percentage; they have solved around 93% of the total tags related to this task. In what
concerns the ‘effectiveness’ of task 2 (effectiveness-FM), which related to using the current FM
to retrieve variability information, the CSDT members were able to retrieve correctly around
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Table 8.3: Mean and max for the data analysis of the dependent variables.

subjective dependent variable mean max
effectiveness-SMD 0.93

1.00effectiveness-FM 0.89
effectiveness-Evo 0.85
effectiveness-TT 0.95
efficiency-SMD 0.26 0.30
efficiency-FM 0.21 0.25
efficiency-Evo 0.18 0.20
efficiency-TT 0.22 0.25
correctness-EvoSPL 0.86 1.00

89% of the total variability information. The ‘effectiveness’ of task 3 (effectiveness-Evo), which
is related to performing the evolution scenarios of the current FM, revealed that the CSDT
members were able to perform correctly around 85% of the total evolutions. The percentage is
high also for task 4, which is related to retrieving traceability links from the traceability tree and
updating the code accordingly scenarios that the CSDT members were able to perform correctly,
it reaches around 95%.

Regarding the tasks that we have asked the new members of CSDT to perform within the
empirical study, using both the normal approach and our approach in two separate sessions. The
results show that CSDT members have taken, on average around (1) 20 minutes to complete task
1, with ‘efficiency-SMD’ value of 0.14, (2) 30 minutes to complete task 2, with an ‘efficiency-FM’
value of 0.08, and finally around (3) 28 minutes to complete task 3, with an ‘efficiency-Evo’ value
of 0.09.

Fig. 8.7 shows the chart that compares the EvoSPL approach against the company baseline (i.e.,
the normal approach) regarding ‘efficiency’, while CSDT is performing the tasks related to the
empirical study. In total, the comparison reveals that CSDT have performed the tasks related
to the empirical case study using our approach more efficiently than using the normal approach.

With regard to ‘correctness’, we have depended on feedback of the project manager. The project
manager highly agreed that the results of the EvoSPL approach (the process and generated
artifacts) are valid (i.e., correctness-EvoSPL is equal to 86%). She has confirmed that the current
FM is readable and understandable, as well as models the features of the CSVF resulting SPL.
She has also affirmed that the traceability matrix is an important artifact that offers a solution
to map each feature to feature-related-code fragments of the code consistently, which is a target
and urgent demand of the team for a long time.
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Figure 8.7: The comparison of the efficiency between the EvoSPL approach and normal
approach.

The project manager has approved that the current FM can be used as a compact representa-
tion of features that belong to the CSVF resulting SPL. Furthermore, it could be widely used
during the whole CSVF future SPL development process, as input to produce other products.
The project manager has endorsed the current FM as a common artifact to perform the elici-
tation process that covers needs, requirements, and constraints from different sources, such as
customers, users, domain experts, etc. Thus, she has recommended that the current FM can
play an important role in requirements engineering for an SPL.

Furthermore, we have compared the current FM that has been defined by the project manager
and have drawn by ourselves (depicted in the upper side of Fig. 8.8), and the current FM that
has been derived by our approach (depicted in the lower side of Fig. 8.8). The result reveals
that our approach has obtained all the features that have been defined by the project manager,
the only difference is that the current FM derived by our approach improves and gives more
accurate relationships between the features, as confirmed by the project manager. As can be
seen in Fig. 8.8, the current FM defined by the project manager is different from the model
created by the Evo SPL approach. The places of differences and improvements are numbered
from 1 to 5 in lower side of Fig. 8.8 and titled as the relationship 1 to 5 in Table 8.4.

Table 8.4 presents the relationships [1- 5] appeared improved, as we have claimed, in the current
FM derived by our approach. The table marked the places that reflect an opinion of the project
manager regarding which model shows better definition for the relationships. For example, the
project manager has approved that the current FM derived by the EvoSPL approach (depicted in
the lower side of Fig. 8.8) improves 80% of the relationships among features, such as, ‘relationship
1’, ‘relationship 3’, ‘relationship 4’, and ‘relationship 5’. At the same time, she has seen that
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Figure 8.8: The current FMs defined by the project manager and derived by our approach.

Table 8.4: The relationships appeared improved by the current FM defined by the project
manager or by the current FM derived by the EvoSPL approach.

The current FM defined by project manger derived by the EvoSPL
relationship 1 X�
relationship 2 X�
relationship 3 X�
relationship 4 X�
relationship 5 X�

the current FM defined by the project manager (depicted in the upper side of Fig. 8.8) presents
more accurate definition for ‘relationship 2’.

For exploratory purposes, we have returned back to the CAN Matrix and code of the CSVF, and
we have investigated the requirement specifications that document ‘signal_3’, ‘algorithm_1’,
and ‘algorithm_2’. We have found that ‘signal_3’ appears in all the variations of the CAN
Matrix, while each CAN Matrix contains the specification of ‘algorithm_1’ or ‘algorithm_2’
exclusively. Furthermore, we have investigated feature-related-code fragments of each feature,
and we have seen that ‘signal_3’ has implementation code in all the products of the CSVF, while
‘algorithm_1’ and ‘algorithm_2’ has implementation code in all the products also, but one of
them is enabled in an individual product, using the variability mechanism adopted by the team.
We conclude that the current FM derived by our approach supports an accurate relationship
definition among those features (‘signal_3’, ‘algorithm_1’, and ‘algorithm_2’).
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We have noticed that during the manual observation of CSDT, while the members were per-
forming the tasks related to the EvoSPL, they were able to understand and interact with the
approach smoothly. They have returned a positive feedback; they were praised the activities and
artifacts of the EvoSPL approach. They highly agreed that the approach can be used to achieve
the intended objectives. They prefer the approach (and not just the feature mapping steps) is
supported with semi-automation tool. Fig. 8.9 shows the result of the observation regarding re-
trieving the feature location of ‘signal_13’ by the members of the team, upon receiving a change
request, to activate this feature. The figure compares the number of the faults in retrieving the
feature location of ‘signal_13’, when the members of the team use the normal approach and
EvoSPL approach.

Figure 8.9: The result of the observation regarding faults in retrieving feature location of
‘signal_13’ by the members of the team.

The chart appeared in Fig. 8.9 displays in the x-axis the member number of the team (i.e., 1 to
7) and in the y-axis the number of the fault attempts that have occurred by the team member
while trying to retrieve the location of ‘signal_13’ in the code. We have chosen to observe the
team while they are trying to retrieve the location of this feature, since it took us a lot of time
and effort to search for the feature-related-code fragment of ‘signal_13’ feature. Furthermore,
during the interview, we have asked the team members about the location of this feature in the
code, surprisingly, we have received different and wrong answers.

