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Abstract—Fuzziness, as a way to express imprecision, or
uncertainty, in computation is an important feature in a number
of current application scenarios: from hybrid systems interfacing
with sensor networks with error boundaries, to knowledge bases
collecting data from often non-coincident human experts. Their
abstraction in e.g. fuzzy transition systems led to a number
of mathematical structures to model this sort of systems and
reason about them. This paper adds two more elements to this
family: two modal logics, framed as institutions, to reason about
fuzzy transition systems and the corresponding processes. This
paves the way to the development, in the second part of the
paper, of an associated theory of structured specification for fuzzy
computational systems.

Index Terms—Dynamic Logic, Fuzzy Logic, Specification.

I. INTRODUCTION

The control of systems dealing with some form of impreci-

sion or uncertainty are suitably modelled by fuzzy transition

systems. For example, the requirement “if the water flow is
too high, slightly close the valve” has its qualifiers represented
by fuzzy sets in which membership is relative, i.e. established

up to a certain degree. Thus, for example, a water flow of

0.6 m3/s can be simultaneously considered too high with,
say, a membership degree of 0.7, and leaning to high with
a degree of 0.3. Examples of applications in which this sort
of behaviour is present include clinical decision support for

medical diagnosis [VMA10], and the control of a robot in a

labyrinth [CAF13]. The pervasiveness of this sort of behaviour

entails the need for not only a suitable logic, but also formal

specification methodology along the lines of e.g. the work of

D. Sannella and A. Tarlecki [ST12]. This paper is a step in

that direction.

Since originally proposed by L. Zadeh [Zad65], fuzzy

logic emerged as na expressive setting for both fundamental

and applied research in fuzzy systems — see [Ata20] and

[DETRK15] for recent accounts, and [BDK17] for a historical

overview. Based on the observation that people make decisions
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on imprecise and non-numerical information, fuzzy logic

allows to express precisely the vagueness of properties like

“how close two cities are from each other”, or the water flow
requirement mentioned above.

Fuzzy transition systems and corresponding (fuzzy) logics

are addressed in different flavours in e.g. [DK05], [WD16]

and [WC14]. The first distinguishes between different classes

of fuzzy automata, with fuzziness itself introduced at different
levels. The second introduces suitable notions of bisimulation

and their logical characterisation, framed coalgebraically in

the last reference.

This paper revisits fuzzy transition systems and fuzzy pro-
cesses, the latter identifying an initial state and bound by
a reachability constraint. Two fuzzy modal logics are then

introduced for systems and processes, designated by FML
and PFML, respectively. PFML generalises our previous
work [MBHM16], which combines modalities with regular

expressions, typical of dynamic logic, and binders in state

variables to explicitly refer to states in formulæ, as in hybrid

logic [Bra10]. A fuzzy hybrid modal logic was originally

introduced in [Lia01]. However, it used crisp nominals (i.e.

constants on the states) rather than crisp state variables, as

proposed here.

Both FML and PFML are used as structured spec-
ification logics to build systems with fuzzy behaviour in

a compositional way. Hence both logics are framed as a

particular sort of institutions [GB92], known as many-valued
institutions [Dia13], in which the satisfaction condition is
generalised from the standard, Boolean setting to a weighted

one. Some steps towards a theory of structured specifications

of fuzzy systems are undertaken through the introduction of

well known CASL-like operators [ST12], and a discussion of

horizontal and vertical composition. Behavioural and abstract

implementations of specifications of fuzzy transition systems

and processes are also developed, along the path introduced

in [HMW18].

Outline. The paper is organized as follows. Section II

introduces logics FML and PFML and proves they form
many-valued institutions. Bisimilarity and a quotient construc-

tion in the corresponding model categories are discussed in

Section III. Section IV develops the basis of a corresponding
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structured specification framework. Finally, Section V con-

cludes with some lines for future work.

II. TWO FUZZY MODAL LOGICS

A. FML, a logic for fuzzy transition systems
FML is the basic language of fuzzy transition systems, i.e.

labelled transition systems whose transitions are weighted in

the real interval [0, 1].
A fuzzy transition system is syntactically supported by

two disjoint sets Prop and Act of proposition and action
symbols, respectively. Jointly they define the system signature

(Prop, Act). Any pair of functions σProp : Prop → Prop′

and σAct : Act → Act′ define a signature morphism σ :
(Prop, Act)→ (Prop′, Act′), through which the language of
a system can be mapped into the language of another. Clearly,

signatures and signature morphisms define a category, denoted

by Sign, whose structure is inherited from Set, the familiar
category of sets and set-theoretic functions.

Definition 1. Let (Prop, Act) be a signature. A (Prop, Act)-
fuzzy transition system is a tuple M = (W, R, V ) such that,
• W is a non-empty set of states,
• R = (Ra : W × W → [0, 1])a∈Act is an Act-indexed
family of weighted transition functions.

• V : W ×Prop→ [0, 1] is a valuation function, assigning
a weight in [0, 1] to a proposition in a given state.

