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Resumo

Implementação eficiente em hardware de convoluções 2D, otimizadas para nuvem de

pontos e ajustáveis aos requisitos dos modelos 3D de deteção e classificação de objetos

Com o crescente interesse na integração do sensor LiDAR na construção de veículos autónomos, a

comunidade académica e indústria têm contribuído para um aumento de algoritmos baseados em dados

LiDAR para deteção de objetos. Dado o sucesso das CNNs em tarefas complexas, variantes têm surgido

para o processamento de dados 3D, contudo, a natureza esparsa e não estruturada da nuvem de pontos

forçou a literatura a aumentar a complexidade dos modelos. O aumento de complexidade e a necessidade

de uma computação distribuída, leva à necessidade de plataformas capazes de executar e acelerar os

modelos de forma a viabilizar o seu uso em aplicações de tempo real. Considerando os requisitos de

desempenho e consumo de potência, várias soluções baseadas em FPGA têm sido apresentadas, porém,

geralmente os modelos não são eficientemente desenhados para plataformas com limitação de recursos.

A presente dissertação enquadra-se na necessidade da aplicação de soluções baseadas em CNN

otimizadas para nuvem de pontos em dispositivos com recursos reduzidos. O desenho e implementação

de um módulo convolucional foi proposto para implementar CNNs em hardware. Ao nível da configura-

bilidade, é possível ajustar todos os parâmetros típicos e explorar o paralelismo consoante a restrição

de recursos, tornando-se uma solução capaz de executar qualquer convolução encontrada na literatura.

Usando como caso de estudo o modelo PointPillars, o uso do módulo permitiu diminuir o tempo de

processamento até 25% sem comprometer o desempenho nas deteções.

Dada a esparsidade encontrada nos dados LiDAR e a necessidade de um estudo dedicado ao potencial

das convoluções esparsas, esta dissertação compara o desempenho de CNNs tradicionais com uma

solução otimizada para pontos 3D, chamada esquemas voting. Comparativamente com a convolução

densa, a convolução voting provou ser mais rápida para dados com esparsidade superior a 89%. O

processamento em pipeline permite consumir apenas duas DSPs e aproveitar a dependência de dados

espacialmente próximos para reduzir o tempo de processamento até 30%. Para operações com stride, a

convolução de voting é capaz de diminuir a comunicação com a memória e também reduzir o tempo de

processamento em 55%. Já a sua integração no modelo PointPillars demonstrou que a convolução voting

é capaz de dimiuir o tempo de processamento até 80.44% nas primeiras camadas do Backbone.

palavras-chave: CNN, Convolução, FPGA, LiDAR, Nuvem de Pontos
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Abstract

Efficient hardware implementation of 2D convolutions, optimized for point cloud and

adjustable to the 3D model requirements for object detection and classification

With the growing interest in LiDAR sensor integration in the construction of autonomous vehicles, the

academic community and industry have contributed to an increase in LiDAR-based algorithms for object

detection. Given the success of CNNs in complex tasks such as object recognition, variants have emerged

for 3D data processing, however, the sparse and unstructured nature of the point cloud has forced the

literature to increase the complexity of the models. The increase in complexity and the need for distributed

computing leads to the need for platforms capable of executing and accelerating these models to enable

their use in real-time applications. Considering the performance and power consumption requirements,

several FPGA-based solutions have been presented, however, generally, the models are not efficiently

designed for platforms with limited resources.

This dissertation fits into the need to apply CNN-based solutions optimized for point cloud in devices

with reduced resources. The design and implementation of a convolutional module were proposed to

implement CNNs in hardware. In terms of configurability, it is possible to adjust all typical parameters and

explore parallelism depending on the resource constraints, making it a solution capable of performing any

convolution found in the literature. Using the PointPillars model as a case study, the use of the module

allowed to reduce the processing time up to 25% without compromising the detections performance.

Given the sparseness found in the LiDAR data and the need for a study dedicated to the potential of

sparse convolutions, this dissertation compares the performance of traditional CNNs with an optimized

solution for 3D points, called voting schemes. Compared to dense convolution, voting convolution proved

to be faster for data with sparsity greater than 89%. Pipeline processing allowed to consume only two DSPs

and take advantage of spatially close data dependency to reduce the processing time by up to 30%. For

stride operations, the voting convolution is able to decrease memory communication and also reduce the

processing time by 55%. From the integration with PointPillars, it was possible to reduce the processing

time up to 80.44% in the first layers of the Backbone.

keywords: CNN (Convolutional Neural Network), Convolution, FPGA (Field Programmable Gate Ar-

ray), LiDAR (Light Detection And Ranging), Point cloud
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Chapter 1: Introduction

This chapter contextualizes the work developed, states the objectives and describes the document

structure. The contextualization places the work in the current panorama of autonomous vehicles percep-

tion and the needs inherent to the paradigm shift for Edge Computing. Afterwards, the objectives of this

dissertation are described, structuring the stages during the development and followed by the description

of the adopted methodology. The chapter ends with the organization of the dissertation, to guide the reader

throughout the document.

1.1 Contextualization

Autonomous vehicles are increasingly present in the mobility reality and with perspectives of the cen-

tral focus of innovation in the future [18]. The evolution of sensor technologies has been a support for

developments around autonomous vehicles as they heavily rely on perception systems to acquire infor-

mation about the immediate surroundings [19]. A perception system for autonomous vehicle navigation

can be composed of a combination of active and passive sensors, in particular, cameras, radars, and

Light Detection And Rangings (LiDARs) [20]. LiDARs are considered active sensors that emit lasers to

the surroundings and measure the distances by processing the laser returns received from the reflecting

surfaces.

Although there has been a lot of progress regarding camera-based perception, the distance to an

object is simply estimated by using image processing methods [21]. As vehicles are constantly exposed

to highly dynamic scenarios, a system that relies on distance estimation faces many difficulties which

motivate high-level autonomous vehicles using LiDARs as the main component for their perception system

[19]. In recent years, companies such as Google [22] and Volvo [23], are developing distinctive LiDAR

systems and including them in their setups to ensure the accurate recognition of the 3D space around the

vehicle. Figure 1.1 presents an example with a standard station wagon equipped with two high-resolution

color and grayscale video cameras. Accurate ground truth is provided by a Velodyne laser scanner and a

GPS localization system. This setup was used to capture datasets by driving around the mid-size city of

Karlsruhe, providing real-world benchmarks with novel difficulties to the community
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Chapter 1. Introduction

Figure 1.1: Volkswagen Passat B6 equipped with a Velodyne HDL-64E and four cameras [1]

Notable advances in 3D sensors, namely around LiDARs, have drawn the attention of the research

community, resulting in the increased development of LiDAR-based algorithms for object detection, clas-

sification, tracking, and intention prediction [24]. Despite the LiDAR’s superiority in ranging accuracy,

camera-based algorithms are good solutions at object recognition, promoting the combination of the two

sensors to complement each other [21].

While traditional model-based LiDAR data processing methods are computation friendly and have had

years of progress, deep learning-based methods have revealed great potential for perception-type tasks.

Recent advances in deep Convolutional Neural Networks (CNNs) have motivated researchers to adapt

CNNs to directly model points from point clouds [25]. Regarding the processing of 2D data, the traditional

implementations of CNNs have proved to be quite competent, and in recent years, variations have appeared

to adapt them for 3D data processing [24].

The characteristics of the data collected from a LiDAR sensor, such as the amount of data (1.3-3

million) [2], sparse and unstructured nature, make dense CNNs (adopted in computer vision for RGB

image processing) inappropriate for data processing [26]. As a result, the literature was forced to increase

the complexity of object detection models, compared to the ones already developed for computer vision

[24]. This increase in complexity leads not only to the adoption of optimized logical mechanisms for

sparse data processing but also the use of CNN optimization techniques, such as pruning and quantization

[27]. Pruning has proven to be a plausible solution for reducing computational volume and resource

consumption in data management, while data quantization reduces the size of the data involved in the

arithmetic operations, consequently decreasing the complexity and the memory required.

Given the success of CNNs in complex tasks such as object detection [28], and the need for distributed

computing in autonomous vehicles [29] [30], the availability of platforms capable of executing and accel-
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erating CNNs, with low power consumption and reduced dimensions, is essential to enable their adoption

in real-time applications. For critical applications such as autonomous driving, both real-time performance

and power consumption need to be carefully considered. Although Graphic Processing Units (GPUs) are

a popular platform for parallel processing, both power and area consumption are usually high [27]. The

need for a solution that satisfies the power and performance requirements has directed the focus to more

efficient platforms, such as Field Programmable Gate Arrays (FPGAs) [29]. FPGAs can be reprogrammed

to the desired application requirements with high level of parallel processing and on-chip data commu-

nications, emerging as a real-time low-power embedded system. The computational cost required by a

CNN makes one of the main challenges the resources limitations of the target platform. The design of

FPGA-based accelerators for CNNs, despite being a topic widely addressed by the research communities

over the past few years [30], still presents several technical challenges, namely:

• Limited FPGA resources: For CNN models used in real classification tasks, the computing and

memory resources of an FPGA may be insufficient [31]. Although some FPGAs boards have higher

available resources and bandwidth, this implies a large consumption of both power and area [32].

• Balance between RTL and HLS approaches: The high-level abstraction brought by the High-

level synthesis (HLS) approaches allows rapid development without the need for a great knowledge

about the FPGA architecture. However, the resulting design may not be fully optimized [33]. By

comparison, in Register Transfer Level (RTL) approaches, hardware design is done directly and can

achieve high efficiency, which in turn requires in-depth knowledge of both the CNN model and the

FPGA architecture.

• Specific design and optimization: Given the characteristics of a CNN model and the FPGA

architecture, a careful design is necessary to optimize throughput and efficiency [34]. Although the

reuse of a hardware module to implement multiple layers improves resource efficiency, it can lead

to poor performance due to the different computing patterns of each layer [35].

Given the challenges of implementing a CNN in hardware, several types of mechanisms optimized for

point cloud processing have been presented in the literature, however, 3D object detection models often

resort to less efficient solutions, making their implementation in Edge Devices unfeasible [27]. Consider-

ing the FPGAs as a technology with the potential to deploy deep leaning-based models in Edge Devices

[36], there is a need for an investigation focused on flexible solutions and their efficient design and imple-

mentation in hardware.
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1.2 Motivation

Technological advances achieved in recent years have allowed the automation of countless tasks previ-

ously performed by human beings. The transformation of a transport vehicle into an autonomous system

is already a reality, but it still faces many obstacles given all the complexity involved. The commitment

of the research community together with the support of both great car manufacturers and technological

companies have facilitated this transformation considering the common goal. Enthusiasts on the theme

of autonomous vehicles have also helped to analyze the problem from other points of view, with the emer-

gence of start-ups with completely different approaches to solve autonomous driving.

Despite the diversity found in the different approaches, some components of an autonomous sys-

tem are essential and integrated into several solutions already developed. One such component is the

perception system, which autonomous vehicles heavily rely on to recognize the environment around the

vehicle. With the LiDAR sensor increasingly being identified as essential for measuring object distances,

deep learning models based on LiDAR data have been developed to detect and classify 3D objects, how-

ever, this application has strict requirements. For instance, the inference time should at least be equal

to the sampling rate of the LiDAR sensors. As this parameter varies between 10-20 Hz, the maximum

acceptable inference time is 100 ms. As will be shown in section 2, the inference time of the majority of

the 3D object detection models is superior to this value, which hampers autonomous driving from reaching

its full potential.

Despite the success of deep learning models in complex tasks, the combination with the need for a dis-

tributed computing in autonomous vehicles implies their deployment on platforms with limited resources.

This, together with the high availability of FPGA-based hybrid SoC in the market, brings great opportunity

to develop flexible and efficient solutions to implement these models in hardware. Several CNN hardware

accelerator architectures and frameworks are available both in the literature and the market, however,

usually, some limitations are found, namely: reduced flexibility and efficiency, patented features, and re-

stricted compatibility to certain FPGA boards. Considering the need for research focused on optimized

mechanisms for LiDAR data and their efficient design and implementation on resource constraint plat-

forms, this dissertation introduces a configurable hardware architecture to implement CNNs in hardware.

While the designed architecture supports the common layers found in CNNs, it also allows different levels

of parallelism to improve the performance.

Given the sparse and unstructured nature of the point clouds, sparse convolutions are pointed out as

more efficient mechanisms over the traditional ones, to process the data with a high level of sparsity. The
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potential of sparse convolutions needs to be analyzed and ideally integrated into real case scenarios to

evaluate both the viability and the performance improvements. To the best of our knowledge, there is no

work in the state of the art merging the advantages of such configurable CNNs combined with the features

of hardware such as an FPGA platform.

1.3 Objectives

The development of this dissertation has the objective of implementing convolution processes in hard-

ware, time and energy efficient and resource-conscious. To this end, it is intended to implement an open

and configurable solution to implement CNNs in hardware as well as a solution optimized for point cloud

data processing. Summing up, it is intended to answer the following questions:

1. What are the resource costs of building a convolutional module in hardware that is adaptable to the

requirements of 3D object detection models?

2. What are the characteristics of the data that influence the performance of sparse convolutions?

3. According to the different possible variations in the data characteristics, what conditions favour the use

of sparse convolutions?

4. Are there 3D models in the literature that meet the conditions for the adoption of sparse convolutions?

5. For a real case scenario, what are the practical improvements in adopting a sparse convolution instead

of a traditional one?

1.4 Methodology and Methods

The development of a convolutional module to implement CNNs in hardware imposes important re-

quirements in the architecture, given the variation of the characteristics found in CNN layers. To this end,

after identifying the operations involved in CNNs, they will be implemented and integrated into a modular

hardware architecture. Considering the most used operations in the CNN layers, a hardware architecture

will be designed to try to perform these operations as efficiently as possible. Given the enormous flow of

data that occurs in the convolutional layers, it is intended to implement a technique to access the input

data that does not affect the module’s throughput. Furthermore, to increase the module’s applicability to

situations where there are more resources available, parallelization techniques will be integrated in order

to increase the module’s performance.
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To validate this solution, several tests will be built to analyze the module’s performance under different

conditions in terms of available resources. Given the extensive applicability of convolutions, RGB images

will be used to prove the correct functioning of the solution. Additionally, it is intended to integrate the

module with a deep learning-based model for object detection and classification. Through the integration

in a real scenario, it will be possible to analyze the feasibility of adopting the module in CNNs, as well as

answer research question 1.

Extending the investigation to mechanisms optimized for point cloud processing, it is intended to

propose a hardware architecture to execute the voting scheme-based convolution. Besides designing an

architecture that supports the use of the voting convolution, it is important to add configurability to the

operation, namely to the parameters of stride, padding, and kernel size. Furthermore, an analysis of

the data characteristics that affect on the voting convolution performance in hardware will be performed,

aiming at implementing possible optimization techniques in data processing to reduce computation cycles.

The voting convolution validation will be performed on small data sets, as well as on images, however,

different tests will be constructed to evaluate its performance according to the input data characteristics,

answering the research question 2. For each test, the performance of the voting and traditional convolu-

tions will be compared to define which conditions favour the use of each, as indicated in research question

3. To analyze the advantages of using the voting convolution in a real case, a model from the state of the

art that satisfies the voting convolution requirements will be selected. This approach will help to answer

research questions 4 and 5.

1.5 Publications

This work originated the following articles, submitted for review in the journal: IEEE Transactions on

Circuits and Systems I: Regular Papers.

• Customizable FPGA-based Hardware Accelerator For Standard Convolution Processes Empowered

with Quantization Applied to LiDAR Data.

• Efficient hardware design and implementation of the Voting scheme-based convolution.

1.6 Dissertation Structure

This dissertation document is divided into a total of six chapters, namely the Introduction, State of the

Art, Design, Implementation, Tests and Results, and lastly the Conclusion
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The state of the art presents the technologies that supported the development of this dissertation. It

starts with a study on Deep Learning-based models for object detection and classification in point cloud

data, highlighting the models distinguished in the current state of the art. Given the extensive adoption

of convolutions and the sparse characteristic of point clouds, a study is carried out focused on optimized

mechanisms for sparse data processing. The chapter ends with the description of a selection of CNN

accelerator frameworks, available for FPGA deployment.

In the Design chapter, considerations are taken regarding the desired requirements for the Convolu-

tional Module and the Voting Block and their efficient hardware design is subsequently presented. Following

the design specifications, the next chapter describes the hardware for the FPGA implementation of both

architectures. In the Tests and Results chapter, the validation of both implementations is carried out,

together with a set of performance tests for the case study.

Finally, in the last chapter, some conclusions about the dissertation work are presented with some

notes regarding possible future work.
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This chapter begins with a study on LiDAR and cameras sensor’s contribution to the perception task

in autonomous vehicles over the past few years. In particular, the trend helps to detail the increasing

importance and adoption of the data collected by LiDAR sensors for object detection tasks.

The next subsection presents a literature review of 3D object detection models. The characteristics

of the models with the major impact on the current state of the art in 3D object detection are highlighted

along with the taxonomy that allows distinguishing each one’s potentials.

Considering that 3D models usually adopt traditional convolutions for data processing, optimized

mechanisms for point cloud data processing are presented next, together with the importance of their

adoption in sparse CNNs. Three different types of sparse convolution are described following the advan-

tages and disadvantages of each one.

Finally, CNN accelerator frameworks targeting FPGA platforms are detailed. The study enables an

understanding of the tools currently used in the market to migrate object detection models to resource-

constrained platforms. The analysis of each framework underlines the particularities that distinguish them,

highlighting the limitations and development support.

2.1 Perception system in Autonomous Vehicles

The surrounding environment perception in autonomous vehicles setups mainly relies on two sensors:

cameras and 3D scanners [37, 38]. The data collected by both sensors compose the raw information

used to detect and classify dynamic objects, such as pedestrians, cyclists, and vehicles. Although there

are different camera technologies, RGB cameras are the most adopted in autonomous vehicles according

to the current state of the art in perception models [38]. RGB cameras provide a dense representation of

the captured scene containing detailed information about object geometry and texture, useful for object

detection and classification tasks. While, over the years, object detection models were highly dependent

on data collected by 2D sensors, such as cameras, recent models are progressively dependent on the

depth information to locate and classify objects in 3D space [25].

LiDAR-based solutions have been considered increasingly viable to meet the perception requirements

for autonomous driving and can already be found integrated in several vehicle setups [1, 39, 40, 41].
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Compared to other sensing technologies, LiDAR sensors provide both high resolution and precision in 3D

measurements of the vehicle’s surroundings under several adverse atmospheric conditions [42]. Despite

the recognized robustness of LiDAR sensors, several tests have been performed to acknowledge and exploit

the vulnerabilities such as: most of the reflection intensity is attenuated or lost in the presence of fog;

with strong and non-uniform precipitation false objects can be created; environments with high luminous

intensity directed at the sensor create a great difficulty in collecting data from the vehicle’s surrounding

[43]. Figure 2.1 represents a point cloud example with approximately 12k points, result of a complete

scan of a LiDAR. Among several possible attributes associated with each point, the most common ones

are the x, y, and z coordinates and the intensity.

Figure 2.1: Point cloud example from Kitti dataset with pre-defined Bounding Boxes

According to the perception task and the application domain, different key LiDAR performance at-

tributes can be distinguished such as: scan speed, measurement range and accuracy, point density,

robustness to unfavorable environmental conditions, and cost. To address such needs, a large number

of LiDAR manufacturers have emerged introducing new technologies. Figure 2.2 represents the growth of

LiDAR devices patent registrations in the market for autonomous vehicles. The graph illustrates the num-

ber of published patents between 1967 and 2018, being identified more than 6480 LiDAR-related patents.

The study evidences the companies concern to have a strong position in the LiDAR sensors market. The

effect of the growing attention from large companies can be deduced by the strong investigation in the

perception area, which translates into a growth of 21% in patent publications between 2007 and 2018 [2].
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Figure 2.2: LiDAR related patent publications between 1967 and 2018 [2]

2.2 Deep Learning-based 3D object detection models

Object detection and classification tasks take a crucial role as it enables the perception of the surround-

ings and provide information to the system to perform the best driving decisions. Several approaches were

developed based on LiDAR and multi-modal, but LiDAR is one of the main perception sensors to provide

real-time object detection and classification. LiDAR sensing technology enabled a new line of research

leading to the development of suitable object detector algorithms architectures for self-driving cars, gener-

ally referred to as 3D object detectors. Recent research and developments in 3D object detection models

have strengthened the state of the art bringing more diversification to the models’ architectures together

with innovative design choices. As a result, traditional models solo-based on RGB cameras are increasingly

integrated or replaced with solutions using LiDAR data [24].

Due to the sparse and unstructured nature of the point clouds as well as the number of generated

points, 3D object detection models require high computational costs. Some solutions, such as PointNet

[44] and PointNet++ [45] opted by processing the raw point cloud, however, the high computational costs

lead to inferences times in the order of a few seconds, which is not acceptable for this type of applica-

tion. The growing computational need has led researchers to focus on restructuring the point cloud into

structured representations, also known as volumetric representations, such as Voxels [3], Pillars [5] or

Frustums [7]. After the point cloud restructuring, the feature extracting techniques based on convolutional

neural networks are applied. From the set of extracted features, the consecutive stages of the algorithms

are responsible for detecting and classifying objects.

3D object detection models can be categorized as single or two-stage detector, according to the number
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of stages of the architecture pipeline [26]. A single-stage architecture combines the object location and

classification in the same stage, the Multi-task Header. At this stage, feature maps are processed by

different networks to generate the object’s location and classification through the bounding box coordinates.

Examples of single-stage architecture models are PointPillars [5] and SECOND [4]. The algorithms that

follow this architecture are distinguished by their reduced execution time and generally present a lower

precision when compared with two-stage architecture detectors [24]. The base single-stage architecture is

represented in figure 2.3.

Figure 2.3: Single stage detectors basic architecture

Two-stage detectors models, such as F-PointNet [7] and BirdNet [9], use a Region Proposal Network

(RPN) algorithm [46] to generate Region of Interest (ROI) proposals in the first stage. The proposal gener-

ated in the first stage is sent to the object classification block and ROI regression, as a second stage. These

algorithms achieve greater detection precision than single-stage models as in the classification block a new

additional phase of feature extraction is carried out to obtain more detailed information and complement

the one extracted in the first stage. However, the additional computation required leads to higher inference

times when compared to single-stage detectors [26]. The base architecture of two-stage detectors models

is represented in figure 2.4.
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Figure 2.4: Two stage detectors basic architecture

BackBone networks, which consists in CNNs, are used by object detection models to learn and extract

the relevant characteristics from the input data and build feature maps. The extracted features are the

information used to identify the object’s location and class in the captured scene. BackBone networks are

commonly constituted by convolutional networks which stand out for their ability to learn the most relevant

characteristics for a given task during the training phase [24].

Convolutions are found in different stages of the model’s pipeline, both for detection and classification

tasks. The model’s backbone can vary in architecture, configuration, and between a 2D or 3D CNN, where

different types of convolutions can be applied according to the data representation used. Most models

choose well-known computer vision backbones as VGG [47] or Resnet [48], nonetheless, recently some

CNNs are designed to handle the sparse nature of point clouds. The following subsection analyzes the

pipeline of different models found in the literature of 3D object detection.

2.2.1 Single stage models

Single-stage object detectors instead of separating region proposals from classification and bounding

box regression pipeline processing, it integrates all those processes as a set of connected layers.

VoxelNet [3] follows a data representation based on voxels and combines a modified version of the

RPN architecture with the PointNet [44] algorithm, as illustrated in figure 2.5. PointNet is considered
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the pioneer in combining deep learning with LiDAR data and follows an architecture based on Multilayer

Perceptron (MLP) to extract features from data. The features extraction in VoxelNet is performed through

convolutional layers to build characteristics maps from the point cloud representation as voxels.

The modified RPN architecture allows bounding boxes regression for 3D detection and consequent

object’s class prediction. The VoxelNet model was the pioneer in introducing voxels where the 3D space is

divided into smaller 3D spaces and the processing allows the extraction of features rich in geometrical and

location information. The data representation in voxels also enables better results in speed and resource-

consuming since irrelevant data is discarded and voxels can be processed simultaneously.

Figure 2.5: VoxelNet architecture [3]

The SECOND [4] algorithm also follows a voxel data representation and applies two Voxel Feature

Encoding layers followed by a linear layer. Next, a sparse CNN is implemented and the RPN is responsible

to generate the detections. The sparse CNN deals with the sparsity nature and spatial dimension of the

3D points through the use of submanifold convolutions, which restricts the processing to the regions of

input active sites. Computational cost reduction and better execution times are achieved since irrelevant

information is ignored when adopting sparse convolution in the convolutional layers. The algorithm adopts

2D convolutions as it works with a 2D Bird Eye View (BEV) representation of the point cloud after projecting

the Z dimension as a simple feature map channel. The comparison between models shows a precision

similarity compared to VoxelNet, however, the introduction of a CNN that takes advantage of the point cloud

sparse nature allows to drastically reduce the model’s inference time, as shown in table 2.1.
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Figure 2.6: SECOND architecture [4]

PointPillars [5] uses a Pillars-based representation of the 3D point cloud, presenting a CNN archi-

tecture for extracting high-dimension features and a PointNet-based solution for low-dimension features

extraction. In the Pillar Feature Network (PFN) stage only a linear layer is used to extract features from

each pillar, but only the most relevant ones are used to create a 2D pseudo-image.

