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Abstract: The airborne pathogen Mycobacterium tuberculosis is responsible for a present major public
health problem worsened by the emergence of drug resistance. M. tuberculosis has acquired and
developed streptomycin (STR) resistance mechanisms that have been maintained and transmitted
in the population over the last decades. Indeed, STR resistant mutations are frequently identified
across the main M. tuberculosis lineages that cause tuberculosis outbreaks worldwide. The spread
of STR resistance is likely related to the low impact of the most frequent underlying mutations
on the fitness of the bacteria. The withdrawal of STR from the first-line treatment of tuberculosis
potentially lowered the importance of studying STR resistance. However, the prevalence of STR
resistance remains very high, could be underestimated by current genotypic methods, and was found
in outbreaks of multi-drug (MDR) and extensively drug (XDR) strains in different geographic regions.
Therefore, the contribution of STR resistance to the problem of tuberculosis drug resistance should
not be neglected. Here, we review the impact of STR resistance and detail well-known and novel
candidate STR resistance mechanisms, genes, and mutations. In addition, we aim to provide insights
into the possible role of STR resistance in the development of multi-drug resistant tuberculosis.

Keywords: antibiotic; multidrug-resistance; drug-resistance; resistance level; mutations; lineages;
Mycobacterium; streptomycin; tuberculosis

1. Introduction

Tuberculosis (TB) is an airborne transmissible infectious disease caused by the bacteria
Mycobacterium tuberculosis. In 2020, over 10 million people developed TB, and more than
1.5 million died of it [1]. Eight countries account for two-thirds of the total number of
new TB cases (India, China, Indonesia, the Philippines, Pakistan, Nigeria, Bangladesh, and
South Africa). Drug resistance (DR) is pointed to as a major threat in the control of TB, likely
impairing the goals established for 2030 by the World Health Organization (WHO) END
TB strategy. In 2020, 132,222 rifampicin resistance/multi-drug resistant (RR/MDR) and
25,681 extensively drug resistant (XDR) or pre-XDR TB cases were reported [1]. Therefore,
understanding the multitude of factors contributing to DR and MDR TB, and how to
overcome them, is an urgency.

DR TB has been a problem for 73 years since the identification of the first streptomycin
(STR)-resistant M. tuberculosis strains [2]. Starting from 1994, the Global Project on Anti-TB
DR Surveillance has collected data on DR TB cases. The treatments of infections with
drug-resistant M. tuberculosis strains are long and toxic; therefore, adherence is often poor,
which favors DR. The problem then aggravates in a vicious cycle with the acquisition of
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more resistance mutations and transmission of the resistant strains [1]. The emergence of
MDR and XDR strains has amplified the DR problem because these are sometimes highly
transmissible and particularly hard to treat, hampering the success of treatment for up
to 50% [3,4]. Until 2018, second-line antibiotics, such as fluoroquinolones, and injectable
aminoglycosides, were recommended for 18 to 20 months to treat MDR and XDR infections.
In 2019, the WHO published new guidelines replacing these long-term regimens for shorter
oral bedaquiline-based regimens (9–12 months). In some cases, surgery may be used as
adjunctive therapy for MDR or XDR TB patients [5–9]. Nevertheless, in cases where the
new short oral–regimes cannot be applied, a recommended alternative is the administration
of the injectable second-line drug STR [10,11].

2. Seventy Years of Streptomycin Resistance in Tuberculosis, Where Do We Stand?

STR is an antibiotic from the aminoglycoside group isolated from the actinomycete
Streptomyces griseus [12]. It was described in 1944 as an efficient antibiotic against M. tu-
berculosis [13,14]. During the first 3 to 4 years after its discovery, STR was used as a
monotherapy regimen to treat TB. However, with the emergence of resistant strains, a
multi-therapy regimen was introduced, comprising STR in combination with INH and
para-aminosalicylic acid (PAS), but once again, DR was reported [14,15]. STR was also
part of the first short-course TB therapy, which combined this drug with three first-line
antibiotics INH, RIF, and PZA. However, later, due to their debilitating side effects and
resistance development when used as monotherapies, STR and PAS were substituted with
another first-line antibiotic, ethambutol (ETH) [14,16,17]. From 1991, STR was only used in
the so-called category II treatment, which consisted of the addition of STR to TB treatment
after the failure of first-line therapy. Nowadays, category II treatment is not recommended,
and STR has limited clinical application due to the high incidence of resistant strains.
However, it is still in use in some cases as a substitute for amikacin against MDR-TB in the
longer regimens or as an affordable alternative for low resource settings [10,13,18].