A morphism connecting two (Prop, Act)-fuzzy transition
systems (W, R, V ) and (W ′, R′, V ′) is a function h : W →
W ′ compatible with the source valuation and transition func-
tions, i.e.

• for each a ∈ Act, Ra(w1, w2) = R′a(h(w1), h(w2)), and
• for any p ∈ Prop, w ∈W , V (w, p) ≤ V ′(h(w), p).

We say that M and M ′ are isomorphic, in symbols M ∼= M ′,
whenever there are morphisms h : M →M ′ and h−1 : M ′ →
M such that h′ ◦ h = idW and h ◦ h′ = idW ′ .

(Prop, Act)-fuzzy transition systems and the corresponding
morphisms form a category denoted by ModFML(Prop, Act)
(or simply Mod(Prop, Act) when clear in the context), which
acts as the model category for FML. Any signature morphism
σ defines a model reduct, i.e. a canonical way to see a system
(a model) through the lens provided by σ applied to another

one. Formally,

Definition 2. Let σ : (Prop, Act) → (Prop′, Act′) be a
signature morphism and M ′ = (W ′, R′, V ′) a (Prop′, Act′)-
fuzzy transition system. The σ-reduct ofM ′ is the (Prop, Act)-
fuzzy transition system Mod(σ)(M ′) = (W, R, V ) where
• W = W ′,
• for p ∈ Prop, w ∈W , V (w, p) = V ′(w, σ(p)), and
• for a ∈ Act, and w, v ∈W , Ra(w, v) = R′σ(a)(w, v).

Reducts preserve morphisms in the sense that, for each

morphism h : M ′
1 →M ′

2, there is a morphism

h′ : Mod(σ)(M ′
1) → Mod(σ)(M ′

2), which is the restriction
of h to the states of Mod(σ)(M ′

1). Hence, each signature
morphism σ : (Prop, Act) → (Prop′, Act′) defines a functor

Mod(σ) : Mod(Prop′, Act′) → Mod(Prop, Act) mapping
systems and morphisms to the corresponding reducts. More

generally, as one would expect, this lifts to a contravariant

functor, Mod : (Sign)op → CAT, mapping each signature to
the category of its models, and each signature morphism to its

reduct functor.

Once characterised models for FML, let us define its
syntax and the satisfaction relation.

Definition 3. Given a signature (Prop, Act) the set
SenFML(Prop, Act) of sentences is given by the grammar

ϕ ::= p | � | ¬ϕ |ϕ→ ϕ |ϕ ∨ ϕ |ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ

with a ∈ Act, p ∈ Prop. As usual, ⊥ abbreviates ¬�.
Each signature morphism σ : (Prop, Act)→ (Prop′, Act′)

induces a translation scheme

SenFML(σ) : SenFML(Prop,Act)→ SenFML(Prop′,Act′)

recursively defined as follows:
• SenFML(σ)(p) = σProp(p)

• SenFML(σ)(�) = �
• SenFML(σ)(¬ϕ) = ¬SenFML(σ)(ϕ)

• SenFML(σ)(ϕ→ϕ′) = SenFML(σ)(ϕ)→SenFML(σ)(ϕ′)

• SenFML(σ)(ϕ ∨ ϕ′) = SenFML(σ)(ϕ) ∨ SenFML(σ)(ϕ′)

• SenFML(σ)(ϕ ∧ ϕ′) = SenFML(σ)(ϕ) ∧ SenFML(σ)(ϕ′)

• SenFML(σ)(〈a〉ϕ) = 〈σAct(a)〉SenFML(σ)(ϕ)

• SenFML(σ)([a]ϕ) = [σAct(a)]Sen
FML(σ)(ϕ)

which entails a functor Sen : Sign → Set mapping each
signature to the set of its sentences, and each signature

morphism to the corresponding translation of sentences.

Definition 4. Given a signature (Prop, Act), and a
(Prop, Act)-fuzzy transition system M = (W, R, V ), the
weighted satisfaction relation

|=FML
(Prop,Act) : Mod(Prop,Act)× SenFML(Prop,Act)→ [0, 1]

is defined by (M |=FML
(Prop,Act) ϕ) = MINw∈W (M, w |= ϕ)

where |= is recursively defined as follows,
• (M, w |= p) = V (w, p), for p ∈ Prop
• (M, w |= �) = 1
• (M, w |= ¬ϕ) = N(M, w |= ϕ)
• (M, w |= ϕ→ ϕ′) = I((M, w |= ϕ), (M, w |= ϕ′))
• (M, w |= ϕ ∨ ϕ′) = max((M, w |= ϕ), (M, w |= ϕ′))
• (M, w |= ϕ ∧ ϕ′) = min((M, w |= ϕ), (M, w |= ϕ′))
• (M, w |= 〈a〉ϕ) =

MAXw′∈W
{
min((Ra(w, w′), (M, w′ |= ϕ))

}
• (M, w |= [a]ϕ) =

MINw′∈W
{
I(Ra(w, w′), (M, w′ |= ϕ))

}
where auxiliary functions N, I over [0, 1] are given by

I(x, y) =

{
1 x ≤ y

y otherwise
and N(x) =

{
1 x = 0

0 otherwise
and

MAX and MIN are the monoidal reductions of the binary
functions max and min.

