
A Framework for Certification of Large-Scale Component-Based Parallel
Computing Systems in a Cloud Computing Platform for HPC Services

Allberson Bruno de Oliveira Dantas1, Francisco Heron de Carvalho Junior1, Luı́s Soares Barbosa2

1Mestrado e Doutorado em Ciência da Computação, Universidade Federal do Ceará, Brazil
2HASLab INESC TEC & Universidade do Minho, Campus de Gualtar, Braga, Portugal

{allberson, heron}@lia.ufc.br, {lsb}@di.uminho.pt

Keywords: Software Formal Verification; Verification as a Service (VaaS); Cloud Computing; Software Components;
High Performance Computing

Abstract: This paper addresses the verification of software components in the context of their orchestration to build
cloud-based scientific applications with high performance computing requirements. In such a scenario, com-
ponents are often supplied by different sources and their cooperation rely on assumptions of conformity with
their published behavioral interfaces. Therefore, a faulty or ill-designed component, failing to obey to the
envisaged behavioral requirements, may have dramatic consequences in practice. Certifier components, intro-
duced in this paper, implement a verification as a service framework and are able to access the implementation
of other components and verify their consistency with respect to a number of functional, safety and liveness
requirements relevant to a specific application or a class of them. It is shown how certifier components can be
smoothly integrated in HPC Shelf, a cloud-based platform for high performance computing in which different
sorts of users can design, deploy and execute scientific applications.

1 INTRODUCTION

Unlike in engineering, current software develop-
ment methods usually do not provide strong assurance
concerning software reliability. For this reason, great
research efforts, both in academia and industry, have
proposed mechanisms for formal verification of soft-
ware. However, testing and a posteriori empirical er-
ror detection are still the usual practice.

The main reason of the poor dissemination of for-
mal methods is the inherent complexity of computa-
tional systems. Each line of code is a potential source
of errors in programs, especially parallel ones, lead-
ing to a large number of states, making it difficult to
predict the behavior of an application and verify its
properties. This difficulty is increased in emerging
heterogeneous computing environments in High Per-
formance Computing (HPC). In fact, the use of formal
methods for improving HPC software, whose com-
plexity has increased significantly in the recent years,
is very poorly explored in research initiatives.

HPC Shelf is a proposal of cloud computing plat-
form for providing HPC services (de Carvalho Silva
and de Carvalho Junior, 2016). It offers an environ-
ment to develop applications for the needs of special-
ists of a given domain, dealing with domain-specific,

computationally intensive problems by orchestrating
parallel components whose performance are tuned to
classes of parallel computing platforms. Such compo-
nents form parallel computing systems, orchestrated
through SAFe (Shelf Application Framework), a sci-
entific workflow management system.

In such a scenario, computational scientists and
engineers, typically with poor computer science back-
ground, need to be assured that the available compo-
nents behave as declared in their published interfaces.

Therefore, certification of components, through
the verification of functional and behavioral require-
ments relevant to applications, becomes an essential
ingredient of the HPC Shelf platform, as a way to in-
crease their confidence levels.

In this paper, we introduce a component-based
certification framework for components of HPC Shelf,
as a kind of VaaS (Verification-as-a-Service) plat-
form. It is specially designed to deal with certifier
components, a kind of components that can be con-
nected to components of parallel computing systems
for certifying them. The smooth orchestration of cer-
tifier components within parallel computing systems
makes the proposed approach both integrated, in the
sense that no disruptive elements must be considered
in their architecture, and modular, as new certifier

components may be included or released according
to the sort of verification tasks required.

The certification framework also introduces the
notion of tactical components, which help certifier
components to access existing verification infrastruc-
tures, including theorem provers and model checkers.
Tactical components, such as any components in HPC
Shelf, are inherently parallel. So, they can be im-
plemented using parallel programming techniques to
exploit the maximum performance of the underlying
cloud infrastructure during the certification process.

Another concept introduced in this paper is the
parallel certification system. Analogous to parallel
computing systems, in which a workflow component
orchestrates a set of solution components over a set of
virtual platforms in order to solve a problem, a paral-
lel certification system contains a certifier component
that orchestrates a set of tactical components accord-
ing to the needs of the certification process required
by a set of certifiable components.

