
Coalgebra
for the working software engineer

Luís Soares Barbosa�

INL - International Iberian Nanotechnology Laboratory
High-Assurance Software Lab - INESC TEC

Universidade do Minho
Braga, Portugal

lsb@di.uminho.pt

Abstract

Often referred to as ‘the mathematics of dynamical, state-based systems’,
Coalgebra claims to provide a compositional and uniform framework to spec-
ify, analyse and reason about state and behaviour in computing. This paper
addresses this claim by discussing why Coalgebra matters for the design of
models and logics for computational phenomena. To a great extent, in this
domain one is interested in properties that are preserved along the system’s
evolution, the so-called ‘business rules’ or system’s invariants, as well as in live-
ness requirements, stating that e.g. some desirable outcome will be eventually
produced. Both classes are examples of modal assertions, i.e. properties that
are to be interpreted across a transition system capturing the system’s dynam-
ics. The relevance of modal reasoning in computing is witnessed by the fact
that most university syllabi in the area include some incursion into modal logic,
in particular in its temporal variants. The novelty is that, as it happens with
the notions of transition, behaviour, or observational equivalence, modalities in
Coalgebra acquire a shape . That is, they become parametric on whatever type
of behaviour, and corresponding coinduction scheme, seems appropriate for ad-
dressing the problem at hand. In this context, the paper revisits Coalgebra
from a computational perspective, focussing on three topics central to software
design: how systems are modelled, how models are composed, and finally, how
properties of their behaviours can be expressed and verified.

�Supported by the ERDF – European Regional Development Fund through the Operational
Programme for Competitiveness and Internationalisation — COMPETE 2020 Programme and
by National Funds through the Portuguese funding agency, FCT, within project POCI-01-0145-
FEDER-030947.

Vol. 9 No. 1 2022
Journal of Applied Logics — IFCoLog Journal of Logics and their Applications

L. S. Barbosa

1 Introduction
1.1 Coalgebra ...
To define an (inductive) data structure, as typically taught in a first undergraduate
course on programming, one essentially specifies its ‘assembly process’. For example,
one builds a sequence in a data domain D, either by taking an empty list or by
adjoining a fresh element to an existing sequence. Thus, declaring a sequence data
type yields a function ’ : 1 + D ◊ U ≠æ U , where U stands for the data type being
defined. The structured domain of function ’ captures a signature of constructors
(nil : 1 ≠æ U , cons : D ◊ U ≠æ U), composed additively (i.e. ’ = [nil, cons]). The
whole procedure resembles the way in which an algebraic structure is defined.

Reversing an ‘assembly process’ swaps structure from the domain to the codo-
main of the arrow, which now captures the result of a ‘decomposition’ or ‘observation’
process. In the example at hand this is performed by the familiar head and tail
selectors joined together into

– : U ≠æ 1 + D ◊ U (1)

where – = ú � empty? ⇤ Èhead, tailÍ either returns a token ú, when observing an
empty sequence, or its decomposition in the top element and the remaining tail1.

This reversal of perspective also leads to a di�erent understanding of what U
may stand for. The product D ◊ U captures the fact that both the head and the
tail of a sequence are selected (or observed) simultaneously. In fact, once one is no
longer focused on how to construct U , but simply on what can be observed of it,
finiteness is no longer required: both finite or infinite sequences can be observed
through the process above. Therefore, U can be more accurately thought of as a
state space of a machine generating a finite or infinite sequence of values of type D.
Elements of U , in this example, can no longer be distinguished by construction, but
should rather be identified when generating the same sequence. That is to say, when
it becomes impossible to distinguish them through the observations allowed by the
‘shape’ structuring the codomain of –.

Function (1) is an example of a coalgebra. Its ingredients are: a carrier U (intu-
itively the state space of a machine), the shape of allowed observations, technically a
functor F(X) = 1 + D ◊ X, and the observation dynamics given by function –, i.e.
the machine itself. Formally, a F-coalgebra is a pair ÈU, –Í consisting of an object
U and a map – : U ≠æ F U . The latter maps states to structured collections of
successor states. By varying F , i.e. the shape of the underlying transitions, one may

1Notation e denotes the constant function ⁄ x.e; the conditional ‘if b then a else c’ is written
a � b ⇤ c.

42

Coalgebra for the working software engineer

capture a large class of semantic structures used to model computational phenomena
as (more or less complex) transition systems. Going even further, F is not restricted
to be an endofunctor in Set, the category of sets and functions. For example, as
we will see later, the category of topological spaces emerges as the natural host for
coalgebras modelling continuous systems. The study of the common properties of
all these systems is the subject of Universal Coalgebra, as developed systematically
by a number of authors from the pioneering work of J. J. M. M. Rutten [61].

A morphism between two F-coalgebras, ÈU, –Í and ÈV, —Í, is a map h between
carriers U and V which preserves the dynamics, i.e. such that — · h = F h · –. As
one would expect, F-coalgebras and their morphisms form a category CF where
both composition and identities are inherited from the host category C. Along this
paper, C will always be Set, but in a few explicitly mentioned cases.

This sets Coalgebra as a suitable mathematical framework for the study of dy-
namical systems in both a compositional and uniform way. The qualifier uniform
requires some extra explanation: coalgebraic concepts (i.e. models, constructions,
logics, and proof principles) are parametric on, or typed by, the functor that charac-
terises the underlying transition structure. The point is that, in Mathematics as in
Software Engineering, going parametric allows us to focus on the abstract structure
of a problem such that, on solving it, what we actually solve is a whole class of prob-
lems. The obvious limits of human reasoning make such an economy of resources
the hallmark of rational thinking. And so we are back to Engineering.

This paper aims at introducing Coalgebra as a (conceptual) tool for the working
software engineer. The title is borrowed from Saunders Mac Lane’s famous book
Categories for the working mathematician first published in 1971. Category theory
is the study of mathematical structures focussed on the ways they interact rather
than on what they pretend to be. Roughly speaking, categories deal with (typed)
arrows and their composition, in the same sense that sets deal with elements, their
aggregation and membership. The theory uncovers universal properties, through
which whole families of arrows can be factored out in essentially unique ways, char-
acterises constructions uniformly applicable to structures and their transformations,
and unveils dual universes by simply reversing arrows.

Coalgebras are arrows in a category. Their theory brings to scene a mathemati-
cal space in which key ingredients of computational systems find their place: state,
behaviour, observation, interaction. Objects, automata, state-based components,
services, processes are part of our vocabulary to talk about systems which compute
by reacting to contextual stimuli received along their overall computation. Typically,
reactive systems rely on the cooperation of distributed, heterogeneous, often anony-
mous components organised into open software architectures prepared to survive in
loosely-coupled environments and adapt to changing application requirements. In a

43

L. S. Barbosa

sense, the object of Software Engineering is nothing more than the (emergent) be-
haviour of computing systems, for which Coalgebra provides a suitable foundation.
As Robin Milner put it in his Turing Award Lecture [50],

From being a prescription for how to do something – in Turing’s terms a
‘list of instructions’, software becomes much more akin to a description
of behaviour, not only programmed on a computer, but also occurring by
hap or design inside or outside it.

Indeed, the origins of Coalgebra, in its applications to Computer Science, may be
traced back to Peter Aczel’s attempt [1] to characterise bisimulation and providing
a precise semantics to Milner’s calculus of communicating systems.

1.2 ... for the working software engineer
This paper is not a systematic presentation of coalgebra theory, let alone a tutorial.
My aim is much humbler: to make a case for Coalgebra in relation to three main
topics unavoidable in any roadmap to Software Engineering – systems’ models, ar-
chitectures, and properties. Each of them will give me the opportunity to introduce
a number of concepts and constructions in Coalgebra, as well as to provide a brief
illustration based on current research developed by my research team.

Models. Models are pervasive in the engineering practice, and the software domain
is not an exception. Irrespective of the myriad of (textual, diagrammatic, formal,
etc.) notations used in practice, models should always be understood in the sense
they are in e.g. school physics problem-solving. There, once a problem is understood,
a mathematical model is built as an appropriate abstraction, on top of which one
reasons about the behaviour of the system until a ‘solution’ is found. We will
discuss how several variants of transition systems can be modelled coalgebraically.
The characterisation of systems’ behaviour, and the definition of suitable notions of
equivalence for state-based systems will also be addressed. As an illustration, we
will revisit recent results on modelling hybrid automata as coalgebras.

Architectures. Software architecture emerged as a proper discipline within Soft-
ware Engineering from the need to explicitly consider, in the development of in-
creasingly larger and more complex systems, their overall structure, organisation,
and emergent behaviour. As a model, an architecture acts as an abstraction of a sys-
tem that suppresses details of its constituents, except for those which a�ect the ways
they use, are used by, relate to, or interact with other components. This topic will be

44

Coalgebra for the working software engineer

illustrated by revisiting an architectural calculus of state-based software components
framed as generalised Mealy machines, in which the strict deterministic discipline is
relaxed to capture more complex behavioural patterns. In particular, we will men-
tion the interplay between the two basic modes in which software can be composed:
sequentially and concurrently, i.e. along a temporal or a spatial dimension, respec-
tively. This leads to particular instances of what is known in Mathematics as an
interchange law. Again, some aspects will be instantiated for the less regular case of
components which, like sensors in a network, exhibit forms of continuous evolution.

Properties. A plethora of logics is used in Software Engineering to support the
specification of systems’ requirements and properties, as well as to verify whether,
or to what extent, they are enforced in specific implementations. Broadly speak-
ing, the logics of dynamical systems are modal, i.e. they provide operators which
qualify formulas as holding in a certain mode. In mediaeval Scholastics such modes
represented the strength of assertion (e.g. ‘necessity’ or ‘possibility’). In temporal
reasoning they can refer to a future or past instant, or a collection thereof. Simi-
larly, one may express epistemic states (e.g. ‘as everyone knows’), deontic obligations
(e.g. ‘when legally entitled’), or spatial states (e.g. ‘in every point of a surface’).
Regarding dynamical systems as transformations of state spaces according to spe-
cific transition shapes, i.e. as coalgebras for particular functors, such modes refer to
particular configurations of successor states as defined, or induced, by the coalgebra
dynamics. Again, Coalgebra provides a uniform characterisation by letting functor
F induce ‘canonical’ notions of modality and the corresponding logic. General ques-
tions in modal logic, such as the trade-o� between expressiveness and computational
tractability, or the relationship between logical equivalence and bisimilarity, can be
addressed at this (appropriate) level of abstraction. We will revisit modal logic from
a coalgebraic perspective and illustrate this discussion mentioning a logic to express
properties of n-layered, hierarchical transition systems.

Paper structure. Models, architectures and properties are revisited, from a coal-
gebraic viewpoint, in the following sections. We will try to substantiate the claim
that Coalgebra is the right mathematics to model and reason about state-based sys-
tems. On the other hand, we will argue that the coalgebraic approach is generic and
compositional: constructions, techniques and tools apply to a large class of applica-
tion areas and can be combined in a modular way. Finally, section 5 concludes with
a brief discussion of current research directions and of what the future might bring
for this area.

45

L. S. Barbosa

2 Models
2.1 State and behaviour
Although information technology became ubiquitous in modern life long before a
solid scientific methodology, let alone formal foundations, has been put forward, the
ultimate goal of a software engineering discipline is the development of methods,
techniques and tools for formal – and preferably automatic – analysis and verifi-
cation of computational systems. Analysis and verification are usually performed
on suitable abstractions of the real systems, rather than on the systems themselves.
Coalgebra provides a framework to build such abstractions, or models, as state-based
transition systems parametric on a transition shape, or type, given by an endofunctor
F in a host category. The choice of F determines not only the expressivity of the
model, but also a canonical notion of behaviour and observational equivalence.

Consider, for example, an elementary model of an object whose internal state is
observable through an attribute at : U ≠æ B and may evolve by reacting to external
stimuli through a method2 m : U ≠æ UA. This defines a coalgebra

p ‚= Èm, atÍ : U ≠æ UA ◊ B

for the functor F X = XA ◊ B, known in the literature as a Moore machine. A bit
of syntactic sugar recovers the usual transitional notation:

u
a≠æp uÕ … m u a = uÕ and u ¿p b … at u = b

The notion of a coalgebra morphism h : p ≠æ pÕ boils down to the following com-
muting diagram

U
p
//

h

✏✏

UA ◊ B

hA
◊id

✏✏

V
pÕ
// V A ◊ B

or, avoiding exponentials, U at
//

h
✏✏

B

id
✏✏

V atÕ
// B

U ◊ A m
//

h◊id
✏✏

U

h
✏✏

V ◊ A mÕ
// V

because

ÈmÕ, atÕÍ · h = (hA ◊ id) · Èm, atÍ
… { products}

ÈmÕ · h, atÕ · hÍ = ÈhA · m, atÍ
… { structural equality}

2Notation f stands for the curried version of a function f .

46

Coalgebra for the working software engineer

mÕ · h = hA · m · atÕ · h = at
… { exponentials}

mÕ · (h ◊ id) = h · m · atÕ · h = at
… { curry is a bijection}

mÕ · (h ◊ id) = h · m · atÕ · h = at

The behaviour of p, denoted in the sequel by [(p)], at a state u œ U , is revealed by
successive observations (or experiments) triggered by the input of di�erent sequences
s = [a0, a1, . . .] in Aú:

at u, at (m u a0), at (m (m u a0) a1), . . .

which entails the following recursive definition of [(p)]:

[(p)]u nil ‚= at u and [(p)] u (cons Èa, tÍ) ‚= [(p)] (m Èu, aÍ) t .

Therefore, behaviours are elements of BAú , and can be thought of as rooted trees
whose branches are labelled by sequences of inputs in A and leaves by values in B.
Moreover, they organise themselves into a Moore machine over BAú ,

ÊF ‚= ÈmÊ, atÊÍ : BAú ≠æ (BAú)A ◊ B .

where

atÊ f ‚= f nil i.e. the value of the attribute before any input
mÊ f a ‚= ⁄ s . f(consÈa, sÍ) i.e. input determines subsequent evolution

The coalgebra ÊF whose states are the F-behaviours themselves plays a specific
role: it is final among all F-coalgebras. Actually, for any p = Èm, atÍ, [(p)] is the
unique morphism [(p)] : p ≠æ ÊF . Note that

atÊ · [(p)] = at
… { introduction of variables }

atÊÈ[(p)] uÍ = at u
… { definition of atÊ }

È[(p)] uÍ nil = at u
… { definition of [(p)] }

true

mÊ · ([(p)] ◊ id) = [(p)] · m
… { introduction of variables and application }

mÊÈ[(p)] u, aÍ = [(p)](m Èu, aÍ)
… { definition of mÊ }

⁄ s . [(p)] u (cons Èa, sÍ) = [(p)](m Èu, aÍ)
… { introduction of variables and application }

[(p)] u (cons Èa, tÍ) = [(p)] (m Èu, aÍ) t
… { definition of [(p)] }

true

47

L. S. Barbosa

with uniqueness being easily established. In general, denoting by ÊF : �F ≠æ
F(�F) the final coalgebra for a functor F , finality can be expressed as a universal
property by the following equivalence:

k = [(p)] … ÊF · k = F(k) · p (2)

Finality is a powerful tool. For example, the assertion that any two states from
coalgebras p and q connected by an arbitrary morphism h : p ≠æ q generate the
same behaviour, i.e. [(p)] = [(q)] · h, is a direct consequence of uniqueness (the right
to left implication in equivalence (2)) as depicted in the diagram below3.

