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A B S T R A C T

The appearance of high-throughput sequencing technologies revolutionized the study
of genomics. The substantial volumes of data generated by these technologies allow a very
comprehensive characterization of the species genomes and the genomic variation within
individual genomes. This work focused on the identification and characterization of struc-
tural variants (SVs) in the cork oak genome, a class of variants described as genomic rear-
rangements that may be involved in several biological processes. There are many types of
SVs, including insertions, deletions, inversions, translocations and duplications.

Cork oak trees are the only commercial source of cork, which is a renewable natural
resource that has many applications, particularly in the production of stoppers and sound
and thermal insulators, among others, due to its unique features. Cork is one of the most
valuable non-wood forest products, putting this species among the most important trees
with commercial relevance in the countries where it is naturally distributed.

The work pipeline followed the common steps used in this type of study, namely the
sample collection, sequencing, data quality evaluation, preprocessing, read mapping to the
reference genome, structural variation calling and, lastly, the identification and characteri-
zation of the SVs. To achieve this final goal of identifying and characterizing SV in the cork
oak genome, several tests were performed, comparing the quality and length thresholds,
for three software applications for SV calling and three sets of mapping parameters.

This present work was the first study performed in cork oak where whole genome
resequencing was used, by the analysis of the whole genome of 30 individuals, which
included 14 trees producers of good quality cork, along with 16 trees that produce cork
with bad quality. This magnitude of genomes is the first step to construct the species
pangenome, which will then be crucial to understand how SV determines the differences in
cork quality, since this is the most important economic trait of these trees. The 93,980 SVs
identified clearly indicated that SV is present in the cork oak genome.
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R E S U M O

O aparecimento de tecnologias de sequenciação de alto rendimento veio revolucionar
o estudo da genómica. O volume substancial de dados gerado por estas tecnologias permite
uma caracterização muito abrangente dos genomas das espécies e da variação genómica
entre genomas individuais. Este trabalho focou-se na identificação e caracterização de vari-
antes estruturais (VEs) no genoma do sobreiro, uma classe de variantes descrita como re-
arranjos genómicos que podem estar envolvidos em vários processos biológicos. Existem
muitos tipos de VEs, incluindo inserções, deleções, inversões, translocações e duplicações.

Os sobreiros são a única fonte comercial de cortiça, que é um recurso natural renová-
vel com muitas aplicações, particularmente na produção de rolhas, e isoladores sonoros
e térmicos, entre outros, devido às suas caracterı́sticas únicas. A cortiça é um dos mais
valiosos produtos florestais que não a madeira, colocando esta espécie entre as árvores
mais importantes com relevância comercial nos paı́ses onde esta ocorre naturalmente.

A estrutura deste trabalho seguiu os passos habituais usados neste tipo de estudo,
nomeadamente a recolha de amostras, sequenciação, avaliação da qualidade dos dados,
pré-processamento, mapeamento das reads contra o genoma de referência, a descoberta de
variação estrutural e, por último, a identificação e caracterização das VEs. Para alcançar
este objetivo final de identificar e caracterizar variação estrutural no genoma do sobreiro,
vários testes foram efetuados, comparando valores limiares de qualidade e comprimento,
usando três aplicações bioinformáticas de descoberta de VE e três conjuntos de parâmetros
de mapeamento.

O presente trabalho foi o primeiro realizado em sobreiro onde foi usada a resequenci-
ação completa do genoma, com a análise do genoma de 30 indivı́duos, os quais incluı́am 14

árvores produtoras de cortiça de boa qualidade, junto com 16 outras que produzem cortiça
com má qualidade. Esta magnitude de genomas usados é o primeiro passo para construir
o pangenoma da espécie, que será depois crucial para perceber como é que a VE determina
as diferenças na qualidade da cortiça, visto que este é o traço económico mais importante
destas árvores. As 93,980 VEs identificadas indicam claramente que a VE está presente no
genoma do sobreiro.
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1

I N T R O D U C T I O N

1.1 context and motivation

The substantial volumes of data generated with high-throughput sequencing allow
a very comprehensive characterization of the genomic variation that can be identified in
individual genomes (Baker, 2012). Among the different types of variants that can be
found, structural variants (SVs) represent a class of variants whose characterization in plant
genomes is only just beginning (Saxena et al., 2014).

SVs are genomic rearrangements that may be involved in processes related to evolu-
tionary mechanisms, adaptation to specific environmental conditions or associated with ge-
netic disorders. There are several types of SVs, which include insertions/deletions (InDels),
inversions (INV), duplications (DUP) and translocations, which can be inter-chromosomal
translocations (ITX) or intra-chromosomal translocations (CTX), among others (Saxena et al.,
2014; Liu et al., 2015). These variants can be identified and characterized through bioinfor-
matics analyses of high-throughput sequence data, in particular sequence data obtained
with paired-end (PE) sequencing protocols.

The pangenome represents the sum of the genes for a given species, including all
types of variation identified, and to date only a few plant species had their pangenome
characterized (Golicz et al., 2016). In cork oak, no information is available regarding the
type, distribution and frequency of SVs in the species genome. Additionally, besides the
identification of SVs, their effect on phenotypic traits under complex genetic regulation has
never been studied. Lastly, even though there are already several bioinformatics software
tools to execute this type of analysis, their performance in plant genomes is still poorly
characterized. Eventually, the development of new software tools and/or analyses pipelines
may be needed to efficiently extract all the information and potential contained in the large
volumes of sequence data produced.

Given the exponential improvement of the sequencing technology, where a new tech-
nique becomes obsolete just a few years after its release, there is a need to keep the analysis
tools up to date. That is a tough challenge due to the tools development time, which is
normally long, given the complexity they require. Although, there are usually some tools
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relatively adequate, whether it is previous software that can be adapted to the new data,
or software developed by the sequencing company, finding the appropriate software for
the study goals can nevertheless be hard, depending on the specificity of the data and
objectives. Hereupon, the best solution in many cases is to try different tools and evaluate
their performance concerning the study goals.

The Animal Genomics and Bioinformatics group of Centro de Biotecnologia Agrı́cola
e Agro-Alimentar do Alentejo (CEBAL) started its activities in January 2015, and has been
heavily involved in the cork oak genome sequencing project, as well as in other studies
whose objective is to develop genomic tools for cork oak, including the characterization of
cork oak transcriptomic response to several biotic and abiotic stress factors, identification of
genetic markers for economically important traits in cork production, and the development
of molecular traceability systems for different cork oak origins.

Cork oak trees are the only commercial source of cork, a widely used product, with
multiple functions. It consists on a thick periderm made of dead cells with empty lumens,
which has an insulating and protective role (Pereira, 2011). As it is a product to be sold, the
cork quality (CQ) is a very important factor. There are some criteria to determine if cork is
good, most importantly the cork tissue homogeneity and higher thickness, the low porosity
level (Pereira et al., 1996) and whether it was picked from a later harvest (Soler et al., 2007;
Teixeira et al., 2014).

In order to identify genetic markers for CQ, the genomes of 30 cork oak individuals
were sequenced, using a WGRS approach, with high-throughput sequence data generated
using the Illumina HiSeq X10 platform (Illumina, 2015). These individuals were selected
according to their phenotype for CQ, and two groups were formed, including one group
formed by 14 trees with good CQ and a comparison group, with 16 individuals, whose CQ
was characterized as bad.

The bioinformatics analyses of these data were performed using the draft sequence
and annotation of the cork oak genome, whose publication is presently under peer-review.
In this work, we initially tested and evaluated the performance of different bioinformatics
approaches to identify and characterize the SVs present in the genomes of the 30 cork oak
individuals, an effort that was then followed by an association study where we investigated
the effect on CQ of the SVs identified.

1.2 objectives

In the present study we aim to identify and characterize SV in the cork oak genome.
The detailed objectives for the work include:

1. Review and survey the literature available regarding the identification of SV at the
genome level, including bioinformatics analysis tools and their application.
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2. Identification of all types of SVs present in the cork oak genome, to generate a com-
prehensive characterization of the catalogue of SV for the species.

3. Evaluate and determine the performance of different software tools and analysis
strategies for the identification of SV in plant genomes, using cork oak as model
species.

4. Determine the effect of SVs on CQ, by directly comparing the genomes of two groups
of 14 and 16 individuals displaying, respectively, good and bad CQ.

1.3 structure of the thesis

Chapter 2: State of the art
The current state of the DNA sequencing techniques is evaluated, particularly Illumina

sequencing, as well as some concepts concerning SV. Discussion about previous work done
about SV and a description of the software used.

Chapter 3: Methods
All the steps of this work are discriminated, since the data quality evaluation until the

SVs identification and characterization.

Chapter 4: Results
Comparisons of preprocessing thresholds, mapping software parameters and SV calling

software are performed. Detailed results of the SVs identification and characterization are
provided.

Chapter 5: Discussion
Discussion of the results, presenting possible reasons to explain them and comparing

them with others from previous studies.

Chapter 6: Conclusions and future work
An overall analysis of this work, its contribution for cork oak genomic research and its

limitations. Discussion on further work that can be made from this study.



2

S TAT E O F T H E A RT

2.1 relevant concepts

2.1.1 DNA Sequencing

The concept of DNA sequencing was first introduced by Frederick Sanger in 1975

(Sanger and Coulson, 1975). The method was based on the incorporation of chemically
altered nucleotides, called dideoxynucleotides, which tricked the DNA polymerase, yield-
ing a collection of nucleotide-specific terminated fragments for each of the four bases. The
resultant fragments were then separated by size by electrophoresis, making possible to
identify the positions of each nucleotide.

Sequencing by radiolabelled methods underwent numerous improvements following
its invention until the mid 1980s, when a company called Applied Biosystems, Inc. com-
mercialized a fluorescent DNA sequencing instrument invented in Leroy Hoods laboratory
at the California Institute of Technology (Smith et al., 1986b). The laborious processes of
gel drying, X-ray film exposure and developing, reading autoradiographs, and performing
hand entry of the resulting sequences were replaced by an instrument that used reactions
primed by fluorescently labeled primers. In this instrument, a raster scanning laser beam
crossed the surface of the gel plates to provide an excitation wavelength for the differentially
labelled fluorescent primers to be detected during the electrophoretic separation of the frag-
ments. These high-throughput slab gel fluorescence instruments largely contributed to the
sequencing of several model organism genomes, like Caenorhabditis elegans (Sulston et al.,
1992) and Arabidopsis thaliana (Xu et al., 1995). However, and although they were impressive
in their data producing capacity, there were still several manual and, hence, labor-intensive
and error-prone steps.