From Fig. 8.9, we can observe that the fault retrieval values of feature location are between
[0 - 2] of all the members of the team that have used the EvoSPL approach. The values are
an indicator of the efficiency of the traceability tree of our approach, which offers a solution to
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retrieve feature location accurately, especially with the tool support ( friendlyMapper ). Also, we
can observe that the members of the family have failed to find the feature location of ‘signal_3’
four times on average. During each single session of the case study interview, the members
of CSDT have explained the cons and pros of the baseline approach. Most of the members
have agreed (i.e., ‘agree’ option) to recommend the EvoSPL approach to be used for systematic
reuse, while the others have strongly agreed (i.e., ‘strongly agree’ option). They have expressed
their appreciation for the way that the EvoSPL approach offers a solution to map each feature
to feature-related-code fragments of the code. They have complained that it has taken them,
sometimes , many hours to search for all the feature-related-code fragments in the code, when
they are using the normal approach. Almost all the members of the CSVF wish that the process
of the EvoSPL approach is semi-automated.

Besides, we have engaged with the project manager with a long interview session. She has
clarified that the feature modelling concept is still strange for the practitioners in the automotive
domain. She has also explained that the EvoSPL approach (the baseline approach also) can cover
the market demands even though of the challenges that the team faced during the use. She has
embraced the capabilities of our approach, as well as she has confirmed that the feature mapping
is both challenging and practical; she declared that the team needs strongly to adopt the feature
mapping process, including the friendlyMapper tool, during the daily normal work.

A training course has been developed in the company, which was unrelated completely to our
research work, to help the team to enhance their knowledge and skills at a level that will readily
transfer the team to SPLE adoption in the workplace. The project manager has abstracted the
findings of the training course and put the book available in our hands.

Concretely, we have analysed the members’ feedback, which was collected using a survey ques-
tionnaire. The members of the team not only have agreed that our approach could reduce the
variability management efforts of the CSVF, but also, they have agreed that our approach could
help to reduce the effort compared to the baseline approach.

Fig. 8.10 displays a pie chart designed to show how the CSD, who joined the survey to present
their opinion regarding the EvoSPL approach, is divided into various segments (i.e., levels of
experience). Each segment of the pie is a particular category within the level of experience.
In this way, the chart shows the percentage distribution of the members of CSDT according
to their level of experience, in the work. As reported by the chart ‘38%’ of the members
are with a ‘little experience’ and the members with a ‘medium experience’ are with the same
percentage. Regarding the ‘significant experience’ and ‘professional experience’, they have the
same percentage of ‘12%’. The project manager is included in this analysis, and she is the only
one who has the ‘professional experience’.
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Figure 8.10: The percentage distribution of the members of CSDT according to their level
of experience in the work.

The bar chart of Fig. 8.11 presents the result of a survey for the members of CSDT (presented in
Fig. 8.10), the members were asked about the EvoSPL approach. The questions referred to the
feedback of CSDT about the EvoSPL approach and comparison of our approach to the normal
approach. It illustrates the average of the positive feedback for the questions [Q1-Q10] of each
member of the team, regarding our approach and comparison to the normal approach. In this
bar chart, the height of the bar indicates the average of the positive feedback for the questions
of each member.

It can be seen from the figure that the average of the positive feedback of the members [m1-m7]
regarding the EvoSPL approach and comparison of the EvoSPL approach to baseline approach
fell slightly from 0.80 to 0.98. However, the average of the positive feedback of the members
regarding both criteria is convergent. Overall, by observing the chart, we can see that the
members were highly trending to give a positive feedback (i.e., agree and highly agree) in both
cases, where the average seems to have levelled off. When it comes to presenting the percentage
of the members of the team that were motivated to join the survey, the results of the survey
reveal that 57% and 43% of the team members were highly motivated and motivated to join the
survey respectively.

For the exploratory objective, we have analysed how the experience of the members affects their
feedback regarding the EvoSPL approach. Fig. 8.12 is used to show the relationships between
the experience of each employee (x-axis) and average of the positive feedback regarding the
EvoSPL approach (y-axis) . The height of the bar indicates the average of the positive feedback
of the members of CSDT regarding the EvoSPL approach.
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Figure 8.11: The average of the positive feedback of each member of CSDT regarding our
approach and comparison to baseline approach.

In general, the graph of Fig. 8.12 reflects that the majority of the team members, with different
levels of experience, highly agree to adopt the proposed approach (i.e., EvoSPL approach).
Nearly 0.88 (7 out of 8) of the team including the project manager highly recommend to adopt
the EvoSPL approach, by a percentage greater than or equal to 92%. Those members are with
a ‘medium, significant, and professional level of experience’. Nearly, the members with a ‘little
level of experience’ prefer to use the proposed approach with a low percentage difference between
the members with other levels, they reach near to 86%.

To analyse the feedback convergence of CSDT for the EvoSPL approach (presented in Fig. 8.11),
we have used the standard deviation (SD). The graph of Fig. 8.13 shows the SD of the ques-
tionnaire answers performed by CSDT. From the scatter chart, it is clear that the members of
the team have delivered converge feedback regarding both the EvoSPL approach (artifacts and
process) and comparison to the baseline approach.

In conclusion, the presentation of the data analysis depicted in the charts of Fig. 8.9 to Fig. 8.13
reveal that the members of CSDT were (highly) motivated to conduct the case study, and they
have delivered questionnaire answers confirming that they ‘agree’ or ‘strongly agree’ to adopt
the EvoSPL approach as well as they (highly) agree that the proposed approach reduce the
effort compared to the baseline approach. Furthermore, they ‘agree’ and ‘strongly agree’ that
the EvoSPL is able to perform the tasks and achieve the objectives in an efficient and effective
way.
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Figure 8.12: The relationships between the experience of each employee (x-axis) versus
the average of the positive feedback regarding the EvoSPL approach(y-axis).

Figure 8.13: The SD of the questionnaire answers performed by CSDT during the survey
of the empirical study.

The project manager also has approved the correctness of the EvoSPL approach, including its
process and artifacts. Moreover, the survey results reflect a high satisfaction from the project
manager and CSDT, which helped us to prove a new hypothesis related to our approach (the
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EvoSPL approach is useful). Considerably, all the analysis results reported in this section, in-
cluding Table 8.3 to Table 7.9 as well as Fig. 8.3 to Fig. 8.13 allow us to accept the hypotheses pre-
sented in subsection 8.3.3, which reveal that the EvoSPL approach is effective, efficient, and cor-
rect. The acceptance of the hypotheses shows that the EvoSPL approach fits the automotive domain.
In the following we present answers of the evaluation questions.

Evaluation question 1. Does the EvoSPL approach derive the current FM that models the CSVF
successfully, including, almost, all known features of the family?