�F

ÊF
// F(�F)

V
q
//

[(q)]

OO

F(V)

F([(q)])

OO

U

[(p)]

::

p
//

h

OO

F(U)

F(h)

OO

Similarly, existence (the dual, left to right implication) provides a definition
principle for operators over behaviours. Each of those has its source equipped with
coalgebra structure p specifying the ‘one-step’ dynamics. Then [(p)] gives the rest:
the operator becomes defined by specifying its output under all di�erent observers
as recorded in functor F .

An important observation is that the dynamics of the final coalgebra is an iso-
morphism. Isomorphisms being self-dual, this also entails that the initial algebra of
a functor is an isomorphism as well, which was the original statement of this result
known as Lambek’s lemma. The proof relies on the universal property and, in this
sense, is illustrative of a proof by coinduction presented equationally.

One starts by assuming the existence of an inverse –F to ÊF , which entails
–F · ÊF = id�F and ÊF · –F = idF(�F). Then, one of these requirements is used to
conjecture a definition for –F (an engineer would say an ‘implementation’ ...). Note
the use of the fact that [(ÊF)] = id�F , entailing a ‘reflection’ law, to introduce, rather
than eliminate, the behaviour morphism in the calculation. Finally, one checks the
validity of the conjecture above by verifying with it the remaining requirement.

3The diagram captures a fusion property useful in behaviour reasoning.

48

Coalgebra for the working software engineer

Putting both arguments side by side, the proof goes as follows:

–F · ÊF = id�F

… { reflection }
–F · ÊF = [(ÊF)]

… { universality }
ÊF · –F · ÊF = F(–F · ÊF) · ÊF

… { F preserves composition }
ÊF · –F · ÊF = F(–F) · F(ÊF) · ÊF

≈ { cancel ÊF ; universality }
–F = [(F(ÊF))]

ÊF · –F

= { replace by derived conjecture }
ÊT · [(F(ÊF))]

= { [(F(ÊF))] is a morphism }
F([(F(ÊF))]) · F(ÊF)

= { F preserves composition }
F([(F(ÊF))] · ÊF)

= { just proved }
F(id�F)

= { F preserves identities }
idF(id�F)

Lambek’s lemma characterises both initial algebras and final coalgebras for a functor
F as fixed points of equation X = F(X). The terminology comes from an analogy
with what happens in a partial order ÈP, ÆÍ seen as a category. A functor is then
just a monotone function, and therefore a coalgebra is an element x of P such that
x Æ F(x). The final coalgebra is, then, an element m Æ F(m) such that, for all
x œ P , x Æ F(x) ∆ x Æ m, which, by Tarski’s theorem, is the greatest fixpoint of
F with respect to Æ.

Whenever final coalgebras exist, which is the case for every bounded Set endo-
functor, they provide a canonical, often intuitive interpretation of behaviour. Even
when this is not the case, behaviours can be approximated by an ordinal indexed se-
quence of objects such that each element b– encodes behaviour that can be generated
(or exhibited) in – steps.

As mentioned before, varying the functor F one obtains di�erent models, with
tuned notions of morphism and behaviour. For example, making B = 2 in F char-
acterises deterministic automata on the alphabet A, whose behaviours are identified
with the recognised languages. Actually, the state space of ÊF becomes 2Aú , i.e. each
state is a subset of Aú, and its dynamics is given by ÈmÊ, atÊÍ : 2Aú ≠æ (2Aú)A ◊ 2,
where

atÊ s = nil œ s and mÊ s = ⁄ a . {consÈa, xÍ | x œ s} .

Variants of Moore machines can be obtained by specifying a particular behavioural
e�ect T :

p : U ≠æ T (U)A ◊ B

thus enforcing a particular branching structure upon p. For example T (X) = X + 1

49

L. S. Barbosa

makes the automata partial, whereas T = P , for P≠ the finite, covariant powerset
functor, introduces non-determinism.

Another classical distinction concerns whether the ‘output’ B depends on the
‘input’ A. For example, a generic Mealy machine would be specified by a coalgebra

p : U ≠æ T (U ◊ B)A .

Both Moore and Mealy machines are examples of what are usually called reactive
transition systems, due to the explicit presence of an ‘input’ universe. A coalgebra
for F(X) = T (B◊X), on the other hand, stands for a so-called generative model, as
values are produced, rather than consumed, on transitions. For example, processes
in a process algebra are typically modelled as a (the final) coalgebra for F(X) =
P(B ◊ X). Probabilistic automata are based on the distribution functor D(X) =
{µ : X ≠æ RØ0 |

q
xœX µx = 1}. The large collection of variants of automata

capturing some form of probabilistic evolution was systematically studied by Ana
Sokolova [66] in a coalgebraic setting. Examples of a reactive probabilistic automata
and a stratified one, in which Markovian and regular transitions may alternate, are
depicted in diagrams (a) and (b) below.

•
a[

1
3]

}}

a[
2
3]

✏✏

b[1]

!!

•
b[1]

✏✏

• •
a[1]

✏✏

• (a) •

•
1
2

}}

3
4

!!

•
x

��

y

✏✏

•
1
2
✏✏

1
2

��

• • (b) • •

The relevant functors are, respectively, F(X) = (D(X) + 1)A and F(X) =
D(X)+(B◊S)+1. More complex transitions come from combining di�erent e�ects.
For example a Segala probabilistic automata is a coalgebra p : U ≠æ P(B ◊ D(U)).
Note than more than one transition may be chosen non-deterministically from a
given state, but once the choice is made outcomes with di�erent probabilities are
possible. Specified in a common coalgebraic setting, all such variants can be anal-
ysed and their expressivity compared through the identification of suitable natural
transformations between the ‘shape’ functors; moreover, one typically obtains more
general results and shorter proofs. Later, in subsection 2.3, recent work in my group
on a similar exercise for hybrid automata will be commented. First, however, an
essential ingredient for a modelling discipline is still missing: a notion of model
equivalence.

50

Coalgebra for the working software engineer

2.2 Equivalences
The comparison, replacement and reuse of models entails the need for suitable no-
tions of equivalence. In a coalgebraic setting, this is observational: two states u œ U
and v œ V in F-coalgebras p : U ≠æ F(U) and q : V ≠æ F(V), are identified
if they cannot be distinguished by observations as allowed by F . Actually, in this
case they generate the same behaviour. For example, equivalent states in a Moore
machine p : U ≠æ UA ◊ 2, i.e. a deterministic automaton, do recognise the same
language.

Whenever F admits a final coalgebra ÊF , the notion of observational equivalence,
represented in the sequel as ©F , can be made precise is the obvious way:

u ©F v … [(p)]u = [(q)]v (3)

If that is not case, the definition can be generalised by requiring the existence of a
coalgebra › : S ≠æ F(S) and a (epic) cospan p

r1≠æ ›
r2Ω≠ q in CF (or equivalently

a epic cospan in the host category C whose legs lift to F-coalgebra morphisms, as
depicted in diagram (a) below) such that r1u = r2v.

S

›

✏✏

U

p

✏✏

r1
;;

V

q

✏✏

r2
cc

FS

F(U)

Fr1
;;

(a) F(V)

Fr2
cc

R
p2

##

p1

{{

fl

✏✏

U

p

✏✏

V

q

✏✏

FR
Fp2

##

Fp1

{{

F(U) (b) F(V)

It is worthwhile to stress that the way › : S ≠æ F(S) is defined is dual to the one
used in Algebra (the other, perhaps more familiar, half of the universe) to give a
congruence. Indeed, a congruence is an equivalence relation compatible with the
constructors in the algebra signature, captured by a functor G. This means that
there exists an algebra ’ : G(A) ≠æ A and a (monic) span a

p1Ω≠ ’
p2≠æ b to G-

algebras a and b. Not surprisingly, thus, › is called a cocongruence: congruent terms
in Algebra have cocongruent behaviours as a counterpart in Coalgebra.

Interestingly enough, indistinguishability by observation is often given in terms
of bisimilarity, i.e. the existence of a bisimulation containing the pair of states under
consideration. A bisimulation is defined as the analogue, rather than the dual, to
a compatible relation in Algebra, i.e. as a (monic) span p

p1Ω≠ fl
p2≠æ q in CF as

51

L. S. Barbosa

depicted in (b). In Set, R is a relation in U ◊ V whose projections p1, p2 lift to
coalgebra morphisms, which is the original definition of bisimulation given by Aczel
and Mendler [2]. We write u ≥F v if there exists a bisimulation R such that u = p1t
and v = p2t for a t œ R, and say that u and v are bisimilar states.

U

p

✏✏

Gh

“

✏✏

p1
oo

p2
// V

q

✏✏

F(U) F(Gh)
F(p1)
oo

F(p2)
// F(V)

A rather obvious example of a bisimulation is provided by the graph of any coalgebra
morphism. Indeed, let h : p ≠æ q and Gh = {Èu, huÍ | u œ U}, as usual. Taking, in
the diagram on the right, “ = F(p1)¶ · p · p1, both squares commute because

p · p1 = F(p1) · “
… { definition of “ }

p · p1 = F(p1) · F(p1)¶ · p · p1

… { converse }
p · p1 = p · p1

q · p2 = F(p2) · “
… { definition of “ }

q · p2 = F(p2) · F(p1)¶ · p · p1

… { h = p2 · p¶
1, functors }

q · p2 = F(h) · p · p1

… { h is a morphism }
q · p2 = q · h · p1

… { h = p2 · p¶
1 }

q · p2 = q · p2

Conversely, whenever a graph Gh is a bisimulation, then h is a coalgebra morphism.
Since p1 is bijective, so is its converse p¶

1. Thus, composition h = p2·p¶
1 is a morphism.

There is an alternative definition of bisimulation which is closer to the intuitive
interpretation as a binary relation over states which is closed for the coalgebra
dynamics. It reads: R is a bisimulation if

Èu, vÍ œ R ∆ Èpu, qvÍ œ F(R) (4)

where F(R) is the so-called a relation lifting of R through functor F . This can be
defined inductively for a wide class of functors, including all mentioned up to now
in this paper, but a more general definition, applicable to any Set endofunctor, can
be given as the image of F(R) under the split ÈF(p1), F(p2)Í, where p1 and p2 are,
as before, the projections of R onto U and V , respectively; thus,

F(R) = {ÈF(p1) t, F(p2) tÍ | t œ F(R)} .

52

Coalgebra for the working software engineer

For example, applying (4) to the functor used above to specify Moore machines,
leads to the following definition of bisimulation:

Èu, vÍ œ R ∆ atp u = atq v and Èmp u a, mq v aÍ œ R, for all a œ A .

This means that all states related by R support identical observations and enforce
that their successor states are also related by R.

The two definitions of bisimulation discussed here are indeed equivalent. This
is shown in [41] taking F as a functor in a category whose objects are relations
and morphisms the corresponding spans4. The Aczel-Mendler definition has a wider
application for functors in arbitrary categories. The one based on relation lifting,
on the other hand, is closer to the intuitive notion in Process Algebra [58] that a
bisimulation is a closed relation.

Whatever definition one uses, the fact is that in Coalgebra bisimulation, just as
behaviour, acquires a shape given by F . Moreover, all folklore results from Process
Algebra hold for coalgebraic bisimulations. In particular, the set of bisimulations
linking two coalgebras forms a complete lattice for relation inclusion with joins given
by unions. The largest bisimulation in this lattice is the bisimilarity relation denoted
by ≥F . This is actually the greatest fixed point of a map R ‘æ {Èu, vÍ | Èpu, qvÍ œ
F(R)}, from a direct application of the Knaster–Tarski theorem, based on F :
P(U ◊ V) ≠æ P(F(U)◊F(V)) being monotone. Bisimulations are closed for union
and converse, but not necessarily for relational composition.

Bisimilarity, however, is strictly weaker than observation equivalence. Actually,
the choice of a concept that is an analogue of, rather than a dual to, a congruence
is largely motivated by historical reasons [62]. Moreover, unlike ©, bisimulations
may be constructed iteratively, and therefore is amenable to automation. Quite
e�cient algorithms for checking bisimilarity are indeed available. For most functors
of interest in current applications to Software Engineering, both notions coincide. It
is instructive, however, to take a while to understand what is indeed required from
the ‘shape’ functor in order to guarantee such a coincidence.

First of all notice it is not di�cult to see that ≥ ™ ©. Consider again F-
coalgebras p : U ≠æ F(U) and q : V ≠æ F(V). Now form the pushout (S, r1, r2) of
a bisimulation R and its projections as depicted in the following diagram:

4Regarding F as a relator in the category of sets and relations leads to a very compact proof
[9] of this result.

53

L. S. Barbosa

R
p2
//

p1
✏✏

V

r2
✏✏

Fr2·q

U

Fr1·p
++

r1
// S

›
!!

FS

Then, arrows F(r1) · p : U ≠æ F(S) and F(r2) · q : V ≠æ F(S) determine a unique
coalgebra › such that F(r1) · p = › · r1 and F(r2) · q = › · r2 as required. Suppose
now that u © v, i.e. that there is an epic cospan p

r1≠æ ›
r2Ω≠ q in CF as depicted in

the fore square of the cube in the diagram below.

F(U)
F(r1)

// F(S)

U

p
??

r1
// S

›
??

F(R)
F(p2)

//

F(p1)

OO

F(V)

F(r2)

OO

R

‡
;C

p2
//

p1

OO

V

q

??

r2
OO

Form its pullback, with R = {Èu, vÍ œ U ◊ V | r1u = r2v}. The lifting of this
square through F is represented in the back square of the cube.