With the introduction of capillary sequencing instruments, like MegaBACE (Marsh
et al., 1997) and ABI PRISM 3700, the limitations originated by manual steps in slab gels
were eliminated. These instruments provided single-nucleotide resolution by directly inject-
ing a polymeric separation matrix into capillaries. The ABI PRISM 3700 instruments were
the main data-generating instruments for the human genome project, among others. Even
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so, this Sanger-based approach still had many limitations, empowering the appearance of
new sequencing approaches, called Next Generation Sequencing (NGS).

In NGS instruments, the DNA to be sequenced is used to construct a library of
fragments that have synthetic DNA (adapters) added covalently to each fragment end using
DNA ligase, by contrast with the cloning step performed by Sanger-based methods. Also,
the library fragments are amplified in situ on a solid surface containing adapter sequences
that are complementary to those on the library fragment, instead of using microtiter plate
wells.

The first NGS platform was launched in 2005 by the company 454 Life Sciences.
This sequencer relies on pyrosequencing technology, in which, instead of using dideoxynu-
cleotides to terminate the chain amplification, as the Sanger-based methods do, it depends
on the detection of pyrophosphate released during nucleotide incorporation. Its main ap-
plications are the sequencing of bacterial and viral genomes, multiplex-Polymerase Chain
Reaction (PCR) products, validation of point mutations and targeted somatic-mutation de-
tection, producing single-end (SE) reads of 400 base pairs (bp) (Mardis, 2017).

Over time, new platforms have emerged. ABI SOLiD, which produces 75 bp reads
for SE data and 50 bp for PE data, is applied in complex genomes and genome-wide NGS
applications, ribonucleic acid (RNA)-seq, hybrid capture or multiplex-PCR products and
somatic-mutation detection. Pacific Biosciences produces reads either SE or circular consen-
sus up to 40,000 bp in length, being used in complex genomes, microbiology and infectious-
disease genomes, transcript-fusion detection and methylation detection. Ion Torrent is used
in multiplex-PCR products, microbiology and infectious diseases, somatic-mutation detec-
tion and validation of point mutations, producing SE reads between 200-400 bp. Oxford
Nanopore is used in pathogen surveillance, targeted mutation detection, metagenomics and
bacterial and viral genomes, with reads length produced reaching the tens of thousands of
bp (Goodwin et al., 2015), depending on library preparation (Mardis, 2017).

The most widely used platform is Illumina, which was the platform used in this
study, reason why it is described in detail below. Illumina sequencers generate 150-300 bp
PE reads, and its main applications are complex genomes and genome-wide NGS appli-
cations, RNA-seq, hybrid capture or multiplex-PCR products, somatic-mutation detection,
forensics and noninvasive prenatal testing.

Illumina Sequencing

Illumina was the first platform to achieve sequencing of the first human genome at
30x coverage, the first cancer genome and the first genome in a single day (Ley et al., 2008;
Saunders et al., 2012; Bentley et al., 2008). The Illumina HiSeq X10 platform (Illumina, 2015)
was the first one to break the $1000 barrier for human whole-genome sequencing. Since it
can sequence more than 18,000 genomes per year at a low cost (for example, the first human
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genome sequence consumed 12 years and cost nearly $3 billion (S. Collins et al., 2004)), this
platform is ideal for population-scale genome sequencing, resorting to ten instruments that
together form the HiSeq X10 system. The performance parameters include 1.6-1.8Tb of
output per run, 5.3-6 billion of single reads passing filter, 2x150 bp supported read length,
run time less than 3 days and over 75% of the bases with quality above 30. It supports two
library preparation kits, the TruSeq DNA PCR-Free Library Prep Kit, which provides a fast,
gel-free protocol with superior coverage of areas difficult to sequence, like GC-rich regions,
promoters and repetitive regions; and the TruSeq Nano DNA Library Prep Kit, which,
with just 100 nanograms of DNA, allows for efficient sequencing (Illumina, 2015). This all
combines to provide a faster, more accurate and cheaper way to perform population-scale
whole genome sequencing.

2.1.2 Structural Variation

The development of high-throughput sequencing techniques revolutionized the ge-
nomic studies aiming to better understand how genomic variations influence individuals.
These studies have mostly focused on evaluating the effects of single nucleotide polymor-
phisms (SNPs) (Varshney et al., 2009; Lai et al., 2012). However, it is known that SNPs do
not capture all the meaningful genomic variations, with SV also playing an important role
concerning to phenotypic differences (Vacic et al., 2011; Nishida et al., 2013).

Types of structural variants

SV is defined as a group of genomic variations, SVs, with many types, including
InDels, INV, ITX, CTX, tandem DUP and dispersed DUP (Figure 1).

InDels consist on the addition of a sequence comparing with the reference genome,
insertions (INS), or an exclusion of a sequence present in the reference genome, deletions
(DEL). An INV is a change in the sequences order, inverting it. On the other hand, a
translocation, whether it is ITX or CTX, is also a change in the sequences order, but by
moving a sequence from one position to another in the genome. There are two types of
duplications, the tandem duplications, consisting on the adjacent sequence repetition, and
dispersed duplications, in which the sequence is repeated apart.

Deletions, insertions and duplications alter the copy number of the genome and are
thus called unbalanced SVs. Inversions and translocations dont change the copy number
and are called balanced SVs.

A large group within the SVs are the copy number variations (CNVs), which contem-
plates sequences that demonstrate a variable copy number between individuals, including
more than one type of SVs, such as InDels and duplications (Scherer et al., 2007). A sig-
nificant amount of phenotypic effects have been correlated with CNVs, either in human
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Figure 1: Types of structural variations. Each block (A, B and C) represents a DNA segment.

diseases (Miller et al., 2010a; Stobbe et al., 2013) or in plants’ regulation mechanisms (Beló
et al., 2010; McHale et al., 2012).

Another group includes the presence/absence variations (PAVs), where there are
some sequences that are either present or absent, depending on the individuals analyzed.
PAVs can be considered to be extreme CNVs, where some individuals have multiple copy
numbers and the others have null copy numbers. PAVs have also been associated with
phenotypic effects in plants, like contributing to heterosis (Springer et al., 2009) and stress
response (Haun et al., 2011).

Considering all this information, it is important to identify the SVs that can be
present in the individuals studied in this work, and characterize them in order to inves-
tigate the presence of SVs on the cork oak genome and their possible effect on CQ.

Pangenome

The concept of pangenome was first introduced by Tettelin et al. (2005). The pangenome
is the complete set of genes that represent a species. Pangenome genes can be divided into
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two groups, including the core genes, which are present in all individuals, and the vari-
able or dispensable genes, which are present only in some individuals or even just in one
individual, being called the unique genes.

The core genes can be considered the species essence, whereas the variable genes
represent the species diversity (Medini et al., 2005). The core genes include the fundamental
genes for the species survival, being thus necessary their presence in all individuals. On
the other hand, variable genes are distinctive genes that may encode functions that are not
essential for survival, but which may confer selective advantages.

The pangenome can also be classified as open or closed. In the open ones, the
number of genes appears to be infinite, because the pangenome keeps increasing with the
addition of new individuals, revealing high diversity. In contrast, the closed pangenome
reveals low diversity. After a certain number of individuals, new additions do not result in
an expansion of the pangenome, showing a limited gene pool.

So, in an open pangenome, it is expected that the core genome decreases with the
addition of new individuals. On the other hand, more individuals results in a bigger
pangenome. The relations between the number of individuals and the number of clusters
are shown in Figure 2.

Figure 2: Comparing two pangenomes with seven individuals each. Seven diverse individuals (A)
and seven related individuals (B). The pangenome is much bigger in A. On the other hand,
the core genome is bigger in B. This suggests an open pangenome in A and a closed one
in B. Adapted from Golicz et al. (2016)

Therefore, to identify and characterize the SVs present within a species is a crucial
step to build its pangenome, in order to determine whether they occur in the core or the
variable genome, and how they might have an impact on the individual. This is still very
unexplored, due to the low amount of complete, well-annotated genome sequences. How-
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ever, new technologies, such as long-read single molecule sequencing, have the potential to
overcome these flaws, which will boost pangenomic studies and, consequently, the charac-
terization of SV.

2.2 previous work

2.2.1 Previous studies on structural variation

The associations between SVs and their phenotypic effects have been comprehen-
sively characterized in humans. For instance, Vacic and colleagues (2011) showed the as-
sociation between duplications of the VIPR2 gene and a significant risk for schizophrenia.
Some autism spectrum disorders can also be caused by SV (Marshall et al., 2008; Stobbe
et al., 2013). Other diseases have been related with SV presence, like Smith-Magenis syn-
drome (Smith et al., 1986a), Williams-Beuren syndrome (Pober, 2010) and Angelman syn-
drome (Buiting et al., 1995).

As demonstrated, association between SV and human diseases has been widely stud-
ied, since it can lead to great improvements in human population health. However, SV has
been associated with phenotypic features other than disease, like metabolic processes and
physical features. For example, and regarding metabolic processes, a duplication in the
AMY1 gene increases the salivary amylase production (Perry et al., 2007), while a deletion
in the APC gene increases the bone mineral density (Chew et al., 2012). Concerning phys-
ical features, the short stature of an individual is determined by deletions in multiple loci
(Dauber et al., 2011), and the olive color skin is associated with a partial duplication on the
promoter region of MATP (Graf et al., 2007).

On the other hand, studies on other animals have been performed, associating SV
also with disease, metabolic processes and physical features. Studies in cow showed an
association between a duplication in CATHL4 and ULBP17 genes increase the resistance
to pathogens and parasites (Bickhart et al., 2012), preventing diseases. Also in cow, bull
fertility increasing was associated with a duplication in the TSPY gene (Hamilton et al.,
2012), and different cow colors were associated with different SVs, with a translocation
in the KIT locus within different chromosomes leading to color sidedness (Durkin et al.,
2012), a deletion in the MSHR gene originating a red coat color (Joerg et al., 1996) and a
dilute-colored coat color being associated with a deletion in the PMEL gene. Besides these,
studies in other animals, like dogs (Axelsson et al., 2013), Rhesus macaques (Degenhardt
et al., 2009) or goats (Fontanesi et al., 2009), associated SV with both disease, metabolic
processes and physical features.
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Structural variation in plants

In plants, even though several examples are available, much less is known about the
association between SV and phenotypic traits.

