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Abstract. An examination of Girard’s execution formula suggests im-
plementations of the Geometry of Interaction at the syntactic level. In
this paper we limit our scope to ground-type terms and study the paral-
lel aspects of such implementations, by introducing a family of abstract
machines which can be directly implemented. These machines address
all the important implementation issues such as the choice of an inter-
thread communication model, and allow to incorporate specific strategies
for dividing the computation of the execution path into smaller tasks.

1 Introduction

This paper proposes novel parallel implementation techniques for the A-calculus
based on the geometry of interaction (Gol) [6,5, 7]. Gol-based implementation
is quite different from other techniques: it uses a graph representation of each
term, from which its value is derived by performing path computations, which
can be done locally and asynchronously. This encompasses both 8-reduction and
the variable substitution mechanism.

Informally, for every ground-type term there is a path which leaves from the
root of the respective graph, and traverses the term, finishing back at root. This
path will survive reduction; in particular in the normal form of the term, it will
simply go from the root to the constant which is the value of the term. The Gol
treats this path algebraically, by assigning a weight to every edge in the initial
graph. This allows, on one hand, to identify the unique path which survives
reduction, and on the other hand, to calculate algebraically its weight, which is
invariant throughout reduction, and equal, in fact, to the value of the term.

The geometry of interaction has been developed as a semantics for linear
logic proof-nets [4]. Combined with a standard translation of the A-calculus into
these nets, the results may then be lifted to the scope of functional programs.
The nodes in the graph of each term are logical symbols with premises and
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conclusions, and each orientated edge links a conclusion of a node to a premise
of another node. Paths are sequences of (direct - —» - or reverse - «— -) edges.
Straight paths are those that do not bounce (i.e., no edge is followed by the same
edge in the opposite direction) and do not twist (a path arriving at a premise of
a node is not followed by an edge leaving from the other premise).

Persistent paths are those that remain invariant with respect to reduction,
and the geometry of interaction is a tool for calculating them: Girard’s execution
formula gives the interpretation of a term as a set of straight paths (called regular
paths) which are proved [3] to be exactly the persistent paths.

Regular paths are calculated algebraically: edges in the graph are labelled
with a weight, a term in the Gol dynamic algebra L*. The weight w(-) of a path
is defined inductively: w(e) = 1 for the empty path e, and w(ty) = w(vy) - w(t)
where v is a path and ¢ an edge, and - denotes composition in £*. For the case
of ground-type terms a single persistent path exists which starts and ends at the
root, of the graph, and the term can be evaluated by calculating its weight.

Implementation via Gol. The first work which proposed to use the Gol as an
implementation mechanism [2] defined virtual reduction (VR), alocal and conflu-
ent reduction on graphs, which already suggested the use of parallelism. Virtual
reduction allows to add to a graph new edges representing composed paths.
Since it preserves the execution of terms, VR provides a way of calculating reg-
ular paths. In order to avoid compositions corresponding to bouncing paths, as
well as the repeated compositions of pairs of edges, virtual reduction filters the
weights of the composed edges, for which an extension of the algebraic structure
is required. This makes the calculations rather complex.

Directed Virtual Reduction [1], applied with the combustion strategy, elim-
inates this complexity and achieves strong local confluence, but at a cost: the
introduction of many bureaucratic reduction steps. To the best of our knowledge,
only the directed version has been implemented [11], with the introduction of
the half-combustion strategy, which allows for a higher degree of parallelism.

The other way in which Gol has been used for implementation was by turning
graphs into bideterministic automata, attaching an action to each edge. Actions
act on contexts (which play the role of words), as given by the context semantics
of [8]. The first Gol implementation [10] was in fact obtained in this way, for
the PCF language: the Geometry of Interaction Machine compiles terms into
assembly code of a generic register machine, which runs an automaton.

Our Approach. In this paper we apply the execution formula directly. Our ap-
proach resembles VR in that it is syntactic, however it uses L£* rather than
the more complicated structure of VR, thus algebraic manipulation is kept sim-
ple. This simplicity is a result of the representation of terms using matrices of
weights, following Girard’s presentation of the Gol.