Coalgebras p, q and › link both squares. Observe that the following two paths
from R to F(S), depicted with curly arrows in the cube, coincide:

F(r1) · p · p1

= { r1 : p ≠æ › is a coalgebra morphism }
› · r1 · p1

= { the pullback square commutes }
› · r2 · p2

= { r2 : q ≠æ › is a coalgebra morphism }
F(r2) · q · p2

If F(R), together with F(p1) and F(p2), is also a pullback, then, given the equality
just proved, there exists a coalgebra ‡ : R ≠æ F(R) and coalgebra morphisms

54

Coalgebra for the working software engineer

p1 : ‡ ≠æ p and p2 : ‡ ≠æ q. This means that R is a bisimulation. Notice there is
no need for ‡ to be unique, therefore all one has to require from functor F is that
it preserves weak pullbacks.

Under this apparently weird condition, bisimilarity and observational equivalence
coincide. That is to say, two states generate the same behaviour if and only if they
are bisimilar. Therefore, every bisimulation over the final coalgebra is a coreflexive,
i.e. a subset of the identity relation. Furthermore this condition guarantees that the
relational composition of two bisimulations is still a bisimulation, as one is used to
from the (well-behaved) domain of Process Algebra.

Most Set endofunctors useful for the software engineer, which do indeed preserve
weak pullbacks, belong to the class of extended polynomial functors

F – Id | K | IdK | P | F ◊ F | F + F | F · F

where K is a set, and P is the finite, covariant powerset functor. The distribution
functor D, mentioned above, is also often considered, as well as the star functor and
other solutions of datatype equations.

Bisimilarity provides a technique for coinductive proofs, i.e. a sound tool to
establish observational equivalence, which is complete for the class of functors pre-
serving weak pullbacks. To establish equality of the behaviour generated by two
state values it is enough to build a bisimulation containing them. This corresponds
to the following procedure: i) iteratively strengthen the statement to be proved
(from equality u = v to a larger set containing the pair Èu, vÍ), and then ii) ensure
that such a set is closed for the coalgebra dynamics (i.e. it forms a bisimulation).
Actually what is going on underneath is an unfolding process which, typically, does
not terminate, but reveals longer and longer prefixes of the result: every element
in the result gets uniquely determined along this process. Inductive reasoning re-
quires that, by repeatedly unfolding the definition, arguments become smaller, i.e.
closer to the elementary constructors of the algebra. In Coalgebra our attention
shifts from argument’s structural shrinking to the progressive construction of the
behaviour which becomes richer in informational contents.

2.3 Illustration: Hybrid automata
Hybrid automata were proposed more than two decades ago as a family of mod-
els capturing the interaction of discrete (computational) systems with continuous
(physical) processes. Essentially, they are finite state machines with a finite set of
continuous variables whose values are typically described by a set of ordinary di�er-
ential equations. Since the publication of T. Henzinger seminal paper [36] in 1996,
several di�erent characterisations emerged independently. They were often driven

55

L. S. Barbosa

by applications, seeking to capture a specific feature or property of the system to
be modelled.

As has happened before, for example in the case of probabilistic automata [66],
Coalgebra helps to organise the landscape by characterising hybrid automata, and
associated notions of bisimulation, in a uniform way, parametric on the concrete
functor expressing the specific variant of interest. The coalgebraic perspective pro-
motes a ‘black-box’ view where discrete transitions are kept internal to the automa-
ton and continuous evolutions make up the external, observable behaviour. This is
in contrast with the traditional representation in which both discrete steps and con-
tinuous evolutions are joined in the same transition relation.Therefore, the general
shape for these models are coalgebras typed as

p : U ≠æ G(U) ◊ H(O) (5)

where H captures the continuous evolution of a quantity O over time. Functor H was
introduced in a recent paper [55] as an endofunctor in the category Top of topological
spaces and continuous functions. In broad terms, working in Top is motivated by
the key role that continuity plays in this setting, and by the possibility to handle,
within the coalgebraic framework, classical properties of dynamical systems. For
example, a notion of robustness (a system is robust if small changes in the input
lead to very similar evolutions) can be addressed by varying the topology on the
space of inputs. The topic, however, will not be pursued in detail here.

The functor H is defined as

H(X) ‚= { Èf, dÍ œ XT ◊ D | f · fd = f } and H(h) ‚= hT ◊ id (6)

where T abbreviates RØ0, D = [0, Œ] is the one-point compactification of RØ0 and
hT f = h · f . Condition f ·fd = f , for fd ‚= id � (Æd) ⇤ d, means that f becomes
constant after time instant d.

To illustrate this model, consider a bouncing ball dropped at some positive height
and with no initial velocity. Due to the gravitational pull, it will fall into the ground
but then bounce back up, losing, of course, part of its kinetic energy in the process.

This can be seen as a hybrid component whose (continuous) observable behaviour
is the evolution of its spacial position (P), whereas the internal memory records the
initial velocity (V) and position updated at each bounce:

b : V ◊ P ≠æ (V ◊ P) ◊ H(P)

The discrete behaviour bd : V ◊P æ V ◊P (which updates the discrete state, i.e. the
initial velocity and position pair) is computed by multiplying the current velocity

56

Coalgebra for the working software engineer

by the coe�cient of restitution to obtain the new initial velocity for the next bounce
and updating position to 0. Formally,

bd Èv, pÍ ‚= ÈvelgÈv, zposgÈv, pÍÍ ◊ ≠0.5, 0Í

where 0.5 is the coe�cient of restituion, and current velocity is computed as velaÈv, tÍ
‚= v ≠ at. Function zposa (v, p) ‚=

Ô
2ap+v2+v

a returns the time needed to reach
the ground, given a positive height and a current velocity. On the one hand, the
continuous part bc : V ◊ P æ HP is computed by

bc ‚= Èposg(v, p), zposgÍ ,

where posa : V ◊ P ≠æ P T is given by posa Èv, pÍ ‚= ⁄ t. (p + vt ≠ 1

2
at2), and g is the

gravitational constant. Putting both components together

b ‚= Èbd, bcÍ .

The behaviour of a (≠ ◊ H(O))-coalgebra p at a state u œ U , is a function that
computes a stream of (observable) continuous evolutions generated by p from state
u. Actually, the functor ≠ ◊ H(O) has a final coalgebra, i.e. the following diagram
commutes uniquely

H(O)Ê Ê
// H(O)Ê ◊ H(O)

U

[(p)]

OO

p
// U ◊ H(O)

[(p)]◊id

OO

where XÊ denotes the set of streams over X, and Ê ‚= Ètail, headÍ is the dynamics
of the final coalgebra.

For the bouncing ball, assuming the initial velocity and position pair is È0, 5Í,
the plot below depicts the first three elements of the generated stream.

0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

time

po
s

1st evolution

0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

time

po
s

2nd evolution

0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

time

po
s

3rd evolution

0 0.5 1 1.5 2 2.50

2

4

6

8

time

po
s

aggregated

57

L. S. Barbosa

Varying G in (5), one is able to capture di�erent variants of hybrid automata and
compute the corresponding notions of behaviour and bisimulation. For example,
instantiating G to P or D, leads to non-deterministic or reactive Markov hybrid
automata. More complex variants, already studied in the literature [28], combine
non-determinism with probabilities, in the sense that, at each transition, a distribu-
tion function over states is non-deterministically chosen. They come up as coalgebras
p : U ≠æ PD(U) ◊ H(O). Another interesting case makes G(U) = KU , for K a set
of weights, thus associating costs to discrete transitions. New types of hybrid au-
tomata can also be studied in this setting. For example, G = �, for � the diagonal
functor, gives rise to arrows of type p : U ≠æ �U ◊ H(O), explored in [54]. These
correspond to deterministic hybrid automata able to replicate themselves at each
discrete transition to capture, for example, cellular replication when an organism
reaches a specific saturation.

3 Architectures

3.1 Composition and refinement

Coalgebra provides a uniform framework for modelling state-based systems. The
architectural problem in Software Engineering addresses the ways in which such
systems can be composed. Composition has a ‘geometrical’ flavour: components
have boundaries (i.e. interfaces) and organise themselves in two dimensions, tempo-
ral and spatial, as in a Cartesian plane, as depicted below. The boundary shared
by vertically composed components represents handling control from one, which is
terminating a particular execution thread, to another which is launching a new one.
Dually, horizontal composition corresponds to concurrent evolutions being juxta-
posed or eventually interacting through exchange of values or a common involvement
in shared actions.

space
//

time

OO

The ways in which these two basic forms of
composition are defined certainly varies. For
example, if components are terminating imper-
ative programs, vertical interfaces are often re-
alised through shared, global state variables.
On the other hand, horizontal boundaries may
represent the history of recorded interactions.
In components modelled coalgebraically [7, 10],
vertical composition is a form of pipelining (in-
terfacing through shared output-input types),
whereas horizontal composition is realised by

58

Coalgebra for the working software engineer

some form of parallel paired evolution.
At this abstract level, architectural calculi build on these two forms of composi-

tion, hereby represented by ; and �, respectively. Associativity of both operators is
clearly expected, as the ‘geometry’ is invariant for the ways parentheses are placed.
Commutativity of � conforms to the intuition that parallel composition is unordered,
but this conceptual assumption may be di�erently interpreted by di�erent tensors.
A similar observation applies to idempotency: it would be expected when � encodes
a choice between alternative components, but less so for a synchronous product. The
interaction between the temporal and the spatial dimensions is captured by distri-
bution, which follows the same pattern of an interchange law in category theory,

(p � q) ; (pÕ � qÕ) = (p ; pÕ) � (q ; qÕ) . (7)

The law is rather familiar. For example, taking � as parallel composition in a
process algebra and ; as action prefixing, it introduces interleaving on moving from
the right to the left hand side.

In practice, software architectures are described through a myriad of concrete
languages and formalisms, often of a graphical nature which may allow for rather
flexible coordination patterns. Coalgebra has been used to provide semantics to
some of these formalisms, from classical process algebra [11] and the fi-calculus [51] to
statecharts [29] and di�erent UML diagrams. In each context, composition operators
to build new (coalgebraic models of) components from old, like variants of � and
;, are specified and their properties studied. A concrete component calculus will
be reviewed below to illustrate a possible application of Coalgebra to architectural
design. Before that, however, we would like to address two main issues on this
discussion.

The first one concerns composition of components modelled coalgebraically. To
make things concrete, and already anticipating the illustration section, consider
generalised Mealy machines

p : U ◊ I ≠æ T (U ◊ O) (8)

which can be seen as coalgebras for F(X) = T (X◊O)I . This provides an elementary
model of state-based software components characterised by

• an internal state space,

• input and output observation universes to ensure the flow of data,

• the possibility of interaction with other components during the overall com-
putation,

59

L. S. Barbosa

• a behavioural e�ect which specifies their branching structure.

We have already seen some possible variants for T . However, if one wants to com-
pose this sort of components and define a calculus to reason about their inter-
connection, the first step is to enforce extra structure upon T , namely that of a
strong monad. Reacting to an input i, the coalgebra will not simply produce an
output and a continuation state, but a T -structure of such pairs. The monadic
structure provides tools to handle the ‘nesting’ of such computations. Unit (÷) and
multiplication (µ) correspond, respectively, to a value embedding and a ‘flatten’
operation to reduce nested behavioural e�ects. The latter is the key element to
define e�ect-aware composition, which, as discussed below, is based on composition
in the Kleisli category for T . Recall, for future reference, the definition: the com-
position of two monadic arrows m : I ≠æ T (Z) and n : Z ≠æ T (O), is given by
n • m ‚= µ · T (n) · m. Therefore, in this setting, the abstract operator ; builds
on composition in the universe of T -computations, i.e. in the corresponding Kleisli
category, whereas � will be a tensor in this category. Strength, either in its right
(·r : U ◊ T (V) ≠æ T (U ◊ V)) or left (·l) version, handles context information. A
sort of distributive law ” : T (U)◊T (V) ≠æ T (U ◊V) is obtained by composing the
right and left strengths. Whenever the order in which this composition is performed
does not matter, the monad is said to be commutative. As one may guess this will
impact on commutativity of tensors � connecting such models.

The second comment which is in order concerns the interpretation of the equal-
ity symbol in equation (7). In a coalgebraic setting the obvious choice is observa-
tional equality for the relevant functor T . In engineering practice, however, one is
sometimes interested in establishing weaker relationships. For example, (7) may be
presented as an inequation to convey the intuition that a sequential computation is
a special case of a parallel one, as in concurrent Kleene algebra [37].

This opens an important issue in architectural design – refinement – that we will
briefly review from two di�erent perspectives.

In data refinement, there is a ‘recipe’ to identify a refinement situation: look for
an abstraction function to witness it. In other words: look for a morphism in the
relevant category from the ‘concrete’ to the ‘abstract’ model such that the latter
can be recovered from the former up to a suitable notion of equivalence, though
typically not in a unique way. In a coalgebraic framework, however, some extra
care is in order. The reason is obvious: coalgebra morphisms entail bisimilarity.
Therefore one has to look for a somewhat weaker notion of a morphism between
coalgebras.

The first approach to be mentioned here [68] works for extended polynomial
endofunctors in Set and resorts to the notion of a preorder Æ on a functor T . This

60

Coalgebra for the working software engineer

is itself a functor which makes the following diagram commute:

PreOrd

✏✏

ÈT (V), ÆT (V)Í
_
✏✏

Set
T

//

ÆT
77

Set i.e. V �
//

,

55

T (V)

This means that for any function h : V ≠æ U , T (h) preserves the order, i.e. in a
pointfree formulation, T (h)· ÆT (V) ™ ÆT (U) · T (h).

Given two T -coalgebras — : V ≠æ T (V) and – : U ≠æ T (U), one may now
define, with respect to a preorder Æ, the notions of a preserving and a reflecting
morphism as a function h from V to U such that

T (h) · —
.

Æ – · h and – · h
.

Æ T (h) · — ,

respectively. The notation
.

Æ is used for the pointwise lifting of the preorder Æ to the
functional level, i.e. f

.
Æ g…’x . f x Æ g x ,or, equivalently, f

.
Æ g…f ™ Æ · g. The

names chosen for these morphisms come from the fact that indeed they respectively
preserve and reflect state transitions induced by coalgebras, i.e.

v ≠æ— vÕ ∆ h v ≠æ– h vÕ and h vÕ ≠æ– uÕ ∆ ÷vÕœV . v ≠æ— vÕ · uÕ = h vÕ

where uÕ ≠æ– u … uÕ œT – u is an instance of datatype membership [38], defined
inductively for the class of relevant functors [8] and verifying

h · œT = œT · T h (9)

for any function h.
A refinement preorder is a preorder Æ on an endofunctor T satisfying the fol-

lowing compatibility condition with the membership relation: for all x œ X and
x1, x2 œ T (X),

x œT x1 · x1 Æ x2 ∆ x œT x2

or, again in a pointfree formulation,

œT · Æ ™ œT . (10)

It is easy to see that reflecting morphisms form a category and similarly for the
dual case. The point, however, is that the exact meaning of a refinement assertion
p Æ q above depends on the concrete refinement preorder adopted. But what do we
know about such preorders?