According to results of the case study, including the different data collection methods, presented
in Table 8.3 and Table 8.4 as well as in Fig. 8.10 to Fig. 8.13, the EvoSPL approach can derive
the current FM that models the CSVF successfully, including, almost, all known features of the
family.

Evaluation question 2. Is the EvoSPL approach able to refine the current FM with features of
(new) products successfully?

According to results of the case study, including the different data collection methods, presented
in Table 8.3 and Table 8.4 as well as in Fig. 8.10 to Fig. 8.13, the EvoSPL approach can refine
the current FM with features of (new) products successfully.

Evaluation question 3. Is the EvoSPL approach able to map features of the current FM to
feature-related-code fragments of the code (both artifacts are related to the CSVF) successfully?

According to results of the case study, including the different data collection methods, presented
in Table 8.3 to Table 7.9 as well as in Fig. 8.9 to Fig. 8.13, the EvoSPL approach can map
features of the current FM to feature-related-code fragments of the code (both artifacts are
related to the CSVF) successfully.

Conclusion As an overall result, the fitness of the EvoSPL approach is successfully evaluated in
the automotive domain. The ability to derive the current FM, to bootstrap the products of the
CSVF and to evolve a new product to the resulting SPL (using the feature model refactoring
scenario), according to the EvoSPL concept and in a comprehensible manner was proven, as
well as the possible coverage and automation of feature mapping (see subsection 7.3). However,
the feature model refactoring scenario concept supports the creation and handling of an FM
refactorings, but it is still possible to face a scenario that is not supported by the feature model
refactoring scenario proposed by our approach.
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Practically, we have applied the activities (macro steps and steps) of the EvoSPL approach ,
which are organized in three phases: the reverse engineering phase, forward phase, and mapping
phase on the CSVF. Besides we have used the (resulting) artifacts of the EvoSPL approach to
conduct the case study and evaluate the findings of our approach. Accordingly, the evaluation
questions for the hypotheses were elaborated for the concrete analyses studied in detail. Overally,
the results reported in this section allow us to answer the evaluation questions and prove the
hypotheses stated in chapter 1, as follows.

� Main hypothesis proposes that it is possible to recommend an approach that supports
a re-engineering process to migrate a family of products into an SPL. In addition, it is
possible to evolve the SPL after it has been established.

� H 1. proposes that it is possible to develop a semi-automatic difference analysis approach
that identifies the differences between the requirements documents of two products that
are parts of the same family.

� H 2. proposes that it is possible to specify commonality and variability among the mem-
bers of a products family in the automotive domain with explicit variability model (e.g.,
as feature modeling).

� H 3. proposes that it is possible to capture and specify the observed changes in the
requirements of existing products of a family in a systematic way, during analysis of
evolution of an SPL.

� H4. proposes that it is possible to specify changes in the requirements of a new product
during an SPL evolution.

� H 5. proposes that it is possible to apply the appropriate refactoring technique (within
an SPL context), to bootstrap an initial SPL from the existing products, and to extend
the bootstrapped SPL to encompass another product, on the feature-model level.

� H 6. proposes that it is possible to relate the artifacts that are relevant for variability
management, like mapping requirements documents and an FM to its documentation
in the reference architecture, and to its implementation in the code, while preventing
inconsistencies among them.

Evaluation summary The presented evaluation proves the fitness of the EvoSPL approach,
and the evaluation results confirm the overall hypotheses (main hypothesis, [H1-H6], and [He1-
He3] ). He1 was corroborated as the members of CSDT have performed the tasks effectively by
about 90% on average in the industrial case study. Furthermore, He2 was corroborated as the
members of the team have shown the capability to perform Task1, Task2, and Task 3 efficiently
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at ‘0.26 out of 0.30’, ‘0.21 out of 0.25’, and ‘0.18 out of 0.20’ respectively. Finally, He3 was
corroborated by an 86% of correctness according to the project manager feedback.

The hypotheses [H1-H6] were corroborated by the fitness of the proposed concept for the in-
dustrial case study, while the members of CSDT are performing the activities of the EvoSPL
approach and providing the necessary input. In the industrial case study (interview, survey,
and observations), the members of the team from different levels of experience return a positive
feedback by about 91% on average, about the fitness of the EvoSPL approach to the automotive
domain, especially for the CSVF. Overally, all the hypotheses were proved and the evaluation
questions, which were raised to prove the hypotheses, are answered with different data collection
methods, during the case study. Regarding the friendlyMapper tool, the evaluation presented
in subsection 7.3 allowed us to prove ‘correctness’ and ‘efficiency’ of the tool (see Table 7.9).

8.4 Product derivation
As defined earlier in chapter 4, a product is an individual member related to a products family.
A product has a collection of artifacts that implement the features of a single software product.
Normally, during application engineering, an individual product of a family can be developed,
based on the assets provided by the SPL, to address a specific customer needs within the market
segment. It is common industrial practice to first derive the initial product from an SPL, then
adding and adapting features to satisfy individual customer requirements. These changes are
them merged back into the originating SPL [Hin+18].

This section presents the steps for one product derivation from the resulting SPL based on
features combination of the product (the features set of a product). Here, a concrete product of
the CSVF resulting SPL is defined by a set of features selected and eliminated from the current
FM, based on features combination of the product and the feature mapping of each feature to
the feature-related-code fragments.

The aim of a product derivation is to collect other evidence to validate our case study. To
validate the correctness of our approach, (1) we have derived a product, called ProductDerived,
by selecting from the given products of the CSVF resulting SPL, using the current FM, (2)
we have compared features combination of the ProductDerived with features combination of
each product of the CSVF resulting SPL (see Table 8.1), and finally, (3) we have checked if the
features combination of the ProductDerived (features set of the ProductDerived) is a subset of
the set of the features of the current FM.

In case of a match between features combination of the ProductDerived and the features combi-
nation of one product of CSVF resulting SPL or if the set of features of the ProductDerived is
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a subset of the set of the current FM derived by our approach, we can add more evidence to the
correctness of our approach. In other words, deriving a valid product from the resulting SPL,
using the current FM derived by the EvoSPL approach, validates the findings of our approach.
We have supposed that the ProductDerived is requested by a new customer and CSDT have
started writing the requirement document (i.e., CAN Matrix) of this product based on the sensor
requirements and customer needs. To collect the evidence regarding the product derivation, we
go through the flowing steps.