From a data-structures point of view, matrices are a convenient representa-
tion for graphs. We have studied elsewhere [12] sequential algorithms for calcu-
lating execution paths, derived from the execution formula and using the same
matrix representation that will be used here.



We achieve concurrent execution by calculating segments of the path (as-
signed to different threads of computation) starting from different nodes of its
graph, and allowing the threads to communicate so that the weight of a finished
segment can be used to calculate the weight of another (longer) segment.

Each implementation in this paper will be presented as an abstract ma-
chine, an abstract rewriting system working on machine configurations. While
strongly based on the theory, each machine addresses all the major implementa-
tion questions, including the choice of a model for inter-thread communication
(shared-memory vs. message-passing) and synchronization issues. The machines
are parameterized, allowing to impose different path reduction strategies.

Plan. In Sect. 2 we briefly review basic concepts of the geometry of interaction.
Section 3 defines the computational tasks that will be distributed for parallel
execution, and in Sect. 4 a shared-memory abstract machine is defined. This is
optimized in Sect. 5 to eliminate the need for synchronization mechanisms. In
Sect. 6 we study redundant, path computations and propose an abstract machine
that gets rid of redundancy. Section 7 defines a distributed-memory machine, and
in Sect. 8 we conclude with some comments about implementing these ideas.
The long version of this paper contains proofs and examples of execution.

2 Background

Our treatment of the theory here is necessarily superficial; for a more thorough
introduction to Gol (including VR and DVR), see [6, 5, 2, 3].

The Language. We will use a typed A-calculus with a single base type. The
syntax of our terms (ranged over by t,u,v) will be (with x,y, 2z variables, n an
integer constant and S the successor function):

tux=n|S|z|uw|Azu

The typing rules are the standard ones: if with z : 0 we have M : 7 then Az.M :
o—T1;if M:0— 7and N : o0 then MN : 7. The constants S : nat — nat and
n : nat have the expected types. The reduction rules we wish to implement are
B-reduction and a d-rule for the constants:

(Az.t)u — t{u/z]
Sn —n+1

All the results in the paper can be extended to include conditionals and recursion;
we choose to keep the language as simple as possible for the sake of clarity.

The Geometry of Interaction Dynamic Algebra L*. We define a single-sorted
signature with constants 0,1, p, g, r, s, t,d; two unary operators (-)* and !(-), and
an infix (denoted by .) binary composition. The equational theory £* is defined
over this signature as follows (where variables x, y stand for arbitrary terms):



— The structure is monoidal, with identity 1 and composition as multiplica-
tive operation, and 0 is an absorbing element for composition. Associativity
allows to write u.v as uv, and both u.(v.w) and (u.v).w as vvw.

— The inversion operator (-)* is an involutive antimorphism for 0, 1, and com-

position:
0*=0 1" =1
(1,*)* =1 (-’I:y)* — y*',I:*
— The ezponential operator ! is a morphism for 0, 1, inversion, and composition:
10) =0 (1) =1

()" = !(z*) ()l (y) = !zy)
— The constants verify the annihilation equations:
c'e=1 for ¢ =q,p,r, s,t,d
¢'p=p'q=0
r's=s5r=0
— The following commutation equations are verified:

(z)r = rl(x) (z)s = sl(z)
(z)t = t!(x) (z)d = dx

— To accomodate our language, we extend this theory following [9] with con-
stants n (for each natural number) and S, with equations:

nS=S(n+1) S*S=1

Each commutation equation has a dual form as a consequence of (zy)* = y*z*,
for instance, d*!(x) = xd*. A binary sum operator may also be included in this
theory, which is commutative and associative, has 0 as identity, and composition
distributes over it. We call £ the theory £* extended with this operator.

Execution Paths. The standard presentation consists in first defining the weight
of paths in proof-nets. Ezecution paths are regular (i.e. their weight does not
equal 0 in £*) and have as source and goal conclusions of the net. A translation
of A-terms into nets allows to lift the interpretation to the A-calculus.