In maize, there have been some studies that proved the impact of SV on phenotype.
Beló and colleagues (2010) suggest that CNVs might have a considerable impact in disease
response and heterosis, while Springer and colleagues (2009) also suggest that SVs, in par-
ticular PAVs, may contribute to heterosis. Additionally, 570 genes were found to be absent
from the B73 maize line, when comparing with another line, Mo17 (Lai et al., 2010).

SVs found in soybean were specifically localized to gene-rich regions that harbour
clustered multigene families, being the most abundant classes of gene families associated
with these regions important for plant biotic defense (McHale et al., 2012). Additionally,
comparison between the assembled sequence of a wild soybean genome and the reference
genome revealed a total of 4,444 and 1,148 large PAVs (over 500 bp) that were absent in the
reference and the wild soybean genomes, respectively (Lam et al., 2010).

The impact of SVs has also been demonstrated in wheat, a species where SVs de-
tected in the photoperiod-insensitive alleles Ppd-A1a and PpdB1a were shown to affect
heading time (Nishida et al., 2013), while SVs were also involved in flowering regulation
(Dı́az et al., 2012).

The sequencing of eighteen Arabidopsis thaliana genomes revealed that between 2.1
and 3.7 Mb of sequence present in the reference genome were missing in these accessions.
In each accession, there were on average 319 novel genes or gene fragments (Gan et al.,
2011). Another survey of 80 accessions showed that 10% of the genes from the reference
sequence were absent in one or more accessions, with an average of 444 genes per accession
(Tan et al., 2012).

Overall, there are many SV studies in humans, for obvious reasons, since they usu-
ally aim to find solutions to improve diseases treatment and diagnosis. The number of stud-
ies in plants is smaller, as plant genomes sequencing came long after the human genome
sequencing, and, in many species, such as cork oak tree, it was not even possible to per-
form this type of analysis, since there was no genome available. However, with sequencing
progress (NGS) and the consequent increase on the number of species with their genome se-
quenced, it is anticipated that characterization of SV and its phenotypic effects will increase
considerably.

2.2.2 Bioinformatics structural variation pipeline

Due to the potential biological impacts SVs can have, we need technologies to call
them. Currently, one of the most used technologies to study SV is the NGS, which allow
us to perform whole genome resequencing (WGRS), providing means to identify SVs by
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mapping the NGS reads to the reference genome or building a pangenome with these
reads.

The NGS protocol is formed by four simple steps. The first one is to break the
genome into short fragments by sonication or enzymatic cutting. After that, the next step
consists in selecting fragments of a certain size, the insert size. Then, the two ends of each
fragment are sequenced and then analyzed, in order to identify SVs.

Different strategies exist to compare sample DNA sequences with the other ones
from the pangenome, and include mapping the NGS reads to the reference genome or
aligning the reads from different individuals. There are then two categories where SV
calling methods can be classified, including mapping-free and mapping-based approaches.
In this work, we will focus on the mapping-based approaches, since these are expected to
account for the vast majority of future SV studies (Guan and Sung, 2016).

Mapping-based SV calling pipelines include four ordered basic steps: read mapping
and classification, SVs discovery, SVs verification and SVs annotation and visualization.
The given input consists of a set of PE reads from the NGS process applied to several
individuals. The data is then organized and filtered to posteriorly find the SVs candidates.
After that, the candidates are examined and false discoveries are removed. Finally, the SVs
are annotated and visualized, providing additional information for biological analysis or
validation.

The read mapping and classification step, is divided in three parts. The first one
consists of mapping the reads, where, if there is no SV breaking point in the DNA fragment
and its quality is high, the two reads are mapped in the correct orientation and strand,
and the distance among them is consistent with the insert size distribution. On the other
hand, if these requirements are not met, the paired read is anomalous. The more frequent
read mappers used are BWA-MEM (Li, 2013), Bowtie2 (Langmead and Salzberg, 2012) and
Mosaik (Lee et al., 2014). It should be emphasized that certain SV callers require specific
read mappers.

The second stage of the read mapping and classification step is the filtering of the
read mapping results, because reads may be incorrectly aligned by the mappers. Most of the
reads mappers have a mapping-quality score (MAPQ), which indicates the probability of a
wrong mapping. Several of them have a threshold, keeping only the mappings above that
threshold. Although this filtering process removes mapping errors, it can also potentially
remove SV signals.

The last stage includes the reads classification, when the anomalously mapped reads
are identified, showing evidence of the existence of SV. The three types of anomalously
mapped reads include the discordant ones, which were mapped either on a different chro-
mosome, incorrect strands, incorrect orientation or incorrect insert size, the soft-clipped
ones, which contains the breakpoint signal and were mapped partially, and the one-end
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anchored (OEA) reads, also containing the signal for breakpoint and were not mapped
although their mates were.

Upon completion of the read mapping and classification steps, the SVs discovery
comes into play, aiming to identify regions of possible SVs candidates, using the informa-
tion from the anomalously mapped reads discovered in the previous step. For that purpose,
there are four commonly used techniques, namely, clustering (CL), split-reads alignment
(SA), contig assembly (CA) and statistical testing (ST) (Medvedev et al., 2009).

The goal of the CL technique is to group reads supporting the same SVs together
(Chen et al., 2009). This method is less sensitive to small InDels. The SA approach tries
to align two types of the anomalously mapped reads that result from the read mapping
and classification stage, the soft-clipped reads and the OEA reads, to find the matching
breakpoints, or refine the breakpoints identified by the other type of anomalously mapped
reads, the discordant ones (Zhang et al., 2011). In turn, CA proposes the assembling of
paired reads into contigs (Hajirasouliha et al., 2010) which, when long enough, facilitate
locating the SV breakpoints. Some SV callers are designed for whole genome assembly,
producing long contigs, building them by existing de novo assemblers, such as Velvet (Miller
et al., 2010b) or Cortex (Iqbal et al., 2012). Others, like TIGRA (Chen et al., 2014), use
an assembler specifically designed for SV breakpoint assembly. Finally, the ST technique,
commonly used to find CNVs, uses statistical models to verify the read-depth against null
distributions.

There are also some SV callers that use an hybrid-approach for SVs discovery (Rausch
et al., 2012; Bartenhagen and Dugas, 2015). They consist of the integration of different types
of anomalously mapped reads, to improve SV calling sensitivity.

The third step of the SV calling pipelines is the SVs verification. The predictions may
need to be supported with more evidence, because the mappers can produce many wrong
mappings leading to false predictions. Some methods used include the use of split-reads
to filter out noisy candidates (Jiang et al., 2012), the use of read depth (RD) for validation
of the SV breakpoints resorting statistical methods (Sindi et al., 2012), the use of the known
features of genomic regions (Sboner et al., 2010) and the use of ad hoc quantitative filters
based on the number of discordant reads (Chen et al., 2009) or the number of split-reads
(Schröder et al., 2014).

Lastly, the pipelines end with the SVs annotation and visualization. Regarding an-
notation, SV callers generally provide information on the SVs location, their nearest genes,
their formation mechanisms and sequence features. This is very helpful for understanding
the formation mechanisms and downstream implications.

The visualization step is very important, allowing the visual inspection of the SVs,
and assisting in data interpretation, showing useful information regarding the mechanisms
of SV formation.
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Some factors may have an impact on SV calling, such as SVs properties (type, size
and frequency), library properties (coverage, insert size and read length of the paired reads),
sequencing errors (impacting both sensitivity and specificity of SV calling), quality of the
reference genome (needs to be complete and accurately assembled) and sequence context
(certain genome regions are difficult to sequence).

In order to achieve better sensitivity, it is possible to combine prediction results from
different SV callers to get the SVs candidates. Another combination potentially useful in-
cludes SV detection combining multiple samples to achieve population-scale studies (Guan
and Sung, 2016).

Currently, there are several bioinformatics tools aiming to identify and characterize
SVs, designated SVs callers, which differ on the approach they implement and their func-
tion. This information is summarized in Table 1.

Table 1: Some of the existent SV callers and their main functions, which distinguish them from each
other

Although tools to identify and characterize SVs are already available, there are still
some improvements to achieve. For example, the efficiency of the SV calling algorithms is
one of the aspects that could be improved. New technologies, including long-read single
molecule sequencing, promise reads hundreds of times longer, bringing up new challenges
and opportunities with the development of new algorithms enabling assembly of long reads
promising to deliver high-quality genomes.

Yet, lowering sequence costs will lead to larger volumes of data, creating the need for
better databases, especially for plants genomes and pangenomes, species for which these
resources are less developed, when compared with others, humans in particular, for which
there are already some databases of international collaborations for human NGS data, such
as The Cancer Genome Atlas (Weinstein et al., 2013) and the International Cancer Genome
Consortium (Joly et al., 2012).
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2.2.3 Software tools

In this section, the software used in this work will be described in detail. The first
software, BWA-MEM (Li, 2013), is a mapping tool widely used in NGS studies, while the
other three software described are SV callers, i.e., tools used to call potential SVs using their
own methods and algorithms. The three tested SV callers where BreakDancer (Chen et al.,
2009), Wham (Kronenberg et al., 2015) and GRIDSS (Cameron et al., 2017).

BWA-MEM

BWA-MEM (Li, 2013) is an alignment algorithm whose purpose is to align sequence
reads or assembly contigs against a large reference genome, such as the cork oak genome.
Its name stands for Burrows-Wheeler Alignment (BWA) of maximal exact matches (MEM)
and it was developed due to some flaws and difficulties that some of the existent tools at
the time were facing.

With the appearance of NGS techniques, tools were developed to align the sequences
produced against reference genomes. However, by then the sequence reads were about 36

bp in length, and for such small read length it makes sense to require that all bases from
the sequence reads align to the subject (end-to-end alignment).

However, with the constant increase on sequence reads length, brought by the evolu-
tion of the NGS techniques, a new challenge was presented to alignment tools, consisting
on the need of a more comprehensive algorithm. In order to respond to this, some new
tools were developed, with the goal of better adjusting the aligning algorithm to the new
reads requirements.

Some of the aligning algorithms developed included the BWA using Smith-Waterman’s
(SW) alignment, BWA-SW (Li and Durbin, 2010), Bowtie2 (Langmead and Salzberg, 2012)
and Cushaw2 (Liu and Schmidt, 2012). The three were developed as improved versions of
previous tools, having the ability to map longer reads as their main innovative feature.

BWA-MEM implements two distinct read mapping methods, one suited to SE se-
quencing reads and the other to perform the alignment on PE reads. The PE method can
be considered as a continuation of the SE one, since the SE is always made and, if the query
consists on PE sequences, the second method is performed (Li, 2013).

The SE method is composed by three steps, namely seeding and re-seeding, chaining
and chain filtering, and the seed extension, whereas the PE method consists of only two
steps, the one where missing hits are rescued and the pairing one.