In step1, we have asked the project manager to select from the current FM the required features
of the ProductDerived. The ProductDerived supports ‘diagnosis’, ‘monitoring’, ‘calculation’,
‘message’, ‘transmit’ with layoutT_1 feature and ‘receive’ with ‘layoutR_1 feature. Addition-
ally, it supports ‘signal_1’, ‘signal_2’, ‘signal_3’, ‘signal_5’, ‘signal_6’, ‘signal_7’, ‘signal_8’,
‘signal_11’ and ‘signal_12’, as well as the optional ‘signal_4’, ‘signal_9’, ‘signal_10’, and ‘sig-
nal_13’, and from the alternative group flag_1, flag_2, and flag_3, it supports flag_1. The
ProductDerived uses algorithm_1. Finally, ‘signal_12’ of the product is a group feature that
consists of value_1 and value_2 common features, and one optional ‘value_3’ feature. We con-
sider always in this section that the ‘signals_transmit’ and ‘signal_receive’ features are label
features, and they are included by default in features set of each product, if their parents are
included. Fig. 8.14 shows the current FM marked by the project manager with the required
features (marked with filled circles drawn in the left-upper corner of the rectangles) of the
ProductDerived.

Figure 8.14: The current FM marked with the required features of the ProductDerived.

� In step 2, we have defined the derived product by selecting and eliminating features from
the current FM. Fig. 8.15 shows the features combination of one particular product (i.e.,
ProductDerived) during this step.

� In step 3, we have compared the features combination of the ProductDerived to the fea-
tures combination of each product of the CSVF resulting SPL (see Table 8.1). Moreover,
we have checked if the features combination of the ProductDerived is a subset of the set
of features of the current FM.
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Figure 8.15: The features combination of the ProductDerived.

Features combination of the ProductDerived {‘diagnosis’, ‘monitoring’, ‘calculation’, ‘mes-
sage’, ‘transmit’, layoutT_1, ‘receive’ , ‘layoutR_1, ‘signal_1’, ‘signal_2’, ‘signal_3’, ‘sig-
nal_5’, ‘signal_6’, ‘signal_7’, ‘signal_8’, ‘signal_11’, ‘signal_12’, ‘signal_4’, ‘signal_9’,
‘signal_10’, ‘signal_13’, flag_1, algorithm_1, ‘signal_12’ , value_1, value_2, ‘value_3’}
is not equalled to features combination of any individual product of the CSVF resulting
SPL, but at the same time, the features combination of the ProductDerived is a subset of
the set of features of the current FM. As a result of that, we have successfully derived one
particular product of the CSVF resulting SPL that is not supported before by the family,
during the steps presented in this section, using the current FM derived and defined by
the EvoSPL approach.

� In step 4, we have used friendlyMapper tool, to derive the resulting product implemen-
tation (ProductDerived), by mapping each feature in the features combination of the
ProductDerived to feature-related- code fragments (i.e., routines) of the implementation
code. Fig. 8.16 shows the ‘variant derivation’ selection from the context menu appearing
upon right clicking the ‘CSVF’ second level item of the traceability tree. The selection
of the ‘variant derivation’ menu item causes the opening of the ‘variant derivation’ screen
(see Fig. 8.17).

Fig. 8.17 depicts the ‘variant derivation’ screen of the friendlyMapper tool, which enables soft-
ware engineers to select the features combination of a product (e.g., select features combination
of the ProductDerived). The figure shows the selected features (i.e., features combination of the
ProductDerived) and eliminated features from the features list of the traceability tree and the
‘Get routine’ button.

Once software engineers click the ‘Get routine’ button’, the tool automatically presents the
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Figure 8.16: The selection of the ‘variant derivation’ menu item that causes the opening
of the ‘variant derivation’ screen.

Figure 8.17: The ‘variant derivation’ screen of the friendlyMapper tool.

resulting product implementation. Fig. 8.18 shows an example for derivation of the Product-
Derived created by mapping each feature belonging to the features combination of the Product-
Derived to feature-related-code fragments (i.e., routines) of the code, which in total defines the
ProductDerived implementation. For readability reasons, Fig. 8.18 presents a partial view of
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each feature and its related routines of the ProductDerived.

Figure 8.18: A partial view of each feature belonging to the features combination of the
ProductDerived and its related routines belonging to the code of the same product.

8.5 Threat to validity

The validity of a study represents the trust worthiness of the result, to what extent the results
are true and not biased by the researchers’ subjective point of view. This section describes
possible threats to the validity of the evaluation that are relevant to our case study. There are
several threats to validity of our approach presented as follows.



8.5. Threat to validity 225

1. The industrial case study considers the FM that is with medium size. We believe that
the empirical study needs to be conducted on an ideal candidate FM, which includes
more features. For example, a product family with more products that have a high vari-
ation. However, we believe that the evaluation requires a repository containing product
families from different sectors of the automotive domain including, mechanical engineer-
ing, production engineering, electrical engineering, electronics engineering and computer
engineering.

2. Our approach assigns a name of the feature. This way may be not suitable or should be
improved with other techniques to fit all the cases to name the features.

3. The case study performed does not cover all types of the modifications of the current
FM supported by the feature model refactoring scenario. For example, in the case study,
no modifications for removing a feature from the current FM or converting an Optional
feature into Common feature of the current FM. Thus, there is a potential risk of types of
feature modifications being not covered by the case study performed but influencing the
evaluation results.

4. The interviews and surveys performed had to deal with several challenges representing
potential threats to their validity. For example, a higher number of members of the team
would have been desirable, but the level of experience limited the number of possible
members.

5. During the empirical case study, we have given the members of the team tasks to perform,
which may be a source of confusion with new technologies and topics. To cope with this, we
have presented a training session prior conducting the case study, to explain the EvoSPL
approach and all the related concepts, like feature modelling and feature mapping.

6. The limitation of the study to a single products family (i.e., CSVF) and also to a single
development team (i.e., CSDT) present potential threats to its validity . To compensate
for this limitation, we have presented a small case study in a form of illustrative example
presented at the end of each chapter and we have planned to go on evaluating our approach
in other companies.

7. During the data collection, we mostly have asked a single person (the project manager) to
evaluate and review the correctness of our approach and noting its artifacts. Besides, we
have only invited seven software developers to join the evaluation. In extending this work
we should, of course, include more product families and more participants with different
levels of working experience.

8. Regarding the estimation of the efficiency of our approach and comparison with the normal
approach, members of the team have applied first the tasks with normal approach (first
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session), and later they have applied the EvoSPL approach (second session). Repeating
the task may affect the time required to execute them. If both tasks are similar, the
second task may be done in less time than the required if they make the tasks without
previous experience. To reduce this risk, we have performed the two sessions at a different
duration of time. We have conducted the first session at the beginning of the month and
the second session at the end of the month.

9. During the different data collection methods, we have worried about the fact that the
members of CSDT have adopted the same viewpoints regarding the EvoSPL approach
and we loss of information. This threat was mitigated by separating the interviews in two
sessions and performing each interview separately. The first session was conducted and
documented at the beginning of the month, and the second session was conducted and
documented at the end of the month.

10. A lack of controlling during the different data collection methods comes with a potential
risk of the case study. To avoid this risk, we have planned the case study carefully.