Decidability of Regularity. The term-rewriting system R+ is obtained by orien-
tating from left to right all the equations in £* (including the dual commutation
equations). R« is confluent [13]. A stable form is 1 or any term a!(m)b* in L£*
where a and b are positive flat terms, i.e., they contain no applications of (-)* or
I(+), and m is stable. Stable forms are normal with respect to R.«. Every stable
form is equal to some term AB* with A and B positive but not necessarily flat.

Proposition 1 (AB* property [13,3]). If v is a straight path in some net
then its weight w(y) can be rewritten either to a stable form or to 0.

Let v be a path with w(y) rewritable to a stable form ab*. Since for a positive
monomial z, £* F z*z = 1, then £* F a*ab*b = 1, and L* F a*w(y)b = 1.
Thus £* I/ w(y) = 0 (otherwise £* F 0 = 1, contradicted by the existence of
non-trivial models for £*). This gives a decidable process for checking regularity.



Matrixz Presentation. The interpretation or ezecution of a net is the set of all
tuples (s,d, ) such that there is an execution path with source s, goal d, and
weight ¢, with s,d (the indexes of) two conclusions of the net. One way to
represent this is as a matrix of weights indexed by the conclusions of the net.

Following Girard [6] we associate to a proof a pair of matrices (II*, ), indexed
by the terminal ports of the corresponding proof-net. These are either conclusions
of symbols which are connected to cut links, or conclusions of the net. An up-
down path is a path that starts upwards at a terminal port and ends downwards
at a terminal port. An elementary path is an up-down path which doesn’t cross
any cut link. The matrix IT* associated to a net contains all the (sums of the
weights of) elementary paths in it, and o contains information relative to the cuts
in the net (it corresponds to an involutive permutation on the non-conclusion
terminal ports). In the long version of the paper we show how to build these
matrices directly from a A-term.

Definition 1 (Execution Formula). Let ¢ be a term and (II*, o) the matrices
associated to it. The execution of t is defined as follows, where C' is called the
central part of the formula:

Ex(t) = (1—-0?)C(1 —0?) where C =TI* i(al’[')k

k=0

In this paper we only interpret ground-type terms. In these conditions the
execution formula expresses an invariant on computation: if ¢ — ¢', then
Ex(t) = Ex(t'). The unique conclusion (or root) of the corresponding proof-
net will by convention have the highest index in the matrices. £x(t) is a square
matrix of dimension N containing 0 everywhere except £z(t)n,n, which is the
weight of the execution path of ¢. The following result from [10] is the last in-
gredient required for using the execution formula as an evaluation device:

Proposition 2. Ift has ground type and reduces to a constant ¢, and ¢ is the
weight of its execution path, then L* F ¢ = c.

3 Basic Computation Tasks

As far as the design of an abstract machine is concerned, the first step is to
choose a notion of basic task of computation. Then the operation of the machine
simply manages the concurrent execution of these tasks by the available threads.

Let ¢ be a path ending at a terminal port connected to a cut link C'. A basic
task is the action of composing ¢ with all the paths consisting of the cut link C'
followed by (i) an elementary path or (i4) any other up-down path. An element
(oII*);,; is the weight of a path starting downwards at terminal port ¢, crossing a
cut, and traversing an elementary path. If ¢ ends at port i, multiplying its weight
by the row vector (¢II*); captures the first case above. By adding the weights
of other up-down paths to a copy of ¢II®, the second case is also captured.



Auziliary Functions. Let N be the number of terminal ports in a net N. We
consider defined (in the context of a configuration) a matrix of weights B of
dimension N (initially containing a copy of ¢II*®), and a predicate storePred on
paths, represented as tuples (s, d, @), with s and d the source and goal ports, and
 their weight. storePred identifies paths which will cease to be grown. Instead,
their weight will be stored to be reused later. The path starting at root should
never stop being grown, thus one imposes storePred(N, d, p) = false.

The function Z.s takes as argument a path (s, d, ¢) and returns a pair (I1,15)
of lists of paths. This pair is obtained by composing the weight ¢ with all the
weights in the row indexed by d in matrix B, and including each of the resulting
weights (s,m,7) in [ or [y according to whether storePred(s, m, 7) holds or not.

