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“We are at the very beginning of time for the human race. It is

not unreasonable that we grapple with problems. But there are

tens of thousands of years in the future. Our responsibility is to

do what we can, learn what we can, improve the solutions, and

pass them on.” (Richard Feynman)
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Resumo

Abordagens Integrativas de Análise de Vias Para a Investigação
e Desenvolvimento de Fármacos para Cancro

O cancro é um grupo altamente heterogéneo de doenças que constitui uma das principais causas

de morte no mundo moderno. A complexidade envolvida nos mecanismos moleculares que induzem

neoplasias suscita a necessidade de desenvolver métodos de análise de dados para os identificar e com-

preender. O número cada vez maior de dados ómicos e ferramentas computacionais para a sua análise

expandiu o conhecimento sobre vários tipos de cancro. Os modelos metabólicos baseados em restrições

são particularmente interessantes, apresentando-se como uma estrutura flexível para integração de da-

dos ómicos, com várias aplicações comprovadas no estudo do cancro. No entanto, estes modelos estão

restritos à representação do metabolismo, descartando processos de expressão, regulação e sinalização.

Além disso, os métodos atuais de integração de dados ómicos carecem de um processo padronizado e

unificado para o seu uso. Neste trabalho, serão apresentados dois métodos de contextualização de dados

ómicos. Foi desenvolvido um processo para a reconstrução de modelos metabólicos contextualizados,

integrando transcriptómica para extrair, de forma genérica, modelos para tecidos humanos. Seguida-

mente, foi concebida uma nova abordagem de representação de modelos e um método de previsão de

fenótipos (ipFBA), estabelecendo uma plataforma capaz de representar vários tipos de redes biológicas

no mesmo método. As duas abordagens fazem parte de plataformas de software modulares e abertas

para uso e contribuições por parte da comunidade. A validação dos métodos foi realizada usando dados

ómicos detalhados para a linha celular de cancro da mama MCF7, revelando o impacto da parametri-

zação nas abordagens acima mencionadas, e estabelecendo uma base sólida para um caso de estudo

mais alargado em que os métodos desenvolvidos foram usados para identificar aspectos importantes do

metabolismo do cancro consistentes com a literatura. Os modelos contextualizados revelaram melhores

previsões de genes essenciais quando comparados com trabalhos anteriores, enquanto que o método

ipFBA melhorou significativamente as previsões de atividade de fluxo. Este método também foi usado

para caracterizar diferenças entre tecido saudável e cancro renal com uma representação detalhada da

interação entre fluxos, genes metabólicos e os seus reguladores.

Palavras-chave: Modelos metabólicos, análise de vias, metabolismo de cancro, integração de dados

ómicos
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Abstract

Integrative Pathway Analysis Approaches for Cancer Research
and Drug Development

Cancer is a highly heterogeneous group of diseases that constitutes one of the leading causes of

death in the modern world. The complexity involved in the molecular mechanisms that induce neoplasms

elicits the need for data-driven approaches to identify and understand it. The increasingly large number of

multi-omics datasets and in silico tools for their analysis, contributed positively with new insights on many

cancer types. Constraint-based models of metabolism are particularly interesting as a flexible scaffold for

omics data integration with several proven applications in cancer. However, the scope of constraint-based

models is usually restricted to metabolism, discarding gene expression, regulation and signalling pathways.

Furthermore, current methods for omics integration lack a standardised and unified pipeline for their usage.

In this work, two methods for the contextualisation of multi-omics data are presented. Firstly, a pipeline

for the reconstruction of context-specific metabolic models was developed, integrating transcriptomics

data to extract models for human tissues. Using insights from this effort, a novel model representation

approach was devised, complemented with a phenotype prediction method (ipFBA), providing a scaffold

for multi-omics integration and representing various layers of biological networks in the same formalism.

Both methods have been made available through the development of modular software frameworks that

are open for usage and contributions from the community. Validation was performed using detailed MCF7

breast cancer cell line multi-omics measurements, revealing the impact of parametrisation, setting a solid

basis for a larger case study with the aim of identifying critical aspects of cancer metabolism consistent

with those reported in literature. Context-specific models revealed higher predictive accuracy for gene

essentiality predictions than previous works, while ipFBA greatly improved flux activity predictions. The

latter approach was also used to characterise differences in healthy and renal cancer patients, allowing a

detailed visualisation of the interplay between fluxes, metabolic genes and their regulators.

Keywords: Metabolic modelling, pathway analysis, cancer metabolism, omics integration
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Introduction

1.1 Context and motivation

Cancer is a pathological condition that is a currently a major limiting factor in human life expectancy.

The alterations in cancer metabolism have been described for decades, particularly through the work of

Otto Warburg, that first described the now called Warburg effect, which causes cancer cells to metabolize

glucose through glycolysis rather than oxidative phosphorylation.

The key biological adaptations (or hallmarks) that confer cancer cells with the ability to cause and

sustain the disease have been described by Hanahan and Weinberg [1], namely:

• Proliferation through activation of signalling pathways that control cell growth, survival and energy

metabolism

• Evasion of mechanisms that suppress cell growth or trigger senescence.

• Avoidance of programmed cell death

• Unlimited replication

• Tumour growth sustenance through the promotion of blood vessel formation (angiogenesis)

• Activation of invasion and metastatic processes

The interaction of deregulated signalling and regulatory molecules elicits these adaptations and altered

metabolic states, which has been hypothesized as a mechanism to improve cancer cell survival [2]. It is

often hard and costly to perform experiments with the purpose of determining the root causes of these

changes and find targets to block tumour growth, especially since each type of cancer presents different

biochemical and histological findings.
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In recent years, the increased availability of molecular biology techniques, along with developments in

computational systems biology, has enabled the integration of information from multiple components of

human cells into knowledge bases, that can then serve as primers for models with the intent of predicting

cellular phenotypes under any experimental condition. These models allow for more rational approaches

to analyse and design strategies towards a desired purpose.

Genome-scale metabolic models (GSMM) are a relevant example, with proven results in accurately

predicting metabolic states, especially on cancer cells, which is achieved through the creation of constraint-

based models that can be used with Flux Balance Analysis (FBA) [3]. Additionally, the simulation and

reconstruction of specific models for certain tissues can be achieved with a wide variety of algorithms that

integrate omics data and evidence from literature [4–6].

FBA-based analysis requires the specification of a cellular objective, something which is currently ill-

defined and controversial for normal human cells. Metabolic pathway analysis methods can provide much

clearer answers on the theoretical capabilities of a cell, and have recently been employed in GSMMs, due

to the presentation of efficient approaches [7, 8] that can handle the ever increasing scale of these models.

A major drawback of the constraint-based modelling approach is that it typically does not contain

the regulatory and signalling layers. As mentioned earlier, this is a very crucial part of cancer metabolism

control. There have been some notable attempts to integrate these behaviours, mostly on micro-organisms

with models of smaller scale and complexity. Additionally, there is limited integration of pathway analysis

methods with these networks, and also limited usage in human studies.

In this work, the development of an integrated metabolic pathway analysis framework for the discovery

of drug targets for cancer will be addressed. The work will include the creation of context-specific models of

cancer cells, the development of metabolic pathway analysis tools that can provide important answers on

human metabolism and enhance the model creation process. A second phase will focus on the adaptation

of the developed methods to integrate regulatory and signalling layers. Ultimately, these methods will be

leveraged to obtain insights on the metabolism of cancer cells, providing a phenotype prediction platform

with possible applications in personalised medicine.

1.2 Research objectives

The end goal of this work is to use metabolic pathway analysis methods in genome-scale metabolic models

of human tissues integrated with regulatory and signalling networks to enhance the analysis of human

2



1.3. THESIS OUTLINE

metabolism, with emphasis on gaining relevant biological insights on cancer cells. This encompasses

the development of a generic framework for the improvement of existing in silico context-specific model

creation approaches with a standardised workflow for omics data integration as well as novel algorithms to

represent signalling and gene regulatory interactions in constraint-based models. The software developed

throughout this work is to be made available to the scientific community with significant ease of access

and use, to provide a basis from which more in silico studies of human metabolism can be performed.

The ultimate research goal with this effort is to develop a set of tools capable of generating richer biological

insights into the metabolic reprogramming that occurs in cancer cells, and demonstrate the applicability

of such tools in personalised medicine.

The main objectives of this work are:

• To develop a set of software tools implementing constraint-based methods and pathway analysis

algorithms in genome-scale metabolic models;

• To develop a framework for omics data representation, processing and usage with context-specific

model reconstruction algorithms as well as model validation;

• To assemble a scalable pipeline for context-specific model reconstruction and validation from tran-

scriptomics data;

• To extend constraint-based models with a new model representation capable of directly integrating

gene regulatory and signalling networks;

• To develop a phenotype simulation method to successfully predict active fluxes and metabolic reg-

ulation;

• To apply the developed software and extract relevant knowledge on the metabolic heterogeneity and

patterns identified in cancer cells using omics data.

1.3 Thesis outline

This document is structured in 6 chapters.

The current chapter provides a brief overview of the context surrounding this work and motivation be-

hind the approaches and results presented in the following chapters. Furthermore, the research objectives

and outline of this thesis are also briefly discussed.
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Chapter 2 provides a solid background for concepts and subjects discussed throughout the work.

Firstly, an overview of genome-scale metabolic models is presented with a heavy focus on medical appli-

cations in humans. Concepts, mathematical formalisms and tools associated with the constraint-based

modelling framework are also discussed, as well as omics integration methods based on them. Finally,

gene regulatory and signalling networks are also presented, as well as methods that allow their integration

with metabolism.

In Chapter 3, the structure and implementation of software packages developed within the scope of

this thesis are described in detail. These software packages provide support for constraint-based modelling

tools for context-specific model reconstruction, pathway analysis and integrative modelling.

In Chapter 4, a pipeline for the reconstruction and validation of multiple cancer cell line models is

presented. The implemented software resources are leveraged to devise a set of routines capable of

reconstructing cancer models to predict phenotypes that are validated using gene essentiality and flux-

omics data. The heterogeneity of cancer metabolism is explored using these models, first by identifying

key metabolic phenotypes associated with breast cancer subtypes and attempting to predict a cell line’s

primary disease with predicted fluxes.

Chapter 5 details a novel approach to extend constraint-based models with gene expression and reg-

ulatory interactions as well as a new simulation method that leverages this representation, enabling inte-

gration of multi-omics datasets to predict metabolic fluxes. The approach is validated using a large-scale

data set with pan and breast cancer case studies as well as a smaller cohort of renal cancer patients,

while demonstrating its improved ability of the method to predict phenotypes.

In Chapter 6, a brief summary of the work detailed in this thesis is presented, along with a critical

analysis of the outcomes, implications of this work in the community as well as ideas for improvement as

part of future work.
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Background

Systems biology is a very recent field that introduced a paradigm shift in the biological sciences by dealing

with biological systems as a whole, rather than only peering at the sum of its individual parts. The field’s

advances concerning the reconstruction of genome-scale models of metabolism allows in silico phenotype

prediction, analysis and design, while including multiple layers of omics information. This chapter focuses

on constraint-based models, a widely used approach that allows the integration of whole-genome sequenc-

ing data in genome-scale reconstructions, yielding models that include the entire metabolic machinery of

a given cell. The underlying principles of this approach will be discussed, as well as analysis methods and

methodologies to integrate omics data with simulations.

2.1 Genome-scale metabolic models

2.1.1 Systems biology

Systems biology is a relatively new field that attempts to look at a biological system by combining compre-

hensive information regarding its entirety. Until the 20th century, biology was dominated by a reductionist

approach with increasing amounts of collected data about individual components and processes [9, 10].

As molecular biology progressed towards high-throughput techniques for nucleotide sequencing and ex-

pression measurements, emphasis shifted towards an integrative approach, using the large amounts of

generated information to build models that could help understand, analyse and eventually predict the phe-

nomena that occur in living organisms [9]. These system-level approaches allow us to study, not only the

individual parts of a biological system, but also their interactions. In silico approaches are essential to

build these mathematical models, and advances in the field of computer science have allowed for more

complex models to be used [11].
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System-level approaches can provide insights on four critical aspects of a biological system [10]:

• Structure: The various components of the system, such as genes, proteins, biochemical reactions

and metabolites, as well as the interaction between them.

• Dynamics: Variation of the system over a period of time relative to parameters, such as enzyme

kinetics and gene expression.

• Control: Regulatory mechanisms that can alter the state of the organism and can potentially be

exploited to achieve a desired phenotype.

• Design: Strategies to manipulate cell phenotypes into achieving desired properties. These are

based on simulations rather than random hypothesis testing.

The focus of this work will be on system-wide models of metabolism, specifically for humans. These models

attempt to predict phenotypes based on the enzymatic content of the cell, with more advanced methods

exploiting other layers to enhance these predictions. There are currently two main types of metabolic

models depending on how they represent time, namely:

• Kinetic (or dynamic) models: Time is an independent variable which affects enzyme properties,

leading to variable intracellular metabolite concentration. Information regarding enzyme kinetics is

needed, often through a rate law and additional parameters.

• Constraint-based models: This approach discards the time component by assuming metabolite

concentrations remain stable (pseudo steady-state). The main layer included in this type of model

is the structure of the biochemical reaction network, namely, the stoichiometry.

Kinetic models are usually restricted by the amount of available information concerning enzyme dynamics.

The need for fine-tuning of enzyme parameters also hinders the use of this modelling approach and

increases the computational demand when predicting phenotypes. For the reasons mentioned above,

constraint-based models appear as a less demanding approach towards modelling metabolism at the

genome-scale. The concepts underlying these models will be discussed in detail throughout the next

section.
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Table 1: Main data sources for various omics data types with experimental measurements available for
humans. The marks represent whether a given database contains a type of omics data, shown in the table
with letters: Genomics, Transcriptomics, Proteomics, Metabolomics, Fluxomics

Database G T P M F Reference

European Nucleotide Archive • [12]
DNA Data Bank of Japan • [13]
GenBank • [14]
Genomic Data Commons • • [15]
Human Protein Atlas • • [16]
Genotype-Tissue Expression • [17]
Functional Annotation of Mammalian Genomes • [18]
ArrayExpress • [19]
Gene Expression Omnibus • [20]
RNA-Seq Atlas • [21]
Human Proteome Map • [22]
Human Protein Reference Database • [23]
Human Metabolome Database • [24]
Metabolomics Workbench • [25]
MetaboLights • [26]
Central Carbon Metabolic Flux Database • [27]

2.1.2 Omics data

High-throughput molecular biology techniques currently generate large amounts of quantitative and qualita-

tive information about various molecules present in living organisms. The suffix has been commonly used

to describe each individual field of study concerned with gathering large amounts of data from one type of

biological molecule. Five main types can be identified and this section will provide a brief description of

each along with relevant experimental methods and data sources.

Genomics This layer encompasses genomes with annotated sub-sequences that represent genes. The

Human Genome Project, a worldwide effort to sequence the entire human genome, concluded in 2003

costing heavily in both time and resources. In present times, next-generation sequencing, as opposed to

Sanger-based technologies, yields whole-genome sequences at much lower expense, which has greatly

contributed to the large amount of publicly available genomes present in databases such as GenBank,

EMBL’s European Nucleotide Archive and the DNA Data Bank of Japan. Genomic variation is also an

important object of study, given the importance of copy number variation and loss of function mutations

in oncogenesis.
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Transcriptomics Messenger RNA (mRNA) quantification is usually performed through DNA microar-

rays or RNA-sequencing, a critical step in providing a gene expression profile for a given cell. This is

especially important in organisms with multiple types of differentiated cells (such as humans) in which

proteins can be expressed with different rates and alternative splicing can occur, leading to multiple pro-

tein isoforms. Due to the large amount of information, studies on human cells have been published on a

multitude of databases such as ArrayExpress, Human Protein Atlas, as well as others that are highlighted

on Table 1.

Proteomics Protein content can be quantified and identified with mass spectrometry or western blot-

ting. This level of information is useful in determining protein function after post-translational modification

and to truly assert the expression of a protein, since mRNA quantification may not correlate with it. The

availability and coverage of these datasets is usually smaller than transcriptomics, although it is, theoret-

ically, a better measurement of the presence of a given enzyme, and thus, an important data source for

integration of omics data in genome-scale metabolic models.

Metabolomics Metabolomics deals with molecules present in the external media and within cells that

are subject to biochemical conversions originating cell metabolism, comprising a wide variety of lipids,

amino acids, carbohydrates and other small organic molecules. Gas and liquid chromatography, mass

spectrometry and nuclear magnetic resonance spectroscopy can be used for detection, separation and

quantification of metabolites.

Fluxomics Fluxomics attempts to determine the rates at which metabolic conversions occur. Although

closely related to the metabolome, fluxomics provides knowledge on the kinetic properties of a biochemical

reaction system rather than presenting a single snapshot (as is the case of metabolomics). Fluxome

experimental data is mostly obtained using 13𝐶 -marked substrates that are subsequently measured with

mass spectrometry.

There are currently a number of databases providing experimental data on various omics layers in

humans, as shown on Table 1, but there is a significant challenge in creating methods to integrate different

layers of data to generate useful predictive models. In this report, the focus lies on the usage of genome-

scale metabolic models as a means of combining multiple layers of information.
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2.1.3 Genome-scale metabolic reconstructions

A genome-scale metabolic model (GSMM) is a mathematical construct that can be used to predict phe-

notypes from whole-genotypes of an organism. A single genome-scale network reconstruction (GENRE) is

the first step towards building a GSMM. A GENRE is a collection of the biochemical transformations oc-

curring in the cell (metabolic network) that have been determined through functional genome annotation

of the organism, as well as literature review (or bibliome). Although there are highly-detailed protocols

for creating GENREs as well as tools that assist or automate certain processes, the basic reconstruction

pipeline can be summarized in three important steps:

• Draft reconstruction: The genome of the organism is annotated so that metabolic genes can be

identified. The set of biochemical reactions can then be identified by matching the metabolic gene

products with Enzyme Commission (EC) numbers, which can then be matched to reactions (using

databases such as Kyoto Encyclopedia of Genes and Genomes (KEGG) or Brenda).

• Curation and refinement: The aim of this stage is to refine the reconstruction through inclusion

of more organism-specific data and validation of each individual entry. Typical steps include the

addition of formulae, reaction stoichiometry and thermodynamic constraints, gene-protein-reaction

relationships and the estimated biomass composition for the target organism.

• Model creation: This stage is mostly automated and concerns the creation of mathematical

structures that can be used to predict phenotypes. In constraint-based models, this step mostly

consists on the creation of the mathematical formalisms representing the properties curated in the

previous step.

• Validation: This step includes tests to ensure the model represents the target organism in the

best way possible. Metabolomics and fluxomics data are crucial for this step, as they provide the

metabolite profile and reaction rate values to assess the model’s predictive accuracy. Gaps between

pathways are also identified, as well as metabolic dead-ends. The model is also tested for biomass

production, and if it can achieve that under standard environmental conditions.

The process of building a GENRE is not confined to a single iteration, and it is expected to repeat the

manual reconstruction steps multiple times until the final model’s performance is satisfactory.
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2.1.4 Human metabolic models

Human metabolic models have been reconstructed for a variety of purposes in the past two decades. Early

attempts at representing human metabolism through models only included limited parts of the human

metabolism. Wiback et al. employed a small metabolic model to extract the metabolic functions of a

human red blood cell through usage of extreme pathways, predicting similar results to previous kinetic

models of this cell [28]. The results of this analysis were further used to assess the regulatory demands

for the obtained metabolic functions [29].

Vo et al. also presented a small-scale human mitochondrial metabolic network characterizing maxi-

mum ATP yields and available metabolic functions that match the available literature [30]. Further con-

tributions include a model of human hepatoma cells and subsequent analysis of intracellular fluxes and

growth under different combinations of amino acids in the growth medium [31].

A few years after the end of the Human Genome Project, the availability of the entire human genome

led to the creation of the first genome-scale human metabolic models. There are currently four main

models that represent the entire metabolic landscape of human cells and can be defined as generic. The

most relevant of these are summarized on Table 2, as well as case studies highlighting their application.

Recon1 [32] appeared in 2007 as the first of these models shortly followed by the introduction of the

Edinburgh Human Metabolic Network (EHMN) [33]. These two efforts formed the basis for more recent

reconstructions, namely, the HMR database [34, 35] and Recon2 [36].

Recon2 has had some revisions that have slightly diverged over the past few years. Thiele and col-

leagues have released a major Recon2 update in 2015 (Recon2.04), correcting the GPR associations to

comply with a more recent build of the human genome.

Another branch of revisions begins with Recon2.1, which was able to ensure complete carbon and

elemental balancing of the various metabolites at the cost of drastically increasing model size [37]. Further

developments on this revision led to Recon2.2 which increases prediction accuracy of ATP yields under

various carbon sources [38]. Despite the various revisions, each one includes improvements from their

predecessors, highlighting the importance of community efforts in building GENREs that lead to more

accurate GSMMs.

The Recon2 and the HMR2 database were used by Brunk and co-workers as a basis for the Recon3D

model reconstruction [39], further extending human GSMMs to integrate single nucleotide polymorphism

(SNP)s. Thiele et al. have used this model as a basis for building an innovative whole-body metabolic model

capable of representing a wide variety of human tissues and associated microbial communities [40], as
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Table 2: Summary of the presently available genome-scale metabolic models for humans. Only generic
models are considered in this table.

Name Genes Reactions Description References

Recon1 1496 3743 First genome-scale metabolic model of a
generic human cell. Integrates gene in-
formation from KEGG and National Center
for Biotechnology Information (NCBI). Vali-
dated using flux balance analysis to predict
288 reviewed metabolic functions

[32]

Edinburgh
(EHMN)

2322 2823 Network combining literature data from a
proprietary database (EMP) and enzyme
annotation from KEGG, UniProt and HGNC

[33]

HMR
database

1512 5535 Generic model derived from a database
containing the Recon 1 and EHMN net-
works as well as information from Human-
Cyc and KEGG (iHuman1502).

[34, 35]

Recon2 1789 5063 Revised reconstruction derived from Re-
con1 as well as inputs from HepatoNet1,
EHMN and others. 9 new pathways were
added and 62 others were extended. Sub-
ject to many revisions and extensions from
other groups.

[36]

Recon3 3288 13543 Derived from Recon2 and HMR2.0 mod-
els. Provides information for modelling
host-microbe interactions and dietary com-
pound metabolism.

[39]

Human1 3628 13520 Includes parts of Recon3D, HMR2.0 and
many other components from all previous
reconstruction efforts.

[41]

well as differentiating between male and female metabolism (Harvey and Harvetta models, respectively).

The most recent human GSMM stems from the efforts of Robinson et al. who have presented the

Human1 reconstruction [41]. This model appears to provide the highest predictive accuracy for gene

essentiality and phenotype predictions when compared with its predecessors from which a considerable

amount of information was integrated. Furthermore, this consensus reconstruction is available in a repos-

itory with version control, which enables greater transparency in the reconstruction process, as well as

inputs from the community which are constantly integrated in the model.

Since humans are multicellular organisms, the generic model is not capable of accurately predicting

the metabolism of a differentiated cell, whose enzymatic content may be drastically different. To tackle
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this problem, context-specific models can be created, either manually (such as HepatoNet1 [42]) or in an

automated way, such that their enzymatic content matches that of the cell to be studied. The concepts

pertaining the methods used to build these models will be explained further in the context-specific model

reconstruction section.

2.2 Constraint-based modelling

Constraint-based modelling is currently the most adequate tool to simulate metabolism over the entire

genome of a living organism. Despite being a relatively recent approach, first presented just over two

decades ago, it has proven itself useful in predicting phenotype from genotypes and currently features a

wide array of analysis and design methods for numerous applications. The key principles and methods

surrounding constraint-based modelling (CBM) and their integration with omics data will be covered in the

following sections.

2.2.1 Principles of constraint-based modelling

2.2.1.1 Main assumptions

CBMs are based on a few assumptions that distinguish them from kinetic models, namely:

1. Biochemical reactions are considered instantaneous;

2. Time is not considered in the system (invariant);

3. Reaction rates and metabolite concentrations do not vary;

4. Each reaction must consume the same amount of mass than what it produces (mass balance).

Considering the three assumptions above, the variation of metabolite concentrations (𝑐) over time (𝑡 )

can be expressed through Equation 2.1 [43].

𝑑𝑐 (𝑡)
𝑑𝑡

= 0 (2.1)

Equation 2.2 can be derived by discarding enzyme kinetics and assuming metabolite concentrations

vary according to the reaction rates (on vector 𝑣 ) that produce or consume a given metabolite, each

multiplied by its corresponding stoichiometric coefficient present in the stoichiometric matrix (𝑆 ).
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𝑆 · 𝑣 = 0 (2.2)

Considering the rows and columns in 𝑆 represent, respectively, equations and variables, this leads to

a linear system of equations that is underdetermined for most realistic cases. This means that there are

more variables (𝑛) than equations (𝑚). As such, there are multiple valid solutions to this problem. A valid

solution for Equation 2.2 (or flux distribution) is any point in the multidimensional space described by a

vector 𝑣 ∈ ℜ𝑛 that satisfies the equations in 𝑆 .

2.2.1.2 Model components

The basic principles of constraint-based modelling have been defined and thus, it is relevant to further

highlight themain components of a CBM. In the previous section, the reconstruction process was presented

as incorporating experimental data from various layers of information. An overview of these components

is represented on Figure 1. Although biologically relevant and typically present in many GSMMs, gene

associations are not strictly required for core constraint-based methods, since the base formalisms merely

require a set of metabolites connected by reactions (defined in the stoichiometric matrix).

A key consideration when dealing with CBMs is that some reactions are not associated with enzymes.

This is due to the presence of spontaneous reactions that do not need a catalyst and complex cellular

processes that do not have an explicit enzyme association and are thus represented as pseudo-reactions.

These are useful to model mechanisms that are otherwise too complex to depict in CBMs. Cell growth, as

an example, depends on many processes that fall beyond the scope of CBMs and is, thus, represented as

a reaction that converts metabolites required for growth and produces an fictional entity (biomass). Figure

2 represents an example of a small metabolic network extracted from the work of Klamt et al. [44], which

will be used further in this chapter as a practical example.

Stoichiometric matrix The 𝑆 stoichiometric matrix of size 𝑚-by-𝑛, represents the reactions in the

system and their stoichiometry. Each row 𝑖 and column 𝑗 represent, respectively, one of the𝑚 metabolites

and 𝑛 reactions and each value 𝑆𝑖 𝑗 represents the stoichiometric coefficient for metabolite 𝑖 in reaction 𝑗 .