Condition (10) is equivalent to Æ ™ œT \ œT by direct application of the Galois
connection which defines relational division, i.e. R ·X ™ S … X ™ R\S. Clearly,

61

L. S. Barbosa

this provides an upper bound for refinement preorders, the lower bound being the
identity. Note that œT \ œT corresponds to the lifting of œT to (structural) inclusion,
i.e. x (œT \ œT) y … ’eœT x . e œT y. Di�erent refinement preorders have been
studied [8] and will not be detailed here. In broad terms, refinement based on
preserving morphisms generalises the usual axis of non-determinism reduction in a
functorial way. On the other hand, reflecting morphisms witness a similar functorial
generalisation of definition increase.

The second approach, developed along a series of papers by I. Hasuo [31, 35,
69, 70], plays a similar game but in a di�erent category. It applies to coalgebras
U æ T (F(U)) where T is a monad in Set, capturing the branching behavioural
e�ect, F is a functor which determines the linear-time behaviour, and a distributive
law, i.e. a natural transformation ⁄ : FT =∆ T F is assumed to hold. Thus, a T F-
coalgebra in Set corresponds to a F-coalgebra in the Kleisli category Kleisli(T) for
monad T . Functor F is the canonical lifting of F to Kleisli(T) which coincides with
F on objects and maps an arrow h : U ≠æ‘ V to F(h) = ⁄V · F(h) : F(U) ≠æ‘ F(V).
Notice that notation U ≠æ‘ V stands for an arrow in Kleisli(T), i.e. a Set function
U æ T (V).

Once this setting is defined, all one has to do is to play the coalgebraic game
as usual. In particular, reflecting and preserving morphisms as introduced above,
emerge now as lax and oplax morphisms, renamed in this context to forward and
backward simulations. However, rather than defining what we have called above
refinement preorders, essentially based on the functor structure, the novelty of this
approach is to build on the fact that, for the class of functors considered, the homsets
in the Kleisli catagory are dcpo‹-enriched, therefore carrying a notion of order. This
means that the set of arrows, say from U to V in Kleisli(T) forms a dcpo with a
minimum element ‹. The crucial observation is that in such circumstances an initial
F-algebra in Set yields a final F-coalgebra in Kleisli(T). Actually, this comes from
Smyth and Plotkin’s classical work on limit-colimit coincidence [65].

The basic result is as follows: An initial F-algebra ’ : F(W) ≠æ W in Set
lifts to an initial F-algebra in Kleisli(T), ÷W · ’, which coincides with the final
F-coalgebra. Its dynamics is given by

Ê = ÷F(W) · ’¶ : W ≠æ‘ F(W)

in Kleisli(T).
Coinduction in the Kleisli category works as expected, entailing a unique be-

haviour map from any other F-coalgebra p : U ≠æ‘ F(U) as depicted in the diagram
below.

62

Coalgebra for the working software engineer

W � Ê
// F(W)

U � p
//

_

trp

OO

F(U)
_

F(trp)=⁄·F(trp)

OO

This behaviour map in the the Kleisli cat-
egory, denoted by trp, corresponds to the trace
semantics of the original coalgebra in Set. Just
to build up intuition, let us compute trp for a
non-deterministic automaton, i.e. a coalgebra
p : U ≠æ P(1 + A ◊ U).

Notice that T = P and F = 1 + A ◊ ≠.
The carrier of the final F-coalgebra is W = Aú, as [nil, cons] : 1 + A ◊ Aú ≠æ Aú is
the initial F-algebra in Set. Therefore, trp : U ≠æ P(Aú) is such that

I
nil œ trpu ≈ u = ß1ú
consÈa, sÍ œ trpu ≈ u = ß2Èa, uÕÍ and s œ trpuÕ

where ß1, ß2 are the coproduct injections, which corresponds to the language ac-
cepted by the automaton p.

This example drives us in the right direction: the behaviour of a coalgebra in
the Kleisli of the monad capturing the intended behavioural e�ect gives its trace
semantics. Forward and backward simulations computed in exactly the same set-
ting, as indicated above, entail notions of refinement which are sound with respect
to trace inclusion (and even complete for a combination of both kinds of simula-
tion). The point to stress, however, is that, just as the genericity of Coalgebra
makes bisimulation acquire the shape of the relevant functor, it does the same to
trace semantics. Similarly, di�erent notions of simulation, e.g. for probabilistic and
weighted coalgebras, have been extensively studied [69].

This construction of trace semantics, of which reference [35] gives a detailed
account, is limited to the family of functors mentioned above. For example, it
does not apply to T = D which induces a trivial order in the Kleisli homsets; the
subdistribution functor

DÆ(X) = {µ : X ≠æ RØ0 |
ÿ

xœX

µx Æ 1}

can be used instead – the software engineer may think of what is missing to 1, in
each transition, as the probability of some sort of ‘systemic’ failure, such as deadlock,
to occur. On the other hand, although the finite powerset monad can serve as T
in several contexts, it cannot, for example, in combination with F(X) = A ◊ X,
because the initial algebra is then the empty set, thus yielding a trivial trace.

A recent, alternative path [42] to compute coalgebraic trace semantics based
on determinisation, rather that on order enrichment, seems particularly fruitful.

63

L. S. Barbosa

The idea is borrowed from automata theory where determinisation refers to the
algorithmic construction of the deterministic equivalent to a non-deterministic au-
tomata. The latter often provides a smaller representation of the problem at hand
but its processing is computationally harder. A similar process converts a partial
into a total automaton. Both of them have a common shape: more transitions are
added but the behaviour of the non-deterministic or the partial automata is given
in terms of the deterministic, total case. The coalgebraic generalization is based
on a di�erent decomposition, studying coalgebras of type U æ F(T (U)), rather
than U æ T (F(U)). It puts new conditions on the functors of interest and lifts
the constructions not to the Kleisli, but to the Eilenberg-Moore category of the
behavioural e�ect monad. Interestingly enough, it captures cases that fail to have
dcpo‹-enriched Kleisli homsets . One such example concerns coalgebras

p : U ≠æ M(1 + A ◊ U)

where M(X) = N
X is the multiset monad, and corresponds to a quite general form

of weighted transition systems.

3.2 Illustration: Variants of a component calculus
My first contact with Coalgebra, in the context of my own doctoral studies, focused
on the development of a calculus for software components modelled as monadic
Mealy machines [7], typed as (8) above. A component model in such a setting is a
pointed coalgebra

p ‚= Èup œ Up, ap : Up ≠æ T (Up ◊ O)IÍ (11)
where up is the initial state and the coalgebra dynamics is captured by currying a
state-transition function ap : Up ◊ I ≠æ T (Up ◊ O).

The basic architectural operator is pipeline – a form of sequential composition
which amounts to the Kleisli composition for monad T of its arguments suitably
extended to each other’s state space. It is worthwhile to detail the construction.
Given ap : Up ◊ I ≠æ T (Up ◊ O), its (left) state extension to X is computed as

aX|p ‚= (X ◊ Up) ◊ I
a¶

≠≠≠≠æ X ◊ (Up ◊ I) id◊ap≠≠≠≠æ X ◊ T (Up ◊ O)
·r≠≠≠≠æ T (X ◊ (Up ◊ O)) T (a)≠≠≠≠æ T ((X ◊ Up) ◊ O)

where a is the associativity natural isomorphism and ·r the right strength for T .
The right state extension, p|X, is defined similarly. Therefore, for components with
dynamics ap : Up ◊ I ≠æ T (Up ◊ Z) and aq : Up ◊ Z ≠æ T (Up ◊ O), their pipeline
is defined as

p ; q ‚= ÈÈup, uqÍ, ap;qÍ with ap;q ‚= aUp|q • ap|Uq
. (12)

64

Coalgebra for the working software engineer

Having defined generic components as (pointed) coalgebras, one may wonder
how do they get composed and what kind of calculus emerges from this framework.
Actually, interfaces are sets representing the input and output range of a compo-
nent. Consequently, components are arrows between interfaces and arrows between
components are arrows between arrows. Formally, this leads to the notion of a bicat-
egory5 to structure our reasoning universe. We take interfaces (i.e. sets modelling
observation universes of components) as objects of a bicategory Cp, whose arrows
are pointed coalgebras. For each pair ÈI, OÍ of interface objects, a (hom-)category
Cp(I, O) is defined, whose arrows h : Èup, apÍ ≠æ Èuq, aqÍ satisfy the expected mor-
phism and initial state preservation conditions:

aq · h = T (h ◊ O)I · ap and h (up) = uq . (13)

Composition is inherited from Set and the identity 1p : p ≠æ p on component p is
defined as the identity idUp

on its carrier. Next, for each triple of objects (I, K, O),
a composition law is given by a functor

;I,K,O : Cp(I, K) ◊ Cp(K, O) ≠æ Cp(I, O)

whose action on objects p and q was given above.
The action of ; on 2-cells reduces to h ; k = h ◊ k. Finally, for each object K, an
identity law is given by a functor

copyK : 1 ≠æ Cp(K, K)

whose action on objects is the constant component

Èú œ 1, acopyK
Í

with acopyK
‚= ÷1◊K . Similarly, the action on morphisms is the identity on 1.

The fact that, for each strong monad T , components form a bicategory amounts
not only to a standard definition of the two basic combinators ; and copyK of a
component calculus, but also to setting up its basic laws. Recall that the graph of
a morphism is a bisimulation. Therefore, the existence of an initial state-preserving

5Basically a bicategory [13] is a category in which a notion of arrows between arrows is addi-
tionally considered. This means that the the space of morphisms between any given pair of objects,
usually referred to as a (hom-)set, acquires itself the structure of a category. Therefore the standard
arrow composition and unit laws become functorial, since they transform both objects and arrows
of each hom-set in a uniform way. A typical example is Cat itself: the category whose objects are
small categories, arrows are functors and arrows between arrows, or 2-cells as they are often called,
correspond to natural transformations.

65

L. S. Barbosa

morphism between two components makes them bisimilar, leading to the following
laws, for appropriately typed components p, q and r:

copyI ; p ≥ p ≥ p ; copyO and (p ; q) ; r ≥ p ; (q ; r)

The dynamics of a component specification is essentially ‘one step’: it describes
immediate reactions to possible state/input configurations. Its temporal extension
becomes the component’s behaviour. Formally, the behaviour [(p)] of a component
p is computed by coinductive extension, i.e. [(p)] = [(ap)] up. Behaviours organise
themselves in a category Bh, whose objects are sets and arrows b : I ≠æ O are
elements of the carrier of the final coalgebra ÊI,O for functor T (Id ◊ O)I . Thus,
composition in Bh is given by a family of combinators, for each I, K and O, ;I,K,O

Bh :
Bh(I, K)◊Bh(K, O) ≠æ Bh(I, O), such that ;I,K,O

Bh ‚=[(ÊI,K ;ÊK,O)]. On the other
hand, identities are given by copyK

Bh : 1 ≠æ Bh(K, K) and copyK
Bh ‚= [(acopyK

)] ú,
i.e. the behaviour of component copyK , for each K.

The basic observation is that the structure of Bh mirrors whatever structure Cp
possesses. In fact, the former is isomorphic to a sub-(bi)category of the latter, whose
arrows are components defined over the corresponding final coalgebra. Alternatively,
we may think of Bh as constructed by quotienting Cp by the greatest bisimulation.
However, as final coalgebras are fully abstract with respect to bisimulation, the
bicategorical structure collapses. Moreover, as discussed in [7], some tensors in
Cp become universal constructions in Bh, for particular instances of T . This also
explains why properties holding in Cp up to bisimulation, do hold ‘on the nose’ in
the behaviour category. For example, the ; laws above may be rephrased as

copyI ; b = b = b ; copyO and (b ; c) ; d = b ; (c ; d)

for suitably typed behaviours b, c and d, in Bh. It is easy to check that Bh is a
category and [()] is a 2-functor from Cp to Bh. Indeed,

b ; copyO = [(ÊI,O ; copyO)] Èb, úÍ = [(ÊI,O)] b = b

(b ; c) ; d = [((ÊI,K ; ÊK,L) ; ÊL,O)] ÈÈb, cÍ, dÍ =
= [(ÊI,K ; (ÊK,L ; ÊL,O))] Èb, Èc, dÍÍ = b ; (c ; d)

On the other hand, note that [(copyK
Cp)] = copyK

Bh and

[((p ;Cp q))] = [(ap;q)](Èup, uqÍ)
= [(ÊI,K ; ÊK,O)] · ([(ap)] ◊ [(aq)]) Èup, uqÍ
= ;Bh · ([(ap)] ◊ [(aq)]) Èup, uqÍ
= ;Bh È[(ap)] up, [(aq)] uqÍ
= [(p)] ;Bh [(q)]

66

Coalgebra for the working software engineer

Some detail put above in describing the structure of Cp and Bh aims at emphasis-
ing an important aspect from the architectural point of view: behaviour descriptions
are compositional in a sense that is compatible with composition at the (state based)
component level. Such compatibility comes exactly from the bicategorial structure.
Or, as put by I. Hasuo, C. Heunen, B. Jacobs and A. Sokolova [33], as a manifes-
tation of the microcosm principle which states that the same algebraic structure is
carried by a category and by one of its objects which assumes a prototypical role.
Examples abound in the literature on ‘categorification’ [4], a typical one is that of
a monoid object inside a monoidal category. It is interesting that the same kind of
phenomena arises in our context.

A whole component calculus, parametric on a behaviour monad T , can be de-
veloped on Cp. The relevant structure lifts naturally to Bh defining a particular
(typed) ‘process’ algebra. We will not go into detail here, but to mention the basic
ingredients considered in all approaches documented in the literature [7, 10, 33, 32].