Although STR is currently used less in TB treatment, STR-resistant strains are still
common among different M. tuberculosis lineages spread worldwide and still frequent in
different parts of the globe (Figure 1), including Europe [19]. In Germany, monoresistance to
STR was the most prevalent form of DR, and also, the most frequent resistance among MDR
strains [20]. In Portugal, mutations in STR target genes were found in isolates from the MDR
Lisbon family genetic cluster Q1, being, furthermore, considered as a surrogate marker for
Q1 isolates [21,22]. Moreover, between 2007 and 2013, STR resistance accounted for 82.7% of
DR TB cases diagnosed in a pulmonary TB cohort from Porto, north of Portugal [23–25]. In
a retrospective study with patients from China, STR resistance was found at high frequency,
present in 64.9% of the cases, and it was also highly prevalent in Mexico, Iran, and other
endemic TB regions [26–29]. Different studies with drug-resistant M. tuberculosis clinical
isolates from Myanmar and Thailand, two TB high burden countries, also reported a high
incidence of STR resistance [30–32]. Moreover, considering the incomplete knowledge of all
the mutations conferring STR resistance, it is likely that the prevalence of STR resistance is
being underreported, as several studies are based solely on genotypic data. STR resistance
is widely spread, even though it is, nowadays, less frequently used to treat TB. Although
the exact reason for the high incidence of STR resistance is not well established, it is likely
a long-term consequence of its use as a monotherapy decades ago, before the introduction
of combined therapy with more effective antibiotics, like RIF and ETH [33–35].
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Figure 1. Circular visualization of data from Manson et al. [19] regarding the computationally predicted drug resistance
profile of the M. tuberculosis clinical isolates from the global regions most represented in the study [19]. The number of
analyzed genomes is represented in the inner ring and the relative percentage in the outer ring. The connection between
predicted drug resistance and geographic region is shown by colored ribbons. Abbreviations: isoniazid (INH), rifampicin
(RIF), streptomycin (STR), ethambutol (EMB), ofloxacin (OFL), kanamycin (KAN), ethionamide (ETH), Pyrazinamide (PZA),
Eastern Europe (E. Europe), Southern Africa (S. Africa), Eastern Asia (E. Asia), Northern Europe (N. Europe), Eastern Africa
(E. Africa), Southern Asia (S. Asia), Western Africa (W. A.), Western Europe (W. E.).

Most importantly, STR resistance is also frequent in settings with a high MDR and
XDR TB burden, with a series of studies highlighting its possible contribution to the
development of MDR/XDR TB. A whole genome-based study placed STR resistance as
one of the precursors of MDR in TB [19]. In another study, this fact was also highlighted
because it was found that the order of resistance acquisition was first isoniazid resistance,
followed by rifampicin and streptomycin, and only then resistance to other drugs [36].
Additionally, in Vietnam, STR resistance was pointed as a possible prerequisite for “Beijing
strains” to transmit and develop MDR [37,38]. Resistant mutations in the three STR target
genes were also associated with MDR in studies conducted in Poland and Zambia [39,40].
Furthermore, in the most lethal XDR TB outbreak of an epidemic clone in South Africa,
which started in 2005, the first step towards XDR-level drug resistance was the acquisition
of INH and STR resistance, acquired 50 years prior to the Tugela Ferry outbreak [41].
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Understanding how STR resistance is connected to the development of MDR/XDR TB
is fundamental.

All in all, STR resistance may still subsist as a clinically relevant problem, calling for
more studies in the field.