The stoichiometric matrix based on the network depicted on Figure 2 is depicted on Figure 3.

Capacities Reaction rates can be constrained to represent reversibility/directionality or specific capac-

ities from fluxomics data. To this end, linear inequalities are added to the model defining a range for each
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Figure 1: Overview of the five main layers included in a genome-scale metabolic model. Functional ge-
nomics (DNA), transcriptomics (RNA) and proteomics (enzymes) data are used to derive gene-protein-
reaction rules and identify the enzyme content of the cell. With this information, the set of metabolites
can be inferred by looking at the reactions catalysed by enzymes. The model is then used to predict the
fluxome (reaction rates) of the cell and the metabolome (metabolites) to some extent.

flux. For any given flux 𝑣𝑖 , a maximum 𝑢𝑖 and minimum 𝑙𝑖 value are set (Equation 2.3). If 𝑙𝑖 ≥ 0, reaction

𝑖 is irreversible and directed forward. If 𝑙𝑖 < 0 and 𝑢𝑖 > 0, the reaction can occur on both directions

(reversible). Flux capacities are particularly important for drain reactions (explained below) as this com-

ponent is required to set uptake rates or to allow production of any given metabolite. Figure 3 provides a

visual representation of the linear system including the steady-state assumption and flux capacities for the

network depicted on Figure 2.

𝑙𝑖 ≤ 𝑣𝑖 ≤ 𝑢𝑖 (2.3)

Model boundaries A fully mass-balanced CBM would be a closed system and thus, all reactions would

have a set of products synthesized from a set of reactants. The steady-state assumption implies that the

only feasible flux distribution would be that in which all fluxes are null. To allow exchanges in an otherwise
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Figure 2: Toy metabolic network adapted from the work of Klamt et al. [44], with arrows representing
reactions (with defined directionality) and circles representing metabolites. Reactions𝑅1,𝑅3,𝑅4,𝑅6,𝑅9 are
exchange reactions (depicted in purple) due to the unbalanced uptake/secretion of products. Gene-protein-
reaction rules are represented through genes (green squares) connected with Boolean operators. Further
information can also be associated with enzyme-coding genes such as interactions involving transcription
factors (blue squares).

closed system, some metabolites are imported or eliminated at no cost through exchange reactions.

In the network depicted on Figure 2, reactions 𝑅1, 𝑅3, 𝑅4, 𝑅6 and 𝑅9 are exchange reactions, which

either produce a metabolite without any reactants or consume them without generating any product. In a

realistic setting, exchange reactions are required to mimic the availability of chemical compounds in the

extracellular media or to allow their secretion. Through manipulation of these reactions’ flux capacities,

environmental conditions and growth media formulations can be integrated into these models to generate

meaningful predictions.

Gene-protein-reaction association A GSMM may include annotations that identify the relationship

between genes encoding metabolic enzymes for a given reaction. GPR reaction rules encode this informa-

tion as a Boolean expression using conjunction (AND) and disjunction (OR) operators. When expressed in

disjunctive normal form (DNF), such rules can be generalized as a collection of AND operations between

several genes, which then become operands of an OR operation. In this form, each AND expression can
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Figure 3: Representation of the basic structure of the metabolic model for the toy network in Figure 2, as
defined in Equation 2.2 (left side) which defines the steady-state constraints.

be considered as a single isozyme requiring one or more expressed genes to be synthesized and the OR

expression groups all of these isozymes, denoting they are capable of catalysing the reaction to which the

GPR rule belongs to. These expressions are often used to enable the simulation of mutants, since GPR

rules can be evaluated to determine, for a given expression state, whether there is a valid combination of

genes that catalyse an enzyme needed for a given reaction.

2.2.2 Constraint-based phenotype prediction

The first group of methods to be reviewed concerns the prediction of reaction rates using CBMs. Three

well known methods will be presented and described in this section.

CBMs are usually undetermined systems and thus, numerical optimization methods must be used to

find one or more solutions. This occurs since the system defined through Equations 2.2 and 2.3 represents

a large solution space from which infinite points would solve it. A guided search towards the solution is

required since the vast majority of the solution space might not be biologically relevant.
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A linear programming (LP) optimization problem can be formulated using the aforementioned equa-

tions as constraints. Given any objective, LP solvers attempt to find a single solution in the entire space

that maximizes or minimizes a given objective. In CBMs, one can artificially create a reaction representing

such an objective and define the LP as its maximization, subject to Equations 2.2 and 2.3, leading to a

problem similar to the following,:

maximize
𝑣

𝑍 (𝑣) = 𝑐𝑇 · 𝑣

subject to 𝑆 · 𝑣 = 0

𝑙𝑖 ≤ 𝑣𝑖 ≤ 𝑢𝑖,∀𝑖 ∈ {1, . . . , 𝑛}

𝑐, 𝑣, 𝑙, 𝑢 ∈ ℜ𝑛, 𝑆 ∈ ℜ𝑚,𝑛

(2.4)

where 𝑍 is the objective function, defined as a linear combination of 𝑐 and the 𝑣 vector of variables (the

flux vector in Equation 2.2); 𝑐 specifies the weight of each variable towards the objective function; 𝑙 and 𝑢

are, respectively, the lower and upper bound vectors.

2.2.2.1 Flux balance analysis

The most used approach allowing phenotype prediction with CBMs is flux balance analysis (FBA), which

has been used extensively [45], since it was presented by Varma and Palsson [3].

FBA essentially solves the system in Equation 2.4 and attempts to maximize a relevant flux. In the orig-

inal publication, the biomass pseudo-reaction is maximized, yielding a single flux distribution that is valid

for maximum cell growth. In stress-free conditions, this is a generally valid assumption for microbes. The

basic principles behind the constraints used for FBA and many of its derivative methods are represented

on Figure 4.

Due to the existence of alternative optima that allow maximum cell growth, FBA typically yields a

space of possible solutions, rather than a single flux distribution. parsimonious flux balance analysis

(pFBA) attempts to solve this issue by assuming enzyme usage in cells is minimal. Mathematically, this

requires an initial optimization towards the desired objective and subsequent minimization of the sum of

all fluxes in the cell [46]. This further constrains the possible optima.

Predicting phenotypes in mutants holds an additional challenge since the growth maximization as-

sumption may not hold true. Some derivatives of FBA have tried to tackle this issue by assuming the cell

is optimized to try and maintain its previous state, rather than optimizing for a new growth optimum.
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Minimization Of Metabolic Adjustment (MOMA) introduces a quadratic programming problem maxi-

mizing the similarity between the simulated fluxes and reference flux distribution [47]. Regulatory On/Off

Minimization (ROOM) uses a mixed integer linear programming (MILP) problem to formulate a similar

problem, but the amount of significantly altered reactions is minimized rather than globally maximizing

the similarity between simulated and reference fluxes [48].

Applications FBA and its derivatives have been used extensively for a wide array of applications [45],

with growing interest in human studies, even though defining a cellular objective for a differentiated human

cell is not trivial. Cancer studies, on the other hand, are more suitable for FBA since one of the hallmarks

of the disease is uncontrolled growth, which can be modelled as the maximization of the biomass pseudo-

reaction. Shlomi and colleagues used FBA to determine the causes of the Warburg effect that allows

cancer cells to increase their growth rates [49]. Recently, Sahoo et al. used FBA in an effort to model the

effect of 18 major drug compounds and found interesting associations between dietary patterns and drug

metabolism, as well as novel mechanisms for interactions between statins and cyclosporine [50].

2.2.3 Pathway analysis

Constraint-based methods can be used to analyse the functions present in a metabolic model. Despite the

usefulness of phenotype prediction methods such as FBA, these only display a single optimal metabolic

state. Pathway analysis methods, on the other hand, can determine which functional units are present in

the model, relying on unbiased methods that yield the theoretical limits of the entire module [51]. Such

methods can be based on nullspace or convex analysis.

Nullspace analysis The nullspace of a CBM is defined as a matrix 𝐾 satisfying 𝑆 · 𝐾 = 0. The 𝑛

columns of 𝐾 contain the vectors (flux distributions) which fully describe the solution space of the CBM,

where 𝑛 is determined by the nullity of 𝑆 , defined as 𝑁𝑢𝑙𝑙𝑖𝑡𝑦 (𝑆) = 𝑛 − 𝑟𝑎𝑛𝑘 (𝑆) [51]. These columns

cannot be obtained through a linear combination of other columns in 𝐾 , but any feasible flux distribution

can be generated through linear combinations of the columns in 𝐾 . Nullspace analysis reveals important

aspects of a CBM, particularly for model reduction, such as identifying reactions unable to carry non-zero

flux (blocked reactions) and sets of reactions whose flux is correlated (enzyme subsets) [52, 53]. These

analyses, however, do not consider capacity constraints, revealing some limitations when considering the

biological feasibility of their results.
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A: v1 - v2 - v5 - v7 = 0
B: v2 - v3 = 0
C: - v4 - v5 = 0
D: v6 - v7 = 0
E: v7 - v8 = 0
F: v5 + v7 - v8 = 0

Steady-state equations

Flux limits
0 ≤ vi ≤ +∞,i ∈ {1,2,3,5,6,7,8,9}
-∞ ≤ v4 ≤ +∞

Objective function
maximize Z(v) = cTv

Optimal solution

Feasible solution space

v1 v2

v3

(In)equalities defined by stoichiometry and capacity constraints

Additional flux constraints

Fluxomics measurements
Gene regulation

Flux cone bounded by additional inhomogeneous constraints
Alternative optimal flux distribution(s)

0 ≤ vi ≤ +∞,i ∈ {1,3,5,6,7,8,9}
-∞ ≤ v4 ≤ +∞
⍺ ≤ v2 ≤ ⍺ v1 v2

v3

⍺

Previous optimum
New optimum

Figure 4: Representation of the solution space defined using steady-state, stoichiometry, capacity and
arbitrary flux constraints in a constraint-based model. The solution space in the top part is constrained
by the steady-state equations derived from reaction stoichiometry. Phenotype prediction methods usually
attempt to find optimal solutions lying in the vertices of the flux cone. Additional flux constraints can reduce
this space and potentially change the model’s optima.
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Convex analysis The solution space of a CBM with𝑛 reactions can be represented in an𝑛-dimensional

space as a flux cone 𝑃 [51]. The defining vectors of 𝑃 , or extreme ray (ER)s are the essential pathways

describing the CBM. State of the art methods for convex analysis of CBM solution spaces are commonly

referred to as being elementary flux mode (EFM) analysis methods. The methods based on ERs and

leading up to EFM analysis will be explored in the following sections.

2.2.3.1 Convex analysis approaches

The extreme ray approach towards analysing CBMs depends upon its geometrical representation in an

𝑛-dimensional space. For all subsequent methods, consider the𝑚 × 𝑛 stoichiometric matrix 𝑆 , the flux

vector 𝑣 ∈ ℜ𝑛, 𝐷 as a diagonal matrix where 𝐷𝑖𝑖 = 1,∀𝑖 ∈ 𝐼𝑟𝑟𝑒𝑣 and 𝐼𝑟𝑟𝑒𝑣 as the set of indices for

irreversible reactions. Equation 2.5 defines the flux space 𝑃 containing all valid flux distributions

𝑃 = {𝑣 ∈ ℜ𝑛 : 𝑆 · 𝑣 = 0 ; 𝐷 · 𝑣 ≥ 0} (2.5)

If one assumes all reactions in the model to be irreversible in the forward sense (𝑣𝑖 ≥ 0 ∀𝑖 ∈

{1, ..., 𝑛}), 𝑃 is said to be a pointed convex polyhedral cone. This cone is characterized by a set of

generating vectors that fully define it where each vector is an ER. ERs are feasible flux vectors exhibiting

interesting properties that can be exploited for CBM analysis [54]:

• Generators: They fully describe 𝑃 and as such, any flux distribution 𝑣 is a combination of weighted

ERs;

• Minimal: ERs are the smallest set of vectors that generate 𝑃 ;

• Non-decomposable: No ER of 𝑃 can be represented as a combination of other ERs in the same

set.

These properties translate to a concept of essential pathway sets that attempt to fully represent a cell’s

metabolism. Additionally, all possible phenotypes are contained within this definition, leading to unbiased

analysis and design methods that are not dependent on any objective. Despite this, ER enumeration

requires all reactions to be irreversible for the three properties to remain true.

A possible solution is to calculate ERs in an augmented flux space 𝑃 ′ that can represent 𝑃 as a pointed

cone, as shown on Equation 2.6. Two early approaches for network-based pathways have been presented

using different methods to build 𝑃 ′.
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𝑃 ′ = {𝑣′ ∈ ℜ𝑛+𝑟
0+ : 𝑆′ · 𝑣′ = 0 ; 𝐼 · 𝑣′ ≥ 0} (2.6)

These transformations can involve several layers to include various CBM components. The concept of

extreme current (EC) first featured this through decoupling of reversible reactions [55]. This results

in an augmented solution space with a forward and reverse reaction (with non-negative flux) for each

reversible reaction in 𝑃 . This decoupling, however, leads to a large number of possible ERs and pathways

containing spurious fluxes in which both split reactions mapped to a single reversible reaction carry flux.

The concept of extreme pathway (EP) further extends this by separating exchange and internal fluxes and

decoupling reversible reactions in the latter group [56].

Given the shortcomings described above, EFMs were presented as a possible unifying definition of

a biologically relevant pathway [57–59]. Similarly to ECs and EPs, EFMs attempt to fully define the flux

space, but introduce the concept of support for flux vectors. The support of any given flux vector 𝑣 ,

supp(𝑣 ), is a vector containing the indices of active reactions in 𝑣 . Two conditions are required for a flux

vector 𝑒𝑖 ,∀𝑖 ∈ {1, ..., 𝑘} to be considered a part of the set of EFMs, 𝐸:

• 𝑒𝑖 must be contained within 𝑃 and any flux vector 𝑣 ∈ 𝑃 can be described as a non-negative linear

combination of the elements in 𝐸.

• There can be no feasible flux vector 𝑣 where 𝑠𝑢𝑝𝑝 (𝑣) ⊂ 𝑠𝑢𝑝𝑝 (𝑒𝑖). This ensures 𝑒𝑖 cannot be

decomposed and remain admissible in 𝑃 .

Any flux distribution can be obtained by carrying a weighted sum of EFMs and together with non-

decomposability, the entire network can be defined by them. A key advantage over other concepts is the

fact that fluxes from various EFMs cannot cancel each other out (non-cancellation), leading to a more

intuitive analysis. EFMs have some shortcomings, particularly when it comes to the amount of modes that

are generated. As a result of the non-cancellation condition imposed on EFMs, the amount of enumerated

pathways is much higher, and indeed it has been shown that for metabolic networks, the EPs of a network

are almost always a subset of EFMs and never a superset.

Several derivatives of these concepts have appeared to address certain challenges associated with

convex analysis. The concept of a elementary flux pattern (EFP), presented by Kaleta et al. [60] attempts to

combine the valuable insights provided by EFMs with an enumeration method that only takes into account

a set of predefined reactions. Similarly to EFMs, an EFP is also a minimal set of reactions describing

a network conversion with the added constraint that restricts the pool of reactions to those belonging in
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the predefined subset. This drastically reduces the search space, which confers EFPs with a significant

advantage in scalability.

The minimal generating set (MGS) concept was presented as an attempt to find the smallest possible

pathways that can fully generate the flux cone in 𝑃 . MGSs are similar to EFMs but do not require the non-

cancellation property, allowing non-negative combinations of vectors within MGSs to describe any 𝑣 ∈ 𝑃

even if two cancelling fluxes are involved. This leads to less enumerated pathways of smaller size, which is

beneficial for computational demand, but lacks biological relevance. Furthermore, there may be multiple

different MGSs capable of describing 𝑃 , unlike EFMs which are unique for a given CBM [61].

The concepts referred above still lack the ability to include inhomogeneous constraints (with non-zero

bound values), since accounting for these would lead 𝑃 to become a polyhedron that is not a pointed

cone. However, some authors have recognized the potential of elementary flux vectors (EFVs) [62, 63],

presented by Urbanczik in the past decade [64], to further enhance the applicability of pathway analysis.

EFVs share the same properties as EFMs, but their computation is performed in an augmented space

converting the flux polyhedron into a pointed cone. Indeed, when 𝑃 is originally a pointed cone, EFVs

coincide with EFMs.

2.2.3.2 Minimal cut sets

One interesting application of EFMs is in finding intervention strategies to cancel certain phenotypes.

These phenotypes can be selected by choosing all of the EFMs that include it (e.g. biomass producing

phenotypes in bacteria). The set of reactions that, when deleted, disables the EFMs in question, is named

a cut set. Additionally, if all reactions in the cut set are essential for it to be able to block the EFMs, it

is also termed a minimal cut set (MCS). Formally, an minimal cut set (MCS) 𝑑 in a set 𝐷 must not be a

subset of any other MCS in 𝐷 [44]. MCSs are useful since they provide intervention strategies that are

minimal, unbiased by cellular objectives and guaranteed to fully eliminate the undesired phenotype.

As a practical example, assume 𝑋 in the toy network depicted in Figure 2 is an undesired compound,

and 𝑅9 catalyses its synthesis. A subset𝑈 of the complete EFMs contains this reaction. To find the MCSs

for 𝑅9, one must simply find sets of reactions that disable the EFMs in𝑈 . Table 3 highlights this example,

adapted from [44].

Some extensions to the original definition have made it possible to increase the biological relevance

of MCS based intervention strategies. The introduction of constrained minimal cut sets ensure that, de-

spite blocking undesired behaviours, a set of desired ones are still active [65]. Constrained regulatory
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minimal cut sets allow over/underexpression constraints to be combined with reaction deletions, which

increases the amount of valid strategies while decreasing their size [66]. Finally, genetic MCSs allow direct

enumeration of strategies containing genes instead of reactions [67].

Table 3: Elementary modes and minimal cut sets that block 𝑅9 relative to the toy network on Figure 2.
Elementary modes carrying flux through 𝑅9 are highlighted in grey. Adapted from [44]

R1 R2 R3 R4 R5 R6 R7 R8 R9
EM1 1 1 1 -1 0 0 0 0 0
EM2 1 0 0 0 0 1 1 1 1
EM3 2 1 1 0 1 0 0 0 1

Elementary modes

EM4 1 0 0 1 1 0 0 0 1
MCS1 •
MCS2 •
MCS3 • •
MCS4 • •
MCS5 • •
MCS6 • • •
MCS7 • • •
MCS8 • • •
MCS9 • • •
MCS10 • • •

Minimal cut sets

MCS11 • • •

2.2.3.3 Applications

Having reviewed the most prominent concepts in pathway analysis, the overall consensus is that EFMs are

currently the most popular approach with noticeable advantages over MGSs, EPs and ECs. Generically,

EFMs can prove useful in a variety of analyses [54]:

• Finding novel metabolite conversions - at least one EFM with the associated exchange reactions

should be active;

• Determining which reactions are required for a set of undesired EFMs and use it as a possible

optimization target;

• Investigating the effect of environmental conditions on the cell’s possible phenotypes by comparing

EFMs before and after a perturbation.

Despite the relevance of these applications, usage of EFMs and related concepts in human studies

is still limited. Table 4 highlights key studies in the field. Two main limitations concern the large scale of
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human GSMMs and the computational demand and low scalability of these methods, although recent de-

velopments such as the k-shortest EFM algorithm have improved this dramatically. There is great potential

for drug target detection with minimal cut sets (MCSs) and similar algorithms, with at least one study by

Apaolaza et al. pointing out this application [68].

Table 4: Table with important human health studies involving various convex analysis methods.

Author Approach Description Reference

Wiback et al. EP Calculation of the extreme pathways in a human red blood cell model [28]
Price et al. EP Application of singular value decomposition to interpret extreme path-

way matrices
[29]

Kaleta et al. GPR Finding evidence of gluconeogenesis using fatty acids as carbon
source by calculating GPRs on Recon1

[69]

Gebauer et al. EFM Detection of a large amount of energy wasting cycles involving cofac-
tors through analysis of short EFMs

[70]

Rezola et al. EFM Filtering EFMs from human tissue-specific models with high-
throughput transcriptomics, correctly depicting liver metabolism

[71]

Rezola et al. EFM Integration of gene expression data to identify differentially expressed
and characteristic EFMs in lung cancer cells

[72]

Apaolaza et al. gMCS Calculation of MCS for genetic intervention strategies to discover
metabolic targets in cancer cells

[68]

2.2.3.4 Algorithms and computational tools

The development of efficient algorithms for pathway analysis is an important aspect for proper application

of these concepts in realistic case studies. Most of these methods rely on enumerating a large number of

possible pathways in the CBM, and an algorithm based on testing every combination of active reactions is

not computationally feasible. To this end, several approaches have been developed to narrow the search

for pathways, specifically EFMs. Additionally, some recent approaches for MCS enumeration are also

presented.

Double description algorithm The most common algorithm for full EFM enumeration is the dou-

ble description (DD) algorithm. In essence, this algorithm attempts to generate new EFMs, and checks

whether these have already been found (elementarity tests) [73], until all EFMs are enumerated. Several

improvements have been proposed to reduce the problem’s complexity, whether through improved tests,

CBM compression or enumeration in multiple sub-networks derived from the CBM. Despite all of these ef-

forts, the DD method is unsuitable for GSMMs since computational demand rises exponentially and deems

EFM calculation infeasible. Nevertheless, efmtool, presented by Terzer and co-workers [74] remains the

most efficient approach to calculate the entire set of EFMs.
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Partial enumeration approaches There are currently some recent approaches that do not require

full EFM enumeration. With such algorithms, a stopping criterion can be defined so that enumeration is

possible in GSMMs, at the cost of obtaining only a subset of all EFMs. One example is the EFMEvolver

approach, in which Kaleta et al. employ genetic algorithms to enumerate EFMs in a stochastic manner [60].

Another interesting approach is the k-shortest EFM algorithm, in which EFMs are enumerated iteratively

by finding the smallest possible pathway and constraining the problem so that the next EFM does not

contain active reactions from previous EFMs [7]. Despite their shortcomings, these approaches allow

EFM enumeration at the genome-scale and their use is required in studies involving human metabolism.

Minimal cut set enumeration MCS enumeration is highly dependant on EFMs, as was previously

mentioned. One alternative to enumerate them is to enumerate all EFMs and, similarly to the DD algorithm

for EFM enumeration, check whether a set of reactions is a cut set for a given target, and whether it is

minimal [75]. This is unsuitable for GSMMs, as the entire set of EFMs is difficult to enumerate. Recently,

the k-shortest EFM method has been applied to a dual network based on a CBM where its EFMs are

MCS [76], and the resulting algorithm developed by von Kamp and colleagues [8], MCS Enumerator, has

enabled the enumeration of MCS at the genome-scale. This ultimately presents an interesting opportunity

to apply such methods on human GSMMs.

2.2.4 Constraint-based modelling frameworks

Constraint-based modelling methods rely on mathematical methods that are too complex for humans to

solve in an acceptable time frame. Although linear programming optimization methods have been available

for several decades, computational frameworks specifically developed for constraint-based modelling have

only begun to appear recently.

Although some of these software packages were introduced over a decade ago, there are still ongo-

ing developments and updates. Arguably the most comprehensive resource among them is the COBRA

Toolbox for MATLAB which, at its third major revision, has amassed 14 years of updates and provides

implementations for a wide majority of constraint-based methods.

However, packages bound to proprietary software, such as MATLAB, greatly hinder the integration of

these methods in other resources, such as executables and web services, as well as their distribution.

Tools such as YANA and OptFlux have solved this issue through usage of the Java programming language.
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Table 5: Overview of previously developed computational frameworks designed to load, manipulate, anal-
yse or simulate constraint-based metabolic models.

Name Platform Year Description Ref.

METATOOL GNU Octave /
MATLAB

1999 Scripts implementing metabolic pathway
analysis algorithms

[53]

FluxAnalyzer MATLAB 2003 Framework for metabolic network analysis
with a graphical user interface (GUI)

[77]

YANA Java 2005 Multi-platform tool for graph-based and
constraint-based modelling analysis with a
user friendly GUI

[78]

COBRA Toolbox MATLAB 2007 Modular constraint-based modelling
framework with several phenotype
prediction and flux analysis methods

[79]

OptFlux Java 2010 Metabolic engineering framework (MEW)
with a GUI packaged as a standalone tool
(OptFlux) with various constraint-based
analysis and optimization methods

[80]

COBRApy Python 2013 Framework implementing part of the meth-
ods in COBRA Toolbox while offering a
class-oriented design to implement new
methods

[81]

RAVEN MATLAB 2013 Toolbox for constraint-based model recon-
struction and analysis with support for
multi-omics data integration

[82]

MONGOOSE MATLAB 2014 Metabolic network modelling toolbox offer-
ing support for exact arithmetic optimiza-
tion methods

[83]

ReFramed Python 2019 Modular constraint-based modelling
framework with FBA-based simulation
methods from which several omics
integration and community modelling
methods have been implemented

[84]

MEWpy Python 2021 Open-source framework with a modular
and extensible architecture with features
ranging from phenotype prediction and
strain optimisation algorithms

[85]
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In recent years, a considerable amount of effort has been redirected towards the development of

constraint-based modelling packages and frameworks in higher-level languages such as Python and Julia.

COBRApy and ReFramed are based on the former and leverage the existence of high performance numer-

ical computation and data analysis libraries (such as numpy and pandas) to provide a framework that is

easy to use and provides good performance.

2.3 Enriching constraint-based models with omics data

CBMs present a very flexible framework for integrating fluxomics data. However, there is an insufficient

amount of experimental measurements to successfully account for all possible perturbations. Further-

more, the process of integrating data beyond the flux layer is not trivial in CBMs, and several methods

are being developed towards this purpose [86]. Due to wide availability of transcriptomics data for a large

variety of organisms, there have been multiple efforts to accurately integrate RNA expression data in CBMs

and these have been thoroughly compared in terms of predictive performance [87]. These methods are

particularly useful for studies in human cells, both for reconstructing context-specific models of various

tissues with different expression profiles and enhance phenotype prediction methods with RNA expression.

The main focus of this section is to provide a brief overview of these methods and their applications in

health.

