
Accelerated Epipolar Geometry Computation For 3D
Reconstruction Using Projective Texturing

Rui Rodrigues∗ António Ramires Fernandes

Universidade do Minho, Portugal

Abstract

The process of3D reconstruction, or depth estimation,
is a complex one, and many methods often have several
parameters that may require fine tunning to adapt to the
scene and improve reconstruction results. Usability of
these methods is directly related to their response time.
Epipolar geometry, a fundamental tool used in 3D recon-
struction, is commonly computed on the CPU. We pro-
pose to take advantage of the advances of graphic cards,
to accelerate this process. Projective texturing will be
used to transfer a significant part of the computational
load from the CPU into the GPU. The new approach
will be illustrated in the context of a previously pub-
lished work for 3D point reconstruction from a set of
static images. Test results show that gains of up to two
orders of magnitude in terms of computation times can
be achieved, when comparing current CPU’s and GPU’s.
We conclude that this leads to an increase in usability of
3D reconstruction methods.

Keywords: Epipolar Geometry, Projective Texturing,
Depth Estimation, 3D Reconstruction, OpenGL

1 Introduction

The reconstruction of view-independent 3D informa-
tion from a set of static images has taken the attention
of researchers for some years [Faugeras 1993; Hartley
and Zisserman 2000]. The approaches are multiple and
with different applications. Many techniques are based
on establishing correspondences between images [Red-

∗This work was funded by FCT (the Portuguese Science and Tech-
nology Foundation) under Grant Praxis XXI/BD/20322/99. The au-
thor also wishes to thank the support of Philips Research Laboratories
(Eindhoven, The Netherlands)

ert et al. 1999]. Common corresponded entities can be
points [Kawamoto and Imiya 2001; Tell and Carlsson
2000; Rodrigues et al. 2002], lines or contours [Sato and
Cipolla 1999; Schulz-Mirbach and Weiss 1994], rectan-
gular blocks or segments [Smith 1998]. If a pair of enti-
ties from two distinct images correspond, and the camera
position, orientation and intrinsic parameters for two im-
ages are known (or estimated), it is possible to compute
the position of those entities in 3D space. This position
can be expressed directly in a 3D referential or as adepth
– the distance relative to a reference camera. However,
each of these entity types has some type of ambiguity as-
sociated such that, given two entities in different images,
it is not straightforward to determine whether they corre-
spond or not [Redert et al. 1999].

Determining correspondences between a large number
of entities (possibly thousands), in a large number of im-
ages (tens), is a time consuming process. Furthermore,
the basic theory does not anticipate the problems one en-
counters when dealing with real scenes, such as noise in
the images, approximate camera calibration and perspec-
tive distortions, occlusions and highlights. Methods deal-
ing with contours, for instance [Sato and Cipolla 1999;
Schulz-Mirbach and Weiss 1994; Rodrigues et al. 2002],
may encounter additional problems with contour extrac-
tion.

In addition, for a given technique, the heterogeneity of
inputs requires the tuning of a series of parameters (ei-
ther automatically or interactively) to improve the recon-
struction results. Many issues then arise: is the image
set sufficient or appropriate for the reconstruction of all
the details of the scene? What are are the best parameter
settings for a particular scene?

Getting user (or automatic) feedback to deal with these
issues calls forinteractive reconstruction rates. The
longer the time a method takes to provide a recon-
struction the less interactive it becomes. Hence, us-
ability of these methods is directly related to response
time. Achieving real-time 3D reconstruction using off-
the-shelf systems would give way to a wide range of ap-
plications, namely in terms of image and scene transmis-
sion.

Given the amount of geometry processing involved in
reconstruction tasks, we propose to use a well known
3D graphics API - OpenGL - as the platform to per-

form (batch) geometric computations. The advantages
are twofold: we will be using a language that (1) is natu-
rally oriented to 3D geometry processing, and (2) serves
as a seamless link to hardware acceleration, given the
wide API support provided by graphic cards manufactur-
ers, and the ever-growing capabilities of graphic cards.