3. Emergence of Streptomycin-Resistant Strains
3.1. Mode of Action of Streptomycin

Like other members of the aminoglycoside group, STR interacts with bacterial cell sur-
faces through ionic bonding to access the periplasmic space [13,42]. It is then transported
into the cytoplasm by membrane channels created by proton motive forces, like electron
transporters. Once inside the cytoplasm, STR binds to the 30S ribosome subunit [13,42].
This binding occurs upon the establishment of chemical interactions between the drug,
different regions in the 16S rRNA, and the K45 residue in the S12 ribosome protein
(Figure 2) [42–44]. These interactions block elongation, inhibit initiation, and promote
the misreading of codons, thus hampering protein synthesis and translational proofreading
and ensuring the bactericidal effect [42,44]. Nonetheless, aminoglycosides are known to
be less active under anaerobic conditions, such as the ones commonly found within the
granulomas of TB patients [42,44].
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Figure 2. Inhibition of protein synthesis through the interaction of STR and 30S ribosome subunit. Schematic representation
on STR entry in the cell and binding of STR to the 30S ribosomal subunit (A). Schematic representation of the inhibition
of protein synthesis after the interaction of STR with the 30S subunit (B). Secondary structure of 16S rRNA highlighting
relevant helices (C).

3.2. Molecular Mechanisms of Streptomycin Resistance
3.2.1. Streptomycin Resistance Mutations in rpsL, rrs, and gid

Resistance to STR is primarily associated with mutations in the M. tuberculosis genome
occurring in the genes rpsL, rrs, and gid. These genes encode for the S12 protein, 16S rRNA,
and the S-adenosyl methionine dependent 7-methylguanosine methyltransferase, respec-
tively [28,39,45–51]. The most-reported STR resistant mutations occur in codons 43 and
88 of the rpsL gene or in the surroundings of nucleotides 530 and 912 of rrs. The mutation
Lys43Arg in rpsL was frequently found among the so-called “Beijing strains”, a lineage 2
genotype often associated with MDR and XDR outbreaks. Several STR resistant variants
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commonly identified in gid are non-synonymous SNPs. Furthermore, a frameshift muta-
tion in this locus can also contribute to the development of STR resistance [21,32,52–54].
In a recent study, novel candidates of STR resistance mutations not listed in the major
DR mutation databases were identified [23]. Interestingly three of them, gid (Ile11Thr,
Cys191Trp, and Val112Gly), were identified in inferred transmission clusters containing
only isolates that were phenotypically resistant to STR, suggesting high transmissibil-
ity [23]. Furthermore, another recent study also proposed that the substitution of Val for
Gly in the amino acid 112 of gid was associated with STR resistance [55]. The incomplete
knowledge on all mutations that confer STR resistance is likely causing underreporting of
the DR levels in studies only based on genetic analysis. On the other hand, one variant
in gid, Leu16Arg, was incorrectly described in the past as a resistant conferring mutation
before different studies found that it was present both in STR susceptible and resistant
clinical isolates from the M. tuberculosis LAM sub-lineage of lineage 4. Similarly, other
STR polymorphisms were also described as markers for lineage 2 sub-lineages commonly
known as “Beijing”. For example, the gid mutations Glu92Asp, Ala205Ala, and Val110Val
were found regardless of the STR status in all clinical isolates from sub-lineages of lineage
2 [49,54–58]. Overall, these results suggest that the gid gene is likely involved in lineage or
sub-lineage evolution in addition to its relevance in DR [21,49,51,55]. Similarly, the 491 c > t
mutation in rrs was reported as a marker of the L4.3.2 (LAM3) genetic taxa within the
LAM sub-lineage of lineage 4. Table 1 summarizes the mutations described in the literature
to be associated with STR resistance in the genes rpsL, rrs, and gid. Of note, some of the
indicated polymorphisms were only recently identified and associated with STR resistant
M. tuberculosis isolates; it is possible that other mutations conferring STR resistance are still
to be uncovered.

Table 1. List of mutations in rpsL, rrs, and gid associated in the literature with STR resistance.

Gene Name Polymorphism (Nucleotide or Amino Acid Change) Suggested Reference

rpsL

Lys88Arg, Lys43Arg [59]

Arg86Pro Arg86Tyr, Arg9His, Gly84Val, Lys43Thr, Lys51Asn, Lys88Gln,
Lys88Met, Thr40Ile, Thr41Ser, Val52Gly, Val87Leu, Val93Met [60]

Arg86Gly [30]

Gly118Asp [55]

rrs

190G/A, 277G/C, 427G/C, 462C/T, 513C/T, 514A/C, 516C/T, 517C/T,
628G/C, 799C/T888G/A, 905C/A, 905C/G, 906A/G, 907A/C, 907A/T,