11. Another threat to validity is the fact that the evaluation related to feature mapping
requires a manual modification of the code based on the traceability information of the
traceability tree of the friendlyMapper tool. May the members of CSDT (i.e., developers
with significant experience) use their coding experience to modify the code instead of the
traceability information of the traceability tree.

12. Finally, threats to validity compromise our confidence in stating whether the study’s result
is applicable to other products family, SPLs domains, development teams, and companies.
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Chapter 9

Conclusions and future trends

This final chapter concludes this thesis. It closes the thesis by returning to the aspects which were
presented in chapter 1. It summarizes the focus of the EvoSPL approach and draws conclusions
from the discussions and results in the previous chapters. A summary of the importance and the
main contributions of this research are presented in section 9.1 and section 9.2, while Section
9.3 contains suggestions for future research.

9.1 The importance of the thesis
Companies normally adopt designing families of products. Such designing has proved to be
effective and economic while satisfying a variety of customer needs [DJT01]. When customers
request for additional features, existing products are adapted to fulfill the new requirements.
As the number of products increase simultaneous maintenance of a typically large number of
individual products is required. In this scenario, as the number of features increases so does
the complexity of their development and maintenance, hence a systematic reuse approach is
necessary.

An SPL aims to support the development of a whole family of products through systematic
reuse. Fortunately, SPLs seek to achieve gains in productivity and time to market. Giving
the scenario explained above, dealing with SPLs begin after companies find themselves with a
successful products family in a domain. To switch to an SPL approach using an existing set
of similar products, variability management is a major challenge, especially in the automotive
domain, practitioners lack a re-engineering approach that helps to adopt SPLs.

Moreover, there are three main factors at play in SPLE: 1) commonality and variability man-
agement that eliciting and communicating commonality and variability in requirements in form
of a variability model; 2) traceability of commonality and variability from the requirements to
the code; and 3) managing and tracking reuse of code across the members of a products family,
usually driven by the previous two elements. The EvoSPL approach presented in this thesis
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introduces an end-to-end re-engineering approach that explores into the factors to accumulate
a solution that satisfies all of them (factors). Additionally, it helps to adopt SPLs in the au-
tomotive domain. Thus, our approach is designed to deal with requirements documents of this
domain.

SPLs evolution exhibits high complexity due to the variability and the interdependencies be-
tween products. The EvoSPL presented in this thesis is an evolutionary approach for adopting
an SPL [Bos02]. It evolves the SPL based on family of products, by initially migrating the
products towards the SPL (i.e., the initial SPL) and then reactively adapting the newly created
SPL (the resulting SPL) to encompass other new products. It has the major benefit as the evo-
lutionary approaches of the shortened time-to-market for new products or product variations.
It is designed specially to fit small and medium-sized companies, which often rely on existing
products as they are not able to make big upfront investments as required by a revolutionary
SPL approach (e.g., [MRR04]).

The EvoSPL approach provides software engineers, especially those who desire to adopt a sys-
tematic approach to address the evolution of SPLs. This thesis assists (using our approach) the
software engineers in the automotive industry in performing the following tasks.

1. Capturing commonality and variability that specify all the products of a family in terms
of features (i.e., at the requirement-level).

2. Deriving the FM of the SPL under consideration.

3. Supporting the evolution of an SPL, including the requirements artifact.

4. Addressing the mapping within the context of SPLs, like linking features to their locations
in different types of artifacts of an SPL (e.g., implementation code).

5. Adopting a tool that consistently maps between features and the code, in order to auto-
mate an SPL mapping.

6. Performing a complete set of evolutionary operations of the FMs (i.e., add, update, and
delete).

7. Putting in practice the industrial case study, which handled the evolution and variability
of an SPL in the domain of automotive systems, in practice.

SPLs case studies are quite popular, but (1) few industrial-sized case studies are publicly avail-
able [bastarrica2019software], and (2) few of the proposed techniques offer a tool support. Thus,
the EvoSPL approach presented in this thesis offers a solution to compensate for the shortages
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that are mentioned in (1) and (2). Additionally, we have performed an industrial-sized case
study at Bosch Car Multimedia company, where the software engineers at the company believe
that the EvoSPL approach provides a solution to make it easier to achieve the tasks mentioned
above. Also, we have developed the friendlyMapper tool to support the feature mapping process
that is supported by our approach.

9.2 The contributions of the thesis

The thesis presented in this work is an industrial research describing an approach where we
handle the evolution and variability of SPLs in the domain of automotive software engineering.
We presented an evolutionary approach for adopting SPLs, called EvoSPL. Our approach accepts
as input the NL requirements documents, reference architecture, and code of a products family.
We assumed that the products of a family are generated and managed by using the initial
release product and adapting it to satisfy customer needs. EvoSPL approach is based on several
techniques, like difference analysis, text-based parsing, feature mapping, and traceability links.

We have implemented our approach and evaluated its artifacts result on an industrial-sized case
study at Bosch Car Multimedia company. The results of this evaluation revealed that most
of the features of the CSVF are identified and mapped to their places in the code, using the
reference architecture as acentric point (see chapter 8). Additionally, the EvoSPL approach
models the evolution of CSVF resulting SPL as a sequence of the current FMs. The EvoSPL
approach uses FIM and FNM to identify features and give them a proper name. Those methods
are proposed and designed specifically for the EvoSPL approach.

Thus, we have concluded that EvoSPL approach offers an end-to-end re-engineering solution
for feature identification from the requirements documents and bootstrapping of an SPL from
a products family, as well as upgrading the resulting SPL to encompass new products. We also
believe that EvoSPL approach guarantees the consistencies among the artifacts of the resulting
SPL, by supporting feature mapping.

The main contributions of our approach are presented as follows.

(I) Foundations We have introduced our research work in the context of SPLs, namely
SPLE and product families. We have clarified the research objective and motivation of this
work. Additionally, we have defined the concepts, challenges, and hypotheses of the proposed
approach. Finally, a short outline of the thesis and the structure of its chapters was given
(chapter 1: introduction).
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We also have presented the background needed to understand the steps and techniques used in
our approach: re-engineering, difference analysis, text-based parsing, variability management,
SPLs refactoring and traceability. We used these techniques as a basis for our approach. Fi-
nally, we have presented techniques and concepts related to our approach and used during the
evaluation (chapter 2: background).

In order to find our position between the selected and related work presented in the context
of SPLs, we have given an overview of the related works and approaches for the evolution of
SPLs. At the start of the related work chapter, we have stated that an SPL evolves when there
are changes in (1) the requirements, (2) the family structure or (3) the technology being used.
We have reviewed the techniques, approaches, and research works that have been proposed for
building an SPL from an existing products family. First, we have introduced and discussed the
challenges, types and main approaches of SPL evolution, and we have presented an industrial
example for better understanding. Then, we have discussed and given an overview of the main
approaches related to migration towards SPLs and the existing approaches for reverse engi-
neering FMs. Moreover, we have introduced refactoring and mapping in the context of SPLs.
Evolution of SPLs require mapping features to their implementation, and this problem is ad-
dressed by the feature location. Thus, we have explained the related work of this topic (chapter
3: related work).