A related function 7!, also takes a path (s,d,y) and returns a pair (Iy,12)
of lists, now obtained by composing every weight stored in the column indexed
by s in matrix X (part of the current configuration) with ¢, and splitting the

resulting paths using storePred. The use of 7|  will become clear in section 6.

4 Shared-Everything Abstract Machines

In this section we define a first abstract machine (i.e., a notion of configurations
and a reduction relation) corresponding to a shared-memory implementation.

Definition 2. An SE-configuration is a tuple (B | S| C | [t1,...tn]) where

— B is a matriz of weights of paths of dimension N, representing a net.
— S,C € (NxNxL*)* are the storage and composition task lists, respectively.
— FEach thread ty, is a State, a term built from the following signature:

store : N x N x £L* — State compose : N x N x L* — State
delist : State stop : L* — State
enlist: (Nx Nx £*)* x (Nx N x L") — State

We will use the following definitions in the context of a configuration: Np =
{neN|n<N}and Ny ={neN|n<m}.

The abstract machine rules are given in Table 1, where we omit some un-
changed components. Standard notation is used for lists. The auxiliary function
add(B,i,j,a) gives the matrix obtained by adding the weight a to B; ;. The
rules define a reduction relation — on single-threaded configurations.

Definition 3 (SE Reduction). The % reduction relation on multi-threaded
configurations is the smallest relation verifying:

<B|S|C|[ti1>—><§|§|§|@1>
(B|S|Ctry.- tiyeitm] ) =5 (B|S|C|[ts,...ti,. . tm] )

Definition 4. A tuple (s,d, $), where ¢ € L7, is said to belong to the execution
of a term iff ¢ can be written as a sum ¢ =Y ¢n, such that for each ¢, one
has ¢, + a, = (I1*(c11®)in) 5 4 for some i, and some term a, € L.



Table 1. Shared-everything (SE) abstract machine

0 Net B B
s=d=N |Thread compose(s,d, ) stop(¢p)
I Net B add(B,o(s),d, )
Thread store(s, d, ¢) delist
II Net B B
s # N or d # N|Thread compose(s,d, p) |enlist(Zes(s,d, p))
II1 STasks S (s,d,p): S
Thread |enlist((s,d, ¢) : Ts,Tc)| enlist(Ts, T:)
v CTasks c (s,d,p):C
Thread | enlist(e, (s,d, ¢) : T¢) enlist(e, T)
I Vv |Thread | enlist(e, e | delist |
VI STasks (s,d,p): S S
Thread delist store(s, d, )
VII CTasks (s,d,p): C c
STasks € €
Thread delist compose(s, d, p)

The following propositions establish sufficient conditions for the correctness of
the machine and for the execution path to be computed.

Proposition 3. Let t be a term represented as (II*,0), and Xy = (oII°® | ¢ |
Co | [delist...delist]) a configuration where Co contains only paths (i,j,113 ;)

taken from TI*, excluding repetitions. Let £y 3, ¥ = (B | S| C | [t1.. . tm] ).

1. If ty is some thread in X and t, = compose(s,d,p) or t, = store(s,d, ),
then (s,d, ) belongs to the execution of t.

2. If ty, = enlist(Ts, T¢.) is some thread in X and (s,d, ) € Ts or (s,d,p) € T,,
then (s,d, ) belongs to the execution of t.

3. If (s,d,p) € S or (s,d,p) € C, then (s,d,p) belongs to the execution of t.

4. For all s,d, the tuple (0(s),d, Bs,q) belongs to the execution of t.

Proposition 4. Consider an initial configuration in the conditions of Prop. 3,
where additionally Cy contains the paths (N, j,I1%; ;) such that 11}, ; # 0. Then
the machine stops with a final configuration X containing a thread in the state
stop(yp), where ¢ is the weight of the unique execution path of the term.