Transcriptomics integration methods differ mainly on their ability to provide a numerical result such as

one or various flux distributions, or a model. Some algorithms, due to implementation strategies, return

both. Additionally, these can also be divided depending on how expression levels are processed [87] and

whether an objective function is required.

2.3.1 Transcriptomics-enhanced phenotype prediction

Phenotype prediction with transcriptomics data was initially proposed through the pioneering work of

Akesson et al. by disabling reactions whose associated gene expression levels were low. The authors

used transcriptomics data to determine these lowly expressed genes and presented results involving a

Saccharomyces cerevisiae model with improved prediction accuracy using this approach [88].

Another approach is to constrain fluxes with continuous limits determined by gene expression levels,

as proposed in E-Flux, presented by Colijn et al. [89]. The method was used to successfully determine
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the impact of several environmental perturbations on the biosynthesis of mycolic acid in Mycobacterium

tuberculosis.

If multiple gene expression datasets are available, as well as a gene regulatory network (discussed in

the following chapter), a probabilistic model of expression can be created, and the resulting probabilities

can be incorporated as flux bounds in a CBM. Chandrasekaran and Price introduced such a method,

named Probabilistic Regulation of Metabolism, and validated it with gene knockout datasets for Mycobac-

terium tuberculosis [90]. Differential expression between two or more conditions can also be used to

constrain the CBM through usage of statistical tests. This was the approach employed in the Metabolic

Adjustment by Differential Expression method [91].

Although the authors claim transcriptomics-enhanced simulations improve phenotype prediction in

their respective case studies, Machado and Herrgard have demonstrated through a systematic evalua-

tion on micro-organisms that pFBA performs similarly to these methods [87]. There are additional algo-

rithms that use transcriptomics to enhance phenotype predictions, such as Gene Inactivity Moderated by

Metabolism and Expression (GIMME) [92] and Integrative Metabolic Analysis Tool (iMAT), but since they

are also used to build models based on experimental data, these will be reviewed in the next section.

A noteworthy approach to mention is COBRAme [93], a framework developed by Lloyd et al. that

allows the creation of constraint-based models combining the typical steady-state metabolic constraints,

as well as artificial reactions and metabolites representing gene expression. These additional constructs

rely on curated information of amino acid and nucleotide sequences, as well as the composition of en-

zymes associated with transcription and translation to add a highly detailed gene expression layer. These

representations, named ME-models, led to improved gene essentiality predictions in an E. coli model.

The applicability of this approach for large-scale models, however, is not yet proven, with computational

demand and curated data requirements presenting as major limitations when applying this approach to

model human metabolism.

2.3.2 Context-specific model reconstruction

Integrating omics data directly in the simulation algorithm is an important problem, but it can also be

relevant to contextualize a model according to these same data. Several context-specific reconstruction

algorithms have been developed to deal with this task with different approaches depending on how omics

data are processed and how reactions are selected. Estévez et al. classify CSMR algorithms in three

families that are summarized on Figure 5. These families are closely associated with their required inputs,
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namely[94]:

• Metabolic tasks (GIMME-like): One way of representing omics data in the model is by defining

a set of required metabolic function (RMF)s. An optimization problem containing the basic CBM

assumptions and the objective function can then be solved, including RMFs as constraints.

• Expression thresholds (iMAT-like): Alternatively, gene expression level thresholds can be set

to filter the data and determine active and inactive reactions. The basic CBM optimization problem

can be extended by forcing flux in active reactions and setting an upper limit on the inactive ones.

• Core reactions (MBA-like): A core of required reactions is determined through experimental

data (evidences of activity in literature or measurements) and is kept in the model, while non-core

reactions are removed if not necessary. The model’s consistency must be checked at each removal

step

The GIMME algorithm [92] assumes a cellular objective and a set of required metabolic functions (

RMFs) in its formulation, minimizing the variation between simulated fluxes and experimental data. Several

variations have been proposed to deal with data from the proteome (GIMMEp) [95] and metabolome

(GIM3E), as well as reversibility constraints [96].

The iMAT algorithm [97] does not require objective functions or RMFs, relying instead on an opti-

mization problem that constrains reactions based on expression thresholds. The Task Integrative Network

Inference for Tissues (INIT) [34] builds upon this algorithm by proposing weighing functions, rather than

grouping genes in categories and allowing metabolomics data integration [6]. Task-driven Integrative Net-

work Inference for Tissues (tINIT) further extends this latter method by adding RMFs as a requirement to

build the context-specific model [6].

The Model Building Algorithm was the first to employ an approach based on core reactions, defining

high and moderate confidence cores, as well as the non-core set of reactions. Reactions are iteratively

removed from the latter set along with blocked reactions not present in the high confidence set that result

from this modification [98]. The removal process is stochastic and thus the algorithm must be run multiple

times to obtain meaningful results.

The metabolic Context-specificity Assessed by Deterministic Reaction Evaluation (mCADRE) algorithm

instead assigns a score to each reaction based on expression measurements, network properties and

confidence. These scores determine whether a reaction is part of the core. Similarly to MBA, non-core re-

actions are successively removed and the model is checked for consistency in the same manner. However,
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Figure 5: Overview of the three major families of CSMR algorithms according to their input requirements.

mCADRE does not require the entire set of core reactions to remain in the model and a set of essential

metabolites can be defined so that the model must account for their production [99].

FastCORE presented a more computationally efficient proposal by turning the non-core reaction re-

moval step into an optimization problem. This problem maximizes the amount of core reactions in the

model, while a second problem minimizes the amount of non-core reactions. These are repeated in cycles

until the core reaction set is stable. FastCORMICS further extends this method by adding a microarray

data processing workflow, which integrates seamlessly within the FastCORE approach [4].

Finally, the Cost Optimization Reaction Dependency Assessment (CORDA) algorithm defines similar

sets of reactions to those in MBA but initially builds a core model with highly expressed reactions and uses

a cost function represented as an artificial metabolite produced by the reaction candidates to be added

[5].

CSMR algorithms should be generic enough to be used with any model organism and omics datasets
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Figure 6: Timeline of the currently available generic genome-scale metabolic models of human cells and
context-specific model reconstruction algorithms.

that can be mapped to biological entities in that model. However, their development was a key contribution

to several metabolic modelling based studies involving humanmetabolism. Figure 6 shows the co-evolution

of these methods along with contemporary human metabolic models.

2.3.2.1 Applications

Context-specific reconstruction enables the creation of models for multicellular organisms with differen-

tiated cells, and is thus, an invaluable asset for systems biology applied to humans. A large number of

cell-specific models of human tissues have been reconstructed with automated methods, including several

types of cancer. Table 6 highlights some of these models and associated studies.

Common applications of cell-specific models usually focus on comparative analysis of healthy and

perturbed models and application of constraint-based analysis methods can help uncover the mechanisms

and effects of a given condition. This enables a rational approach towards drug target detection. A great

potential that has yet to come concerns the usage of affordable sequencing techniques and automated

cell-specific model reconstruction to quickly build a personalized model of a patient’s affected tissue. The

best therapy could then be identified by determining drug targets for the patient in question.
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Table 6: Summary of relevant studies using context-specific model generation.

Description Model Reference

Development of the first cancer-specific human GSMM, used to
identify target pathways to treat renal cancer

Recon1 [100]

Reconstruction of a renal cancer GSMM and detection of 5 al-
ternative hypotheses for treatment

HMR [101]

Application of MCSs to identify lethal sets of genes. Authors
assessed the lethality of RRM1 on myeloma cells

Recon2 [68]

Automated reconstruction of models for 69 normal tissues and
16 cancer cell lines

HMR [34]

Reconstruction of 60 cancer cell lines with prediction of drug
targets and limited experimental validation

Recon1 [102]

Reconstruction of 27 patient-specific models of hepatocellular
carcinoma, revealing not just common but also individual ther-
apeutic options

HMR [6]

Determination of a human biomass equation to investigate can-
cer metabolism - Warburg effect

Recon1 [49]

Identification of characteristic metabolic functions in two non-
small lung cancer subtypes using EFMs

Recon1 [72]

Reconstruction of the human hepatocyte (HepatoNet1) to
demonstrate liver responses to altered metabolic states

Recon1 [42]

Reconstruction of human adipocyte, hepatocyte and myocyte
models. A multi-tissue model was created to simulate the Ala-
nine and Cori cycles as well as nutrient absorption

Recon1 [103]

Automated reconstruction of hundreds of tissue-specific models
of healthy and cancer cells, with drug target discovery for the
latter

Recon1 [104]

Integration of multi-omics data and two generic models to auto-
matically reconstruct cell-specific models. Cancer drug targets
were determined through comparative analysis

HMR [34]

Reconstruction of a new hepatocyte model to reveal metabolic
aspects of fatty liver disease not associated with alcoholism

HMR2 [35]
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2.4 Gene regulatory models

2.4.1 Gene regulatory networks

A Gene regulatory network (GRN) is a construct describing the interactions between genes (DNA) and

their transcription and subsequent translation products (RNA and proteins, respectively). These are often

called transcriptional regulatory networks since, typically, the main focus of these networks is to study

transcription factors (TFs), which are proteins that regulate the expression of other genes. These ultimately

control many aspects of the transcription process and can affect the expression of other TFs. This leads

to complex cascades of regulation (such as feedback loops), that are hard to analyse without resorting to

mathematical and computational methods.

2.4.2 Model structure

Schlitt and Brazma suggest a hierarchical classification for GRN -based models, according to the level of

detail and features included [105].

Network components A network contains elements from the organism .The first step towards building

a GRNmodel is to compile a list of components, such as TFs and promoter genes (and relevant biochemical

properties) regulating gene expression in the selected organism and/or pathways. Genome annotation is a

way to obtain lists of molecules such as genes or TFs, which can then be inserted in a database with cross-

references to ontologies describing more generic regulation events. The scale of these lists in eukaryotic

organisms varies from the hundreds to the thousands.

Topology Network components can then be connected to represent interactions between the identified

components. This is usually represented as a graph containing nodes (molecular entities) connected to

each other. These connections can be directed to represent specific regulatory relationships by defining

regulatory genes as sources pointing (unidirectionally) to the genes they regulate, or targets. Undirected

connections can be used to represent, for instance, binding of two proteins.

Control logic With topological models, the relationships between entities are described, but its effect is

not specified. An additional layer can be added to describe these effects through Boolean functions, includ-

ing combinations of logical operations (AND, OR and NOT) to describe conditional activation or repression
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events. These functions can be discrete, representing gene states as active or inactive, or assigned to

continuous values by adding weights to quantify the effect (linearly) of each gene in an interaction.

Kinetics A temporal dimension can be added to the model to describe changes in gene expression

over discrete time points. The simplest approach is to expand upon the logical model (based on a Boolean

network) and explore changes in state over time.

It is worth noting that the scope of GRN models decreases as more layers are included, since detailed

logical relationships and temporal parameters for TFs are not always known. As such, topological models

are preferred for larger networks, as opposed to kinetic models.

2.4.3 Modelling approaches and applications

A large number of GRN modelling approaches have been reviewed by Karlebach and Shamir [106], who

propose a binary distinction between discrete (logical) and continuous models.

2.4.3.1 Logical models

Boolean networks Logical models are arguably the most basic approach towards GRN modelling.

Glass and Kaufmann presented an early approach with Boolean networks (BNs), proposing the usage of

on/off states for gene expression in regulatory models [107]. Despite appearing in the early 1970s, this

approach has proven useful in yeast studies to assess the robustness of its cell functions [108] in yeast

through GRN analysis and to investigate the kinetics involved in cell-cycles [109].

Probabilistic Boolean networks Shmulevich et al. further presented Probabilistic BNs as an ex-

tension to deal with uncertainty in the data [110]. The assignments between entities and functions are

chosen randomly, based on a probability distribution for various functions. The global system states are

then generated according to the initial assignment and elicit the usage of sampling methods to deal with

the stochastic nature of the algorithm.

MetaReg Gat-Viks and colleagues have further improved upon the BN formalism by filtering regulatory

functions that would only fit the network’s steady-state [111]. This approach, named MetaReg, was used to

discover previously unknown regulatory mechanisms for amino acid biosynthesis. A probabilistic version

was also presented and further developments on this model allow addition and improvements on existing

GRN s, leading to the discovery of new modules and interactions between existing ones.
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Petri nets Other approaches such as Petri nets have also been used to successfully replicate results

from BNs, as demonstrated by Steggles et al. through a regulatory model of Bacillus subtilis, whose results

have been proven to match experimental measurements [112].

2.4.3.2 Continuous models

Linear models Linear models of GRN s assume the contribution of each gene in a regulatory function

is proportional to a given weight. Yeung and colleagues presented an approach where a large number

of models is created through singular-value decomposition and the best ones are selected, an useful

approach when data is scarce. Some extensions of linear models have been presented, dealing with

alternative functions to determine gene contributions, and accounting for delays in the occurrence of

regulatory events.

ordinary differential equations (ODEs) While linear models are simple and relatively effective, more

complex models may provide better insights in some cases where regulation is controlled through mech-

anisms governed by complex dynamics. Li presented a nonlinear ODE model to predict the cell-cycle

regulation dynamics in Caulobacter crescentus, and a similar study was also presented for yeast cells by

Chen et al. [113]. These models require a greater amount of parametrization and calibration, which might

render them infeasible for larger scale contexts.

2.5 Signalling networks

Signalling networks are important systems that dynamically interpret extracellular signals and relay this

information so that a proper response can be triggered, allowing cells to display different behaviours that

ensure the long-term survival of an organism. The complexity associated with these systems elicits the

usage of mathematical formalisms and models that can represent its behaviour and enable analyses

regarding its functionality under different contexts.

Two of the most relevant signalling cascades involved in cancer studies are the mitogen-activated

protein kinase (MAPK) and class I phosphoinositide-3’ kinase (PI3K) pathways. These are comprised

of multiple proteins and other molecules present in the cell, that regulate transcription through binding,

modification and translocation, and deeply influence cell growth, differentiation and other important events

[114].
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There is a great level of complexity associated with the MAPK/PI3K pathways, as there are multiple

receptor proteins that can feed signals into it, feedback loops, highly dynamic behaviour and multiple

subcellular locations. Mutations in several proteins of the pathways have been found to promote cancer

with multiple mechanisms, such as growth factor overexpression, and cell cycle deregulation. Thus, it is

important to include a signalling layer in in silico predictions of cancer biology to provide a better depiction

of the underlying mechanisms leading towards cancer [114].

2.5.1 Network structure

Each small molecule participating in a signalling network is usually represented as a node that can be

interlinked with various other nodes. Pathways can be identified as paths linking nodes associated with

inputs (such as external stimuli) to those associated with outputs (signals for cellular responses). Past

studies focused on these linear structures, usually relaying signals from the cell membrane to the cytosol

and other organelles.

With the considerable improvements in high-throughput techniques over the last two decades, more

recent studies have proposed a modular structure encompassing cell signals. Such modules are highly

connected, regulate multiple functions and form a large and complex network of signalling molecules.

Nodes, pathways and modules provide a generic view on the various interactions between nodes,

but the nature of these interactions can be described further. A causal reconstruction of the signalling

network includes information regarding the effects nodes cause on each other. Causal networks are usually

inferred from experimental data observing cellular responses under various stimuli.

A mechanistic reconstruction of the network can further expand the causal view by representing

simple interactions through the biochemical reactions that cause them (e.g. degradation, phosphoryla-

tion).

Causal andmechanistic reconstructions of signalling networks are representedmathematically through

distinct formalisms that will be briefly covered in the following sections.

2.5.2 Causal modelling

Causal networks can be mathematically represented with a variety of methods. With a Boolean represen-

tation, each node is assigned with an on/off (active/inactive) state and rules involving logical operations

can be inferred from the network. As an example, in the module represented on Figure 7, one could infer
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Figure 7: Representation of a fictional signalling network along with the two major formalisms. The net-
work reconstruction merely represents generic interactions between molecules. With the causality de-
scription, the interactions are assigned with a given effect, allowing representation as Boolean networks.
Finally, these relationships can be represented by more complex reactions between entities (mechanistic
description)
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that E is active if C or D are active, A is inactive when B is active and C is inactive when A is active. Despite

representing signalling interactions through simple rules, causal models can also provide reliable insights

on signalling mechanisms.

Models based on Boolean networks can be dynamic, simulating the nodes’ state over individual time

points. Such models have been used to predict signalling events associated with cell differentiation in

Drosophila melanogaster [115]. Alternatively, logical steady-state analysis can be used to uncover struc-

tural and functional properties of the network without requiring dynamic parameters. Klamt and associates

have used these models to simulate the mechanisms involved in T-cell activation [116].

An alternative to Boolean networks is modular response analysis. With this approach, experimental

measurements for various perturbations are used to create a global response matrix containing coefficients

for each perturbation-node pair. A local response matrix is then derived, this time representing weights

for each node-node interaction. Using this approach, Klinger et al. constructed models of the Ras/PI3K

signalling pathways to discover inhibition targets aimed at blocking colorectal cancer cell growth [117].

2.5.3 Mechanistic modelling

Mechanistic models are usually built as dynamic (kinetic) systems of biochemical reactions, which can be

based on rules representing interactions between different signalling molecules. Such kinetic models are

usually formalized with ODEs that require a large set of parameters.

Since these models are sets of biochemical reactions, the rate equations defining their behaviour over

time must be determined, often through literature. Typical equations are already commonly known in

biology, such as mass-action and Michaelis-Menten laws [118], and are already applied in mechanistic

models.

An early approach was presented by Moehren and associates, in which a kinetic model of the epidermal

growth factor receptor (EGFR) signalling pathway was used to determine its dependence on temperature.

The authors were able to represent this dependence by adjusting the parameters on each rate equation

to the ones corresponding to discrete temperature points and achieved similar predictions to those found

in vivo [119].

Schoeberl and colleagues have also modeled part of the MAPK signalling pathway with mass-action

kinetics to find drug targets for cancer therapies [120]. By using sensitivity analysis, which is commonly

used in ODE models to quantify the impact of each parameter in the simulation, the authors were able

to find ERBB proteins as possible drug targets. This protein was not previously considered as a suitable
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target and prompted the development of a monoclonal antibody that proved useful as a cancer therapy

and is currently on Phase 2 clinical trials.

Although quantitatively accurate, mechanistic models are restricted to well-known signalling pathways

of smaller sizes as a result of the large number of kinetic parameters required for each reaction (often not

available) and computational demand.

2.6 Integration with constraint-based modelling

In the previous section, some transcriptomics integration methods were reviewed, covering few aspects

of gene regulation. Despite the variety within these methods, the task of integrating multiple models with

different formalisms is not straightforward. A representation of the intricacies of this integration is shown

on Figure 8. In this section, an overview on both gene regulatory and signalling layers is presented, as

well as current perspectives on fully integrated cell models.

Figure 8: Representation of a conceptual network integrating signalling, regulatory and metabolic layers.

2.6.1 Signalling network integration

The integration of signalling and metabolic networks is currently limited to simple approaches that are

small in scale. Gonçalves et. al hypothesize that the lack of integrated models combining these two layers

can be attributed to the rarity of direct interactions between them, since these mostly occur indirectly
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through gene regulation [121]. Despite this, recent work concerning signalling pathways in cancer has

shown that their disruption can lead to regulatory changes that affect metabolic processes [122], which

confirms the importance of integrating the metabolic and signalling layers.

König and colleagues have presented a kinetic model based on ordinary differential equations compris-

ing glucose metabolism in the liver and integrating sugar regulating hormones by implying different effects

on certain enzymes [123]. This means that a single signalling state had be translated into enzymatic

changes. Similarly, the PI3K/AKT/mTOR signalling pathway was integrated on a HeLa cell (immortalized

human cell line) dynamic metabolic model by defining their effects as changes in the maximum rates of

certain reactions [124]. These two studies do not describe the signalling pathways mathematically, which

elicitis the development of more advanced methods that can fully represent the two networks and their

interactions.

2.6.2 Gene regulatory network integration

The integration of gene regulatory networks on CBMs is not a new concept. The integration of tran-

scriptomics data, as discussed in the previous chapter, either manipulates the computational method or

modifies the structure of the CBM according to the gene expression profile which is governed by regulatory

events, among others. However, without a fully integrated GRN , the model can only capture the effect of

regulation on metabolism in a single direction.

Methods such as regulatory FBA [125] and steady-state regulatory FBA (srFBA) [126] map a single

regulatory state as constraints in a CBM. With rFBA, the GRN is used to determine the regulatory state of

the cells, which translates into flux bounds that block reactions whose expressing genes are inactive. srFBA

instead adds Boolean constraints seamlessly within the optimization problem to represent the GRN and

GPR rules. The growth pseudo-reaction is then maximized, subject to these constraints. This forces the

usage of logical GRN modelling approaches and while useful, merely provides a single optimal state for the

network. The PROM [90] approach that was previously described somewhat improves this by representing

regulatory events as probabilities rather than definite binary states.

2.6.3 Multi-layer approaches

Signalling events do not usually interfere directly with entities associated with metabolism, such as enzymes

or metabolites themselves. This is usually achieved through regulation of gene expression and as such,
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the interaction between signalling and metabolism is poorly explored through integrative CBM approaches.

However, there have been methods to develop a fully integrated model containing metabolic, regulatory

and signalling layers. Covert et al. proposes the integrated FBA algorithm which uses a similar approach

to regulatory FBA, but extends it with an independent kinetic model (ODE-based) representing certain

pathways [127]. After specifying the initial conditions, a Boolean state of the GRN can be obtained,

defining gene and protein expression. Additionally, the kinetic model is simulated up until a defined end

time point. Both of these inputs are then considered when building flux constraints, which are added to

the final FBA problem. The result is a flux distribution which is used as an initial condition so that the

process can be repeated.

The integrated dynamic FBA (idFBA) algorithm presented by Min Lee et al. adds signalling and regu-

latory layers within the stoichiometric matrix of a FBA problem [128]. idFBA includes the definition of fast

reactions that comply with the steady-state assumption and slow reactions with alternate kinetic behaviour

(such as those involved in signalling and regulation). The FBA problem is then simulated on a single time

step, and the resulting flux distribution is used to constrain the problem and the stoichiometric matrix.

Slow reactions are activated or deactivated according to their activation delay and duration by modifying

the problem iteratively through each time step.

A major development by Karr and colleagues was the creation of a whole-cell model for Mycoplasma

genitalium. The authors reconstructed the organism’s chromosome structure including encoding genes,

promoters, among other important DNA sequences. Each gene was annotated, and each gene product

was assigned with a structure, revealing post-transcriptional and translational modifications. This network

was represented as a set of modules performing a certain cellular process and each was modelled inde-

pendently with an adequate formalism. Simulation is performed over a time course, in a similar manner

to ODE-based models [129].

Fully mechanistic approaches, however, are not the only examples of network-based methods capable

of predicting genotype and phenotype relationships, while integrating multiple biological entities. A review

by Dugourd and Saez-Rodriguez [130] recently shown examples of relevant approaches for multi-scale

network analysis and contextualisation. With the wide availability of biological network resources, there

are several databases from which a prior knowledge network (PKN) - a collection of interactions between

biological entities - can be generated. When coupled with diffusion algorithms such as TieDIE [131] or

CAusal Reasoning for Network identification using Integer VALue programming (CARNIVAL) [132], one can

contextualise the PKN, using omics data as a means to filter and extract relevant sub-networks. Most
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efforts in this sense have been directed towards signalling networks.

Up to this date, there is still a gap concerning the development of these models in humans, both

due to lack of experimental data and the immense computational demand and mathematical complexity

posed by these problems. However, some approaches mentioned in this section such as idFBA could

be leveraged to improve predicted phenotypes with human GSMMs. A recent contribution by Thiele et al.

explores a whole-body metabolic model in which various components of the stoichiometric matrix represent

different organs and structures. The addition of regulatory and signalling layers could further enhance this

representation of human biology.
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Software development

3.1 Introduction

In this chapter, three frameworks developed within the scope of this work are explored in detail, namely

Constraint Based Analysis of Metabolic Pathways (CoBAMP), Tissue-specific RecOnstruction and Phe-

notype Prediction using Omics data (TROPPO) and Gene Regulation and Signalling Pathways (GRaSP).

CoBAMP is a constraint-based modelling framework including basic simulation capabilities and a modular

structure for pathway analysis methods. This framework also formed the basis for TROPPO, which uses

CoBAMP’s modelling routines to implement an omics data integration pipeline ranging from data pre-

processing to context-specific model reconstruction, as well as refinement and validation. Finally, GRaSP

extends CoBAMP models to accommodate signalling and gene regulatory mechanisms. The software tools

and associated outcomes are represented on Figure 9.

With the large variety of toolboxes and frameworks, choosing a single framework to extend with novel

methods is not a simple task. As such, the development of constraint-based methods for metabolic path-

way analysis, integration of omics data and representation of signalling and gene regulatory networks was

performed so that the new methods would be compatible with all frameworks, but remained independent

from them.

Themotivation behind this effort is also justified by the lack of pathway analysis enumeration and omics

integration algorithms implemented in the Python programming language. Similarly, context-specific model

reconstruction and omics integration methods are only scarcely available in ReFramed [84] and COBRApy

[81], eliciting the development of modular software resources to make these methods available for future

improvement with the addition of signalling and gene regulatory models.
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transcriptomics data

Figure 9: Overview of the software packages and features implemented within the scope of this work. The
outputs on the right-hand side are colour coded to match the packages used in the methods and results
associated with each box.

3.2 COBAMP: A framework for constraint-based model

simulation and analysis

The first software tool developed throughout this work is CoBAMP. This tool was developed with the pur-

pose of providing a basis to implement constraint-based modelling (CBM) methods. This includes model

representation and manipulation as well as simulation and analysis through linear programming (LP) and

mixed integer linear programming (MILP) formulations.

Linear programming problems An important feature of this framework was the development of tools

to easily define, modify and optimize LP and MILP problems through matrix inputs. Since it is based on

the Opt (optlang) package, multiple solvers are supported although some improvements were made to

speed up the process of creating a model when compared to the default syntax of optlang.

Parallel processing Modern solvers are capable of using multiple processor cores to speed up linear

optimisation problems. However, this is not as relevant when considering multiple optimisations where
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the optimisation is not the time-limiting factor. CoBAMP includes several routines to easily run batch

optimisations on LP and MILP with varying constraints.

Model representation A simple model representation class was implemented, connecting the linear

models described in the previous paragraph with reaction and metabolite identifiers as well as gene-protein-

reaction (GPR) association. These models were built to include a linear programming problem built from

the model’s information and can thus be used with any CoBAMP method that involves LP problems, while

also allowing direct manipulation of its variables and constraints.