The backbone implemented next to the PFN is a sequence of 2D convolutional layers constituted by

three blocks to learn features from the transformed input. The adoption of 2D convolution requires less

computational complexity than 3D convolution, resulting in better performances. The Single Shot Detector

(SSD) network, composed of 1x1 convolutions, is responsible for generating 2D bounding boxes on the

features generated from the backbone layer of the Point Pillars network.

After the bounding box locations regression, the non-Maximum suppression is used to filter out all the

noisy predictions. Height and elevation were made additional regression targets in the network to modify

the predictions for 3D bounding boxes, as SSD was originally developed for images.

Figure 2.7: PointPillars architecture [5]

The problem identified by the literature about point cloud data compression is related to the potential

loss of information, so some studies aim to design mechanisms optimized for sparse data while main-

taining the concept of using a sliding window along the three dimensions. In this context, Vote3D [49] is

presented, to enable the use of sliding windows in 3D data through a strategy to deal with sparse data. In

Vote3D, the point cloud starts to be discretized into voxels and each of the grid cells occupied by points is

converted into a feature vector. On the other hand, cells that are not occupied by points do not generate

any vectors, therefore, no later computation will be dedicated to these cells. For the feature representation,
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three shape factors together with the mean and variance of the reflectance values are computed within

each occupied cell.

In the detection task, the adoption of mechanisms based on a Voting scheme allows one to explore

the sparse nature of the data and take advantage of it through an efficient search for the location and

orientation of objects, avoiding unnecessary operations. Voting scheme-based convolution, revealed to be

mathematically equivalent to traditional convolutions, which translates into good performances in detection

precision, but with efficiency improvements.

Inspired by the Vote3D algorithm, the authors of Vote3Deep [50] proposed to explore the mechanism

based on the voting scheme to build sparse efficient CNNs, for 3D object detection, without the pre-

projection of the point cloud into a smaller representation. The sparsity identified in the 3D point cloud is

exploited with a feature-centric voting scheme using the insight that meaningful computation is positioned

where the 3D features are non-zero.

An important aspect of this work was the use of a penalty on the filter activations and Rectified Linear

Unit (ReLU) blocks which helps to preserve the sparse levels of the intermediate representations in the

neural network. In addition, the bias parameter is only added to non-empty output cells since a positive

bias would return an output grid with almost all cells occupied with a feature vector, removing the sparsity

from the data. The ability to maintain sparse levels allows exploration of sparse mechanisms across all

the CNN, reducing the computational cost of the algorithm.

The MEGVII [6] algorithm, represented in figure 2.8, although it also follows a data representation

based on voxels, implements a feature extractor based on 3D convolutions followed by an RPN. To obtain

3D feature maps with an appropriate format, they are adjusted to apply 2D convolutions transversal to the

RPN block and subsequently aggregated to build higher resolution feature maps. While in former RPN-

based projects, algorithms adopted RPN to detect and classify as well as for bounding box regression, in [6]

RPN is adopted to simply perform regular 2D convolution and deconvolution. The features are aggregated

to build feature maps with higher resolution than the feature maps firstly outputted by the Convolution

Middle Layers. The tasks of localization, classification and bounding box prediction are carried out by a

network called Multi-Group Head.
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Figure 2.8: MEGVII architecture [6]

2.2.2 Two stage models

Regarding two-stage models, the proposals for the region of interest are generated and submitted

to two different neural networks. Those are responsible for verifying the probability level that the region

contains an object, classifying the object and determining its location within the region. The F-PointNet

[7], MV3D [8] and BirdNet [9] models are examples of works that adopt a two-stage architecture.

F-PointNet [7] starts by segmenting the point cloud into Frustums, using this representation to then

extract features for detection. The F-PointNet architecture consists of three modules: Frustum proposal,

3D instance segmentation and 3D amodal bounding box estimation, as illustrated in figure 2.9. As the

modality of this algorithm is both point cloud and images, in the first instance, the object detection in the

image is carried out using a CNN-based solution. 2D detections performed on the image are projected

into the 3D space to extract the 3D bounding frustum corresponding to each 2D bounding box. This

mechanism reduces the time and resource cost associated with regions of interest searching in 3D space.

In addition, the F-PointNet segmentation module uses the PointNet architecture to evaluate, within

each Frustum, the probability that each point belongs to an object. The last block is an estimation network

called Amodal 3D Box Estimation which is implemented to estimate the object amodal oriented bounding

box by using a box regression PointNet.

Figure 2.9: F-PointNet architecture [7]

TheMV3D [8] algorithm, as represented in figure 2.10, has input data from both the LiDAR and RGB

sensors, which are combined to extract high-dimensional features and predict the location and orienta-
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tion of the bounding boxes. The algorithm uses two representations of the point cloud, BEV, and Front

View (FV), where feature maps are extracted and later combined with the features extracted from the im-

ages. The MV3D is composed of two networks: the 3D object proposal generation network from the BEV

representation of the point cloud; and the multi-view features fusion network.

The main purpose for utilizing multimodal information is to perform region-based feature fusion. Fea-

ture maps are designated as region-wise features rather than object-wise as the MV3D first detects the

region of interest through the feature map extraction from BEV in detriment of other views due to the

advantage of the BEV over a front view/image plan. The multi-view fusion network extracts region-wise

features by projecting 3D objects/box proposals (extracted from BEV) to the feature maps from multiple

views. The LiDAR point clouds projected to BEV are then used to train a region proposal network for 3D

bounding box proposals.

Figure 2.10: MV3D architecture [8]

BirdNet [9], illustrated in 2.11, adopts a Faster R-CNN architecture to perform object detection and

orientation. It follows a multi-view 3D object detection network that consists of two parts: a 3D proposal

network and a region-based fusion network. The fusion network combines region-wise features from various

representations and constructs regions of interest for each one, which are later combined to define the

3D bounding box and object’s class prediction. The object’s class together with both 2D bounding box

coordinates and orientation build up the output of BirdNet.

Figure 2.11: BirdNet architecture [9]
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2.2.3 Models comparison and taxonomy

The state-of-the-art analysis in 3D object detection models demonstrates the trend over the years in the

development of models based on deep learning, progressively abandoning the use of hand-crafted feature

extraction methods. Learned features do not rely on fixed encoders and allow algorithms to extract more

contextual information from the sensor’s data. The increasing ability to interpret complex environments

enables a more complete solution to be integrated into a perception system.

The models approached in the state of the art demonstrate the tendency of the two-stage algorithms to

handle point clouds and images simultaneously, as an attempt to increase the performance of the detection

and classification results. However, despite the accuracy of these algorithms being quite reasonable, they

have a longer execution time compared to the single-stage algorithms, mainly due to the high amount of

information to process, as shown by the results reported by the MV3D model [8]. In addition, the fact that

the use of these models implies an exact synchronization between the scans of both LiDAR and camera

[38], requires a system capable of temporally managing all the sensor measurements for a consequent

coherent fusion of the data.

The study of single-stage algorithms, as opposed to two-stage algorithms, reveals that they are more

computationally efficient, as summarized in table 2.1. It is noted that the algorithms that use 3D represen-

tations from the LiDAR data, such as 3D Voxel grids, present a higher computational cost since the depth

information of the objects is incorporated in the structure. The superior amount of information makes the

processing of a 3D grid very inefficient as it implies a largely redundant and unnecessary computation

resulting from the high level of sparsity. The compacted information obtained with 2D projections, on the

other hand, results in less computational cost despite introducing loss of information.

The comparison of the two approaches also shows that, although the algorithms that adopt a 2D

representation of the data obtain a better performance in terms of execution time, the precision in the

results is sacrificed due to the information loss after the initial compression. Given these circumstances,

some models, such as SECOND and PointPillars, opt for a 3D representation of the point cloud but use

2D convolutional neural networks to extract features, obtaining better efficiency levels and being able to

compete in terms of accuracy with models based on 3D CNNs [24].

Following the characteristics of point clouds, some algorithms explore the sparsity and spatial dimen-

sion through the adoption of optimized mechanisms for the point clouds data processing. In this topic,

Vote3Deep is presented which, different from SECOND, tries to maintain the sparsity level of the network

intermediary representations to reduce the computational cost across the convolutional network.
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Architecture Model Modality Data
representation

Detection Accuracy
(%)

Speed
(fps)

Single stage Vote3D (2017) LiDAR Voxel 3D CNN 39 N/S
Single stage Vote3Deep

(2017)
LiDAR Voxel 3D CNN N/S 0.9

Single stage VoxelNet
(2018)

LiDAR Voxel RPN 58.25 4.4

Single stage SECOND
(2018)

LiDAR Voxel RPN 60.56 26.3

Single stage PointPillars
(2019)

LiDAR Pillar SSD 66.19 62

Single stage MEGVII (2019) LiDAR Voxel Class-
balanced
multi-
head

Network

52.8 N/S

Two stages MV3D (2017) LiDAR and
Image

2D Projection Region-
based
Fusion
Network

N/S 2.8

Two stages F-PointNets
(2018)

LiDAR and
Image

Frustum Amodal
3D Box
Estima-
tion

65.39 5.9

Two stages BirdNet
(2018)

LiDAR 2D Projection Faster
R-CNN

40 9.1

Table 2.1: 3D object detection models comparison

This study seeks to identify models that stand out in the object detection literature, taking into con-

sideration detection’s performance and execution time. Models that preserve the high-dimensional repre-

sentation of the data while implementing an architecture with 2D operations end up registering the best

results. Namely, the PointPillars and SECOND models stand out with good levels of precision, being the

PointPillars the one that registers a better balance between precision and execution time.

The models previously presented demonstrate that convolutions are used in practically all stages of

the pipeline, with the only exception being in the point cloud restructuring stage. Recent models choose

to replace the traditional Fully Connected Networks with Fully Convolutional Networks, where the model’s

output data from the object classification and location tasks is also obtained through convolutions.
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2.3 Convolution Neural Networks in the perception task

In the computer vision area, object recognition algorithms depend on the detection and feature extrac-

tion to later classify the objects. The past literature focused on improving the points of interest that can be

extracted from the data to compose the best possible description. Several solutions have emerged, such

as the Scale Invariant Feature Transform (SIFT) [51], known for its robustness against object’s rotation

and scale variations. However, the robustness provided by SIFT, and other algorithms, implies a great

computational cost, leading to the emergence of faster variants, achieved by Speeded Up Robust Features

(SURF) [52], serving as viable real-time applications proposals. These mechanisms use a point of interest

detector to locate characteristic regions of an image, such as corners, and then describe them using a

descriptor capable of distinguishing each point of interest detected.

The paradigm shift came with deep learning [28], which makes it possible to build complex neural net-

works to solve problems such as object detection and classification. In this type of approach, the solution

is based on convolutional neural networks, which behave as extractors of characteristics, as generically

represented in figure 2.12. The particularity of this solution is to learn which characteristics best define a

set of data in contrast with characteristics previously defined by the author which are extracted manually

[53].

Figure 2.12: Hand crafted features extraction

CNN based solutions for object detection and classification initially had a major impact in the computer

vision area, but their effectiveness has extended the scope in recent years to areas such as autonomous

driving, namely for LiDAR data processing. Given the popularity of some 2D CNN basedmodels, some were

simply reinvented to operate on three-dimensional data. A CNN is similar to the functioning dynamics of

the human brain, considering the existence of neurons and connections between them. The constitution of

a CNN is mainly composed of convolutions over several layers. Convolutions, applied to the network input,

are carried out using filters, composed of a set of values, called weights. The weights values are learned
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during the training phase of the convolutional network, and together they assign levels of importance to

different types of characteristics found in the data. Figure 2.13 shows the detailed architecture of the

already mentioned PointPillars model.

Figure 2.13: PointPillars detailed architecture [10]

The exemplary CNN is composed of several layers where different types of operations can be distin-

guished. Although both ReLU and Pooling among other operations have an important role on the network

processing, the convolution is the main operation and transversal to all the network. As the last stage,

the Detection Head, 1x1 convolution are implemented to generate 2D bounding boxes on the features

generated from the backbone layer of the Point Pillars network.

CONV: The convolutional layers are the main building block of a CNN, where most of the computation

of the network is located. This layer is composed by a set of weight values forming a kernel, which are

learned during the training of the network. The number of filters varies from layer to layer, and each of

them is applied to the data that comes from the previous layer. A simplistic case is shown in figure 2.14,

where the 2x2 kernel is slid along the 3x3 input matrix, resulting in a 2x2 output.

Starting from the example shown in figure 2.14, in a real context of a neural network, the convolutional

layers are composed of multiple filters, with several channels, depending on the existing input channels. To

synthesize the information, the meaning of the typical parameters of these operations can be summarized

as follows.

• Input volume size of W1 x H1 x D1;

• Four hyper-parameters:

– Number of filters (i.e. number of kernels) K;
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– Filter’s size F;

– Stride S;

– Padding P.

• Output volume size of W2 x H2 x D2, where:

– W2 = (W1 – F + 2P) / S + 1;

– H2 = (H1 – F + 2P) / S + 1;

– D2 = K.

• Each filter has F * F * D1 weights.

Figure 2.14: Convolution between a 3x3 input and 2x2 kernel

ReLU: ReLU is an activation function used in CNNs and it is defined by the formula max(x, 0), which

sets the output to zero when the input is negative. On the other hand, if the input is positive, the output

will have that same value, as illustrated in figure 2.15. If a neuron is not relevant, this means that, for

certain values of the input, the output would negatively contribute to the output of the neural network. This

feature is not desirable as it is preferable to use non-negative activation functions for CNNs, therefore, the

ReLU is the most common function among others.
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Figure 2.15: ReLU function

POOL: Abbreviation for Pooling, is the layer responsible for the subsampling operation along spatial

dimensions. The presence of the Pooling layer along a CNN allows to progressively reduce the size of

the data representation, decreasing the number of parameters and consequently computation. The im-

plementation of this layer is done using the MAX operation, normally using a 2x2 filter with a stride of 2

in each operation. In each application of the filter in the data, the highest of the four values is fixed, as

shown in figure 2.16.

Figure 2.16: Max Pooling operation

FC: In the Fully-connected layer, all neurons have connections with all activations from the previous

layer, unlike a convolutional layer, in which neurons are only connected to neurons belonging to a specific

region in the previous layer, as shown graphically in figure 2.17. This type of layer can be considered a

totally general-purpose connection pattern and makes no assumptions about the features in the data. It’s

also very expensive in terms of memory (weights) and computation (connections). With this type of layer,

the model has the ability to mix signals, since every single neuron has a connection to every single one

in the next layer. However, these characteristics make a fully connected layer less efficient and much less

specialized when compared with a convolutional layer [54].
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Figure 2.17: Graphical difference between fully connected and convolutional layers

Similar to a convolutional layer, computation in an FC layer is scalar products between matrices,

making it possible to convert it into a convolutional layer. In reality, a convolutional layer is represented

by an FC layer, with a greater matrix filled mostly with null values, except in certain positions regarding

local connections. This approach is useful in practice, being much more efficient than iterating through

all locations of the input, thus bringing performance improvements without sacrificing the accuracy of the

ratings.

2.4 Point cloud optimized convolutions

The key to achieving efficiency is to denote that there is a fundamental difference in the structure of a

3D point cloud compared to a 2D image. A 3D point cloud is sparse as much of the space is not occupied

with information, and so, 3D models work on a large portion of irrelevant data collected by 3D sensors.

As an example, in the PointPillars model [5], the pseudo-image from the PFN stage has in each channel

a total of 262144 values and only a maximum of 12k values are non-null, which translates into a sparsity

level above 95%. Common optimization techniques, such as weight quantization, promote the increase of

irrelevant information in the feature maps and further reduce the efficiency of traditional mechanisms, as

will be analyzed later 5.12. Faced with the fact that dense implementations of CNNs are inefficient when

applied to sparse data, in the last few years several mechanisms (with an emphasis on convolutions) have

been presented to operate efficiently on sparse data.

Keeping in mind that the developments in this topic seek to bring improvements in terms of com-

putational cost and resource consumption, it is important to highlight the dynamics adopted by each

mechanism and the circumstances in which the integration of each one is appropriate.
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2.4.1 Sparse convolution

Following the mechanisms’ objective for processing 3D data mentioned, several studies present strate-

gies that direct the processing only to the input data with relevant information [49, 50]. Data without

information considered relevant would simply be ignored, saving resources and time previously allocated

for the respective processing. Based on this, sparse convolution seeks to take advantage of the sparse

nature of the point cloud.

The sparse convolution ignores the input data without relevant information, so the convolution is only

carried out if the input data contains any relevant information. With this mechanism, there is an increase

of active sites in the output compared to the input, leading to a consecutive expansion of active sites in the

feature maps. Figure 2.18 graphically illustrates the dilatation that is verified in the data within a neural

network when the sparse convolution is adopted. Through expansion, the active sites gain more and more

volume, leading to a consecutive increase in the number of operations in the following layers for processing

them.

Figure 2.18: Sparse convolution

2.4.2 Submanifold convolution

To find a solution to the dilation problem, the Submanifold Sparse Convolution (VSC) [55] operation

restricts the output active sites only to the central input active sites. The difference concerning Sparse

Convolution is related to the relevant data since padding is applied over the input data and an output site

will be active only if the central input site is also active, as represented in figure 2.19. The advantage of

this type of sparse convolution is the computational cost reduction, allowing the construction of deeper
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neural networks without high resources consumption due to the successive dilation along with the layers.

With this technique, the submanifold convolution helps to maintain the sparsity levels encountered in the

input.

To reconstruct popular convolutional neural networks, such as ResNet [48], efficiently with this type

of convolutions, the state of the layers is stored in a hash table together with a feature matrix. The cost

associated with the construction of each hash table is proportional to the amount of input active sites.

Although there is a tendency for this amount to increase in deep convolutional neural networks, preserving

the data sparsity level regularizes the creation costs of these tables. Apart from the dilation detail, certain

models adopt both types of convolutions since in certain cases it is necessary to preserve the size of

feature maps using padding.

Figure 2.19: Submanifold sparse convolution

2.4.3 Voting scheme-based convolution

Voting scheme-based convolution [50] is also presented as a good alternative since convolutions over

3D input feature maps translate into a large number of unnecessary operations [49]. Therefore, voting

scheme-based convolution deals with spatial sparsity to reduce the number of operations compared to

traditional convolutions. In the first instance, the three-dimensional space is discretized and represented

in the form of a grid. For each cell of the grid occupied with points, a vector of points features is extracted,

ignoring and consequently discarding the cells with an insignificant number of points.

The Voting filter is obtained from the inversion of the convolutional filter in each of the two dimensions,

as shown in figure 2.20. However, the operation is mathematically proven to be equivalent to a traditional

dense convolution in a sparse space since the filter only applies to occupied cells. This type of convolution

together with the Submanifold convolution, also preserves the sparsity levels avoiding the dilatation prob-
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lem, nonetheless, it also needs information regarding the position of non-null values to make all processing

efficient.

Figure 2.20: Voting scheme based convolution

2.5 Hardware acceleration frameworks

Due to the huge flow of data, certain deep learning models are implemented on servers where time

is spent between client and server communication, being impractical in real-time applications. Given

these circumstances, in recent years the paradigm has been changing with the migration of computing to

platforms known as Edge Devices [34]. Edge Devices have fewer resources when compared to solutions

that resort the processing to servers, however, the fact that they are closer to the scene where the action

takes place, avoids latency in communication, making vehicles more independent and less susceptible to

failures. This trend has opened up space for hardware accelerators as a solution capable of satisfying the

requirements of a real-time application [36].

A hardware accelerator is a set of specialized hardware that performs several tasks with great per-

formance and better efficiency, when compared to generic platforms, such as CPUs. Some examples of

common accelerators are GPUs, ASICs, and FPGAs. As shown in figure 2.21, CPUs are the most flexible

and ASICs are the most efficient in latency and power consumption. FPGAs fall into a category character-

ized by a good balance between efficiency and flexibility, given the configurability of the hardware. ASICs,

although they are also known for efficiency, do not have flexibility. The recurring cost of an ASIC is quite
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low, but its non-recurring cost is very high, with no margin for error during the development.

Figure 2.21: Common computing platforms

A lot of work has come up with FPGA-based CNN implementations [56] [57], taking advantage of the

hardware flexibility and performance to meet the real-time applications requirements. In this topic, the

hardware accelerator frameworks, receive a high-level description of a trained neural network model and

generate a synthesizable accelerator to be executed in an FPGA. The high-level description of a model

involves not only the deep learning operations/operators and data flow but also the parameter values,

normally stored with a specific format according to the framework used to train the network. For this

study, some hardware accelerator frameworks were selected and categorized using the metrics: interface

as the deep learning framework used, supported network layers, target platforms with support, design

specification level and market availability. Table 2.2 summarizes all the information that allows highlighting

the frameworks that will be described.

HADDOC2 [11] is a framework that uses Direct Hardware Mapping (DHM) to implement a CNN in

hardware. The high-level description of the CNN model is built using the Caffe [58] format and then the

VHSIC Hardware Description Language (VHDL) code is generated to instantiate the hardware. CNN can

be specified as data flow processing networks, where the nodes represent the actors and the edges the

communication channels. Through DHM, it is possible to map in hardware the graphic that represents

the processing units, as the nodes, and the connection between them.

Multiplications, transversal to the CNN layers, are implemented with simple logic cells instead of

dedicated Digital Signal Processing (DSP) blocks. HADDOC2 assumes that most weights have null value

after quantization, being subsequently removed and reducing the logic to be implemented in LookUp Tables

(LUTs) [29]. Each CNN layer is implemented in hardware according to a pipeline architecture to increase

the data processing rate. The FCLs can be seen as convolutional layers, but without sharing parameters,

which translates into higher consumption of resources like multipliers. For these reasons HADDOC2 does

not support FCL, besides, with a direct hardware mapping approach, the implementation would imply an

increased consumption of resources, making the use of the framework unfeasible.
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Figure 2.22: HADDOC2 interface [11]

DNNWEAVER [12] is an accelerator based on a single computational unit, using templates written in

Verilog. The high-level language interface of the neural network is found in the Caffe format, allowing it to

generate instructions and optimize the computational unit for the FPGA platform where the framework is

implemented. DNNWEAVER is composed of four software components called: Translator, Design Planner,

Design Customizer, and Integrator.

1. Translator: Converts the neural network high-level specification into an Instruction Set Architecture

(ISA). These instructions are not executed by the accelerator but used to map the neural network

into a data flow graph, with each instruction corresponding to a graph node.

2. Design Planner: Receives instructions generated by the translator. Uses an optimization algorithm

to optimize the hardware templates according to the target FPGA platform. This component is

responsible for managing operations and transferring data between them.

3. Design Customizer: The input of this component is the resources allocation and the execution

schedule, both used to customize the accelerator core as intended.

4. Integrator: Responsible for the interface between the accelerator and the memory. The interface

must be defined by the user if the target platform is not supported by the framework.

Figure 2.23: DNNWAVER working flow interface [12]

Hls4ml [13] is an open-source package that generates implementations of machine learning algo-

rithms using HLS. More specifically, hls4ml uses Xilinx HLS, consequently targeting support for Xilinx
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platforms. This framework uses fixed-point arithmetic and performs weights and bias quantization auto-

matically. The network description and training are performed using Keras / Tensorflow, creating a YAML

configuration file, containing the location of the network architecture and the parameter storage directory.

After the HLS code for a specific neuronal network has been generated, the configuration for each

individual layer is performed next. During the configuration of each layer, the connection architecture

between the multipliers is defined, as well as the precision of the calculations involved.

Figure 2.24: HLS4ML working flow interface [13]

CHaiDNN [14] is an open-source accelerator framework developed by Xilinx, for Xilinx System On a

Chips (SoC’s) themselves. Uses an Integrated Development Environment (IDE) designed to easily perform

implementations on processors. In this framework, the user can specify the portion of the code that must

be synthesized for hardware or executed in one of the CPU cores. By default, convolutional layers are run

on the FPGA and the Fully Connected Layers on the CPU.

This framework supports 6- and 8-bits fixed-point precision for the network parameters, at the discretion

of the user. Also, CHaiDNN supports different data sizes across multiple layers, favouring more enhanced

accelerator optimization for a specific neural network.