Deterministic Execution. For initial configurations Xy in the conditions of Prop. 4
with Cp containing only the weight of the path in row N of II®, execution of the
abstract machine is deterministic and equivalent to the Geometry of Interaction
Machine [10]. There is always a single path inside the machine, that results from
growing the unique elementary path with source the root of the term, and given
the ground-type of the term, the result of each step (and each invocation of Z.)
must be a unique path, for which the storePred predicate always returns false,
thus a new compose task will be generated with the new path as argument.



Concurrent Execution. The present machine is a formalization of a variant of the
producer-consumers model for (shared-memory) parallel programming, where
the consumer threads are also producers, running the following cycle: first de-
queue a task from the shared queue, then process it (possibly enqueueing new
tasks); restart. In the abstract machine there are two different task lists, with
different priorities (store tasks have higher priority than compose tasks).

The concurrent behaviour of =, comes from sequentiality with non-deter-
minism. A single thread executes a machine rule at each step of the == reduc-
tion, allowing to capture synchronization when accessing shared data-structures.
For instance, if two threads may execute at the same time rule I, there will be a
(2 step) =%, reduction with the correct result (B is changed by the two threads).

If parallel computation is desired, one must add more paths to Cy than those
in row N of II®. These paths will be concurrently grown into longer regular paths.
When a path ¢ computed by thread ¢; reaches a port from which another path
¢’ has been grown by t2, ¢’ will be used for extending . At this point, ¢; and ¢,
communicate using matrix B: if s and d are the source and goal ports of ¢, then
the weight " will be added to the current weight in Bg(,) 4 and composition of
o with ' will happen naturally since o(s) is the goal port of .

One could devise a strategy for virtual reduction mimicking the abstract
machine — given a set of nodes, grow all the paths leaving from those nodes. In
VR each composition results in a new edge immediately incorporated in the net,
whereas the machine will only perform store operations (which will add paths
to the net represented by matrix B) with selected paths (which then cease to
be grown). To illustrate this point, consider the net in Fig. 1, where a path is
to be grown starting from the source of the edge (. Virtual reduction produces
the net on the left, where ¢y has been composed with v; to give 1, which has
then been composed with +2 and so on. The abstract machine grows the path
o until storePred is verified, and only then does it store the result path ¢.

(\ ¥o 2! 2 73

N N I O
!

Fig. 1. Example path reductions

The machine is parameterized on which paths to start growing (included in
Cy), and on the predicate storePred. One possible criterion is given in Sect. 6.



Implementation. The abstract machine may be implemented in any shared-
memory architecture; threads in a configuration will be mapped into machine
threads independently running the machine rules; threads will run in true paral-
lelism, with synchronization introduced for accessing the shared data-structures.
This ensures that the behaviour of the implementation corresponds to the inter-
leaving reduction of the abstract machine. Any shared-memory library contains
the appropriate synchronization devices, which we will here call locks.
Synchronization is required for accessing the shared task lists S and C, which
may be read and written by any thread. This is done by associating a lock to
each list: the C-lock must be acquired before and released after execution of
rules IV and VII, and the same happens for the S-lock with rules III and VI.
Since the elements in a matrix are stored in independent memory positions,
they can be protected individually, rather than treating B as a monolithic struc-
ture with a single lock. Synchronization is needed when two threads execute
simultaneously rule I with the same s,d arguments: the individual lock associ-
ated to B,(s) ¢ must be acquired by a thread store(s,d, ¢) executing rule L.

5 Distributed-Task-Lists Abstract Machines

Much synchronization is required for the parallel implementation of the SE-
machine. We will eliminate this by including in threads private task lists.

Definition 5. A DTL-configuration is a tuple (B | [t1,...ty]) where

— B is a matriz of weights of paths of dimension N, representing a net.

— Each ty, is a thread, ty = (Si | Ck | str), where Si,Cr € (N x N x L*)* are
the storage and composition task lists of the thread, respectively, and sty its
state, built from the same signature as before.