Compatibility with modelling frameworks The developed package was built to re-use model data

structures from existing modelling frameworks. Although an internal model representation was also devel-

oped to serve as a basic input for the simulation and analysis algorithms in CoBAMP, a model reader was

implemented for COBRApy and ReFramed, allowing seamless interconversion between representations

and ensuring these algorithms can be integrated with any framework.

Pathway analysis tools The main focus of this package was to provide scalable methods to enumerate

pathway analysis concepts. This was addressed by implementing the k-shortest elementary flux mode

(EFM) enumeration algorithm using the linear programming tools in CoBAMP. minimal cut set (MCS) and

elementary flux pattern (EFP) enumeration were implemented simply by extending the EFM enumeration

problem. A considerable amount of effort was put to generalise these algorithms as much as possible to

easily accommodate for further extensions. Some analysis and plotting features are also offered by the

package.

3.2.1 Linear programming framework

Constraint-based modelling methods are traditionally implemented using LP or MILP. Since many of these

methods share common steps, a modular structure was required to facilitate the implementation of new

methods based on the basic steady-state model optimization problem. The core module contains two

important sub-modules to achieve this, namely linear_systems and optimization.

3.2.1.1 Linear system structure and representation

CoBAMP implements a linear system framework that simplifies the formulation of linear problems. It does

so by encapsulating the underlying linear problem as represented within the solver through the usage
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of the optlang package. optlang is a Python framework providing a generic interface for various linear

optimisation solvers. Furthermore, it also provides a language to easily define objectives, constraints and

variables for optimisation problems [133]. The core component in CoBAMP that wraps the features in

optlang is the LinearSystem class.

The LinearSystem abstract class (cobamp.core.linear_systems) represents a generic linear

programming problem. Any instance of its subclasses contains a private optlang Model object that is

populated by methods implemented in the parent class to easily and efficiently manipulate variables,

constraints and bounds. This is represented on Figure 10. This structure takes advantage of the modular

optlang framework to provide compatibility with multiple solvers since the appropriate solver interface

is loaded when a LinearSystem object is created. Solver configuration is also handled by optlang.

Although optlang Model objects allow this by design, the implemented methods circumvent some

performance limitations caused by the simplified problem definition features when using the standard

methods provided by the library. Additionally, these methods were also designed to extend models with

new constraints by providing numpy arrays as inputs.

A GenericLinearSystem class was then implemented to provide a standard implementation for

the LinearSystem class, establishing the basic requirements for a linear programming problem, namely

a linear coefficient matrix 𝑆 with bounds for both constraints (right-hand side values) and variables, their

names and types and a solver string specifying the appropriate optlang interface to load.

With a lower-level LinearSystem class, some higher-order abstractions could be created to improve

the framework’s modularity. One particular example of this was the implementation of the KShort-

estCompatibleLinearSystem which adds the concept of decision variables as a new parameter

specifying which variables in a LinearSystem should be considered for EFM enumeration. This is use-

ful as it allows for other concepts based on EFMs, such as EFPs, to be implemented by changing this

parameter.

Several GenericLinearSystem subclasses have been implemented to serve as basis for several

constraint-based modelling methods:

• SteadyStateLinearSystem: creates a problem assuming all constraints must equal 0 when

the problem is created;

• IrreversibleLinearSystem: creates a KShortestCompatibleLinearSystem subclass

where all constraints are equal to 0, but splits variables in their positive and negative components;
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LinearSystem

+ model: optlang.Model

+ solver: str

+ populate_model_from_matrix(...): None

+ set_objective(...): None

+ build_problem(): None

KShortestCompatibleLinearSystem

+ dvar_mapping: dict

+ dvars: list

GenericLinearSystem

+ S, lb, ub, b_lb, b_ub: array

+ __init__(S, lb, ub, b_lb, b_ub): None

SteadyStateLinearSystem

+ __init__(S, lb, ub): None

IrreversibleLinearSystem

+ __init__(S, lb, ub, ...): None

IrreversiblePatternLinearSystem

+ __init__(S, lb, ub, subset, ...): None

GenericDualLinearSystem

+ __init__(S, K, T, b): None

+ generate_dual_problem(S, K, T, b): None

LinearSystemOptimizer

+ linear_system: LinearSystem

+ model: optlang.Model

+ __init__(linear_system: LinearSystem): None

+ optimize(): Solution

+ populate(limit: int): list[Solution]

Solution

+ __value_map: dict

+ __attribute_dict: dict

+ __init__(value_map: dict, status: string, ...): None

+ to_series(): pandas.Series

+ var_values(): dict

Figure 10: Overview of the class structure of the linear_systems and optimization modules in
CoBAMP.

• GenericDualLinearSystem: creates a dual system to enumerate minimal cut sets of the

provided linear problem matrix.

3.2.1.2 Optimization

A separate optimization module contains a LinearSystemOptimizer that takes LinearSystem in-

stances as input and solves the underlying optimization problem, yielding Solution instances. Although

the LinearSystem’s state is not altered by these classes, it can trigger solver population.

The LinearSystemOptimizer handles a single LinearSystem instance, containing an optimize

method that calls optlang optimization routines. Additionally, a populate method was also implemented

for CPLEX and GUROBI solvers on MILP problems to enumerate a fixed amount of alternative optima
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for a given problem. Both methods return one or more Solution objects, representing solutions to the

optimization problem.

Solution objects hold the variable values, optimization status and an optional dictionary with an-

notations. These objects can be extended with subclasses for further processing of variable values as

required by specific methods. One example of this is the KShortestSolution subclass that decodes the

Solution of an elementary flux mode enumeration problem on a model with split reversible reactions,

returning values for the original model reactions with appropriate sign.

A BatchOptimizer class was also implemented to allow optimization of a given LinearSystem in

parallel using the pathos library. Althoughmodern solvers are already capable of using multiple processor

cores to solve optimization problems, some performance gains can be achieved on less computationally

intensive problems by running multiple optimizations at once. Given a LinearSystem instance, a set

of variable bound changes and associated objectives, BatchOptimizer is able to return the respective

Solutions much faster than iteratively performing the same task.

3.2.2 Constraint-based model representation

CoBAMP was built primarily to accept representations of constraint-based models based on matrices and

vectors rather than using standard formats such as Systems Biology Markup Language (SBML), a design

choice that favors the implementation of methods using LP problems rather than dealing with more abstract

concepts, such as reactions and metabolites. Nevertheless, these abstractions are still useful for certain

basic features, such as performing flux balance analysis and dealing with other components, such as

GPR rules which are associated with reactions but are not modeled directly as LPs. A core.models

sub-module was added to include these abstractions.

A ConstraintBasedModel class was implemented, which does not substitute the model manip-

ulation features featured in other constraint-based modelling frameworks, but allows for modifications in

the underlying LP through reaction and metabolite abstractions rather than dealing with constraints and

variables directly. This class can be instantiated using the same inputs as required by SteadyState-

LinearSystem but can additionally interpret lists of reaction and metabolite names that are associated

with their respective variables and constraints. Furthermore, GPR rules can also be added through string

representations of their Boolean expressions. When instantiated, a SteadyStateLinearSystem and

associated LinearSystemOptimizer are also created, formulating the LP problem as defined by flux

balance analysis (FBA).
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ConstraintBasedModel

+ model: SteadyStateLinearSystem

+ optimizer: LinearSystemOptimizer

+ S: array

+ bounds: list[list[float]]

+ reaction_names: list[str]

+ metabolite_names: list[str]

+ gpr: GPRContainer

+ add_reactions(arg: Object, bounds : list[list[float]])

+ add_metabolites(arg: Object, bounds : list[list[float]])

+ optimize(coef_dict: dict, minimize: bool)

AbstractObjectReader

+ model: Object

+ S: array

+ lb: list[float]

+ ub: list[float]

+ r_ids: list[str]

+ m_ids: list[str]

+ gene_protein_reaction_rules: GPRContainer

+ to_cobamp_cbm(solver: str)

COBRAModelObjectReader

+ get_stoichiometric_matrix(): array

+ get_model_bounds(): list[list[float]]

MatFormatReader

+ get_stoichiometric_matrix(): array

+ get_model_bounds(): list[list[float]]

CobampModelObjectReader

+ get_stoichiometric_matrix(): array

+ get_model_bounds(): list[list[float]]

FramedModelObjectReader

+ get_stoichiometric_matrix(): array

+ get_model_bounds(): list[list[float]]

Solution

+ __value_map: dict

+ __attribute_dict: dict

+ to_series(): pandas.Series

+ var_values(): dict

Figure 11: Overview of the class hierarchy for model representation structures in CoBAMP.

3.2.2.1 Gene-protein-reaction rules

A GPRContainer class was implemented to handle parsing and evaluation of Boolean rules. This class

accepts a list of GPR rule strings representing a Boolean expression with AND/OR operators. To facilitate

evaluation and interpretation, these are parsed using the Boolean.py library which is able to convert these

expressions into disjunctive normal form.

This also allows representing and storing a single GPR rule as a list where each element is itself also a

list of operands in an AND expression. Each of these sub-expressions is a part of a greater OR expression

and, thus, evaluation is performed by replacing variables with a truth value and applying appropriate

operators to the operands in each rule.
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3.2.2.2 Model input/output

The framework agnostic design that is a main feature of CoBAMP elicited the need to implement adapter

routines that could extract information from other models. Instead of implementing new parsers, adapter

classes were implemented to extract this information from objects that already contain it in other frame-

works. This allowed CoBAMP to be fully independent from established tools such as cobrapy or re-

framed while also being compatible with them.

An AbstractModelObjectReader abstract class was implemented as part of the wrappers.core

submodule, defining a generic constructor with a model object from an external framework as the only

mandatory input. This class enforces the implementation of several methods in its subclasses that are

able to retrieve the reactions and metabolites data necessary to recreate a standard flux balance analy-

sis LP problem. This process is then achieved through the to_cobamp_cbm method that generates a

ConstraintBasedModel instance. Alternatively, the extracted data can be accessed separately.

The subclasses of AbstractModelObjectReader are implemented in separate submodules within

the wrappers module, each corresponding to a constraint-based modelling framework. Figure 11 repre-

sents the definition of AbstractModelObjectReader and its subclasses as well as its role in gen-

erating the inputs needed to represent metabolic models. Additionally, support for these frameworks’

simulation methods is guaranteed by a ConstraintBasedModelSimulator class where CoBAMP

Solutions can be obtained from simulation methods outside of it.

3.2.3 Metabolic pathway analysis algorithms

CoBAMP features routines for the enumeration of metabolic pathway analysis concepts based on the k-

shortest EFM algorithm [7]. Although this is the only algorithm whose computational demand is compatible

with genome-scale models of human metabolism, the framework is extensible and follows a design model

split in three parts:

• Enumerator object: Accepts a LinearSystem as input and other optional parameters as

needed and returns one or more Solution objects. It should implement all routines required

to enumerate the expected pathways.

• Algorithm object: Requires a PropertyDict object as input, containing the optional param-

eters required for the Enumerator object and implements a get_enumerator method, which
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accepts a LinearSystem object as input, validates the problem and returns an iterator that can

call enumeration routines from the Enumerator class.

• Wrapper object: Higher-level object that accepts a model instance from any compatible CBM

framework and several parameters with default settings. This class should include methods to de-

code Solutions from the LinearSystem into appropriate identifiers as featured in the metabolic

model and a get_enumerator method that yields an iterator that can iteratively return these So-

lutions in native Python formats (such as dictionaries or lists) instead of Solution instances.

3.2.3.1 K-shortest algorithm

The K-shortest algorithm is able to enumerate elementary flux modes and can also be used by extension

to enumerate minimal cut sets and elementary flux patterns. The implementation of this method reflects

the modularity of this algorithm in the way that the KShortestEFMAlgorithm and KShortestEnu-

merator classes were used for all of these pathway concepts.

A KShortestEnumeratorWrapper abstract class provides a higher-level interface to create a path-

way enumeration problem from a metabolic model object, validating parameters using the KShort-

estEFMAlgorithm class and providing an implemented get_enumerator method that is generic to

all pathway concepts and returns an iterator that yields one or more KShortestSolution objects.

The get_linear_system abstract method must then be implemented for each subclass, creating an

appropriate LinearSystem object given the parameters supplied to the class’ constructor. Figure 12

represents the three main classes implementing the K-shortest algorithm, method wrappers based on

this architecture and the usage of the model reading features to simplify the inputs needed to run the

algorithm.

The main difference between elementary flux modes and patterns, as described on Section 2.2.3.1,

lies on a supplied subset of reactions upon which the latter concept is restricted to. This subset is applied by

changing the dvars attribute on KShortestCompatibleLinearSystem. When enumerating EFMs,

the IrreversibleLinearSystem class is used, including all available variables corresponding to

fluxes into the dvars attribute, while the IrreversibleLinearPatternSystem allows for an addi-

tional subset parameter defining which fluxes to propagate into the dvars attribute. When this latter class

is used, the KShortestEnumerator is initialized differently, including auxiliary constraints needed for

EFP enumeration.
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KShortestCompatibleLinearSystem

+ dvar_mapping: dict

+ dvars: list

KShortestEnumerator

+ model: KShortestCompatibleLinearSystem

+ optimizer: LinearSystemOptimizer

+ ...

+ solution_iterator(maximum_amount:int): Iterator[KShortestSolution]

+ population_iterator(max_size: int): Iterator[list[KShortestSolution]]

KShortestEFMAlgorithm

+ configuration: KShortestProperties

+ ksh: KShortestEnumerator

+ prepare(linear_system: KShortestCompatibleLinearSystem): None

+ get_enumerator(linear_system: KShortestCompatibleLinearSystem): Iterator[list[KShortestSolution]]

KShortestEnumeratorWrapper

+ __model: AbstractObjectWrapper

+ __algo_properties: KShortestProperties

+ algo: KShortestEFMAlgorithm

+ decode_solution(solarg: KShortestSolution): dict[str,float]

+ get_enumerator(): Iterator[dict[str,float]]

AbstractObjectReader

+ model: Object

+ S: array

+ lb: list[float]

+ ub: list[float]

+ r_ids: list[str]

+ m_ids: list[str]

+ gene_protein_reaction_rules: GPRContainer

+ to_cobamp_cbm(solver: str)

KShortestGenericMCSEnumeratorWrapper

+ dual_matrix: array

+ dual_var_mapper: dict

+ get_linear_system(): GenericDualLinearSystem

KShortestGeneticMCSEnumeratorWrapper

+ gene_cut_function(solx: KShortestSolution): None

+ get_linear_system(): GenericDualLinearSystem

KShortestEFPEnumeratorWrapper

+ subset: list

+ get_linear_system(): IrreversibleLinearPatternSystem

KShortestEFMEnumeratorWrapper

+ subset: list

+ get_linear_system(): IrreversibleLinearSystem

Figure 12: Overview of the class hierarchy for pathway analysis approaches based on the k-shortest ele-
mentary flux mode enumeration algorithm as implemented within CoBAMP.
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The MCS enumeration features are implemented with a slightly more complex architecture but follows

a similar structure as EFM and EFP enumeration. In this case, the GenericDualLinearSystem class

is used as the LinearSystem to supply to the Enumerator class. To accommodate for both classical

and genetic variations of MCSs, the generic definition presented by Apaolaza et al. [67] was implemented.

This definition implies three main inputs, namely a metabolic model, a target phenotype and a dual matrix

(DM) mapping primal with dual variables.

Additional data structures were created to easily translate these inputs into linear programming, namely

the AbstractConstraint abstract class whose subclasses DefaultFluxbound and Default-

Yieldbound can be used to define target phenotypes using, respectively, absolute flux and flux ratio

constraints. These implement a materialize method that supplies an appropriate constraint as a matrix.

Finally, the DM matrices define the type of MCSs to enumerate. Classical MCSs map primal variables

with two dual variables. For genetic minimal cut set (gMCS)s, the gpr.integrate module includes

a GeneMatrixBuilder class that can build a dual-primal mapping matrix from an existing GPRCon-

tainer. This modular definition enables further extensions to the concept of MCSs by modifying the DM

matrix.

3.3 TROPPO: A framework for context-specific metabolic

model extraction and omics data integration

TROPPO is a novel library implementing several context-specific model extraction methods, essential for

modelling human metabolism through omics data integration, in the Python programming language. This

collaborative effort was necessary since many of these methods are available only through MATLAB, either

as a part of the COBRA Toolbox or as separate scripts. The library can be divided in three main parts,

namely, algorithms, omics data processing and model validation.

Omics data platform TROPPO implements features to process data with transcriptomics and pro-

teomics measurements. It provides simple commands to import the data through the pandas library

[134], an external Python package that assists in loading and manipulating tabular data from various for-

mats. Omics measurements are standardised into data structures that function as inputs for the algorithms

implemented in TROPPO. Identifier conversion features are also provided and genes present on the HUGO

Gene Nomenclature Committee (HGNC) database can be easily converted into different nomenclatures.
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Context-specific model reconstruction The main feature of TROPPO is the implementation of

context-specific metabolic reconstruction (CSMR) algorithms in a Python environment. Several context-

specific model extraction methods were reimplemented as a part of this framework in a modular archi-

tecture where new algorithms can easily be added, using standardised inputs. CoBAMP is used for these

implementations and thus, TROPPO also shares the same compatibility with other frameworks. Model

refinement is also achieved through gap filling methods.

Model validation The package also provides methods to validate context-specific models, leveraging

the efficient batch simulation routines provided by CoBAMP to predict phenotypes for multiple models and

biological scenarios with simple commands. Moreover, TROPPO also includes a task evaluation module

and with an intuitive metabolic task definition. Tasks can also be loaded and exported into JavaScript

Object Notation (JSON) files for later use.

3.3.1 Omics data processing

The class architecture for omics data handling in TROPPO is based on previous works by Correia et al.

[135]. An omics module contains the data structures and routines required to load and process omics

datasets. The main classes and data flow implemented in the omics module are represented on Figure

13 Firstly, each omics data sample is stored in an OmicsContainer object, which is a generic container

with four fields:

• data: A dictionary mapping valid biological database identifiers with a numeric value;

• condition: A string identifying the sample;

• nomenclature: A string identifying the biological database to which the identifiers belong;

• omicstype: A string identifying the type omics data (e.g., transcriptomics).

This object contains several methods to deal with missing values, apply transformations and extract

meaningful sets of genes or metabolites according to a user defined threshold. When dealing with tran-

scriptomics, gene/transcript names can be converted into a desired nomenclature. The most important

feature added to this class, however, is the get_integrated_data_map class method that generates

OmicsDataMap objects containing reaction scores that can be integrated into constraint-based models.

This method requires an AbstractModelObjectReader instance from CoBAMP which is then used
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to match the model’s gene identifiers and GPR rules with the ones present in the OmicsContainer data

field, finally returning an OmicsDataMap object with integrated scores.

The omics module also contains a readers sub-module implementing parsers for generic tabular

data, as well as microarray and Human Protein Atlas proteomics data. Since most datasets of this sort

are stored as 2-dimensional arrays, a TabularContainer class was also implemented to facilitate

loading and storage of measurements and their associated biological entity and sample identifiers. The

OmicsMeasurementSet subclass further expands it to allow conversion of dataset entries into Omic-

sContainer objects, while its TypedOmicsMeasurementSet subclass further allows for conversion

of feature identifiers when provided with an IdentifierMap object, which is capable of converting bi-

ological identifiers for various databases when supplied with a mapping from resources such as HGNC

[136].

Finally, an integration sub-module was added to handle OmicsDataMap objects and integrate them

as inputs for context-specific model reconstruction algorithms. The ScoreIntegrationStrategy

abstract class defines a template for that purpose, forcing the implementation of an integrate method

that takes an OmicsDataMap object as input and returns an appropriate score input depending on the

algorithm to be used. Five of these strategies were implemented as part of the context-specific metabolic

reconstruction pipeline featured in this work.

3.3.2 Context-specific reconstruction and validation methods

The implementation of context-specific model reconstruction methods was organised in two distinct mod-

ules. The methods module contains algorithm implementations that are independent of metabolic model

abstractions and mainly deal with inputs in numerical formats. A methods_wrappers module contains

classes and mappings that allow the usage of these algorithms with higher-level containers such as objects

representing entire metabolic models.

3.3.2.1 Model extraction and refinement algorithms

In TROPPO, the methods module contains algorithms that directly operate on constraint-based models

or rely on the usage of linear programming formulations that use network topology and stoichiometry

as inputs. The class structure and modular organisation of the algorithms implemented in troppo can

be visualised on Figure 14. Both the ContextSpecificModelReconstructionAlgorithm and

GapfillAlgorithm wrappers share a common constructor template, requiring a stoichiometric matrix,
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TabularContainer

+ data: DataFrame

+ column_names: list

+ row_names: list

+ transform(func: function): None

OmicsMeasurementSet

+ to_omics_container(sample_id: str): OmicsContainer

TypedOmicsMeasurementSet

+ omics_type: IdentifierMapping

+ convert_feature_ids(from_id: str, to_id: str): None

IdentifierMapping

+ name: str

+ map_ids(ids: list[str], from_id: str, to_id: str): list[str]

OmicsContainer

+ name: str

+ data: dict

+ nomenclature: str

+ otype: str

+ get_integrated_data_map(model_reader: AbstractObjectReader,
and_func=function, or_func=function): OmicsDataMap

OmicsDataMap

+ scores: dict

+ select(op: str, threshold:float): list[str]

ScoreIntegrationStrategy

+ integrate(data_map: OmicsDataMap): dict

ReactionProtectionMixin

+ protected_reactions: list[str]

ContinuousScoreIntegrationStrategy

+ score_apply: function

CustomSelectionIntegrationStrategy

+ group_functions: list[function]

AdjustedScoreIntegrationStrategy

+ score_apply: function

ThresholdSelectionIntegrationStrategy

+ score_apply: function

DefaultCoreIntegrationStrategy

+ score_apply: function

Figure 13: Overview of the omics data processing layer implemented in TROPPO.

flux bound vectors and an object containing algorithm specific properties. The output of the mandatory

run class method is always a vector of Boolean values, one for each flux in the input model, representing

a reaction’s state as absent (False) or present (True) in the reconstructed model for the supplied context,

which is passed as a property in the appropriate class.

Algorithm properties are represented as PropertiesReconstruction or GapfillProperties

instances which are subclasses of CoBAMP’s PropertyDictionary class, which encapsulates a dic-

tionary mapping property identifiers with their respective values. This implementation allows the definition

of mandatory and optional properties as well as type checking. Every algorithm in TROPPO requires the

implementation of the appropriate subclass to accommodate for the specific inputs of each method. By

defining the omics data input as a property, the same parent class can be used for algorithms with vastly

different input formats, which effectively detaches the input processing step from the model extraction
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PropertiesReconstruction

+ from_integrated_scores(scores: dict): type

tINITProperties FastcoreProperties CORDAPropertiesGIMMEProperties IMATProperties

ContextSpecificModelReconstructionAlgorithm

+ properties_class: PropertiesReconstruction

+ run(): list[int]

GIMME tINIT FASTcore CORDA IMAT

PropertyDictionary

+ mandatory_properties: dict

+ optional_properties: dict

+ properties: dict

GapfillProperties

+ properties_class: dict

EFMGapfillProperties
EFMGapfill

+ run()

GapfillAlgorithm

+ properties_class: GapfillProperties

+ run(): list[int]

Figure 14: Overview of the class structure for the model extraction and refinement methods implemented
in TROPPO.

step.

PropertiesReconstruction defines a single mandatory property, a string that represents the

linear programming solver to be used for optimizations. GapfillProperties is similar, but additionally

implements the lsystem_args optional property that influences the steady-state balance of the model

(useful in task-based gap filling) and avbl_fluxes which is an optional list of fluxes that should be

considered as present prior to the execution of the gap filling algorithm.

3.3.2.2 Context-specific method wrappers

With a generic definition of a context-specific model extraction algorithm, the entire pipeline can be made

available through a higher-level wrapper class that includes routines to use an AbstractModelObjec-

tReader, an OmicsContainer and algorithm specific properties to return an algorithm’s output.
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Firstly, a ModelBasedWrapper class is defined, containing routines to extract appropriate inputs

from an AbstractModelObjectReader class, namely the stoichiometric matrix and flux bound vec-

tors, which will be needed to create algorithm instances. The subclasses of this abstract class must

then implement run methods that can interpret PropertyDictionary subclass instances and asso-

ciate their type with the correct algorithm. To do this, the methods_wrappers module contains several

dictionaries which are constantly updated as more methods are implemented. These dictionaries are:

• map_properties_algorithms: Maps PropertyDictionary subclasses with ContextSpeci-

ficModelReconstructionAlgorithm subclasses;

• algorithm_instance_map: Maps strings with the algorithms’ names with the appropriate

ContextSpecificModelReconstructionAlgorithm subclass;

• integration_strategy_map: Maps strings with a scoring strategy’s name with the associated

ScoreIntegrationStrategy from the omics.integration module.

Context-specific model extraction methods can be used through the ReconstructionWrapper

class, a subclass of ModelBasedWrapper which implements a run_from_omics method whose

mandatory arguments are:

• omics_data: An OmicsContainer instance with loaded data, an iterable with a numeric score

for each of the model’s reactions or a dictionary mapping reaction identifiers with their activity

scores;

• algorithm: A string representing an algorithm within the keys of algorithm_instance_map;

• integration_strategy: A ScoreIntegrationStrategy instance or a tuple with two el-

ements, namely the integration strategy name found in integration_strategy_map and the

mandatory parameters for its construction;

• and_or_funcs: A tuple with two functions to replace, respectively, the and and or Boolean oper-

ators.