The seeding and re-seeding step consists on seeding an alignment with supermaxi-
mal exact match (SMEM), where, for each query position, the algorithm tries to obtain the
longest exact match covering the position. However, the existence of SMEMs is not guaran-
teed to happen in the true alignment. So, in order to reduce the number of mismappings
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due to missing seeds, it is necessary to re-seed. This is accomplished by using the longest
exact matches that cover the middle base of the SMEM and occur at least 1 more time in
the genome than the original SMEM.

The next step is chaining and chain filtering. A chain is a group of seeds that are
collinear and close to each other. The seeds are chained during the seeding process and
then the short chains that are largely contained in a long chain and are simultaneously 50%
and 38 bp shorter than the longest ones are filtered out. This chain filtering has the goal of
reducing unsuccessful seed extension at the next step.

Finally, the last step of the first method is seed extension. In this step, seeds are
ranked by the length of the chain they belong to and by seed length. Then, from best
to worst, seeds are dropped if they are already contained in an alignment found before,
otherwise they are extended as a potential new alignment. Here, BWA-MEM differs from
the standard seed extension, avoiding extension through poorly aligned regions with good
flanking alignment and trying to keep track of the best extension score reaching the end of
the query sequence. If the difference between this score and the best local alignment score
is below a threshold, the local alignment will be discarded. This aims to automatically
choose between local and end-to-end alignments (Li, 2013).

To perform the PE method requires the execution of the previous steps and then
proceed with the rescue of the missing hits. In BWA-MEM, batches of reads are processed
at a time. For each one, the mean µ and the variance υ2 of the insert size distribution from
trusty SE hits are estimated. For the top 100 hits of either end, if the mate is unmapped in
a window [µ − 4υ, µ + 4υ] from each hit, the software performs SSE2-based SW alignment
(Farrar, 2006) for the mate within the window. In order to detect potential mismapping in
a long tandem repeat, the second best SW alignment score is recorded. The SW alignment
rescuing, along with hits found in SE method, will be used for pairing.

The last step is pairing, when the software attributes scores to a given pair. The
scoring process takes into account the SW alignment score of the two hits from the pair,
their matching score and the probability of observing an insert size longer than the distance
between the hits assuming normal distribution. In the end, BWA-MEM chooses the pair that
maximizes this score as the final alignment for both ends.

BreakDancer

BreakDancer (Chen et al., 2009) is a software package for SV detection that was devel-
oped to address the need for an efficient way to call SV, using CL as the calling technique.
This need emerged due to the appearance of NGS technologies, which have made PE WGRS
much cheaper, providing larger data volumes to analyze.

BreakDancer is divided into two algorithms, BreakDancerMax and BreakDancerMini.
The former can detect INS, DEL, INV, and both ITX and CTX, while the latter focuses on
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detecting small InDels (between 10-100 bp) that are normally not detected by BreakDancer-
Max.

BreakDancerMax takes mapping results as input and the read pairs mapped to the
reference genome with a minimum MAPQ are used. Based on the separation distance and
alignment orientation between the reads within a pair, the given threshold (specified by the
user) and the empirical insert size distribution estimated from the alignment of each library
contributing genome coverage, the read pairs are then classified into six types, defining
whether they are normal, deletion, insertion, inversion, inter-chromosomal translocation or
intra-chromosomal translocation (Chen et al., 2009).

Then, the algorithm tries to find genomic regions with more anomalous read pairs
than expected on average and, if one or more regions are interconnected by at least two
anomalous read pairs, a putative SV is derived. The algorithm output includes the SVs
type, size and their start and end coordinates.

The SVs are determined by the dominant type of associated anomalous read pairs
in a particular region, supported by a confidence score for each variant. This score is
calculated taking into account the number of supporting anomalous read pairs, the size of
the anchoring regions and the coverage of the genome.

On the other hand, the size is estimated by subtracting the mean insert size from the
average spanning distance in each library and then averaging across libraries. Finally, the
start and end coordinates are defined as the inner boundaries of the SVs constituent regions
that are closest to the suspected breakpoints.

With regard to the second algorithm, BreakDancerMini, it takes the normally mapped
read pairs ignored by BreakDancerMax and analyzes them. Genomic regions of size equiv-
alent to the mean insert size are then classified as either normal or anomalous based on a
sliding window test. The window slides along the read pairs and compare the separation
distances between the read pairs within the window against those in the entire genome. As
in BreakDancerMax, putative SVs are derived from anomalous genomic regions that are in-
terconnected by at least two common read pairs, and the output is similar, since it includes
the SVs type, size and their start and end coordinates. The SVs type is determined by a
confidence score based on the significance value of the sliding window test. The size is
also estimated by subtracting the mean insert size from the average spanning distance in
each library, and then averaging across libraries, as in BreakDancerMax. On the other hand,
start and end coordinates are defined as the outer boundaries of the constituent regions,
contrary to what happens in BreakDancerMax (Chen et al., 2009).

Wham

Whole-genome Alignment Metrics (Wham) (Kronenberg et al., 2015) was created to ad-
dress some of the problems related with the identification of SV, such as the high false
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positive and false negative rates of several SV callers, the high variability of SVs break-
points, which make difficult to detect an association between a phenotype and a complex
ensemble of overlapping SVs, and the absence of a SV caller capable of identifying SV
enrichment in cases vs. controls studies.

The Wham suite consists of two programs, wham and whamg. The former is the
original tool, a very sensitive method with a high false discovery rate. The latter is an
improved version of Wham, being more accurate and better suited for general SV calling.
The basic implementation behind both is very similar, therefore no distinction will be made
between them.

Wham is designed for PE Illumina libraries with standard insert sizes (∼300-500 bp).
The prediction of SV breakpoints integrates both mate-pair (MP) mapping, SA, soft-clipped
(SC) reads re-alignment, alternative alignment and consensus sequence based evidence as
calling techniques, producing results with single-nucleotide accuracy (Kronenberg et al.,
2015).

To identify the SV breakpoints, a combined pileup for all Binary Alignment/Map
(BAM) files provided is generated. Reads are then hashed by position to identify shared
breakpoints, and putative SVs are inferred from positions in the pileup where three or
more reads share the same breakpoint. The reads for each breakpoint are aligned in order
to form a consensus sequence. If this sequence is shorter than 10 bp or contain more than
50% mismatches in the alignments, the breakpoint is not reported, as it is more likely to
be a consequence of mapping errors than a result of SV. In addition, overlapping alleles
that do not share the same breakpoints are reported as independent records, and different
alleles with the same breakpoints that fail the mismatch consensus filter are discarded.

For the breakpoints not present in the initial pileup position, Wham uses SA, MP
positional information and alternative alignment to find them. It also processes the ”SA”
and ”XA” tags from the BAM files to identify shared positions as candidate endpoints of the
reported SV. Then, all the candidate breakpoints are clustered and their positions rounded
to the nearest tenth bp, reporting the position with the highest read support. If possible, the
consensus sequence will be aligned to the putative breakpoint region using the information
from the SW alignment. This will result in a breakpoint improvement to the location of the
consensus sequence alignment (Kronenberg et al., 2015).

SVs bigger than 1Mb can be highly deleterious genomic aberrations, hence additional
filtering is required. Therefore, in these cases, the other breakpoint, not present in the initial
pileup position, must have at least two reads supporting the exact breakpoint. Furthermore,
in the case of translocations, the SV is discarded if the split reads in the pileup map to more
than three different chromosomes, in order to remove many false positive calls. These
false positive calls result from inter-chromosomal mapping errors introduced by repetitive
sequences.
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The classification of the SV type is made with resource to a random forest of decision
trees. The resulting output is a Variant Call Format (VCF) file, which includes the relevant
information for each call, which includes SV type, SV length, end position, among others,
for the INFO field, and the tags ”Genotype”, ”Read depth” and ”Per sample SV support”,
for the FORMAT field.

GRIDSS

The Genomic Rearrangement IDentification Software Suite (GRIDSS) (Cameron et al.,
2017) is a novel approach to predict genomic rearrangements from DNA sequencing data,
providing high-speed SV calling using a combination of assembly, SA and read pair sup-
port, achieving high sensitive and specific results.

Split-reads alignment based methods, where GRIDSS is included, have the ability
of identifying of the exact breakpoint location, having single nucleotide resolution. This
is achieved resorting to SA identification, either through direct mapping by the aligner,
re-alignment of soft-clipped bases or SA of the unmapped read in one-end anchored read
pairs.

GRIDSS takes a three-step approach to maximize sensitivity and prioritize calls into
high or low confidence, therefore maintaining specificity in the high confidence call set.
First, properly aligned reads are filtered out, keeping only the reads that might provide
any evidence for underlying genomic rearrangements. Then, these remaining reads are as-
sembled using information from the alignment to constrain this assembly, a process called
genome-wide break-end assembly, since each contig corresponds to a break-end and the un-
derlying breakpoint and partner break-end are identified only after the assembly. Lastly, a
probabilistic model combining break-end contigs with split reads and discordantly-aligned
read pairs (DP) evidence is applied, with the objective of scoring and calling SVs (Cameron
et al., 2017).

Genome-wide break-end assembly is performed using a new approach developed by
extending a positional de Bruijn graph data structure. Unlike a traditional de Bruijn graph,
originally developed for small indel and base calling error correction of de novo assembly
contigs (Ronen et al., 2012), this new approach is a directed acyclic graph due to the addition
of positional information to each node. It also reduces depth of coverage needed and
memory requirements for accurate assembly, making it computationally efficient at the
genome scale.

Regarding the probabilistic model, the quality of predicted SVs is scored according
to the Phred-scale probability of originating from the mapped locations without underlying
any SVs. The Phred score Q of a probability P is given by Q = −10 log10(P) (Cameron et al.,
2017).
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So, SVs are scored according to the level of support given by both SA, DP and assem-
bly evidence combined. With each piece of evidence being considered independent, and
considering that evidence scores are expressed as Phred scores, the sum of the scores of
evidence supporting the SVs breakpoints represents the final score of the SVs called. This
approach can result in reads providing support for more than one breakpoint. To fix this
problem, each piece of evidence is assigned to only the highest scoring SV it supports.