908A/G
[60]

644A/G [55]

gid

102del, 103_104insG, 107del, 115del, 136del, 157del, 225_226insT,
294_295insAC, 297_298insA, 326del, 351del352_353insG, 366_367del,

386del, 390del, 400_401insT, 446_447insA, 450del, 452del, 455del,
471del, 519_520insA, 554_555insG, 559_572del, 58_59insT, 601del

[61]

Leu108Arg, Leu35fs *, Ala200Glu, Cys191Arg, Gly73Glu, Cys191Arg,
Gly73Glu, Leu50Arg, Glu60fs *, Arg39fs *, Arg118fs *, Arg217Gly,
Leu94Pro, Asp67Gly, Pro84Leu, Gly73Ala, Leu145Phe, Val77Gly,

Val135fs *, Ser149Arg, Leu90Phe, Gly214Ala, Ala119Thr; Ala19Ser,
Arg158Leu, Val66Leu, Arg137Gln, Ala134Glu, Ala138Val

[61]

259C/T
[59]

Pro75Thr

Arg47Gln, Pro84Ser, Met104dup, Gly117Arg, Lys163Asn, Ile11Thr,
Cys119Trp, Cys191Phe, Ser70Arg, Ala141Glu [23]
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Table 1. Cont.

Gene Name Polymorphism (Nucleotide or Amino Acid Change) Suggested Reference

Ala80Pro, Tyr195His [21]

His168Tyr, Gly208Val [30]

Ala19Gly [55]

Met218Val [55]

Val110fs [62]

Gly13Arg, Leu101Phe [63]

243insGC, 112delC, 254delA, 347delG, 372delG [55]

* Frameshift mutation (fs).

It was previously suggested that different mutations in rpsL, rrs, and gid trigger
different levels of STR resistance. For example, the polymorphism Lys43Arg in the
rpsL gene was associated with high resistance levels (minimum inhibitory concentration
(MIC) > 10 µg/mL), mutations in the rrs locus mapped in the 530 loop and the vicinity
of the nucleotide 912 were associated with intermediate to high resistance levels, while
several gid polymorphisms have been correlated with low-level STR resistance (MIC circa
1–2 µg/mL) [11,55–57]. Nevertheless, data from recent studies supported that mutations
in gid can also be found in strains with high resistance levels [23,58]. It is likely that the
different levels of STR resistance depend on the location of the mutation on rpsL, rrs, or gid
genes, on the genomic context of the isolate, and possibly other factors.

3.2.2. Other Mechanisms Conferring Resistance to Streptomycin

In addition to the resistant variants described on rpsL, rrs, and gid, the STR bacteri-
cidal effect can be avoided by other mechanisms collectively referred to as general DR
mechanisms, some of which can be highly effective in Mycobacterium. Mutations affecting
these mechanisms can decrease the susceptibility to different drugs (Figure 3) and are, thus,
classified as unspecific resistant variants.

One of these mechanisms that is effective in preventing the activity of aminoglycosides
implicates the phosphotransferase system. It was recently shown that the gene Rv2004c,
from the dosR regulon, has mild phosphotransferase activity on STR. When analyzing
the effect of STR phosphorylation, it was found that Rv2004c could mediate low levels of
STR resistance [64]. Another STR resistance mechanism is likely related to lipF (Rv3487c),
which encodes for a lipase with phospholipase C and carboxylesterase activities. The
reduced expression of this gene is thought to contribute to the development of resistance
to STR [65]. Moreover, the M. tuberculosis homocysteine synthase MetC (Rv3340), a key
enzyme of the methionine synthesis pathway, was hypothesized to promote STR resistance.
Indeed, overexpression of metC in an M. smegmatis mutant was shown to mediate STR
resistance [66]. The transcriptional regulator whiB7 was also involved in mechanisms of
aminoglycoside resistance, including STR [67]. Mutations identified in the 5’ untranslated
region of whiB7 were associated with STR resistance, possibly due to the overexpression
of Tap efflux pump (Rv1258), a mechanism strongly associated with tuberculous DR [67].
Interestingly, exposure to STR was shown to induce the expression of the whiB7 gene [68,69].
In addition to Tap (Rv1258), the expression of whiB7 can trigger the activation of other
efflux mechanisms (like Rv01473) and other genes involved in the M. tuberculosis DR, such
as eis (Rv2416c) and erm, potentially conferring resistance not only to STR but also to other
antibiotics. In fact, cross-resistance to STR and Kanamycin was described in M. tuberculosis
mutants containing resistant variants in the 5’ untranslated region of whiB7 [67]. It was
also highlighted that the overexpression of some cell wall and hypothetical proteins, like
Rv1860, Rv1980c, Rv2140c, Rv1636, and Rv1926c, could be involved in STR resistance [70].
Recently a computational study evaluating a large collection of MDR M. tuberculosis from
Peru associated the gene ppsA to STR resistance and other DRs. This association is prob-
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ably linked to the contribution of ppsA (Rv2931) in the synthesis of PDIM (phthiocerol
dimycocerosate) [51].
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Collectively, the studies discussed above highlight that besides the resistant mutations
found on rpsL, rrs, and gid genes, other mechanisms involving the cell wall permeability
process and efflux pump proteins could also be implicated in the emergence and fixation of
STR resistant M. tuberculosis strains, as proposed previously [55]. Therefore, to better detect
and understand STR resistance, it will be relevant to fully uncover the STR “resistome” in
M. tuberculosis.