Figure 2.25: CHaiDNN working flow interface [14]

VITIS AI [15] is a state-of-the-art framework for accelerating neural networks, developed by Xilinx for

its FPGA SoC and Multiprocessor System On a Chip (MPSoC) platforms. This framework is distinguished

by presenting two types of architecture aiming at both Cloud and Edge Devices computing. For Edge

applications, the hardware architecture of the DPU is the same as the one implemented in the DNNDK

framework, thus, verifying compatibility between VITIS AI and DNNDK applications.
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Similar to DNNDK, VITIS AI has an optimizer and quantizer to reduce the number of model parameters

and quantize the floating-point data to 8-bits. The code generation is carried out in the next phase using a

compiler to build an executable DPU. Finally, the VITIS AI application is created, where the neural network

model will be executed, according to the DPU instructions generated in the previous phase.

Figure 2.26: Vitis AI architecture [15]

Core Deep Learning (CDL) [16], is a scalable and flexible Convolutional Neural Network solution

for FPGAs. The proposed solution it’s an FPGA IP core design tool that scales with the target hardware

enabling real-time and low power application of deep learning networks. CDL accepts the neural network

in TensorFlow or Caffe and takes it through a compression and design space exploration phase to produce

the optimal system verilog accelerator core. Using the automated compression flow, deep neural networks

are quantized down to 8-bit to save power and memory as an attempt to achive the cheapest best perfor-

mance possible. After the user specifies the microchip FPGA platform, the CDL’s design space exploration

algorithm searches through millions of accelerator configurations to find the most suitable design based

on the performance and resource specifications.

Besides the scalability offered, CDL can be easily integrated into an FPGA design. The entire network

is accelerated in hardware and no host or CPU-based application is required to assist the network execu-

tion. The wide-ranging layers support applications using off-the-shelf neural networks such as ResNet for

classification and YOLO or SSD for object detection and pose estimation [16].

Figure 2.27: Core Deep Learning functionalities [16]
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Currently, DNNDK and VITIS AI are the two frameworks most supported by Xilinx, with a DPU-based

acceleration together with extensive integration with tools and libraries optimized to implement neural net-

works models in reprogrammable hardware. In addition to the DNNDK and VITIS AI frameworks supporting

the main layers that constitute a CNN, they also have direct compatibility with several popular CNNs such

as VGG, GoogleNet, ResNet, YOLO, with ready-to-use solutions. However, although the generic DPU-based

acceleration makes the implementation of CNN models on hardware easier and faster, the DPU is not

fully customized for all types of networks and may compromise the hardware architecture performance.

Both frameworks are not entirely free and open-source as user licenses are required to fully utilize the

framework capabilities. Namely in VITIS AI, the integration of the optimizer in the framework requires a

separate license, which may be an obstacle given that the optimizer has a fundamental role in the CNN

model migration to hardware.

ChaiDNN, also developed by Xilinx, provides support for a wide range of layers and is an open-source

framework, however, it lost support from developers as the updates ended in 2018. The HADDOC2 which

is open-source as well, generates an accelerator in RTL and the hardware description language used is

VHDL, which facilitates the understanding of the framework’s operation and how to use it. However, the

layers supported in HADDOC2 are limited, not being a viable solution in the hardware implementation

of more complex models. CDL is the product of a scalable framework that offers the opportunity to

stipulate the desired performance and platform specifications allowing computationally expensive CNNs

to be moved to hardware. CDL supports several licensing models from single-use applications to unlimited

use subscription for a limited term, and even full technology transfer with full access to source code training.
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Framework HADDOC2
[11]

DNN-
WEAVER

[12]

Hls4ml
[13]

CHaiDNN
[14]

VITIS AI
[15]

CDL
[16]

Interface Caffe Caffe Tensorflow
and

PyTorch

Caffe Caffe,
Tensor-
flow and
PyTorch

Caffe,
Tensor-
flow

Supported
layers

Conv
Pooling

Act

Conv
Pooling
FC
Act
Norm

Conv
Pooling
FC
Act
Norm

Conv
Pooling
FC
Act
Norm

Conv
Pooling
FC
Act
Norm

Conv
Pooling
FC
Act
Norm
Concat

Compatibility Xilinx and
Intel

Xilinx and
Intel

Xilinx Xilinx Xilinx Xilinx

Design level RTL RTL HLS HLS HLS HLS

Availability Open
Source

Patented Open
Source

Open
Source

Patented Open
Source

Table 2.2: Neural Network accelerator frameworks
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2.6 Conclusions

The state-of-the-art analysis enabled the perception of the current technologies development state

related to the dissertation theme and also serves as a basis for some design and implementation decisions.

This study demonstrates that there are no academic studies that aim to present fully flexible solutions to

implement CNNs on Edge Devices, such as FPGAs. From the deep learning-based model analysis, it was

possible to identify that the convolution is the most common operation, and it can be implemented at

any stage of the respective model. As an example, in PointPillars 2.13, despite the different stages of

processing, the convolution operation is used across all of them to process the data.

As 3D object detection models deal with different representations of the point cloud, it was verified that

3D models work on a large portion of irrelevant data collected by 3D sensors [49, 50]. The study of sparse

convolutions allowed us to realize their potential on sparse data processing. Although dense convolutions

continue to be widely adopted for perception-type tasks as proved throughout the deep learning-based

model analysis [26], this type of convolutions appears as a good option for the integration with a 3D data

processing solution.

Regarding the study of CNN hardware accelerator frameworks, it was possible to understand the ad-

vanced development state of frameworks such as Vitis AI. Extensive integration with deep learning tools

and a large set of functionalities makes the presented frameworks a complete solution for deploying CNNs

in hardware. Along with the advantages, some disadvantages can also be recognized as the form of their

configuration-wise limitations and also restrict access to specific functionalities. Although a framework

is very useful for the quick hardware implementation of neural networks, it is convenient to develop a

completely customizable and open-source convolutional module adaptable to any convolution layer. The

hardware implementation of a convolutional module, which is configurable according to the typical param-

eters of convolution layers, allows building a useful tool to implement any convolutional layer in hardware.

In addition, through module replication, there is the possibility of custom building a complete CNN, without

implementation or configuration restrictions.
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This chapter addresses the choices made to design the system and the reasons that led to these

decisions are together described. Considering the research goal 1.3, described in the Introduction section,

where it is intended to explore the convolution paradigms that leverage the sparse nature of input data

and compare the performance with traditional convolutions, the design phase is divided in two different

sections. First, the design specification of a convolution model is discussed in section 3.2, in which

traditional convolutions are adopted and integrated in an efficient architecture to implement a CNN layer.

Then, the second section 3.3, refers to the design of the Voting block, where the hardware architecture to

support the Voting scheme-based convolution is analyzed.

3.1 Architecture requirements

As mentioned in chapter Introduction, the main objective of this thesis is to implement efficient 2d

convolutions in hardware, optimized for point cloud and adjustable to the 3D model requirements for

object detection and classification. To achieve these objectives, some requirements must be considered.

The specification of the requirements is important to clarify the intended system functionalities, as well

as the restrictions imposed on it. 3D object detection models, as studied in chapter State of the Art, are

characterized by using convolutional neural networks as the tool for the perception task. Convolutional

neural networks are a set of layers where convolution is the main operation, c.f. subsection 2.3.

Considering the analyzed requirements for the system, the architecture design must enable the imple-

mentation of a configurable module. As the module will be instantiated in the Programmable Logic part

of the FPGA platform, the data to be processed by the module must be transferred from the external to

the internal memory so the module can access the data faster and start performing convolutions. The

access to the weights and feature maps is performed through the reading addresses managed by the

controller which is also responsible to allocate the Processing Elements used to perform the operations.

The number of processing elements instantiated will define the parallelism level which should be managed

by the controller according to the suitable resources-consumption.

To design a module that performs 2D convolutions for a hardware implementation, it is relevant to

summarize the main functionalities of the CNN convolutional layers typically found in 3D Object detec-
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tion models as well as the set of requirements that will be used as guideline to build a suitable system

design optimized for a wide range of edge devices and models. Both stride and padding are the most

common parameters associated to the convolution, and they are introduced to change the characteristics

of the operation, as also described in sub-section 2.3. Besides the variants of the base operation, other

convolutional layer parameters can be associated with the input and output data organization. Different

convolutional layers have different numbers and sizes of filters, and the input and output, namely their

size, is also affected by these parameters.

The analysis and design of the module architecture that performs 2D convolutions in hardware must be

aware of the possible parameter values combinations to offer compatibility with the most recent and novel

3D Object detection models found in the literature. With these functional requirements, it is desirable

to build an architecture that serves as a base for the configurable module implementation and, conse-

quently, adaptable to any CNN layer. Once the customization level of the module is specified, it is also

important to analyze the module’s architecture requirements. The hardware deployment of the module is

naturally subject to some restrictions, which must be carefully considered during the architecture analysis

and design. As already mentioned, the target platform imposes certain restrictions to the design and im-

plementation phases, due to resource limitations. Namely, memory limitation requires efficient hardware

design to achieve a good final balance between computational power and resource consumption.

In addition to the convolution as the base operation of a CNN layer, the ReLU and Max Pooling op-

erations are also widely adopted. As the base module architecture, both three operations build up a

configurable module able to replace any convolution layer in hardware. From the figure 3.1, assuming that

each PE output is ordered, the data passes directly through the ReLU block before performing the Max

Pooling operation, when desired. This strategy allows the values to be rectified as they leave the convo-

lution and, as soon as there are enough values, apply the Max Pooling operation. Finally, the module’s

output data is written back into memory to be accessed by the next module.
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Figure 3.1: Simplified overview of the proposed architecture for a hardware accelerator optimized for
convolution operations

3.2 Energy-efficient convolution architecture

CNNs implemented in 3D models process a large amount of data, for instance in the PointPillars

model presented in 2.2.1, the backbone stage may receive a total of 262144 values for each of the 64

channels, depending on the model version. The hardware implementation of a CNN layer raises certain

questions that must be studied to ensure that the target platform can provide the necessary resources for

a specific implementation. Hardware architectures that enable the access or storage of a large volume of

data simultaneously have high resources consumption to support data transfer between the memory and

the processing units. Thus, it is important to analyze an architecture with an efficient mechanism both in

the access and processing of data.

Based on the convolution’s properties and the data access costs for processing, an approach focused

on efficient data management was considered. This approach is based on [59] and has the main objective

of designing a convolutional module architecture that maximizes energy efficiency by reducing redundant

access to on-chip memory. The general architecture consists of multiple PEs that work in parallel. Each

PE contains a multiplier, an adder, and internal memory to manage data reuse.

In [59], different flow schemes of data transfer are evaluated for both loading input values (so-called

load schemes) and storing output values (so-called output store scheme), as well as several connection

structures between PEs. The combinations between the data access scheme and the PEs connection

structure are a critical factor to energy consumption and processing time since it determines the number

of memory accesses and the flexibility to support different parallelism levels. The possible combinations

were then analyzed determine the most energy efficient approach. Three types of data load scheme for

PEs are identified: broadcast, forwarding, and stay. Regarding the output store scheme, three types are

also distinguished: aggregation, migration, and sedimentation.
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According to [59], the architecture that presented the best result in execution time and efficiency is

characterized by loading the input data in broadcast and the weights in stay scheme, as represented in

figure 3.2. The broadcast scheme reads different data every clock cycle and feeds multiple PEs. The

stay scheme loads the weights and keeps them in a PE for the entire convolution operation, reducing the

number of memory accesses by reusing the loaded data.

Figure 3.2: Data memory access scheme, namely broadcast for feature map data and stay for fetching
weight values

Considering the schemes description and insights from [59], the broadcast and stay schemes were

selected for loading the feature map and weight values, respectively. Together with the load schemes, three

different output store schemes were evaluated for the accumulation performed between connected PEs.

According to the authors research, from the set of possible load and output schemes combinations, the

model Broadcast Stay Migration (BSM) was considered the most energy-efficient. The migration scheme

gradually accumulates the partial sums over several clock cycles, where each PE passes the aggregated

partial sum to a neighbouring PE. As presented in figure 3.4, the long arrows that connect the colored

circles extend over two clock cycles, so one shift register is required to hold the partial sum between PEs

of different filter lines. In this particular example, a 2x2 filter and 3x3 input are represented, resulting in a

shift register with a depth equal to one.
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Figure 3.3: Output store scheme

According to the aforementioned load and store types, a convolution dataflow can be derived by pro-

jecting the rescheduled dependence graph. For the 2D convolution, in the example with a kernel of size 2

and a feature map with size 3, the proposed convolution dataflow corresponding to the BSM accelerator

is represented in figure 3.4. The accelerator reuses the input features map in the parallel PEs to avoid

multiple memory accesses. Since the weight parameters stay at fixed positions, one weight register is

assigned to each PE to hold the corresponding weight. As shown in figure 3.3, the products computed in

independent PEs are migrated to neighbouring PEs resulting in the convolution output values.

Figure 3.4: BSM dataflow

Considering the processing unit is composed of a cascade of multiple connected PEs, the BSM can

be easily scalable to other filter sizes [59]. Besides, it is important to highlight that only one input data
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is fetched from memory in each clock, being a great advantage not only due to the complexity of the

hardware but mainly due to the energy consumption. Energy consumption was evaluated using models

with different input-filter sizes ratio, revealing the superiority of BSM in all cases, proving to be promising

in developing an energy-efficient convolutional module.

3.2.1 Processing Element

The PE from the module’s architecture depicted in figure 3.1, is responsible for applying the filter

over the input data, as it is read from memory. The convolution process is built upon multiplication

and addition. The number of operations per convolution vary according to the input and filter size. This

mechanism is also known for the Multiply-Accumulate (MAC) operation, which consists of the product

between two numbers and addition to an accumulator value.

There are two alternatives when it comes to the use of resources in FPGA to implement hardware

multiplications, namely Lookup Tables (LUTs) and DSP slices. The number of DSP blocks and LUTs

available has increased significantly on modern FPGA architectures, requiring an assessment of which

resource is most appropriate to be allocated for a given implementation. Although it is possible to direct

some logic to DSPs or LUTs, the resources themselves are fixed - the FPGA contains a restricted number

of LUTs and DSPs. Implementations of multipliers using LUTs are slow and consume significant amounts

of resources. DSP slices in FPGAs can be used to substitute LUTs to reduce area and increase the

performance of the design.

The embedded DSP blocks in modern FPGAs are highly capable to support a variety of different datap-

ath configurations and have evolved to support a range of applications requiring significant amounts of fast

arithmetic. In addition to all the computational capabilities, DSP blocks support runtime reconfigurability,

which allows a single DSP block to be used as a different computational block in every clock cycle. Pipeline

registers are also embedded in DSP blocks to enhance throughput. Dedicated connections are available

for cascading multiple DSP blocks without using the FPGA fabric. This results in better performance and

saves resources for other uses.

The DSP slice in the UltraScale architecture depicted in figure 3.5 is defined using the DSP48E2

primitive. The DSP48E2 slice consists of a 27-bit pre-adder, 27 x 18 multiplier, and a flexible 48-bit ALU

that serves as a post-adder/subtractor, accumulator, or logic unit. Multiplication is done in two stages:

• The first stage is a multiplication that produces a 45-bit two’s complement result as two partial

products. These partial products are sign-extended to 48 bits in the X and Y multiplexers and
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fed into a four-input adder for final summation. Therefore, when the multiplier is used, the adder

becomes a three-input adder;

• The second stage is processed through an adder/subtractor that accepts four 48-bit two’s comple-

ment operands and produces a 48-bit two’s complement result.

Figure 3.5: DSP48E2 detailed architecture [17]

According to the architecture design described in the previous section, it is necessary to configure

the PE to satisfy the desired data flow, so the convolution is performed as intended. After defining the

processing unit to be used, it is important to adjust the operating mode through the configuration registers

provided, with the main emphasis on INMODE (Input Mode), OPMODE (Operating Mode) and ALUMODE.

The INMODE controls the pre-adder functionality and A, B, and D register bus multiplexers that precedes

the multiplier. The OPMODE control input contains fields for W, X, Y, and Z multiplexer selects providing

a way to dynamically change DSP48E2 functionality from clock cycle to clock cycle. The 4-bit ALUMODE

controls the behavior of the second stage add / sub / logic unit.

The DSP48E2 element is capable of operating with different equations considering the available input

data ports. Since the intended operation is convolution, it is necessary to configure the DSP to multiply

two numbers (the feature map and weight values). Furthermore, since the PEs are connected in a cascade

form, the output of one PE connects to the next PE’s input. Therefore, in addition to the two inputs already

mentioned, the DSPs will have to provide another one that will be added to the multiplication result, so

that the consecutive accumulation and consequent construction of the output feature map are carried out.

With that being said, one valid configuration would be considering port A of DSP for the feature map

data, port B for the weight value, and port C for the accumulation coming from the previous PE. Thus,

with P being the label associated with the output port, the equation implemented in each DSP is:
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• P = A * B + C

The width of each port is: P – 48 bits; A – 30 bits; B – 18 bits; C – 48 bits. Given this configuration

for each DSP, it is possible to build the architecture designed in the previous section. Depending on the

size of the filter, a certain amount of DSP blocks will be allocated, proportional to the number of weights

in the filter, since each DSP is associated with a single weight. Figure 3.6 shows the final architecture with

the integration of DSPs for a 2x2 filter.

Figure 3.6: DSP48E2 usability in the BSM scheme for a 2x2 filter

3.2.2 Max Pooling

The Max Pooling operation presents four values as input, which are then compared to identify the

highest value between them. These values that are compared belong to a specific region to which a max

filter is individually applied. According to the architecture described, the convolution between the filter and

the feature map is performed and, at each clock cycle, the result of the operation can be read. Keeping

in mind that convolution output is ordered by lines, and the max filter is applied to values from different

lines the conclusion is that Max Pooling cannot be applied directly. It is necessary to instantiate several

modules to carry out the operation orderly or spend resources to store values already read until it is time

to apply the max filter to them.

Figure 3.7 describes an example in which the convolution output has a 4x4 size and it is intended

to apply Max Pooling. Since the values that come out of the convolution are sent to the ReLU block, the

reception order in the Max Pooling module is also line by line. Assuming that the max filter is only applied

to a data matrix with even dimensions, then the number of Max Pooling blocks required is equal to half the

dimension of the matrix, as shown in figure 3.7. This strategy allows reusing the resources allocated for

the instantiation of the Max Pooling blocks to be applied to other consecutive regions of the feature map.

57



3.2. Energy-efficient convolution architecture

Another important aspect of this approach is that there is no need to save the values that come out

from the ReLU block in order to finally apply the max filter. Therefore, as the linear rectification of the values

resulting from the convolution is made, the Max Pooling blocks are fed with the corresponding values. As

soon as the last value is sent, the result of the operation can be read and saved in the memory, in the next

clock cycle.

Figure 3.7: Max Pooling mechanism order

3.2.3 BSM architecture parallelism

Energy-efficiency is the focus of the BSM architecture, consequently, it is possible to identify that

execution time is sacrificed. From the data flow diagram 3.4, it can be deduced that the time required

to perform the complete convolution increases proportionally with the increase of input data size. Since

the BSM architecture is able to eliminate redundant data accesses to memory, now it is important to

analyze the necessary adaptations to decrease the execution time. The most common way to do this is to

parallelize operations throughout convolution.

The BSM Architecture is characterized by a cascade of connected PEs, with accumulations being

carried out consecutively over time. This type of mechanism creates a dependency between the data since

the output of one PE is used in the next one to perform multiplication and accumulation simultaneously.

This evidence leads to the conclusion that the solution will not be changing the PEs connection structure

but to take advantage of the architecture modularity to include more PEs. The integration of another set of

cascaded PEs allows parallelization to be introduced as the same filter is applied to several locations of the

feature map at the same time. Another type of parallelization happens when multiple filters are applied to

a given feature map. This type of parallelization is also quite recurrent since CNN layers normally include

multiple filters as well as multiple data input channels to convolve with.
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Figure 3.8: Parallelization strategies

The various mechanisms for parallelizing operations must be carefully analyzed to produce a con-

figurable architecture capable of integrating them. It is intended to design a module adaptable to the

characteristics of a given CNN layer. The objective is also to use the available resources of the target

board to implement the respective layer in hardware and achieve the best execution time results possi-

ble. However, the wide variation in the CNN layer’s input and output data, namely: input feature map

size; input feature map channels; and the number of filters, requires a balanced analysis between the two

parallelization variants described above.

The integration of parallelism in the described BSM architecture implies the use of several PEs to

apply a filter in several regions simultaneously. Due to the dependence on the input data to produce the

output, the input feature map must be carefully distributed by the instantiated PEs and thus eliminate any

flaws in the data dependency. As an example, for the reference of the maximum possible parallelism to

be applied, figure 3.9 illustrates a case with a 6x6 IFM and a 3x3 filter. For this specific example, since

the filter size is 3 and the stride is 1, then each PE processes only 3 lines. Therefore, a total of 4 PEs can

be allocated to obtain the maximum parallelism and consequently the shortest possible processing time,

in which each PE is responsible for producing one line of the 4x4 OFM. While with a single PE the clock

cycles required to complete the convolution would be around 36 (each value fetch at a time), using 4 PEs

the cycles are reduced to 18 (each PE consumes only 3 lines).
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Figure 3.9: BSM architecture parallelism

Applying maximum parallelism in the convolution operation between a given filter and a IFM also

requires the availability of certain resources, namely DSPs, to build each of the PEs. Since the number

of DSPs is equal to the number of weights in a filter, for a filter size of three, each of the processing units

requires 9 DSPs connected in cascade to be able to apply the filter completely. However, as the size of the

matrix increases, the need for processing elements grows proportionally together with the number of DSPs.

In situations where there are not enough resources to obtain the maximum parallelism, it is necessary to

make careful management regarding the level of parallelism and the consumption of resources that result

from it.

Based on the available resources of the target platform, the number of processing units to be allocated

will be calculated and considering the filter size, the IFM lines will be distributed to each PE. For convolutions

with stride > 1, some adjustments are necessary regarding the distribution of lines by PEs, since some

lines are not processed in certain situations. The number of common lines processed by consecutive PEs

is equivalent to Kernel size – Stride. Figure 3.10 illustrates a case where the distribution of the IFM

lines by PEs is carried out to obtain the maximum possible parallelism for a convolution example with

stride=3. Although the size of the filter and the IFM is the same as shown in figure 3.9, for a situation

where the stride is three, there is no need to allocate 4 PEs, since only two are enough to perform the

strided convolution and still obtain the highest index of parallelism. In strided operations with different

values, the amount of data to be processed by each processing unit must be reevaluated following the

same logic described, so no unnecessary consumption of resources occurs.
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Figure 3.10: Convolution parallelism with stride 3

3.2.4 Memory management

The BSM architecture design flow simplifies data access by fetching from memory one data value

each time. With the integration of parallelism in the architecture, data access increases, being necessary

to evaluate the control and organization of input and output data. It is important to study the best solution

to store the data that will be processed and the data that have already been processed in order to build a

solution with low cost of both resources and time. The growing access to memory data is indeed a limiting

factor since it may require substantially higher consumption of both logic and memory itself.

The main objective related to this topic is to have a solution that allows fast access to the desired data

without compromising its execution time. For this, Block Rams were considered since they are suitable for

storing large amounts of data while still allowing quick data access. Another advantage that comes from

the use of block rams is the reduction of logical elements such as LUTs, which would not be verified with

the use of registers to manage all the data. The use of Block Rams allows instantiating Ram with different

types of data transfer ports, which also contributes to the simultaneous data access strategy inherent to

the parallelism mechanism described in the previous section. Although the use of Block Ram is beneficial,

one of the limitations is the number of ports that each block can provide. In this case, with the use of

Block Rams available for Xilinx FPGAs, the maximum number of output ports is two.

With the limitation of simultaneous data access for processing, there is a need to use several Block

Rams. With this mechanism the data will be distributed so it will be possible to send input data to all

processing units simultaneously. The content and size of each Block Ram that must be allocated to feed

the processing units depends on the IFM lines assigned to each PE. The smaller the number of PEs to

process a given IFM, the lower the number of Block Rams and consequently the greater the size of each
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of them. Figure 3.11 represents the organization of the input memory and the association to each of the

three processing units through an example of a filter with size three, stride two and FM of size seven. Since

each Block Ram only has capacity for two output ports, four are needed to send data to each of the PEs

simultaneously.

Figure 3.11: IFM memory distribution

It is important to note that, for this example, the last Block Ram is smaller than the other three. This

is justified by the fact that it is important to maintain the homogeneity concerning the data distribution for

all the processing units, in order to decrease the hardware complexity. One of the main aspects is that

each PE starts reading the input data from the zero address of the associated Block Ram, that is, the read

address of all Block Rams is exactly the same and therefore shared among them. After each of the PEs

has processed the first two lines, they must fetch the next data from the consecutive Block Ram, thus

ensuring that each memory block is only being accessed by one processing unit. Figure 3.12 illustrates

the timing diagram that represents the memory access management for data processing associated with

the example shown in figure 3.11. From the diagram 3.12, it is possible to deduce that the strategy used

to distribute the data evenly across the memories makes the synchronization simpler to be implemented

across the processing units. Considering that the fetch of each input value requires one clock cycle, the

time representation in the diagram is translated to IFM width, which represents the fetch of an entire line

of values.
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Figure 3.12: Memory access timing diagram

3.2.5 Resources aware adaptable architecture

The layers of a CNN usually involve a large volume of operations via a large amount of data that

needs to be processed. The design of an architecture capable of satisfying the requirements of a given

layer cannot be carried out without considering the resources available and necessary resources for its

implementation. Besides, other questions such as the level of parallelism or energy consumption appear

as important aspects to build the best possible solution according to the existing resources. Since the

module is configurable based on the characteristics of a particular convolutional layer, it must be not only

adaptable to the parameters related to it, but also to the selected board. Given that a large amount of data

requires a lot of processing, two of the most critical resources present on the target platform are the DSPs

that constitute each PE and the Ram in which the data will be stored. As the module’s architecture is build

upon the available resources, it must adapt itself to the platform’s limitations, for example, by reducing

the processing throughput.