2.3 cork production and its biological function

The reason why cork oak trees play an important role in the economy of several
Mediterranean countries economy, with a vast amount of industries using them, is their
phellem, or cork tissue, as it is better known. It is a renewable natural resource that has
many applications, particularly in the production of stoppers, and sound and thermal insu-
lators, among others. This is due to the unique features of cork, as it is light to the point of
floating, waterproof, isolator, flexible, compressible, hypoallergenic and resistant to friction,
temperature and time wear. It is extracted by peeling off the cork layer from adult trees
at regular intervals of at least 9 years. Cork is one of the most valuable non-wood forest
products, putting this species among the most important trees with commercial relevance
in the countries where it is naturally distributed.

The thick cork layer works as a protective multi-layered dead tissue, composed of
suberized cells located within the periderm of the bark system’s outer face and produced
towards the outside (Pereira, 2011; Teixeira et al., 2014; Verdaguer et al., 2016). It is formed
as the end result of meristematic activity of the cork cambium, a specialized phellogen
tissue, followed by both cell expansion and cell wall deposition of suberin and waxes, and,
lastly, with an irreversible program of senescence resulting in cell death (Soler et al., 2007).

During the first year, the phellogen originated in the subepidermis differentiates,
leading to the formation of phelloderm cells towards inside and of phellem cells to the
outside. Subsequently, this meristematic layer sustainably produces cork (phellem) cells
which form a thick continuous layer of cells covering the tree trunk, roots and branches. A
new thick layer of suberized cells is formed every year, accumulating with those of previous
years in the form of annual rings (Caritat et al., 2000). The phellogen is located between
the inner bark and cork, with its activity period ranging from April to October (Graça and
Pereira, 2004). In the beginning of the spring, it is highly active, starting the production of
new cells and, by the time winter starts, this production ceases (Silva et al., 2005).

The cork tissue’s peculiar properties, mentioned above, are due to the chemical com-
position of its cells walls, with suberin as the main component, representing about 50%
of the total material present in the cork oak’s periderm, and lignin as the second most
important one (Pereira, 2011; Marques and Pereira, 2013; Lourenço et al., 2016). Differ-



2.3. Cork production and its biological function 20

ential expression studies revealed that four main secondary metabolic pathways, namely
the synthesis of acyl-lipids, phenylpropanoids, isoprenoids, and flavonoids, are related to
cork formation and suberin biosynthesis (Soler et al., 2007). Also, the biosynthesis of both
suberin and lignin derives from the general phenylpropanoid pathway and shares the same
basic reactions (Rahantamalala et al., 2010).

Cork’s biological function is to protect the internal tissues and prevent water loss.
As it is a thermal isolator, the plant’s inner tissues are protected against environmental
conditions, whether it is heat or cold. Its waterproof property confers the ability to maintain
a regular amount of water in the plant, resisting to possible extreme weather conditions. On
the other hand, lenticels, small regions in the periderm of most plants, provide aeration to
the inner tissues. Lenticels are made up of relatively loosely arranged cells and formed
by the lenticular phellogen, a specific zone of the phellogen. These areas contain many
intercellular open spaces which, along the years, by radial extension from the phellogen
to the external surface of the periderm, form the lenticular channels, responsible for the
mentioned aeration (Pereira, 2011).

Several features which determine the CQ can be observed and measured to classify
individuals according the quality of the cork they produce. Experienced operators, well
acquainted with cork, are able to determine the CQ just by visually inspecting the samples
(Figure 3). However, a quantitative analysis of these features can be made, to give scientific
support to this selection. The features usually evaluated to determine whether a sample of
cork has good or bad quality include the cork tissue homogeneity, thickness and porosity
level (Pereira et al., 1996), as well as the number of times the crop was harvested (Soler
et al., 2007; Teixeira et al., 2014).

Good quality cork is defined as being an homogeneous tissue, with higher thickness
and a low porosity level (Figure 3A), with the latter being determined using a porosity
coefficient, defined as the area of pores (or lenticular channels) in percentage of total area
(Pereira et al., 1996), the number of pores and the mean pore area, features observed in
transverse cuts of the cork tissue (Teixeira et al., 2014). The ”virgin cork” corresponds to
the first cork layers produced by the original phellogen of the cork oak tree, which are
removed from the tree at an age between 20-30 years, being a bad CQ harvest (Pereira
et al., 1987). After that, new cork layers are removed every 9 years, with the second harvest
still presenting bad CQ (Figure 3B) and the ”reproduction cork”, which corresponds to
cork layers removed from the tree from the third harvest onwards, being the one able to
present good CQ (Pereira et al., 1987). So, the combination of all these quantitative features
determines the qualitative cork quality classification.
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Figure 3: Transverse cuts of cork planks with (A) good CQ and (B) bad CQ where the radial growth
of the suber layer (white arrow) can be observed. Planks in (A) show a a minimum thick-
ness of 28mm with a reduced number of lenticels (arrow in plank 4). Cork rings of growth
are clearly visible (* in plank 1). Planks in (B) show a maximum thickness of 17mm with
a high number of lenticels (arrows in plank 8), as well as other cork defects (* in plank 7).
Adapted from Teixeira et al. (2014).

2.4 group’s previous work

At CEBAL, the Animal Genomics and Bioinformatics group has been the leader of
the bioinformatics tasks related to the cork oak genome sequencing project (Genosuber),
which incorporates a variety of sequence data generated using different high-throughput
sequencing platforms, as well as many different types of bioinformatics analyses. The draft
sequence and annotation of the cork oak genome was finalized in August 2017, and the
generation of the final version of the genome is ongoing. In addition to the work being
developed in cork oak, projects in pigs, stone pine and wheat are also presently underway.

In cork oak, many bioinformatics analyses pipelines have been developed, which in-
tegrate all the steps related with data pre-processing, genome and transcriptome de novo
assembly, genome and transcriptome annotation, read mapping, SNP identification, detec-
tion of differential expression and discovery of alternative splicing events. The identification
of structural variation in cork oak is a logical step on the groups strategy to develop and
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implement a wide variety of bioinformatics tools for analysing high-throughput sequence
data developed in this species.

This effort is carried within the frame of research projects where the group collab-
orates with other research teams, as well as producers and the cork industry, in order to
identify genetic markers associated with the more relevant economic traits in cork oak.



3

M E T H O D S

Since the underlying methods for SV calling have a standard base guideline, the pipeline
created for this work (Figure 4) is based on the standard procedures described in the pre-
vious chapter. The WGRS (whole genome resequencing) data is submitted to a quality
evaluation step, followed by a preprocessing to remove the bad quality reads. Then, the
reads are mapped to the reference genome, with SVs being identified by SV callers. Finally,
the SVs are annotated in order to evaluate possible associations between the SVs and the
CQ phenotypes.

Figure 4: Thesis pipeline with the sequence of steps performed. White background steps were per-
formed by others, while the green background ones were performed by the author of the
thesis.
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3.1 sample collection and high-throughput sequencing

The cork oak trees analysed in this study are located in the Herdade dos Leitões,
Montargil, Ponte de Sor, Portugal. A total of 30 trees were sampled, which included 14

trees producers of good quality cork, along with 16 trees that produce cork with bad quality.
The selection and assignment of the trees to each of the cork quality groups was based on
the historical records available for each tree, routinely collected by Herdade dos Leitões.
Leaf samples were collected from each tree and DNA was extracted using a standard DNA
extraction protocol. High-throughput sequencing was performed in the Illumina HiSeq X10

platform, at the Beijing Genomics Institute, using a paired-end protocol and a read length
of 150 bp.

3.2 high-throughput sequence data quality evaluation

The quality of the WGRS reads from the 30 sequenced libraries was evaluated us-
ing FastQC software, version 0.11.5 (Andrews, 2010). FastQC is a quality evaluation tool
for high throughput sequence data, performing a wide variety of analysis on the quality
of the sequenced libraries, which include basic statistics, per base sequence quality and
overrepresented sequences, the more relevant in SV studies.

The FastQC report for all libraries was carefully analyzed, including read length,
encoding of quality scores and per base sequence quality. The distribution of the quality
scores along the read length is shown in Figure 5. The interpretation of this graphic consists
of identifying at which position in the read the quality score gets below a chosen threshold.
With the quality and length thresholds defined, the data were then ready to enter the
preprocessing step.

In order to decide which length and quality thresholds to use, we tested four com-
binations of thresholds, which included 110 bp length threshold and 20 quality threshold,
120 bp and 20, 130 bp and 20, and finally 110 bp and 15. The goal was to identify which
combination was sufficiently restrictive to discard the bad quality reads but, at the same
time, was capable of maintaining a high number of reads.
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Figure 5: WGRS files quality evaluation using FastQC

3.3 preprocessing of high-throughput sequence data

The quality and length thresholds determined in the quality evaluation step were
used as trimming input parameters. Trimming was accomplished using Sickle version 1.33

(Joshi and Fass, 2011), a tool that resorts to sliding windows which, along with the given
thresholds, will trim the reads when quality does not fit its threshold and discard the reads
smaller than the length threshold.

Each window is 10% of the read length, and it starts sliding until the average quality
within it rises above the threshold. Then, the algorithm determines where the rise occurred
and cuts the read there for the 5’-end cut. The window keeps sliding until the average
quality in the window drops below the threshold. When this happens, the algorithm deter-
mines where the drop occurred and the read is cut there for the 3’-end cut. If the remaining
sequence is smaller than the length threshold, the read is discarded entirely.

The preprocessing step guaranteed that the remaining reads had high quality and
length, generating a higher quality dataset for downstream analysis.
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3.4 read mapping to the reference genome

Upon completion of the preprocessing stage, the reads were then ready to be aligned
to the reference genome. The reads were mapped to the reference genome using BWA-
MEM (Li, 2013), a software extensively described in the previous chapter. The sequences
used as reference genome the draft version of the cork oak genome, generated by the
Animal Genomics and Bioinformatics group at CEBAL, as part of the cork oak genome
sequencing project (Genosuber). The cork oak draft genome contained 23,344 scaffolds
greater than 1,000 bp, which represented an assembly length of 953.3 Mb. The N50 observed
was 465.2 Kb, while the longest scaffold was 2,284,287 bp in length. There were 79,752

genes annotated for the cork oak draft genome, for which 83,814 transcripts were identified.
Functional annotation was determined for 69,218 transcripts, which represented 82.6% of
the total number of transcripts.

The first step consisted in building the index over the reference genome, which was
given as input to the software, along with the thirty PE libraries. Initially, three different
sets of parameters were tested,in order to produce higher quality mapping results. The sets
were: (1) all the parameters with their default values; (2) a minimum seed length of 40,
instead of the default value of 19, and all the other parameters with their default values;
and (3) a mismatch penalty of 8, in opposition to the default value of 4, and again all the
other parameters with their default values. Since no significant differences between the read
datasets derived from each individual were expected, and considering that it would be very
time consuming and computationally more demanding to test the three sets of parameters
in all libraries, the comparison was not performed using all the 30 libraries. Therefore, a
subset of four libraries, corresponding to two individuals with bad CQ and two others with
good CQ, was used, so that the comparison was made in a reasonable time frame.