We have, therefore, framed the fuzzy modal logic FML as
an institution. Actually,
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Theorem 1. Let σ : (Prop, Act)→ (Prop′, Act′) be a signa-
ture morphism, M ′ a (Prop′, Act′)-fuzzy transition structure,
and ϕ ∈ Sen(Prop, Act) a formula. Then,

(
Mod(σ)(M ′) |=FML

(Prop,Act) ϕ
)

=
(
M ′ |=FML

(Prop′,Act′) Sen(σ)(ϕ)
)
(1)

Proof. According to the definition of |=FML it is enough

to prove that for any w ∈ W ,
(
Mod(σ)(M ′), w |= ϕ

)
=(

M ′, w |= Sen(σ)(ϕ)
)
. The proof is by induction over the

structure of sentences. The case of � is trivial, and for

propositions one observes that
(
M ′, w |= Sen(σ)(p)

)
=(

M ′, w |= σ(p)
)

= V ′(w, σ(p)). Then, by definition of
reduct, this is equal to V (w, p), i.e.,Mod(σ)(M ′), w |= p. The
other cases are proven by application inductively. For instance:

By definition of Sen, M ′, w |= Sen(σ)(〈a〉ϕ) = M ′, w |=
〈a〉Sen(σ)(ϕ), i.e. MAXw′∈W

{
min(R′σ(a)(w, w′), (M ′, w′ |=

Sen(ϕ))
}
. By definition of reduct and the induction hypothe-

sis, yields MAXw′∈W
{
min(Ra(w, w′), (Mod(M ′), w′ |= ϕ)

}
i.e. Mod(σ)(M ′), w |= 〈a〉ϕ

B. PFML, a logic for fuzzy processes
A process is a ‘system in action’, which means it comes

equipped with an initial state from where its behaviour unfolds

and every other state is reachable. Therefore, a logic for

fuzzy processes restricts models to reachable fuzzy transition

systems, and introduces crisp state variables and state binders.

Let us start by formalising reachability in fuzzy transition
systems. We say that a state w is reachable in a (Prop, Act)-
fuzzy transition system M = (W, R, V ) if there are n ≥ 0,
a1, . . . , an ∈ Act, and w1, . . . wn ∈ W such that, for

any i ∈ {0, . . . , n − 1}, Rai+1
(wi, wi+1) > 0 and w =

wn. The w-restriction of M is the fuzzy transition system

M [w] = (W [w], R[w], V [w]), where W [w] ⊆ W is the

set of the w-reachable states of M , for any a ∈ Act,
(R[w])a = Ra ∩ (W [w] ×W [w]) and, for any w ∈ W [w],
V [w](w, p) = V (w, p).

Definition 5. A (Prop, Act)-fuzzy process is a tuple P =
(W, R, V, w0), where (W, R, V ) is a (Prop, Act)-fuzzy tran-
sition system, w0 ∈W and W is w0-reachable.

Morphisms relating fuzzy processes are just morphisms

between the underlying fuzzy transition systems that preserve

initial states. However, reducts as proposed in Definition 2 do

not preserve reachability. The following definition makes the

necessary adjustment.

Definition 6. Let σ : (Prop, Act) −→ (Prop′, Act′) be a sig-
nature morphism and P ′ = (W ′, R′, V ′, w′0) a (Prop′, Act′)-
process. The σ-reduct of P ′ is the (Prop, Act)-fuzzy pro-
cess Mod(σ)(P ) = (W, R, V, w0) such that w0 = w′0 and
(W, R, V ) is the w0-restriction of the σ-reduct of (W ′, R′, V ′).

We may now define the language for PFML and the

corresponding satisfaction relation. The former extends that

of FML with a set X of state variables and binders. Thus

PFML formulæ are generated by

ϕ ::= x | ↓x.ϕ | p | � | ¬ϕ |ϕ→ ϕ |ϕ ∧ ϕ |ϕ ∨ ϕ | 〈a〉ϕ | [a]ϕ

with a ∈ Act, p ∈ Prop. As usual, formulæ with-

out free variables are called sentences and collected in

SenPFML(Prop, Act), for a given signature (Prop, Act).

For any signature morphism σ, the sentence translation
SenPFML(σ) is defined by SenPFML(x) = x and by

SenPFML(↓x.ϕ) = ↓x.SenPFML(ϕ). The mapping of the
other sentences is defined as for SenFML(σ).

Similarly, the satisfaction relation extends Definition 4

with two cases corresponding precisely to state variables

and binders. Thus, a proper valuation of variables in states

g : X −→W is required.

Definition 7. Given a signature (Prop, Act), the satisfaction
relation is given by

(P |=PFML
(Prop,Act) ϕ) = MINg∈WX (P, g, w0 |= ϕ)

where |= extends the corresponding relation used in the
definition of |=FML

(Prop,Act) by introducing variable valuations
as a parameter, and the following new cases

(P, g, w |= x) =

{
1 if g(x) = w

0 otherwise

(P, g, w |= ↓x.ϕ) = (P, g[x �→ w], w |= ϕ)

where g[x �→ w](x) = w and g[x �→ w](y) = g(y) for any
other y �= x ∈ X .