GPU’s have a tremendous computational power, and
recently graphic cards allow the programmability of the
GPU. Even without resorting to programming the GPU
itself, there is a clear performance advantage of using the
GPU over the CPU for graphical tasks.

The research community has initiated efforts on the
exploitation of the capabilities of GPU’s for heavy-
load computational tasks other than graphics rendering.
Among possible applications, image-based reconstruc-
tion and modelling is growing in interest. There are
recent results on the hardware-oriented implementation
of known view-independent reconstruction algorithms,
such as visual hulls[Li et al. 2003], block-based stereo
disparity estimation [Zach et al. 2004] and voxel carv-
ing [Sainz et al. 2002]. There are also works on view-
dependent algorithms, namely by [Lok 2001] and [Yang
et al. 2002].

This paper presents a method that accelerates a class of
view-independent approaches based on point reconstruc-
tion. We propose to explore the potential of the GPU, us-
ing projective texturing [Segal et al. 1992], to accelerate
some of the tasks relating to 3D reconstruction of points
using epipolar geometry. The use of projective textur-
ing in the context of 3D reconstruction has been explored
previously[Lok 2001; Li et al. 2003; Sainz et al. 2002],
but not in the context of epipolar geometry computation.

Using projective texturing for epipolar geometry re-
lated computations, a significant amount of the computa-
tional load is transferred from the CPU to the GPU. Tests
performed with an implementation based on the point re-
construction method presented in [Rodrigues et al. 2002]
show the very significant performance gain obtained –
up to two orders of magnitude– and the potential of the
method proposed in this paper.

Section 2 describes the fundamentals of epipolar ge-
ometry and how it is used for 3D or depth reconstruction.
The application of projective texturing in the context of
epipolar geometry is described in section 3. Tests and re-
sults of our proposal using a case study are presented in
section 4. Finally conclusions and directions for future
work are presented in section 5.

2 Epipolar Geometry for 3D
Point Reconstruction

Typical reconstruction algorithms rely on finding corre-
spondences between entities in two images. In this article
we focus on the correspondence of points. If a pointcip

in imageIi is corresponded with a pointcjq in Ij , and
camera positionsCi andCj are known, then the corre-
spondingreconstructed point(r-point) rip is (in the ideal
case) easily determined by triangulation using the infor-
mation of the cameras.

However, finding correspondences between entities of
different images is not trivial. On the one hand, errors
in the process of image acquisition and camera calibra-
tion may lead to distortions of the entities, resulting in
missed correspondences (false negatives). It may also
happen that ambiguities in the entities corresponded lead
to incorrect correspondences (false positives). Whenever
possible, it is useful to add constraints to help reducing
thiscorrespondence problem.

Epipolar geometry allows the search for correspon-
dences of acip to be constrained to a subset of the entities
in imageIj . In this section we will present the basics of
epipolar geometry in the context of our work. A more
detailed analysis of epipolar geometry can be found in
[Hartley and Zisserman 2000].

2.1 Epipolar Geometry for Two-Image
Point Reconstruction

Consider two imagesIi andIj , with known camerasCi

andCj , and a pointcip of Ii (see Figure 1). LetVcip
be

the view ray ofcip associated toCi (the half-line starting
in the centre ofCi and going throughcip). The epipolar
line Ecip,j is the projection ofVcip

in Ij . Pointsvipx

belonging toVcip
are projected inEcip,j , and points

pvipy ,j of Ecip,j can be projected back toVcip
, using

Cj .

Figure 1: Epipolar Geometry

In terms of correspondence search, this means that the
correct correspondence forcip in Ij has to be inEcip,j .

Assume there is an error functionεvipx ,j that quanti-
fies for a pointpvipx ,j the error of corresponding it with
cip (a possible error function is discussed in section??).
In this case, determining the best correspondence ofcip

could amount to minimize that error function over a set of
candidatespvipx ,j . In the two-image setting, this could
be done by evaluating the error function at the points be-
longing to the epipolar lineEcip,j , as shown in Algo-
rithm 1.