The software outputted a Sequence Alignment/Map (SAM) file, which was then
converted into the BAM format, since it is more efficient to work with binary files and
it also saves disk space. After that, the file was sorted by genomic coordinate to facilitate
other tools to access the data. Both file format conversion and sorting were performed using
SAMtools (Li et al., 2009), a set of tools for manipulating alignments in SAM/BAM/CRAM
format. Mapping statistics were then collected also using SAMtools, in particular the SAM
bitwise flags, a data structure used in computer programming, which facilitates counting
some specific types of results, such as the number of mapped/unmapped reads, chimeric
alignments or proper pairs aligned.
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3.5 structural variation calling

Before mapping the whole WGRS dataset to the reference genome, an evaluation and
subsequent selection of the SV calling software was carried out, since mapping parameters
and SV software depended on each other. For that purpose, three software tools were
tested together with the subsets of mapping parameters, making it a three software by
three parameter sets comparison, where just one of the nine sets was chosen. For the same
reasons mentioned before in the read mapping section, the same subset of four libraries
was used in this comparison.

BreakDancer (Chen et al., 2009), GRIDSS (Cameron et al., 2017) and Wham (Kronen-
berg et al., 2015) were used for SV calling for the four libraries. The three software were
chosen according to some criteria that allowed the comparison of tools with different ap-
proaches to SV calling and integrated in different chronological and technological contexts.

The differences between the three software begin in the types of SV each one can
detect. All of them identify INS, DEL, INV and ITX, but while BreakDancer calls CTX,
GRIDSS and Wham do not and, on the other hand, the latter two software call for DUP and
BreakDancer does not. Furthermore, the reads used in the SV detection differed between
them. Whereas BreakDancer only uses DP (discordantly-aligned read pairs) to both discover
and validate SVs, Wham uses RD (read-depth) evidence and SC (soft-clipped) reads, and
GRIDSS uses SC reads, OEA (one-end anchored) reads and DP support.

Concerning the SV calling techniques used by each one tool, BreakDancer uses CL and
a statistical test, Wham uses MP mapping, SA, SC reads re-alignment, alternative alignment
and consensus sequence based evidence, whilst GRIDSS makes a genome wide break-end
assembly, SA and a probabilistic model to score the calls.

As noted, the three software have many differences between their methods, mainly
when comparing BreakDancer with the other two. This can be explained by the chronologi-
cal and technological context that existed at the time they were developed. BreakDancer is
much older than the others, when the sequencing technologies were less advanced. Hence,
with the improvement of these technologies, software had to be improved as well, contain-
ing new upgraded approaches to better fit the new requirements. This emphasizes the
importance of comparing different software with different approaches.

Considering the number of SVs identified for the subset of four libraries by each soft-
ware, along with the mapping statistics and resulting number of SVs identified using each
of the mapping parameters subsets, the combination of GRIDSS with a mismatch penalty
value of 8 was chosen. Detailed information on the reason why this combination was se-
lected among the nine tested will be provided in the next chapters. Next, SV calling was
performed for all the 30 libraries using GRIDSS and parameters selected, which generated
an output consisting of a VCF file of break-end points.
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3.6 identification and characterization of the structural variants

To identify SVs in the GRIDSS output file, which is a VCF file of break-end points, the
information needed to be translated into simple SV type. This was accomplished using an
R (R Development Core Team, 2008) script available in the GRIDSS repository. The results
were then filtered by quality, and calls with score less than 500 were discarded, following
the recommendations of the GRIDSS (Cameron et al., 2017) developers, which mention that
such calls are unreliable. In addition, each call is a breakpoint consisting of two break-ends,
with one being the reciprocal record of the other, but, although VCF format required both
break-end to be written as separate records, each record fully defines the call. Therefore, in
order to have a single record for each call, only the first record for each call was kept, and
subsequently counting of the remaining SVs was performed.

After completion of the identification and counting of the SVs, their positions were
compared with the ones of the transcripts from the reference genome annotation, to check
if some of the SVs were located in cork oak transcripts. The SVs located in transcripts were
compared with the functional annotation of the reference genome, to determine whether
there were some SVs affecting genes believed to be involved in cork production and quality.
Both comparisons were made in two separate sets, with good CQ individuals on one side
and bad CQ individuals in the other one, making it easier to distinguish SVs exclusive for
each set.
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R E S U LT S

In this section, we present the results for the comparisons of thresholds for read
quality and length, read mapping parameters, and software for SV calling, together with
the results of the identification and characterization of SVs using the whole WGRS dataset.

4.1 comparison of thresholds for read quality and length

The results regarding the testing of different read quality and length thresholds are
indicated in Table 2, which includes the comparison between the number of reads originally
present in the WGRS dataset and the number of reads that met the requirements for each
combination of quality and length thresholds, as set in section 3.2.

These combinations were chosen as a result of the individual analysis of each FastQC
report, namely the analysis of the per base sequence quality section, where it was verified
that the quality of the data were assured with a length between 110 bp and 130 bp and a
quality score about 15 or 20.

A quality threshold of 20 resulted in the loss of a significant amount of reads. The
percentage of reads removed from the dataset exceeded 10% for all the length thresholds,
namely 12.3% for a 110 bp length, 15.9% for 120 bp and 20.8% for 130 bp. As expected, an
increase in the length threshold was leading to a higher percentage of reads removed.

The combination of 110 bp length and 15 quality thresholds generated an average of
94.9% of reads passing the filters, i.e., with both length and quality above the thresholds.
Given that 15 is still a very reasonable quality threshold that does not compromise the
quality of the downstream analysis, and considering the higher percentage of reads kept,
this was the combination of parameters selected for the preprocessing of the WGRS dataset.
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Table 2: Comparison of thresholds for read quality and length. The initial number of reads is pre-
sented, as well as the number of reads obtained after filtering with each set of thresholds
and the corresponding percentage of reads kept relative to the initial number of reads, for
all 30 individuals, with average values in the bottom of each column.

4.2 comparison of read mapping parameters

As mentioned in the previous chapter, a subset of four libraries was used to compare
the three subsets of mapping parameters. The subset with all the values set to their default
is simply referred to as default, whereas the one with a minimum seed length of 40 and
the other with a mismatch penalty of 8 are named based on their differing parameters,
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respectively k40 and B8. Table 3 contains the results of the comparison for all the mapping
parameters tested.

The comparison between these three parameter subsets revealed a decrease in the
number of mapped reads when comparing both k40 and B8 subsets with the default sub-
set, particularly in the k40 subset, where the percentage of mapped reads decreased 5%.
On the other hand, the B8 subset not only presented a 1.4% decrease in the number of
mapped reads, but also an increase in the number of chimeric alignments (0.2% more when
compared with the default subset), which are considered to be a sign of SV presence.

Table 3: Comparison of read mapping parameters. Number of alignments, mapped reads, un-
mapped reads and chimeric alignments for each subset of mapping parameters are pre-
sented for each one of the 4 individuals tested. In addition, percentage of mapped reads
and chimeric alignments relative to the number of alignments are presented for each subset
of mapping parameters.

Although these results provided some insight on the relevance each subset could
have for SV detection, no subset was selected in this step, since that selection only took
place when the results from both the mapping parameters and SV calling software were
compared together. Nevertheless, this comparison showed good signs from both default and
B8 subsets, which showed an average high percentage of mapped reads (94.7% and 93.3%,
respectively) and chimeric alignments (2.5% and 2.7%, respectively), whereas k40 did not
seem to be a solution, since it had lower values (89.7% average percentage of mapped reads
and 0.5% average percentage of chimeric alignments) when compared with the latter ones.

4.3 comparison of software for structural variation calling

In order to find the combination of read mapping parameters and SV calling software
producing the best results, each of the three SV calling software was used with each of the
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three read mapping parameter sets. For this purpose, the same subset of four libraries used
in the previous section was used.

Initially, the total number of SVs identified in all individuals was determined, in or-
der to have an overview of the frequency of this type of variation in the cork oak genome
(Figure 6). This analysis was performed without including the phenotypic information for
CQ that was available for all individuals. However, considering the relevance of possible
associations between SVs and CQ, only the variants exclusively present in one of the phe-
notypic groups were taken into account in the selection of the software for calling SV to be
used with the data derived from the 30 individuals. The information regarding the perfor-
mance of each software for each read mapping parameter set is indicated in Figure 7, on
which only the SVs exclusive to one cork quality group are indicated.

Figure 6: Software and mapping parameters comparison for SV calling using the whole WGRS
dataset for the 30 individuals. Each bar represents a type of SV, and the graph is di-
vided in three parts corresponding to the three sets of mapping parameters, which are
also divided in three parts, one for each software used.

The results show that BreakDancer displayed the largest number of translocations,
both ITX and CTX, in each set of parameters, including 9,071 ITX and 2,237 CTX in the
default set, 7,151 ITX and 3,913 CTX in the B8 set, and 8,384 ITX and 3,585 CTX in the k40 set,
even though BreakDancer is the only software that calls CTX. Moreover, a common pattern
was identified for the three software, with few differences between their performances for
the different sets of mapping parameters. Also, the k40 subset provided similar results as
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the other subsets of parameters, somewhat contradicting the signs given in the previous
section.

Figure 7: Software and mapping parameters comparison. Only exclusive variants for either good
or bad CQ individuals were accounted for this comparison. Each bar represents a type
of SV, and the graph is divided in three parts corresponding to the three sets of mapping
parameters, which are also divided in three parts, one for each software used.

The counts shown in Figures 6 and 7 included all the predictions (Figure 6) for
SVs, as well as the ones exclusive for each phenotype (Figure 7), even if there was only
one individual supporting that call. Therefore, to make a more precise selection on the
combination of software and mapping parameters to be used, the counts were made using
as threshold a minimum coverage of 10, meaning that only SVs with a minimum of 10

reads supporting the call (still with phenotypic exclusivity) were taken into account. These
results are presented in Figure 9.

When the minimum number of reads supporting the call threshold was applied,
BreakDancer had a lower number of SVs being called, with a total of 34 SVs when using
both the default and the B8 set, and 15 SVs when using the k40 set of mapping parame-
ters, whereas the other two software had a better performance, especially GRIDSS, which
accounted for a total of 516, 565 and 345 SVs called when using, respectively, the default set,
the B8 set and the k40 set. Also, the combinations using the k40 set of mapping parameters
had a visibly decrease in the number of SVs called when compared with the other two,
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accounting for a total of 523 SVs called with all software, against the 959 SVs called using
the default set and the 874 SVs using the B8 set of mapping parameters.