Table 2 defines a reduction relation —» on single-threaded configurations (rule
0 will henceforth be considered implicit). We then define the following:

Definition 6 (DTL reduction). A s the smallest relation verifying
(B[ [ti] ) —(

| [t:])
(B | [tr, . tir tm] ) 5 (B | [tr, .. .G, - tm] )

&)

Properties. Proposition 3 holds slightly modified, with initial configurations
Yo = (olI* | [t9,...9]) where each thread t9 = (¢ | C} | delist), each C}
contains only paths (s,d,II$ ;) from II*, and the same path does not occur
repeatedly in any two or in the same C,S. Also the third condition in the propo-
sition is changed to “if ¢y is some thread and (s,d, ) € S or (s,d,p) € Cy,
then (s,d, ) belongs to the execution of ¢”. Proposition 4 holds as well with
small modifications: in the initial configurations, the paths (N, j, H]'VJ.) must be
contained in some C¥. Finally another interesting property holds:



Table 2. Distributed-task-lists (DTL) abstract machine

I Net B add(B,o(s),d, )
tr] State store(s, d, p) delist
II Net B B
s#Nord#N|ty| State| compose(s,d, o) |enlist(Zes(s,d, ¢))
111 tr | STasks S (s,d,): S
State |enlist((s,d, ) : Ts,T.)| enlist(Ts, T¢)
v ti|CTasks c (s,d,p):C
State | enlist(g, (s,d, @) : T¢) enlist(e, T¢)
I ) [tx] State | enlist(z, €) | delist |
VI ti| STasks (s,d,p): S S
State delist store(s, d, p)
VII CTasks (s,d,p): C c
tr| STasks € €
State delist compose(s, d, p)

Proposition 5. Let i : Np — Nt be any map. Consider a configuration Xy =
(BY | [t9,...t%]y with ¢} = (¢ | CY | delist), and C} containing only paths
(s,d, 115 ;) such that i(s) = k. If Xy 5 and t, is any thread in X with state

compose(s,d, ) or store(s,d, ), then i(s) = k.

Remarks. Suppose i is the identity function (and there are enough threads in
the configuration). Then this proposition means that (with an appropriate initial
configuration) thread ¢; will handle all paths with source k, and only those. An
immediate consequence is that when executing rule I, each thread writes to
positions located in a unique row (indexed by o(k)) in matrix B.

If not enough threads are available for all terminal ports, the function ¢ will
map terminal ports to threads. In this case each thread t; will process paths
with source ports from a distinct set, and will thus write to positions in different
rows of B. t; will however read from positions in any row of B.

Implementation. Each thread reads from and writes to its own task list only
(so no synchronization is needed for accessing those lists). As to matrix B, no
protection is needed, because of the previous remark. Thus this abstract machine
can be implemented as a wait-free shared-memory program (no locks used).

6 Eliminating Redundancy

Consider again Fig. 1, and a path « ending where ¢q starts. Two paths (o and
) are available for composition with a. If « is composed with ¢y, the resulting
path may continue being extended by composing with v; and so on. These are
redundant computations, since ¢ has already been computed. In terms of the



abstract machine, after the path ¢ : s — d has its weight stored in By (4 4, the
path « with goal the port o(s) may be composed not only with o, but also with
the elementary ¢y from which ¢ was grown, whose weight still stands in the row
indexed by o(s) in B. The current machine either follows both paths, performing
many redundant computations, or, if some thread extends a before ¢ has been
stored in B, it does not follow ¢ at all, which sequentializes execution.

To eliminate these redundancies, it is sufficient to remove from the net the
path ¢g. In the abstract machine it can be removed from matrix B:

Definition 7. A redundancy-free initial D TLW-configuration is any Yo = (B° |
O]n | [t9,...2%]), all t) = (e | C2 | delist), and

B0 _ [0 if 113 4 € C} for some k,
o(s),d (0T1*) 5 (s),a Otherwise

There is a problem with this if ¢ has not yet been computed: whereas before the
path a could continue being extended by composing with ¢y, now it will die,
preventing computation of the execution path. This is solved by keeping account
of all the paths candidates for composition with paths in B, and performing the
corresponding compositions when new weights are stored in B. These “waiting
paths” (such as « in the example) will be kept in a matrix X in configurations
(DTL-configurations with this X component are called DTLW), and the function
T!, will be used to perform the necessary compositions.