· Let Vcip
be the view ray ofcip associated toCi

· ProjectVcip
in Ij as the epipolar lineEcip,j

· choose a set of candidate image pointspvip1 ,j ,
pvip2 ,j , ... fromEcip,j

· Storeεvipx ,j as the error ofpvipx ,j in Ij

· The correspondencepvipc ,j for cip is selected amongst
the candidates with lowerεvipx ,j

· The reconstructed point (r-point)rip corresponding tocip

is in the intersection of the view raysVcip
andVpvipc

,j

Algorithm 1: Reconstruction using epipolar line candi-
dates

2.2 Epipolar Geometry for Multiple-
Image Point Reconstruction

For simple entities such as points, the information pro-
vided by two images may be insufficient to determine
correspondences reliably. It is possible to reduce ambi-
guity by extending point correspondence to multiple im-
ages. In this case, choosing correspondence candidates
from epipolar lines in different images gives rise to the
problem offusion: if cip corresponds withcjq in Ij and
with ckr in Ik, the associated r-pointsrip,j andrip,k will
in general not coincide, due to multiple error sources.
These two points would have to befusedtogether in an
additional step.

A possible solution for the fusion problem, as sug-
gested by [Rodrigues et al. 2002], is to choose candidates
vipx directly from the view ray, project each of them in
the images, and accumulate the corresponding error to
vipx (see Algorithm 2).

· Let Vcip
be the view ray ofcip associated toCi

· Choose a set of candidate world pointsvip1 , vip2 , ... from
Vcip

· For each imageIj (j 6= i)

· For each candidate world pointvipx

· Projectvipx in Ij aspvipx ,j

· Let εvipx ,j be the error ofpvipx ,j in Ij

· Add εvipx ,j to the total errorδvipx
of vipx

· The r-pointrip corresponding tocip is selected amongst
the candidates with lower total error valuesδvipx

Algorithm 2: Reconstruction using view ray candidates

This approach has an important advantage:the corre-
spondence, reconstruction and fusion stages are merged
into one. When the best candidate is chosen, it is already
a reconstructed point(r-point) and that choice already
takes into account the contribution of multiple images.

3 Projective Texturing and
Epipolar Geometry

In section 2 we have seen the application of epipolar ge-
ometry on 3D point reconstruction. Epipolar geometry is
traditionally computed on the CPU. We propose to per-
form in the GPU a significant part of the computations
required, using projective texturing [Segal et al. 1992], a
technique that allows an image (texture) to be projected
in geometry, providing an effect similar to a slide projec-
tor.

In the context of epipolar geometry, projective textur-
ing allows one to reverse the common approach,ie in-
stead of projectingthe view ray onto an imagewe project
an image onto the view ray.

Assume that the projected image is a precomputed er-
ror map∆. The part of the error map that is actually
projected in the view ray corresponds to the errors asso-
ciated to that ray’s epipolar line.

In this work, we use distance maps as error maps, as
discussed in 3.1, although the error function can be based
on other criteria besides distance, such as color informa-
tion. The precomputation of the error map is not a re-
quirement though. When combined with GPU program-
ming the error can be computed on the fly on the GPU,
based on the original image set.

In this section we will show how to apply projective
texturing in the context of the work in [Rodrigues et al.
2002]. For a two-camera situation, the process is de-
scribed in Algorithm 3. This can be considered the GPU-
oriented version of Algorithm 1.

In the case of multiple cameras, the error values from
multiple error maps have to be accumulated in the same
buffer, in order to minimize the number of buffer reads.
Two issues have to be dealt with:

· How to accumulate errors from a significant number
of cameras given the constraints on buffer attributes/
properties / pixel formats

· How to define the intrinsic and extrinsic camera pa-
rameters of the virtual camera used to render the
view ray buffer, such that given a candidate selected
on the buffer, the corresponding reconstructed point
is efficiently computed

3.1 Distance maps as error functions

The error function chosen to assess the correspondence
between points in different images is thedistance of the
projected candidate to the closest contour(as suggested
in [Rodrigues et al. 2002]). This means that, for a given
candidatevipx of a contour pointcip from Ii, the indi-
vidual errorεvipx ,j contributed byIj is the distance of

· Let Vcip
be the view ray ofcip associated toCi

· Set the texture matrix for projecting the error map∆j

relating to cameraCj as a texture.