Hence, due to the higher number of SVs called with more stringent conditions,
GRIDSS was selected as the software to be used for the analysis of the whole dataset.
Moreover, since the k40 subset has been discarded, the combinations of GRIDSS with de-
fault mapping parameters and B8 mapping parameters were further analyzed. Since the B8
set of mapping parameters showed a lower percentage of mapped reads and yet a higher
number of SVs called (565 using the B8 set against 516 when using the default set), the
combination of GRIDSS with the B8 set of mapping parameters was selected.

Figure 8: Software and mapping parameters comparison where all the SVs have a minimum cov-
erage of 10 reads. Only exclusive variants for either good or bad CQ individuals were
accounted for this comparison. Each bar represents a type of SV, and the graph is di-
vided in three parts corresponding to the three sets of mapping parameters, which are
also divided in three parts, one for each software used.
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4.4 identification and characterization of the structural variants us-
ing the whole wgrs dataset

Using the combination of mapping parameters and software to use, all the libraries
were mapped to the reference with the selected parameters and, after that, SV calling was
performed using GRIDSS.

The total number of SVs identified in the genomes of the 30 cork oak trees included
in the WGRS dataset was 93,980. The more frequent type of SVs were deletions (DEL),
which accounted for 38,865, followed by translocations (ITX), with a total number of 34,745

variants. On the other hand, the least common SVs were inversions (INV), for which 654

variants were detected. This information is summarized in Table 4.

Table 4: Number of SVs identified for each SV type in the genomes of the 30 cork oak trees included
in the WGRS dataset.

The SVs exclusive for each phenotype (bad and good CQ) were determined, consid-
ering the biological and economical importance of identifying SVs associated with CQ. For
this purpose, two approaches were followed, having in consideration the number of reads
per individual supporting the SVs. The first approach considered all the individuals with
at least 1 read supporting the call, whereas the second one considered only the individuals
with at least 10 reads supporting the SV (Table 5). In each approach, two sets of SVs were
produced, taking the number of individuals supporting the SVs into account.

In the first approach, a minimum coverage of a single read per individual support-
ing the variant was considered, and all the SVs exclusive for a phenotype were counted,
regardless of the number of individuals supporting it. This meant that at least one individ-
ual supported the call and no individual with the other phenotype supported it. A total of
7,481 SVs were called for individuals with bad CQ and 6,697 for individuals with good CQ
(Table 5). On the other hand, when counting the SVs in the same conditions, but requiring
a minimum coverage of 10 reads per individual supporting the variant, there were a total
of 1,480 SVs exclusive of bad CQ individuals and 1,435 of good CQ trees (Table 5).
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Table 5: SV calling counts for each type of SV for two distinct coverage thresholds, namely 0 and
10. All calls are for variants exclusive for each phenotype (no individuals from the other
phenotype report that SV).

Additionally, the number of individuals supporting the same variant was also taken
into account, and a new set of results was produced, using as thresholds a minimum of
six individuals for bad CQ and five individuals for good CQ. This meant that only SVs
with at least seven or six individuals, respectively, for bad and good CQ individuals, were
accounted for. The different thresholds for each phenotype were selected considering that
there were more libraries from bad CQ individuals (16) than from good CQ ones (14).

For the first approach with a minimum coverage of one read per individual support-
ing the variant, a total of 49 SVs were called for bad CQ individuals with at least seven
individuals supporting the call, and 37 SVs for good CQ individuals with a minimum of
six individuals supporting the call (Table 4). Regarding the second approach, the number of
SVs detected for each phenotype was smaller, and only 1 SV was found for each phenotype,
with both of them being deletions (Table 6).

After defining the list of the SVs called, these data were checked against the reference
functional annotation available for the cork oak genome draft, comparing the reference
genome coordinates corresponding to the genes with the genomic coordinates of the SVs, in
order to evaluate the presence of SVs in genes associated with cork production and quality.
Tables 7 and 8 present the most relevant results for the bad and good CQ individuals,
respectively. The proteins shown were previously associated with cork production (Ricardo
et al., 2011; Soler et al., 2007; Baxter and Stewart Jr, 2013), therefore making relevant their
presence in the results. Each record consists in the SV call ID given by GRIDSS, the type
of SV, the Swissprot (Apweiler et al., 2004) accession number for the protein, the number
of individuals supporting the call and number of reads per each individual, and, lastly, the
Swissprot description of the protein.
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Table 6: SV calling counts for each type of SVs with at least six and five individuals, with respectively
bad and good CQ supporting the call, for two distinct coverage thresholds, namely 0 and
10. All calls are for variants exclusive for each phenotype (no individuals from the other
phenotype report that SV).

Table 7: SVs called from bad CQ individuals present in genes associated with cork production.

A total of six INS and three DEL located in intragenic regions (introns) were iden-
tified (Table 7), with the DEL gridss214 94364o being the SV with most reads supporting
it (43), and the DEL gridss150 36369o being the one with more individuals supporting the
call (7). On the other hand, the INS gridss319 3513o was the one with fewer individuals (1,
together with the INS gridss172 84271o) and reads (1) supporting the call.

Regarding the SVs identified in the individuals with good CQ (Table 8), six DEL,
three INS and one DUP were detected. The DEL gridss39 71152o was the one with more
reads supporting the call (33), whereas the DEL gridss358 18004o was the one with more
individuals supporting it (5). In turn, five SVs had only 1 individual supporting the
call, namely DEL gridss594 111890o, DEL gridss601 12615o, DEL gridss14 40099o, INS
gridss621 15977o and INS gridss284 123701o. Between them, DEL gridss594 111890o and
INS gridss621 15977o were the ones with less reads supporting the call (1). It is noteworthy
to point that there were 2 calls for the same protein, ABC transporter C family member



4.4. Identification and characterization of the structural variants using the whole WGRS dataset 38

Table 8: SVs called from good CQ individuals present in genes associated with cork production.

2, an INS for bad CQ individuals and a DEL for good CQ individuals. Concerning the
location of these variants, they were all identified in introns, like the ones identified in the
individuals with bad CQ. However, gridss135 68313o, a 602 bp DEL was also located in a
coding region of the gene coding for the transcription factor MYB113.

Finally, after this comparison between SV calls and functional annotation of the refer-
ence, some SVs were visualized using Integrative Genomics Viewer (Robinson et al., 2011).
Figure 9 shows an example of one of those SVs visualized, a DEL present in some reads,
whereas the other ones mapped concordantly.
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D I S C U S S I O N

The quality control of any high-throughput sequence dataset is essential to guarantee
that results are not compromised by the inclusion of low quality data. In particular, the
quality and length thresholds were selected with the goal of filtering out the bad quality
reads but, at the same time, keeping a high percentage of reads, as this was a pipeline with
several filtering steps, which progressively discarded the low quality reads. Therefore, an
effort was made to balance these two concerns, to avoid discarding a high percentage of
reads.

Three initial sets of thresholds were used at the beginning, all with a quality thresh-
old value of 20, and a variable length of 110, 120 and 130 bp, respectively. As the percent-
age of discarded reads observed was high, averaging between 12.3% for the 110 bp length
threshold and 21.8% for the 130 bp one, the quality threshold was placed at a lower level of
15, which produced a dataset with a lower percentage of discarded reads.

The selected quality threshold is in agreement with other studies (Kircher, 2012)
and can assure good quality results. Regarding the length threshold, there is a general
consensus in the bioinformatics community that a minimum of approximately 70-80% of
the length of the original reads size should be maintained, which was the approach followed
in this study.

Another filtering process was performed with the alteration of the mapping param-
eters. In order to increase the stringency, two BWA-MEM default parameters were altered
to more stringent values and their performance was evaluated.

The minimum seed length, which is 19 bp by default, was set to 40 bp. Reads
are partitioned into several short, non-overlapping segments called seeds. Every seed is a
subsequence of the read that contains it, hence every correct mapping for a read will also
be mapped by the seed and its location generates a set of potential mappings of the read
(Xin et al., 2015). Therefore, if the length of the seed is increased, there will be less potential
mappings for the read, however, the confidence of those mappings will be higher.

The other altered parameter was the mismatch penalty, set to 8 instead of the default
value, 4. With this alteration, the mapping of a read containing mismatches became more
difficult, as it was more penalized. Consequently, the number of mapped reads decreased
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when comparing to the default value, although this parameter showed less influence in the
decrease of the number of mapped reads than the minimum seed length. However, the big
advantage of this parameter was that it increased the number of SA, or chimeric alignments.
These alignments are associated with SV, as indicated in several studies (Mills et al., 2006,
2011; Zhang et al., 2011), since they consist of a single read aligning to two distinct portions
of the genome with little or no overlap, which indicates the possible existence of a SV in
that specific location.

Even though the set of mapping parameters with a mismatch penalty of 8 had less
mapped reads, more SA reads, typically indicative of SV presence, were detected. The final
decision on the set of parameters to be used was only made after comparing the sets of
mapping parameters and the three SV calling software tested, since the main goal was to
get the higher number of SVs possible.

The SV calling software chosen included different algorithmic approaches, to ver-
ify the influence of these different approaches on the results obtained. Furthermore, the
chronological context where they were developed also played a role in the differences ob-
served.

BreakDancer (Chen et al., 2009) was one of the first SV calling software tools to be
developed, reason why it has been widely used (Ellis et al., 2012; Govindan et al., 2012;
Ding et al., 2010). However, it was developed in a context where sequencing technologies
were less advanced than what they currently are. Since sequencing technologies are being
improved at a high speed, the need for software to keep up with this development arises.

Algorithms like BreakDancer, predicting SVs based only on paired-reads information,
namely the insert size and the start and end positions, may not be accurate enough, since
they do not use all the information provided by the NGS data. This calling method can ex-
plain the high number of ITX predicted, since the reference genome is a draft and, therefore,
organized in thousands of scaffolds (23,347) instead of chromosomes. BreakDancer assumes
each scaffold is a chromosome, and so a pair of reads with one read mapping to a scaffold
and the other one to a different scaffold is called an ITX. However, these putative ITX may
represent situations where a pair of scaffolds will be arranged in a contiguous order, but
at the moment are separated because of the fragmentation observed in the draft genome.
This residual number of calls was not exclusive for ITX but for every SV type, showing that
BreakDancer was not a reliable option for SV detection, due to the lack of support for many
of its predictions.