The first one is the representation of functions in Cp: A function f : A ≠æ B
is lifted to a component pfq ‚= Èú œ 1, apfqÍ over 1 whose action is given by the
currying of

apfq ‚= 1 ◊ A
id◊f

// 1 ◊ B
÷(1◊B)

// T (1 ◊ B)

Up to bisimulation, function lifting is functorial, that is, for g : I ≠æ K and
f : K ≠æ O functions, one has

pf · gq ≥ pgq ; pfq and pidIq ≥ copyI

Actually, lifting canonical Set arrows to Cp is a simple way to explore the struc-
ture of Cp itself. For instance, ?I : ÿ ≠æ I keeps its naturality as, for any p : I ≠æ O,
the corresponding diagram below commutes up to bisimulation, because both p?Iq

and p?Oq are the inert components: the absence of input makes reaction impossible.
Formally,

p?Iq ; p ≥ p?Oq (14)

I
p
// O

ÿ

p?Iq

OO

p?Oq

??

I
p
//

p!Iq

✏✏

O

p!Oq
��

1

Naturality is lost, however, in the lifting of !I :
I ≠æ 1: the diagram fails to commute for non
trivial T (e.g. the finite powerset monad).

Components over 1 defined from identities
and structural properties of the underlying cat-
egory are called wires. Typical examples, in-
clude the liftings of canonical isomorphisms –
e.g. associativity, a, or commutativity, s – which leads to bisimilarity up to an iso-
morphic rearranging of the interface, as well as liftings of embeddings, projections,

67

L. S. Barbosa

codiagonals and diagonals, the latter used to merge input and replicate output types,
as in, for example, pOq ; p ; pMq : I + I ≠æ O ◊ O.

The pre- and post-composition of a component with Cp-lifted functions can be
encapsulated into a unique combinator, called wrapping, which is reminiscent of
the renaming connective found in process calculi. It is defined as functor ≠[f, g] :
Cp(I, O) ≠æ Cp(I Õ, OÕ), for f and g suitably typed, which is the identity on mor-
phisms and maps component Èup, apÍ into Èup, ap[f,g]Í, where

ap[f,g] ‚= Up ◊ I Õ id◊f≠≠≠≠æ Up ◊ I
ap≠≠≠≠æ T (Up ◊ O) T (id◊g)≠≠≠≠≠æ T (Up ◊ OÕ)

Typical properties are, as one could expect,

p[f, g] ≥ pfq ; p ; pgq and (p[f, g])[f Õ, gÕ] ≥ p[f · f Õ, gÕ · g]

Components can be aggregated in a number of ways, besides the ‘pipeline’ com-
position discussed above. Several tensors have been introduced in the literature
[7, 33, 52] corresponding to choice, parallel and concurrent composition. We will
briefly detail the first one which provides a form of additive composition defined as a
lax functor � : Cp◊Cp ≠æ Cp. It consists of an action on objects given by I �J =
I + J and a family of functors �I,O,J,R : Cp(I, O) ◊ Cp(J, R) ≠æ Cp(I + J, O + R)
yielding

p � q ‚= ÈÈup, uqÍ œ Up ◊ Uq, ap�qÍ and ap�q ‚= dr¶ • (ap|Uq
+ aUp|q) • dr¶ ,

where dr is the right distributivity isomorphism, and mapping pairs of arrows Èh1, h2Í
into h1 ◊ h2. When interacting with p � q, the environment chooses either to input
a value of type I or one of type J , triggering the corresponding component, p or q,
respectively. The following laws arise from the fact that � is a lax functor in Cp:

(p � pÕ) ; (q � qÕ) ≥ (p ; q) � (pÕ ; qÕ)
copyK�KÕ ≥ copyK � copyKÕ

pfq � pgq ≥ pf + gq .

Moreover, up to isomorphic wiring, � is a symmetric tensor product in each hom-
category, with nil = pidÿq as unit, i.e.

(p � q) � r ≥ p � (q � r)
nil � p ≥ p and p � nil ≥ p

p � q ≥ q � p .

68

Coalgebra for the working software engineer

The construction of architectural calculi based on generalised Mealy machines
initiated in [6], was furhter developed by a several authors. V. Miraldo and J. N.
Oliveira [52] focused on lifting the whole calculus to the Kleisli category of the
relevant behaviour monad T , under the motto ‘keep definition, change category’.
Some of these categories are paradigmatic universes for dealing, namely, with non-
determinism and probabilistic evolution. In the first case the calculus is ‘instan-
tiated’ in the category of sets and binary relations, i.e. the Kleisli for the finite
powerset functor. In the second, in the category of (sub-)stochastic matrices, the
Kleisli of the (sub-)distribution functor. In both cases, calculation takes advantage
of a well-studied universe of typed relations and matrices, respectively [57]. The
programme is not straightforward, namely in what concerns the lifting of theories
(e.g. of behavioural equivalence), further than just the definition of combinators and
the preservation of monadic strength on moving from the original to the Kleisli cat-
egory. Again, a somehow heavy requirement is found here: monad T should induce
a dcpo‹-enriched Kleisli category (as pointed out above when discussing trace se-
mantics for coalgebras) and should itself be symmetric monoidal, i.e. commutative.

These two requirements appear again in the approach developed by B. Jacobs,
I. Hasuo, C. Heunen and A. Sokolova, in a series of papers [33, 32, 34]. The whole
work is done in the context of a symmetric monoidal category C, equipped with
coproducts + and ÿ over which the tensor ¢ distributes. The behaviour monad T is
assumed to be commutative, with a distributive law ” : T (U)◊T (V) ≠æ T (U ◊V).
Instead of building on a bicategorial structure as before, components are taken as
objects in a category with fixed input/output universes. This entails the need for the
introduction of an indexing mechanism, similar to the one underlying relabelling in
process algebra. Actually, the calculus works directly with arrows U ◊I æ T (U ◊O)
which lift to coalgebras if C is Cartesian closed. This is not assumed in general,
leading to a very general setting; for example state extension discussed above arises
simply as an action of the monoidal category on a category of components. A very
interesting connection links components in C to Freyd categories [60], which further
correspond to J. Hughes’ notion of an arrow [39], a construction which, like that of
a monad, is used to model structured computations in functional programming.

But what is really new in this approach is the introduction of a trace operator in
the architectural calculus, which provides a formalisation of the notion of a ‘loop’ in
a diagram of components. Semantically, this brings to scene a feedback construction
with respect to the additive structure of C, embodying a form of iteration. Mathe-
matically, the operator is a trace in the sense of A. Joyal, R. Street and D. Verity
[43].

The development of these ideas can be summed up as follows: whenever C has
countable coproducts and the behaviour monad T is commutative and, as before,

69

L. S. Barbosa

induces a Kleisli category whose homsets are dcpo‹ enriched, Kleisli(T) is traced
monoidal with respect to coproduct as a monoidal structure. This means that, to
each arrow h : I+Z ≠æ T (O+Z) corresponds a traced arrow TrKl(h) : I ≠æ T (O),
where operator TrKl() satisfies the canonical properties for a trace [43]. This lifts
to a trace operator in the category of components which also obeys those properties,
although only up to isomorphism. Thus, given a component p = Èup œ Up, apÍ :
I + Z ≠æ O + Z the trace operator builds a new one where output in Z is fed back
to p:

Tr(p) ‚= Èup œ Up, aT r(p)Í : I ≠æ O with aT r(p) ‚= TrKl(T (dr¶) • ap • dr)

Note that T (dr¶) • ap • dr is typed as Up ◊ I + Up ◊ Z æ T (Up ◊ O + Up ◊ Z) in
Kleisli(T).

The requirements on the behaviour monad mentioned above seem to be recurrent
when aiming at a richer structure for the development of architectural calculi. They
are not met, however, by the functor H introduced in section 2.3 and intended to
capture continuous behaviour.

The functor H, however, extends to a strong monad (both in Set and Top)
which means that most of the calculus discussed above can be developed to address
components with continuous evolutions both in their output and state space, i.e.
built as coalgebras for F(X) = H(U ◊O)I . Basically, all the calculus is kept, but for
an additive trace and the interchange law with respect to a tensor capturing parallel
evolution. There is, however, a notion of iteration, which, under some circumstances
[55], induces a fixed point to give semantics to infinite loops.

In any case, it seems that H-based coalgebras will play a relevant role in general-
ising the component calculus to the continuous domain, to reason e.g. about sensor
networks and IoT configurations. Therefore, I’ll close this section introducing the
associated monadic structure. Recall the definition of H in (6), section 2.3. The
monad structure adds a multiplication, µ : H · H =∆ H and its unit ÷ : Id =∆ H.
The latter produces trivial evolutions with duration 0. Formally, ÷X x ‚= Èx, 0Í.
Multiplication is a bit more complex. Let Èf, dÍ œ (XT ◊ D)T ◊ D. Then, the
‘flattened’ system, µX Èf, dÍ, will return, at each instant ti, the value (f ti)0 until,
and if, d is reachead. After that, if d ”= Œ, it will evolve according to fd = Èg, eÍ for
the remaining duration e ≠ d. Formally,

µX Èf, dÍ ‚=
I

È◊X · f, dÍ ++ (f d) if d ”= Œ
È◊X · f, ŒÍ otherwise

where ◊ : H =∆ Id is given by ◊ Èf, dÍ ‚= f 0 and Èf, dÍ ++ Èg, eÍ ‚= Èf ++d g, d + eÍ
with f ++d g ‚= f � (Æd)⇤ g (_ ≠ d). Note that ◊ is an Eilenberg-Moore H-algebra:
indeed, ◊ · ÷ = id and ◊ · µ = ◊ · H◊.

70

Coalgebra for the working software engineer

It is worthwhile to see what composition means in Kleisli(H). Let c1 : I ≠æ‘
K, c2 : K ≠æ‘ O, and assume ci = Èfi, diÍ, for i = 1, 2. Thus6,

(µ · Hc2 · c1) x

= { c1 = Èf1, d1Í, and let d = d1 x }
(µ · Hc2) Èf1 x, dÍ

= { definition of H }
µ Èc2 · (f1 x), dÍ

= { definition of µ}
È◊ · c2 · (f1 x), dÍ ++ (c2 · (f1 x)) d

= { definition of ++ }
È (◊ · c2 · (f1 x)) ++d f2 ((f1 x) d), d + fi2(c2((f1 x) d)) Í

= { definition of ++d }
È ◊ · c2 ((f1 x) _) � (Æd) ⇤ f2 ((f1 x) d) (_ ≠ d), d + fi2(c2((f1 x) d)) Í

Two di�erent cases must be considered. In the first one suppose that c2 in (c2•c1)
is pre-dynamical in the standard sense that ◊ · c2 = id (or, at least, an inclusion). In
this case composition yields sequencing: for the duration of c1x, (c2 • c1)x evolves
first according to c1, and then, on its termination, according to c2, which receives
as input the endpoint of f1x. Otherwise it yields a form of modulation: the second
component acts upon the first one.

This behaviour may be illustrated through the following example. Suppose the
temperature of a room is to be regulated as follows: start at 10 ¶C, seek to reach
and maintain 20 ¶C, but in no case surpass 20.5 ¶C. The system is realised by three
elementary components that have to work together: component c1 to raise the tem-
perature to 20 ¶C, component c2 to maintain a given temperature, and, finally, c3

to ensure the temperature never goes over 20.5 ¶C. Formally,

c1 x = È (x + _), 20 � x Í
c2 x = È x + (sin _), Œ Í
c3 x = È x � (x Æ 20.5) ⇤ 20.5 , 0 Í

where � is truncated subtraction (i.e. x � y is x ≠ y if x > y or 0 otherwise).
Composing c2 • c1 yields a component which reads the current temperature, raises
it to 20 ¶C, and then keeps it stable, as exemplified by the plot below (left). If,

6I’ll omit the simpler, but similar case dealing with infinite durations.

71

L. S. Barbosa

however, temperatures over 20.5 ¶C occur, composition c3 • (c2 • c1) puts the system
back into the right track as illustrated by the plot in the right.

0 5 10 15 20 25 3010

15

20

25

x

y

c2 • c1 10

0 5 10 15 20 25 3010

15

20

25

x

y

c3 • (c2 • c1) 10

Clearly, c3 can be regarded as a supervisor system that, for the sake of e�ciency,
only acts when temperatures exceed the threshold, using just enough power to keep
the temperature below the limit. Actually, note that c3 is able to play a supervisory
role precisely because it is not pre-dynamical.

Recent research [55] unveiled most of the structure of an H-based architectural
calculus. In particular, H is shown to be strong in Top, its Kleisli category to
inherit colimits from Top, as expected, and moreover to preserve pullbacks (a little
bit harder to prove). A concrete description of the final coalgebra can be done, as well
as the systematic definition of old and new combinators for H-based components.

4 Properties

4.1 From invariants to modalities

Requirements, architectural properties, interface specifications, business rules, etc.
are common designations for (di�erent kinds of) properties recurring in the practice
of Software Engineering. To be unambiguously stated, compared, and even verified
against the models of interest, they need to be expressed in suitable logics, preferably
equipped with some form of mechanically supported verification framework.

To a great extent, in software design one is interested in properties that are pre-
served along the system’s evolution, the so-called ‘business rules’, as well as in ‘future
warranties’, stating that e.g. some desirable outcome will be eventually produced.
Both classes are examples of modal assertions, i.e. properties that are to be inter-
preted across a transition system capturing the software dynamics. The relevance of
modal reasoning in computing is witnessed by the fact that most university syllabi

72

Coalgebra for the working software engineer

in the area include some incursion into modal logic, in particular in its temporal
variants.

The novelty is that, as it happens with the notions of transition, behaviour,
observational equivalence or refinement, modalities in Coalgebra also acquire a shape.
That is, their definitions become parametric on whatever type of behaviour seems
appropriate for addressing the problem at hand.

Let me start with the notion of an invariant – a predicate7 which is supposed
to hold in all states of a system, thus configuring what is classically called a safety
property. If the system dynamics is described by a coalgebra – : U ≠æ F(U), a
predicate „ over state space U is an invariant if it holds on the ‘current’ state and
on its ‘successor’ states, which are of course obtained by execution of –. This entails
the need to lift „ from U to F(U).

In a relational setting, i.e. regarding predicate „ as a coreflexive relation and F as
a relator8, the informal definition of an invariant can be captured by the statement

’uœU . u „ u ∆ (– u) F(„) (– u)

which, by eliminating variables, is equivalent to

„ ™ –¶ · F(„) · – (15)

Clearly, just as bisimulations are preserved by the coalgebra transitions, so are
invariants. But what is more, the right hand side of expression (15) defines a ‘box’
modality over the transition system entailed by coalgebra –:

2„ ‚= –¶ · F(„) · – (16)

which rewrites (15) as: „ is invariant whenever „ ™ 2„. The crucial observation,
however, is that the modal operator 2 is parametric on the coalgebra – and, of
course, on the functor F . Moreover, invariants induce invariants because, 2 being
monotonic,

„ ™ 2„ ∆ 2„ ™ 22„ .