The number of DSPs available is related to the number of processing units that can be instantiated

within a convolutional module, which consequently translates into the level of parallelism that is possible

to achieve. Regarding the memory, it is used to store both the weights and IFM values that are being

processed at a given time as well as the result of processing it. For each filter that is applied over an IFM,

a certain amount of memory is required to send the output, meaning the amount of available memory will

determine how many filters can be applied simultaneously to the input data. An architecture that adapts

to the circumstances imposed by the target platform limitations must first be aware of them and later

make certain decisions regarding processing based on this information. For this, the available resources

for the implementation of a convolutional layer should be specified in the form of the number of DSPs

and the amount of memory. From the specification of these parameters, the convolutional module will

adjust its base architecture to optimize the operations. Figure 3.13 depicts the resultant architecture for a
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scenario where the user specifies the values 54 for the number of DSPs and 4 for the memory available.

In addition, the convolutional layer is specified as having four filter of size 3x3.

Although other parameters need to be specified in the module’s configuration, the three mentioned

above have a direct impact on the parallelism level and the number of filters applied simultaneously.

Assuming a filter of size 3 and 54 DSPs available and since each PE requires 9 DSPs, there are sufficient

resources to instantiate a total of 6 PEs. Regarding the memory to store the data, of the total 4 Mbits

available 2 Mbits are needed to store an IFM together with two filters and another 2 Mbits for two OFM.

The input feature map data distribution follows the same logic shown in figure 3.11. Although there are a

total of four filters to be applied to the IFM, only two can be applied simultaneously since there is no more

additional memory to store another OFM. With a total of six PEs and two filters to be applied at the same

time, each convolution block can allocate three PEs that will later be reused in the following iterations with

the other two filters.

Figure 3.13: Convolutional block memory management

According to the architecture illustrated in figure 3.13, the IFMs are processed one at a time, therefore,

some iterations will be carried out to complete all the required processing. The available memory for the

convolution results allows only two OFMs to be stored, meaning, initially the first two filters must be applied

in all IFMs to completely build the first two OFMs. After iterating through all three IFMs, the process should

be repeated with the remaining two filters, reusing the existing PEs in each Convolution Block as well as

the output memories. At the end of each iteration, the data relating to the two OFMs must be sent to

external memory so the memories can be reused to store new data without the need to allocate more

memory. The same technique applies to the memory for the IFM, that is, as soon as the IFM is processed,

the memory is reused to store the next IFM and thus save more memory. Figure 3.14 represents the order

flow according to the iterations associated with the previous example shown in figure 3.13. Within each
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iteration, there are sub-iterations where new IFMs are processed, and so, between sub-iterations, the input

memory must be fulfilled with the next IFM. Between the two iterations both OFM must be read from the

output memory as it will be overwritten with the new values of the next iteration and also, the first IFM

must be sent back to the input memory together with the two following filters.

Figure 3.14: Flow of processing iterations
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3.3 Voting scheme-based convolution architecture

Traditional convolutions present themselves as a good solution for dense data processing, but data with

sparse characteristics make these same convolutions inefficient and inappropriate. On the other hand,

the voting-scheme based convolution, introduced, and discussed in sub-section 2.4.3, is a type of sparse

convolution useful for processing sparse data. One of the best-known sparse data is the LiDAR data, i.e.

point cloud, where its characteristics favor the use of appropriate sparse mechanisms for processing the

data efficiently, as discussed in chapter State of the Art. After describing the design of the convolutional

module using traditional convolutions, the hardware design of the Voting block follows as a more efficient

alternative for processing sparse data with a large spatial dimension.

Although both types of convolutions are mathematically equivalent, the Voting scheme-based convo-

lution presents certain requirements and characteristics that must be reflected in the block architecture.

Similar to the convolutional module presented in the previous section, the Voting block has a controller

but only one processing unit. The controller is responsible for coordinating the reading of input data and

writing of output data in memory, so all the data flow that goes through the Processing Unit is regulated

by it. The Processing Unit is the operational unit allocated to carry out all operations involved in the Voting

convolution.

Since the Voting block is responsible for performing convolutions, it receives data related to the Input

Feature Map and Weights stored in memory. Along with this data, the positions of the values to be pro-

cessed must also be accessible for reading as it is one of the Voting block’s requirements. This information

allows the module to operate correctly and efficiently. The reference to the values to process is one of

the particularities of the Voting mechanism, crucial to inform the block which input values are relevant

to be read from memory and processed later. Without these references, the Voting block would never be

appropriate for processing any type of data as it would require an intensive previous search of which values

should be processed or discarded. This process of searching relevant values over a large amount of data

would remove all the effectiveness of Voting, making it more efficient to adopt traditional convolutions in

these situations. Moreover, the Voting mechanism is also inappropriate to point clouds with low level of

sparsity as will be further analyzed in chapter Tests and results.

Figure 3.15 illustrates the base architecture of the Voting block, highlighting the communication with

memory outside the Voting block. Within the block two functional units are distinguished, the Control Unit

and the Processing Unit, which are responsible to manage all the data flow and the operations to be made.

As will be further detailed, the Processing Unit was designed to perform two operations simultaneously.

66



Chapter 3. System Design

This operation mode is supported by a selector, which allows the use of the OFM memory’s second port

either for enabling the double write operation or for reading data. When the Control Unit sets the second

port for the read operation, the selector works as a direct wire to feed the multiplexer. The second input

port of the multiplexer is connected to the Control Unit, which is in charge of evaluating for each iteration if

the data required for processing is saved in the double FIFO. As will also be described later, the FIFO helps

to optimize the processing of input values with data dependency by reducing the communication with the

output memory.

Figure 3.15: Voting block architecture

3.3.1 Four-stage sequential convolution

From the example shown in figure 2.20 with a size three filter, for each input value, nine multiplications

must be performed between the input and the Voting weights. The result of each of the multiplications

must be added to the value already stored in the corresponding output position. The mechanism is detailed

in figure 3.16, which presents a simple example of how voting scheme-based convolution works. Voting

convolution receives as inputs the IFM value to be processed, the filter and the values that are stored in the
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output memory before the convolution is performed. After all the data read, operations can be performed,

and the result must be written back into the output memory. According to the illustrated mechanism, the

Voting block’s Processing Unit can then be represented as a set of DSPs, proportional to the filter size

used, where multiplications and additions are performed simultaneously. For the example illustrated in

figure 3.16, the input is a 6x6 FM with only one non-null value and the convolution operation is performed

with stride 1. Assuming a filter size of 3x3, nine DSPs would be responsible for multiplying the input value

by one of the Voting weights and also perform a sum with the value coming from the output memory.

Thereby, each one of the DSPs will have its weight and partial sum value specifically associated, however,

they all share the same input value where the convolution will be applied.

Figure 3.16: Voting convolution mechanism

Considering the architecture presented in figure 3.16, the convolution can be described as a four-stage

methodology. The process starts with the fetch of the input non-null value using the values references to

be processed as represented in 3.15. From the value reference, it is possible to read the exact position in
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the input memory. This is followed by the fetch of the partial output values used in the sum operation after

the result of the multiplications are calculated. In the next stage, the multiplication and addition operations

are carried out inside the block’s Processing Unit using all the data previously collected from the memory.

As the last stage, the output from each DSP is stored in the output memory.

The process can be distinguished into the four phases described previously, both represented in figure

3.17. The multiplication and addition operations are performed simultaneously as all necessary data has

already been read from memory during the two initial stages. Regarding the memory read and write

operations, these are carried out sequentially and individually due to the limitation of the memory data

access ports.

Figure 3.17: Four stage sequential voting convolution operation

From the analysis of the stages involved in the convolution, an important aspect to be noticed is the

time consumption of the second and fourth stages, corresponding to the read and write operations of data

from/to memory. Using the cycles shown at the bottom of figure 3.17 as a reference, the stages together

consume 18 of the 20 total cycles, corresponding to 90% of the time.

The two stages mentioned are distinguished by the type of operation, read, and write, nonetheless

both operate on the same memory. This suggests the integration of efficient solutions in terms of memory

type to store the data involved in the convolution. With the design of the Voting block for a hardware

implementation, Block Random Access Memory (BRAM) emerge as a viable solution for storing data.

BRAMs offer different types of fast-access and low-power consumption memory which is fundamental to

mechanisms that depend on intensive memory access to fully operate.
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3.3.2 Pipeline-based single computing

According to Voting requirements, read and write operations to the same memory are required for

each input value to be processed. One of the solutions that allow simultaneous read and write in the same

memory is the Dual Port BRAM. This memory block is composed of two ports responsible for reading

and writing, respectively. This feature allows evolving from the 4-stage sequential processing, illustrated

in 3.17, to pipeline processing, shown in figure 3.18.

Figure 3.18: Pipeline-based voting convolution

Comparing the two strategies reveals a notable advantage in the pipelined processing in terms of the

convolution’s execution time. With this mechanism, the input value to be processed and the first partial

output value are read, followed by a pipeline execution until the last filter value is applied to the input

data. With the pipeline mechanism, the cycles needed to complete a convolution are reduced to 12, which

corresponds to a decrease of 60% compared to the sequential mechanism.

Pipeline-based voting convolution reveals yet another important aspect, as only one calculation is

performed per cycle. According to the architecture presented in figure 3.18, the number of possible multi-

plications to be simultaneously performed corresponds to the kernel size used in the convolution. Thus, for

the illustrated example 3.16, nine DSPs would be allocated to complete all calculations in just one cycle,

translated by the third stage of diagram 3.17. With the pipelined approach, only one calculation is per-

formed each cycle, thereby there is no need to allocate resources to execute more than one multiplication

and sum.

As represented in figure 3.19, the processing unit only has a logic element that implements the generic

equation for any input value, weight, and partial output value. The Voting block processing unit is then

capable of performing all the multiplication and addition operations required in a convolution without
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additional resources. In each cycle during the pipelined processing, the Processing Unit receives new

input values and new results are computed.

Figure 3.19: Voting block Process Unit

All data flow that enters and leaves the logic unit and the necessary synchronism between reading

and writing data in memory is regulated by the Control Unit in the Voting block. The controller is also

responsible for managing the operation’s order within each convolution and consequently the order of all

convolutions under the input data. This entire process can be identified from a loop, as shown in the

figure 3.20. The beginning of each convolution starts with reading the IFM position where the value to be

processed is. After reading the position, the respective value is read from memory and then sent to the

Processing Unit.

In each of the operations performed within the processing unit, a weight value is required to multiply

by the input, as represented in 3.19. To prevent kernel values from being repeatedly read from memory

whenever a new convolution starts, they are initially read from memory and stored in an internal buffer.

This is a viable solution because it is a reduced amount of data and also allows quick access without the

need to communicate with the memory outside the block in each iteration.

As already illustrated by figure 3.18, for each input value the corresponding values in the output

memory are also read. After all values read and the convolution complete, the position of the next input

value must be read and the process repeats. After applying the convolution over the last input value,

the process ends, as the filter was applied over the entire input data. The diagram shown in figure 3.20

describes the entire process detailed above. It should be noted that the Processing Unit is limited to

carry out the operations that follow the equation presented in 3.19, while the Control Unit manages the

communication with the memories.
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Figure 3.20: Voting convolution iteration loop

The constant update of the write and read addresses in the output memory is another of the Control

Unit tasks. In the example shown in figure 3.16 for a size three filter, the Voting convolution needs the nine

values present in the output memory to perform the convolution. Each of these memory addresses must

be calculated individually on each iteration. The output memory address calculation follows a specific logic

and depends on the memory address of the input value being processed at the moment. Following the

example shown in 3.16, it can be deduced that the coordinates of the output values follow the dependency

logic represented in figure 3.21. Whenever a new input value is processed, new positions of the output

values must be calculated in each iteration based on the position of the input value. Naturally, for different

kernel sizes, more or fewer values must be read from the output memory and therefore new positions

need to be calculated to access them.
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Figure 3.21: Coordinate’s dependency

3.3.3 Pipeline-based double computing

With the hardware design of the Voting block, one of the main focuses is efficient implementation taking

the maximum advantage of the sparse characteristic of the data to achieve the best possible performance.

Sparse data is regularly associated with point clouds or their projections for 2D representations. One

example is pseudo-images, used in 3D object detection models, such as PointPillars [5]. When objects

are detected in the scene, clusters of relevant points can be found after the LiDAR sensor scan. This

feature can then be analyzed and exploited to process spatially close points more efficiently.

The processing of two consecutively positioned non-null values in the input memory share certain

positions in the output memory to complete the convolution. An example of it is shown in figure 3.22.

For the first convolution, the Z0-Z8 positions are read from the output memory and after completing the

convolution, the P0-P8 values are written in the same positions. With the processing of D1, some output

memory positions are shared with those read for D0 processing. Namely, the positions filled with the values

P1, P2, P4, P5, P7 and P8. These positions correspond simultaneously to the output of D0 processing

and to the input of D1 processing.
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Figure 3.22: Data dependency on spatially close values

Although the Voting block processes each input value individually, some techniques can be adopted

to decrease the processing time and improve the block performance. In figure 3.22 is an example of

two spatially close values that are processed consecutively. In this scenario, part of the D0 processing

output matches some of the D1 processing input. Given this scenario, there is a possibility of leverage the

data dependency and share data directly between different iterations. This sharing can be done through

temporary storage inside the block of the D0 processing output until the D1 processing starts. This

mechanism gives the possibility of evaluating, in the current iteration, if there is any data dependency. In

the case of data dependency, part of the processing data is already inside the block so there is no need

to communicate with the memory outside the block to read that data.

The advantage of storing the processing output of each input value can be analyzed from figure 3.23.

Unlike what happens in scheme 3.22, data dependency is leveraged to accelerate the current pipeline.

With the necessary weights and partial output values already stored within the block to perform the cal-

culations, they can be parallelized in the Processing Unit. In the example shown in 3.23, although six

values are reused from the last convolution and the weight values are all available, only two calculations

are performed simultaneously. The number of operations performed at the same time is regulated by the

memory ports limitation, which only allows two memory operations at once. For True Dual Port BRAMs,

the usability of the ports can vary between: write + write; read + read or write + read. In practice, the six
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calculations could be parallelized inside the Processing Unit, however, only two values could be stored in

the output memory at a time, which makes it useless to parallelize more than two calculations.

With the parallelization of two calculations, the pipeline format is modified, and the optimization is

verified as the two available output memory ports are both used to write already processed values. This

mechanism is not only logically correct but also improves pipelined processing performance. In the detailed

example, it is possible to obtain a reduction of three cycles compared to the one shown in 3.22. Output

values stored temporarily at the end of each pipeline are replaced each time a new input value is completely

processed. This mechanism does not consume large amounts of memory, given the constant reuse of the

buffer within the block. On the other hand, for a large sparse dataset with many clusters, this technique

can lead to notable improvements in performance.

Figure 3.23: Convolution shift

Given the possibility of increasing the throughput of the processing pipeline, there is a need to adapt

the Processing Unit internally. According to the design shown in 3.19, a single processing element would

be used within the unit. This element would be responsible for implementing the highlighted equation to

fulfil the block computation rate represented in figure 3.20.

With the integration of the technique illustrated in figure 3.23, in certain pipeline iterations, two calcula-

tions should be performed at the same time. Then, the Processing Unit’s functionalities must be extended

to be able to perform twice the operations presented in 3.23. Following the same approach demonstrated

in 3.6 and 3.16, the Voting Block Processing Unit is now composed of two DSPs. Figure 3.24 represents

the internal organization of the block’s Processing Unit, consisting of two DSP’s. Each one is designed to

perform a multiplication and addition operation, doubling the execution capacity of the block and fulfilling

the requirements to integrate the technique show in figure 3.23.
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Figure 3.24: Processing Unit design architecture

With the dual computation unit, it is possible to take advantage of the data dependency that occurs

in situations as exemplified in 3.23. The second DSP instantiated in the Processing Unit serves as a

computation assistant whenever parallelism is viable, as described in figure 3.23. As soon as the data

stored in the temporary output buffer can be reused in the current pipeline, the Control Unit must assign

the data over the two DSP’s and get all the processing power simultaneously. In addition, the Control Unit

must disable the read + write operation and enable the double write operation on the output BRAM. Thus,

the results from the Processing Unit can be immediately stored in the output memory without negatively

affecting the DSP’s computation rate.

The scheme presented in 3.25 refers to the processing of the D1 value, relative to diagram 3.23.

Through the computation iterations of the Processing Unit, it is possible to observe that in the first three

iterations only DSP0 is used to perform the calculations. As mentioned before, in the first iterations there

is no advantage in using the two DSPs to perform the calculations because there is only one port available

for writing values into the output memory as the second is being used to read the Z9, Z10 and Z11 values.

During the last three iterations, no value needs to be read from memory since the values are already

stored in the auxiliary buffer within the Voting block as the result of the D0 processing. After the Control Unit

detects the data dependency using the input values coordinates, activates the two computation elements,

with the base and auxiliary DSP both operating in parallel as illustrated in 3.25.
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Figure 3.25: Processing Unit iterations example

3.3.4 Weight-based optimization

According to the specificity of Voting scheme-based convolution, some optimizations can be performed

when the data to be processed assumes certain characteristics. One of the optimizations already detailed

is related to the data dependency existing in the processing of spatially close data in the IFM. This situation

favours, evenmore, the use of the Voting mechanism since with the technique described in 3.23 it becomes

possible to reduce the processing time of the input values by sharing data between different iterations.

In addition to the characteristics of the input data, certain particularities of the filters can also bring

opportunities to optimize the pipeline processing. The values assumed by the filter weights depend on the

training phase and the model itself. However, weights with null values are a possible situation and even

quite recurrent when integrated with optimization techniques such as pruning and quantization, as will be

further shown in chapter Tests and results.

Regarding the Voting mechanism, there is the possibility of taking advantage of such scenarios when

null weights are present in the filters to increase the performance of the pipeline. According to the base

equation presented in figure 3.19, when the weight value is null, then it is verified: P = Z. Z is the value

read from the output memory at position (x, y), and P the value that will be written in the output memory at

the same (x, y) position. This means that the value stored in that position before processing a given input

value will be the same after the process finishes. Given these circumstances, the multiplication of D by 0

can be ignored and the pipeline jumps to the next calculation. The Control Unit of the block should identify

these occurrences and remove from the pipeline the calculation execution associated with the zero-weight

value.
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Figure 3.26 shows the procedure that should be assumed when there are null weights in the kernel.

Note that by ignoring the two unnecessary calculations, in this specific situation the pipeline can be finished

two cycles earlier. This technique is especially advantageous when a filter containing null weights is applied

over a large amount of input data since many unnecessary calculations are discarded and the execution

time is proportionally reduced.

Figure 3.26: Null weights optimization

3.3.5 Output references generation

The relevant information can be associated with the values from the feature map that are not null,

as a null value is considered meaningless information for perception-type tasks. The number of non-null

values in the feature maps tend to increase as more processing layers are applied. Figure 3.16 shows a

simple example where the input only has one value to be processed, but the output result has nine non-null

values after the filter has been applied. In the same way, CNNs decrease the sparsity as data flows to

deeper layers in the network. However, in certain situations, sparsity levels can be high across multiple

layers favouring the use of sparse convolutions in more than just one layer. In practical cases, the Voting

block would be replicated to use the voting scheme-based convolution in the desired layers. The network

architecture would then be presented with several linked Voting blocks as the output of one block would

correspond to the input of the next block. While the instantiation of several Voting blocks can bring great
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improvements in the efficiency of sparse data processing, it is important to note that the output of one

block must satisfy the input requirements of the next one.

One of the most critical requirements is the position where the non-null values are located. To build

consecutive convolution layers using the Voting block, each one must register the non-null value positions

at the output. It is essential to extend the block’s functionalities to register each output value together with

the corresponding position stored in memory. Furthermore, the number of values stored in the output

memory must be counted to inform the next block of how many iterations are needed to complete the

convolution. With this information, each block will have all the necessary data to perform voting scheme-

based convolutions.

Figure 3.27 presents an example case of processing two values, D0 and D1, accessed from the

positions stored in the input reference memory. The scheme helps to describe the order of values that

are written to output memory along with their corresponding positions. Simultaneously to the writing of

the values in the output memory, their positions are written in the output reference memory. However, the

two input values are spatially close, meaning that some output positions will be shared as described in the

previous example 3.22. With the sharing of positions, some will be repeated and therefore should not be

rewritten in memory. References to the repeated positions in memory cannot happen as it compromises

the processing of the next Voting block. As a result, the same position will be read more than once which

leads to wasted time. For the example, in figure 3.27, positions 5, 6, 9 and 10 are written twice to the

output memory, however, the second time, the reference to those positions do not need to be recorded.

The management of the position references written in memory uses a FIFO. Each time a new value

is written to the output memory, it is checked if its position is already present in the FIFO. The verification

helps to identify if that position has recently been written to memory. If the position is already stored in

the FIFO then it will not be written in memory, however, if it is not stored in the FIFO it will be written in

memory and also in the FIFO itself. Although this technique is viable to prevent references from being

repeated in memory, there must be an efficient management of the FIFO size for each specific situation.

To ensure that no values are repeated in FIFO, the size should match the filter size times the OFM size.

Despite the allocation of more memory for the FIFO is not logically incorrect, it increases the resources

and time costs to search and store the values.
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Figure 3.27: Voting Block output references generation

3.3.6 Data optimization

Convolutional neural networks for sparse data processing usually have as input a representation of

the data captured by a LiDAR sensor. This data can later be used by models for perception tasks in 3D

space. In some applications, the 3D models assigned to these tasks are executed on platforms with great

computational power, such as GPUs. Using GPUs, the models have access to memory and processing

cells capable of delivering a high rate of operations between data with high resolution and still achieving

good results in inference performance. However, in resource-limited, high-performance, and low-latency

scenarios, data quantization is required to compress the model according to the memory available in the

target board and to enhance power efficiency and performance in terms of inference time.

The integration of the Voting block in a CNN for sparse data processing will be confronted with the

resolution of the data in the network. In situations where the network is running on a platform with low

resource limitations, the data is usually a 32-bit floating point. To enable the hardware to process the data

and reduce hardware design complexity, data quantization is adopted. Voting block input data needs to be

quantized before participating in the Processing Unit internal operations. Through quantization, the values

are transformed to fixed-point and assume a certain number of bits for the integer and fractional parts.

The quantization level can be customized individually for the weights and the feature map values and it

is also up to the user to decide how many bits will be allocated to each part of the values in fixed-point

format.

According to the configuration made by the user, the Voting block controller must configure the pro-
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cessing unit, so the DSPs operate correctly according to the input values format. For the calculations, the

values must first be converted from floating-point to fixed-point. The Intellectual Property (IP) adopted for

the conversion is the Xilinx Floating-Point Operator IP core which enables floating-point arithmetic on hard-

ware and can be customized for operation, word length, latency, and interface. After the DSPs perform the

calculations, the result also comes out in the fixed-point format. However, if the values written to memory

are in floating-point format, then before the output value is sent to the output memory it must be previously

converted to floating-point. Given the extensive functionalities of the Xilinx Floating-Point Operator IP, it is

also used for dequantization.

Figure 3.28 illustrates where the Xilinx Floating-Point Operator IP is connected within the Voting block

to perform the quantization of feature map values, weights, and output partial values. As they are three

distinct values, three IPs are instantiated and connected to the inputs of the two DSPs. Counting with the

dequantization of the output values from the DSPs, a total of seven Floating-Point Operator IPs are used

inside the processing unit as both DSPs share the same input value D.

Figure 3.28: Processing Unit I/O quantization

For each of the DSPs within the processing unit, the inputs have different widths. For the three inputs

used, A, B and C, the corresponding ports’ widths are 30, 18 and 48 respectively. From each input port, a

fixed-point format value is used for the multiplication and addition operations. However, for the operations

to be done correctly, first, it is necessary to align the data in the input ports. Alignment is achieved

by positioning the decimal point at the same position in both the feature map and weight values. This

mechanism is important as a multiplication between two values with decimal points in different positions

may generate incorrect results. From figure 3.29, it is noticeable the same fraction width for A and B

ports.