Wham (Kronenberg et al., 2015) was developed more recently, therefore being more
suited for recent sequencing technologies than BreakDancer. Since it is a recent software,
it was used in only a few studies until now (Huddleston et al., 2017; Cone et al., 2016).
The method proposed by Wham was considered a good fit to this study goals, since it is
designed to be performed in a comparison between two groups.
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Unlike BreakDancer, Wham uses additional information than the paired-reads one
from the NGS data. It also integrates MP mapping, SA and SC reads re-alignment, together
with the use of an alternative alignment and a consensus sequence based evidence to per-
form the calls with single-nucleotide accuracy. This increases the number of reads being
used in the SVs prediction, making use of SA, which are, as pointed before, indicative of
SV presence. Also, SC reads re-alignment makes the call more precise, as the alignment of
the consensus sequence of these reads to the putative breakpoint makes the breakpoint to
be refined to the location of that alignment.

Moreover, SVs bigger than 1,000 bp undergo additional filtering, in order to prevent
false positives, since these variants can represent highly deleterious genomic aberrations.
This filtering can explain the reduced number of ITX called by Wham, as they were possibly
resulting from inter-chromosomal (or, in this particular case, inter-scaffold) mapping errors
introduced by repetitive sequences. This hypothesis is supported by the BreakDancer results,
where the majority of ITX called were bigger than 1,000 bp and with low support, as men-
tioned before with the reduction of predictions when only SVs with a minimum coverage
of 10 reads were called.

Concerning the mapping parameters, when there was no coverage filter applied, the
B8 set of parameters was the one with most SVs called by Wham, as expected, since this
set increased the number of SA, which are then used by Wham to call SVs. However, when
filtering out predictions with less than 10 reads supporting them, there were more calls
with the default set of parameters. So, although B8 favours Wham prediction, the raise in
the coverage threshold led to a decrease on the number of calls, which could be a result of
a higher number of reads discarded by BWA-MEM when mapping with B8, altering their
”SA” and ”XA” tags in the BAM file, information that is used in the prediction by Wham.

In turn, GRIDSS (Cameron et al., 2017) is the most recent among the three software
compared, reason why it has not been used much so far (Ryland et al., 2017). Just like Wham,
it takes SC reads and SA in consideration, but GRIDSS also uses OEA and DP to predict
SVs. The use of additional types of non-properly aligned reads to call the variants may be
regarded as a potential advantage. These reads were extracted from the BAM file and then
assembled by the novel approach presented by GRIDSS, which consists on an extension of
a positional de Bruijn graph data structure. Finally, SVs were scored and called by applying
a probabilistic model.

The fact that GRIDSS used all the abnormal reads can explain the k40 set results,
which presented the highest number of calls from this particular software when no coverage
filter was applied. Since the k40 set of parameters increased the number of unmapped reads,
and most of them were used by GRIDSS, this result was in agreement with the expectations.
However, when applying the coverage filter, the k40 set had the lowest volume of results,
which implied that the previous results were due to a higher stringency when mapping.
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When the minimum coverage threshold of 10 reads was applied, GRIDSS with the B8 set
combination was the one with the best results, not only for this software, but among all
software and mapping parameters combinations. Therefore, this was the software chosen
to continue with all downstream analyses. Similar to what had been observed with Wham,
the higher number of SA caused by the B8 set of parameters led to an increase in the
number of SVs called, with GRIDSS having an advantage over Wham, because it used more
types of non-properly aligned reads.

As demonstrated before, it was highly relevant to perform the software and mapping
parameters comparison with a minimum coverage of reads, to eliminate some false posi-
tives from the SVs counts, since without this minimum threshold, all the predictions are
being considered, even the ones with few support. Since the goal was to choose the most
reliable combination, it was important to verify which one produced more results with a
higher level of confidence.

Given the fact that the VCF file outputted by GRIDSS was a file of break-end points,
instead of SVs, this VCF file underwent an additional processing step, which consisted in
using an R script available in the GRIDSS repository. This was made under advice from
the software developer himself who, when confronted with the details of this study and its
aims, pointed this translation from break-end points to SV types as the best solution.

With both the set of mapping parameters and the software selected, SV calling was
performed for all the 30 libraries. Subsequently, the total number of SVs, as well as the SVs
exclusive for each phenotype of CQ, were counted.

The total number of SVs found in the cork oak genome accounted for a total of
93,980 variants identified, of which 78% were deletions and translocations, with deletion
being the most representative type of SV with 38,865 occurrences identified. On the other
hand, inversion was the less representative type, with only 654 SVs called. It is difficult to
compare these results with studies performed in other species, with this being one of the
first studies for the identification of these types of SV in plants, since the published studies
were mainly focused in the identification of CNVs and PAVs (Saxena et al., 2014; Zhang
et al., 2017).

The results showed differences between the two CQ phenotypes, supported by the
7,481 SVs exclusive for bad CQ individuals and the 6,697 ones exclusive for good CQ
individuals. Like in the previous comparison, the SVs were also filtered by coverage, but
this time the filter applied was a minimum of 10 reads per individual supporting the call.
Despite this increased stringency, a total of 1,480 SVs exclusive for bad CQ individuals and
1,435 for good CQ individuals were found, supporting the idea that the differences between
the phenotypes may be related with SV present in the cork oak genome.

In addition, the number of individuals supporting the call, with and without the
minimum coverage threshold, was used as an extra filter to further evaluate the results.
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Without applying the threshold, there were 49 SVs called for a minimum of 7 out of 16

bad CQ individuals supporting them and with none of the 14 good CQ individuals sup-
porting them. On the other hand, 37 SVs were called on a minimum of 6 out of 14 good
CQ individuals, with none of the 16 bad CQ individuals supporting them. This empha-
sizes the idea that the differences observed between the phenotypes may be regulated by
the presence of specific SVs in the cork oak genome. Regarding the comparison with the
minimum coverage threshold, only a single DEL was found for each exclusive group with 7

and 6 supporting individuals, respectively for bad and good CQ individuals. This decrease
was expected, because the additional stringency applied for the read coverage threshold
would always reduce the number of SVs. In the future, WGRS datasets will be produced
using higher genome coverage per individual, as the sequencing costs keep decreasing,
which will alleviate this problem and allow the detection of relevant SVs with higher read
coverage thresholds.

Finally, when crossing the information from SV calling with the transcripts from
the functional annotation of the draft genome, it was possible to identify SVs occurring in
genes somehow connected with cork production. There were four INS called for the bad
CQ individuals and two DEL for the good CQ ones in transcripts posteriorly translated
into ABC transporter proteins, which have already been associated with cork production
(Soler et al., 2007). The fact that there were INS for bad CQ phenotype and DEL for good
CQ one, can mean that a variation in this type of transporters may affect the CQ, although
the individuals and reads support was somewhat insufficient to make this claim with more
certainty.

Regarding the bad CQ individuals, the two transcripts with more support for the
SV called were the ones coding for a disease resistance protein At4g27190 and for a LRR
receptor kinase BAK1. This disease resistance protein belongs to the disease resistance NBS-
LRR family (Apweiler et al., 2004), responsible for the host defense responses (Marone et al.,
2013). The LRR receptor kinase BAK1, or SERK3 is involved in defense response (Park et al.,
2011), which, together with SERK1, SERK2, SERK4 and SERK5, are co-receptors to regulate
extracellular multiple signal transduction (Albrecht et al., 2008). The other three remaining
proteins, acyltransferase-like protein At1g54570, zinc finger AN1/C2H2 stress-associated
protein and factor of DNA methylation 1, were found to be related with cork production in
an ongoing study of the group.

Concerning to good CQ individuals, the SV with most individuals support was
a DEL in the gene coding for the cytochrome P450 71A9, already related with suberin
biosynthesis and cork production (Soler et al., 2007). Also, INS were called in WD repeat-
containing protein 53 and heat shock protein 15, two xylem proteins possibly related with
cork production (Ricardo et al., 2011). Transcription factors MYB113 and MYB46, previously
associated with cork production (Soler et al., 2007; Baxter and Stewart Jr, 2013), also had
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SVs present in their genes, respectively a DEL and an INS, with special relevance for the
DEL identified in the transcription factor MYB113, since it was located in a coding region,
which consequently may be associated with CQ. Additionally, like in the bad CQ individ-
uals, the remaining proteins, dCTP pyrophosphatase 1, eIF-2-alpha kinase GCN2 and the
fatty-acid-binding protein 3 were associated with cork production in an ongoing study of
the group.

Overall, some evidence was found regarding the role of SV on CQ, since SVs were
found on cork production associated genes. These results are now available for valida-
tion studies using a larger number of cork oak individuals with phenotypic information
regarding CQ, and sampled in different geographical locations.



6

C O N C L U S I O N S

The advances in sequencing technology are extending the reach of genomic studies,
providing better data that, with the help of newly developed tools, will expand and im-
prove the knowledge on all relevant species, and subsequent understanding of biological
processes that might be important in many areas like medicine, agriculture and engineering.
In particular, SV certainly plays a role in many biological processes that can be leading to
phenotypic differences, and will greatly benefit from these technological advances. Bioin-
formatic analysis of NGS data will be the key element to find and characterize these effects.

This present work was the first study performed in cork oak where WGRS was used,
by the analysis of the whole genome of 30 individuals. This magnitude of genomes is the
first step to construct the species pangenome, which will then be crucial to understand
how SV determines the differences in CQ, since this is the most important economic trait
of these trees. The results obtained clearly indicated that SV is present in the cork oak
genome. The future release of an improved version of the cork oak genome, with a higher
degree of genome organization and lower number of scaffolds, will substantially improve
the accuracy with which SV will be performed in cork oak.

This study will enhance our ability to determine whether the CQ associated genes
belong to the set of core or variable genes, which will then enable the knowledge regarding
the role played by CNVs, PAVs and SV in the cork oak genome and in the regulation of CQ.
A number of SVs were specific to one of the CQ groups analysed in this study. With the final
version of the genome available also including an improved annotation it will be possible
to originate a more accurate prediction of the effect SVs may have in gene regulation, and
its effects on relevant cork oak phenotypes, such as CQ and resistance to (a)biotic stresses.
Future studies should also include cork oaks sampled from different geographical regions,
to further understand the global distribution of SV in cork oak and the effect of SVs in
phenotypes under a complex genetic regulation. Finally, the larger volumes of data that are
anticipated for the coming years, including short and long-read sequencing technology, will
require the update of the current bioinformatic tools currently available for SV detection,
and eventually the development of new tools, better suited to deal with this new big-data
scenario.
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