It is instructive to unfold the definition of the 2 modality for specific cases.
Taking F(X) = P(X), for example, one gets

2„ = {u œ U | (– u) P(„) (– u)}
7In the sequel we will resort, with no change of notation, to two equivalent representations of

a predicate over a set X: as a subset of X or as a coreflexive binary relation, i.e. a subset of the
identity over X. Thus, x œ „ i� x „ x.

8I’ve already mentioned relators in footnote 5. The concept of a relator [27] extends that of a
functor to relations: F(R) is a relation from F(U) to F(V) provided R is a relation from U to V .
Relators are monotone and commute with composition, converse and the identity.

73

L. S. Barbosa

which, regarding predicates as sets, takes the more familiar form

2„ = {u œ U | – u ™ „}

which corresponds to the standard interpretation of the 2 modality in Kripke se-
mantics. As another example consider the functor F(X) = 1 + X. Clearly,

2„ = {u œ U | – u = ÿ2 uÕ ∆ uÕ œ „} .

The whole construction of a modal logic relative to a coalgebra – can be pursued
along similar lines. Such a programme is often referred to as the temporal logic
of coalgebras [41]. Actually, not only a diamond modality is defined, as usual, by
duality, ù„ ‚=¬2¬„, but ‘temporal extensions’ of these modalities can be obtained as
fixed points. Consider, for example, the definition of �„, the henceforth „ operator
which extends the validity of „ over all states computed by successive application of
–:

�„(x) ‚= ÷Â . Â is invariant · Â ™ „ · Â x

Regarding predicates „ and Â as coreflexives and making explicit the supremum
implicit in the existential quantification one gets,

�„ =
€

{Â | Â ™ 2Â · Â ™ „}

= { fl-universal}
€

{Â | Â ™ 2Â fl „}

= { intersection of coreflexives is relational composition }
€

{Â | Â ™ „ · 2Â}

which leads to a greatest (post)fixed point definition:

�„ = ‹Â („ · 2Â)

4.2 Coalgebraic logic

The modalities induced by a coalgebra – and considered so far are relative to the
‘global’ dynamics of –. Depending on applications, however, one may be interested
in other types of modalities. For example, suppose – is a coalgebra for functor
F(X) = A ◊ X ◊ X. Then, it may be relevant to have modalities to take care of
just the right or the left successors.

74

Coalgebra for the working software engineer

For another, popular example consider F(X) = PXA, the ‘shape’ of a non-
deterministic transition system. In this case one may be interested in one ‘box’
operator per each action a œ A dealing only with transitions labelled by a. Thus,
predicate „ over U has to be lifted in a specific way to P(U)A, for each a œ A. The
corresponding modality will build on such ‘user-defined’ lifting.

To proceed, a more general notion of predicate lifting is in order. Fortunately,
the definition is straightforward [47]: A predicate lifting is simply a natural trans-
formation “ : 2≠ =∆ 2F(≠), where 2≠ is the contravariant powerset functor. Then,
a modality 2, with respect to a coalgebra – : U ≠æ F(U) and a predicate lifting “,
is defined as

2 ‚= 2U “U
// 2F(U) –≠1

// 2U

where f≠1 denotes the inverse image of function f , i.e. f≠1 Z = {u œ U | f u œ Z}9.
Thus,

2„ = {u œ U | – u œ “U „} . (17)

For the example above, one specifies a family {“a : 2≠ =∆ 2P(≠)
A | a œ A} of

predicate liftings
“a

U „ ‚= {s œ P(U)A | s a ™ „}

which induces a corresponding family of 2-like modalities

[a]„ = {u œ U | (– u) a ™ „} .

As one would expect, those are exactly the indexed modalities of Hennessy–Milner
logic [67].

The ‘global’ modality given by equation (16) in the previous section, can be
framed in this more general setting by defining the predicate lifting “X „ ‚= {s œ
F(X) | s F(„) s}.

For the general case one may proceed as follows. As a first step define a signature
� of modal operators > : Xn ≠æ X, each one with its arity. Then, the syntax of
the logic is given by the set of formulas

Ï – p | Ï · Ï | ¬Ï | >(Ï, · · · , Ï)

for p œ Prop, a countable set of propositional variables.
A model M for the logic consists of a coalgebra – : U ≠æ F(U), a valuation

V : Prop ≠æ P(U), and, for each n-ary modal symbol >, an n-ary predicate lifting
“> : (2≠)n =∆ 2F(≠). Formulas are interpreted over a model inductively: Forgetting

9Equivalently, regarding set Z as a function from U to the two element set 2, f≠1 = 2f , with
2f Z = Z · f .

75

L. S. Barbosa

the modal operators for a while, the result is the standard interpretation over the
Boolean algebra P(U). For example, [[p]] = V (p) and [[Ï1 · Ï2]] = [[Ï1]] fl [[Ï2]], as
expected. Each n-ary modal operator, on the other hand, is interpreted as

[[>(Ï1, · · · , Ïn)]] = –≠1(“>

U ([[Ï1]], · · · , [[Ïn]]))

as in equation (17).
As a final example suppose – is a coalgebra over U for the multiset functor

M(X) = N
X , typically used to capture weighted transition systems. A modal

operator >N could be defined to deal with those successor states that are reachable
with a cost (measuring e.g. resources or time units used) limited to N . Thus,

[[>N Ï]] = {u œ U | ’uÕœU . (– u) uÕ Æ N ∆ uÕ œ [[Ï]]} .

The corresponding predicate lifting is “>N

X „ ‚= {s œ N
X | ’xœX . s x Æ N ∆ x œ „}.

This is similar to what is called in modal logic a graded modality, although this
qualifier originally refers to a restriction on the cardinality of outgoing transitions
from a state, rather than on their weights. Further examples, most useful in software
design, are obtained with coalgebras for the distribution monad, for example, to
address transitions with a some type of bound on the probability of occurrence.

Of course, the satisfaction relation |=M for a model M pops out easily. For
example,

u |=M >N Ï … ’uÕœU . (– u) uÕ Æ N ∆ uÕ œ [[Ï]] .

The crucial point is the assignment of a specific predicate lifting to each modal
operator in �. There is no restriction on how such a lifting is defined but the
naturality requirement: This is what ensures that the meaning of the operator will
not depend on the state space of the particular coalgebra in a possible model. From
the working software engineer perspective, this provides the freedom to define the
most suitable logic for the problem at hand.

Such a freedom has an obvious drawback: The definition of the logic along the
strategy outlined above is not fully parametric on the functor F . It requires the
definition of a set of predicate liftings, one for each modal operator, to give the way
in which, for each case, a property over the state space is lifted to an F-structured
collection of states. The approach sketched above, however, is the most popular
in coalgebraic logic [59]. Actually, it can be formulated in a more abstract setting
[48] by first extending the signature � to an endofunctor in the category of Boolean
algebras, and then interpreting the propositional logic, extended with the operators
in �, as an algebra for such a functor, i.e.

�(2U) “U
// 2F(U) –≠1

// 2U .

76

Coalgebra for the working software engineer

Actually, moving from the powerset Boolean algebra to an arbitrary one is possible
because, on extending the propositional calculus, one may always identify proposi-
tionally equivalent formulas and equip the corresponding quotient with a Boolean
algebra structure.

An alternative approach, historically the first to be proposed, builds on L. Moss’s
original idea [53] of considering functor F himself as a syntax constructor, therefore
leading to a logic which is fully parametric on the functor encoding the system’s
behaviour. This framework is slightly less general, in the sense that F is required to
preserve weak pullbacks. The main disadvantage, however, from the point of view of
Software Engineering applications, is the cumbersome, unintuitive syntax it entails.

In both approaches, however, coalgebraic logic emerges as a powerful, generic
theory [25], rather than a way to put together a number of curious examples. The
framework is parametric, as discussed, and compositional – a most relevant feature
in Computer Science which often requires non trivial combinations of logics. But
the hallmark of coalgebraic logic resides in the way most properties one expects to
discuss in Logic can be formulated and analysed in this abstract, parametric setting.

A typical example, and most relevant from the applications point of view, con-
cerns the so-called Hennessy–Milner theorem. A modal logic has the Hennessy–
Milner property whenever the induced logical equivalence distinguishes between
non-bisimilar states and only those. The same applies, in general, to coalgebraic
logics. In modal logic, the ‘only if’ part of the theorem (i.e. that logical equivalence
entails bisimilarity) requires the underlying Kripke frame to be finitely branching.
This is mirrored in the coalgebraic setting through the separability condition which
basically says that the logic allows enough predicate liftings to distinguish between
all elements in F(U). The definition of suitable Hilbert calculi as well as the study
of expressivity, soundness, completeness and decidability can also be carried out in
the abstract setting [59, 47]. In this sense, going coalgebraic seems the right way to
do modal logic.

4.3 Illustration: Reasoning about hierarchical designs

Hierarchical transition systems are a popular mathematical structure to represent
state-based software applications in which di�erent layers of abstraction are captured
by interrelated state machines. The decomposition of high-level states into inner sub-
states, and of their transitions into inner sub-transitions, is a common refinement
procedure adopted in a number of specification formalisms. The diagram below
depicts a high level behavioural model of a strongbox controller in the form of a
transition system with three states.

77

L. S. Barbosa

get access openclosed

w1
0 w2

0 w3
0

The strongbox can be open, closed, or going through an authentication process. The
model can be formalised in some sort of modal logic, so that state transitions can
be expressed, possibly combined with hybrid features to refer to specific, individual
states. The qualifier hybrid [15] refers to an extension of modal languages with
symbols, called nominals, which explicitly refer to individual states in the underlying
Kripke frame10. A satisfaction operator @iÏ stands for Ï holding in the state named
by nominal i.

For example, in propositional hybrid logic [23] and assuming

Nom = {closed, get access, open}

as a set of nominals, a number of properties of the the diagram above can be ex-
pressed, e.g.

• the state get access is accessible from the state closed: @closed3get access,

• or the state open is not directly accessible from closed: 3open æ ¬closed.

This high level vision of the strongbox controller can be refined by decomposing not
only its internal states, but also its transitions. Thus, each ‘high-level’ state gives
rise to a new, local transition system, and each ‘upper-level’ transition is decomposed
into a number of ‘intrusive’ transitions from sub-states of the ‘lower-level’ transition
system corresponding to the refinement of the original source state, to sub-states of
the corresponding refinements of original target states. For instance, the (upper)
close state can be refined into a (inner) transition system with two (sub) states:
one, idle, representing the system waiting for the order to proceed for the get access
state, and another one, blocked, capturing a system which is unable to proceed with
the opening process (e.g. when authorised access for a given user was definitively
denied). In this scenario, the upper level transition from closed to get access can
be realised by, at least, one intrusive transition between the closed sub-state idle
and the get access sub-state identification, in which the user identification is to be
checked before proceeding. This refinement step is illustrated in the diagram below

10Notice the same adjective was used in the previous sections with a totally di�erent meaning:
to refer to software components with both discrete and continuous behaviour. The designation
cyber-physical is also used in the later case with a similar meaning.

78

Coalgebra for the working software engineer

(left). Still the specifier may go even further. For example, she may like to refine
the get access sub-state authorisation into the more fine-grained transition struc-
ture depicted on the right hand side of the diagram. This third-level view includes
a sub-state corresponding to each one of the possible three attempts of password
validation, as well as an auxiliary state to represent authentication success.

get access openclosed

timeout

stopwatch

time init

authorization

identification

blocked

idle

w1
0

w2
0 w3

0

w1
1

w2
1

w3
1

w4
1

w6
1

w5
1

w7
1

att1

att2

att3

authorization

w4
1

w1
2

w3
2

w4
2w2

2

Such a hierarchical way to design a system is quite natural and somehow in-
herent to well-known design formalisms such as D. Harel’s statecharts [29] and the
subsequent UML hierarchical state machines, among others. This sort of systems
have been studied in my own research group in the context of reconfigurable soft-
ware architectures [49]. In particular, a hierarchical hybrid logic was proposed to
express (and reason about) requirements that typically involve transitions between
designated states in di�erent local transition systems.

The whole programme can actually be carried out in a coalgebraic setting. The
first observation is that a measure of maturity of coalgebraic logic is its ability to
incorporate extensions which are already classical in the modal logic literature. We
have briefly mentioned how new ‘temporal’ operators can be defined through fixed
points, as in the modal µ-calculus [46]. Hybrid logic is also easily accommodated
in a way which is quite similar to what is done in modal logic with classical Kripke
semantics. In particular, the set of formulas is extended with

Ï – · · · | i | @i Ï

for i œ Nom, a set of nominals. The original valuation is extended to V : Prop fi
Nom ≠æ P(U) with the restriction that V i is a singleton for each nominal i, i.e. a
nominal identifies a unique state in the state space. The interpretation of the hybrid
operators is the classical one: [[@iÏ]] = {u œ U | V i œ [[Ï]]} and [[i]] = V i. The
only aspect one needs to take into account is the interplay between the satisfaction

79

L. S. Barbosa

operators and the modalities induced (or built over) the coalgebra. For example,
one has to specify that a formula like @i Ï must be valid either in the whole model
or nowhere. In an Hilbert calculus this can be achieved through an extra axiom, for
each modal operator >:

@iÏ ∆ (>(Ï1, · · · , Ïk) … >(Ï1 · @iÏ, · · · , Ïk · @iÏ)

capturing the intended validity of @iÏ irrespective to the interpretation of each Ïj .
In the definition of a model for this logic the family of accessibility relations

considered in [49] is replaced by a family of coalgebras for the same endofunctor,
each of which captures the dynamics of the appropriate layer.

Signatures are n-families of disjoint, possible empty, sets of symbols

�n =
!
Propk, Nomk

"
kœ{0,··· ,n}

.