As a second operation, the multiplication result is added to the C port value to satisfy the equation

3.19. The multiplication result between two fixed-point values is a number twice as wide in the fractional

part. Again, to align the position of the decimal point, the fractional part of port C value must have twice
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the width of A and B ports, so it can be added with the multiplication result correctly. Figure 3.29 illustrates

the rules that should be followed regarding the decimal point alignment, for a generic situation. Depending

on the quantization level specified by the user, one must take care to correctly configure the quantization

and dequantization IPs, so the values are converted to the desired formats.

Figure 3.29: DSP input data alignment

3.3.7 User configuration

The hardware design of the Voting block allows the construction of a tool to perform voting scheme-

based convolution over sparse data. The convolution mechanism requires the specification of certain

parameters that help define the characteristics and type of convolution to be applied. Considering the

configuration requirements, the Voting block presents itself as being customizable according to the typical

parameters of convolutions. As such, a set of variables are available to the user which offers a certain

customization level for the data processing. Although the level of customization of the block allows only

a few modifications to be implemented on top of the voting scheme-based convolution mechanism, the

parameter values are important. The non-specification of a single parameter compromises the correct

functioning of the block, and the entire processing can become logically incorrect, although default values

are set for each one.

Initially, the user should specify both the filter and the Input Feature Map sizes used in the convolution.

According to the Voting requirements, the filter must have an odd size so that a central position is used

as a reference to apply the filter in a certain region. Along with these parameters, the user must also

specify whether the convolution has padding plus the stride value. Padding and stride are two common

parameters in convolutions. Nonetheless, the values typically used are shown in figure 3.30, covering the

vast majority of the desired requirements for a convolution.

One of the most important requirements of Voting is the position of non-null values in the input feature

map. For all positions to be read and their values processed consequently, it is convenient to inform

the Voting block how many values there are in the input to be processed. The user must then specify
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the number of values that need to be read from the input memory so the block can recognize when the

convolution is finished.

The Voting block hardware development proposed will be validated by replacing one of the layers of a

3D object detection model, which in this case is PointPillars. In software, the model operates with a 32-bit

floating-point resolution, both for the feature map data and weights. To perform hardware operations, these

values need to be quantized. With the feature map and weights quantization, these values are converted

to a fixed-point with a given resolution. There are different levels of quantization, and the user is able to

choose which one is intended by specifying how many bits must be allocated for the integer and fractional

parts individually.

Figure 3.30: Voting Block configuration Use Cases
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This chapter presents the hardware implementations of the dense/traditional convolution module 4.1

and the voting block 4.2. The implementation details are addressed according to the design architecture

discussed and proposed in sections 3.2 and 3.3, respectively.

4.1 Convolution-based hardware accelerator

During the task of implementing an hardware accelerator optimized to perform convolution operations,

all the decisions raised in section 3.2 were carefully considered. Therefore, this implementation has

as baseline the architecture represented in figure 3.13, which comprises several sub-modules with very

specific tasks. To enable all the functionalities to be integrated into the system, each module needs to

interface with other sub-modules. The interface can be represented as a communication channel where a

given system component can receive and transmit relevant information. In order to provide the necessary

interoperability between these sub-modules for successful execution of convolution operations, these sub-

modules were integrated into a module called top module. The top module has the responsibility to

communicate with resources external to the module in order to access all data needed to operate correctly,

as well as distribute this data across the sub-modules according to the data flow discussed in section 3.2.

The interface of the top module is detailed in code snippet 4.1. The parameters seen on the module

definition reflect the configuration level provided to the user together with the information needed to inform

the module about the resources’ limitations. From the values specified for each parameter, the module

is able to calculate how many filters will be simultaneously applied to the input feature map as well as

the appropriate level of parallelism, as discussed in sub-section 3.2.5. The calculations help to define the

interface of the top module as the ports’ width depend both on the number of filters used for each iteration

and the number of processing elements allocated for each filter. For example, the i_ifm port’s width

depends on the pe_filter parameter since, for each processing element used to perform a convolution, a

value must be fetched from the input feature map memory each clock cycle. As a consequence of the input

feature map values fetched at the same time, the o_ifm_r_addr port’s width is also adapted to support

a read address for each processing element. The same logic applies to the i_ofm port, since for each

PE allocated to perform a convolution an output feature map value is needed for the addition operation.
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Following the same criteria, both o_ofm_r_addr and o_ofm_w_addr ports’ width are proportional to the

number of PEs allocated, and each read and write address is compacted in the same port.

Besides the ports used to transfer the feature map data and the addresses for the memory access,

signals are used to synchronize the convolutional module’s controller and the data management outside

the module. For a resource-constrained platform, on-chip memory space may not be sufficient to store all

the input data. The implemented strategy consists of continuously manage the input/output data fetching

process by transferring the amount of data possible for the top module’s block rams. The controller uses

the signal o_load_ifm to inform when the next input feature map should be transferred to the block rams,

and the i_ready indicates when a new iteration can start.

1 `include "global.v"
2

3 module convolutional_module#(
4 parameter KERNEL_SIZE = `KERNEL_SIZE ,
5 parameter IFM_SIZE = `IFM_SIZE ,
6 parameter PADDING = `PADDING ,
7 parameter STRIDE = `STRIDE,
8 parameter MAXPOOL = `MAXPOOL ,
9 parameter IFM_CH = `IN_FM_CH ,
10 parameter OFM_CH = `OUT_FM_CH ,
11 parameter DSP_AVAILABLE = `DSP_AVAILABLE ,
12 parameter MEM_AVAILABLE = `MEM_AVAILABLE ,
13

14 // output feature map size

15 localparam ofm_size = (((IFM_SIZE - KERNEL_SIZE + 2 * PADDING) / STRIDE) + 1),
16 // memory consumed by each filter

17 localparam mem_filter = ofm_size**2 * `D_WIDTH,
18 // number of parallel filters possible

19 localparam parallel_filters = ((MEM_AVAILABLE / mem_filter) > OFM_CH) ? OFM_CH
20 : MEM_AVAILABLE / mem_filter ,
21 // number of PEs available

22 localparam pe_available = DSP_AVAILABLE / (KERNEL_SIZE**2),
23 // number of PEs for each filter

24 localparam pe_filter = pe_available / parallel_filters ,
25 // number of filters ' iterations

26 localparam num_iterations = OFM_CH / parallel_filters ,
27 )(
28 input wire i_clk,
29 input wire i_rst,
30 input wire i_ready,
31 input wire signed [`DSP_PORT_A_WiDTH * pe_filter -1:0] i_ifm,
32 input wire signed [`DSP_PORT_B_WiDTH * parallel_filters -1:0] i_weight ,
33 input wire signed [`DSP_PORT_C_WiDTH * pe_available -1:0] i_ofm,
34
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35 output reg signed [DSP_PORT_P_WiDTH * pe_available -1:0] o_conv_result ,
36 output reg [$clog2(IFM_SIZE**2) * pe_filter :0] o_ifm_r_addr ,
37 output reg [$clog2(KERNEL_SIZE**2) * parallel_filters:0] o_weight_r_addr ,
38 output reg [$clog2(ofm_size**2) * pe_available:0] o_ofm_r_addr ,
39 output reg [$clog2(ofm_size**2) * pe_available:0] o_ofm_w_addr ,
40 output reg o_ofm_w_en ,
41 output reg o_load_ifm ,
42 output reg o_done
43 );

Code Snippet 4.1: Top module interface

4.1.1 Controller

The convolutional module’s development aims to build a configurable tool to implement CNN net-

works in hardware. In a CNN layer, several filters are applied over an input set of data to generate the

output feature map. The input data volume in 2D CNNs are characterized by a certain width and height

and also by a number of channels. When implementing a CNN layer in hardware using the convolutional

module, efficiency and performance are the two most important metrics. Efficient hardware implemen-

tation is convenient to enable the module deployment on platforms with constrained resource and power

consumption, however, performance is also relevant to achieve good execution time results, since CNN’s

target applications are often demanding with regard to inference times. The hardware implementation

of the convolutional module must try to find a good balance between the two metrics since an efficient

solution with little performance or vice versa compromises its use in a real-time application.

With the focus on the functionalities intended for the hardware module, in an ideal scenario, the

filters of a certain layer would be applied simultaneously over all input data. This strategy would allow

the best execution time performance, however, it would imply an excessive consumption of both memory

resources and processing units. The limitations of the target platform are a crucial factor in determining

which performance level is most appropriate and does not compromise the desired level of efficiency. The

module must be aware of the resources that the platform has available and together with the configuration

specified by the user, find the best possible balance.

Keeping in mind that the complete parallelization of all processing within the module is a difficult

scenario, it is important to develop a mechanism that splits the operations into several iterations, as

discussed in sub-section 3.2.5. The division of processing into iterations makes it possible to sequence

the application of filters over the input data, as exemplified in the diagram 3.14. Since memory and

processing units are the most critical resources, they should be used as the main criteria to define how
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many iterations are needed. The processing units used within the convolutional module are the DSPs,

and the amount available restricts how many PEs can be instantiated to perform the convolutions, as

referenced in code snippet 4.1. On the other hand, the amount of memory available affects how many

filters can be applied at the same time to the input data, since for each filter used, memory is needed to

store the convolution result.

The management of the resources consumed by the convolutional module and consequently the

number of iterations in which the processing will be distributed is managed by the controller. Figure 4.1

presents the convolutional module’s state machine, composed of four states, each one representing a

specific processing stage.

Figure 4.1: Convolutional module Finite State Machine

As mentioned before, the resource-limitation makes it impractical to perform all the process at once,

so the state machine is adaptable to execute the same states as often as needed. The process starts in

the IDLE state, where the convolutional block waits for a signal, called ready, to start processing using

the interface ports presented in 4.1. The signal is used not only at the beginning of all the processing but

also between each iteration, as the signal informs that a new input feature map has been loaded to the

on-chip memory. With ready signal equal to one and the iterations not finished, the state machine jumps

to state LOAD WEIGHTS, where the filters’ weights are loaded to the module’s internal registers. The LOAD

WEIGHTS state is the one responsible to recognize which filters will be applied in the current iteration and

for reading all the corresponding weights from the memory.

After all weights are loaded, the PROCESS & STORE state is executed. This state can be highlighted

from the other ones since it is responsible to process all the input data and store the results in the output

memory simultaneously. Depending on the current iteration, several filters can be applied concurrently,

and for each one multiple PEs can be used to perform the convolutions, so it is important to note that, in
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each clock cycle, several output values are processed and need to be stored in the memory at once. It

is without a doubt the state that consumes the most time and it is only left when the convolutions of the

current iteration are completed. As the last value from the input feature map is processed in the PE and

stored in the output memory, the state machine jumps to the last state named DONE. In the last state, no

processing is carried out, however, it is in charge of notifying that the current iteration is completed, and

a new input feature map should be loaded to the on-chip memory for the next iteration. Besides that, at

the end of each iteration, the data stored in the output block rams should be sent to an external memory,

as they will be re-utilised to save the next iteration’s results.

Code snippet 4.2 represents the iterations’ management performed by the controller in the DONE

state. Two registers are used for monitoring the end of each iteration and the corresponding sub-iterations.

The variable r_filter_it represents the filters’ iterations and r_ifm_it the iterations through the input feature

map channels. Each time a set of filters is applied to the input data, one needs to be convolved to all

the input channels, specified with the IFM_CH parameter. When the last IFM channel participates in the

convolution, all the sub-iterations are completed, and the next iteration begins with the first input channel

again. As represented in the example diagram 3.14, the processing ends when the last set of filters are

convolved with the last IFM channel.

1 reg [$clog2(IFM_CH):0] r_ifm_it;
2 reg [$clog2(num_iterations):0] r_filter_it;
3

4 always @(posedge i_clk) begin
5 if(i_rst || r_state == s_idle) begin
6 r_ifm_it <= 0;
7 r_filter_it <= 0;
8 o_load_ifm <= 0;
9 o_done <= 0;
10 end
11 else if(r_state == s_done) begin
12 o_load_ifm <= 1; // load new IFM

13

14 if(r_ifm_it < IFM_CH - 1) begin
15 r_ifm_it <= r_ifm_it + 1; // process next IFM

16 end
17 else begin
18 r_filter_it <= r_filter_it + 1; // apply next set of filters

19 r_ifm_it <= 0; // start from IFM0

20 o_done <= 1; // current iteration finished

21 end
22 end
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23 end

Code Snippet 4.2: Iterations management

During the processing inside the convolutional module, input and output data are recurrently read and

written in the memory, respectively. To manage all the communication with the memory, the controller

manipulates the write-enable signal together with the addresses to access a specific memory position.

Following the BSM scheme design presented in 3.4, for each cycle, a new input value should be fetched

from the memory to continue the convolution. To control the sequence of read operations, each clock cycle

the Process & Store state is being executed, the o_ifm_r_addr output register is continuously incremented

so the next input memory position is read next. Similar to the read address, a different register is connected

to the output memory’s write address port to select the position where the current convolution result value

should be written on. Each time the processing element indicates that a new value has been processed,

the controller should increment the output memory’s write address and also enable the write operation by

assigning the value one to the o_ofm_w_en register.

The convolution between the input data and a filter extends to all the input channels, as the filter is

applied to all the input feature maps. The result of the convolution along each channel is added to generate

an output feature map. The controller should not only manage the write address to the output memory but

also read the output values to perform the partial sum during the sub-iterations. The architecture design

presented in the figure 3.13 indicates the instantiation of an accumulator and a double connection to the

output memory where the values can be read and written at the same time. Following the same logic

as the write address, each clock cycle the processing element outputs a new value, the o_ofm_r_addr

register is incremented by one, to fetch the value stored in the next output memory position. Code snippet

4.3 refers to the memories’ addresses management performed on the convolutional module’s controller

during the Process & Store state.

1 always@(posedge i_clk) begin
2 if(i_rst || r_state == s_idle) begin
3 o_ifm_r_addr <= 0;
4 o_ofm_r_addr <= 0;
5 o_ofm_w_addr <= 0;
6 o_ofm_w_en <= 0;
7 end
8 else if(r_state == s_process_store) begin
9 o_ifm_r_addr <= o_ifm_r_addr + 1;
10 o_ofm_w_en <= 0;
11

12 // new output value from PE

13 if(r_pe_en) begin
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14 // increment write addr and read next OFM value

15 o_ofm_r_addr <= o_ofm_r_addr + 1;
16 o_ofm_w_addr <= o_ofm_w_addr + 1;
17

18 // process not finished , enable write operation

19 if(row_num < last_row_num) begin
20 o_ofm_w_en <= 1;
21 end
22 end
23 end
24 end

Code Snippet 4.3: Read and write addresses management

4.1.2 Inter output and intra kernel parallelisms

Two different types of parallelism techniques are adopted in the convolutional module to increase

processing performance. The inter output parallelism is related to the output data generation and consists

of building several output features maps at the same time. This mechanism is possible to implement since

different output feature maps are independent of each other, enabling convolutions with several filters to be

parallelized. The intra kernel parallelism is also used as a strategy to parallelize the operations associated

with a convolution. Different regions of the input feature map are also independent of each other so they

can be convolved simultaneously without interfering with the processing of another region. This type of

parallelism was very detailed throughout the analysis and design chapter and is performed using several

processing elements for the same filter.

Although both parallelism techniques are useful to achieve better computational power, they are im-

plemented considering the resource restrictions imposed by the target platform specifications. With the

application of more than one filter at once, each clock cycle a new set of output values need to be stored in

separated memories. The amount of memory required to store each output feature map is proportional to

the corresponding width and height, however, the level of the inter output parallelism is also conditioned

by the memory available. On the other hand, the number of processing elements allocated for the fil-

ters that are being applied at the same time is dependent on the number of DSPs available. Plus, since

the processing elements available are equally distributed, the more filters applied in parallel, the fewer

processing elements are assigned to each one.

According to the parallelization mechanisms described, code snippet 4.4 represents the management

of the output values that come out of all the processing elements instantiated. When both types of par-

allelisms are integrated with the convolutional module, for each filter, every related processing element
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will output a new value each clock cycle. The access to each output value is done using two consecutives

for cycles to iterate through those values and aggregate them into the convolutional module’s output port

named o_conv_result. The output port is prepared to concatenate all processing elements’ output values,

since each part of the register is mapped to a different output memory.

During Process and Store state, each iteration is characterized by the set of filters applied in parallel,

and the sub-iterations are distinguished by the input feature map channel used for the convolution. As

mentioned before, when the convolutional module is composed of a set of input channels, each one needs

to be read and convolved with the filter. Code snippet 4.4 shows that when the channel being processed is

not the first one, the convolution’s result values are added to those already stored in the output memory.

For memory-saving purposes, after the last input feature map channel is processed, the current iteration

ends and the values from the output memory are transferred to an external memory, so the same output

memory can be re-utilized in the next iteration. Between iterations, no time is wasted cleaning the memory

as the controller is configured to ignore the output values when the first input feature map channel is being

processed. After the convolution with the first channel, the values stored in the previous iteration are totally

overwritten by the current ones, so in the following sub-iterations the output memory values can already

be read and added with the ongoing convolutions’ results.

1 // convolutions ' result from PE

2 reg [(`D_WIDTH * parallel_filters * pe_filter)-1:0] r_conv_result;
3

4 always @(posedge i_clk) begin
5 if(i_rst || r_state == s_idle) begin
6 o_conv_result <= 0;
7 end
8 else if(r_state == s_process_store) begin
9 // current iteration 's filters

10 for(i = 0; i < parallel_filters; i = i + 1) begin
11 // for each filter 's PE

12 for(j = 0; j < pe_filter; j = j + 1) begin
13 // ignore stored results from last iteration

14 if(r_ifm_it == 0) begin
15 o_conv_result[(i * pe_filter + j) * `D_WIDTH +: `D_WIDTH]
16 <= r_conv_result[(i * pe_filter + j) * `D_WIDTH +: `D_WIDTH];
17 end
18 // include partial output sum after convolution

19 else begin
20 o_conv_result[(i * pe_filter + j) * `D_WIDTH +: `D_WIDTH]
21 <= r_conv_result[(i * pe_filter + j) * `D_WIDTH +: `D_WIDTH]
22 + i_ofm[(i * pe_filter + j) * `D_WIDTH +: `D_WIDTH];
23 end
24 end
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25 end
26 end
27 end

Code Snippet 4.4: Parallelism output data management

4.1.3 Processing Element

The processing unit of the convolutional module is composed of a set of DSPs connected in cascade,

as shown in figure 3.6. The number of DSPs used is proportional to filter size and their connection respects

the Broadcast Stay Migration model, characterized by schemes 3.2 and 3.3, where each PE represents

a single DSP. All the operations required to complete the convolutions inside the module are assigned to

DSPs, so the Processing Element is the component responsible for both instantiating and connecting the

DSPs and also managing the cascade’s input and output data.

Code snippet 4.5 demonstrates the instantiation and configuration of the DSPs required to build the

cascade scheme. The presented configuration can be divided into Data Path, Data Ports and Control Bits.

Starting with the datapath, each DSP is configured to read the input values directly from both A and B

ports, discard the use of D port and enable the intern multiplier to generate a 48-bit result. Regarding

the control bits, these are useful to configure the internal operating mode of the DSP. As described in the

convolutional module design, each element of the cascade is responsible to implement the equation P =

A * B + C, so the 9-bit operation mode configures the values that are selected in the internal multiplexers

and participate in the ALU. ALUMODE refers to the operation mode performed in the ALU and is defined

to add the multiplication result between A and B with the C port value.

1 generate
2 genvar i;
3 for(i = 0; i < KERNEL_SIZE**2; i = i + 1) begin
4

5 DSP48E1 #(
6 // Data Path Selection

7 .A_INPUT("DIRECT"), // A input source

8 .B_INPUT("DIRECT"), // B input source

9 .USE_DPORT("FALSE"), // D port usage

10 .USE_MULT("MULTIPLY"), // Multiplier usage

11 .USE_SIMD("ONE48") // SIMD selection

12 )
13 DSP48E1_inst (
14 // Data Port

15 .P(w_outDSP[(`DSP_PORT_P_WiDTH * i) + (`DSP_PORT_P_WiDTH - 1) :
16 `DSP_PORT_P_WiDTH * i]), // Primary data output
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17

18 // Control Inputs / Status Bits

19 .ALUMODE(4'd0), // ALU control input

20 .CARRYINSEL(3'd0), // Carry select input

21 .CLK(i_clk), // Clock input

22 .INMODE(5'd0), // INMODE control input

23 .OPMODE(9'b000110101), // Operation mode input

24

25 // Data Ports

26 .A(i_DataFM), // A input

27

28 .B(i_Weight[(`DSP_PORT_B_WiDTH * i) + (`DSP_PORT_B_WiDTH - 1) :
29 `DSP_PORT_B_WiDTH * i]), // B input

30

31 .C(i == 0 ? 0
32 : (i % KERNEL_SIZE == 0) ?
33 w_outRAM[`DSP_PORT_P_WiDTH * (i / KERNEL_SIZE) - 1 :
34 `DSP_PORT_P_WiDTH * (i / KERNEL_SIZE) - `DSP_PORT_P_WiDTH]
35 : w_outDSP[(`DSP_PORT_P_WiDTH * i) - 1 :
36 (`DSP_PORT_P_WiDTH * i) - `DSP_PORT_P_WiDTH]) // C input

37 );
38 end
39 endgenerate

Code Snippet 4.5: DSPs instantiation

Operations within each DSP are performed using the input values at ports A B and C. From code

snippet 4.5 it is possible to noted that the input feature map values are shared by all units as described in

the data-flow diagram 3.4. As for the filter weights, through the same diagram it is perceptible that they

are distributed across all DSPs using the i_Weight register where input weight data is previously mapped.

The C port input data source is dependent on the weight position. According to figure 3.6, a shift register

is allocated between the set of DSPs that represents a row in the filter, therefore, the C port of the first DSP

is connected to a shift register rather than the previous DSP’s output port. Following the same strategy,

all the output data ports are concatenated into a wire which will have certain positions connected to DSPs

and others to shift registers to form the desired cascade scheme. Figure 4.2 presents the generated

RTL schematic for a 3x3 filter. For each filter row, three DSPs are allocated together with a shift ram, as

highlighted in the extension.
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Figure 4.2: DSP schematic

4.1.4 ReLU and MaxPooling integration

In addition to convolution, there are other operations usually implemented in a CNN layer. The convolu-

tional module implements, together with the convolution, the ReLU and Max Pooling operations. Although

the ReLU operation is much more common, the Max Pooling is also available since it can be easily inte-

grated bringing more functionalities to the module. The architecture design of the convolutional module

presents the convolution and ReLU operations as the base for processing, while the use of Max Pooling

is optional and should be specified by the user through the parameters described in the interface 4.1.

The fact that the controller must be flexible for situations where the Max Pooling can or cannot be used

demands for a mechanism to manage the module’s output source.

The ReLU operation is always performed after a convolution is completed, so when the user specifies

not to use the Max Pooling, the module’s output source is directly connected to the output port of the

ReLU block. On the contrary, if the user specifies the use of Max Pooling, the ReLU block’s output is

connected to the Max Pooling block’s input port while the convolutional module’s output is connected to

the output port of the Max Pooling block. Code snippet 4.6 represents the data management described

where the w_o_data_ReLU and r_mp_result are the ReLU and Max Pooling blocks’ output, respectively,

and the o_conv_result the module’s output register. Regardless of whether Max Pooling is used or not,

every clock cycle a new output value is processed, the o_en signal is set and the write operation in the
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output memory is enabled.

Following the design architecture for the Max Pooling block presented in section 3.2.2, the number

of instantiated blocks is not only dependent on the size of the input feature map, but also the number of

allocated Processing Elements for each filter. The example shown in figure 3.7 illustrates the logic for one

PE, however, when several PEs are used to perform a convolution, several sets of Max Pooling blocks are

also allocated to operate in parallel. With the for cycle in code snippet 4.6 the output is built with one

output value from each array of Max Pooling blocks. As each PE processes a different region of the feature

map, the Max Pooling operation is also applied on more than one region at the same time, so when the

operation is completed, one result from every region is written in the output memory at each clock cycle.

The controller manages the output data from each array of Max Pooling blocks, using the r_mp_cnt

as a counter to monitor the module’s sequence output. For each PE, an array of OUT_SIZE/2 Max Pooling

blocks are used, so when the operation is completed, the counter is reset. After the controller detects

the counter reset, the values are stored in the output memory. The iteration ends when the r_mp_cnt

counter reaches the OUT_SIZE/2 value. Again, the controller waits for the r_mp_out_rdy signal to reset

the counter and send new values to the memory.