3.3. M. tuberculosis Mechanisms Associated with Tolerance to Streptomycin

A biological process that gained increasing attention in the last years in the context of
TB treatment failure is antimicrobial tolerance. Phenotypic drug tolerance is likely caused
by subpopulations of persistent cells, which are non-growing bacteria capable of inacti-
vating important metabolic pathways to allow survival under stress conditions. Although
the two definitions might be part of a continuous phenotypic spectrum, it is suggested
that drug tolerance differs from antimicrobial resistance because drug-resistant bacteria
can replicate during antimicrobial exposure while drug-tolerant bacteria stop growing [71].
Nonetheless, drug tolerance has the potential to be clinically relevant because of its pos-
sible association with relapse cases after the end of antimicrobial treatment [72–74]. It is
important to highlight that prolonged TB treatments often trigger alterations of M. tuber-
culosis metabolic pathways and that these same pathways might mediate antimicrobial
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tolerance. Importantly, an in vitro study showed that the reference laboratory M. tubercu-
losis strain (H37Rv) developed tolerance to different antibiotics, including STR, through
a mechanism requiring the sigma B factor [75]. Sigma factors are known to regulate M.
tuberculosis slow-growing states and survival under stress conditions [76,77]. Furthermore,
the Toxin Antitoxin (TA) systems were associated with these phenotypes in bacteria, in-
cluding M. tuberculosis [78–82]. Interestingly, it was reported that exposure to STR results
in the differential expression of many M. tuberculosis TA genes, including vapC2, vapC32,
mazE4, mazE5, mazE7, vapB38, vapC38, and vapB19 [83]. TA genes possibly contribute to
increased survival in response to stress due to a shut-down of the translational mechanism,
slow-down of metabolic processes, and promotion of a dormant state of the bacilli [83].
This fact could be particularly important as STR affects the translational capacity during
protein synthesis. Another gene putatively involved in antimicrobial tolerance is glpK.
In vivo studies suggested that clinical isolates containing glpK frameshift mutations in a
7C homopolymeric sequence could more rapidly switch to a reversible drug-tolerant state
in the presence of different anti-TB drugs [84,85]. Recently, one of these mutations in the
7C homopolymeric sequence of glpk was also found in clinical isolates from a Portuguese
cohort of pulmonary TB patients, which may be associated with tolerance to STR [23]. How-
ever, the contribution of glpk mutations to drug tolerance remains debatable [84,86–89],
and further functional studies are needed to clarify its possible role.

4. Streptomycin-Resistant Mutations and Fitness Costs
4.1. Does Streptomycin Predisposes M. tuberculosis to Other Drug Resistances?