As a case study, this paper introduces a particular
family of certifier components, so-called C4 (Com-
putation Component Certifier Components), for veri-
fying functional and safety properties of computation
components. In order to compose tactical components
for C4 certifiers, we have studied the main verification
techniques and associated tools that allow the veri-
fication of formal properties on the different classes
of parallel programs. Finally, a specific C4 compo-
nent and its tactical components have been applied
to certify components of Montage (Berriman et al.,
2004), an existing astrophotography software kit that
we have been modeled as an HPC Shelf application.

This paper has six more sections. Section 2 de-
scribes HPC Shelf. Section 3 presents the current de-
sign of the certification framework. Section 4 presents
the architecture of the computation certifiers (C4) and
their tactical components. Section 5 contains the case
study. Related works are presented in Section 6. Fi-
nally, Section 7 concludes this paper.

2 HPC Shelf

HPC Shelf is a cloud computing platform for de-
veloping and deploying cloud-based HPC applica-
tions that serve specialists of a given domain. For
that, it provides, to application providers, tools for
specifying problems and building the corresponding
computational solutions by orchestrating components
of different component kinds. Such computational so-
lutions are called parallel computing systems, built
out of components that address functional and non-
functional concerns related to both hardware and soft-

Figure 1: Components of a hypothetical parallel computing
system with tactical and certifier components

ware elements. For that, such components comply to
Hash (de Carvalho Junior et al., 2007), a model of
components intrinsically enabled for parallelism and
supporting the notion of component kinds.

2.1 Component Kinds of HPC Shelf

The component kinds of HPC Shelf are: plat-
forms , representing (virtual) distributed-memory par-
allel computing platforms; computations , imple-
menting parallel algorithms by exploiting the features
of a class of virtual platforms; data sources , repre-
senting data sources that may interest to computa-
tions; connectors , which couple a set of computa-
tions and data sources placed in distinct virtual plat-
forms; and bindings , for connecting service and ac-
tion ports exported by components for communica-
tion and synchronization of tasks, respectively.

A service binding connects a user to a provider
port, allowing a component to consume a service of-
fered by another component. Such ports are compat-
ible if a service binding exists for connecting them.
In turn, action bindings connect a set of action ports
that export the same set of action names. Two ac-
tions of the same name whose action ports are con-
nected in two components execute when both compo-
nents make them active at the same time (rendezvous).
Figure 1 depicts a scenario illustrating components
and their bindings, also including certifier and tacti-
cal components, proposed in this paper (Section 3).

Components have a predefined action port, called
LifeCycle, with the following actions for controlling

2

their life-cycle. Action resolve selects a component
implementation and a virtual platform for it, accord-
ing to a system of contextual contracts (Section 2.4).
Action deploy deploys a selected component in a par-
allel computing platform. Action instantiate instanti-
ates a deployed component, which becomes ready for
communication with other components through ser-
vice and action ports. Finally, action release releases
a component from the platform on which it is instan-
tiated, when it is no longer useful.

2.2 Stakeholders

The following stakeholders work around HPC Shelf.
A specialist (final user) uses an application for speci-
fying problems using a domain-specific interface and
executing computational solutions built by the ap-
plication. A provider creates and deploys applica-
tions, by designing computational solutions built out
of components, in the form of parallel computing sys-
tems. A developer develops components of paral-
lel computing systems, tuned for exploiting the ar-
chitecture of a class of virtual platforms. For that,
they are experts in parallel computer architectures and
programming for them. A maintainer offers a paral-
lel computing infrastructure, from which virtual plat-
forms are instantiated.

2.3 Architecture

The architecture of HPC Shelf is based on the follow-
ing three elements: Front-End, Core and Back-End.

The Front-End is SAFe (Shelf Application Frame-
work) (de Carvalho Silva and de Carvalho Junior,
2016), a collection of Java classes and design pat-
terns that providers use for deriving applications. It
supports a language for specifying parallel computing
systems, so-called SAFeSWL (SAFe Scientific Work-
flow Language). SAFeSWL is a language divided into
an architectural and an orchestration subsets. The ar-
chitectural subset is used to specify the components
and bindings of a parallel computing system. In turn,
the orchestration subset allows the definition of or-
chestration workflows of the parallel computing sys-
tems. Workflow components are in fact special con-
nectors which run directly on SAFe.