1 always @(posedge i_clk) begin
2 o_en <= 0;
3 if(i_rst) begin
4 o_conv_result <= 0;
5 r_mp_cnt <= OUT_SIZE / 2; // number of output values from MaxP

6 end
7 else if(w_o_ReLU && (MAXPOOL == 0)) begin // MaxP disable , output from ReLU

8 o_en <= 1;
9 o_conv_result <= w_o_data_ReLU;
10 end
11 else if(r_mp_cnt < (OUT_SIZE / 2)) begin // remaining values from MaxP

12 o_en <= 1;
13 r_mp_cnt <= r_mp_cnt + 1;
14

15 for(i = 0; i < pe_filter; i = i + 1) begin // one MaxP block for each PE

16 o_conv_result[i * `D_WIDTH +: `D_WIDTH]
17 <= r_mp_result[i * (OUT_SIZE / 2) + r_mp_cnt];
18 end
19 end
20 else if(r_mp_out_rdy) begin // MaxP ready , reset output counter

21 r_mp_cnt <= 0;
22 end
23 end

Code Snippet 4.6: ReLU and MaxP output management
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4.2 Voting Block

The module was designed to perform voting scheme-based convolutions, however, even a sparse

convolution should be modifiable according to the typical parameters of a convolution. The possibility for

the user to apply different kernel sizes, or change the padding and stride, extends the scenarios where

the voting scheme-based convolution can be adopted to process sparse data, consequently bringing more

flexibility to the block. From the parameter specification made by the user, the module automatically infers

the output feature map size that will be generated after the convolution is completed.

The interface specified through code snippet 4.7 has an extensive list of ports, which are divided

into categories, according to their function in the interface. Considering the Voting block base design

architecture presented in figure 3.15, the module is connected to several block memories that provide the

access to the data that needs to be processed and a place where the output values can be stored. A

total of five block memories are connected to the Voting block. Regarding the IFM, Weights and Input data

reference, both three store relevant input data for processing, so for each one, a data port is needed to

read the data itself, and another one to specify the memory address. The opposite is verified for the Output

data referencememory, which is only used to write the non-null values’ position on the output feature map.

The o_ref_w_en is the signal used to enable the write operation mode, the write address is specified with

o_ref_w_addr and the actual non-null value position data is transferred through the o_ref_data port.

In section 3.3, the voting scheme-based convolution was detailed. As illustrated in diagram 3.22, the

output data needs to be fetched in order to complete each iteration. This procedure requires the data to

be continuously read and written to the output memory at the same time. Following the design, a True

Dual Port BRAM is the most suitable memory to support the combination of memory access operations

needed in the Voting block, so the communication with the output memory is established using a total of

six ports presented in the interface 4.7.

1 module VotingBlk #(
2 parameter KERNEL_SIZE = `KERNEL_SIZE ,
3 parameter IFM_SIZE = `IFM_SIZE ,
4 parameter PADDING = `PADDING ,
5 parameter STRIDE = `STRIDE,
6 parameter IFMVALUES = `IFMVALUES ,
7 localparam OFM_SIZE = ((IFM_SIZE - KERNEL_SIZE + 2 * PADDING) / STRIDE) + 1
8 )(
9 input wire i_clk,
10 input wire i_rst,
11 input wire i_start,
12 // non - null input values addrs
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13 input wire [$clog2(IFM_SIZE**2) -1:0] i_data_ref_addr ,
14 // convolution 's input data

15 input wire signed [`A_DSP_WIDTH -1:0] i_data,
16 input wire signed [`B_DSP_WIDTH -1:0] i_weight,
17 input wire signed [`OUTPUT_DSP_WIDTH -1:0] i_partoutvalue ,
18 input wire signed [`OUTPUT_DSP_WIDTH -1:0] i_partoutvalue_b ,
19 // output addrs ports

20 output reg [$clog2(IFM_SIZE**2):0] o_nnvr_r_addr ,
21 output reg [$clog2(IFM_SIZE**2) -1:0] o_ifm_r_addr ,
22 output reg [$clog2(OFM_SIZE**2) -1:0] o_ofm_w_addr ,
23 output wire [$clog2(OFM_SIZE**2) -1:0] o_ofm_r_addr ,
24 output reg [$clog2(KERNEL_SIZE**2):0] o_wght_r_addr ,
25 output reg [$clog2(OFM_SIZE**2) -1:0] o_ref_w_addr ,
26 // reference memory interface ports

27 output reg [$clog2(OFM_SIZE**2) -1:0] o_ref_data ,
28 output reg o_ref_w_en ,
29 // non - null output values

30 output reg [$clog2(OFM_SIZE**2) -1:0] o_values ,
31 // output memory data ports

32 output wire o_en,
33 output wire o_en_b,
34 output wire signed [`OUTPUT_DSP_WIDTH -1:0] o_data,
35 output wire signed [`OUTPUT_DSP_WIDTH -1:0] o_data_b ,
36 output reg o_done
37 );

Code Snippet 4.7: Voting block interface

The output memory has two ports, and the Voting block uses both for read and write operations. Al-

though the address for each of the ports is specified with the o_ofm_r_addr and o_ofm_w_addr registers,

both can be used to define the address for the double write operation, as described in 3.23. As both ports

are prepared to write two values at the same time in the memory, two data ports o_data and o_data_b

are also allocated to support the double write operation, not compromising the block’s output throughput.

The RTL schematic of the Voting block together with connections to the Block Rams is presented in

figure 4.3. Signal o_done is set when all the processing is completed, and o_values indicates the number

of non-null output values. For this particular case, a 4x4 IFM and a 3x3 filter was considered, resulting in a

2x2 OFM. Since the maximum number of non-null output values is four, a total of three bits were allocated

for the o_values port.
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Figure 4.3: RTL schematic of Voting block connected to all memories

4.2.1 Kernel construction

The voting scheme-based convolution is a type of sparse convolution that processes only the input

feature map regions with meaningful information. The characteristics of the voting convolution make it

unique and can be distinguished from both traditional and other types of sparse convolutions. Although

the submanifold convolution, presented in sub-section 2.4.2, is also only applied to regions of interest,

the voting scheme-based convolution uses a different mechanism. The result of each multiplication is first

added to the values stored in the corresponding output feature map region, before the results are written

in the output memory.

The state machine implemented in the Voting block, described in figure 3.20, represents the different

stages of data fetch and processing. As part of the data fetch stage, the filter weights are initially read

from the input memory in the Filter load stage. Once a weight is read the controller loads it into an internal

buffer where the filter will be stored and accessed from. The filter’s weights are read from the memory

only once and stored until the end of the processing, so no time is wasted reading the same filter each

time a matrix multiplication is performed. As the number of weights that compose a filter is relatively

small, the additional memory consumption within the Voting block will not compromise implementation
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on a platform with limited memory resources.

According to the design, one of the voting scheme-based convolution’s particularities is the use of the

filter inverted. More specifically, the filter has to be inverted along the x and y axis to later be used in

the convolution operation in the processing stage, as visually demonstrated in figure 2.20. Code snippet

4.8 presents the control over the weight memory read address and inversion of the filter weights in the

internal buffer r_filter. Despite the memory positions being accessed in order the counter r_weight_cnt is

decremented by one each time a new weight is read, and as a result the buffer is back-filled and the filter

is reversely stored.

1 /* Weight memory read management */

2 always@(posedge i_clk) begin
3 r_weight_en <= 0;
4 if(r_state == s_idle) begin
5 o_wght_r_addr <= 0;
6 end
7 else if(r_state == s_filter_load) begin
8 if(o_wght_r_addr < KERNEL_SIZE**2)begin
9 o_wght_r_addr <= o_wght_r_addr + 1;
10 r_weight_en <= 1;
11 end
12 end
13 end
14

15 /* Store weights in reverse */

16 always@(posedge i_clk) begin
17 if(r_state == s_idle) begin
18 r_weight_cnt <= KERNEL_SIZE**2 - 1;
19 end
20 else if(r_weight_en) begin
21 r_filter[r_weight_cnt] <= i_weight;
22 r_weight_cnt <= r_weight_cnt - 1;
23 end
24 end

Code Snippet 4.8: Voting weights organization

4.2.2 Input references management

As discussed in sub-section 2.4, a dataset with a high level of sparsity can be characterized by having

a small percentage of relevant data to process, since most of the data are null values. While in traditional

mechanisms, input data processing is done sequentially for all the feature map values, sparse mechanisms

iterate only through the non-null values, requiring the information about where these values are located
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in the input feature map. As described in the design chapter, one of the requirements for the voting

convolution is the reference to non-null values, as the lack of this information would require an intensive

previous search for these values, resulting in efficiency loss.

From the non-null values’ references, the Voting block’s control unit is able to recognize the relevant

data location and fetch all the non-null values from the input feature map. Code snippet 4.9 presents

the section of the controller that is responsible for fetching the input data. The o_nnvr_r_addr register

is connected to the input reference memory’s read address port and is manipulated by the controller to

sequentially read the next non-null value address in the input feature map. Since the values positions are

stored consecutively in the reference memory, the register is incremented by one each time the current

iteration ends so the next non-null values address is available to the controller in the next iteration.

Following the diagram presented in 3.23, the current iteration finishes after the output values are

written into memory, and before the next iteration begins all read addresses should be updated to access

the next input values. This process is performed between iterations, and it is intended to be as fast as

possible, so no clock cycles are wasted before a new iteration starts. The read operation performed on the

input reference memory returns the result to the i_data_ref_addr port and, at the same time, the current

non-null value address is accessed through the o_ifm_r_addr port. Considering that each read operation

requires two clock cycles to get the result, the o_nnvr_r_addr is always pointing to the next input value

address so between iterations the address is ready and immediately loaded to the input data memory read

port.

1 always@(posedge i_clk) begin
2 if(i_rst || r_state == s_idle) begin
3 o_nnvr_r_addr <= 0;
4 o_ifm_r_addr <= i_data_ref_addr; // load first non - null value

5 end
6 else if((r_state == s_filter_load) && (o_wght_r_addr >= KERNEL_SIZE**2)) begin
7 o_nnvr_r_addr <= o_nnvr_r_addr + 1; // read second non - null value addr

8 end
9 else if((r_state == s_process_data) &&
10 (r_ref_index_it_shift == r_ref_shift_index) &&
11 (r_ref_index_it == r_ref_addrs_index)) begin // current process complete

12

13 o_nnvr_r_addr <= o_nnvr_r_addr + 1; // read next non - null value addr

14 o_ifm_r_addr <= i_data_ref_addr; // load value from previous addr

15 end
16 end

Code Snippet 4.9: Input non-null values’ reference management
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4.2.3 Optimization engine

The pipeline processing described during the design chapter is an efficient mechanism well adapted

to the voting scheme-based convolution’s requirements. Whenever a new non-null input value is fetched

from the data memory, a new iteration begins as the pipeline stages are again executed following the

procedure described in diagram 3.20. According to the diagram, as the pipeline processing goes, the

necessary data is fetched from the memories, the calculations are performed by the Processing Unit, and

the results are written in the output memory. Despite the processing of all non-null input values follow

the same processing stages, for each new value, the data that is sent to the Processing Unit needs to be

prepared. For instance, both filter weights and output partial values addresses should be calculated to

define which values should be read from the memory or which calculations can be ignored.

Following the sub-section 3.3.2 together with figure 3.21, the memory addresses of the output values

Z and P, are calculated based on the input non-null value address from the input feature map, represented

as o_ifm_r_addr. Code snippet 4.11 refers to the logic implementation where the input value address is

used to determine the addresses of the KERNEL_SIZE**2 values that are read from the output memory as

well as the weights for the individual calculations. Each position of the kernel has a corresponding output

value and the circumstance for every value needs to be evaluated by the controller to efficiently adjust the

processing when possible. As commented in code snippet 4.10, strided convolutions are considered as

a scenario where an additional verification is important, since the filter is only applied to some regions of

the input feature map depending on the STRIDE specification made by the user.

1 always@(r_detect_pos) begin
2 r_ref_shift_index = 0;
3 r_ref_addrs_index = 0;
4

5 for(i = 0; i <= KERNEL_SIZE**2 - 1; i = i + 1) begin // kernel positions

6 r_last_d_addrs[i] = 0; // clean and disable latches

7 r_last_d_val[i] = 0;
8 r_last_w_addrs[i] = 0;
9 r_ref_d_addrs[i] = 0;
10 r_ref_w_addrs[i] = 0;
11

12 r_x = (o_ifm_r_addr / FM_SIZE + (KERNEL_SIZE/2))
13 - ((KERNEL_SIZE**2 - i - 1) / KERNEL_SIZE); // window x coordinate

14 r_y = (o_ifm_r_addr % FM_SIZE + (KERNEL_SIZE/2))
15 - ((KERNEL_SIZE**2 - i - 1) % KERNEL_SIZE); // window y coordinate

16

17 r_shift_val = 0;
18
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19 if(((r_x >= (KERNEL_SIZE/2) - PADDING) && // output boundaries

20 (r_x <= FM_SIZE - (KERNEL_SIZE/2 +1) + PADDING) &&
21 (r_y >= (KERNEL_SIZE/2) - PADDING) &&
22 (r_y <= FM_SIZE - (KERNEL_SIZE/2 +1) + PADDING)) &&
23 ((r_x - (KERNEL_SIZE/2) + PADDING) % STRIDE == 0) && // strided conv

24 ((r_y - (KERNEL_SIZE/2) + PADDING) % STRIDE == 0) &&
25 (r_filter[i] != 0)) begin // null weights

26

27 /* optimization logic here */

28

29 end
30 end
31 end

Code Snippet 4.10: Output values address calculation

The controller is responsible for evaluating the conditions of each convolution and posteriorly adapt

itself, so the processing is as efficient and appropriate as possible. The implementation of a controller

which is aware of the optimization possibilities that may appear in the data, although it requires additional

logic, can bring significant performance improvements to the Voting block processing. For instance, a filter

with most null weights reduces the communication with the output memory and as a result, the processing

time can also be significantly decreased. In addition, non-null values that are spatially close in the input

feature map are widely exploited using the technique designed in 3.3.3, increasing the performance of the

system without compromising the correct functioning of the block.

Figure 4.4 shows that, although two different input feature maps have the same level of sparsity, that

does not mean that the non-null values are equally concentrated. Although the sparsity levels is criteria

chosen to determine whether sparse convolutions are worth using, the impact of the optimization technique

through data reuse between iterations is conditioned only by the concentration level of the non-null values

in the feature map. For instance, according to figure 4.4, the processing of IFM 0 is more likely to utilize

the data reuse technique since the non-null values of IFM 1 do not belong to the same regions on the

feature map.

102



Chapter 4. System implementation

Figure 4.4: Sparsity vs Dispersion

Following the previous code snippet, the optimization logic presented in 4.11 is used to evaluate if the

data needed for the current iteration matches the output of the previous one. Considering that during the

pipeline processing each result is written in the output memory and also in the internal buffer, between

iterations the controller has the information to verify if any data can be shared. For situations where the

output values address from the last iterations are equal to the output partial values addresses of the current

iteration, the controller should detect and divide the pipeline data into two different parts. For the data

that will be reused in the current iteration, the actual values are stored in the r_last_d_val register while

their addresses of the output memory are saved in the r_last_d_addrs register. The counter r_shift_idx is

incremented each time a new value can be reused from the last iteration and is later used to monitor the

double PE computing of the pipeline.

1 for(j=1; j <= KERNEL_SIZE**2; j = j + 1) begin // values needed for next iteration

2

3 if((r_last_addr_out[j-1] ==
4 ((r_x - (KERNEL_SIZE/2) + PADDING)/STRIDE) * OUT_SIZE +
5 ((r_y - (KERNEL_SIZE/2) + PADDING)/STRIDE)) && // search in temp buffer

6 (r_shift_val == 0)) begin // requested output is already in register

7

8 r_last_d_addrs[r_shift_idx] = r_last_addr_out[j-1]; // out value addr

9 r_last_d_val[r_shift_idx] = r_last_d_out[j-1]; // out value

10 r_last_w_addrs[r_shift_idx] = i; // weights

11 r_shift_idx = r_shift_idx + 1; // cnt reuse values

12 r_shift_val = 1; // reuse value

13 end
14 end
15 if(r_shift_val == 0) begin // fetch the value from the output memory

16 r_ref_d_addrs[r_addrs_idx] =
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17 ((r_x - (KERNEL_SIZE/2) + PADDING)/STRIDE) * OUT_SIZE +
18 ((r_y - (KERNEL_SIZE/2) + PADDING)/STRIDE); // out mem addrs

19

20 r_ref_w_addrs[r_addrs_idx] = i; // filter weights buffer addr

21 r_addrs_idx = r_addrs_idx + 1; // how many values need to be read from outmem

22 end

Code Snippet 4.11: Data reuse mechanism

4.2.4 Double computing

The double computing technique, discussed in sub-section 3.3.3, was designed for scenarios when

the temporary buffer contains part of the data needed for the current pipeline processing. When the data

is already available inside the Voting block to perform the calculations, the controller takes the opportunity

to activate the two processing elements and increase the Voting block’s throughput. By activating the

double computing in the Processing Unit, two values can be outputted at the same time and written in

the output memory simultaneously. As mentioned in 3.3.3, the double write operation on the memory is

possible due to the functionalities of the True Dual Port BRAM, which allows the two ports to work both

with writing and reading operations. Although the ability to switch the operation of each port is important

to support the double PE computation mechanism, it can still be considered a limitation imposed on the

Voting block architecture, as more processing elements could be allocated if the memory interface had

more available ports to store the output results.

The management required to distribute the data across the Processing Unit’s elements is done by the

controller which must verify how many calculations are needed to complete the pipeline processing. After

the data organization and the shift technique integration, described previously with code snippets 4.10 and

4.11, the controller mechanism has to define whether the Process Unit will activate both DSPs or only one.

Each instruction launched during the pipeline processing is under the responsibility of the block’s control

unit and along with the data, it must active either the single or double computing mode. The example

described in 3.23 shows that in the first three pipeline instructions the Processing Unit works as a single

computing mode, however, the last six iterations are grouped in pairs and the controller enables the double

computing mode to increase the throughput.

Code snippet 4.12 refers to the decision block implemented in the controller, not only to manage the

Processing Unit’s operation mode, but also the partial output values fed into the DSPs from the internal

buffer. Signals r_PE_en1 and r_PE_en2 are both connected to each processing element and setting these

signals indicates that the corresponding element is being activated. In-parallel, the output values from the
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last iterations are stored in the r_last_d_val register and loaded to the PEs’ input ports i_partoutvalue1

and i_partoutvalue2.

1 always@(posedge i_clk) begin
2 r_idx_it <= 0; // index to monitor the PU data

3 r_PE_en1 <= 0;
4 r_PE_en2 <= 0;
5

6 if((r_state == s_process_data) && (r_idx_it < r_shift_idx)) begin
7 if (((r_shift_idx - r_idx_it) / 2) > 0) begin // double computing

8

9 r_idx_it <= r_idx_it + 2; // two values at once

10

11 r_PE_en1 <= 1; // enable both PEs

12 r_PE_en2 <= 1;
13

14 i_partoutvalue1 <= r_last_d_val[r_idx_it]; // output partial values

15 i_partoutvalue2 <= r_last_d_val[r_idx_it+1];
16 end
17 else begin // single computing

18 r_idx_it <= r_idx_it + 1;
19 r_PE_en1 <= 1;
20 i_partoutvalue1 <= r_last_d_val[r_idx_it];
21 end
22 end
23 end

Code Snippet 4.12: Double PE computing

The RTL schematic resulting from the instantiation of two processing elements is shown in figure 4.5.

Since for each pipeline iteration only one non-null input value is being processed, the same value is shared

between the two PEs. As for the weight and partial output values, each PE is fed by separated registers.

Although the double computing mode is only activated when data reuse is possible, the output data port

of both PEs needs to be connected to the output memory in order to support the double write operation,

as illustrated in figure 3.15.
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Figure 4.5: Double PE RTL schematic

4.2.5 Data reuse

During the pipeline processing, the output values from the calculation stage are written in the output

memory and also stored in the internal buffer managed by the control unit. Together with the output

values, the corresponding addresses are also registered on another buffer so the controller can verify if

any data can be reused for the next iteration. The internal buffer designed to temporarily save the output

data of each iteration is used as a FIFO with a limited storage capacity. The data reuse technique is

only performed when the values are horizontally close on the input feature map. As suggested in figure

3.22, values that are spatially close in the x-axis can be exploited by integrating the reuse mechanism,

nonetheless, the spatial proximity on the y axis can also be leveraged depending on the processing order

of the non-null values.

Assuming that the processing of the input values is performed line by line, the values horizontally

close are processed consecutively, and therefore, using the output of one iteration for the input of the

next one is simpler. On the other hand, if the processing is performed column by column, sharing data

between values vertically close in the feature map would be the most appropriate technique. In order for

the technique to be applied to both vertically and horizontally close values, it is required that the buffer has

a higher capacity so that values belonging to consecutive rows or columns can have data shared through

the buffer. Although using the output data from previous pipeline processing iterations is beneficial to

avoid spent processing time in the communication with the memory outside the block, it is important to

evaluate that the memory consumed by the internal buffers (actual values plus related addresses) do not

compromise the Voting block implementation on a platform with memory constraints.

Code snippet 4.13 refers to the controller implementation responsible to register all the output values
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that result from the calculation stage of the pipeline processing. The internal buffers r_last_d_out and

r_last_addr_out work as a FIFO, where the output values and their memory addresses are stored, respec-

tively. When the double computation is activated in the Processing Unit, the signal o_en_b indicates that

two new results need to be sent to the output memory and registered in the buffer. Regardless of whether

one or two values are outputted from the Processing Unit at the same time, it is always necessary to shift

the buffer, so the oldest values are replaced by the newest ones.

1 always@(posedge i_clk) begin
2 if(o_en_b) begin // double computation output

3

4 for(i = (KERNEL_SIZE**2)-1; i > 1; i=i-1) begin // fifo shift

5 r_last_d_out[i] <= r_last_d_out[i-2];
6 r_last_addr_out[i] <= r_last_addr_out[i-2];
7 end
8

9 r_last_d_out[0] <= o_data; // current output values

10 r_last_d_out[1] <= o_data_b;
11 r_last_addr_out[0] <= o_ofm_w_addr; // current values addrs

12 r_last_addr_out[1] <= o_ofm_r_addr;
13 r_out_cnt <= r_out_cnt + 2;
14

15 end
16 else if(o_en) begin // single computation output

17

18 for(i = (KERNEL_SIZE**2)-1; i > 0; i=i-1) begin
19 r_last_d_out[i] <= r_last_d_out[i-1];
20 r_last_addr_out[i] <= r_last_addr_out[i-1];
21 end
22

23 r_last_d_out[0] <= o_data;
24 r_last_addr_out[0] <= o_ofm_w_addr;
25 r_out_cnt <= r_out_cnt + 1;
26 end
27 else begin
28 r_out_cnt <= 0;
29 end
30 end

Code Snippet 4.13: Processing Unit’s output record

4.2.6 Output references generation

To implement several convolutional layers with the Voting block, each one must provide all the needed

information for the next one to be able to operate without restrictions. Considering that the position where
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the non-null values are located is a critical requirement of the Voting block, each instantiated block must

record the non-null values positions in the output memory. Code snippet 4.14 shows how the output

values’ addresses registration is performed by the Control Unit, each time a new value is outputted from

the processing pipeline. Signal o_en indicates that a new result from the calculation stage is ready to

be written in the output memory, but also its address needs to be sent to the reference output memory,

where all the output values’ positions in the feature map are located. Considering the duplication problem

that may occur during the address registration, as described in 3.27, a FIFO is adopted to prevent that the

same output value address is written in the output memory more than once.

The r_out_addrs register is used to log the most recent addresses as a mechanism to evaluate if in

close regions data can shared. The register size is specified with a capacity to store KERNEL_SIZE output

values, since it is the minimum size required to avoid any repetition of addresses. Whereas the processing

of values can be done either row-by-row or column-by-column, the number of rows or columns that are

involved in each matrix multiplication corresponds to the kernel size. The loop implemented is responsible

to check if the current output value address is already stored in the FIFO, and if not, the signal r_bit1S

indicates that the address has to be written in memory.

1 reg [$clog2(OUT_SIZE**2)*(KERNEL_SIZE*OUT_SIZE)-1:0] r_out_addrs; // addrs FIFO

2 reg [$clog2(KERNEL_SIZE*OUT_SIZE)-1:0] r_indx;
3 reg [$clog2(OUT_SIZE**2) -1:0] r_ofm_addr_cpy; // aux addr

4 reg r_bit1S;
5

6 always@(posedge i_clk) begin
7 r_bit1S <= 0;
8

9 if(i_rst) begin
10 r_ofm_addr_cpy <= 0;
11 end
12 else if(o_en) begin // new value from the Processing Unit

13 r_ofm_addr_cpy <= o_ofm_w_addr; // address backup

14 r_bit1S <= 1;
15

16 // check if current output value address is already registered

17 for (r_indx=0; r_indx <=KERNEL_SIZE*OUT_SIZE -1; r_indx=r_indx+1) begin
18 if(r_out_addrs[r_indx * $clog2(OUT_SIZE**2) +: $clog2(OUT_SIZE**2)]
19 == o_ofm_w_addr) begin
20 r_bit1S <= 0; // already in the out ref memory

21 end
22 end
23 end
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24 end

Code Snippet 4.14: Duplicate references management

Together with the non-null output values positions, each Voting block should also output the number

of non-null values stored in the memory, through the port o_values presented in the interface 4.7. The

number of output values is considered another requirement of the Voting block, since it is important

to inform the next block of how many iterations are needed to complete the convolution. Following the

verification performed in the previous code snippet 4.14, when the signal r_bit1S indicates that a new

output value is not yet registered in the output reference memory, the counter is incremented, and the

value address is written both in the FIFO and the memory.