We have concluded that our approach has to offer a solution to some of the deficiencies in the
approaches applied in the SPLs evolution generally and automotive domain specifically: (1)
there are no any publicly available industrial-sized case studies, which works a starting point
to adopt SPLs in the industry probably one the causes of low adoption of SPL approaches in
industry, (2) there are a lack support of textual nature of requirements formats . Thus, there is
a clear need for developing an approach that support SPLs evolution (in the automotive domain
specifically) using requirements artifacts (using textual nature of requirements formats), and
finally (3) there are a lack of end-to-end approach that supports a re-engineering process to
extract an SPL from the existing products family and upgrades later the extracted SPL to
encompass new products.

(II) The EvoSPL approach To tackle the challenges of evolving an SPL that takes the existing
products of a family into account (re-engineering), we have proposed the first contribution of this
thesis, which is an evolutionary approach, named EvoSPL. The EvoSPL is a 3-phase approach
aims to adopt an SPL in the given context. It considers a process which evolves an SPL from
the existing products of a family and focuses on migration of the existing artifacts (namely
requirements documents). The basic idea of our approach is to model an SPL and its evolution,
by focusing on and descripting the commonality and variability in the requirement documents
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of a products family. Thus, in EvoSPL, evolution of an SPL is represented as a sequence of
FMs at different points. At each point, the approach refines an FM with the features of a (new)
product (chapter 4: EvoSPL approach).

In phase 1 (reverse engineering), we have proposed a step-wise reverse engineering process that
exploits commonality and variability across products of a family at requirements-level, to apply
the difference analysis and variability analysis techniques. To reduce the complexity of deriving
an FM from the products of a family, we contribute to initially use two products of a family, in the
derivation process. In this phase, we proposed two novel methods, namely, FIM and FNM, based
on several techniques, such as text-based parsing, inference rules, and semantic roles in order
to contribute in providing a solution for the feature identification and documentation (giving
names) in a collection of products of a family. In our FIM, each feature specification corresponds
to a set of ARs. In this phase, we have organized the identified features in the current FM. The
model is constructed using a tree, which contains Mandatory features, Optional features and
feature groups (and, or, xor groups). In this phase, we have derived the current FM that models
the initial SPL successfully (chapter 5: EvoSPL: reverse engineering phase).

In phase 2 (forward engineering), we have presented a step-wise forward engineering process
that contributes in bootstrapping the remaining and existing products of a family into the
bootstrapped SPL and then extending the bootstrapped SPL with a new product, to deliver the
resulting SPL. In this phase, we have proposed the feature model refactoring scenario, which
is contributes in refining the current FM with features of (new) products when required. The
scenario adopts a set of refactoring notions that are important for safely evolving the existing
SPL (the initial, bootstrapped, or resulting SPL), by simply improving its design or even by
adding (new) products while preserving the existing ones.

Additionally, the scenario contributes in using several change operations on the current FM,
include adding a new feature, eliminating a feature, or changing a common feature to an optional
feature and vice versa. In this phase, we have combined the remaining set of the existing products
to the initial SPL to deliver the bootstrapped SPL, and then we have evolved the bootstrapped
SPL to encompass new products using feature model refactoring scenario successfully (chapter
6: EvoSPL: forward engineering phase).

In the third phase (mapping phase), we have offered a solution for tracing features and code
using the reference architecture as an intermediate artifact. The feature mapping activity defines
a set of tracing rules to trace features of the current FM to feature-related-code fragments of the
code. The basic idea of our solution is to trace each feature to its parts of the most upper layer
of the reference architecture and then traces from the identified part of the reference architecture
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to corresponding units of the code. In this way, only that units of the identified parts (instead of
the entire code base) are analyzed to find the code fragments that are responsible for the feature
implementation. This leads to identifying the code fragments that implement the feature and
store them in the traceability tree. All this requires defining the ARs of each feature, which
involves a backward mapping from features of the current FM to ARs of the FL. This is another
contribution of the mapping phase.

We have supported the feature mapping activity with a tool, called friendlyMapper, which
could semi-automatically relate each feature belonging to the current FM to code-fragments
belonging to the code, as well as update their conformance whenever feature changes occur.
The friendlyMapper uses the traceability tree, which contains a set of traceability links, where
each link relates a feature of the current model to feature-related-code fragment (chapter 7:
EvoSPL: mapping phase).

As an illustrative example, we have considered the ATM products family, which allows the user
to perform different kinds of ATM transactions. We have illustrated the main phases of our
approach using the family. We have applied the steps of EvoSPL approach on the product of
ATM family (chapter 4 to chapter 7), and we have achieved the following contributions.

1. We have presented the ATM products family example. We have developed the products by
clone-and-own technique, based on the initial release product (section 4.11: an illustrative
example: ATM products family).

2. We have applied the steps of the reverse engineering phase on two products of the ATM
family, and we have derived and constructed the current FM, which models the ATM
initial SPL (section 5.4: an illustrative example of the reverse engineering phase: ATM
products family).

3. We have applied the steps of the forward engineering phase on the remaining product and
new product of the ATM family. We have bootstrapped the existing product (Product
2) into the bootstrapped SPL, and we have adapted the bootstrapped SPL to encompass
a new product (ProductNew) of the ATM products family, to deliver the ATM resulting
SPL (section 6.4: an illustrative example of the forward engineering phase: ATM products
family).

4. We have used feature model refactoring scenario to refine the current FM with features
of Product 2 and the ProductNew (section 6.4: an illustrative example of the forward
engineering phase: ATM products family).
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5. We have successfully presented the evolution of the ATM existing SPL as a sequence of
the current FM at different points, as follows (section 6.4 an illustrative example of the
forward engineering phase: ATM products family).

� Point 1. The current FM that is already derived and constructed, using two products of
the ATM products family, namely Product 1 and Product 3.

� Point 2. The current FM that is refined with the features of a product of the ATM
products family, namely Product 2.

� Point 3. The current FM that is refined with the features of a new product planned to be
added to the ATM products family, namely ProductNew.

EvoSPL contribution The following list summarizes the most important scientific contributions
of the EvoSPL approach.

1. The EvoSPL approach provides a novel step-wise process to manage SPLs evolution in
automotive software engineering.

2. The EvoSPL approach manages evolution of SPLs assets at requirements-level, specifically,
the requirements of the automotive domain, which has a high complexity nature. The
approach uses requirements documents written in NL. As previous works have shown great
potential in requirements as artifacts for SPLs and to choose them for reverse engineering
is viable.