The Core manages the life-cycle of components,
from cataloging to deployment. Developers, certifiers
and maintainers register components and their con-
tracts through the Core. For that, the Core implements
an underlying system of contextual contracts. Appli-
cations access the services of the Core for resolving
component contracts and deploying the components
of parallel computing systems.

The Back-End is a service offered by a maintainer
to the Core for the deployment of virtual platforms.
Once deployed, virtual platforms may communicate
directly with the Core for instantiating components,
which become ready for direct communication with
applications through service and action bindings.

2.4 Contextual Contracts

HPC Shelf employs a system of contextual contracts
(de Carvalho Junior et al., 2016) that separates, for
a component, its interface, so-called abstract com-
ponent, from its implementation, so-called concrete
component. So, one or more concrete components
may exist in the Core’s catalog for a given abstract
component, to meet different assumptions about the
requirements of the host application and the features
of the parallel computing platforms where they can
be instantiated (context). For that, an abstract compo-
nent has a contextual signature, composed of a set of
context parameters. In turn, a concrete component
must be associated with a contextual contract that
types it, defined by an abstract component and a set
of context arguments that valuate its context parame-
ters. During orchestration, when the action resolve
of a component, specified by a contextual contract
through SAFeSWL, is activated, a resolution proce-
dure for its contextual contract is triggered for choos-
ing of a specific concrete component that satisfies its
contextual contract. Examples of contextual contracts
will be presented in Section 4.2.

3 The Certification Framework

The certification framework herein proposed in-
troduces a new kind of components, called certifier
components, which makes it possible the certification
of components of other kinds in a parallel computing
system. The connection between a certifier compo-
nent and a component to be certified is called certi-
fication binding, a new kind of binding, which joins
service and action bindings. A component is consid-
ered certifiable if it is connected to one or more cer-
tifier components through certification bindings. A
certifiable component has an additional action in its
LifeCycle port, named certify. Another kind of com-
ponents, called tactical components, is also proposed
to meet the needs of certifier components to access the
functionality of different verification infrastructures.

A new stakeholder, the certifier of components,
which deals with certifier and tactical components, is
proposed. They are specialists in formal methods and
may be trained in parallel programming.

3

3.1 Parallel Certification System

A parallel certification system is composed of:

• a set of tactical components, executing in a pre-
defined virtual platform where all artifacts needed
by a given a proof infrastructure are deployed;

• a certifier component, responsible for orchestrat-
ing the tactical components in a certification task
through a workflow written in TCOL (Tactical
Component Orchestration Language);

• a set of certifiable components, linked to the cer-
tifier component through certification bindings.

Parallel certification systems are extracted from
the SAFeSWL code of parallel computing systems.
They are responsible for performing certification pro-
cedures on a set of components connected to the same
certifier component. Note their analogy with paral-
lel computing systems, where the certifier component
is analogous to the workflow component and tactical
components are analogous to solution components.
Therefore, the certifier component is not associated
with a virtual platform, running directly on SAFe.

3.2 Tactical Components

A tactical component represents a proof infrastruc-
ture, composed of a suitable combination of verifi-
cation tools. So, it can perform a flow of execution
that goes from receiving a code written in the lan-
guage it understands, execute validations, conversions
and, finally, verify properties on such a code. Tacti-
cal components may exploit the parallelism features
of the virtual platforms where they are placed for ac-
celerating verification.

A tactical component has the following ports:

• a user service port, with the following operations:
receiving the code of the certifiable component
from the certifier component, possibly previously
translated by the certifier component into the lan-
guage that the tactical component understands; re-
ceiving from the certifier component formal prop-
erties to be verified on that code; allowing the cer-
tifier component to monitor the progress of the
verification of properties; and returning to the cer-
tifier the result of the verification process;

• an action port called Verify, containing the ac-
tions verify perform, verify conclusive and ver-
ify inconclusive;

• the default port LifeCycle, which allows the certi-
fier component to control its life-cycle.

When verify perform is activated, the tactical
component starts the verification process of the for-
mal properties assigned to it. When this process fin-
ishes, it activates verify conclusive, if the verifica-
tion result was conclusive for all properties (true or
false), or verify inconclusive, meaning that the ver-
ification of one or more properties was inconclusive
(null). The verification of a property is inconclusive
when the tactical component is prevented in some
way from applying its verification technique to prove
or refute the property. Such a situation may occur
when there is some infrastructure failure on the virtual
platform that houses the tactical component, when the
property is written in a format that is not understood
by the tactical component, or when the verification
timeout of the verification tool is reached.