For example, to specify the strongbox above, one considers a signature �2 for the
three layers presented. 0-level symbols consist of the set of nominals

Nom0 = {closed0, get_access0, open0}

and a set of propositions Prop0. The 1-level signature introduces a set of nominals

Nom1 = {idle1, blocked1, identification1, authorization1, time_init1,

stopwatch1, time_out1}

and, again, a set of propositions Prop1. Level 3, finally, introduces att12, att22 and
att32 in Nom2. The set of formulas Fm(�n) is the n-family recursively defined, for
each k, by

Ï0 – i0 | p0 | ¬Ï0 | Ï0 · Ï0 | @i0Ï0 | 20Ï0

Ïb
0 – i0 | p0 | @i0Ï0 | 20Ï0

where superscript b qualifies the basic formulas, and

Ïk – Ïb
k≠1 | ik | pk | ¬Ïk | Ïk · Ïk | @ik

Ïk | ùk Ïk

where for any k œ {1, . . . , n}, the basic formulas are defined by

Ïb
k≠1 – ik≠1 | pk≠1 | Ïb

k≠2 | @ik≠1Ïk≠1 | 2k≠1Ïk≠1

for k œ {2, · · · , n}, pk œ Propk and ik œ Nomk.
This language is able to express quite di�erent properties. For instance, inner-

outer relations between named states, e.g. @idle1closed0 or @att12open0, as well

80

Coalgebra for the working software engineer

as a variety of transitions. Those include, for example, the layered transition
@get_access0 ù0 open0, the 0-internal transition @identification1 ù1 authorisation1 or
intrusive transitions like @idle1 ù1 authorisation1 and get_access0 æ ù1open0.

The definition of a model is parameterised by a family of coalgebras defined for
the same functor, i.e. exhibiting the same type of behavioural e�ect. A n-layered
model M œ Modn(�n) is a tuple

M = ÈW n, Dn, –n, V nÍ

where W n = (Wk)kœ{0,··· ,n} is a family of disjoint sets of states, and Dn ™ W0 ◊ · · ·◊
Wn is a definition predicate that singles out the chains of states across the n levels
which are considered meaningful ‘global’ states. Denoting by Dk the k-restriction
Dn|k to the first k + 1 columns, for each k œ {0, · · · , n}, it is the case that

Wk = {vk|DkÈw0, · · · , wk≠1, vkÍ, for some w0, · · · , wk≠1 st Dk≠1Èw0, · · · , wk≠1Í} .

Then, comes the ‘dynamics’: –n =
!
–k : Dk ≠æ F(Dk))kœ{0,··· ,n} is a family of F-

coalgebras specifying the system’s evolution at each level in the hierarchy. Finally,
V n = (V Prop

k , V Nom

k)kœ{0,··· ,n} is a family of pairs of valuations defined as one could
expect:

• V Prop

k : Propk æ P(Dk), and

• V Nom

k : Nomk æ Wk.

The satisfaction relation takes a similar shape as a family of relations

|=n = (|=k)kœ{0,··· ,n}

defined, for each wr œ W r, r œ {0, · · · , k}, k Æ n, such that DkÈw0, · · · wkÍ.
The case of interest in the context of this paper is the one for modalities, i.e.
Mk, w0, · · · , wk |=k 2kÏk i�

’v0œW0,··· ,vkœWk
. Èv0, · · · , vkÍ œ –kÈw0, · · · , wkÍ implies M, v0, · · · , vk |=k Ïk .

The hybrid part is given by

• Mk, w0, · · · , wk |=k ik i� wk = V Nom

k (ik) and DkÈw0, · · · , wk≠1, V Nom

k (ik)Í ,

• Mk, w0, · · · , wk |=k @ik
Ïk i� Mk, w0, · · · wk≠1, V Nom

k (ik) |=k Ïk and
DkÈw0, · · · wk≠1, V Nom

k (ik)Í .

The Boolean part, finally, is defined as usual, just taking care of the definability
interdependence captured by Dn. Thus,

81

L. S. Barbosa

• Mk, w0, · · · , wk |=k Ïb
k≠1

i� Mk≠1, w0, · · · , wk≠1 |=k≠1 Ïb
k≠1

,

• Mk, w0, · · · , wk |=k pk i� Èw0, · · · , wkÍ œ V Prop

k (pk) ,

• Mk, w0, · · · , wk |=k Ïk · ÏÕ

k i� Mk, w0, · · · , wk |=k Ïk and Mk, w0, · · · , wk |=k

ÏÕ

k ,

• Mk, w0, · · · , wk |=k ¬Ïk i� it is false that Mk, w0, · · · , wk |=k Ïk .

The resulting logic is quite expressive. Notions of n-layered bisimilarity and refine-
ment can be introduced [49] along the lines already discussed in this paper, and a
Hennessy–Milner theorem proved.

A specific, particularly well-behaved class of layered models, is called hierarchi-
cal: it requires that the restriction of a coalgebra –k to the state space of –k≠1

coincides with the latter. This ensures that the elements in the family of coalgebras
are compatible.

The example sketched here is clearly an hierarchical model. Examples of non-
hierarchical layered models can be achieved by removing some 0-transitions de-
picted in the diagram above (e.g. the one linking the named states closed0 and
get_access0). This hierarchical condition can be expressed as a naturality condi-
tion as follows. Define fik : Dk ≠æ Dk≠1 by fik Èw0, · · · , wk≠1, wkÍ ‚= Èw0, · · · , wk≠1Í.
Then, the model is hierarchical if, for all k, the following diagram commutes11.

Dk
–k

//

fik

✏✏

F(Dk)

F(fik)

✏✏

Dk≠1

–k≠1
// F(Dk≠1)

For F = P this means, for example, that the transitions depicted in the diagram

Èw1
0, w1

1Í

Èw0
0, w0

1Í

00

.. Èw1
0, w2

1Í

exist at level 1 i� a transition w0
0

// w1
0 exists at level 0.

11This basically means that the family –n of coalgebras in a model of a hierarchical system,
can be regarded as a coalgebra in the category of pre-sheaves [n, Set], where n is the total order
corresponding to the initial n-segment of natural numbers. Such a coalgebra is, of course, a natural
transformation.

82

Coalgebra for the working software engineer

As another example consider F = D. In an hierarchical (probabilistic) system
the 1-level transitions in the left of the diagram below exist if the 0-level transitions
depicted on the right exist as well.

Èw1
0, w1

1Í

Èw0
0, w0

1Í

0.5 //

0.3
//

0.2 //

Èw1
0, w2

1Í

Èw2
0, w3

1Í

w1
0

w0
0

0.8
00

0.2
.. w2

0

5 Concluding
This paper revisited a few themes in elementary, i.e. Set-based, Coalgebra in con-
nection with what may be regarded as the kernel activities of a software engineer:
modelling complex systems, architecting their composition and reasoning about their
behaviour. Models, architectures and properties were therefore the buzzwords cho-
sen to guide this exercise.

As a design discipline, Software Engineering is currently challenged by continuous
technological evolution towards very large, heterogeneous, highly dynamic comput-
ing systems, which require innovative approaches to master their complexity. Sys-
tems whose behaviour cannot be simply characterised in terms of a relation between
input and output data, but expresses a continued interaction with their external
(computational or physical) and internal (sub-systems) contexts. In this sense, they
can be classified as reactive, to use a term coined by A. Pnueli and D. Harel [30]
in the 1980s. Furthermore, concurrent composition is the norm, rather than the
exception.

Developing such systems correctly is very di�cult, because it involves not only
mastering the complexity of building and deploying large applications on time and
within budget, but also managing an open-ended structure of autonomous com-
ponents, typically distributed, often organised in loosely coupled configurations,
and highly heterogeneous. Additional di�culties arise with the need to take into
account a plethora of issues such as real-time responsiveness, dynamic reconfigura-
tion, QoS-awareness, self-adaptability, security, dependability, under-specification of
third-party components, among many others.

Unfortunately, software technology is still pre-scientific in its lack of sound math-
ematical foundations to provide an e�ective basis to predict and certify computa-

83

L. S. Barbosa

tionally generated behaviour. In a sense, compared to other Engineering disciplines,
we are just living our 17th century, seeking for the right foundations, methods and
calculi to move from ad hoc to systematic and accountable engineering practices.

My purpose was to explore one of those mathematical frameworks which has the
potential to address a large class of computational systems. Indeed, we would suggest
Coalgebra as a, probably the, mathematics for dynamical, state-based systems.

The essence of the coalgebraic method boils down to a very basic observation:
that from a suitable characterisation of the type of a system’s dynamics, canoni-
cal notions of behaviour, observational reasoning (equational and inequational) and
modality can be derived in a uniform (i.e. parametric) way.

This setting may sound familiar to the working software engineer: the object of
her practice, if not of her study, is precisely the ubiquity of the computing phenom-
ena along and across universes of typed arrows. Arrows may stand for functions,
algorithms, services or components, programs fulfilling a specification contract, re-
lationships in a UML diagram, processes through mobile ambients, evolutions in a
sensor network, links in a software architectural description, circuits coordinating
loosely coupled agents, or whatever structures our domain. The type of a coalgebra,
an endofunctor, is itself an arrow, and so is, moreover, the coalgebra itself.

In a brief historical overview of the trends and results predating the emergence
of Coalgebra in Computer Science, B. Jacobs [41], referring to the work of Arbib,
Manes, Goguen, Adamek and others in the late 1970s, on categorical approaches to
systems theory, comments: Their aim was to place sequential machines and control
systems in a unified framework which (...) led to general notions of state, behaviour,
reachability, observability, and realisation of behaviour. Jacobs remarks, however,
that the reason why Coalgebra did not emerge directly from this work was probably
because the setting of modules and vector spaces from which this work arose provided
too little categorical infrastructure (especially: no cartesian closure). The quick
expansion of Coalgebra, its techniques and applications, and the capacity shown to
capture in a uniform, parametric way a myriad of state-based systems, as well as its
mathematical elegance, o�ers evidence we may be on the right track.

The development of Coalgebra and its application to Computer Science stemmed
from di�erent sources, from P. Aczel’s non well-founded set theory, accommodating
infinitely descending œ-chains, to the study of infinite data types and the theory of
behavioural specification [40] and satisfaction [14]. Still, it remains an area of active
research, with a growing impact not only on the foundations of computing semantics,
but also on very concrete programming techniques. Actually, there is a growing
interest on the potential of coalgebraic techniques in algorithm understanding and
derivation, often based on rediscovering and generalising specific algorithms, for
example from automata theory [21, 17, 22, 26]. Unsurprisingly, going generic in the

84

Coalgebra for the working software engineer

theory often leads to e�cient computational solutions. Striking developments on
coinductive proof methods, notably the recent work on up-to techniques [18, 19], go
in a similar direction.

Without trying to be exhaustive, we would still like to mention a few other
current research directions which will certainly have an impact in the coming decade.
The first concerns the combination of algebraic and coalgebraic techniques and the
discovery of compatible patterns described by distributive laws [45], which, as shown
in D. Turi and J. J. M. M. Rutten landmark work, in the late 1990’s, correspond to
specification formats in operational semantics. The impact of such laws in several
constructions, for example in the formulation of trace semantics, as mentioned above,
but also in combining monadic and comonadic e�ects [12] and logic, suggests we are
dealing with some sort of very fundamental structures.

Another direction addresses the challenge of quantitative (weighted, probabilis-
tic, continuous) reasoning, once again driven by the broadening spectrum of Soft-
ware Engineering problems. This is not only pushing the development of Coalgebra
within categories di�erent from Set [16, 44, 55], but also leading a lot of results
on behavioural metrics as an alternative to equivalences [24, 3, 5]. Actually, in the
context of e.g. probabilistic or hybrid systems, working with equivalences entailing
the need for exact matching of real numbers is unrealistic. Metrics, on the other
hand, can measure how close two systems are and conclude whether they should be
taken as equivalent.

But the impact of Coalgebra can also be recognised at a more ‘syntactical’ level.
The work of A. Silva, a former student of this University, on the derivation of spec-
ification languages from the functor typing the coalgebra dynamics [64, 63] should
be mentioned here. In a more general setting, the points of contact between Coal-
gebra and current research on graphical languages in which diagrams, syntax and
interpretations, are generated as arrows in special families of monoidal categories
[71, 20], seem most promising, with applications ranging from the ‘re-interpretation’
of classical control theory to the design of diagrammatic languages to express, e.g.,
software architectures.

I’m not sure whether this paper was able to raise the interest of the working
software engineer in Coalgebra, or, on the other hand, that of the logician who may
find in Computer Science a huge domain for the fruitful application of her methods
and tools. In 1967, Anthony Oettinger [56], speaking as President of the ACM,
recognised that the expression Software Engineering

85

L. S. Barbosa

seems strange to classical engineers and to classical mathematicians alike,
because, you know, why would a mathematician think of engineering with
symbols and, by the same token, why would somebody who thinks of engi-
neering in terms of things we do with pieces of metal or transistors, think
of an operation that takes place on paper with pencils and erasers as en-
gineering.

Almost 50 years later, there is still a need to push back this discipline to where
it actually belongs. Fortunately, to continue with A. Oettinger’s speech, there is
no question but that the study of symbol systems, of e�ective algorithms, of e�-
cient algorithms, of the structure of algorithms, is a mathematical discipline. And,
moreover, there is, in this realm, enough elegance to attract anybody who wants a
challenge.

Doing Software Engineering in lighter, more informal ways, brings to my mind
a quotation attributed to Vlad Patryshev in a slightly di�erent context: It’s like
talking about electricity without using calculus. Good enough to replace a fuse, not
enough to design an amplifier.

Acknowledgements. Sections 2.3, 3.2 and 4.3 illustrate, through three concrete applica-
tions, the potential Coalgebra may have for the working software engineer with respect to
each of the topics chosen for this paper: models, architectures and properties. These appli-
cations come from current research along which I had the privilege of collaborating with a
number of colleagues. In particular, the coalgebraic treatment of hybrid systems was devel-
oped by Renato Neves, who introduced the H monad and a number of exciting results still
emerging at the time of writing. The remaining ‘illustrations’ are also in debt to ongoing
collaboration with José Nuno Oliveira, on formal approaches to software architecture, Sun
Meng, on coalgebraic refinement, and both Alexandre Madeira and Manuel A. Martins, on
hybrid logics for reconfigurable systems.

References
[1] P. Aczel. Non-Well-Founded Sets. CSLI Lecture Notes (14), Stanford, 1988.
[2] P. Aczel and N. Mendler. A final coalgebra theorem. In D. Pitt, D. Rydeheard, P. Dy-

bjer, A. Pitts, and A. Poigne, editors, Proc. Category Theory and Computer Science,
pages 357–365. Springer Lect. Notes Comp. Sci. (389), 1988.

[3] G. Bacci, G. Bacci, K. G. Larsen, and R. Mardare. Computing behavioral dis-
tances, compositionally. In Krishnendu Chatterjee and Jirí Sgall, editors, Mathematical
Foundations of Computer Science 2013 - 38th International Symposium, MFCS 2013,

86

Coalgebra for the working software engineer

Klosterneuburg, Austria, August 26-30, 2013., pages 74–85. Springer Lect. Notes Comp.
Sci. (8087), 2013.

[4] J. Baez and J. Dolan. Categorification. In Ezra Getzler and Mikhail Kapranov, editors,
Higher Category Theory, Contemp. Math. 230, pages 1–36. American Mathematical
Society, 1998.