As expected, PFML also forms an institution.
Theorem 2. Let σ : (Prop, Act) → (Prop′, Act′) be a
signature morphism, P ′ ∈ ModPFML(Prop′, Act′) a fuzzy
process and ϕ ∈ SenPFML(Prop, Act). Then
(
Mod(σ)(P ′) |=PFML

(Prop,Act) ϕ
)
=

(
P ′ |=PFML

(Prop′,Act′) Sen
PFML(σ)(ϕ)

)

(2)

Proof. By definition of |=PFML it is enough to prove that,
for any w ∈W , and g : X →W ′,
(
Mod(σ)(M ′), g, w0 |= ϕ

)
=

(
M ′, g, w0 |= SenPFML(σ)(ϕ)

)
(3)

The proof is by induction over the structure of sentences. For
the case of state variables, we know that M ′, w |= Sen(σ)(x)
is either 1 or 0. Thus,

(
M ′, g, w |= SenPFML(σ)(x)

)
= 1

⇔ { defn of Sen}
(
M ′, g, w |= x) = 1

⇔ { defn. |=}
g(x) = w

⇔ { defn |=}
(
Mod(M ′), g, w |= x) = 1
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and analogously,
(
M ′, g, w |= SenPFML(σ)(x)

)
= 0 ⇔(

Mod(M ′), g, w |= x
)

= 0. Hence, (M ′, g, w |= x) =
(Mod(M ′), g, w |= x). The case for binder is as follows.

M ′, g, w |= SenPFML(σ)(↓x.ϕ)
= { defn of Sen}
M ′, g, w |= ↓x.SenPFML(σ)(ϕ)

= { |= defn.}
M ′, g[x→ w], w |= SenPFML(σ)(ϕ)

= { I.H.}
Mod(σ)(M ′), g[x→ w], w |= ϕ

= { defn. |=}
Mod(σ)(M ′), w |= ↓x.ϕ

The remaining cases are proved similarly to the satisfaction

condition for FML.
III. BISIMULATION AND QUOTIENT

The study of behavioural equivalences is crucial to support

reuse, refinement and minimization of transition systems. This

section characterises what it means for a relation between

two states to be a bisimulation, and discusses the relationship

with modal equivalence and model quotients. Let us start with

the basic definition, extending to the multi-modal case the

characterization introduced in [JMM20].

Definition 8. Let M = (W, R, V ) and M ′ = (W ′, R′, V ′)
be two (Prop, Act)-fuzzy transition systems. A relation E ⊆
W × W ′ is a bisimulation between M and M ′, whenever
w E w′,
(Atom) V (w, p) = V ′(w′, p), for any p ∈ Prop
(Fzig) for any a ∈ Act, u ∈W ,

Ra(w, u) ≤ MAX{R′a(w′, u′) | for any u′ st u E u′}
(Fzag) for any a ∈ Act, u′ ∈W ′,

R′a(w′, u′) ≤ MAX{Ra(w, u) | for any u st u E u′}
Definition 9. Two fuzzy transition systems M = (W, R, V )
and M ′ = (W ′, R′, V ′) are behaviourally equivalent, in
symbols M ≡ M ′, if there is a bisimulation E between
M and M ′. Two fuzzy processes P = (W, R, V, w0) and
P ′ = (W ′, R′, V ′, w′0) are behavioural equivalent, in symbols
P ≡ P ′, if there exists a bisimulation E between (W, R, V )
and (W ′, R′, V ′) such that w0 E w′0.

Note that ≡ is an equivalence relation between fuzzy tran-
sition systems/fuzzy processes. Moreover, as it is well known,

behavioural equivalence over (the same) M witnessed by the

greatest bisimulation between M and itself boils down to an

equivalence relation over its state space. This relation, denoted

by ∼M , is called bisimilarity (on M ). In the sequel, ∼M will

be used to define quotients on fuzzy transition systems and

fuzzy processes.

Theorem 3 ( [JMM20]). Let M = (W, R, V ), M ′ =
(W ′, R′, V ′) be two (Prop, Act)-fuzzy transition systems,

s1q|0.3 [s1] q|0.3

s2 p|0.5 [s2] p|0.5s3p|0.5

s4q|0.3

a|0.6b|0.9

b|0.7

b|0.7

a|0.6
b|0.9

b|0.7

a|0.6
b|0.9

Fig. 1: Construction of a quotient model.

and E ⊆ W × W ′ a bisimulation. Then, for any formula
φ ∈ SenFML(Prop, Act) and for any two states w ∈ W ,
w′ ∈W ′, such that w E w′, (M, w |= φ) = (M ′, w′ |= φ).

This result of modal invariance holds for FML models, but
it fails for PFML, as shown below.
Example 1. Consider the following two fuzzy processes

P : w0

a|0.5

��
P ′ : w′0

a|0.5
��
v′

a|0.5
��

Clearly, P ≡ P ′, because E = {(w0, w′0), (w0, v′)} is a
bisimulation. However, (P |= ↓x.〈a〉x) �= (P ′ |= ↓x.〈a〉x).