Although the management of the output address registration is a simple process assumed by the

Control Unit, additional logic is required. Depending on the output feature map size and data width,

the amount of logic that needs to be allocated to control the FIFO may be unfeasible for an efficient

implementation. Keeping in mind that the output references generation is only a functionality useful if

another Voting block is used next, if this is not the case, all the additional logic could be disabled without

any interference in the functioning of the block.

1 always@(posedge i_clk) begin
2 o_ref_w_en <= 0;
3

4 if(i_rst) begin
5 r_out_addrs <= 0;
6 o_ref_w_addr <= 0;
7 o_values <= 0;
8 end
9 else if(r_bit1S) begin // new value addr to register

10 r_out_addrs <= {r_out_addrs[$clog2(OUT_SIZE**2)*(KERNEL_SIZE*OUT_SIZE)-2:0]
11 , r_ofm_addr_cpy}; // FIFO shift

12 o_ref_data <= r_ofm_addr_cpy; // addr backup

13 o_ref_w_addr <= o_ref_w_addr + 1; // out ref mem write addr

14 o_values <= o_values +1; // count non - null values

15 o_ref_w_en <= 1; // write op

16 end
17 end

Code Snippet 4.15: Output references registration
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This chapter presents the validation of the hardware implementation of both convolution module 4.1

and voting block 4.2, presented and discussed in the previous chapter. This section aims at validating the

design of these solutions by testing the implementations of convolution block and voting block with real

data.

5.1 Convolutional Module

The evaluation of the correct functioning of the several features of these models follows a validation

process containing several steps. To start, the module was implemented in hardware platform using

Vivado, where it was possible to assess the resources consumption according to the user’s configuration

after the generation of the design bitstream. Using the implementation detailed in section 4.1, several

images are adopted to test the module and then determine whether the convolutions are correctly applied

throughout the input data. To determine the novel model feature regarding their customization capability,

according to the user’s specifications and resources restrictions imposed, several tests were suggested.

Finally, the module was integrated with the PointPillars model, as a case study, where a detailed analysis

regarding the effect on the detection precision was carried out.

5.1.1 Functional validation

From the code snippets presented throughout section 4.1, Vivado was used to generate the bitstream

for the target FPGA platform, the Xilinx Zynq Z-7010 [60]. Despite the limitations of this board, it has

enough resources to validate the work developed. Furthermore, it is the board that is most available to

the author of this thesis, who has purchased one in the past. Figure 5.1 represents the Convolutional

Module IP created, with the parameters’ fields open to the user configuration. After the user specifies the

module’s parameters, a new bitstream is generated together with the resource’s utilization description.
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Figure 5.1: Convolutional Module IP

From the parameters specified in figure 5.1, the corresponding resources usage is presented in table

5.1. According to the resources available in the Zynq Z-7010 board, 80 DSPs are provided, however, only

9 were specified for the processing in order to later evaluate the management made by the controller. As

the board only has a total of 2.1 Mb of Block Rams, 60 blocks, each with 35Kb, were also defined in the

interface. From the utilization table, it can be noticed that only 9 DSPs are actually used by the module,

while the utilization of Block Rams is 93.33%. Considering a 150x150 FM and a 3x3 filter, both LUTs and

Flip Flops consumption percentage is reasonably low, despite the limited resources of the board used,

which also proves the efficient hardware implementation of the convolutional module. As for the on-chip

power, a total of 1.8W was reported.

Resource Utilization Available Utilization (%)
LUT 6621 17600 37.62

LUTRAM 1269 6000 21.15
FF 8190 35200 23.27

BRAM 56 60 93.33
DSP 9 80 11.25

Table 5.1: Convolutional Module consumption results obtained from the Vivado Report Utilization tool

For the functional validation, a block design was created to provide the input data for the module and to

store the processing results. From the design presented in figure 5.2, three Block Rams are distinguished

corresponding to the memory allocated for the weights, the input feature map, and also the output feature

map. As a first iteration, the input data was initially stored into an SD card and sent to the DDR memory.

Using the Central Direct Memory Access (CDMA), the data from the DDR is transferred to the Weight and

Input Block Rams, where the input feature map and the weights is stored, respectively. After that, a signal

is sent by the Processing System to the Convolutional Module informing that all the input data is ready

to be accessed so the processing can start. Depending on the number of iterations required to complete
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the processing and the memory limitations, the Block Ram used to store the input feature map may need

to be filled with new data between iterations. As referenced in the module’s interface 4.1, every time an

iteration ends and a new input feature map is required to continue the processing, o_load_ifm signal is

used to request a new feature map to be stored in the Block Ram.

Figure 5.2: Block design used for the Convolutional Module validation

Since the Convolution Module was developed mainly to perform dense convolutions, the first tests

were executed on RGB images. Among many types of filters, a few ones were selected to validate the

module. Figure 5.3 is related to one of the tests, with the application of a 3x3 sharpen filter to an image

of a car. As an RBG image is composed of three channels, the filter was applied in all the channels and

concatenated in the end. From the image result, it is possible to note that the edges were sharpened

throughout the entire image, which indicates that the convolution was correctly performed by the module.

Besides the visual aspect of the image pixels, the output image dimensions also suggest that the filter

was applied as intended. Although it is not visually noticeable from the figure, with the padding and stride

specified with values zero and one, respectively, the output dimensions for a 3x3 filter is reduced to: 150

- 3 + 1 = 148.
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Figure 5.3: Convolution result using a sharpen filter

As in the previous test the padding and stride were specified with the default values, the next test was

created to validate the execution of a strided convolution together with the use of padding. Excessive use

of padding was chosen not only to test if the Convolution Module still operates correctly but also to be

visually perceptible in the output image. Figure 5.4 presents the output image together with the parameter

values specified for the convolution, namely: the kernel size, padding, and stride. This test was performed

using the same input image from the previous test, however, the output images are quite different from

each other. A 3x3 identity filter was randomly selected for this convolution, and the pixels of the output

image prove that the image has only changed its dimensions compared to the input image. Once again,

following equation presented in 2.14, the output image size can be calculated as: ((150 - 3 + 2 * 10) / 2)

+ 1 = 84. Considering that a padding of ten was used in this convolution, the effect on the output image

is perfectly recognizable. It is important to note that when the specified value for the padding parameter

is different from zero, then zero values are introduced around the input image, which justifies the black

boarder in the output.

Figure 5.4: Convolution result using an identity filter

5.1.2 Resource-aware performance

In addition to the module operation validation tests, there is another category of tests executed to

determine the module flexibility and scalability. The Convolutional Module performance in this context

113



5.1. Convolutional Module

was measured considering the ability to adjust according to user specifications and resource constraints

that may exist. A test was performed to evaluate the controller behavior when the memory available did

not allow more than one filter to be applied at the same time. Figure 5.5 shows the parameter values,

specifying a layer with three filters and two input feature maps. Meanwhile, the module’s available memory

was limited so that only one filter could be applied to an input feature map at a time.

The simplified simulation window 5.5 presents the iterations assumed by the controller as each filter

is being convolved with one input feature map at a time. Despite the restrictions imposed on the module’s

operation, the controller was able to adapt and modify the processing flow into several iterations and sub-

iterations, identified with the orange and blue circles, respectively. Since for each filter being applied, a

block memory is required to store the output, each iteration refers to one filter and the sub-iteration is

associated with the input feature map. Through the simulation window, it is possible to analyze that after

two sub-iterations are completed (filter was applied to all input channels), a new iteration starts, meaning

that the next filter will also be applied on both input feature maps.

Figure 5.5: Processing iterations validation

In addition to the ability of splitting the processing into several iterations whenever is required, it is also

desirable that, when no constraint is applied, the best performance solution is obtained from the developed

module. As the management of the number of filters applied simultaneously was analyzed before, another

way to enhance its performance is to increase the level of parallelism in each sub-iteration. The processing

parallelism inside the Convolutional Module, as detailed in sections 3.2 and 4.1, is achieved through the

allocation of several PEs to process different input regions at the same time. The fact that several regions

are being processed simultaneously means that the time needed to complete a convolution is reduced.

The graph presented in figure 5.6 indicates the relation between the execution time and the number

of instantiated PEs, for the processing of a 512 x 512 feature map with a 3 x 3 filter. Although it is possible

to deduce that with more PEs used the execution time is reduced, the greater reduction percentage is

observed in the first set of PEs. With a filter of size three, the addition of one PE requires a total of nine

DSPs, which makes the allocation of more PEs to exponentially increase the number of DSPs consumed.
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Figure 5.6: Effect of parallelism in the processing time consumption

Combining the two parallelism mechanisms implemented in the Convolutional Module, a performance

test can also be executed to analyze the gains. While the increasing number of parallel filters reduces

the number of iterations required to complete the processing, the amount of PEs is also important to

complete a convolution faster. Following the same 512 x 512 input feature map and the 3 x 3 filter, the

time consumed by the module was evaluated, while also increasing the available memory to enable more

filters to be applied at the same time. On the other hand, the number of available PEs was fixed at twenty

to validate the distribution of PEs by the controller.

Figure 5.7 presents the graph with the processing time results obtained from each test, with the

indication of how many PEs were allocated. As the number of filters applied at the same time reduces the

number of iterations, the gray line indicates the evolution of processing time while the memory available

increases. Considering that in this particular test, a total of ten filters needs to be applied on the input

data, the lowest time is achieved when 120Mb of memory is available, enabling all filters to be applied at

once. The orange line specifies the real results obtained during the tests due to the management done by

the controller regarding the number of PEs instantiated for each filter.

Since the processing of a 512 x 512 feature map with only one PE takes around 2621µs, an approxi-

mation to the time results from the graph’s orange line can be made using the formula: (2621 / num_PEs

* num_iterations)µs. Although the amount of memory is important for the parallel application of filters,

the reality is that the amount of memory and the number of PEs complement each other. As 12Mb of

memory only allows one output feature map to be stored, only one filter is used each time, meaning that all

PEs can be allocated for that filter. On the other hand, 120Mb of memory is enough to store all the output

data, so all the filters can be applied at once and two PEs are assigned to each one. Besides that, since
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the controller was developed to make the iterations homogeneous, different amounts of available memory

are associated with the same number of filters and PEs allocated for the processing. This mechanism was

adopted to reduce the hardware complexity since for each iteration the amount of filters actually used is

always the same, as discussed in sub-section 3.2.5.

Figure 5.7: Time consumption for different combinations of filters and number of PEs

5.1.3 PointPillars

As a case study for the validation of the developed Convolutional Module, the 3D model for object

detection in point clouds selected was the PointPillars. According to sub-section 2.2.1, the model is

composed of three stages: the PFN, BackBone and SSD. As the PointPillars is a Deep Learning-based

model, different convolutional layers on both stages can be used for the module integration and validation.

In this particular validation test, the Convolutional Module’s performance is evaluated by implementing the

two backbone layers of the PointPillars, using the developed module. After the integration, the model’s

performance in the hybrid version is analyzed by comparing the precision of the results from the software

version.

The last two convolutional layers of the PointPillars backbone stage were chosen. Although the back-

bone is composed of three blocks and a total of sixteen layers could be used to validate the module, the

116



Chapter 5. Tests and results

last two were selected to simplify module integration. The backbone is identified as the stage where the

largest computational percentage of the model is located, and as described in 2.2.1, it is composed of a

convolutional neural network together with three deconvolution blocks and one block of concatenation in

the end. As shown in figure 5.8, the integration can be represented with the output of Conv3 layer con-

nected to the first module instance, which is the one connected to the input of the second instance. Finally,

the output of the second instance is connected to the deconv3 block, as the software implementation of

both Conv4 and Conv5 were cut during the validation test.

Figure 5.8: Convolutional Module integration in the PointPillars model

To create the same conditions for both the software and hybrid versions, the same frame was chosen

from the Kitti dataset. Since before the validation, the software version of PointPillars was running on a

GPU, the detection results were initially registered for later comparison. Figure 5.9 presents the randomly

selected frame from the Kitti archives [61], and the corresponding point cloud with the bounding boxes

displayed for each object detected in the scene. As can be noted, a total of six objects were detected,

which in this particular case, all refer to parked cars.
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(a) Frame from Kitti dataset [61]

(b) Pointcloud resulting from the LiDAR scan

Figure 5.9: Detections from the software version of PointPillars

Once again, this analysis is important to later compare with the results obtained from the integration

with the Convolutional Module and evaluate the scores obtained. The scores of each detection, from

the output of the PointPillars model in the software-only version were registered. Table 5.2 presents the

association between the bounding box from figure 5.9b and the corresponding detection score. Through

the analysis of both, it is noticeable that for this case, the farther the object is from the LiDAR sensor,

the lower the score registered by the model. This is further evidenced through the distance specification

presented in the middle column of the table. While the bounding box identified with number one is only

4.42 meters away from the sensor, the bounding box number six is at a distance of 48.08 meters.

The difference in the distances between the closest and the furthest object is about 43 meters, re-

sulting in scores of 0.954 and 0.609, respectively. Although the object identified with bounding box six

presents a score of only 0.609, it is still detected by the model. Since in the software version, the model

was configured with a score threshold of 0.5, all detections with a score value above that threshold appear

in the output.
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Bounding Box ID
Distance from the

LiDAR sensor (meters)
Score

1 4.42 0.954
2 11.24 0.906
3 17.36 0.847
4 21.85 0.839
5 44.78 0.692
6 48.08 0.609

Table 5.2: Server’s detections score for the bounding boxes identified in sub-figure 5.9b

Using the same input frame from the software version analysis 5.9, the hybrid version was executed,

and the results are presented in figure 5.10. Although both 5.10b and 5.10c figures refer to the processing

of the same frame, the number of bounding boxes displayed are different due to the score threshold

specified for the model. Compared to the detections obtained in the software version, in the hybrid version

the scores are a little higher in certain situations, resulting in false positive detections for the same threshold

value. In the sequence, the threshold values were increased in order to remove the additional detections

that are incorrect, resulting in similar detections for both versions.

Although the two screenshots were taken from different angles, it is possible to notice that the detec-

tions present in image 5.10c are similar to the results of the software version 5.9, with the exception that

the bounding box relative to the furthest car does not appear, thus being counted as a false negative. In

this test case, the threshold was purposely increased to exclude the object with the lowest score value, as

it is also discriminated in table 5.3.

(a) Detections with a score threshold
of 0.5

(b) Detections with a score threshold
of 0.6

(c) Detections with a score threshold
of 0.75

Figure 5.10: Detection results with the implementation of the last two layers of Block 3 using the Convo-
lutional Module

The comparison of results obtained from the software-only version and the hybrid version can be

analyzed in table 5.3. Focusing once again on the six detections specified in the software version 5.2,

with the integration of two instances of the developed Convolutional Module, the scores for each of the

bounding boxes are also detailed. Regarding the SW + HW version, two different tests were executed,

being the Conv5 layer the first one replaced by the module. After noting the results, both Conv4 and
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Conv5 were substituted by two instances, as presented in figure 5.8. The results from the SW version

show the tendency for more distant objects to have a lower score value, however, with the hybrid version

it is possible to observe a score increase pattern of these same objects as more layers are implemented

with the module. On the other hand, detections closer to the sensor tend to lower the score value.

The detections from the software 5.9b and hybrid 5.10 versions are visually similar, and a certain

difference is verified when comparing the score values themselves. The deviation of results can be ex-

plained both by the loss of information during the quantization of both feature map and weights values,

and the lower resolution of operations performed inside the DSPs. Since the data width used in software

was 32-bit floating-point, when the weight values are converted to an 8-bit and the feature map values

to 16-bit fixed-point formats, the representation of the values has a reduced resolution. In addition, the

operations within the DSPs, together with the final dequantization process, causes even more information

loss and the difference in scores, relative to the software version, becomes accentuated as more layers

are implemented in hardware.

Hybrid version scores
(threshold 0.75)

Bounding Box ID
SW version scores
(threshold 0.5) Conv5

Conv4
+

Conv5

Score decrease
vs SW version

(%)
1 0.954 0.917 0.841 11.3
2 0.906 0.857 0.821 8.5
3 0.847 0.842 0.817 3.0
4 0.839 0.806 0.815 2.4
5 0.692 0.788 0.763 -7.1
6 0.609 0.661 0.744 -13.5

Table 5.3: Scores comparison between software and hybrid versions
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5.2 Voting Block

In order to validate the Voting block implemented, a set of tests were built, which were further divided

in three major categories. The first category corresponds to the group of tests that was intended to verify

if the block’s operation was logically correct, using small feature maps. This initial test case is useful not

only to quickly evaluate whether the block is working correctly but also to rectify possible implementation

flaws easily. The second category had the purpose of evaluating the block’s performance. Following

an initially evaluation, the tests were extended to measure the performance of the Voting block under

several circumstances. From the block’s behavior along the tests’ conditions created, it was possible to

differentiate the potential of the voting scheme-based convolution compared to traditional solutions on real

case scenarios. Finally, the Voting block was integrated with the PointPillars model as a case study, where

the integration in certain layers for sparse data processing was analyzed.

5.2.1 Functional validation

The validation performed on the Voting block at an early stage has simple characteristics and is aimed

at testing whether the block hardware implementation is operating as intended. Once again, using Vivado,

a bitstream was generated in order to check if no errors were made while describing the hardware, as

shown in section 4.2. Figure 5.4 presents the table with the resource-consumption obtained for the

Zynq Z-7010 board. As the block was developed only to perform one voting scheme-based convolution,

the resources consumed are quite low when comparing with the consumption level of the Convolutional

Module, presented in table 5.1. Figure 5.11 refers to the first validation test, with the specification of a

convolution between a 4x4 IFM and a 3x3 filter. As a result of this simple test case, the utilization of both

LUTs and FFs is 13.43% and 12.55%, respectively. Regarding the energy consumption, the total on-chip

power reported was approximately 0.2W.

Resource Utilization Available Utilization (%)
LUT 2364 17600 13.43
FF 4416 35200 12.55

BRAM 1 60 1.67
DSP 2 80 2.50
IO 19 100 19.00

Table 5.4: Voting block consumption results obtained from the Vivado Report Utilization tool

After the bitstream was generated and loaded into the FPGA, the first validation test was started.

Following the voting requirements, together with the input feature map values, the non-null input values
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positions are also loaded into the memory. It is possible to note that the filter is read into the internal array

r_filter in a reverse format, which is in accordance with the implementation described in code snippet 4.8.

From the input feature map values, the sparsity level obtained is only 0.3125, since the ratio between the

number of zero values and the number of non-zero values in the matrix is around 11:16. Although in this

particular case the sparsity level does not favour the adoption of sparse data processing mechanisms,

the Voting block can still be validated in such circumstances and should also reproduce the same output

result as a traditional convolution would have. Besides, although the Voting block has been developed to

process LiDAR data, simple 2D matrices composed only of integer values are also appropriate to validate

the block’s implementation at an early stage.

Figure 5.11: Voting block simulation data preparation

The simulation screenshot 5.12 from Vivado, refers to the convolution specified before, and it is indica-

tive of the Voting block proper functioning. Each signal presented in the simulation window can be distin-

guished with a specific color and is associated with a particular role within the block. For instance, the or-

ange color is assigned to the output data represented through the registers o_data_PE0 and o_data_PE1,

as well as the signals o_en0 and o_en1. According to the dimension of both the input feature map and

filter, the output feature map size is 2x2, and the values are identified in the simulation with red circles.

Although the output enable signal from each processing element has a value of one several times during

the simulation, the last ones are associated with the last values that are written in memory, and therefore,

correspond to the convolution result.

Following the logic described in sub-section 4.14, each Voting block is responsible for recording the

non-null output values position in the output feature map. From the simulation window 5.12, it is possible
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to note that the output has four values, with the red arrows indicating the four different positions where

the values are stored in the memory. The o_ref_val port, also presented in the interface of the block

4.7, identifies the coordinate in the output feature map, while the signal o_re_w_en activates the write

operation mode on the output reference memory.

Figure 5.12: Voting block simulation window

Moving on to the next validation tests, figure 5.13 presents the convolution result between an image

of a car and the Gaussian blur filter. Once again, despite the voting scheme-based convolution being

only suitable for sparse data processing, the final result of any convolution should always be the same

as using a traditional convolution mechanism. Since an image is a dense data representation, the time

consumed by the voting block to complete the convolution is very high and even longer than the time

that a traditional convolution would take. Nonetheless, the output image indicates that the convolution

was performed correctly. The output image size is also correct since the padding and stride were both

specified with values zero and one, respectively.

Figure 5.13: Voting convolution with a Gaussian Blur filter

5.2.2 Sparsity effect

This test aims to demonstrate and evaluate the applicability of the voting convolution by analyzing for

which sparsity levels it is faster than the traditional one. The number of non-null values in the input feature

map affects the data sparsity level, which can vary from zero to one, according to the math formula.

sparsity = 1− count_nonzero(A)
total_elements_of_(A)

While zero sparsity indicates that all the input values are non-null, a sparsity with value one means
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that all the values are null. To evaluate the Voting block performance in processing sparse data, several

conditions should be created for the block to be subject to different levels of sparsity.

Table 5.5 discriminates the different sparsity levels selected for the set of performance tests executed

on the Voting block. Although performance tests with lower sparsity levels are also possible, the number

of values that need to be processed increases and compromises the adoption of the voting scheme-based

convolution over the traditional mechanisms. Eleven levels of sparsity were selected to evaluate the Voting

block performance for the processing of an 512x512 input feature map. The feature map size was not

chosen randomly but based on the case study detailed in sub-section 5.2.6, to enable more performance

comparisons.

Total values
IFM = 512x512

Sparsity
(%)

Non-null values Null values

262,144

80 52,429 209,715
82 47,186 214,958
84 41,944 220,200
86 36,702 225,442
88 31,458 230,686
90 26,215 235,929
92 20,972 241,172
94 15,729 246,415
96 10,486 251,658
98 5,243 256,901
100 0 262,144

Table 5.5: Levels of sparsity selected for testing

For each sparsity level presented in table 5.5, a performance test was carried out to evaluate the

processing time evolution according to the sparsity level variation. Figure 5.14 presents a graph where the

different processing times registered with Voting block are identified with the blue line while the orange

line indicates the time consumed by the Convolutional Module. As expected, the Voting block consumes

less time when the sparsity level is higher, since less input values need to be processed. In the tests

performed, a clock of 100 MHz was defined, which is equivalent to 10 nanoseconds per clock cycle. The

Y-axis represents the processing time related to each measurement, specified in microseconds.

From graph 5.14, the higher processing time registered for the Voting block was around 4600 mi-

croseconds while the lower one was 390 (when ignoring the test with sparsity level of one, since a 100% of

sparsity means that all values are null, and no time is consumed to process the data). On the other hand,

the orange line indicates that the Convolutional Module consumes the same processing time regardless of

the input sparsity level. Since a traditional convolution was implemented in the Convolutional Module, all
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the input feature map regions are convolved with the filter, even if there is no relevant information located

there.

The intersection point between the two lines is positioned around the 89% sparsity, corresponding to a

processing time of around 2600 microseconds. In fact, the time consumed by the Convolutional Module

to process a 512x512 input feature map is always about 2600 microseconds, while the Voting block only

consumes the same time specifically with 89% of sparsity. For higher sparsity levels than 89%, the Voting

block is faster than the Convolutional block and for lower sparsity levels the Voting block is slower, as

graph 5.14 suggests. The performance tests performed to evaluate the processing time evolution with the

sparsity variation were carried out considering an input feature map with a total of 262144 values, and

the non-null values for each sparsity level were randomly distributed by the feature map. This detail is

important to mention since the processing time will also vary depending on the dispersion of the non-null

values in the feature map. Therefore, a separate performance test was built to exploit this variant.

Figure 5.14: Processing time variation with increasing sparsity

5.2.3 Concentration metric

The dispersion level of non-null values in the input feature map together with the sparsity level have an

impact on the processing time obtained by the Voting block. While sparsity refers to the number of values

that need to be processed, the dispersion level is related to the proximity of these values in the feature

map. The two extreme and opposite levels of dispersion were highlighted in figure 4.4, and although the

sparsity level is equal for both cases, the processing time obtained can be quite different. The optimization
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technique described in sub-section 4.11, was designed to reuse data and reduce the time consumed in

the communication with the memory. Since values spatially close in the feature map belong to the same

region, data can be shared during the convolution. On the other hand, spatially distant values are located

in different regions so no data can be shared.