· RenderVcip
, textured with the projection of∆j , into the

buffer

· Read the buffer from the graphics card memory into a
main memory array

· Select the best candidate from those with the lowest errors
in the array

· Compute the 3D reconstruction based on the candidate
selected

Algorithm 3: Error projection using projective texturing

pvipx ,j (the projection ofvipx
in Ij) to its’ closest con-

tour in Ij .
There are several advantages in the use of distance as

the correspondence error function. First, it introduces an
implicit tolerance to contour displacements originated by
faulty contour detection or errors in camera calibration.
Second, this distance function can be easily and quickly
computed in the form of a distance map using distance
transforms [Borgefors 1984]. Furthermore, since it is in-
dependent of the original pointcip, the distance map can
be pre-computed, and it only has to be computed once
for each image, regardless of the number of points to be
reconstructed, or the number of candidates per point.

In this work, the error maps that will be projected over
the view rays are the distance maps generated from the
contours of all images. Those maps are precomputed
once and used for the reconstruction of any point.

3.2 Error Accumulation for Multiple
Cameras

Buffer reading is an expensive operation, and therefore
we want to minimize the number of buffer readings for
each pointcip to be reconstructed. To do this, we draw
the view rayVcip

multiple times in the same buffer, one
for each error map∆j , j 6= i. On each iteration, the pro-
jected values of∆j are accumulated in the buffer using
additive blending.

Additive blending adds the texture values of newly
rendered geometry to the values already existing in the
buffer. Thus, rendering the same view ray multiple times,
each time with a different error map projected from its
corresponding camera, incrementally accumulates errors
in the buffer.

However, since we are using textures and rendering
buffers, there are limits to the maximum error value that
can be represented.

In the case of occlusion of a correct candidate in a
given imageIo, its’ projection could lie at a considerable
distance from a contour inIo. This would result in a high

individual error for that candidate. Since there are limits
in the accumulators, as is the case in the implementa-
tion proposed, a very high error would be a problem. We
propose to clamp the distance function to an upper limit.
This ensures an upper limit in the accumulated error as
well, while keeping one of the main advantages of the
use of the distance function: limited tolerance to errors
and contour displacement.

A possible solution to overcome this problem would be
to take advantage of GPU programmability to perform an
average of the error instead of the additive solution, and
therefore individual sporadic high errors would not be-
come a problem regarding the maximum error that can
be accumulated. Notice however that this solution may
prevent the correct reconstruction of contour points for
which the correct correspondence is occluded in a sig-
nificant number of images. These contour points would
have meaningless high errors associated with the correct
candidate. This is because in these images, due to occlu-
sion, the candidate is not a contour. Therefore the error
is being measured against an unrelated contour, ie. some
other contour which happens to be closest to the candi-
date’s projection (usually a contour from the occluder).
Clamping the errors to a small upper limit has the advan-
tage of limiting the influence of occlusions as discussed
above.

In an RGB buffer, for instance, values are limited in
the range of (0, 0, 0) to (255, 255, 255). Since each color
channel is independent, accumulation can be done on a
per-channel basis. To achieve this, we use color channel
masking: error maps are coded as gray-scale maps, and
each error map is only projected in one of the buffers’
color channels (red, green or blue). The cameras’ distri-
bution between the different channels is not relevant, as
long as it is guaranteed that accumulation overflow does
not occur. The fact that the error values are clamped pro-
vides a reference limit for this. For instance, if error val-
ues are clamped to an upper limit of 10 units, at least
25 cameras can be safely accumulated in a single color
channel (25×10 < 255), resulting in at least 75 cameras
considering the three channels. If necessary, this limita-
tion could be relaxed with GPU programming.