The hypothesis that STR resistance can predispose to resistance to other drugs has
been raised in different studies [19,37,38,90]. Research with Escherichia coli showed evidence
pointing to a beneficial role in the combination of mutations associated with resistance
to STR and RIF [91,92]. In these studies, it was shown that double-resistant STR and
RIF E. coli can compensate for the fitness cost of drug resistance mutations faster than
single-resistant bacteria [91,92]. Interestingly, attention has been called to the fact that the
STR resistant bacterial populations are more likely to have mutations that compensate for
fitness costs than RIF resistant ones [92]. This observation constitutes a potential problem
as the emergence and fixation of resistant variants with low fitness cost could mitigate
the cost of other drug-resistant mutations and consequently link with the acquisition of
other DRs [93,94]. Indeed, studies based on the phylogenetic analysis of the whole genome
sequence of clinical isolates have placed STR resistance as one of the early precursors in
the order of acquisition of polyresistance in M. tuberculosis [19,36–39].

The fact that several studies show that, in TB, cross-resistance combining STR with
other first and second-line antibiotics is common [11,34,67,95–99] could be due to the early
introduction of STR in the history of antibiotic use and the current prevalence of specific
STR mutations with low fitness costs. However, considering the reported studies gives
strength to the hypothesis that isolates that become STR resistant could better compensate
the cost of mutations conferring resistance to other antibiotics, eventually becoming more
predisposed to polyresistance. Further studies are needed on this topic as the ability to
forecast the evolutionary success of resistant mutants would be key to controlling the
emergence and dissemination of antibiotic resistance [100].

4.2. Fitness of M. tuberculosis Lineages with Streptomycin-Resistant Mutations

It is conceivable that the impact of a specific resistance mutation in the fitness of an
isolate can be influenced by its genomic context. In a cohort from a rural area in Vietnam,
the transmission clustering of the L2 “Beijing genotype” was significantly more frequent if
the infecting strain was resistant than if it was susceptible to STR, but the same was not
observed among L1 strains. So, resistance to STR seems to have an advantageous fitness
cost among the L2 “Beijing genotype” and a different fitness effect across genotypes [38]. A
higher proportion of STR resistant mutations among the L4, when compared to L1, was also
demonstrated in the other Vietnamese regions. In a national survey performed in China, it
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was found that LAM was the most transmitted sub-lineage among the L4 genotype and
was strongly associated with STR resistance [101]. Yet, the fixation of STR resistance was
shown to be higher for L2 “Beijing” than for L4 strains [37]. These works suggest that
the fitness effect of STR resistance could vary among different M. tuberculosis lineages.
However, the contribution of the type of DR mutation or compensatory mechanism is
still elusive and might influence or modulate the fitness effect, ultimately affecting the
development and clinical use of new and repurposed drugs [102].

Overall, the high frequency of STR resistance may result from the high prevalence of
resistant mutations in STR target genes that impose low or no fitness costs for the bacteria,
thus allowing an efficient transmission and persistence in the population. As an example,
M. tuberculosis bacilli harboring Lys43Arg and Lys88Arg mutation in rpsL showed similar
relative fitness compared with susceptible strains [103]. These facts probably explain
why the substitutions Lys43Arg and Lys88Arg are frequently found in vivo while other
variants on rpsL are less frequently found. In contrast, other polymorphisms in rrs and
rpsL have been shown to reduce translation efficiency and consequently fitness of the
pathogen [104,105]. To date, the fitness effect of gid resistant mutations has been poorly
explored [105]. However, the strong association of gid resistant mutations with widely
spread genotypes is also suggestive of a neutral or even advantageous impact on the
fitness of the strains. An example of the high transmission of gid mutations conferring
STR resistance is the presence of the gid polymorphisms Val100fs and Ala80Pro in different
MDR outbreaks (denoted as MDR clusters M and Q1, respectively) [21,106]. Recently, we
found that STR resistant clinical isolates with gid mutations were not affected in fitness and
were transmitted in different inferred transmission clusters in the North of Portugal [23].
It is possible that compensatory mutations might play a role in the transmissibility and
persistence of these STR resistant strains in the population, even in the absence of antibiotic
pressure. It has been previously shown that the polymorphism Ile1106Thr in the rpoB
and several others in rpoA can restore the fitness of STR resistant strains. Amino acid
changes in rpoB and rpoA are also involved in the resistance and compensation of RIF
resistance [104]. The report that mutations in rpoA/B can compensate the cost of both
STR and RIF resistance can be seen as another example of the positive epistatic interaction
between resistance to different drugs used to treat TB that is possibly relevant in the
evolution towards MDR. This dual effect can probably explain the high frequency of STR
resistance among MDR clinical isolates. Importantly, the existence of M. tuberculosis isolates
with low fitness cost DR is worrisome as these bacteria can continue to evolve along with
the transmission between hosts, potentially leading to higher resistance. In addition to
rpoA/B, studies in other bacteria highlight rpsD and rpsE as potentially playing a role in the
compensation of STR resistance costs [104,106,107]. Typically, the amino acid mutations
in rpsD and rpsE were shown to occur after stress, affecting translation efficiency [108].
Interestingly, it was predicted in silico that rpsE can interact with rpoB [109]. The study also
proposed that rpsL, one of the main targets of STR, is also involved in a possible association
between the gene rpsD and the dormancy of RIF resistant “Beijing strains” [109]. It has been
proposed M. tuberculosis uses this dormancy state to resist the antimicrobial effect. Rv0516c,
murA, cobL, cyp137 (Rv3685c), and fadD34 were described as having direct epistasis with
the polymorphisms rpsL:88 conferring STR resistance on Ural M. tuberculosis sub-lineage.
Similarly, cfpA fadE36, lppP, and PE-PGRS family protein Rv0578 were linked with the
mutation rpsL:43. These interactions were identified as prerequisites for the development
of the resistance [110]. This fact shows that the fixation of STR resistance mutations
and spread through the population might have benefited from different compensatory
mechanisms. These mechanisms could be epistatic and potentially affect resistance to STR
and other drugs.