This method encompasses part of the input preprocessing and model reconstruction steps in the

pipeline detailed in Chapter 4. Its output is a processed dictionary mapping string identifiers for each

reaction in the model with the associated Boolean presence flag. A similar class architecture is employed

58



3.3. TROPPO: A FRAMEWORK FOR CONTEXT-SPECIFIC METABOLIC MODEL EXTRACTION AND OMICS DATA
INTEGRATION

ModelBasedWrapper

+ S: array

+ lb: array

+ ub: array

+ model_reader: AbstractObjectReader

ReconstructionWrapper

+ run(PropertiesReconstruction): dict[str,bool]

+ run_from_omics(
omics_data: OmicsContainer,
algorithm: str,
integration_strategy: list[str,object],
and_or_funcs: tuple[function]): dict[str,bool]

GapfillWrapper

+ run(
avbl_fluxes: list[str],
algorithm: str,
ls_override: dict): list[str]

map_properties_algorithms
key: PropertiesReconstruction
value: ContextSpecificModelReconstructionAlgorithm

algorithm_instance_map
key: str
value: ContextSpecificModelReconstructionAlgorithm

integration_strategy_map
key: str
value: ScoreIntegrationStrategy

gapfill_algorithm_map
key: str
value: GapfillAlgorithm

gapfill_properties_map
key: GapfillProperties
value: GapfillAlgorithm

Figure 15: Overview of the class structure for the higher-level wrappers used to simplify the process of
reconstructing and refining models with TROPPO.

for gapfilling methods, where a GapfillWrapper class implements a run method with the same input

parameters as those defined in the GapfillProperties class along with an algorithm string present

in which defines the gapfilling algorithm present the keys of a gapfill_algorithm_map that maps

algorithm names with their classes. The organisation of these wrappers, parameters and data structures

registering the various algorithms are depicted on Figure 15

3.3.3 Model validation

Model validation in TROPPO can be performed either through simulation with a phenotype prediction

method (validation sub-module) or through metabolic tasks (tasks module).
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3.3.3.1 Phenotype prediction

Constraint-based model simulation tools are already available through Python frameworks such as CO-

BRApy, ReFramed and even CoBAMP, and thus, TROPPO only implements a ContextSpecificMod-

elSimulator class with a simulate method to provide an abstraction for the flux bound contexts from

context-specific model extraction methods and environmental conditions.

The ContextSpecificModelSimulator class requires a ConstraintBasedModelSimula-

tor object from the CoBAMP framework, a scenarios dictionary that maps environmental condition names

with dictionaries mapping flux identifiers with upper and lower bounds and a post_process optional

argument where a function can be passed to further process the simulation results into a desired format.

The implemented simulate method is similar to that found in ConstraintBasedModelSimulator’s

batch_simulate method, requiring objective coefficients and a simulation function (phenotype predic-

tion method) as well as an additional contexts dictionary that maps sample names (strings) to the outputs

of ReconstructionWrapper’s run_from_omics method (dictionaries mapping flux identifiers with

Boolean values). Since batch_simulate is used, these optimizations are always run in parallel.

3.3.3.2 Task evaluation

Metabolic task evaluation is a feature that is present in both the COBRA and RAVEN toolboxes for MATLAB,

but is missing in Python frameworks. Furthermore, the definition of metabolic tasks for these frameworks

differ, which elicited the development of a generic data structure for loading and evaluating them. The

implemented tasks module contains a core sub-module that implements a Task object where the metabolic

task definition is stored and a TaskEvaluator object that uses CoBAMP to efficiently evaluate metabolic

tasks in parallel and a task_io object that implements routines to read and write tasks from JSON and

Microsoft Excel ©formatted files.

Parsers and writers are combined in the same TaskIO abstract class, requiring the implementation

of read_from_string and write_to_string which accept a string and a task as input and return

a Task object and a string, respectively. This abstract class already implements the read_task and

write_task methods that call the methods described above to perform reading and writing operations

according to the formatting implemented on their subclasses. JSON was chosen as the primary format

for reading and storage as it can be easily mapped into Python data structures, although a Microsoft Excel

©parser is also implemented since most available task lists are present in this format.

The Task class is the main component of this architecture. It defines a task as a set of flux conditions

60



3.3. TROPPO: A FRAMEWORK FOR CONTEXT-SPECIFIC METABOLIC MODEL EXTRACTION AND OMICS DATA
INTEGRATION

that are then converted into commands to modify an existing ConstraintBasedModel instance from

CoBAMP to properly assess the metabolic task. From the definition of metabolic tasks by both Thiele,

Agren and Richelle [34, 137, 138], a Task object requires, optionally, any combination of the following

inputs:

• name: String containing the task’s name;

• annotations: A dictionary with optional annotations such as extended descriptions;

• should_fail: Boolean flag that determines whether the task is supposed to fail;

• reaction_dict: Reactions to add to the metabolic model represented as a dictionary map-

ping the new reactions’ names with a dictionary containing the stoichiometric coefficients for each

metabolite and a pair of numerical lower and upper bounds;

• flow_dict: A dictionary with names of metabolites that interact with the extracellular medium

mapped to lower and upper bounds. This parameter is implemented as two separate dictionaries,

namely inflow_dict and outflow_dict for uptake and secretion, respectively;

• mandatory_activity: A list of reactions that are expected to be active when evaluating a task.

While this does not affect the evaluation itself, it can be used for further analysis.

The Task object contains auxiliary methods for manipulation of reaction identifiers and evaluation of

previously determined flux distributions. Although there are methods to evaluate a single task on a Con-

straintBasedModel object, its main purpose is to provide a way to store the task’s definition and

instructions about how the metabolic model must be modified for it to be evaluated. This is achieved

through the get_add_reaction_cmds which uses partial functions to queue calls to Constraint-

BasedModel’s reaction addition functions and the get_task_bounds function which returns a dictio-

nary mapping flux identifiers with flux bounds to be changed.

With at least one Task object and a ConstraintBasedModel or AbstractModelObjectReader,

a TaskEvaluator can be instantiated, using a CoBAMPmetabolic model as a basis for the optimizations

required for task evaluation. Although this object loads all supplied tasks, only one can be evaluated at

once. For this reason, a current_task class attribute holds a string that represents the Task object’s

name field and can be set by the user to change the task to be tested. All modifications required for each

61



CHAPTER 3. SOFTWARE DEVELOPMENT

task are introduced into the model upon calling the constructor, a process that would otherwise incur in a

significant amount of time if it was done iteratively for each task.

Any given task can then be evaluated by setting the current_task parameter to the name string

associated with the Task object. While this is inherently single-threaded, for large sets of flux bounds

to be tested, a batch_evaluate function is supplied, allowing parallel evaluation of these contexts for

each task, which, although not truly parallel, significantly improves performance.

The output for any TaskEvaluation result is a tuple with 3 elements, namely the task evaluation

status in relation with the expected outcome (should_fail parameter), a dictionary mapping flux iden-

tifiers in the mandatory_activity parameter with their status as active or inactive, as well as the flux

distribution generated as part of this evaluation.

3.4 GRASP: Integrating causal and Boolean network logic in

constraint-based models

The implementation of CoBAMP as a generic constraint-based modelling framework is also complemented

by the GRaSP package, which adds the ability to load causal or Boolean networks as graph representations

for further integration. Although the only phenotype prediction method, designed as a result of this work,

is also reliant on omics data, the mathematical representations used for regulatory and signalling networks

are fundamentally different than those found on constraint-based models. As such, GRaSP is a separate

entity that is completely optional and not a part of either CoBAMP or TROPPO.

3.4.1 Graph data structures

The first step towards the inclusion of causal interaction graphs in constraint-based models was the im-

plementation of classes that could represent a graph and allow for its manipulation.

3.4.1.1 Graph representation

Formally, a graph 𝐺 = (𝑉 , 𝐸) is assumed as a collection 𝑉 of vertices (or nodes) connected through a

set of edges 𝐸. In GRaSP, both edges and nodes are represented as objects that always implement two

abstract classes that ensure a string identifier (IdentifiableEntity) and an annotations field with

miscellaneous information (AnnotateableEntity) are present.
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A Node object appropriately represents a single vertex, and can only hold the same fields defined in

its parent classes. An Edge object, however, contains two additional mandatory properties, namely the

source and incident vertices, which must be Node instances. Edge objects can be subclassed, with a

WeightedEdge subclass representing an edge with an associated weight.

The two data structures for representing vertices and edges allow us to define a GenericGraph class

that attempts to represent any simple graph such as 𝐺 . Since these representations are only needed to

store information, there is no distinction between directed and undirected edges. The GenericGraph

class can thus be instantiated using only a collection of Node and Edge objects as posed by the simple

definition 𝐺 = (𝑉 , 𝐸). However, this graph representation includes add and remove methods to ma-

nipulate the graph and perform critical checks such as verifying whether valid Node and Edge objects are

being added. Furthermore, a remove_unconnected_edges method ensures the graph is consistent

so that every edge connects vertices that have been added to the graph.

3.4.1.2 Input methods

A parser was implemented to store graph structures into organized files. The chosen format for these

operations is a simple variation of the Simple Interaction Format (SIF) format already used in other network

analysis tools. This tabular format assumes three columns, namely source, weight and target where

each row is a single graph edge. In each row, the source and target columns are, respectively, the

source and incident nodes of the edge while the weight column is meant to be a numerical value which

can be used, as an example, to encode the interaction type. A SIFParser class implements a parse

method that accepts the table as a pandas DataFrame instance and returns a GenericGraph object

with new Edge instances as encoded in the table and new Node objects inferred from the unique elements

of the source and target columns.

3.4.2 Integrated modelling of signalling, gene regulation and metabolism

The input data structures implemented in GRaSP, as well as the constraint-based model representation

available in CoBAMP, provide the necessary tools to build models with extended model representations

spanning several biological layers. These features are included in the integration module containing

two important sub-modules: (1) the models sub-module extends CoBAMP’s constraint-based models to

include additional layers while the (2) simulation sub-module implements novel phenotype prediction

methods based on them.
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3.4.2.1 Modelling framework

In this work, integrated models are formalised using the same mathematical principles as constraint-based

models. As such, extensive use of the CoBAMP framework was essential to simplify the implementation

of integrative approaches since its ConstraintBasedModel class already implements several features

essential to manipulate and optimize the linear programming problems it represents. A two-step hierarchy

was devised so that there is an IntegratedGPRModel class that integrates gene expression and an

IntegratedGPRCausalModel subclass that further expands it to include causal interactions.

The IntegratedGPRModel class is itself a subclass of ConstraintBasedModel and operates

in a similar fashion. However, its constructor accepts a ConstraintBasedModel instance with gene-

protein-reaction rules which then serves as a template to build a new LP problem integrating gene expres-

sion. It additionally contains several fields that are inferred from the input model, such as the metabolites

and reactions that are exclusively part of the metabolic model. A get_integrated_gpr_model func-

tion implements the process described in 5.2.1, accepting a ConstraintBasedModel and returning

a new instance with the expanded system. The output of this function is then used by the constructor to

initialize the IntegratedGPRModel with the new pseudo-reactions and pseudo-metabolites.

Similarly, the IntegratedGPRCausalModel class has a constructor with the exception of an ad-

ditional graph parameter which must be a GenericGraph instance. Also similarly to the previous de-

scription, there is a merge_linear_with_causal_model function which takes the same parameters

but this time modifies the existing model instance to include the causal interactions present in graph, inte-

grating them as reactions and metabolites. The constructor of IntegratedGPRCausalModel calls its

parent class’ constructor and then calls the merge_linear_with_causal_model referencing itself

as the model input. This class defines an additional property named causal_interaction_edges

encoding the causal interactions added to the model as a dictionary mapping reaction identifiers with the

gene pseudo-metabolites it connects.

3.4.2.2 Phenotype prediction

The model representations in this work were developed primarily to be used with the integrated parsimo-

nious flux balance analysis (ipFBA) approach presented in Chapter 5. The routines necessary to implement

this method were integrated in the simulation.ipfba sub-module within the integration module

of the GRaSP framework.

The computational requirements of the LP problem formulated in IntegratedGPRCausalModel
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instances, as well as the additional constraints of ipFBA may exceed the memory limits of many consumer

grade computers. The in silico experiments carried out using the Human-GEM metabolic model

often surpassed 10GB. To mitigate this, all ipFBA simulations are performed using the LP problem that

is generated through the IntegratedGPRCausalModel so that it is not duplicated in the process of

performing a new simulation.

The ipFBA approach is implemented by the IPFBA class whose mandatory constructor arguments

imply the existence of an IntegratedGPRCausalModel instance and a collection of SimulationOb-

jective classes encoding objective constraints as defined by the method. The constructor then stores

this model in a model field and calls the prepare_ipFBA_model routine which adds appropriate con-

straints as per the definition of ipFBA

Objective constraints are stored as SimulationObjective instances. This class accepts LP ob-

jectives as input, encoded using the following arguments:

• A dictionary of variables (reactions) mapped to floating-point values denoting its coefficient in the

objective function.

• A Boolean flag indicating whether this is a minimization or maximization objective

• A string with the objective’s name

The SimulationObjective class then implements a get_boundsmethod which accepts a Con-

straintBasedModel instance and optimizes the LP problem contained in the instance, yielding the

objective’s value. These methods are used by the IPFBA upon instantiation to pre-calculate the bounds

for the objective constraints so that they can be then adjusted before simulating.

Finally, the run method accepts a set of objective bounds, which are lists of tuples encoding the range

of optima allowed in the simulation, gene and expression constraints as dictionaries mapping gene names

to positive floating point values and finally, optimization weights as dictionaries mapping model reactions

to objective function coefficients which are then use to set the global objective function of the LP problem.
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4

A pipeline for large-scale reconstruction and
validation of context-specific models

The work presented in this chapter

was developed in co-authorship with

Jorge Ferreira as part of a publication

that was submitted and is now

pending review.

4.1 Introduction

Context-specific models can be particularly useful for researching cancer metabolism, since they have

been shown to be able to simulate rapid growth, mutations in metabolic genes and the Warburg effect

(aerobic glycolysis) [139]. Several methods were developed to build draft cell/tissue-specific metabolic

models throughout the past years, taking as inputs a template generic GSMM and different types of omics

data.

The steps involved in the reconstruction of tissue-specific metabolic models cover various tasks ranging

from omics data preprocessing to model reconstruction and validation. The complexity of these steps

elicited the development of pipeline to successfully integrate omics data and create models capable of

successfully predicting cell metabolism. Previous works by Richelle have described methods and key

considerations to take into account when building such models [138, 140].

The challenges and multiplicity of algorithms and parametrisation involved in this process elicited the

development of a generic pipeline for context-specific model reconstruction, allowing the assessment on the

impact of different data preprocessing and algorithm choices by validating models against two datasets with
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PARAMETER SELECTION
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REFINING

Context-
specific
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Figure 16: Overview of the context-specific model reconstruction pipeline implemented as part of this work.
The inputs for any reconstruction start with a metabolic model and omics data which are integrated through
reconstruction algorithms into context-specific models that can optionally be refined. When more than one
sample is available, a reference sample can be used to fine tune parameters according to predefined
performance metrics.

phenotypic data. In a first set of experiments, this pipeline was applied to generate multiple reconstructions

of the MCF-7 breast cancer cell line using recent transcriptomics data and knockout screenings from the

Cancer Cell Line Encyclopedia (CCLE) [141–143], as well as fluxomics and proteomics data from a recent

work by Katzir et al [144].

4.2 Methods

The methods implemented as part of this work consist in a context-specific metabolic reconstruction

(CSMR) pipeline containing four essential steps: input preprocessing (1), context-specific reconstruction

(2), refinement (3), validation (4) and an optional parameter calibration step that is only used for large-

scale reconstructions. The pipeline and interactions between its different components are highlighted on

Figure 16.

4.2.1 Input preprocessing

The inputs for any context-specific reconstruction always involve a template genome-scale metabolic model

capable of yielding a non-zero flux distribution and only containing reactions capable of carrying non-zero
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flux, as well as a set of omics measurements integrated in the model via CSMR algorithms.

4.2.1.1 Model preprocessing

We first ensure the model is consistent by identifying blocked reactions - whose maximum and minimum

fluxes are null under open exchange conditions - with flux variability analysis, using the find_blocked_-

reactions function from the COBRApy package. We also remove any boundary metabolites - usually

added to balance exchange reactions - prior to running any reconstruction, gapfill, or analysis method.

This model must be feasible in steady-state conditions and must be capable of allowing flux through the

biomass pseudo-reaction.

4.2.1.2 Transcriptomics data as a proxy of enzyme activity

In this pipeline, we focus specifically on transcriptomics data that is mappable with the model’s gene

associations, although some methods allow integration of other data types.

Similarly to previous approaches [41, 138, 140], we use transcriptomics data as a proxy for enzyme

presence and flux activity from which we can calculate reaction activity score (RAS) to serve as inputs for

CSMR algorithms. These scores should ideally reflect whether a given reaction in the model is likely to

be present in the context represented by the transcriptomics data. The work of Richelle et al. details the

implications of several ways to infer glsRASs and provides several thresholding options [140], which we

adapted as a part of our work. Out of the parameterisation choices highlighted by the authors, we focused

on varying the thresholding approach and GPR integration functions.

Using transcriptomics to characterize enzyme activity is not trivial, since the relationship between

messenger RNA and protein expression is not fully understood, despite ongoing progress in quantifying

both of these biological entities. However, Nusinow et al. have recently quantified the proteome for a subset

of the CCLE panel and found a moderately positive correlation (mean Pearson c.c. = 0.48) between mRNA

and protein abundance [145]. In this work, we assume a linear relationship so that RASs are calculated

based on gene expression measurements.

4.2.1.3 Scoring transcript activity from expression measurements

RNA-Seq technologies typically produce transcript-level measurements represented as proportions of the

entire transcriptome. However, we intend, for the RASs used in this work, to obtain a positive or negative

value relative to reference thresholds calculated across all samples. To this end, we process expression
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measurements into a transcript activity score transcript activity score (TAS) that can better represent this

dichotomy.

We first define the concept of a global threshold, where the expression of all genes contribute. This

is useful in filtering out transcripts whose expression is low or high enough for them to be assigned as

inactive or active, respectively, with a high degree of confidence. However, this type of thresholding does

not take into account the variability of measurements between transcripts. While originally available for

microarray-based transcriptome quantification [146], a generic expression barcode for all cell types is hard

to define and apply in RNA-Seq measurements, due to the different conditions in which experiments are

performed.

A local thresholding approach can also be considered to mitigate the aforementioned problems. Rather

than condensing the entire measurements into a single value, thresholding can be performed on a per

gene basis, yielding a value for each gene independently. Similarly to the global thresholding approach,

local thresholds can also be used as a reference for fold change calculations.

In this pipeline, both thresholds are calculated by first determining transcript-wise quantiles for various

percentages (from 10% to 90%), yielding multiple sets of local thresholds, one for each percentage. To

convert the latter to global thresholds, we use the mean value of a local threshold set to obtain a single

representative value for the entire expression dataset.

After establishing appropriate thresholds, we can then combine them to establish rules that can be

used to determine whether a transcript is active and calculate its TAS to better represent that activity level.

We implemented an approach based on the work of Richelle et al [140], where transcript activity can be

represented in two main states, namely:

• Inactive: transcript expression is inactive with a high degree of confidence - assigned when expres-

sion values are lower than a global lower threshold (𝑔𝑚𝑖𝑛). The expected TAS values will always be

negative.

• Active: transcript expression is active with a high degree of confidence since its value exceeds a

global upper threshold (𝑔𝑚𝑎𝑥 ). The expected TAS values are always positive.

This also implies the existence of an intermediate state of uncertainty for cases where transcript

expression lies between the two thresholds. In these cases, we distinguish between active and inactive

transcripts by comparing the transcript’s expression with its transcript-specific local threshold (𝑙 (𝑦)) and
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Table 7: Functions used to convert transcript expression values into transcript activity scores, assuming
𝑥 as a vector of expression levels for each transcript. The “Expression value” column represents the
condition that values in 𝑥 must meet for the corresponding reference threshold 𝑡 used to calculate a ratio
with the formula 𝑙𝑜𝑔( 𝑥𝑖𝑡 ). Finally, the range of TAS values for each condition is detailed on the last column.
* In the local 2-state strategy, the TAS range does not start at 0 since 1 is added to the formula in the
specific case when the expression value is greater than 𝑔𝑚𝑎𝑥

Strategy Expression value Reference threshold TAS range

Global 𝑥 ≥ 0 𝑔𝑚𝑎𝑥 ] − ∞,∞[

Local 1-state
𝑥 ≤ 𝑔𝑚𝑎𝑥 𝑔𝑚𝑎𝑥 ] − ∞, 0[
𝑥 ≥ 𝑔𝑚𝑎𝑥 𝑙 (𝑦) ] − ∞,∞[

Local 2-state
𝑥 ≥ 𝑔𝑚𝑎𝑥 𝑔𝑚𝑎𝑥 [1,∞]*
𝑥 ≤ 𝑔𝑚𝑖𝑛 𝑔𝑚𝑖𝑛 ] − ∞, 0[

𝑔𝑚𝑖𝑛𝑥 < 𝑔𝑚𝑎𝑥 𝑙 (𝑦) [−1, 1]

the expected TAS value is constrained between -1 and 1, with its sign reflecting whether it is considered

active.

We implemented three thresholding strategies based on the work of Richelle et al [140] with some

minor changes to accommodate for the expected distribution of TAS values across multiple states. A

global thresholding strategy implies a single global threshold to distinguish between active and inactive

transcripts. An extension of this strategy, named local 1-state, includes local thresholding for transcripts

that would otherwise be considered as inactive, and assigns TASs based on the ratio between expression

and the transcript’s local threshold. Finally, we also included a local 2-state strategy defined by the usage

of two thresholds and an intermediate state, as defined above.

TASs are then generated by calculating the ratio between measured expression values and an appro-

priate threshold which is chosen according to the state in which the transcript is assigned. A detailed

description of the formulae used in each state for the three employed strategies can be found on Table 7.

4.2.1.4 Inferring reaction activity from transcript scores

The TASs from the aforementioned strategies are then converted to RASs using the GPR rules provided with

the model. GPR rules are Boolean expressions that describe, for a given reaction, which combinations

of transcripts are involved with the synthesis of one or more enzymes capable of catalysing it. These

rules are often expressed or can be converted into disjunctive normal form, where multiple conjunctions

(expressions with the AND operator) denoting the various enzymes or isoforms involved are bound by a

disjunction (OR operator).
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RASs must be presented as continuous scores and, thus, the Boolean operators in GPR rules must

be replaced with numerical values. We replaced AND operators with a minimum function - an enzyme’s

activity is limited by the lowest expressed transcript/subunit - while OR operations could be replaced with

either sum or maximum functions. When using sum, we assume the reaction activity correlates with the

combined activity of all enzymes and isoforms catalysing it, while the maximum function equates reaction

activity with the highest expressed enzyme’s score.

4.2.2 Model reconstruction

4.2.2.1 Normalizing inputs for context-specific reconstruction algorithms

This step includes conversion of RASs into inputs accepted by the different CSMR algorithms, given their

diverse nature, and we have implemented two alternatives to perform this conversion in our routines.

Although our pipeline is generic, we have chosen the FASTCORE [99] and Task-driven Integrative Network

Inference for Tissues (tINIT) [34] algorithms for context-specific model reconstruction.

Methods such as tINIT , where scores mirror the reactions’ states as present or absent, can take RAS

as input without any further processing. On the other hand, algorithms such as FASTCORE require a set

of core reactions as input. In this case, a further threshold must be applied for these to be obtained. In

our work, we emphasized the division between positive and negative scores to represent activity, and as

such, core reactions are those with a RAS above 0.

4.2.2.2 Algorithm output and post-processing

With the inputs appropriately adapted, the output of each algorithm is always a binary vector 𝑟 of size

𝑛 (equal to the number of reactions in the template model), indicating reactions’ presence. Indeed, this

vector includes Boolean flags indicating whether each reaction should be kept or removed in the context-

specific model.

The models generated by the CSMR algorithms are then checked for consistency with expected phe-

notypes. For each of these models, we knockout (set lower and upper bounds to 0) reactions flagged

for removal before to perform any simulation or analysis. We first check whether the model is capable

of allowing non-zero flux through the biomass reaction, to ensure lethality can be tested. When growth

medium formulations are available, we can additionally ensure that the model is feasible and capable of

growth if the compounds present in growth media are the only ones allowed to be consumed. This is
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achieved by constraining exchange reactions that do not involve medium metabolites to only allow positive

flux values, thus only allowing medium metabolites to be consumed by the model.

4.2.3 Refinement

When the preliminary checks described above fail, gap fill approaches can be employed to infer sets of

missing reactions that can expand the solution space and enable expected phenotypes.

4.2.3.1 Elementary flux mode-based gap filling approach

Gap filling was performed using a novel EFMGapfill approach, which was implemented in the troppo Python

package. This algorithm leverages efficient elementary flux mode (EFM) enumeration algorithms to find

minimal sets of active fluxes required for feasibility under a specific condition. Assuming a stoichiometric

matrix 𝑆 of𝑚 metabolites and 𝑛 fluxes, the flux vector 𝑣 and an identically sized vector 𝑦, and a set 𝐾 of

reactions available to fill gaps, the LP formulation employed in EFMGapfill can be defined as follows:

min
∑
𝑝∈𝐾

𝑦𝑘 (4.1)

s.t.
𝑛∑
𝑗=1

𝑆𝑖, 𝑗 · 𝑣 𝑗 = 0 (∀𝑖 ∈ {1, ...,𝑚}) (4.2)

𝑦𝑘 −𝑀𝑣𝑘 ≥ 0 (∀𝑘 ∈ 1, ..., 𝑛) (4.3)

𝑣𝑘 − 𝑦𝑘 ≥ 0 (∀𝑘 ∈ 1, ..., 𝑛) (4.4)

𝑣𝑘 ≥ 0 (∀𝑘 ∈ 1, ..., 𝑛) (4.5)

𝑣 ∈ ℜ𝑛
0+, 𝑦 ∈ {0, 1}, 𝑀 = 106

(LP1)

(4.6)

In the formulation represented in LP 4.1, constraint 1 defines the steady-state constraint, similarly to

other constraint-based approaches, such as FBA. Constraints 2 and 3 associate the binary variables in

𝑦 to the fluxes in the vector 𝑣 . In this expanded solution space, the variables in 𝑦 will hold a value of 1

if their associated flux in the vector 𝑣 is greater than 1. Otherwise, both variables are set to 0. These

variables and indicator constraints are then used to discretize fluxes into active and inactive states. The

objective function is dependent on the set of reactions 𝐾 available for the algorithm to add as a gap filling

solution, although the objective is always to minimize the sum of a subset of the vector 𝑦 whose indices

are contained in 𝐾 .
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We adapt the input 𝐾 according to a Boolean vector 𝑟 (a set of reaction indices). 𝐾 will have all

reactions from the template model not included in 𝑟 . The vector 𝑟 is typically the output of a previously

determined CSMR reconstruction. Furthermore, we also define and constrain an objective reaction 𝑢

(usually the biomass pseudo-reaction) to always carry non-zero flux, representing a phenotype that is

expected to be maintained upon tailoring the model to the subset of reactions in 𝑟 .