Proposition 5 cannot hold, since thread t; will handle paths with arbitrary
sources, generated by composing elements of X (of arbitrary source) with a
path (s,d, ) to be stored. Thus this machine cannot be implemented without
synchronization. A change of perspective will allow to recover Prop. 5, at the
expense of allowing threads to write to each other’s task lists.

Table 3 contains the rules for the new abstract machine. Rules III and IV
involve two threads. We will consider that the list of threads may be accessed
as an array, a partial map from indexes to threads, L : NT — State. When
i & dom(L), L[i — t;] denotes the union of L with the singleton {(i,t;)}. We
will still use list notation if convenient, and ¢; will abbreviate L(i).

~ o~ -~

(BI X [[ti]) — (B X |[t]) i ¢ dom(L)

(B| X |[tasts) ) —rrr0v (B | X | [fast) ) a,b & dom(L)

(B| X |Llars ta,bty] ) Y3 (B| X | Lla ta,b— 5] )

—11,7v denotes reduction using one of rules III or IV. A possible particular

case for these two rules is that i(s) = k. For this reason the definition of “%"

includes the possibility of a single-thread reduction using rule III or IV.

Properties. Propositions 3 and 5 hold, with Xy in the conditions of Def. 7 and

U replacing 2. A consequence of Prop. 5 is that



Table 3. DTLW abstract machine with mutual writing

I Net B add(B,o(s),d, )
WPaths X X
tr | State store(s, d, p) enlist(Z., (o (s),d, ¢))
II Net B B
s#Nord#N WPaths X add(X, s,d, )
tr, | State | compose(s,d, ¢) enlist(Z.s(s,d, ©))
II1 ti(s)| STasks S (s,d,p): S
tr | State |enlist((s,d, ) : Ts,T¢) enlist(Ts, Tt)
v ti(s)|CTasks c (s,d,p): C
t, | State | enlist(e, (s,d, p) : T¢) enlist(e, Tt)
I A% | tr | State ] enlist(e, e | delist |
VI ty, | STasks (s,d,p): S S
State delist store(s, d, )
VII CTasks (s,d,p): C c
tr | STasks € €
State delist compose(s,d, p)

— the element indexed by (s,d) in matrix B is only written by thread #;.,(s))
but can be read by any thread;

— the element indexed by (s, d) in matrix X is only written by thread #; 5 and
only read by thread ¢;,(4)) (when applying function Z7_).

Proposition 4 no longer holds for free: a judicious choice of initial configurations
and definition of storePred are now necessary, guaranteeing that storePred is
verified at some point for all the paths calculated concurrently. Notably, this
means these paths should not overlap. Let o and  be two subpaths of the
execution path such that f starts inside a. If when the port where 3 starts is
reached, 8 has already been stored, then the part of a that has been computed
will be composed with 3, and the storePred predicate will never be applied to a.

We propose as an example the following criterion: consider a set P of terminal
ports, and include in Cy all the paths II? ; such that ¢ € P, and let

storePred(s,d, ) = (o(d) € Por d=N) and s # N

where the condition d = N is necessary to store the last subpath. This guarantees
that paths do not overlap since each path ends where another one starts.

Implementation. The access to matrices B and X is naturally protected — no
two threads can write to the same position in B or X. Locks are required, for
the individual lists of all threads, to be used as follows:

— for executing rule III, thread ¢; must own the S-lock of thread #;(,);
— for executing rule IV, thread t; must own the C-lock of thread #;,);
— for executing rule VI, thread ¢; must own its own S-lock;

— for executing rule VII, thread ¢; must own its own C-lock.



Table 4. Distributed-everything abstract machine

I Net B add(B,o(s),d, )
tr |WPaths X X
State store(s, d, ©) enlist(Z.,(o(s),d, ¢))
II Net B B
s#Nord#N| tp |WPaths X add(X,s,d, )
State compose(s,d, ) enlist(Zes(s,d, )
111 ti(s(s))| STasks S (s,d, ) : S
tr State |enlist((s,d, @) : Ts,T.) enlist(Ts, Tt)
v tiq) | CTasks c (s,d,p): C
i State | enlist(e, (s, d, ¢) : T¢) enlist(e, Tt)
I A% | tx | State | enlist(e, e | delist |
VI tk STasks (s,d,p): S S
State delist store(s, d, p)
VII CTasks (s,d, ) : C c
tr STasks € €
State delist compose(s,d, p)

7 Distributed-Everything Abstract Machine

In our final machine, threads keep individual copies of the B and X matrices.