Resorting to bisimilarity, on the other hand, one may define

quotient fuzzy transition systems or fuzzy processes:

Definition 10. Let M = (W, R, V ) a (Prop, Act)-fuzzy
transition system. The quotient of M (w.r.t. ∼M ) is defined
as M/∼M = (W/∼M , R/∼M , V/∼M ) where
• W/∼M = {[w]∼M : w ∈W}
• For any a ∈ Act, (R/∼M )a : W/∼M × W/∼M −→ [0, 1]

is defined by (R/∼M )a ([u]∼M , [v]∼M ) =
= MAX{Ra(u1, v1) | u1 ∈ [u]∼M , v1 ∈ [v]∼M }

• V/∼M : W/∼M × Prop −→ [0, 1] is given by
V/∼([w]∼M , p) = V (w, p)

Additionally, for a given (Prop, Act)-fuzzy process P =
(W, R, V, w0), the quotient of P (w.r.t. ∼P ) is the process
P/∼P =

(
W/∼P , R/∼P , V/∼P , [w0]∼P

)
.

The following example computes the quotient w.r.t. bisimilar-

ity of a fuzzy transition system, thus reducing the cardinality

of its state space.

Example 2. Consider the fuzzy transition system M =
(W, R, V ) depicted in Fig 1. The quotient w.r.t. ∼M is repre-
sented in the right side of Figure 1, with green-coloured states
and blue-coloured transitions. It is easy to see that s1 ∼M s4
and s3 ∼M s2.

Theorem 4. Let M = (W, R, V ) be a (Prop, Act)-model.
Then, M ≡ M/∼M ; and similarly for processes.
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Proof. Consider the set E = {(w, [w])|w ∈ W}. We
omit, in this proof, subscript ∼M to identify bisimilar-

ity equivalence classes. To prove that E is a bisimula-

tion relating M and M/∼M , we first consider the (Fzig)
condition. For every action a ∈ Act, Ra(w, u) ≤
MAX{Ra(w1, u1) | w1 ∈ [w], u1 ∈ [u]} =
(Ra)/∼M ([w], [u]) = MAX{(Ra)/∼M ([w], [u′]) | [u′] ∈
E[{u}]}. Similarly, consider the (Fzag) condition. For every
[w] ∈W/∼M , choose z ∈ [w] such that for every u1 ∈ [u] and
a ∈ Act, (Ra)/∼M ([w], [u]) = MAX{Ra(z, u1) | u1 ∈ [u]}.
For every a ∈ Act, and [u] ∈ W/∼M , (Ra)/∼M ([z], [u]) =
MAX{Ra(z, u) | u ∈ [u]} ≤ MAX{Ra(z, u′) | u′ ∈
E−1([u])}. Finally, for every w ∈ W and p ∈ P rop,
V ([w], p) = V (w, p).

As expected in any reasonable theory of systems, the last

result identifies a particular role for quotients as a canonical

representation of fuzzy transitions systems and fuzzy pro-

cesses.

Theorem 5. Let M = (W, R, V ) and M ′ = (W ′, R′, V ′) be
two (Prop, Act)-fuzzy transition systems. Hence, if M ≡ M ′

then M/∼M ∼= M ′/∼M ′ ; and similarly to fuzzy processes.

Proof. Let B ⊆W ×W ′ be the largest bissimulation between
M and M ′. Then, B◦◦B ⊆∼M ′ , where B◦ is the converse of
B (since bissimulations are reflexive and closed by composi-

tion). Now, let us consider the map fB : W/ ∼M→W ′/ ∼M ′

such that fB([w]∼M ) := {[w′]∼M′ |wBw′}. We will prove that
fB is a bijective morphism between M/ ∼M and M ′/ ∼M ′ .

For any [w′]∼M′ , [v′]∼M′ ∈ fB([w]∼M ), (w, w′) ∈ B and

(w, v′) ∈ B, thus (v′, w′) ∈ B◦ ◦ B ⊆ ∼M ′ . Hence

[w′]∼M′ = [v′]∼M′ , and therefore fB is a function. Condition

(Fzig) entails fB is a fuzzy transition systems morphism.

Analogously, we can see that f−1B = fB◦ is a fuzzy tran-

sition systems morphism and that fB◦ ◦ fB = idW/∼M and

fB ◦ fB◦ = idW ′/∼M′ . Hence M/∼M ∼= M ′/∼M ′ .

An immediate corollary of this result with respect to fuzzy

transition systems states that, for every w ∈ W and ϕ ∈
SenFML(Prop, Act), (M, w |= ϕ) = (M/∼M , [w]∼M |= ϕ).