We identified two possible gap filling scenarios that can be accomplished using this approach. In the

first, we do not assume constraints on external metabolite exchanges and thus, we also exclude these

reactions from 𝐾 . The resulting solution from our gap filling approach is the smallest set of intracellular

reactions not found in 𝑟 that should be included so that the context-specific model is capable of carrying

flux through 𝑢.

An alternative scenario may arise where the set of reactions 𝑟 must not be manipulated, but the

model still requires gap filling to predict growth. The growth medium, rather than the enzyme content

of this model must be the target for manipulation. In this case, all intracellular reactions not in 𝑟 must

be constrained and exchange reactions must be split into forward and reverse reactions carrying flux in

opposite directions. To find the minimal set of extracellular metabolites required for the model to carry

flux through 𝑢, the set 𝐾 must be defined as the set of reverse exchange reactions in the model.

4.2.4 Validation

An important question arising from any CSMR process is ensuring the reconstructed models are capable

of capturing the metabolic context of the cell or tissue, as represented by their corresponding omics

measurements. Although literature review may reveal expected behaviours and phenotypes associated

with the specific context to be modeled, a truly systematic validation of these models can only be achieved

with large-scale datasets covering a wide range of measured biological entities. Such experiments should

clearly point out the effect of perturbations that can be mapped onto the model on cell metabolism so that

simulated fluxes become directly comparable. In this section, we describe how gene knockout screens

and fluxomics can be integrated in our pipeline to validate these models.

4.2.4.1 Gene essentiality

Gene essentiality screens, such as those performed with CRISPR, provide a directly quantifiable measure-

ment of the impact of gene deletions on cell viability, which can be modeled on CBMs through metabolic

tasks [41]. The biomass objective function, included in most human models, groups most of these tasks’
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demands by aggregating the necessary components for cell division and maintenance. Given the compu-

tational demand of checking multiple gene knockouts for each task and each omics sample, we will focus

on predicting lethal gene knockouts using the biomass objective function as a measure of cell growth.

The CBM workflow used to predict essential genes uses GPRs to determine the set of reactions to

exclude given a knocked-out gene 𝑔. To this end, we first obtain a mapping 𝜔 (𝑔, 𝑟 ), which evaluates the

GPR expression of reaction 𝑟 with every gene marked as active, except for 𝑔. To apply the gene knockout,

we must first determine the set 𝐾 = {𝑟 |𝑟 ∈ 𝑅,∀𝜔 (𝑔, 𝑟 )}, which identifies the reactions that are disabled

upon deletion of g; then, we set the lower and upper bounds of each reaction in 𝐾 to 0. Adding these

constraints to the model, the simulation can be run using FBA, yielding predicted growth rates for each

gene deletion.

Finally, flux distributions resulting from gene knockouts can be evaluated. It is useful to always compare

predicted mutant growth rates with wild-type levels. We considered several growth rate thresholds based

on the wild-type value to represent viability, although previous studies have considered growth rates below

0.1% of the predicted wild-type rate to imply lethality. Additionally, infeasible solutions are considered as

non-viable. We then discretize each gene knockout’s result as essential or non-essential and compare

them with the experimental screening.

We used Matthews’ correlation coefficient (MCC) to assess the predictive ability of our models. The

multiclass definition of MCC as implemented in the scikit-learn package is presented on Equation 4.7,

assuming a generic classifier to predict 𝐾 classes, 𝑡 as a vector with the amount of true positives and 𝑝

the vector with the amount of predictions each class 𝑘 , while 𝑐 is the total amount of true positive samples

for all classes and 𝑠 is the number of samples.

𝑀𝐶𝐶 =
𝑐 × 𝑠 −∑𝐾

𝑘 𝑝𝑘 × 𝑡𝑘√
(𝑠2 −∑𝐾

𝑘 𝑝
2
𝑘
) × (𝑠2 −∑𝐾

𝑘 𝑡
2
𝑘
)

(4.7)

4.2.4.2 Predicted fluxes

Alternatively, flux distributions obtained from the model using an appropriate phenotype prediction method

can be directly compared with experimentally measured fluxes, obtained from techniques such as isotope

labeling coupled with metabolic flux analysis. In this work, we employ parsimonious flux balance analysis

(pFBA) to predict phenotypes using our context-specific reconstructions. We have chosen this method

since it requires no prior knowledge and reduces the admissible solution space of FBA by assuming cells
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not only attempt to achieve the predefined cell objective, but also minimise the overall sum of metabolic

fluxes to do so.

A key limitation in using constraint-based models to predict flux values is the lack of reliable mea-

surements for substrate uptake fluxes. This directly influences the predicted growth rate and intracellular

fluxes. A more reliable comparison can be made by discretizing flux values into three classes: forward

active, if the flux is positive, reverse active if it is negative (flux is active, but carried in the reverse direction),

or null when there is no flux. Although less precise, this discards the usage of experimentally measured

external metabolite consumption rates. The model’s predictive ability can then be ascertained by using

metrics suitable for multiclass predictive models such as Matthews’ correlation coefficient or weighted F1

scores.

4.2.5 Flux analysis

Models reconstructed using our pipeline yielded flux distributions obtained frompFBA that were used for

further analyses. Before applying decomposition methods, statistical tests or using these data for classi-

fication tasks, we first scaled flux values to avoid numerical issues. To achieve this, we transformed the

entire dataset by applying a sigmoid function 𝑠 (𝑥) (Equation 4.8) that maintains flux signs, but brings very

large values closer. Standardization was not performed as keeping the flux sign intact allows for proper

interpretation of these values regarding alternative flux modes associated with the same reaction.

𝑠 (𝑥) = 𝑎 ·
(

𝑘

𝑘 + 𝑒𝑖𝑥

)
+ 1 (4.8)

Relevant fluxes were selected before using supervised or unsupervised algorithms by eliminating fluxes

with low variance. Furthermore, we also select an arbitrary number of features ranked by their significance

in explaining the variance of the data relative to a discrete clinical feature using one-way analysis of variance

(ANOVA) tests.

One of the methods used to analyse predicted fluxes is principal component analysis (PCA), which we

used to further reduce the high-dimensionality of the metabolic model’s solution space. We also inspected

principal component loadings to identify groups of fluxes that were relevant with the clinical features in the

biological samples from which the models were reconstructed.

Finally, we also used predicted fluxes to train supervised learning classifiers. We used Random Forest

classifiers with varying number of Decision Tree estimators. K-fold cross-validation was used to assess

the classifiers’ predictive performance using Matthews’ correlation coefficient as our metric. In some
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instances, we trained classifiers using severalpFBA flux distributions for the same cell line. To avoid the

inclusion of models from the same cell line in both training and testing folds, we have implemented a

custom cross validation routine that splits datasets by cell lines rather than by individual flux distributions.

4.2.6 Software availability

The software featured in this work was developed using the Python programming language. Although com-

patibility between language sub-versions should not cause any problems, we recommend using Python

3.6 and above. The entire source-code to perform all steps of the pipeline featured in this work is accessi-

ble through the GitHub repository at https://github.com/BioSystemsUM/human_ts_models/.

The packages cobamp, troppo, cobrapy, pandas, seaborn, scikit-learn andmatplotlib libraries are required

to replicate the results and analysis featured in this work.

A significant part of our model reconstruction pipeline has been implemented using the troppo frame-

work [147], developed in-house but freely available for the community. This software package provides

an environment for omics data processing and subsequent integration with constraint-based metabolic

models. This software is structured around two main parts: the omics layer handles data parsing, labeling

and normalization, as well as mappings to previously loaded constraint-based metabolic models; the re-

construction layer contains routines to easily adapt omics inputs into appropriate reaction-level scores and

run context-specific model reconstruction algorithms using novel implementations of existing methods.

We also used the cobrapy package [81] to read genome-scale metabolic models in the standardized

SBML format, manipulate their content and predict phenotypes usingpFBA. The IBM® ILOG® CPLEX®1

(version 12.8) solver was used for all constraint-based analyses and CSMR methods involving linear pro-

gramming optimization problems, with or without mixed-integer constraints. Some parts of the omics

data processing pipeline were performed using the pandas package. These routines have been general-

ized and included in the source-code of this work as auxiliary functions, although most parts of the input

preprocessing pipeline are fully accessible through troppo.

The remaining parts of the context-specific model reconstruction have also been implemented in sev-

eral components of troppo. Both fastCORE and tINIT algorithms used in this work were run using in-house

implementations, which had been validated in a previous work [147]. The EFMGapfill approach is a novel

addition to this software package and was implemented using an in-house implementation of the k-shortest

1https://www.ibm.com/analytics/cplex-optimizer
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EFM enumeration already available as part of cobamp [148]. This package was also used to run these

routines with multiprocessing support whenever applicable.

The plots featured in this work were generated using the matplotlib and seaborn libraries.

4.3 Results

Our first study evaluated the influence of different input processingmethods onmodel reconstruction, using

the MCF7 breast cancer cell line as a case study. We validated the predictive ability of each parameter

setup through a comparison of predictions from the reconstructed models with expected phenotypes from

gene deletion screens and fluxomics measurements. This cell line was chosen due to its common use in

many previous studies, from which a large quantity of knowledge and omics data can be accessed.

In a second stage, using knowledge from these MCF7 models, we selected the best performing pre-

processing options for each algorithm, and reconstructed various models for all cell lines, validating them

with gene essentiality predictions. In the absence of fluxomics measurements, we also assessed whether

such models could be used to generate relevant information for other tasks by using the result of several

pFBA simulations as features for supervised machine learning approaches.

4.3.1 Case-study setup

We used the Human-GEM (version 1.5.0) genome-scale metabolic reconstruction as our template model,

stemming from a recent effort by Robinson et al. to provide a consensus metabolic model for Homo

sapiens [41]. The model consists of 13417 reactions associated with a total of 3625 genes and 4164

unique metabolites, integrating knowledge from previous reconstructions. The model and auxiliary reaction

and metabolite tables were downloaded from the corresponding version release on the GitHub repository

at https://github.com/SysBioChalmers/Human-GEM.

The experimental data used in this work was obtained from two different sources. The Cancer Cell Line

Encyclopedia provides a pre-processed and standardised RNA-seq transcriptomics dataset for over 56000

genes across 1270 unique cell lines, with measurements expressed in transcripts per million (TPM). TAS

calculations were performed across the entire dataset, although the only integrated scores were those

whose associated genes were mapped to the template metabolic model.

These datasets are complemented with the Achilles dataset, characterizing lethal effects of over 18000

gene knockouts through CRISPR experiments [142, 143]. Gene essentiality scores from this experiment
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Table 8: Required parameters for model reconstruction and possible options from which to choose from
(separated by commas).

Parameter Options

Algorithm FASTCORE, tINIT
𝑔𝑚𝑖𝑛 quantile 10th, 25th, 50th, 75th, 90th
𝑔𝑚𝑎𝑥 quantile 25th, 50th, 75th, 90th
Local quantile 10th, 25th, 50th, 75th, 90th

Integration functions
AND minimum
OR maximum, sum

were generated using CERES [143] and processed further until these scores are normalized so that -1

and 0 represent, respectively, the median essential and non-essential gene knockout effects. For this

work, we considered five essentiality thresholds evenly distributed across the range between -1.5 and

-0.5. As of the first quarter of 2020, 739 cell lines had been included in the Achilles dataset [149],

which we then selected as the candidates for our large-scale model reconstruction effort. Gene/transcript

nomenclature was converted using the latest HUGO Gene Nomenclature Committee approved symbol

mappings whenever needed [136].

Fluxomics measurements for MCF7 cell lines were obtained as part of the dataset used in the analysis

of the work of Katzir et al. [144], where time-series metabolomics acquired through Liquid Chromatography-

Mass Spectrometry were used to estimate the rates of 44 reactions in three growth media conditions.

Despite being originally mapped to the reactions in the Recon 1 genome-scale metabolic model (GSMM),

we processed the data and matched these flux measurements and reaction directionality with the Human-

GEM template model.

4.3.2 Reconstruction of MCF7 cell line models

We first reconstructed models of the MCF7 cancer cell line by considering every possible combination of

the parameters displayed on Table 8, excluding invalid combinations. In addition to these models, we

included a MCF7 cell line reconstruction featured in the work of Robinson et al. as a baseline comparison

[41].

We obtained 320 models from this reconstruction effort and assessed their ability to correctly predict

essential genes and flux activity. To understand the influence of parameterization on the models’ perfor-

mance, we observed the distribution of values across multiple parameter options and evaluated parameter

importance numerically using a linear regression.
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4.3.2.1 Gene essentiality predictions

The results summarized on Figure 17 show that global thresholds have a greater impact on gene essentiality

predictions, since the local 1-state strategy, which places a greater emphasis on local thresholding leads to

worse gene essentiality predictions. Additionally, the average of all models reconstructed using the global

thresholding strategy is close to that found in local 2-state models.

Despite this similarity when comparing the average of all models for each strategy, the best predic-

tions were achieved using the local 2-state strategy, which is a clear indicator that a combination of both

thresholding approaches are useful to estimate RASs. Although the performance achieved using the local

2-state strategy could be attributed to the usage of two (rather than one) global thresholds, we observed

that the 𝑔𝑚𝑖𝑛 parameter has a negligible influence on the models’ predictive performance, which supports

our claim that, in fact, both local and global thresholds have a positive effect when combined into the

same TAS calculation strategy.

We were also able to infer some of the properties associated with the dataset, where 𝑔𝑚𝑎𝑥 and local

thresholds at the 25th percentile seem to have the most positive effect on predictive ability in all models.

Although the CERES score threshold representing the median essential gene knockout was set at -1, our

models show slightly increased predictive power at -0.75.

Aside from data preprocessing related parameters, we have found the best parameter combinations

are to use the tINIT algorithm in conjunction with the maximum function as replacement for the AND

operator. We also observed that refining the model with EFMGapfill to allow growth using only the defined

growth media metabolites as substrate did not result in better gene essentiality predictions.

4.3.2.2 Flux activity predictions

We also performed a similar assessment on the ability of our models to correctly predict reaction activity

and directions for the MCF7 cell line under three growth medium compositions with associated fluxomics

measurements. For each parameter combination, we generated three corresponding predictions using

the growth medium as an additional flux constraint and calculated the MCC between the measured and

predicted flux activities.

In Figure 18, we can see that most parameters affect flux and essentiality predictions similarly. The

best performing strategies are still those based on global and local thresholding with 2 states. In both

algorithms, we also observed that constraining nutrient uptake to the metabolites that could be matched

with the growth medium led to higher predictive power.
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Figure 17: Overview of the influence of parameterization on the models’ performance when predicting
essential genes as determined by their MCC. Bottom left: MCC value distribution for each thresholding
strategy (horizontal axis) and algorithm combination (coloured box and whiskers). Top left: MCC value
distribution for each CERES score threshold (horizontal axis) and algorithm combination (coloured box and
whiskers). Right: Linear coefficients for each individual parameter value on a regression model aimed at
predicting MCC values. Each parameter variable was one-hot encoded as multiple binary variables.

The relationship between average MCC and its standard deviation is shown in Figure 19 where we

can observe that FASTCORE reconstructed models were able to reach the highest correlation with the

experimental fluxomics data, although they are more sensitive to parameterization. INIT, on the other

hand, showed higher average MCC values across all parameter combinations with less dispersion and

yielded models that rank closer when evaluated with this metric. We also compared our models with a

baseline MCF7 cell line model featured in the work of Robinson et al.[41], which ranks significantly lower

than our best FASTCORE and INIT models.

Overall, we did not significantly improve the predictions when considering a direct comparison of active

fluxes between simulation and experimental quantification, although we identified some key reconstruction

parameters that influence the context-specific model’s performance.

FASTCORE appears as the more consistent tool to extract context-appropriate sets of reactions from

a template model. Due to its low computational demand, these reconstructions can be repeated with

80



4.3. RESULTS

0.04 0.03 0.02 0.01 0.00 0.01 0.02 0.03 0.04
Coefficient

Medium constraints = Unbounded
Local threshold = 0.9

Lower global threshold = 0.75
Thresholding strategy = Local 1-state

Integration functions = Minimum/Maximum
Local threshold = 0.75

No Upper global threshold
Upper global threshold = 0.9
Lower global threshold = 0.5
Upper global threshold = 0.5

Lower global threshold = 0.25
Integration functions = Minimum/Sum

Lower global threshold = 0.9
Local threshold = 0.1

metric = Matthews' correlation coefficient
Thresholding strategy = Local 2-state

Upper global threshold = 0.25
Lower global threshold = 0.1

Thresholding strategy = Global
No Local threshold

Upper global threshold = 0.75
Local threshold = 0.5

Local threshold = 0.25
Medium constraints = Bounded

Pa
ra

m
et

er
 v

al
ue

Algorithm
FASTCORE
INIT

Figure 18: Linear coefficients for the parameter values tested in the MCF7 context-specific reconstruction
case study on a regression model aimed at predicting MCC values from each parameter combination.
Each parameter variable was one-hot encoded as multiple binary variables.

alternative parameters or to sample large amounts of models. tINIT , on the other hand, shows great

potential to yield high-quality context-specific models, but thresholding parameters seem to heavily affect

predictive ability.

4.3.3 Large-scale metabolism reconstructions of cancer cell lines

We used 10 of the highest scoring parameter combinations from the MCF7 cell line case study to re-

construct the entire panel of cell lines available in CCLE with associated gene knockout effect screens

(n=739). A similar reconstruction pipeline was employed in this larger case study, although we did not

perform gap filling relative to the growth medium, due to heavy computational demand and an expected

negative impact in phenotype predictions.

4.3.3.1 Predictive performance assessment

The results summarized on Figure 20 depict our large-scale results which show similar predictive accuracy

to those reconstructed for MCF7 cell lines. There are slight differences in gene essentiality prediction

performance between the 10 selected parameter combinations, with tINIT models reconstructed displaying

slightly higher scores. In all of these scenarios, the selected pipeline parameterization choices improved

gene essentiality predictions, when comparing with the models reconstructed in the work of Robinson
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Figure 19: Relationship between average MCC value and standard deviation for each group of 3 simulations
(conditions) that make up a single parameter combination in flux predictions for the MCF7 cell line case
study. Different colors represent different algorithms and/or baseline comparison models.
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Figure 20: Overview of the predictive capability of the models reconstructed for each CCLE cell line.
Left: MCC value distribution for all models in each lethal gene effect threshold. Right: Distribution of
MCC values for each parameter combination selected for large scale reconstruction of CCLE models. The
percentage value at the end of each thresholding strategy description represents the proportion of cell line
models that could be successfully reconstructed.

et al, which asserts the importance of using more complex scoring strategies involving global and local

thresholds.

The CERES score characterizing gene essentiality in the CRISPR experiments is undoubtedly the pa-

rameter that affects these predictions the most, with the best results obtained at a threshold of -0.75. This

finding along with the overall low MCC values found with our approaches can be due to several factors.

On the one hand, the biomass equation is a generalized assumption of the metabolites needed for cell

growth, and thus, is not tailored for each specific cell line. The lack of more exact constraints on model

uptake also results in gene knockouts that either do not affect flux through the biomass pseudo-reaction

or completely inhibit it, which by itself elicits the usage of a threshold since a direct correlation between

CERES scores and growth can not be found using constraint-based models.

4.3.3.2 Exploring metabolic variability in breast cancer

We used the models and their respective predicted fluxes to explore the metabolic heterogeneity among

various breast cancer cell lines. To do so, we retrieved molecular subtype annotations from the DepMap

repository and used PCA to project these flux distributions using reduced features and obtain relevant

information on the flux patterns present in different breast cancer subtypes. These results are summarized

on Figure 21.
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The subset of models belonging to breast cancer were extracted and the 200 fluxes with most sta-

tistically significant differences among subtypes were used to decompose the dataset. We included all

reconstructed models, regardless of their parameters, and reduced the latent space to 3 principal compo-

nents (PCs) capable of explaining 33% of the observed variance. The loadings of each principal component

were obtained, with each flux being summarised in their corresponding pathways by calculating the aver-

age of the absolute ratios between the weights of each flux and the maximum observed values in the PC

loadings.

Firstly, we can conclude that the decomposition of predicted fluxes can adequately distinguish between

major molecular subtypes of breast cancer. The second PC (PC2) marks a good distinction between basal

and luminal cell lines and correlates with reported prognosis and aggressiveness [150], with luminal BCs

with better prognosis assigned to positive values as opposed to basal breast cancers which appear in this

PC as negative values.

Lipid metabolism is typically deregulated in breast cancer and we were able to identify changes in fatty

acid synthesis, with long-chain fatty-acid CoA ligase (encoded by the ACSL1 gene) and fatty acid desaturase

(encoded by FADS) activity, as well as increased arachidonic acid production negatively correlated with the

values in PC2. ACSL1 in particular has been reported as being transcriptionally upregulated in several

breast cancer subtypes [151], and although it is not specific to basal BC, its expression has been shown

to negatively impact survival rates. Moreover, previous studies have also shown that arachidonic acid

promotes tumor cell migration in a basal B BC cell line [152], which further reinforces the association of

PC2 with poor prognosis.

Another important finding was the negative correlation of PC2 withmitochondrial citrate carrier (SLC25A1

gene) activity. This transporter plays a fundamental role in maintaining mitochondrial activity in high pro-

liferating cells [153] and is highly expressed in triple-negative breast cancer (TNBC), corroborating the

hypothesis that PC2 depicts a gradient of cancer aggressiveness.

4.3.3.3 Predicted metabolic fluxes as relevant features

The lack of fluxomics data for the whole set of cell lines featured in DepMap does not allow to carry

out a large-scale systematic comparison of the pFBA flux distribution predictions with experimental data.

However, we set out to assess whether or not these predicted fluxes could be useful in predicting several

clinical features associated with each sample. To do so, we established a supervised classification task,

where the disease’s primary location would be predicted using various datasets, namely, (1) standardized
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Figure 21: Cell line models reconstructed for breast cancer cell lines projected in lower dimensions through
the usage of PCA. The left figure shows the first PC against the second, while the right figure displays the
second PC against the third, in the horizontal and vertical axes, respectively.

expression values (TPM from RNASeq) using the entire gene set, as well as only those genes that can be

integrated in the metabolic model, (2) TASs generated for each sample, (3) predicted fluxes (using pFBA

over reconstructed models) and (4) the reaction presence (binary) from the CSMR algorithm outputs. Our

results on this task are summarized on Figure 22.

Classifiers trained with standardized transcriptomics data showed good relative performance (MCC

mean=0.570, sd=0.038) with the subset corresponding to metabolic genes only slightly outperforming it.

Processing these data and generating TASs slightly increased predictive capabilities (MCC mean=0.594,

sd=0.030), which further justifies applying our preprocessing workflows before analysing and integrating

omics data. However, the outputs of CSMR algorithms, namely, the presence or absence of each reaction

resulted in models capable of predicting a cancer cell line’s primary site with an average MCC of 0.525

(sd=0.031). Furthermore, pFBA simulations resulted in even worse classifiers that could only reach an

average MCC of 0.298 (sd=0.042).

Overall, our results show that context-specific model reconstruction and flux balance analysis ap-

proaches are not yet consistent enough for accurate quantitative flux predictions, as predicted metabolic

fluxes by themselves did not appear to be relevant features for complex classification tasks.
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Figure 22: Distribution of average Matthews’ correlation coefficient values for cross-validated classifiers
trained with various datasets

4.4 Conclusions

We built upon several previous efforts to generate constraint-based models of differentiated human tissues,

being capable of assembling a generic pipeline that can be useful in standardizing the process of integrating

transcriptomics data into human metabolic models for the scientific community. Furthermore, this pipeline

is available as part of an open-source software tool providing a generic framework for the implementation

of context-specific model reconstruction tasks.

We were able to leverage large-scale multi-omics experiments with cancer cell lines and a state-of-the-

art human metabolic reconstruction to generate meaningful models capable of capturing the metabolic

diversity among, and within, multiple types of cancer. We were also able to validate the models using

experimentally determined essential genes and fluxomics data.

The usage of decomposition methods to understand flux predictions allowed us to establish a link

between metabolic phenotypes and breast cancer prognosis, and by making use of the interpretability

of constraint-based models, we were also able to pinpoint key enzymes and metabolites associated with

deregulated growth. This elicits the potential for similar approaches to assist in contextualizing transcrip-

tomics profiles into metabolic phenotypes, with the purpose of understanding the intricate mechanisms

responsible for human diseases, especially for personalized medicine applications.

The availability of metabolomics and proteomics data still pales in comparison with RNA-Seq technolo-

gies used for transcriptomics quantification. As such, we have developed this work to only consider the

latter omics type, and we argue that the reconstruction of models based on transcriptomics data results

in computational tools that can be more easily adapted to a clinical setting since they do not rely on gen-

erating multiple omics datasets. However, we have also built the computational tools, namely troppo,

in a way that these datasets can be easily integrated and used with appropriate methods.
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Although encouraging, our results show the difficulty in closing the gap between experimentally mea-

sured and predicted fluxes. We argue that there is value in building representative models using gene

expression alone, since the techniques used to obtain these measurements are far more ubiquitous and

less costly. However, naturally, this lack of information implies some limitations when interpreting the

model. This was evident when using model simulations to predict a cell line’s disease, where classifiers

trained with these predictions displayed poor predictive performance.

In the absence of precise exo-metabolome uptake or secretion rates, CBMs in their original definition,

are merely capable of predicting metabolic pathways on a discrete level, and thus, flux distributions must

always be interpreted relative to a given original state or model context rather than assuming these fluxes

are numerically comparable. A related challenge also appears when considering the biomass objective

function, which is usually too generic to describe different tissue types, and hinders the ability for these

approaches to generate meaningful models for cells whose metabolic objective is difficult to define.

Recent works that have incorporated exo-metabolite measurements [140], metabolic task protection

and alternative formalisms to include more complex parameters [41], have reached better Pearson corre-

lation coefficients with fluxomics measurements, although with smaller case studies. Another important

aspect would be to expand the scope of constraint-based models to also include regulation and signal

transduction enabling predictions of metabolic fluxes that can be contextualized with their corresponding

regulators.