Definition 8. A DE-configuration is a list [t1,...ty,] where each t, = (By |
Xk | Sk | Ck | str) is a thread, with By, and X}, matrices of weights of dimension
N; Sy and C}, the storage and composition task lists of tr, and sty its state.

Table 4 defines a reduction — on one- and two-thread configurations. Then:

Definition 9 (DE reduction). e, s the smallest relation verifying:

[ti] — [72] i & dOTrL(L) [ta,tb] — 1,1V [t/;,t/;,] a,b & dom(L)
L[i — ti] %% L[i = ;] Llars to,b s ty] 2% Lia s t,,b > 4]

Each thread now writes composition tasks to the task list of the thread
corresponding to the goal port of the respective path.

Proposition 6. Let i : Np — Np be a map, and consider a configuration
To=1[t9,...89], each t) = (BY | [0]x | € | CF | delist), and C} containing only
paths (s,d, 113 ;) with i(d) = k. If Xo 2 ¥ and tr is any thread in X with state
compose(s,d, ), then i(d) = k; if tx, has state store(s,d, ), then i(c(s)) = k.

Corollary 1. With X, in the conditions of Prop. 6, Bs 4 is only read and written
by thread t;s), and X 4 is only read and written by thread t;(q)-

Each thread only needs to read from exactly the same positions of B and X that
it writes to, thus the local copies of B and X do not need to be kept consistent.



Implementation. In an implementation of this machine, synchronization is only
needed for accessing the task lists of individual threads, used for communication.

In practice it is not necessary that threads keep copies of the entire matrices:
rows of B and columns of X can be distributed so that thread t; keeps only the
rows of B and columns of X indexed by d such that i(d) = k.

A Message-passing Machine. We now propose a change of perspective: consider
that the task lists are communication buffers, where messages sent to a thread
are kept before they are received by the thread. Then the enlist operation is
a synchronous buffered send operation, which puts a task into the destination
thread’s buffer. delist is a receive operation, by which a thread removes a message
from one of its buffers. Two types of messages (compose and store) may be sent
to a thread, which will be stored in different buffers.

The message-passing mechanisms provided by any parallel-programming li-
brary ensure that messages are naturally ordered on arrival and placed sequen-
tially in the corresponding buffer (thus replacing synchronization).

8 Conclusions and Further Work

The fact that the abstract machines allow to identify the necessary synchro-
nization mechanisms is of great importance: an important product of this is the
wait-free abstract machine of Sect. 5. Wait-free implementations are typically
difficult to obtain (to understand the need for synchronization in VR the reader
should think of a situation like - — - — - — - where a critical pair exists).

The abstract machines are parameterized on the initial paths to be extended,
as well as on the criterion to stop extending paths. This allows to implement
different strategies for path computations (unlike virtual reduction, which, being
a local reduction relation, has no built-in strategy). An instance of the abstract
machines given here always incorporates a precise strategy, and this allows no-
tably to eliminate synchronization as well as useless computations.

The parameterization we have given in Sect. 6 guarantees the correctness
of the machines in sections 6 and 7, but does not allow for a subpath ¢ of the
execution path to be used to extend another subpath ¢': only the execution path
can be extended using already computed subpaths. This has the advantage of
simplicity, but it remains to study other efficient criteria.

The appropriate technologies exist for implementing the given machines in
widely available architectures, both for shared-memory (for instance POSIX
threads on SMP architectures) and distributed-memory (message-passing li-
braries such as MPI or PVM). It is worth mentioning that we have implemented
the DE-machine using MPI, and started testing it over a local-area network.
With respect to shared-memory implementations, it will be important to com-
pare the wait-free (Sect. 5) and the redundancy-free (Sect. 6) machines.
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