[5] P. Baldan, F. Bonchi, H. Kerstan, and B. König. Behavioral metrics via functor lift-
ing. In Venkatesh Raman and S. P. Suresh, editors, 34th International Conference on
Foundation of Software Technology and Theoretical Computer Science, FSTTCS 2014,
December 15-17, 2014, New Delhi, India, volume 29 of LIPIcs, pages 403–415. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2014.

[6] L. S. Barbosa. Components as Coalgebras. PhD thesis, DI, Universidade do Minho,
2001.

[7] L. S. Barbosa. Towards a calculus of state-based software components. "Jour. Universal
Comp. Sci.", 9(8):891–909, 2003.

[8] L. S. Barbosa and J. N. Oliveira. Transposing partial components: an exercise on
coalgebraic refinement. Theor. Comp. Sci., 365(1-2):2–22, 2006.

[9] L. S. Barbosa, J. N. Oliveira, and A. M. Silva. Calculating invariants as coreflexive
bisimulations. In J. Meseguer and G. Rosu, editors, Algebraic Methodology and Software
Technology, 12th International Conference, AMAST 2008, Urbana, IL, USA, July 28-
31, 2008, Proceedings, pages 83–99. Springer Lect. Notes Comp. Sci. (5140), 2008.

[10] L. S. Barbosa, M. Sun, B. K. Aichernig, and N. Rodrigues. On the semantics of
componentware: a coalgebraic perspective. In Jifeng He and Zhiming Liu, editors,
Mathematical Frameworks for Component Software: Models for Analysis and Synthesis,
Series on Component-Based Software Development, pages 69–117. World Scientific,
2006.

[11] J. Beaten and W. Weijland. Process Algebra. Cambridge University Press, 1990.
[12] M. Behrisch, S. Kerkho�, and J. Power. Category theoretic understandings of universal

algebra and its dual: Monads and lawvere theories, comonads and what? Electr. Notes
Theor. Comput. Sci., 286:5–16, 2012.

[13] J. Benabou. Introduction to bicategories. Springer Lect. Notes Maths. (47), pages 1–77,
1967.

[14] M. Bidoit and R. Hennicker. Behavioural theories and the proof of behavioural prop-
erties. Theor. Comput. Sci., 165(1):3–55, 1996.

[15] P. Blackburn. Representation, reasoning, and relational structures: a hybrid logic
manifesto. Logic Journal of IGPL, 8(3):339–365, 2000.

[16] F. Bonchi, M. M. Bonsangue, M. Boreale, J. J. M. M. Rutten, and A. Silva. A coalge-
braic perspective on linear weighted automata. Inf. Comput., 211:77–105, 2012.

[17] F. Bonchi, M. M. Bonsangue, H. H. Hansen, P. Panangaden, J. J. M. M. Rutten, and
A. Silva. Algebra-coalgebra duality in Brzozowski’s minimization algorithm. ACM
Trans. Comput. Log., 15(1):3, 2014.

[18] F. Bonchi, D. Petrisan, D. Pous, and J. Rot. Coinduction up-to in a fibrational setting.

87

L. S. Barbosa

In Thomas A. Henzinger and Dale Miller, editors, Joint Meeting of the Twenty-Third
EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS ’14,
Vienna, Austria, July 14 - 18, 2014, pages 20:1–20:9. ACM, 2014.

[19] F. Bonchi, D. Petrisan, D. Pous, and J. Rot. Lax bialgebras and up-to techniques for
weak bisimulations. In Luca Aceto and David de Frutos-Escrig, editors, 26th Interna-
tional Conference on Concurrency Theory, Madrid, September 1.4, 2015, volume 42 of
LIPIcs, pages 240–253. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[20] F. Bonchi, P. Sobocinski, and F. Zanasi. Full abstraction for signal flow graphs. In
Sriram K. Rajamani and David Walker, editors, Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015,
Mumbai, India, January 15-17, 2015, pages 515–526. ACM, 2015.

[21] Filippo Bonchi and Damien Pous. Checking NFA equivalence with bisimulations up to
congruence. In Roberto Giacobazzi and Radhia Cousot, editors, The 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13,
Rome, Italy - January 23 - 25, 2013, pages 457–468. ACM, 2013.

[22] Filippo Bonchi and Damien Pous. Hacking nondeterminism with induction and coin-
duction. Commun. ACM, 58(2):87–95, 2015.

[23] T. Brauner. Hybrid Logic and its Proof-Theory. Applied Logic Series. Springer, 2010.
[24] F. van Breugel and J. Worrell. Approximating and computing behavioural distances in

probabilistic transition systems. Theor. Comput. Sci., 360(1-3):373–385, 2006.
[25] C. Cîrstea, A. Kurz, D. Pattinson, L. Schröder, and Y. Venema. Modal logics are

coalgebraic. Comput. J., 54(1):31–41, 2011.
[26] N. Foster, D. Kozen, M. Milano, A. Silva, and L. Thompson. A coalgebraic decision

procedure for netkat. In Sriram K. Rajamani and David Walker, editors, Proceedings of
the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015, Mumbai, India, January 15-17, 2015, pages 343–355. ACM,
2015.

[27] P. J. Freyd and A. ä�edrov. Categories, Allegories, volume 39 of Mathematical Library.
North-Holland, 1990.

[28] E. Haghverdi, P. Tabuada, and G. J. Pappas. Bisimulation relations for dynamical,
control, and hybrid systems. Theoretical Computer Science, 342(2-3):229–261, 2005.

[29] D. Harel. Statecharts: A visual formalism for complex systems. Sci. Comput. Program.,
8(3):231–274, 1987.

[30] D. Harel and A. Pnueli. On the development of reactive systems. In Logics and Models
of Concurrent Systems, volume 13 of NATO Adv. Sci. Inst. Ser. F Comput. Systems
Sci., pages 477–498. Springer-Verlag, 1985.

[31] I. Hasuo. Generic forward and backward simulations. In Christel Baier and Holger
Hermanns, editors, CONCUR 2006 - Concurrency Theory, 17th International Confer-
ence, CONCUR 2006, Bonn, Germany, August 27-30, 2006, Proceedings, volume 4137
of Lecture Notes in Computer Science, pages 406–420. Springer, 2006.

88

Coalgebra for the working software engineer

[32] I. Hasuo. The microcosm principle and compositionality of GSOS-based component
calculi. In Andrea Corradini, Bartek Klin, and Corina Cîrstea, editors, Algebra and
Coalgebra in Computer Science - 4th International Conference, CALCO 2011, Winch-
ester, UK, August 30 - September 2, 2011., pages 222–236. Springer Lect. Notes Comp.
Sci. (6859), 2011.

[33] I. Hasuo, C. Heunen, B. Jacobs, and A. Sokolova. Coalgebraic components in a many-
sorted microcosm. In Alexander Kurz, Marina Lenisa, and Andrzej Tarlecki, editors,
Algebra and Coalgebra in Computer Science, Third International Conference, CALCO
2009, Udine, Italy, September 7-10, 2009. Proceedings, pages 64–80. Springer Lect.
Notes Comp. Sci. (5728), 2009.

[34] I. Hasuo and B. Jacobs. Traces for coalgebraic components. Mathematical Structures
in Computer Science, 21(2):267–320, 2011.

[35] I. Hasuo, B. Jacobs, and A. Sokolova. Generic trace semantics via coinduction. Logical
Methods in Computer Science, 3(4), 2007.

[36] T. A. Henzinger. The theory of hybrid automata. In Proceedings, 11th Annual IEEE
Symposium on Logic in Computer Science, New Brunswick, New Jersey, USA, July
27-30, 1996, pages 278–292. IEEE Computer Society, 1996.

[37] C. A. R. Hoare, S. van Staden, B. Möller, G. Struth, J. Villard, H. Zhu, and P. W.
O’Hearn. Developments in concurrent kleene algebra. In Peter Höfner, Peter Jipsen,
Wolfram Kahl, and Martin Eric Müller, editors, Relational and Algebraic Methods in
Computer Science - 14th International Conference, RAMiCS 2014, Marienstatt, Ger-
many, April 28-May 1, 2014., pages 1–18. Springer Lect. Notes Comp. Sci. (8428),
2014.

[38] P. F. Hoogendijk. A generic theory of datatypes. PhD thesis, Department of Computing
Science, Eindhoven University of Technology, 1996.

[39] J. Hughes. Generalising monads to arrows. Sci. Comput. Program., 37(1-3):67–111,
2000.

[40] U. L. Hupbach and H. Reichel. On behavioural equivalence of data types. Elektronische
Informationsverarbeitung und Kybernetik, 19(6):297–305, 1983.

[41] B. Jacobs. Introduction to Coalgebra. Towards Mathematics of States and Observations.
Cambridge University Press (to appear), 2012. Draft copy: Version 2.0, 2012. Institute
for Computing and Information Sciences, Radboud University Nijmegen.

[42] B. Jacobs, A. Silva, and A. Sokolova. Trace semantics via determinization. J. Comput.
Syst. Sci., 81(5):859–879, 2015.

[43] A. Joyal, R. Street, and D. Verity. Traced monoidal categories. Math. Proc. Camb.
Phil. Soc., 119:447–468, 1996.

[44] H. Kerstan and B. König. Coalgebraic trace semantics for continuous probabilistic
transition systems. Logical Methods in Computer Science, 9(4), 2013.

[45] B. Klin. Bialgebras for structural operational semantics: An introduction. Theor.
Comput. Sci., 412(38):5043–5069, 2011.

[46] D. Kozen. Results on the propositional mu-calculus. Theor. Comput. Sci., 27:333–354,

89

L. S. Barbosa

1983.
[47] C. Kupke and D. Pattinson. Coalgebraic semantics of modal logics: An overview.

Theor. Comput. Sci., 412(38):5070–5094, 2011.
[48] A. Kurz and R. L. Leal. Modalities in the stone age: A comparison of coalgebraic

logics. Theor. Comput. Sci., 430:88–116, 2012.
[49] A. Madeira, M. A. Martins, and L. S. Barbosa. A logic for n-dimensional hierarchical

refinement. In John Derrick, Eerke A. Boiten, and Steve Reeves, editors, Proceedings
17th International Workshop on Refinement, Refine@FM 2015, Oslo, Norway, 22nd
June 2015, volume 209 of EPTCS, pages 40–56, 2016.

[50] R. Milner. Elements of interaction (Turing Award Lecture). Communications of the
ACM, 36(1):78–89, 1993.

[51] R. Milner. Communicating and Mobile Processes: the fi-Calculus. Cambridge University
Press, 1999.

[52] V. C. Miraldo and J. N. Oliveira. ‘keep definition, change category’ – a practical
approach to state-based system calculi. Journal of Logical and Algebraic Methods in
Programming, 85(4):449–474, 2016.

[53] L. Moss. Coalgebraic logic. Ann. Pure & Appl. Logic, 96(1-3):277–317, 1999.
[54] R. Neves and L. S Barbosa. Hybrid automata as coalgebras. In Augusto Sampaio and

Farn Wang, editors, Theoretical Aspects of Computing - ICTAC 2016 - 13th Interna-
tional Colloquium, Taiwan, Proceedings, pages 385–402. Springer Lect. Notes Comp.
Sci. (9965), 2016.

[55] R. Neves, L. S. Barbosa, D. Hofmann, and M. A. Martins. Continuity as a computa-
tional e�ect. J. Log. Algebr. Meth. Program., 85(5):1057–1085, 2016.

[56] A. G. Oettinger. The hardware-software complementarity. Commun. ACM, 10(10):604–
606, 1967.

[57] J. N. Oliveira. Towards a linear algebra of programming. Formal Aspects of Computing,
24(4-6):433–458, 2012.

[58] D. Park. Concurrency and automata on infinite sequences. In P. Deussen, editor, Proc.
Conf. on Theoretical Computer Science, pages 167–183. Springer Lect. Notes Comp.
Sci. (104), 1981.

[59] D. Pattinson. Coalgebraic modal logic: soundness, completeness and decidability of
local consequence. Theor. Comput. Sci., 309(1-3):177–193, 2003.

[60] E. P. Robinson. Variations on algebra: monadicity and generalisations of equational
theories. Formal Asp. Comput., 13(3-5):308–326, 2002.

[61] J. J. M. M. Rutten. Universal coalgebra: A theory of systems. Theor. Comput. Sci.,
249(1):3–80, 2000. (Revised version of CWI Techn. Rep. CS-R9652, 1996).

[62] D. Sangiorgi. On the origins of bisimulation and coinduction. ACM Trans. Program.
Lang. Syst., 31(4), 2009.

[63] A. Silva, F. Bonchi, M. Bonsangue, and J. J. M. M. Rutten. Quantitative Kleene
coalgebras. Inf. Comput., 209(5):822–849, 2011.

[64] A. Silva, M. M. Bonsangue, and J. J. M. M. Rutten. Non-deterministic Kleene coalge-

90

Coalgebra for the working software engineer

bras. Logical Methods in Computer Science, 6(3), 2010.
[65] M. Smyth and G. Plotkin. The category theoretic solution of recursive domain equa-

tions. SIAM Journ. Comput., 4(11):761–783, 1982.
[66] A. Sokolova. Probabilistic systems coalgebraically: A survey. Theor. Comput. Sci.,

412(38):5095–5110, 2011.
[67] C. Stirling. Modal and temporal logics for processes. Springer Lect. Notes Comp. Sci.

(715), pages 149–237, 1995.
[68] M. Sun and L. S. Barbosa. Components as coalgebras: The refinement dimension.

Theor. Comp. Sci., 351:276–294, 2006.
[69] N. Urabe and I. Hasuo. Generic forward and backward simulations III: quantitative

simulations by matrices. In Paolo Baldan and Daniele Gorla, editors, CONCUR 2014
- Concurrency Theory - 25th International Conference, CONCUR 2014, Rome, Italy,
September 2-5, 2014., pages 451–466. Springer Lect. Notes Comp. Sci. (8704), 2014.

[70] N. Urabe and I. Hasuo. Coalgebraic infinite traces and kleisli simulations. In
Lawrence S. Moss and Pawel Sobocinski, editors, 6th Conference on Algebra and Coal-
gebra in Computer Science, CALCO 2015, June 24-26, 2015, Nijmegen, The Nether-
lands, volume 35 of LIPIcs, pages 320–335. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2015.

[71] Fabio Zanasi. Interacting Hopf Algebras- the Theory of Linear Systems. PhD thesis,
École normale supérieure de Lyon, France, 2015.

Received 02 March 202091