We must, additionally, acknowledge the importance of using a fluxomics data source for a reference

cell line to serve as a basis for subsequent reconstructions, since it allows us to find ideal sets of parameters

for larger-scale efforts. In this work, this led to a significant decrease in computational resource usage, as

well as a better choice of parameters without exhaustive reconstructions.

The implementation of this complex pipeline in a modular framework allows for the usage of different

methods that might fit a particular purpose. Previous works have reported the heterogeneity in outputs from

various CSMR algorithms and our case study clearly shows that this choice impacts the type of phenotypes

to predict and, as such, we extended troppo in such a way that reconstructing a context-specific metabolic

model is a simple task, even for users with limited programming skills
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Integrative constraint-based models of
metabolism, gene regulation and cell signalling

5.1 Introduction

The previous chapter describes how context-specific modelling approaches yield models that can capture

some metabolic phenotypes associated with a certain molecular background. Overall, it was possible to

conclude that gene essentiality predictions from context-specific models were acceptable, unlike fluxomics

which did not correlate with the reconstructed models in a level that could be deemed significant.

Several factors could be hindering the predictive ability of constraint-based models. Firstly, the ba-

sic mathematical formulation of such models adopts the steady-state assumption, which simplifies the

complex dynamics of enzymes. Moreover, the only entities that are usually represented with constraint-

based models are reactions and metabolites which, as was described in the previous chapter, can be

complemented with omics measurements.

Within the scope of this work, there was a clear gap concerning the lack of integration of regulatory and

signalling interactions in constraint-based models. This prompted the development of a method to expand

the constraint-based framework to directly represent entities, such as genes or regulatory proteins and

an associated phenotype prediction method that can leverage this representation to integrate multi-omics

measurements.

Recently, Dugourd and colleagues, including myself, have presented Causal Oriented Search of Multi-

Omic Space (COSMOS), an approach capable of integrating multi-omics datasets to generate contextu-

alised multi-scale networks [154]. COSMOS uses a MetaPKN, which is a comprehensive network connect-

ing signalling, metabolic and gene regulatory interactions. By using the CAusal Reasoning for Network
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identification using Integer VALue programming (CARNIVAL) algorithm, COSMOS is able to extract a con-

nected subnetwork of a PKN that is both consistent with omics data and spans several biological layers.

The CARNIVAL algorithm is an integer linear programming (ILP) formulation that deals with prior knowledge

network (PKN)s as networks of causal interactions whose biological entities are assigned a down-regulated,

up-regulated or neutral state according to the omics data.

Inspired by the the approach presented in COSMOS using causal links to model mechanistic principles

of metabolism, we propose a novel method to perform the same type of integration. The ipFBA approach

presented in this chapter combines a novel representation that models metabolic fluxes, metabolic gene

expression and regulatory interactions in a global formalism, similarly to COSMOS. However, ipFBA does

this using an LP formulation that maintains the steady-state assumption, but prioritizes compliance with

metabolic gene expression, to deliver flux predictions that can provide reliable hypotheses for the het-

erogeneity between different cells and tissues, as well as predictions that are compliant with the context

provided by omics measurements.

Similarly to Chapter 4, results were focused on validating the method and demonstrating that metabolic

models can be used to predict phenotypes and metabolic patterns across multiple cellular contexts. To

this end, phenotypes were again predicted for the samples on the Cancer Cell Line Encyclopedia (CCLE)

cell line panel after parameter calibration using the MCF7 cell line. This allows a more direct comparison

with the results from the previous chapter.

5.2 Methods

5.2.1 Multi-layer constraint-based models

Biological networks have been made available through a number of databases and other resources describ-

ing the connections between several types of biological entities. In this work, we combine these networks

into a graph capable of including multiple biological networks in a single representation. Although we

focus heavily on the connections between gene expression and regulation with metabolism, this approach

is extensible to other omics biological layers such as epigenetics or phosphoproteomics. Figure 23 depicts

the layers included in our approach with their corresponding biological entities and associated omics types

as well as the networks that connect these entities together.

We first include cell metabolism as depicted in genome-scale metabolic networks detailing a set of
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Figure 23: Overview of the layers capable of being integrated in the approach presented throughout this
section. The leftmost part of the figure represents the networks encoding links between the entities as
well as the interactions represented in the center. The various omics inputs that can be integrated are
represented in the right part, associated with their corresponding biological entities.

metabolic reactions mostly inferred from genome annotation. This, in turn, also defines the set of metabo-

lites that could be found within the organism, and the stoichiometric coefficients for each metabolite and

reaction, indicating whether a metabolite is consumed or produced.

The reactions in the genome-scale metabolic network are usually complemented with GPR rules defin-

ing which combinations of genes encode the enzymes responsible for catalysing a given reaction. This

establishes links between the metabolite and reaction layer to the enzyme and gene layers.

Finally, interactions between genes are represented through a transcriptional regulatory network (TRN),

connecting them with interactions that might be enriched with information on their effect, which is typically

either activation or inhibition.

Connecting all of these layers within the same modelling framework poses several challenges which
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require heavy parametrisation or assumptions that simplify the resulting model and simulation approaches.

Firstly, model predictions were centred around the metabolic layers, using the enzyme, gene and

regulatory layers to expand the amount of information that could be integrated so that it could then be

used to provide a flexible scaffold to then constrain predictions to omics inputs.

Additionally, the modelling paradigms typically used for representing the various layers also differ

greatly. Metabolic models are usually formulated as ordinary differential equations or constraints in linear

programming, while gene expression and regulation are often described and modelled as causal relation-

ships (e.g. Boolean rules).

Linear programming was used as the underlying mathematical framework as it allows us to expand

existing constraint-based metabolic models with other constraints capable of modelling additional layers.

However, this requires that the layers outside of metabolism to also be represented as linear equations. The

generic integration process involves representing the various biological molecules as additional pseudo-

metabolites, with the interactions between them modelled as reactions. This process will be detailed in

the following sections.

5.2.1.1 Extending metabolic models with gene expression

The first step in our approach is to include enzymes and their encoding genes as a part of the model. To

do so, we first expand the model to include reaction usage as an entity in the model. Inspired in the work

of Machado et al. [155], we use the basic idea of representing enzymes as metabolites.

We first replace each reversible reaction into two irreversible reactions representing the forward and

reverse flux. In this same model, a set 𝐸 of 𝑁 pseudo-metabolites are also added, one for each reaction in

the original model, created to represent the reaction’s availability. For each reaction in this expanded model

containing irreversible and duplicated reversible reactions we add the corresponding pseudo-metabolite in

𝐸 as a reactant to be consumed. These transformations are represented on Figure 24.

With this expanded representation, fluxes are not only rate-limited by chemical reactants, but also by

enzyme availability, which can then be made available to the model through an exchange reaction, or by

creating additional reactions that produce metabolites in 𝐸. It is worth mentioning that metabolic reactions

in this representation must be irreversible so that the metabolites in 𝐸 are always consumed and never

produced through metabolic reactions.
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original representation split reversible reactions

A B A B

enzyme availability limits

A BR

Figure 24: Representation of constraint-based model reactions with limited enzyme availability. The ap-
proach presented in this work splits reactions into their forward and reverse components and adds a
reactant (represented as 𝑅) to each component. This reactant can then be made available using other
pseudo-reactions to ensure it is produced.

5.2.1.2 Gene-protein-reaction rules as linear constraints

In Section 2.2.1.2, GPR rules are presented as the GSMM components that link genes with the reactions

they are associated with. These Boolean expression can represent the isozymes capable of catalysing a

given reaction as well as the protein subunits in cases where an enzyme is a protein complex. Converting

the Boolean representation into a formulation that can be directly integrated into constraint-based models

requires operands (genes) to be defined as continuous variables and the conjunction and disjunction oper-

ators replaced with operations suitable for numeric values, such as those obtained through transcriptome

quantification experiments.

The work of Richelle et al. establishes two approaches to extract continuous values from GPR Boolean

expressions, namely by replacing the AND operator with a minimum function and the OR operator with

a sum or maximum function [138]. This leads to two important assumptions: (1) the availability of a

given isozyme with various protein subunits will be limited by the subunit with the least expression; (2)

the availability of a given reaction is defined either by the total amount of isozymes as determined by the

minimum value of the genes in a given isozyme complex or by the most expressed isozyme.

The operations shown above can be replicated in constraint-based models with pseudo-metabolites

and reactions. Since any reaction in a constraint-based model is bound by stoichiometry and rate limited

by the concentration of its reactants, this property can be exploited to generate reactions that produce

isozyme species using gene species in the isozyme complex as reactants. Similarly, one can also create
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complex 2complex 1

Directed graphDisjunctive normal form
representation Linear equation system

Figure 25: Representation of GPR rules as a linear system of equation. Boolean expressions are first
converted to DNF form and represented as a graph which can then be translated into a system of linear
equations.

simple reactions converting these isozyme species into a reaction pseudo-metabolite, such as the ones

detailed in the previous section, where these metabolites limit the amount of flux.

Formally, we can encode the information provided by the GPR rules into two matrices 𝐸 and 𝐿 which

represent, respectively, reaction-to-complex and complex-to-gene relationships.

Assuming a set of GPR rules in disjunctive normal form (DNF), we define a function 𝜔 (𝑖) yielding a

set of sets 𝑋 . Each set in 𝑋 contains indices denoting the genes necessary for a single isozyme capable

of catalysing reaction 𝑖 to be expressed (operands of AND expressions). The set C of isozyme complexes

can then be obtained by retrieving all distinct elements 𝑐 ∈ 𝜔 (𝑖)∀𝑖 ∈ 1, ..., 𝑁 . We can then define a

matrix 𝐸 where each row represents a metabolic reaction and the columns represent the complexes in𝐶.

Each element 𝐸𝑖, 𝑗 is set to 1 if the complex𝐶 𝑗 is present in 𝜔 (𝑖) and 0 otherwise. Similarly, a matrix 𝐿 is

also defined to represent the relationship between complexes and the genes present in them. Assuming

a set of genes 𝐺 represented in the columns of 𝐿, each element 𝐺𝑖, 𝑗 of this matrix is -1 when a gene 𝑔 𝑗

is a part of the complex 𝐶𝑖 or 0 otherwise. This process can be visualised on Figure 25

5.2.1.3 Representing causal interactions as steady-state flows

The link between transcription and metabolism has been established through the formalisms defined

in the previous sections. The final step towards a fully integrated model is the addition of a regulatory

layer capable of affecting the availability of metabolic genes. In this work, we attempt to integrate causal

interactions between genes and proteins described using simple mechanisms, such as activation and

inhibition. Although this is a simplified view on the complex processes behind signalling and transcriptional
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control, it requires less parametrisation than more complex mechanistic models which cover less genes

and usually involve kinetics, which are not represented using constraint-based modelling.

In this work, we assume regulatory inputs are stored in a directed graph 𝑆 = (𝑉 ,𝐴) where each vertex

in the set 𝑉 represents a gene and the set of edges 𝐴, each connecting a source gene 𝑥 which regulates

a target gene 𝑦, assuming 𝑥,𝑦 ∈ 𝑉 . An additional function 𝑤 (𝑥,𝑦) maps each edge to a weight that

is either positive if 𝑥 activates 𝑦 or negative if 𝑥 inhibits 𝑦. Interactions without a defined weight are not

considered for this graph and as such, the edges of 𝑆 can be defined as the set 𝐴 ⊆ {(𝑎, 𝑏) | (𝑎,𝑏) ∈

𝑉 2 ∧ 𝑎 ≠ 𝑏 ∧𝑤 (𝑎, 𝑏) ≠ 0}.

The gene metabolites added in the previous section only account for genes associated with metabolic

interactions. As such, to represent regulatory interactions, we must also expand the set of genes 𝐺 to

also include the vertices in the set 𝑉 . Furthermore, we also add a secondary set of gene metabolites 𝐻 ,

each representing a gene in𝐺 , which we will call “pool metabolites”. These pool metabolites simulate the

availability of a gene while the set 𝐺 are meant to represent the activity of the proteins they encode. To

connect these reactions, we add one reaction for each gene 𝑖 ∈ 𝐺 converting 𝑧 units of 𝐻𝑖 into one unit

of 𝐻𝑖 . For the purpose of this work, we set 𝑧 = 1, although additional information pertaining to the ratio

between mRNA and protein quantities can be expressed through this parameter.

We then simplify regulatory interactions where a given gene 𝑥 regulates a gene𝑦 by representing them

as reactions that consume a regulator gene pseudo-metabolite𝐺𝑥 and produce or consume its regulatory

target gene pool metabolite 𝐻𝑦 . An example of these transformations is represented on Figure 26 This

allows us to model regulatory interactions by adding regulator genes as sources for the target genes, that,

when produced, can also carry flux towards the layers responsible for connecting them with metabolic

reactions. If a regulatory interaction becomes active, it will either produce or deplete its target gene pool

metabolite, thus regulating their availability to regulate or express other enzymes.

Formally, we express these relationships in a 2𝑝 by 𝑞 𝑅 matrix where 𝑝 is the number of genes and 𝑞

regulatory interactions. 𝑅 can be subdivided into two 𝑝 -by-𝑞 submatrices 𝑅′ and 𝑅′′ for gene activity and

gene pool metabolites, respectively. For each interaction 𝐴 𝑗 = (𝑥,𝑦)∀𝑗 ∈ 1, ..., 𝑞, the matrix element

𝑅′𝑥,𝑗 is set to -1, while 𝑅
′′
𝑦,𝑗 is set to 1 or -1, for activation and inhibition interactions, respectively.
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Figure 26: Representation of regulatory interactions as constraint-based model reactions. In this example,
two regulator genes have effects on 𝐺1. These regulatory interactions are represented as reactions that
consume a gene pseudo-metabolite to either produce or deplete the target pool metabolite associated with
the regulated gene, depending if the interaction activates or inhibits the gene. Note that inhibition reactions
are exchange reactions consuming both metabolites (without any product).

5.2.1.4 Multi-layer constraint-based model

The system described in the former sections can be summed up in Equation 5.1.



𝑆 −𝑆𝑟𝑒𝑣 0 0 0 0 0

−𝐼 −𝐼𝑟𝑒𝑣 𝐸 0 0 0 0

0 0 −𝐼 𝐼 0 0 0

0 0 0 𝐿 𝑅′ 𝐼 0

0 0 0 0 𝑅′′ −𝐼 𝐼


·



𝑣

𝑢

𝑟

𝑐

𝑖

𝑝

𝑑



=



0

0

0

0

0

0

0


𝑣 ∈ ℜ𝑛, 𝑢 ∈ ℜ|𝑅𝑒𝑣 |, 𝑟 ∈ ℜ|𝐸𝑛𝑧 |, 𝑐 ∈ ℜ|𝐴𝑛𝑑 |, 𝑖 ∈ ℜ|𝐴|, 𝑝 ∈ ℜ|𝐺 |, 𝑑 ∈ ℜ|𝐺 |

(5.1)

The matrices represented above have been defined in the previous sections. Additionally, we also

assume 𝑛 as the number of reactions in the metabolic model (columns of 𝑆 ), 𝑅𝑒𝑣 as the indices of 𝑆

corresponding to reversible reactions, 𝐴𝑛𝑑 as the amount of individual associations between genes, 𝐴 as

the set of regulatory graph edges and 𝐺 as the set of genes represented in the model.

The system shown in Equation 5.1 represents a steady-state model that can be simulated using LP

solvers in a similar manner as that employed with FBA. Since gene-associated conversions are all irre-

versible and directed towards producing gene metabolites, they are only used to constrain metabolic fluxes

without allowing flows towards genes. However, to fully explore the potential of these models, we devel-

oped novel objective functions and associated constraints to better guide the search for flux distributions

that can capture phenotypes that are consistent with transcriptomics.
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5.2.2 Integrated parsimonious flux balance analysis

In this work, we also present the ipFBA approach, an alternative phenotype prediction method based on

FBA that includes an objective function and constraints adapted to our novel expanded networks, yielding

optimal flux distributions relative to their similarity with observed transcriptomics measurements. The

ipFBA algorithm consists of a two-step LP optimisation routine based on the extended model representation

presented on the previous sections.

The system of equations defined in Equation 5.1 is iteratively optimised to find limits for secondary

objectives, a concept that represents assumptions on the model organism such as growth rate limits

or substrates that are guaranteed to exist in the growth medium. The limits for these objectives are

subsequently added to the existing LP problem to constrain the solution space prior to obtaining a flux

distribution. This system is then optimised with a main objective function that represents consistency with

omics measurements, redirecting flux that is associated with inactive genes or proteins. The resulting

flux distribution will comply with metabolic assumptions while representing a metabolic state that is more

closely tied to the omics measurements.

5.2.2.1 Linear programming formulation

Assuming the system represented on Equation 5.1, we define the following LP problem.

min
∑
𝑖∈𝑔

𝑤𝑖 · 𝑑𝑖 (5.2)

s.t.
𝑛′∑
𝑗=1

𝑁𝑖, 𝑗 · 𝑦 𝑗 = 0 (∀𝑖 ∈ {1, ...,𝑚′}) (5.3)

𝑛′∑
𝑗=1

𝑇𝑖, 𝑗 ∗ 𝑦 𝑗 ≤ 𝑡 (∀𝑗 ∈ {1, ..., 𝑛′}) (5.4)

𝑦 ∈ ℜ𝑛′, 𝑡 ∈ ℜ|𝑇 |

(LP2)

(5.5)

The objective definition in 5.1 of LP 2 assumes the definition of a vector 𝑤 with a value for each

gene in the set 𝑔. This major objective minimizes the sum of values for gene pool metabolite conversion

reactions - indexed in the vector𝑑 - corresponding with the reactions that produce the gene pools multiplied

by each gene’s weight as defined in 𝑤 . This weight can be derived from various data sources, such as

transcriptomics or transcription factor activities for genes associated with regulatory events, and should

represent the relative activity of each gene in a given sample as a continuous value that is positive or
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negative depending whether the gene is expressed in high or low relative quantities. This results in flux

distributions whose active fluxes will tend to be those associated with reactions encoded by highly expressed

genes.

Additionally, we can also include further constraints to narrow down specific phenotypes, such as

growth media demands and minimum growth rates. For these purposes, we extend the system defined

in Equation 5.1 with arbitrary inhomogeneous constraints. To do so, one must define a 𝑘 × 𝑛 matrix 𝑇

where each row represents a single constraint and each column represents a conversion in the expanded

system. Constraint 4 defines the constraints defined in this matrix as inequalities that bound sums of one

or more fluxes.

A vector 𝑡 of length 𝑘 is also defined, with upper bounds for the constraints expressed in the matrix𝑇 .

The signs of values in𝑇 and 𝑡 also allow for lower bounds to be set. As a practical example, the definition

of an arbitrary lower bound constraint 𝑖 on the minimum growth rate (flux through 𝑦𝑏𝑖𝑜𝑚𝑎𝑠𝑠 ) is performed

by setting𝑇𝑖,𝑏𝑖𝑜𝑚𝑎𝑠𝑠 = −1 and setting an upper bound on this constraint 𝑡𝑖 = −𝜇, where 𝜇 is the minimum

growth rate value. Note that this upper bound constraint would be expressed as −1𝑦𝑏𝑖𝑜𝑚𝑎𝑠𝑠 < 𝑚𝑢, which

can also be expressed as 𝑦𝑏𝑖𝑜𝑚𝑎𝑠𝑠 ≥ 𝜇, which represents a lower bound on the biomass flux.

As part of the ipFBA algorithm, we also devised an algorithm to determine the values of 𝑡 . Using the

system defined in Equation 5.1, one can define its objective as an arbitrary function𝑍 (𝑦, 𝑖) = ∑𝑛
𝑗=1𝑇𝑖, 𝑗 ·𝑦 𝑗 ,

where 𝑐 is a single row from the matrix𝑇 . The limits of 𝑍 can be obtained by maximizing and minimizing

this function. We will call this system LP 2. The system can then be further constrained using Constraint

4 of the LP 2 formulation, where the vector 𝑡 can be updated with an appropriate value, to which we

recommend using a proportion of the maximum theoretical objective value as an upper bound. This

process can be repeated to further constrain the system.

5.2.2.2 Integration of omics inputs through objective function constraints

We employed our objective constraint approach to integrate omics inputs into our simulation. In this work,

we focus on three types of omics constraints, namely:

• Transcriptomics

• Endometabolomics

• Exometabolomics or growth media formulations
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In a generic integration scenario, each omics integration input is mapped to one row with index 𝑖 added

to the 𝑇 matrix where the non-zero elements of row 𝑖 of 𝑇 are defined by the expression 𝑇𝑖,𝑧 = 𝑤 . 𝑤 is a

weight vector encoding the positive or negative contribution of a given flux in 𝑦. Using the formulation in

LP 2 along with the objective coefficients encoded in 𝑇𝑖,𝑧∀𝑧 |𝑦𝑧 ≠ 0, the lower bound or upper bounds of

this objective function in the system can be determined. When using the formulation in LP 2, these values

can then be used to generate appropriate ranges for the objectives, encoded in the vector 𝑡 .

This generic constraint allows to provide omics inputs by carefully selecting appropriate reaction sets

and weights. Since these are objective functions, the idea is to reach solutions that maximize the usage of

highly active biological entities while also minimizing the usage of those with low or absent measurements.

As such, the weights defined in 𝑤 should be negative or positive, respectively, for low and high activity

molecules.

In transcriptomics integration, the weights are calculated using the logarithm of the fold change value

relative to the mean, and these weights are mapped directly to the gene pool conversions, similarly to how

the global objective function is defined on LP 2. For metabolomics inputs, we first compute fold change

logarithms for each metabolite and then map these values into the metabolic reactions that either produce

or consume them. In the case where there are multiple inputs for the same metabolic reaction, the mean

value of all inputs is used. Finally, to integrate the growth media, we attribute a positive weight to all

substrate import reactions whose associated metabolites are not a part of the medium formulation and a

null weight to those that are and then adjust the upper bound of this objective constraint to only allow a

small percentage of flux to be carried in absent import reactions.

5.2.2.3 Software availability

The software featured in this work was developed using the Python programming language. Source-code

for the ipFBA and routines to build extended models of metabolism compatible with this algorithm can be

found in the GitHub repository at https://github.com/BioSystemsUM/cobamp-grasp/. The

cobamp package is required as a dependency to use ipFBA. The case studies featured in this work are

also available as Jupyter Notebooks that can be accessed in the examples folder of the repository. Plots

were built using the seaborn and matplotlib packages.
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5.3 Results

The Human-GEM (version 1.5.0) genome-scale metabolic reconstruction [41] was used as a template

model for ipFBA in the breast cancer cell line analyses. The model and auxiliary reaction and metabolite

tables were downloaded from the corresponding version release on the GitHub repository at https:

//github.com/SysBioChalmers/Human-GEM. For the renal cancer case study, the redHUMAN

Recon3 model reconstruction developed by Masid et al. was used [156]. This model is a significantly

reduced version of the Recon3 human generic model that attempts to provide a better representation of

human core metabolism through reaction lumping and curated reaction constraints [156].

In all case studies, the same TRN from OmniPath was used. OmniPath is a large database of molecular

biology resources and aggregates over 100 sources [157]. In this work, OmniPath was used to retrieve

moderate to high confidence transcription factor interactions. Interactions without a consensus inhibition

or stimulation activity were removed, resulting in a TRN with 2997 interactions which was integrated in the

ipFBA extended model.

Fluxomics and transcriptomics data were obtained are those presented on Section 4.3.1

Transcriptomics data were then converted to TAS, first by assessing multiple thresholds and then

selecting the best combinations for larger-scale cases. The 739 cell lines used in this study match those

for which a CRISPR knockout screen was available. Gene/transcript nomenclature was converted using

the latest HUGO Gene Nomenclature Committee approved symbol mappings whenever needed [136].

5.3.1 Metabolic flux predictions of the MCF7 cell line

The ipFBA approach was validated using fluxomics estimates from metabolomics data acquired for the

MCF7 cell line. To ensure the method is capable of predicting fluxes from transcriptomics data, several flux

predictions are generated using multiple parameter combinations. This is an essential step in which the

optimal algorithm parameters will be obtained by comparing predicted flux distributions with experimental

data and generating an appropriate value to quantify the predictive accuracy. In this analysis, the MCC is

used as a classification metric.

The results achieved with ipFBA largely surpass the predictive ability of pFBA performed on context-

specific models integrating the same type of data. When performing a direct comparison with the case

study featured on Chapter 4, there is a large improvement with ipFBA predictions achieving average MCCS

between 0.28 and 0.46, while the best context-specific model using FASTCORE was only able to achieve
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Figure 27: Overview of the impact of different parameter choices in the average MCC values. Each these
values were obtained by fitting linear regression models with the results from the MCF7 case study. Each
parameter choice is associated with two values, respectively, with (blue, bounded) or without (orange,
open) bounds on the growth pseudo-reaction.

an average MCC of 0.20. This means that even using the worst parameter combinations, ipFBA leads

to better predictions, thus validating the presented flux prediction approach. However, for the purpose of

adapting this method for use with large-scale datasets, it is also important to analyse the sensitivity to

alternative parametrisation choices.

The overall impact of parametrisation choices was assessed by fitting a linear regression model to

predict average MCC values from the chosen parameters. The results from this analysis are depicted on

Figure 27.

The most important parameter influencing MCF7 flux predictions was undoubtedly the global maxi-

mum threshold applied when converting gene expression values from TPM to TAS. Setting this parameter
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Figure 28: Overview of the average and standard deviation of MCC values for the MCF7 flux prediction
case study and associated global maximum thresholds. The vertical axis shows increasing MCC average
values while the horizontal axis shows their standard deviation. Each group of simulations is represented
by a dot with increasingly darker colors for higher thresholds.
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to the 25th percentile led to improved predictions, while the 90th percentile leads to worse results. These

results can be observed on Figure 28. This demonstrates the importance of finding appropriate cutoff

values to determine whether a given transcript can be deemed as active. As a result, the best global

minimum threshold is the 10th percentile, since all combinations with a global maximum threshold at the

25th percentile can only be found with this combination. The best local thresholds were found at the 50th

and 75th percentiles.

One important question answered through this analysis was the impact of regulatory interactions in

this approach. The linear coefficients for this parameter could not demonstrate that these interactions

contributed signficantly towards better predictions, appearing with negligible contributions. Upon closer

inspection, however, we can identify a cluster of five solutions with high MCC and relatively low standard

deviation, out of which only one was not generated with active regulatory interactions. This finding, although

not confirmatory, indicates that this parameter does not negatively affect the predictive capabilities of

ipFBA, and expands the solution space and the amount of information that can be overlayed in the model.