3.3 Definition of the View Ray Buffer

After having a set of candidates rendered in a buffer, we
have to be able to convert the 2D window position of a
given candidate to the corresponding 3D point in the view
ray. An appropriate setup of an orthographic cameraCO

allows to efficiently perform this conversion.
For reconstruction purposes, only a segment of the

view ray is used. Thestart andend points of the seg-
ment can be defined based on previous knowledge of the
dimension of the scene being reconstructed. If such in-
formation is not available, a large segment can be used

initially to obtain a conservative estimate of the scene’s
dimensions.

The intrinsic parameters ofCO (namely the clipping
planes and the viewport) define the segment’s length in
3D, segLen3D, and the segment’s size in pixels,seg-
Size2D. Each pixel corresponds to a 3D candidate of the
view ray. Therefore,segSize2Dis equivalent to the num-
ber of candidates tested. This number is directly related
to the final precision of the reconstruction itself. For a
given predefinedsegLen3D, the larger the set of candi-
dates, the higher the reconstruction precision. These in-
trinsic parameters allow to establish a linear relation be-
tween the position of each pixel on the rendered buffer
and the 3D coordinates of the candidates, defined in
Equation 1.

The extrinsic parameters ofCO are defined as a func-
tion of the position, direction and length of the segment
(Figure 2). Letdir be the normalised vector of the direc-
tion of the view ray. Thelookatpoint is the middle point
of the segment in 3D. The camera can be placed in any
positionposin the plane containing thelookatpoint and
perpendicular todir. Thelook vector ofCO is defined as
the unit vector pointing fromposto thelookatpoint. The
right vector ofCO is parallel todir. Theup vector ofCO

is set perpendicular toright andlook. A graphical repre-
sentation of the setup of the orthographic cameraCO is
depicted in Figure 2. Assuming the view ray is parallel
to the paper plane,look andright are also parallel to the
paper, andup is perpendicular to the paper.

look
right

up

lookat

dir
start

end

Figure 2: Orthographic camera (CO) for view ray seg-
ment rendering.

The operations described in Pseudo-Code 1 and
Pseudo-Code 2 allow the setup in OpenGL [Shreiner
2000] of the intrinsic and extrinsic parameters of an or-
thographic camera as described in this section.

segLen3D = |end - start|;

glViewport(0,0,segSize2D,1);

glOrtho(-segLen3D/2 , segLen3D/2 , -0.5 , 0.5 , 0.5 , 2);

Pseudo-Code 1:Orthographic camera’s intrinsic param-
eters’ setup in OpenGL

Having definedCO as above, the segment’s projection
will completely fill the buffer, which will be one-pixel

dir = normalize(end - start);

look = dir ×Ci.up;

lookat = (start + end) / 2;

pos = lookat -look;

up = dir × look;

gluLookAt(pos, lookat,up);

Pseudo-Code 2:Orthographic camera’s extrinsic param-
eters’ setup in OpenGL

tall. In those conditions, a 3D pointrip in the view ray
can be easily derived from its corresponding pixel with
2D window coordinates(x,0)using equation (1).

rip = start + x ∗
(

segLen3D

segSize2D

)
∗ dir (1)

4 Tests and Results

To assess the performance improvements achieved with
projective texturing we implemented a point reconstruc-
tion algorithm based on [Rodrigues et al. 2002], with two
variants: a CPU-based one, and a GPU-based (using pro-
jective texturing). These variants were submitted to two
tests.

The first test serves to show the influence of varying
the number of candidatesused. The number of candi-
dates plays a major role in the computational load of the
reconstruction, but also in its quality, as referred in sec-
tion 3.3. The scene’s setup consists of a set of images of
512 x 512 pixels of a textured version of the Stanford
model repository’ bunny, taken from 70 virtual view-
points around the bunny (Figure 3 (a)).