3. The EvoSPL approach identifies features of a products family and synthesizes them in the
current FM, which models the initial SPL. The approach contributes two novel methods,
namely, FIM and FNM to perform this achievement.

4. The EvoSPL approach contributes to the pending challenge of an SPL evolution through
refactoring. The EvoSPL models evolution of the existing SPL using a sequence of the
current FMs, at different points. Each point refines the current FM with features of a
new product.

5. The EvoSPL contributes the feature models refactoring scenario that safely refine the
current FM with features of new (products).

6. The EvoSPL approach contributes bootstrapping steps that involves bootstrapping the
existing products into the bootstrapped SPL and evolution steps that involve extending
the bootstrapped SPL to encompass new products, to deliver the resulting SPL of the
given context.
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7. The EvoSPL contributes a solution for tracing features and code (features mapping) after
only derived features from requirements.

8. The EvoSPL addresses traceability explicitly along evolution of the SPL, i.e., how the
evolution of features relates to architecture and code implementation in SPLs.

9. The EvoSPL approach contributes a feature mapping tool, named friendlyMapper. The
tool defines and maintains relationships between the features and code. The tool (1) reads
features of the current FM, (2) relates each feature to feature-related-code fragments (i.e.,
routines), and (3) stores the features and feature-related-code fragments relationships in
the traceability tree in forms of traceability links. Each traceability link maps a feature to
the feature-related-code fragments. The tool also updates the traceability links whenever
feature changes occur.

We have concluded that it is possible to develop an end-to-end re-engineering approach that helps
in managing the evolution of SPLs, in a setting where the domain architecture (i.e., reference
architecture) is common to a family of products, which was developed without considering a
systematic approach. Additionally, we have concluded that it is possible to derive the current
FM at requirements-level of a products family, using requirements documents written in NL.
Moreover, we have concluded that it is possible to design a feature model refactoring scenario
to evolve an SPL, including the current FM, with features of (new) products. Finally, for this
part, we have concluded the possibility of offering a solution that maps features to code, using
the reference architecture as a centric point. The use of friendlyMapoper helps to preserve
consistency between artifacts of the resulting SPL, namely, the current FM and code.

(III) Evaluation In this part, we have conducted an empirical case study to validate our
approach. The industrial-sized case study that has been performed in the automotive domain,
at Bosch Car Multimedia company, implements an SPL evolution from a set of existing products
family (i.e., CSVF) at requirements-level and then maps this evolution to the code-level. The
case study has proven the efficiency and the effectiveness of our approach in performing the
following.

1. Identifying the specification (using FIM) of a feature as a set of requirements (i.e., ARs),
which enable a clear understanding of the features of the CSVF and facilitate the working
of developer and testing teams.

2. Documenting the derived feature specifications by assigning a name (using FNM) for each
feature and storing them in a specific artifact (i.e., a FL). The features documentation
with the related requirements enables a quick understanding of the feature functionality
and explains the role of this feature in a products family.
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3. Reverse engineering of the current FM based on the identified and documented features
of two products of the CSVF. The derived current FM, which models the CSVF initial
SPL, assists the CSDT for a better understanding of the members of the CSVF, features,
and constraints between features.

4. Bootstrapping the remaining and existing products of the CSVF into the bootstrapped
SPL and evolving the bootstrapped SPL with a new product, to deliver the CSFV resulting
SPL. Evolving the resulting SPL with new products is supported when it is required.

5. Presenting a solution for mapping the artifacts of the CSVF resulting SPL, by tracing
features of the current FM to feature-related-code fragments of the code using the reference
architecture as an intermediate artifact.

6. Using friendlyMapper tool to define and maintain the traceability links between a feature
of the current FM and feature-related-code fragments of the code (i.e., routines) in the
traceability tree.

7. In our thesis, we only have applied a small case study and a single empirical case study.
The former is an illustrative example of the ATM product family. The latter is limited
to the automotive domain (i.e., CSVF) and to a single development team (i.e., CSDT).
This represents a threat to external validity. This aspect of validity limits our approach
concerning to what extent it is possible to generalize the findings, and to what extent the
findings are of interest to other people outside the conducted case study. There are other
threats to validity that are mentioned in the evaluation chapter (Chapter 8).

Finally, We have concluded that it is possible is to propose an approach that helps to adopt SPLs
in the automotive industry, as well as, it is possible to help companies in the automotive industry
(1) to evolve a given SPL, focusing on migration of the existing products of a family, which were
delivered to customers in the past, into the bootstrapped SPL, (2) to use the bootstrapped SPL
as a base to evolve it with a new product, to deliver the resulting SPL, and (3) to evolve the
resulting SPL with new products when required. Finally, We have concluded that this thesis
delivers successfully an evolutionary approach (called EvoSPL) that fits SPLs and provides an
industrial-sized case study (conducted in automotive engineering systems), which can support
and work as a start point to adopt SPLs in the automotive industrial domain.

9.3 Future trends
This section presents recommendations for the future work concerning re-engineering of a prod-
ucts family into an SPL and supporting its evolution. The software industry has shown a growing
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interest in the concept of an SPL. For this, we believe that our proposed approach is interesting
to explore and improve.

1. In future work, we aim at applying our approach in additional case studies, in order
to assess the benefits and limitations of our approach, in additional product families
and different industrial domains. Moreover, from these case studies, we can propose
more consistent steps of our approach and more FM refactorings that fit all the possible
modifications on the current FM. Besides, we want to improve/enrich the approach by
reducing the number of the activities and steps within each activity.

2. Our next obvious step is to build a tool to automate the manual steps of EvoSPL approach.
Specifically, we plan to build an integrated development framework for our approach,
called EvoSPL framework IDE, which contains a base for satisfying the hypotheses of our
approach. The future framework includes difference analysis, variability analysis among
textual requirement documents, generation of a FL of each product, construction FMs, and
name suggestion during feature identification. Moreover, we plan to build a functionality
of the IDE framework that can find and display the dependency-relationships among
features of the current FM. In addition, we plan to build an FM refactoring technique
around the framework environment, which is able (1) to find the possible refactoring
scenarios to refine the current FM with features of a (new) product and after that (2) to
perform a transformation for the current FM that improves the quality of the model and
maintains its structure to reach the optimal configuration.

Moreover, we plan to support the framework with a functionality that involves bootstrap-
ping a set of existing products into an SPL and extending the SPL to encompass a new
product. Feature location in the context of product families is an important technique
to support the systematic reuse. Thus, we plan to support the EvoSPL framework IDE
with all the tasks for feature locations. Furthermore, we want to build the framework
that can trace each feature of the current FM to the feature-related-arch-elements (i.e.,
feature-related-subsystem and feature-related-component) of the reference architecture
and feature-related-code fragments of the code, and automatically update the feature-
related-arch-elements and feature-related-code fragments to maintain their conformance
when feature changes occur. We then intend to validate the effectiveness of the future
framework on real-life product families from our industrial partners.