The impact of the implemented data reuse technique is presented in table 5.6, and it is noted that the

improvement in processing time can be more than 30% when all the non-null values are spatially close in

the input feature map. The registered times for 0% concentration are presented in the second column and

correspond to the blue line on graph 5.14. The processing times for maximum spatial proximity of the non-

null values in the input feature map are presented in the third column. The improvement in processing

time presented in the table reflects the effect of the data reuse technique when the concentration of

values is maximum. Another aspect is the improvement percentage increase with the increase of sparsity

level, since more non-null values improve the performance of the data reuse technique, thus less time is

consumed for higher sparsity levels.

Sparsity
(%)

Processing time (µs) Improvement
(%)Concentration (0%) Concentration (100%)

80 4,622 3,507 24.1
82 4,270 3,227 24.4
84 3,932 2,946 25.1
86 3,367 2,506 25.6
88 2,800 2,079 25.8
90 2,500 1,845 26.2
92 1,905 1,393 26.9
94 1,412 1,026 27.3
96 1,085 773 28.8
98 392 272 30.6
100 0 0 0.0

Table 5.6: Values concentration effect on processing time

After concluding that the concentration of non-null values in the input feature map contributes to better

execution time, sparsity level maintenance is also an important topic. Following the same performance

tests executed on table 5.6, for each sparsity level, the number of non-null output values was counted

for both stipulated concentration levels. The results are presented in table 5.7, regarding the number of

non-null output values, where a huge difference can be noted between the two cases. When the non-null

values are randomly distributed in the feature map, the number of non-null output values greatly increases

compared to the input. On the other hand, with the non-null input values fully concentrated, the number

of non-null output values increase registered is quite inferior.
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In summary, the non-null input values concentration is a relevant metric, since with higher concen-

tration levels, not only the processing times obtained are lower but also the number of generated non-null

output values is much smaller. The substantial increase in the number of non-null values compromises

the use of the Voting block in the next layer, since lower sparsity levels do not favour the adoption of sparse

convolutions to process the data. Together with the number of non-null input values, the level of concen-

tration should also be considered in order to verify if the use of the voting convolution will be advantageous

over the tradition mechanisms.

Sparsity
(%)

Concentration
(0%)

Concentration
(100%)

Output
values

Increase
(%)

Output
values

Increase
(%)

80 232,103 342.7 53,372 1.8
82 219,792 365.8 48,082 1.9
84 206,322 391.9 42,782 2.0
86 194,557 430.1 37,472 2.1
88 182,550 480.3 32,181 2.3
90 160,121 510.8 26,870 2.5
92 137,995 558.0 21,580 2.9
94 110,307 601.3 16,232 3.2
96 83,416 695.5 10,905 4.0
98 43,480 729.3 5,515 5.2
100 0 0.0 0 0.0

Table 5.7: Output values increase ratio

5.2.4 Null-weights processing optimization

In sub-section 3.3.4, it was described that the pipeline processing mechanism can be optimized by

removing the instructions associated with the filter’s null weights. According to the formula presented in

3.19, the calculation can be ignored if the weight is equal to zero, meaning that the value stored in the

output memory does not need to be read, neither the write operation needs to be performed posteriorly.

From that, one more set of performance tests was carried out to evaluate how the processing time is

optimized in the presence of zero weights in the filter. For each test, a 3x3 filter was used, and the values

of the nine weights were manipulated to verify the influence of the number of zero weights in the execution

time.

Figure 5.15 shows a graph with a total of eleven lines and the description of each one below in the

legend. As detailed in sub-section 4.2.3 through the code 4.10, a zero weight optimizes the processing as

the corresponding instruction can be removed from the pipeline. With the increase in the number of zero
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weights in the filter, the processing time evolution for each sparsity level can be analyzed from the graph.

Once again, to separate each performance test performed on the Voting block, the non-null values were

randomly distributed in the input feature map according to the specified sparsity level, and the processing

times were measured for each situation. The results indicate that null weights have also a good impact

on the processing time whatever the sparsity level of the input data. For instance, although the gray line

registers higher processing times than the Convolutional Module (black line), it becomes faster when the

number of zero weights is greater than five.

Figure 5.15: Null weights effect on processing time

5.2.5 Strided operation boost

The level of customization provided to the user enables both the specification of the padding and stride,

according to the use case presented in figure 3.30. While introducing padding into the voting scheme-

based convolution is a simple operation, the integration of stride to a sparse convolution is subject of

study and promotes another set of performance tests on the Voting block. The two value options (1 and

2) that the user is able to specify for the stride parameter covers most of the scenarios and interesting

performance differences can be identified from the tests executed. Table 5.8 presents, for each stride

value and sparsity level, the measurements of both processing time and number of non-null output values

generated. When a stride of two is defined, although the output size is half of the input, the sparsity levels

are about the same as the ones obtained with a stride of one, since either null and non-null values are

”discarded” while performing a strided convolution.
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Another important aspect is the difference in processing time between the operation with a stride of

one and a stride of two. The results from table 5.8 indicate that, when the convolution is performed using a

stride of two, the processing time consumed by the Voting block is reduced. This difference can be justified

by the fact that, while with a stride of one all the input feature map regions need to be convolved with the

filter, with a stride of two, some rows and columns are ”discarded”. As a result, the communication with the

output memory is reduced since fewer values need to be read and written. Contrary to the Convolutional

Module, the Voting block leverages from the strided operations as each pipeline iteration is optimized and

less time is allocated for each non-null input value processing. The Convolutional Module, in turn, needs

to read all the input values and equally perform the cascade operations, so no time reduction is achieved

when the user specifies a stride of two.

Input sparsity
(%)

Stride = 1 Stride = 2
Time
(µs)

Output
values

Output sparsity
(%)

Time
(µs)

Output
values

Output sparsity
(%)

80 3,507 53,372 79.6 1,378 12,845 80.4
82 3,227 48,082 81.6 1,266 11,665 82.2
84 2,946 42,782 83.7 1,156 10,420 84.1
86 2,506 37,472 85.7 989 9,043 86.2
88 2,079 32,181 87.7 881 7,667 88.3
90 1,845 26,870 89.8 714 6,488 90.1
92 1,393 21,580 91.8 585 5,046 92.3
94 1,026 16,232 93.8 441 3,932 94.0
96 773 10,905 95.8 285 2,490 96.2
98 272 5,515 97.9 121 1,245 98.1
100 0 0 100 0 0 100

Table 5.8: Strided voting convolution performance test

5.2.6 PointPillars

To extend the validation of the Voting block hardware implementation, the PoinPillars model was cho-

sen as a case study to verify the advantages of the voting scheme-based convolution. In addition of being

a state-of-the-art model in 3D object detection, as described in section 2.2.1, the model meets the require-

ments for the Voting block integration. As one of the critical requirements is the position of the non-null

values in the feature map, that information can be accessed through the data structure that composes the

Pillar Index from the PFN stage. Furthermore, the point cloud representation in a pseudo-image ensures

high levels of sparsity for 2D data processing, which is ideal for evaluating the performance of a sparse

convolution.

Table 5.9 shows the convolutional blocks architecture in the PointPillars’ backbone stage, specifying
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the number of filters and channels, both the feature maps and filters dimensions, and the stride and

padding parameters for each convolution. Although from the backbone architecture, three deconvolution

blocks together with a concatenation layer can be also identified, the table only presents the existing

convolution layers, since the Voting block just performs convolutions. While all convolutions are carried

out with a kernel size of three and padding of one, only the first convolution layer of each block is performed

with a stride of two.

Stage Layer Type Channels Filters IFM OFM Kernel S P

Backbone

Block1

Conv0 64 32 512 256

3

2

1

Conv1 32 32 256 256
1Conv2 32 32 256 256

Conv3 32 32 256 256

Block2

Conv0 32 32 256 128 2
Conv1 32 32 128 128

1
Conv2 32 32 128 128
Conv3 32 32 128 128
Conv4 32 32 128 128
Conv5 32 32 128 128

Block3

Conv0 32 64 128 64 2
Conv1 64 64 64 64

1
Conv2 64 64 64 64
Conv3 64 64 64 64
Conv4 64 64 64 64
Conv5 64 64 64 64

Table 5.9: PointPillars’ backbone convolutional blocks

Considering that the PFN output data has high levels of sparsity, it is also relevant to analyze the

sparsity evolution across the convolutional layers of each backbone block. From this analysis, it is possible

to determine the layers where the Voting block integration is appropriate and later evaluate its performance.

Since the sparsity level is the main criterion that defines whether the Voting scheme-based convolution

should be applied or not, in the PointPillars software version, the ratios between null and non-null values

of the feature maps from each layer were identified. Considering that the number of null and non-null

values presented in each feature map depends on the frame being processed at the moment, a frame

with the highest possible number of non-null values was purposely chosen as a reference. According to the

PointPillars model specification, for each one of the 64 output channels from the PFN stage, the number

of non-null values can vary between 2k and 12k. Assuming the worst case, 12k non-null values in each

channel added together result in the 768,000 number shown in table 5.10.

The sparsity levels decrease across the layers, meaning that the number of non-null values grows as

more convolutions are applied to the feature map, due to the dilation phenomenon in convolutions. In
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addition to each convolution negatively affecting the sparsity level, the use of positive bias has also a great

impact, as all feature map values need to be added to the bias at the end of each convolution, which may

possibly turn all values into non-nulls. Following the performance tests presented in figure 5.14, sparsity

levels below 89% do not favour the use of the voting convolution, therefore only the first layer of block 1 is

a good candidate for voting-based convolutions.

Non-null values Null values Sparsity
PFN 768,000 16,009,216 0.95

Block1

Conv0 293,601 1,803,551 0.86
Conv1 440,402 1,656,750 0.79
Conv2 734,003 1,363,149 0.65
Conv3 775,946 1,321,206 0.63

Block2 256,901 267,387 0.51
Block3 138,936 123,208 0.47

Table 5.10: Backbone layers’ sparsity for the worst case, i.e. each channel with 12k non-null values

To prepare the data for the different sparsity level scenarios, several frames were selected from the

Kitti dataset [61]. Figure 5.16 presents the frames’ representation in a black-and-white format to better

distinguish the number of null values in each one. The non-null values are represented with white pixels

while the null values are represented with black ones. From each sub-figure, it is possible to recognize

the captured scene and also the substantial difference in the number of values that need to be processed

between the feature map with the highest 5.16a and lowest 5.16f sparsity level.

(a) ≈2k values, sparsity=0.992 (b) ≈4k values, sparsity=0.984 (c) ≈6k values, sparsity=0.977

(d) ≈8k values, sparsity=0.969 (e) ≈10k values, sparsity=0.961 (f) ≈12k values, sparsity=0.954

Figure 5.16: Test frames with different sparsity levels
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Considering the range of non-null values for each of the 64 feature maps from the PFN, several tests

were carried out to evaluate the Voting block performance when processing only one of the feature maps.

The blue line on graph 5.17 presents the time consumption results of the voting block processing. From

the graph, there is a natural increase in time consumption with the increase of the number of values to be

processed by the block. As the range of non-null output values from the PFN stage for each feature map

is between 2k and 12k, the extreme points of the blue line are identified as best and worst-case scenarios,

respectively.

Taking into account that the size of the feature maps from the PFN has a dimension of 512x512,

the Convolutional Module always consumes the same time regardless of the feature maps sparsity level.

Similar to graph 5.14, the orange line has no inclination as the result of each performance test with

the Convolution Module was 2621µs. Given the possibility of integrating parallelism in the Convolutional

Module through the use of several Processing Elements, the gray arrows show the level of parallelism

required for the processing to be as fast as the one in the Voting block. Assuming a clock of 100MHz,

in the best-case scenario, the Voting block only consumes 69µs, meaning that the Convolutional Module

needs to allocate at least 38 PEs for the processing times to be approximately equal. Since for the worst

case, the Voting block consumes more time, only 8 PEs are required to decrease the processing time from

2621µs to 341µs.

Although the use of several PEs to introduce parallelism is possible, it requires extra resource con-

sumption, with the majority being DSPs. Some FPGAs provide a large number of DSPs, however, to build

a single PE with a 3x3 filter, nine DSPs need to be allocated. In addition, given the on-chip memory

data access ports limitations, namely the Block Rams, the processing of different feature map regions

simultaneously implies the data to be previously distributed into several block memories.
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Figure 5.17: Processing time comparison between dense and voting convolutions, for the selected frames
5.16

Considering the layers where the sparsity level favours the use of the voting scheme-based convolution,

and the concentration level of the non-null values in the frames 5.16, the integration in the first three layers

of block 1 was carried out, assuming a 200MHz clock on the board. In each test, the time consumed, by

the Convolutional Module and the Voting block, processing the feature maps associated with these layers

were measured. Regarding the Convolutional Module, the parallelism was set to maximum per filter to

improve performance, using all available DSPs. The results are presented in table 5.11, where it was

assumed the worst-case scenario, with each feature map from the PFN stage containing a total of 12k

non-null values to process.

The processing time improvements for the Voting Block, located in the last column, are only positive

for the first two layers, since the sparsity level decreasing across the layers increases the time consumed.

As a result, comparing with the software version, in the third layer of block 1 no improvement is verified

since the time to process is 10.9% longer. On the other hand, a big improvement can be seen in the first

layer of block 1, with the Voting block being 80.44% faster. This great improvement is achieved due to the

level of sparsity being higher in the first layer, and also because it is a strided operation, which helps the

Voting to achieve substantially lower execution times, as referenced in 5.8.
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Software Convolutional Module Voting Block
Time
(µs)

Time
(µs)

Improvement
(%)

Time
(us)

Improvement
(%)

B1-Conv0 874 654 25.18 171 80.44
B1-Conv1 321 262 18.32 247 23.05
B1-Conv2 321 262 18.32 356 -10.90

Table 5.11: Processing time comparasion betwen SW version, Convolutional Module, and Voting Block for
the first three layers of Block 1

As detailed throughout the voting block design 3.3 and implementation 4.2 sections, null weights

have a positive impact on the pipeline processing time during convolutions. With PointPillars being the

case study for the validation of the block, the value of parameters, in particular the weights, was also an

object of study. The hardware implementation of the convolution layers to execute the performance tests

was carried out assuming an 8-bit quantization for the parameters. For both floating-point and fixed-point

representation, the number of null weights was counted, and the results are presented in table 5.12.

The analysis shows that with the parameters’ quantization, the weights that are represented in floating-

point with the smallest values are converted to zero in the 8-bit fixed-point format. For the first layer of

block 1, which is the one with better sparsity conditions to integrate the voting scheme-based convolution,

a total of 2200 weights are transformed to zero value. Considering that the first convolutional layer applies

32 filters each with 64 channels, an average of one null weight per channel is verified, which benefits

even more the use of a Voting block to process the data from the PFN. In summary, if no weights were

converted to zero after quantization, the processing time results presented in table 5.11 would be slightly

higher.

As for feature map values, although the quantization process also converts some values to zero in the

16-bit fixed-point format, the position of the non-null values received by the Voting block does not predict

this conversion. As a result, all the non-null values positions stored in the pillar index structure are read

and the corresponding values are processed, so the quantization performed on the feature map values

had no effect on the processing time.
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Before quantization After 8-bit quantization
Non-null weights Null weights Non-null weights Null weights

Block1 46,080 0 41,697 4,383
Conv0 18,432 0 16,232 2,200
Conv1 9,216 0 8,492 724
Conv2 9,216 0 8,521 695
Conv3 9,216 0 8,452 764

Block2 55,296 0 50,543 4,753
Block3 202,752 0 165,712 37,040

Table 5.12: Null weight count after quantization
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5.3 Results summary

During this chapter, the tests performed on the Convolutional Module and the Voting block, as well

as the results obtained, were presented in sections 5.1 and 5.2. Although in each sub-section the results

of the validation and performance tests have been separately discussed, it is important to synthesize

them to concretely define the ideal applicability of both. With the presentation of Voting convolution as an

alternative to the traditional one, normally adopted in 3D object detection models, this section also refers

the guideline on the ideal conditions for the use of voting convolution.

The performance tests showed the flexibility achieved with the proposed architecture. Depending on

various restrictions imposed in terms of available resources, e.g., Block Rams and the number of DSPs, the

module was able to adapt the resource consumption and improve the performance up to 25% compared

to the software version. This performance was also evaluated through different levels of parallelism, both

in the application of several filters simultaneously, as well as with the use of more than one processing

element to perform a convolution. The time consumed was analyzed in detail, and it is possible to verify

that it is reduced up to 49% when the module has more resources at its disposal to speed up processing.

As a case study and final validation, the module was integrated into the PointPillars model. The tests

performed involved the replacement of two convolutional layers on the Backbone stage, and the detection

results reveal similarities between the software-only and hybrid versions. The data quantization in hardware

showed some influence on the detection scores, however, for the selected frames, the existing objects were

equally detected. Thus, the results obtained give good prospects for the integration in deep learning-based

models, while providing enough flexibility to build custom CNNs.

While the dense convolution is the base operation of the convolutional module, the voting scheme-

based convolution was implemented in the Voting block with the purpose of evaluating the potential of a

sparse convolution. This evaluation was performed by executing a set of tests on the block, varying the

data characteristics, i.e., sparsity level, concentration of non-null values, number of null weights, and also

changing the value of the stride parameter. Regarding the validation tests, the results showed the correct

functioning of the block, even when used to process dense data, i.e., images. The performance tests were

useful to understand which conditions favour the use of the Voting convolution and which conditions are

more suitable for the traditional one.

Using the dense convolution implemented in the convolutional module as a reference, the data sparsity

level was naturally the characteristic that had the most influence on the time consumed by the Voting

block, thus, being the most important factor determining when the use of the Voting convolution is more
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advantageous. The results presented showed that data with sparsity greater than 89% benefit from the

use of voting convolution, however, the remaining factors must be analyzed for each situation to conclude

which type of convolution is best suited. Starting with the influence of null weights on the processing time,

there was an almost linear reduction with the increase of null weights. Based on the results obtained, it

can be roughly deduced that each null weight reduces the processing time by approximately 10%, for 3x3

filters. The impact of a null weight is related to the ratio that one weight represents in the total number

of weights in a filter. For example, for a 5x5 filter, a null weight would reduce the processing time by

approximately 4% (1/25*100). On the other hand, for a 2x2 filter, the verified reduction would be around

25% (1/4*100).

Another factor that has an impact on the Voting block processing time is the concentration of non-null

values in the feature map. Although the tests performed represent the two extreme cases (0% or 100%

concentration), this is a difficult characteristic to assess. Through the case study, some frames were

visually analyzed in figure 5.16, however, it is not easy to define exactly the concentration level of the non-

null values. Using as a reference the tests with the non-null values completely dispersed, presented in table

5.6, the processing time of the pseudo-images was on average 15% lower, for the same sparsity levels. This

result shows that, in pseudo-images, the non-null values are somewhat concentrated in certain regions,

and a reduction in the processing time of about 15% can be expected when using the Voting convolution.

Last but not least, the value of the stride parameter also has a substantial impact on processing

time. Through the tests, for the same input data, a stride value greater than one helps to reduce the

processing time by about 55%. Together with the other factors mentioned before, all these conditions must

be considered for each scenario before deciding which type of convolution will bring the best performance.

For example, in a given convolutional layer, the input data may have a sparsity level that does not favour

the use of the Voting convolution (less than 89%), however, the operation may specify a stride of two, which

favours the voting convolution. If the convolution is with a stride of one, maybe the values are concentrated

in the feature map or some filter weights are null. All these factors have to be put into the equation, that

will tell if the Voting block will improve processing time, or the traditional convolution is still the best choice.
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In this last chapter, reflections on the work performed throughout the dissertation are presented in

section 6.1, followed by the suggestions for future work in section 6.2.

6.1 Conclusions

With the recognized importance of the LiDAR sensor in autonomous vehicles setups, a lot of LiDAR-

based algorithms for object detection have been published in the literature. Over the last few years, deep

learning-based models have revealed their potential in perception-type tasks, however, the need for dis-

tributed computing requires an efficient design of these models targeting resource-constraints platforms.

Given the need for a study focused on both efficient design and implementation of these models in hard-

ware, a convolutional module was developed as a customizable IP to implement CNNs in hardware.

The study conducted throughout this dissertation enabled answering the following research questions,

stated in the objectives.

1. What are the resource costs of building a convolutional module in hardware that is adaptable to the

requirements of 3D object detection models?

The convolutional module development shows that it is possible to improve the processing time and

energy consumption without significantly sacrificing the accuracy of themodels. By resorting to parallelism,

the module was able to accelerate the execution of these operations, however, more resources need to

be allocated. Starting with the minimum conditions to properly execute the convolutions, the minimum

number of DSPs required is set by the filter size, which means the allocation of only one processing

element. The parallelism integration requires the allocation of more processing elements, each requiring

the same number of DSPs.

Regarding the memory, the amount available on the target platform conditions the number of filters

applied simultaneously (the other form of parallelism). To enable the execution of a single convolution, the

memory required is defined by the amount of both input (IFM) and output data (OFM). The total memory

can be calculated considering the number of values from the feature maps and the size that each one

occupies in memory.

2. What are the characteristics of the data that influence the performance of sparse convolutions?
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The performance of sparse convolutions depends on the type of convolution and its implementation.

Although the sparsity level influences the performance of all types of sparse convolution, the proposed

hardware architecture for the voting convolution integrates processing optimization techniques targeting

the presence of null weights, spatially close non-null values, and operations with stride. Thus, all four of

these metrics influence the voting convolution performance.

3. According to the different possible variations in the data characteristics, what conditions favour the use

of sparse convolutions?

According to the investigation carried out during the tests, the four metrics mentioned above had

a significant impact on the voting convolution performance, as opposed to the traditional convolution

implemented in the convolutional module, which maintained its performance with the variation of these

metrics. Starting with sparsity, for levels above 89%, the voting convolution is faster than the traditional

one. Second, two-stride operations strongly favour the use of voting convolution, which is able to reduce

communication with the output data memory and reduce the processing time by 55%. Additionally, the

presence of null weights in the filters is also a point in favour of the voting convolution, as fewer operations

are performed for each non-null input value, leading to an almost linear reduction in processing time

for each null weight. Finally, the concentration of non-null values in the feature maps also benefits the

adoption of the voting convolution, which is able to reduce the computation cycles up to 30.6%.

4. Are there 3D models in the literature that meet the conditions for the adoption of sparse convolutions?

The study carried out throughout this dissertation has shown that the main criteria to evaluate whether

the sparse convolutions are applicable is the availability of the location of non-null values in a point cloud.

After studying the current state of the art in 3D object detection and classification models, it was possible

to identify that most of the models opted by restructuring the point cloud into 3D volumetric representa-

tions, where information about the location of non-null values is stored in specific data structures. This

information is critical for further stages of the pipeline, as it retains information either about the location of

the volumetric parts or the individual non-null values as seen in PointPillars, VoxelNet, and Second models.

5. For a real case scenario, what are the practical improvements in adopting a sparse convolution instead

of a traditional one?

The adoption of sparse convolutions, in particular the voting convolution, is mainly intended to reduce

processing time. For data with a high level of sparsity, the voting convolution is able to discard useless

operations related to null values from the feature map, and direct the processing to non-null values, where
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the relevant information is located. As a case study, the voting block was integrated with PointPillars for

validation of the hardware implementation and analysis. Due to the high level of sparsity, the performance

of the voting convolution in the first two backbone layers was superior to the traditional one, implemented in

the convolutional module. The use of voting convolution allowed to reduce the processing time by 80.44%

and 23.05% in the first and second layers, respectively.

6.2 Future Work

Several improvements can be implemented, and suggestions can be indicated to continue the work

developed. Regarding the convolutional module, the integration of parallelism through the allocation of

several PEs is conditioned by the limitation of data access ports of each memory block. As one Block Ram

only provides two ports, when several PEs are used simultaneously to process the same feature map, the

data has to be distributed across several block memories beforehand. During the module development,

this process was not automated, requiring the manual data distribution to take advantage of the parallelism.

Thus, one of the suggestions for future work would be to analyze a solution to this limitation, which could

involve modifying the implemented parallelism by using several PEs to process the same region of the

feature map.

Although the functionalities implemented in the convolutional module cover the requirements of most

convolution layers, a few more can be integrated to build an even more complete solution. As seen in

several 3D object detection models’ architecture, the batch normalization technique is present in some

layers. This feature was not included in the developed module, however, its integration would increase

the applicability in more cases. Moreover, the deconvolution operation was also identified. Although the

purpose of the convolution module was to perform convolutions, the implementation of the deconvolution

should be considered given the similarities of both operations. Additionally, the implementation of the

entire PointPillars model in hardware using the developed module would be an advantage for a broader

analysis of convolutions in hardware.

Regarding the Voting block, the potential of voting convolution was clearly demonstrated through the

performance tests carried out and from the integration into the PointPillars model. Given the usefulness of

sparse convolutions in CNNs, another idea for future work would be the integration of the Voting convolution

in the convolutional module. Combining the two architectures would bring even more flexibility to the

module, as the user would be able to choose which type of convolution to use for each instantiation.
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