IV. ON THE STEPWISE DEVELOPMENT OF FUZZY

CONTROLLERS AND PROCESSES

A. Structured Specification

In formal development of software, specifications play a

crucial role. Typically, one starts from a ‘set of atomic, or flat

specifications, consisting of a signature and a set of sentences

in a given logic, and proceed to build new specifications form

old through a “pallet” of composition operators. In bivalent

logics, the semantics of a specification is given by the class

of models that satisfies the set of sentences making up the

specification. Conceptually, all of these models are potential

implementations of the intended system. In a many-valued

(fuzzy) setting, the entire development process has to be

adapted and the components redefined to cater for fuzziness

in system’s descriptions. Thus,

Definition 11. A fuzzy specification in FML is a pair
SP = (Sig(SP ), Mod(SP )) where Sig(SP ) ∈ |Sign| and
Mod(SP ) is a mapping Mod(SP ) : Mod(Sig(SP ))→ [0, 1]

Specifications are built in a structured way as follows:

Flat Specifications SP =
(
(Prop, Act), Φ

)
with

Φ ⊆ Sen(Prop, Act). Thus,

• Sig(SP ) = (Prop, Act)
• Mod(SP )(M) = MINϕ∈Φ

(
M |= ϕ

)
, i.e., in FML,

Mod(SP )(M) = MINϕ∈Φ,w∈W
(
M, w |= ϕ

)
and, in

PFML, Mod(SP )(M) = MINϕ∈Φ
(
M, w0 |= ϕ

)
.

Union SP ∪ SP ′, with SP and SP ′ specifications over the
same signature. Thus,

• Sig(SP ∪ SP ′) = Sig(SP )
• Mod(SP ∪ SP ′)(M) =

= min
(
Mod(SP )(M), Mod(SP ′)(M)

)
Translation SP with σ, where

σ : Sig(SP )→ (Prop′, Act′)

is a signature morphism. Thus,

• Sig(SP with σ) = (Prop′, Act′)
• Mod(SP with σ)(M ′) = Mod(SP )(M ′|σ)

Hiding Sig(SP hide via σ), where

σ : Sig(SP )→ (Prop′, Act′)

is a signature morphism. Thus,

• Sig(SP hide via σ) = (Prop, Act)
• Mod(SP hide via σ)(M) =
MAXN∈MσMod(SP )(N),
where Mσ stands for the class of all σ-expansions of
M , i.e. Mσ = {N ∈Mod(SP )|N |σ = M}.

Example 3. Consider the following FML-specification
SP = SP1 ∪ SP2 where SP1 = (Σ, {p → [b]⊥}), SP2 =
(Σ, {q → 〈a〉�}), Σ = ({p, q}, {a}), and a model M depicted
as

�������	w1

a|0.5
��

b|0.7
�� �������	w2

a|0.5
��

with V (w1, q) = 1, V (w2, p) = 0.5 and V (w1, p) =
V (w2, q) = 0. Then,

Mod(SP )(M) =

= min{Mod(SP1)(M),Mod(SP2)(M)}
= min{MINw∈W (M,w |= p→ [b]⊥),

MINw∈W (M,w |= q → 〈a〉�))}
= min{MINw∈W I

(
(M,w |= p), (M,w |= [b]⊥)),

MINw∈W I
(
(M,w |= q), (M,w |= 〈a〉�))}

= min{
min{
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I
(
V (w2, p), (M,w2 |= [b]⊥)), I(V (w1, p), (M,w1 |= [b]⊥))},

min{
I
(
V (w1, q), (M,w1 |= 〈a〉�)

)
, I

(
V (w2, q), (M,w2 |= 〈a〉�)

)}}
= min{min{I(0.5, 1), I(0, 0)},min{I(1, 0.5)), I(0, 0.5))}}
= min{1, 0.5} = 0.5

= 0.5

B. Stepwise Implementation process

Finally, let us revisit the implementation processes, in sense
of [ST12], of fuzzy systems and processes.

Definition 12 (Implementation). Let SP and SP ′ be two
specifications. We say that SP ′ implements SP , in sym-
bols SP � SP ′, if Sig(SP ) = Sig(SP ′) and, for any
M ∈ Mod(Sig(SP )), Mod(SP )(M) ≤Mod(SP ′)(M). The
value Mod(SP )(M) is called the implementation degree of
M w.r.t. SP . Note that this generalises the standard notion of
simple implementation [ST12].

Theorem 6 (Vertical Composition). Let SP1, SP2, SP3 be
three fuzzy specifications such that SP1 � SP2 and SP2 �
SP3. Then SP1 � SP3.

Proof. Straightforward from the transitivity of ≤.

Theorem 7 (Horizontal Composition). Let SP1, SP2, SP ′1,
and SP ′2 be fuzzy specifications. Then, if SP1 � SP ′1 and
SP2 � SP ′2,

1) (SP1 ∪ SP2)� (SP ′1 ∪ SP ′2)
2) (SP1 with σ)� (SP ′1 with σ)

3) (SP1 hide via σ)� (SP ′1 hide via σ)

Proof. To prove 1), observe that

Mod(SP1 ∪ SP2)(M)

= { defn ∪ }
min{Mod(SP1)(M),Mod(SP2)(M)}

≤ { SP1 � SP ′1, SP2 � SP ′2 and min monotony}
min{Mod(SP ′1)(M),Mod(SP ′2)(M)}

= { defn ∪ }
Mod(SP ′1 ∪ SP ′2)(M)