3. As defined earlier in this thesis, an SPL is used to represent similar products with multiple
variants. It plays an important role in minimizing cost and utilization of the resources. An
FM is used to represent SPLs. However, determining the optimal features selection in an
NLP, especially for the huge families, is a hard problem [Kum+18] [Guo+11]. As far as it
concerns our long-term future research directions, we plan to apply genetic algorithms for
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feature optimization in SPLs. Further, we plan to perform a construction of the FM for
those features. We plan to evaluate the use of genetic algorithms for feature optimization
in SPLs in real-world FMs with different sizes.
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Refactorings catalog

A.1 Unidirectional refactorings catalog
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A.2 Bidirectional refactorings catalog
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1. Research objective
This survey evaluates our research approach. Our research aims to build a re-engineering
approach to support the transformation of a products family into systematic reuse ap-
proach, most likely an SPL. To transform existing products and build a systematic reuse
base approach, an FM must be derived as an initial step. For this reason, our approach
(1) obtains a systematic domain abstraction for the commonality and variability informa-
tion of existing products in a variability model (i.e., an FM), and then it (2) maps the
commonality and variability information (features) to the code. At the same time, our
approach (3) evolves a products family with a new product; moreover, it derives a product
from a products family using the specifications of the new product.

2. Target population
The target population of our case study are the developers that work with Classical Sensor
Variants Family software development team at Bosch Car Multimedia (the Bosch company
at Braga).

3. Sampling design
It will be given to the Classical Sensor Variants Family software development department
and the developers will be asked to answer a questionnaire and to attend a personal
meeting.

4. The questionnaire
Please answer the questions as completely as honest as possible. Try to answer every
question. In case, you are not sure about the answer, just select the one you feel is the
most likely. Thank you so much for your support.

B.1 Background information
1. What is your major field of study?

2. How much experience do you have in your work?

a)
Little
experience

b)
Medium
experience

c)
Significant
experience

d)
Professional
experience

3. How motivated are you to perform well in this experience?

a)
Highly
unmotivated

b) Unmotivated c) Motivated d)
Highly
motivated

4. What is your position in the department?
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B.2 The experiment
You take the role of a software developer who investigates a set of products of the Classical
Sensor Variants Family for commonality and variability. Please use the output documents of
our approach to perform the experiment.

1. The current FM.

2. Traceability tree.

Please perform the experiment three times at least and answer the following questions:

Write down the start time here (e.g., 13:30) ——————-

Write down the end time here (e.g., 14:30) ——————-

To what degree do you agree with the following statements?

1.
Is it possible to have a Counterclockwise and Clockwise options for the Rotation sense
feature at the same time in the product implementation?

a) Yes b) No c) I don’t Know

2.
Product 154 uses algorithm1 to indicate a checksum for CHK_SUM feature. Do you
agree with this statement?

a) Yes b) No c) I don’t Know
3. To calibrate the steering angle sensor, Product 154 use the command code word with the value(s):
a) CCWB2 b) CCW23 d) I don’t Know
4. Beyond evolving the family with a new features, please list down the new features:

5. Write down the routine name to activate the functionality of the feature LWS_Identification in a product:

6.
Write down the routine name to update the code of the new product with the required
implementation of the new feature LWS_SPD_VD:

7. To evolve the family with a new product. Is it required including the feature in its code implementation?
a) Yes d) No e) I don’t Know
8. The available set of products have a high degree of commonality.
a) Yes b) No c) I don’t know
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Appendix C

EVoSPL feedback

C.1 Developers feedback

1.
Using the current FM and traceability tree could reduce the systematic reuse transformation
effort.

a) Strongly disagree b) Disagree c) Agree d) Strongly agree

2.
Using the current FM and traceability tree could increase the degree of reuse achieved in the
systematic reuse transformation.

a) Strongly disagree b) Disagree c) Agree d) Strongly agree

3.
In case the systematic transformation reuse is not attempted, our approach could reduce the effort
or further and future parallel maintenance of a products family.

a) Strongly disagree b) Disagree c) Agree d) Strongly agree

4.
Using the current FM and the traceability tree could reduce the effort of evolving the products
family with a new product.

a) Strongly disagree b) Disagree c) Agree d) Strongly agree
5. Using the current FM increases the understandability of a products family domain.
a) Strongly disagree b) Disagree c) Agree d) Strongly agree

6.
Using the traceability tree allows the developer to find the implemented features within a code with
a higher degree of correctness

a) Strongly disagree b) Disagree c) Agree d) Strongly agree
7. Using the current FM, clearly, I can determine the common functionalities among a products family.
a) Strongly disagree b) Disagree c) Agree d) Strongly agree
8. I think the output of the research approach provides good support for solving the tasks correctly.
a) Strongly disagree b) Disagree c) Agree d) Strongly agree

9.
Using the current FM, I could easily see the variability between the products of a family and relates
them to their implementation in the code.

a) Strongly disagree b) Disagree c) Agree d) Strongly agree
10. I recommended the approach to be used for systematic reuse, almost possibly an SPL.
a) Strongly disagree b) Disagree c) Agree d) Strongly agree
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C.2 Comparison to baseline approach

1.
Using the research approach could reduce the systematic reuse transformation effort over the
baseline approach.

a) Strongly disagree b) Disagree c) Agree d) Strongly agree

2.
Using the current FM and the traceability tree could increase the degree of reuse achieved in the
systematic reuse transformation over the baseline approach.

a) Strongly disagree b) Disagree c) Agree d) Strongly agree

3.
In case the systematic transformation reuse is not attempted, our approach could reduce the effort for
further and future parallel maintenance of a products family over the baseline approach.

a) Strongly disagree b) Disagree c) Agree d) Strongly agree

4.
Using the current FM and the traceability tree could reduce the effort of evolving the products family
with a new product over the baseline approach.

a) Strongly disagree b) Disagree c) Agree d) Strongly agree

5.
Using the current FM increases the understandability of a products family domain over the baseline
approach.

a) Strongly disagree b) Disagree c) Agree d) Strongly agree

6.
Using the traceability tree allows the developer to find the implemented features within the code with
a higher degree of correctness over the baseline approach.

a) Strongly disagree b) Disagree c) Agree d) Strongly agree

7.
Using the current FM, clearly, I can determine the common functionalities among a products family
over the baseline approach.

a) Strongly disagree b) Disagree c) Agree d) Strongly agree

8.
I could easily see the variability among the products of a family and relate them to their implementation
in the code over the baseline approach.

a) Strongly disagree b) Disagree c) Agree d) Strongly agree
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