Scenes with high level of detail may require a large
number of candidates for a proper reconstruction. For
this reason, reconstruction was performed using 400, 800
and 1200 candidates, for 16826 contour points of the first
image. (Figure 3 (b) illustrates the achieved final recon-
struction of contour points from multiple images).

The results in Table 1 show the time in milliseconds
required for reconstructingall the 16826 contour points
evaluating 400, 800 and 1200 candidates in 69 images
each, using the two implementation variants. The test
was performed on System A, a Pentium IV computer run-
ning at 2.53 GHz, with a GeForce FX 5900 graphics card.

Nr. of Candidates 400 800 1200
CPU time 177171 347461 520482
GPU time 4807 5938 6574
CPU/GPU 36.85 58.51 79.17

Table 1: Performance results for reconstructing 16826
contour points, evaluating 400, 800 and 1200 candidates
in 69 different images (time in milliseconds)

From the table is clear that the time required by the

(a)

(b)

Figure 3: "Bunny": (a) The synthetic test model and the
camera positions and orientations; (b) a view of multi-
image point reconstruction

GPU implementation does not increase linearly with the
number of candidates, as opposed to the CPU variant. In
fact, using the largest set of candidates more than doubles
the advantage of using projective texturing over the CPU
implementation, when compared to the smallest set.

The second test compares the performance under dif-
ferent hardware settings, to show that even with older
GPU’s, there is still a major advantage in using projec-
tive texturing. Two hardware systems were used:System
A is the same system used in the first test.System Bcon-
sists of a Pentium IV Celeron computer running at 2.4
GHz, with a GeForce 256, an older graphics card.

In this test, a real scene consisting of a small wooden
boat was used (see Figure 4 (a)). A set of 39 images of
1024 x 768 pixels was captured around the boat using a
digital camera.

Reconstruction was performed for 21169 contour
points of the first image in each of the systems, and using
both implementation variants. Table 2 shows the time re-
sults in miliseconds of both implementation variants in
the two hardware systems. These times include the re-
construction of all the 21169 contour points, by evaluat-
ing 1200 candidates for each point, in 38 images. Fig-
ure 4 (b) shows a virtual view of the final reconstruction
using contour points from multiple images.

(a)

(b)

Figure 4: "Boat": (a) an image of the test scene; (b) a
view of a multiple-image point reconstruction

System A B
CPU time 343036 377052
GPU time 6451 69874
CPU/GPU 53.17 5.39

Table 2: Performance results of the reconstruction of
21169 contour points, by evaluating 1200 candidates for
each point in 38 images, in different hardware systems
(time in milliseconds)

The results show that, even when using older graph-
ics systems, significant performance gains are obtained
with the GPU based implementation, although to a lesser
extent.

5 Conclusions and Future Work

Improving performance of 3D reconstruction methods is
of growing importance, both as a step towards real-time
applications and as a mean for better exploration and in-
teractivity of reconstruction methods. The process of 3D
reconstruction is a complex one, and many methods often
have several fine tuning parameters. Hence the feasibil-
ity of a method is also related to its response time. Fast
response times allow the user to fine tune the parame-
ter settings to obtain the best reconstruction results. We
proposed the application of projective texturing – a tech-
nique commonly available in current hardware graphic
cards and API’s – to perform some crucial steps of recon-
struction, namely the computation of epipolar geometry.

The technique was tested using CPU-based and GPU-
based implementations (without and with projective tex-
turing, respectively) of a modified version of the point
reconstruction algorithm presented in [Rodrigues et al.
2002]. The results show gains of up to two orders of
magnitudes in response time, when applying the method
in current off-the-shelf CPU’s and GPU’s. As an ex-
ample, computing the three tested reconstructions of the
synthetic scene, with 400, 800 and 1200 candidates, takes
less than 18 seconds using the GPU-based implementa-
tion, versus over 1000 seconds on the CPU-based imple-
mentation. The improved response time provided by the
use of projective texturing enables more extensive adjust-
ment of reconstruction settings, when comparing to the
CPU-based implementation. We conclude that this leads
to an increase in interactivity and usability of 3D recon-
struction methods.