For 2),

Mod(SP1 with σ)(M ′)

= { defn with σ }
Mod(SP1)(M

′|σ)
≤ { since SP1 � SP ′1 }
Mod(SP ′1)(M

′|σ)
= { defn with σ }
Mod(SP ′1 with σ)(M ′)

Finally, for 3), observe that

Mod(SP1 hide via σ)(M)

= { defn hide via σ }
MAXN∈MσMod(SP1)(N),

where Mσ = {N ∈Mod(SP )|N |σ =M}
≤ { since SP1 � SP ′1 }

MAXN∈MσMod(SP
′
1)(N),

where Mσ = {N ∈Mod(SP )|N |σ =M}
= { defn with σ }
Mod(SP ′1 hide via σ)(M)

C. Abstractors and Behavioural implementations

Often to implement a specification it is enough to consider

models where it is just ‘behaviourally’ satisfied. Thus, let us

consider the following specification building operators based

on the bisimilarity and behavioural equivalence relations:

The behaviour operator :
• Sig(behaviour SP ) = Sig(SP )
• Mod(behaviour SP )(M) = Mod(SP )(M/∼M )

The abstractor operator :
• Sig(abstractor SP w.r.t ≡) = Sig(SP )
• Mod(abstractor SP )(M) =

= MAXN∈[M ]≡Mod(SP )(N)

Example 4. Consider again, from Example 1, fuzzy processes
P and P ′. For the PFML-specification

SP = (({a}, {}), {↓x.〈a〉x})
observe that Mod(SP )(P ′) �= Mod(SP )(P ). On the other
hand,

Mod(behaviour SP )(P ′) = Mod(SP )(P ′/∼P ′)

= Mod(SP )(P )

which means that P ′ behaviourally implements SP with the
same degree that P implements SP .

Example 5. Let us consider the PFML-specification
SP =

(
(abstract SP0 w.r.t. ≡) with σ

)
for SP0 =

(
({a, b}, {}), {↓x.(〈a〉x∧〈b〉(↓y.〈a〉y))}

)
and the

inclusion morphism σ : ({a, b}, {}) → ({a, b, c}, {p, q}). The
implementation degree of the process P in Figure 2 w.r.t SP
is computed as

Mod(
(
(abstract SP0 w.r.t. ≡) with σ

)
)(P ) =

= Mod(abstract SP0 w.r.t. ≡)(P |σ)
= MAXP ′∈[P |σ ]≡Mod(SP )(P |σ)

In particular, since P |σ ≡ Q, we have

Mod(
(
(abstract SP0 w.r.t. ≡) with σ

)
)(P )

≥Mod(SP )(Q)
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Fig. 2: Processes P , P |σ and Q.

Moreover,

Mod(SP )(Q) =(Q |=PFML ↓x.(〈a〉x ∧ 〈b〉(↓y.〈a〉y))
=(Q, g[x �→ w0], w0 |= (〈a〉x ∧ 〈b〉(↓y.〈a〉y)
=min

{
(Q, g[x �→ w0], w0 |= (〈a〉x),

(Q, g[x �→ w0], w0 |= 〈b〉(↓y.〈a〉y)
}

=min{MAXw∈W min{Ra(w0, w),
(Q, g[x �→ w0], w |= x),
MAXw∈W min

{
Rb(w0, w),

(Q, g[x �→ w0], w |= ↓y.〈a〉y)}
}

=min
{ · · · ,MAXw′∈W min{Rb(w0, w),

(Q, g[x �→ w0, y �→ x], w |= 〈a〉y)}
}

=min
{
0.5,min{0.7, 0.5}

}

= 0.5

Hence, we conclude that Mod(SP )(P ) ≤ 0.5.

These operators have no effect in flat specifications:

Lemma 1. For a flat specification (Σ, Φ),

Mod(behaviour (Σ, Φ))

= Mod(Σ, Φ)

= Mod(abstractor (Σ, Φ) w.r.t. ≡)

Proof. For any M ∈Mod(Σ, Φ),

Mod(behaviour (Σ,Φ))(M)

= { semantics of behaviour}
Mod((Σ,Φ))(M/∼M )

= { semantics of flat, Theorem 3}
Mod((Σ,Φ))(M)

= { Theorem 3, monotonicity of max}
MAXN∈[M ]≡Mod((Σ,Φ))(N)

= { semantics of abstractor}

Mod((Σ,Φ))(M)

However, this is not the case for specifications in PFML,
since model invariance does not hold for this logic. This

observation stresses the relevance of the behavioural speci-

fication operators presented before. Indeed, differently from

to FML, in PFMLthese operators do not collapse. As a
consequence, it makes sense to consider more relaxed notions

of implementation:

Definition 13 (Behavioural and abstractor Implementation).
Let SP and SP two specifications. We say that:
• SP ′ behavioural implements SP , syntactically

SP �Bh SP ′, if SP � (behaviour SP ′).
• SP ′ is an abstractor implementation of SP , syntactically

SP �Abs SP ′, if (abstractor SP w.r.t. ≡)� SP ′.