There are, however, some parameters with an expected impact that did not match the findings in this

analysis. Both growth rate and substrate uptake objective constraints had negligible effects on the predic-

tive ability of ipFBA which raises concerns about the ability to simulate certain autotrophies or dependence

on certain growth media components. On the other hand, it is also possible that gene expression itself is

the most important factor when attempting to predict metabolic activity.

We also did not observe any significant difference between constraining gene pool or gene expression

metabolites. However, these constraints appear to be more effective when their respective bounds are set

to double the expression value. Throughout the development of this method, one important concern was

the correlation between fluxes associated with gene expression and metabolic fluxes themselves. Since

this information is hard to determine, all gene expression fluxes contribute at the same rate towards the

reactions they are associated with. The result of higher expression bounds is the expansion of the solution

space which might be necessary for reactions with higher absolute flux values.

The resulting parameter combination with the highest average MCC was identified in this analysis and

was used as a reference for the subsequent large-scale flux prediction efforts carried out using the entire

CCLE panel.
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5.3.2 Large-scale assessment of cancer phenotypes

The previous case study allowed the identification of optimal parameters for the prediction of intracellular

fluxes in the MCF7 breast cancer cell line. Using these parameters, a large-scale evaluation of the CCLE

cell line panel was carried out with the purpose of identifying patterns in predicted phenotypes and their

association with clinical variables. In a first analysis, breast cancer phenotypes were grouped according

to their reported breast cancer subtypes, revealing key differences in metabolic flux activity. Additionally,

these simulations were also used to characterize the differences between primary and metastatic cell lines.

5.3.2.1 Metabolic heterogeneity in breast cancer subtypes

Principal component analysis was used to analyse breast cancer simulations and identify genes, reac-

tions and signalling interactions that could be associated with the molecular subtypes of breast cancer

represented in the CCLE. On Figure 29, simulations from ipFBA are projected in the first three principal

components (PCs) and although the explained variance is relatively low for these components (17.2%, 6.2%

and 4.0% for PCs 1,2 and 3, respectively), a clear separation between all subtypes can be observed. Neg-

ative and positive values for PC1 separate, respectively, luminal from basal cell lines, while PC2 further

distinguishes between basal A and B subtypes and PC3 separates between luminal and HER2-positive

subtypes.

After establishing that ipFBA was capable of predicting phenotypes that capture the molecular differ-

ences in breast cancer cell lines, the eigenvalues of each reaction, gene and interaction modelled by ipFBA

were inspected to identify patterns associated with these subtypes. These results are shown in greater

detail on Appendix I on Figures 35 (gene expression), 36 (reactions), and 37 (signalling interactions).

GALNT2 and PLTP were found to be highly associated with positive values on the first principal compo-

nent, which are also correlated with the aggressive basal molecular subtypes. GALNT2 has been identified

as upregulated in malignant breast tissue [158] and is involved in the glycosylation of PLTP, which is ubiq-

uitously expressed in both cancer and normal tissue [159, 160]. SNAI2 was also found to be associated

with the aggressive breast cancer subtypes found in PC1, which is consistent with the existing literature

[161].

Interestingly, there was a striking difference in the mevalonate pathway subcellular localization. Basal

breast cancer cell lines exhibited higher contributions from the cytosolic hydroxymethylglutaryl-CoA syn-

thase encoded by HMGCS1, while luminal cell lines show higher fluxes with the mitochondrial enzyme

encoded by the HMGCS2 gene. The findings are supported by a recent experiment with several breast
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Figure 29: Principal component analysis projections of the flux distributions obtained for breast cancer
cell lines.

cancer stem cell lines where HMGCS2 correlates with the tumourigenic potential of each cell line [162].

Both synthases have identical metabolic activity, converting acetoacetyl-CoA and acetyl-CoA derived

from fatty acids or branched-chain amino acids into 3-Hydroxy-3-Methylglutaryl-CoA (HMG-CoA) which is a

precursor for mevalonate and acetoacetate. The enzyme encoded by HMGCS1 present in the cytosol pro-

vides precursors that are mainly used for the production of mevalonate which then leads to the production

of terpenoids, critical for the activation of signalling pathways that enhance cell growth and proliferation

[163]. Walsh et al. have also recently found HMGCS1 to be upregulated in breast cancer stem cells and

that its activity correlates with the tumourigenic potential of each cell line [162].

The enzyme encoded by HMGCS2 in the mitochondria synthesises HMG-CoA that is mobilized towards

ketogenesis. Wang et al. recently shown that interrupting this process inhibits cell proliferation [164], which

explains the negative association of this gene and enzyme with more aggressive cell lines.

These findings are also supported by the high contributions of BCAT1 towards basal breast cancer

cell metabolism. This gene encodes the cytosolic branched-chain-amino-acid aminotransferase, which

catabolises leucine and 𝛼 -ketoglutarate (AKG) into 4-methyl-2-oxopentanoate and L-glutamate. This en-

zyme is associated with autophagy as a regulator of the mechanistic target of rapamycin kinase (mTOR)

pathway [165], cell proliferation and invasion in tumours from relapsed breast cancer patients [166] which

explain its usage as a biomarker for unfavourable progression in triple negative breast cancer (TNBC) [167].

Glucose-3-phosphate conversion to dihydroxyacetone phosphate (DHAP) by the enzyme encoded by

GPD2 was also associated with basal breast cancer cells, although there is no significant evidence to claim
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this prediction is accurate. Nevertheless, Wu et al. have successfully used a GPD2 inhibitor to halt tumour

growth in a mouse model [168].

Overall, the simulations generated with ipFBA show some degree of agreement with the existing lit-

erature and PCA was able to identify meaningful reactions and genes that are capable of distinguishing

between distinct breast cancer phenotypes. Furthermore, some of these genes and reactions have already

been touted as potential metabolic targets, demonstrating the potential of integrated metabolic models for

drug target identification.

5.3.2.2 Predicting cell line primary disease with simulated fluxes

The identification of several differences in metabolism and gene expression through ipFBA prompted its

usage to attempt to generate relevant features for classification tasks. Similarly to the results from the

approach presented on Section 4.3.3.3, the goal is to verify if predicted fluxes can be used to predict a

cell line’s primary disease. The same flux analysis and supervised learning workflow presented on 4.2.5

was used for this task.

Standardized expression values and TASs generated from these data were used as baseline datasets.

The simulations from ipFBA were divided into three datasets containing different sets of reactions, namely,

the entire model representation, gene expression reactions and finally, only metabolic fluxes. Results for

this classification task are shown on Figure 30.

Firstly, it is clear that transcriptomics measurements and their derived scores are much better than

ipFBA when training with a low number of features, with average MCC values starting at 0.476 for standard-

ized expression values and 0.51 for the associated TAS using only 50 features, while ipFBA solutions only

reach 0.30 considering the complete set of reactions, 0.38 for the gene regulation and expression reac-

tions and 0.275 for metabolic fluxes. However, these values drastically change as the amount of features

increases and ipFBA simulations ultimately achieve nearly identical performance as the transcriptomics

data that originated them, with MCCs of around 0.58.

The performance of ipFBA simulated fluxes appear to be the result of gene expression and regulatory

interactions since ipFBA predictions have similar performance using all reactions or just those associated

with genes rather than metabolic reactions. Nevertheless, models trained on the metabolic flux part of the

ipFBA solution led to an average MCC of 0.47, which is a significant increase from the same case study

using pFBA to predict phenotypes on models whose omics data was integrated using CSMR algorithms.

The results from this task demonstrate the ability for ipFBA to integrate omics data and generate
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Figure 30: Predictive performance of random forest classifiers for prediction of cell line primary diseases
using ipFBA and transcriptomics datasets. The vertical axis represents the Matthews’ correlation coef-
ficient value while the horizontal axis denotes the amount of features kept in the datasets. The cross
symbols denote the transcriptomics measurements and scores derived from them while the dots repre-
sent predictions obtained with ipFBA

simulated fluxes for distinct cell lines and capture their differences better than CSMR methods.

5.3.3 Identification of metabolic patterns in renal cancer

The previous case studies involving cell lines on the CCLE were critical to assess the influence of parametri-

sation and to establish the predictive ability of ipFBA. To further demonstrate the applicability of this method

in other datasets, a renal cancer cohort was obtained from the work of Dugourd et al. [154] where the

COSMOS multi-omics integration tool is successfully applied.

The aim is to use flux and gene activity predictions to establish a multi-layer network, similarly to

COSMOS, that can provide insights into the metabolic patterns and differences associated with renal

cancer. Unlike the previous case studies, a control (healthy) group is available, which allows for differential

analysis of the obtained predictions. Flux predictions were obtained for both healthy and tumour samples

using ipFBA. In this case study, both metabolomics and transcriptomics were given as inputs for the

simulations.
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The predictions from the renal cancer cohort were also used to generate differential networks that

summarize the variation in activity of various biomolecules represented by the ipFBA extended modelling

approach.

The predictions obtained for this case study were divided in their corresponding sample groups, namely

healthy and tumour. Reactions that were found to be inactive in all samples were removed from the

analysis. Using these values, the sample groups were summarised by obtaining the average value of each

flux within its cohort group, resulting in two flux distributions.

A final flux distribution was calculated by dividing average flux values from the tumour cohort by

those from the healthy tissue. This is similar to obtaining a fold change between both conditions and a

logarithm was also applied to further establish a distinction between fluxes, enzymes and regulators that

have increased (positive values) or decreased (negative values) presence in renal cancer.

5.3.3.1 Metabolic patterns in renal cancer

The renal cancer cell flux predictions were analysed using PCA, similarly to the previous case study. In

a preliminary analysis, the distribution of healthy and tumour samples was assessed to assert whether

predicted fluxes can separate between both types of samples. This is depicted on Figure 31, where it is

possible to identify quadrants where healthy and tumour samples are well represented.

Overall, PCA led to a reduced space where healthy and tumour samples are separated by principal

component 1, which explains a high amount of the fluxes’ variance (87.03%). Negative values for principal

components 1 and 2 do appear to associate with tumour samples. However, the separation between

sample sites is not as reliable as the one found for the breast cancer case study.

This result led to the development of a different analysis pipeline to attempt to extract knowledge from

ipFBA simulations by calculating a differential flux distribution for the entire dataset.

Firstly, NR2F1 was identified as a regulator gene with links to valine metabolism and mitochondrial

𝛽 -oxidation of fatty acids. This is demonstrated on Figure 33, where NR2F1 inhibits the ACADM gene.

Interestingly, this pattern is already identified in Human Protein Atlas (HPA), where NR2F1 expression

correlated negatively with survival while ACADM correlates positively [159].

Furthermore, it is also possible to observe a downregulation of genes such as HADHA, EHHADH and

ECHS1, which are subunits of the hydroxyl-coenzyme A dehydrogenase enzyme. Overexpression of these

three genes has been shown to halt tumour growth in clear cell renal carcinoma, and also touted as

biomarkers capable of separating healthy from normal tissue as well as expected prognosis of the disease
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Figure 31: Principal component analysis of predicted fluxes from ipFBA of healthy and tumour samples
from renal cancer patients. The horizontal and vertical lines mark the origins for the first and second
principal component axes. Samples are coded with the patient identifier and a H or T character for healthy
and tumour samples, respectively.

[169–172].

Despite these encouraging results, the mechanisms for this downregulation found in literature could

not be predicted by ipFBA. The mTOR signalling pathway, for example, is assumed to drive the prolifera-

tive phenotypes that decrease mitochondrial 𝛽 -oxidation. This pathway was not found to be differentially

associated with these enzymes in this analysis.

In the glycolysis pathway, several differentially active enzymes and isoforms were found. As a critical

pathway responsible for generating a considerable amount of adenosine triphosphate (ATP) in several

cancers, the initial part of this pathway was found to be upregulated. The first step in the catalysis of

glucose is hexokinase, whose HK2 isoform was found to be highly active in tumour samples, unlike its
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Figure 32: Reactions with the highest observed eigenvalues after principal component analysis using
predicted fluxes of renal cancer samples. Each reactions contains two bars which represent the eigenvalues
for the first two principal components.

HK1 counter part. This is an expected change, which has been found to drive the Warburg effect [173].

phosphofructokinase (PFK) was also highly active in tumour samples, with the enzyme encoded by

the PFKP gene (platelet-type) appearing as the dominant isoform, unlike PFKL (liver-type). These are the

main two enzymes catalysing the PFK reaction and although PFKL is also typically expressed in cancer,

PFKP expression is correlated with worse outcomes, as described by Umar et al. [174]. Interestingly,

ZBTB7A appeared as a negative regulator of PFKP. This versatile protein has been reported to function

as both oncogene and oncosuppressor, with its effects varying with cancer types [175]. ipFBA results are

also unclear for this effect as its inhibition of the PKM gene appears to occur in healthy cells but not in

tumours due to the high level of PFKP expression, although ZBTB7A appears as a promising target for

cancer therapies.

pyruvate kinase (PYK) and phosphoenolpyruvate carboxykinase (PEPCK) display overall lower flux in

109



CHAPTER 5. INTEGRATIVE CONSTRAINT-BASED MODELS OF METABOLISM, GENE REGULATION AND CELL
SIGNALLING

HIBDm

HIBADH

2-Methyl-3-Oxopropanoate (m)

HIBDm_flux_backwards

Nicotinamide Adenine Dinucleotide 
(m) 

3-Hydroxy-2-Methylpropanoate (m)

Coenzyme A (m)

3-Methyl-2-Oxobutanoate (m)

DBTBCKDHBBCKDHA DLD

MMMm_flux_backwards

EHHADH

MMMm

HADHA Succinyl Coenzyme A (m)

Water (m)

ACOAD9m

Isobutyryl Coenzyme A (m)

(R)-Methylmalonyl Coenzyme A (m)

MMUT ACADM

OIVD2m

Nicotinamide Adenine Dinucleotide - 
Reduced (m) 

MMTSADm

Proton (m)

NR2F1

Flavin Adenine Dinucleotide 
Oxidized (m) 

Carbon Dioxide (m)

3-Hydroxyisobutyryl Coenzyme A (m)

r0669

2-Methylprop-2-Enoyl Coenzyme A 
(m) 

ECHS1

Flavin Adenine Dinucleotide 
Reduced (m) 

Figure 33: Impact of NR2F1 in the metabolism of branched chain amino acids and fatty acid oxidation.
The blue arrows indicate a downregulation of the displayed pathways in renal cancer when compared
to healthy tissue. Arrows represent consumption and production of metabolites (ellipses) by reactions
(rounded rectangles) which are associated to proteins (diamond shape). An interaction with a green circle
indicates the source enzyme catalyses the target reaction. Inhibition is represented by the red dash.
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the source enzyme catalyses the target reaction.

renal cancer. These enzymes have an opposite activity since PYK is the enzyme involved in the final step

of glucose catalysis to pyruvate, while PEPCK initiates gluconeogenesis with oxaloacetate as its substrate.

Israelsen et al. describe that the reduction in expression of PKM gene encoding the PYK enzyme and de-

crease in enzymatic activity allows metabolic fluxes to be diverted to other biosynthetic pathways, allowing

cancer cells to adapt to overcome nutrient deprivation [176].
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5.4 Conclusions

The constraint-based modelling framework is a simple mathematical representation capable of modelling

certain metabolic phenotypes. Through this work, an extended model representation was devised to

seamlessly include overarching layers surrounding metabolism by converting transcriptional regulatory

networks and the functional annotation represented by GPR rules into a unified network.

The top-down structure of this network allows gene expression and regulation to be modelled as reac-

tions by only allowing interactions between two layers at once. Regulatory genes control the expression of

metabolic genes, which then affect the flux through reactions catalysed by them.

Combining an expanded network representation with a novel omics integration method capable of

including multiple inputs improved predictions when compared with CSMR algorithms. This was demon-

strated by comparing this method with both fluxomics data, as was the case with the MCF7 case study,

and a large-scale cell line panel leading to a clear picture on the heterogeneity of breast cancer. ipFBA was

also useful as a method to generate multi-omics networks to characterise and identify patterns in clear cell

renal carcinoma.

Several deregulated fluxes were found to be associated with breast cancer, with many of them recently

described as possible therapeutic targets. This demonstrates the ability of the developed method to provide

mechanistic answers to understand cancer metabolism. Using reduced models also allowed the creation

of differential metabolic maps for valine metabolism, as well as glycolysis and the pentose phosphate

pathway (PPP).

Despite the positive aspects of this method, some limitations are evident. Firstly, there is a clear

reliance on a broad transcriptomics dataset since ipFBA mainly drives its predictions by penalising flux

associated with down-regulated genes. This might invalidate other predictions on mutant phenotypes for

which the gene expression state has not been measured. A particularly important use case for this is the

prediction of essential genes, which might not provide insightful results if determined with ipFBA.

The ability to predict gene regulatory interactions driving certain phenotypes was also lacking. The

differential network analysis performed in the renal cancer case study showed very few regulatory targets

which could explain the observed changes in gene expression and flux. On one hand, the model used in this

analysis was small, with far less metabolic genes to be affected by the interactions in the causal network.

Furthermore, these interactions are represented as fluxes which imply a consumption of the regulator to

produce the regulated gene which might not be able to carry flux due to steady-state violations.

Parametrisation is also a limiting factor in the predictive ability of this method. Firstly, omics data
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are integrated in ipFBA using thresholds to distinguish between high and low expression, which requires

a calibration step to identify. Furthermore, gene expression is directly correlated with flux and regulatory

interactions since genes, regulators and fluxes are interconverted at a ratio of 1, although it is certainly

impossible to assume that this is biologically accurate.

The model representation devised in this approach leads to very large LP problems. Although modern

solvers are capable of handling large problems such as this one, running multiple simulations with multiple

parameter choices can quickly become a computationally intensive task.

Despite the former limitation, the method is still useful considering it can be used to generate a flux

distribution that can then be discretised. It is therefore necessary to claim that ipFBA should be primarily

used to generate pathways rather than flux distributions with numerically accurate flux values.

With the decreasing costs of high-throughput omics technologies, tools such as ipFBA could be used to

contextualise this bulk of information to provide mechanistic insights on metabolic patterns, especially in a

personalised medicine setting where each patient’s omics signature can be used to establish a metabolic

profile which is then useful to guide further therapies.
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Conclusions

The work presented in the previous chapters resulted in three essential contributions, namely:

• Three computational frameworks for constraint-based modelling analysis and integration of omics

data;

• A generic and scalable pipeline to extract context-specific metabolic models from omics data;

• Extended metabolic model representations enabling integration of multi-omics measurements to

improve flux predictions.

Although the results shown in this work are indicative of the potential of combining constraint-based

modelling and omics quantification in providing insights into cancer metabolism and pointing targets for

drug development, several limitations can be identified. In this final chapter, some concluding remarks on

the achieved outcomes are presented as well as targets for improvement as part of future work.

6.1 Overall outcomes

The work that resulted from this thesis culminated in the development of computational methods providing

metabolic pathway analysis, model extraction and phenotype prediction methods capable of leveraging

omics data and biological networks to simulate cancer metabolism.

The first major outcome was the development of three computational frameworks that are modular,

extensible and provided through open-source platforms. CoBAMP provides a scalable architecture for the

implementation of advanced constraint-based methods based on LP or MILP, while also containing path-

way analysis tools that were previously only available in proprietary software platforms. TROPPO builds
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on this framework to include features to handle omics data inputs and methods to integrate this informa-

tion into constraint-based models through efficient implementations of model extraction and phenotype

prediction methods. Finally, GRaSP also extends the functionalities of CoBAMP by implementing methods

to represent causal networks of biological molecules and algorithms to convert them into representations

that can be directly integrated into constraint-based models.

With a rich set of software tools, it was then possible to devise a model extraction pipeline capable

of processing transcriptomics data to reconstruct tissue-specific models of human cells. This pipeline

builds on previous efforts and includes validation steps to assert the quality of context-specific models,

leveraging fluxomics, knockout screens or metabolic tasks to generate useful metrics for model evaluation.

The pipeline also includes model correction steps to which a significant contribution was made with the

implementation of a novel gapfilling algorithm that uses EFM enumeration to quickly identify reactions that

can improve model consistency. The issues posed by parametrisation were addressed by establishing the

concept of a reference sample for calibration which uses validation metrics to decide the best combinations

of parameters to apply at a larger scale.

The pipeline developed in this work improved the predictive ability of previously built context-specific

models using transcriptomics and a GSMM as the only inputs. The performance of these models was

demonstrated through the prediction of lethal genes for more than 700 cancer cell lines, as well as pre-

diction of flux activity in MCF7 cell line models. Using pFBA together with a flux analysis pipeline involving

PCA, several metabolic patterns in breast cancer could be identified. Simulated fluxes were also sufficient

to establish a division between various molecular subtypes of breast cancer, with predictions capable of

identifying enzymes that are critical for the development of aggressive cancer subtypes. Finally, our CSMR

pipeline and TAS calculation approach were able to generate predictions that can be used with relative suc-

cess in other classification tasks, extending the usage of these approaches as feature extraction methods

for supervised learning.

The developed CSMR pipeline yielded positive results, but also revealed some limitations in the types

of omics data to integrate and the inexistent representation of regulatory and signalling interactions within

thesemodels. As such, in the final part of this work, a novel model representation and phenotype prediction

algorithm was developed. The ipFBA approach developed in this work integrates multiple biological network

layers into a single model, which can be used as a scaffold to directly integrate omics measurements to

enhance flux predictions, unlike CSMR algorithms. To this end, a novel simulation method was also

developed, predicting phenotypes by prioritising consistency with gene expression.
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ipFBA was successfully applied in flux prediction tasks, outperforming the models reconstructed in

our CSMR pipeline for the MCF7 cell line. The method was also used to provide a much clearer separation

of breast cancer subtypes and phenotypes, where it was possible to assert the role of pathways such as

mevalonate biosynthesis which drive tumour growth and aggressiveness in TNBC. A renal cancer case

study was also analysed, where it was possible to generate differential metabolic pathway maps which

explained the involvement of the valine and glycolysis pathways in this disease. Finally, flux predictions

from ipFBA were also significantly better at providing relevant features for the supervised learning tasks.

In summary, the methods developed in this work reveal a greater role for modelling approaches with

high-throughput omics data as we approach a future where precision medicine could become the norm. Al-

though the predictive ability of these methods still lacks the rigour demanded in medical applications, both

the CSMR pipeline and ipFBA are capable of generating useful knowledge towards a better understanding

of human disease as well as the identification of targets for future therapies.

6.2 Publications

Several publications were written during the development of this doctoral thesis. Five of these publications

have been accepted and contributed to part of this work, namely:

• V. Vieira and M. Rocha. “CoBAMP: a Python framework for metabolic pathway analysis in constraint-

based models”. In: Bioinformatics 35.24 (2019), pp. 5361–5362

• J. Ferreira et al. “Troppo - A Python Framework for the Reconstruction of Context-Specific Metabolic

Models”. In: Practical Applications of Computational Biology and Bioinformatics, 13th International

Conference. Ed. by F. Fdez-Riverola et al. Cham: Springer International Publishing, 2020, pp. 146–

153

• J. Ferreira, V. Vieira, and M. Rocha. “Genome-Scale Metabolic Models”. In: Systems Medicine.

Ed. by O. Wolkenhauer. Oxford: Academic Press, 2021, pp. 420–428

• A. Dugourd et al. “Causal integration of multi�omics data with prior knowledge to generate mecha-

nistic hypotheses”. In: Molecular Systems Biology 17.1 (Jan. 2021), e9730

Additionally, the manuscript with the work contained on Chapter 4 has been submitted and is pending

review. It is available as a pre-print, whose reference is the following:
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• V. Vieira, J. Ferreira, and M. Rocha. “A pipeline for the reconstruction and evaluation of context-

specific human metabolic models at a large-scale”. In: bioRxiv (2021)

At the time of writing, the manuscript with the methods and results detailed on 5 is currently in

preparation.

Finally, the following publications were also developed within the scope of the doctoral programme,

but were not a core part of this thesis, namely:

• V. Vieira et al. A Model Integration Pipeline for the Improvement of Human Genome-Scale Metabolic

Reconstructions. 2018

• V. Vieira et al. “Comparison of pathway analysis and constraint-based methods for cell factory

design”. In: BMC bioinformatics 20.1 (2019), pp. 1–15

6.3 Future work

The software tools and analyses featured in this thesis prompted several questions and shown development

paths that could improve both the accessibility and accuracy of the approaches presented throughout this

thesis.

The software presented in this work is mostly aimed at moderately advanced users with a good under-

standing of programming as well as systems biology. Despite a considerable amount of effort to simplify

the usage of the CSMR pipeline and ipFBA, these methods may not be accessible to a significant part

of the community. A graphical user interface could be implemented in the future to bridge this gap and

eliminate the need for scripting.

The CSMR pipeline could also be expanded with more algorithms from which to choose. However, this

should also be compounded with the development of a consensus model building algorithm capable of

merging several models from various algorithms and data preprocessing parameters. This would ultimately

facilitate the reconstruction of a single representative model a given omics context.

The CSMR pipeline could also include an optional design step to propose gene modifications with the

purpose of achieving a given phenotype, such as cell death in the case of tumour cells. Furthermore,

the integration of a drug database containing information on toxicity and mode of action could be used to

probe a number of cancer cell lines and predict their drug sensitivity profiles.
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The ipFBA approach was capable of generating relatively accurate flux predictions. However, due to

the nature of the method’s implementation, it is not suited to the simulation of mutant phenotypes, since

the objective function is reliant on gene expression data. A new method or extension to this algorithm

could be implemented to solve this issue as it would allow for the correct identification of lethal genes.
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Figure 35: Gene expression reactions in ipFBA with the highest observed eigenvalues after principal com-
ponent analysis using predicted fluxes for breast cancer cell lines. Each gene contains three bars which
represent the eigenvalues for the first three principal components.
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Figure 36: Metabolic reactions in ipFBA with the highest observed eigenvalues after principal compo-
nent analysis using predicted fluxes for breast cancer cell lines. Each reaction contains three bars which
represent the eigenvalues for the first three principal components.
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Figure 37: Signalling and regulatory interactions in ipFBA with the highest observed eigenvalues after
principal component analysis using predicted fluxes for breast cancer cell lines. Each interactions contains
three bars which represent the eigenvalues for the first three principal components.
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