We now plan to explore multi-texturing and graphics
hardware programming to further enhance performance,
and extend the role of the GPU to other stages of recon-
struction. Another possible extension to the algorithm
is to compute the 3D reconstructions of multiple points
simultaneously, by projecting textures in multiple view
rays at a time in the same buffer and reading them in
a single pass. This may seem a trivial solution for in-
creasing performance even further, since the projective
texturing would be faster for simultaneous multiple rays.
However, two problems arise: how to define an appro-
priate buffer to record the errors of multiple view rays
simultaneously and how to read back and interpret the
errors. We would like to explore methods to solve these
problems.

References

BORGEFORS, G. 1984. Distance transformations in ar-
bitrary dimensions.Computer Vision, Graphics, and
Image Processing 27, 3, 321–345.

FAUGERAS, O. 1993.Three-Dimensional Computer Vi-
sion: A Geometric Viewpoint. MIT Press, Cambridge,
Massachusetts.

HARTLEY, R., AND ZISSERMAN, A. 2000. Multiple
View Geometry in computer vision. Press Syndicate of
the University of Cambridge.

KAWAMOTO , K., AND IMIYA , A. 2001. Detection of
spatial points and lines by random sampling and voting
procedure.Pattern Recognition Letters 22, 2 (Febru-
ary), 199–207.

L I , M., MAGNOR, M., AND SEIDEL, H.-P. 2003.
Improved hardware-accelerated visual hull render-
ing. Proc. Vision, Modeling, and Visualization (VMV-
2003), Munich, Germany(November), 151–158.

LOK, B. 2001. Online model reconstruction for interac-
tive virtual environment. InProceedings 2001 Sympo-
sium on Interactive 3D Graphics, 69–72.

REDERT, A., HENDRIKS, E., AND BIEMOND, J. 1999.
Correspondence estimation in image pairs.IEEE Sig-
nal Processing Magazine 16, 3, 29–46.

RODRIGUES, R., FERNANDES, A., VAN OVERVELD,
K., AND ERNST, F. 2002. Reconstructing depth from
spatiotemporal curves. InProceedings of the 15th In-
ternational Conference on Vision Interface, 252–259.

SAINZ , M., BAGHERZADEH, N., AND SUSIN, A. 2002.
Hardware accelerated voxel carving. In1st Ibero-
American Symposium in Computer Graphics (SIACG
2002), 289–297.

SATO, J.,AND CIPOLLA , R. 1999. Affine reconstruction
of curved surfaces from uncalibrated views of apparent
contours. IEEE Trans. Pattern Analysis and Machine
Intell. 21, 11 (November), 1188–1198.

SCHULZ-M IRBACH, H., AND WEISS, I. 1994. Pro-
jective reconstruction from curve correspondences in
uncalibrated views. Technical Report TR-402-94-014,
Technical University of Hamburg-Harburg.

SEGAL, M., KOROBKIN, C., VAN WIDENFELT, R.,
FORAN, J., AND HAEBERLI, P. 1992. Fast shadows
and lighting effects using texture mapping. InPro-
ceedings of SIGGRAPH’92, ACM, E. E. Catmull, Ed.,
249–252.

SHREINER, D., Ed. 2000. OpenGL Reference Man-
ual, OpenGL Architecture Review Board, Addison-
Wesley.

SMITH , S. M. 1998. ASSET-2: Real-time motion seg-
mentation and object tracking.Real-Time Imaging 4,
1, 21–40.

TELL , D., AND CARLSSON, S. 2000. Wide baseline
point matching using affine invariants computed from
intensity profiles. InECCV (1), 814–828.

YANG, R., WELCH, G., AND BISHOP, G. 2002. Real-
time consensus-based scene reconstruction using com-
modity graphics hardware. InProceedings of Pacific
Graphics 2002.

ZACH, C., KARNER, K., AND BISCHOF, H. 2004.
Hierarchical disparity estimation with programmable
3d hardware. InWSCG’2004 SHORT Communication
papers proceedings.