5. Conclusions and Future Perspectives

STR is, nowadays, less used for TB therapy. However, resistance to this antibiotic is
among the most common in different world regions. STR resistance seems to be one of
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the most persistent DRs in TB. The mechanisms that allowed for STR resistant bacteria
to continue transmitting in the population, possibly since the first M. tuberculosis STR
resistant strains emerged decades ago, remain elusive. M. tuberculosis might have evolved
different mechanisms that promoted the fixation of STR resistance even without strong
selective pressure. The hypothesis that the STR resistant strains that are now circulating
are highly transmissible and possibly more prone to acquire other DRs is worrisome and
should not be neglected. In this context, uncovering STR resistant-conferring mutations
associated with low fitness cost and high frequency and transmissibility, especially among
MDR M. tuberculosis, is an important research question. Similarly, investigating fitness
compensatory mutations among STR resistant strains and how they may articulate with
MDR development is a matter of interest and a relevant topic for future research. Although
many studies have explored the role of STR resistance on the fitness of different bacteria,
unfortunately, in the case of M. tuberculosis there is a limited body of evidence addressing
this issue [48,92,110–112]. In recent work with a Portuguese cohort of pulmonary TB, it was
found that the STR resistant clinical isolates were indistinguishable from susceptible isolates
in what concerns in vitro growth, a commonly used surrogate for fitness [23,113,114].
Importantly, this work has identified isolates evolving at the transmission cluster level,
from low to high streptomycin resistance levels, without a significate fitness cost [23]. In
future studies, combining whole-genome analysis and experimental genetics might provide
a more complete picture of the effect of STR resistance on the transmission fitness of the
bacilli, and to which extends this specific DR influence the emergence of MDR [104,106].
In addition, computational and phylogenetic methods to infer transmission fitness are
advancing and could be used to investigate the dynamics of new cases per time caused
by a patient infected with an STR resistant strain or specific mutation(s) compared to
a patient with a drug-susceptible strain [111]. In line with previous studies [115–117],
competition assays of M. tuberculosis isolates with and without different STR resistant
mutations could also be relevant tools to study in vitro fitness surrogates. Studying the
rates of acquisition and fitness costs of different STR resistance mutations in DR clinical
isolates is also considered relevant. These studies could identify compensatory mutations
affecting the growth, transmissibility, and propensity of DR.

Overall, the state-of-the-art in this topic suggests that STR resistance, which has
not been perceived as a major clinical threat, should be better studied. It would not be
surprising if STR-resistant bacteria had a key role in the ongoing and emerging problem of
antimicrobial-resistant TB. STR resistance could be a relevant model to understand how
DR resistance is maintained in different populations of M. tuberculosis and to investigate
the recent evolution of transmission and how it affects DR resistance level, fitness, and
potentially predisposes to MDR.
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