Theorem 8. Behavioural and abstractor implementations
compose vertically, i.e.
1) If SP0 �Abs SP1 �Abs SP 2 then SP0 �Abs SP 2
2) If SP0 �Bh SP1 �Bh SP 2 then SP0 �Bh SP 2.

Proof. Firstly, note that, because of Lemma 1, the result
follows for specifications in FML directly from Theorem 6.

Let us now prove the result for specifications in PFML.
1) Suppose that SP0 �Abs SP1 �Abs SP2,

i.e. (abstractor SP0 w.r.t. ≡) � SP1 and

(abstractor SP1 w.r.t. ≡) � SP2. In order

to obtain (abstractor SP0 w.r.t. ≡) � SP2,
by Theorem 6, it is sufficient to prove that SP1 �
(abstractor SP1 w.r.t. ≡), i.e. for any P ∈
Mod(Sig(SP2)), Mod(abstractor SP1 w.r.t. ≡
)(P ) ≤ Mod(SP1)(P ) and, by abstractor definition, that
MINQ∈[P ]≡Mod(SP1)(Q) ≤ Mod(SP1)(P ). This is true
since P ∈ [P ]≡.
2) Similarly, supposing SP0 �Bh SP1 and SP1 �Bh

SP 2, i.e. that SP0 � (behaviour SP1) and SP1 �
(behaviour SP2), we obtain SP0 �Bh SP 2 by The-

orem 6 by showing that (behaviour SP1) � SP1,
i.e. that for any P ∈ ModPFML(Sig(SP1), we have

Mod(SP )(P ) ≤ Mod(behaviour SP1)(P ), which is

equivalent to Mod(SP )(P ) ≤Mod(SP1)(P/∼P ) This proof
can be done by induction on the structure of specifications. For

flat specifications we have

Mod
(
(Act,Prop),Φ

)
(P ) ≤

Mod
(
behaviour (Act,Prop),Φ

)
(P )

⇔ { semantics of behaviour}
Mod

(
(Act,Prop),Φ

)
(P ) ≤Mod((Act,Prop),Φ

)
(P/∼P )

⇔ { semantics of ((Act,Prop),Φ
)}

MINϕ∈Φ(P |= ϕ) ≤ MINϕ∈Φ(P/∼P |= ϕ)
Then, proceed through induction on the structure of for-

mulæ: for any ϕ ∈ Sen(Act, Prop), (P |= ϕ) ≤
(P/∼P |= ϕ). For ϕ = x, with x a variable, we
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have, for any valuation g : X → W , that for the case

(P/∼P , g/∼P , [w0] |= x) = 1, the inequality trivially holds.
On the other hand, for (P/∼P , g/∼P , [w0] |= x) = 0, we
have (P/∼P , g/∼P , [w0] |= x) = 0 ⇒ g/∼P (x) �= [w0] ⇒
g/∼P (x) �= w0 ⇒ (P, g, w0 |= x) = 0. The remaining
sentences are proved analogously.

V. CONCLUSIONS AND FUTURE WORK

This paper introduced two fuzzy modal logics, FML and
PFML, to reason about fuzzy transitions systems and fuzzy
processes, respectively. This extends previous results from the

authors in [JMM20], extended here to the many-modal case,

and [MBHM16], [MBHM18], also extended to the fuzzy case.

Both logics were framed as many-valued institutions in

order to develop the fundamentals of a theory of (fuzzy) struc-

tured specifications, within the algebraic approach documented

in D. Sannella and A. Tarlecki’s landmark book [ST12].

The approach sketched in this paper can be extended in

several directions. We are particularly interested in character-

ising behavioural specifications and their stepwise refinement

through the development of appropriate observational equiv-

alences and metrics, as initiated here, Two distinct paths are

currently being explored, namely

- the study of other behavioural equivalences as abstractor

relations, for example taking bisimulation as a fuzzy

relation itself, as proposed in [Fan15], possibly in a

coalgebraic setting [Jac16], understood as the “correct”

mathematical way to frame state transition computations.

References [BBB+12], [WC14] provide interesting start-

ing points;

- the development of the current specification formalism

as a specific behaviour-abstractor framework, along the
path taken in [HMW18].

The inclusion of binders in our fuzzy process logic makes

the later close to a propositional version of a fuzzy descriptive

logics (e.g. [Str15], [TM98], [Haj05]). This paves the way to

explore the applicability of specification building operators

proposed here for the structured definition of ontologies.

Indeed the growing interest in fuzzy programming languages

for concrete application domains, e.g. medicine [VMA10] and

robotics [CAF13], calls for a suitable specification framework,

as initiated in this paper.

On the other hand, the intersection of fuzzy and quan-

tum computational approaches, as discussed in e.g. [Man06],

[SNL09], will be worth to explore. Actually, while traditional

quantum logic [BN36] is handled in classical terms, fuzzy

reasoning may emerge as a possible complement to handle

uncertainty in quantum measurements. We anticipate interest-

ing challenges in the definition of semantics, specification and

implementation of quantum systems with a fuzzy flavour.
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