3.3 Ports and Bindings of Certifiers

For a component to be certified, one or more certi-
fier components must be chosen from the catalog and
connected to it through certification bindings within
the SAFeSWL architectural definition of the compo-
nent. When the application’s workflow activates the
action certify of a certifiable component, a parallel
certification system is instantiated and executed for
each associated certifier component.

The certification of a component with respect to
a certifier component is idempotent, that is, it is only
executed once, even though the action certify is acti-
vated several times in one or more applications. Each
certifier component differentiates which properties it
verifies are mandatory and which are optional. At
the end of the certification process, the component
is considered to be certified with respect to the certi-
fier component if all mandatory properties have been
proven. If so, the component receives a certificate
with respect to the certifier component, which is reg-
istered in the Core in an unforgeable format.

To communicate with the component to be certi-
fied, a certifier component has a unique provider ser-
vice port with the following characteristics:
• through this port, SAFe passes, to the certifier, the

component code, ad hoc formal properties (not
generated by the certifier component itself nor an-
notated directly in the programs), if any, as well
as other information relevant to the certification;

• through methods available on this port, the certifi-
cation process of the component performed by the
certifier component can be started by SAFe.
A certifier component has also ports that are coun-

terparts of the verification ports of the associated tac-
tical components. When SAFe requests the certi-
fier component to start the certification process, the

4

certifier component performs the orchestration de-
fined in the associated TCOL fragment, which at some
point will activate the action verify perform related
to each associated tactical component. If the ac-
tion verify perform is activated in a tactical compo-
nent, its process of verification of formal properties
is started. When a tactical component activates ver-
ify conclusive and the action of the same name is ac-
tivated in the certifier, the certifier accesses the ser-
vice port of the tactical component in order to obtain
the result of the verification of properties and make an
accounting of which have been proven or not.

Finally, when verify inconclusive is activated in
the tactical component and the same occurs in the cer-
tifier, the certifier accesses the service port of the tacti-
cal component to obtain a report. If the certifier com-
ponent has been implemented with this capability, it
can request, either automatically or with the applica-
tion permission, to the Core that, if possible, instan-
tiate the same tactical component on another virtual
platform. If this is possible, the certifier then restarts
the verification process for the failed tactical compo-
nent. If not, the certifier emits a message to the ap-
plication and continues its normal execution flow, al-
though considering the properties of responsibility of
the failed tactical component as inconclusive.

3.4 Tactical Orchestration with TCOL

The automatic application of different tactical compo-
nents to verify formal properties on a set of programs
is designed to enhance the certification process. For
example, a specific property that was not proved by a
tactical component can be proved by others. More-
over, the parallel activation of tactical components
may lead to a decrease in the final verification time.

Based on this scenario, we propose a language that
allows the orchestration of a set of tactical compo-
nents by a certifier component, called TCOL (Tactical
Component Orchestration Language). In the current
prototype, TCOL is an extension of the orchestration
subset of SAFeSWL, which is efficient for orchestrat-
ing coarse-grained parallel components, such as tacti-
cal components. The extension was made by the ad-
dition of a new selection operator, switch. Here is the
abstract syntax of TCOL:

TASK ::= skip | perform action | start handle action |
wait handle | cancel handle | sequence TASK+ |
parallel TASK+ | repeat TASK | break |
continue | select {action: TASK}+ |
switch {condition: TASK}+

An action can be an action of one of the predefined
ports: LifeCycle and Verify. A task (TASK), consists
of an orchestration of a set of actions. The orchestra-

tion performed by the certifier is defined by a higher-
level task that orchestrates internal tasks. There are
seven primitive tasks and five task combinators.

• skip denotes an empty action;

• break ends the iteration in which it is nested;

• continue forces the start of the next iteration;

• perform synchronously activates an action;

• start activates an action asynchronously, option-
ally handled by an identifier (handle id);

• wait waits for the completion of an asynchronous
action, possibly blocking the orchestration thread
in which it was executed;

• cancel cancels the activation of an action previ-
ously activated asynchronously.

The task combinators are:

• sequence denotes the sequential execution of a
list of tasks, in the order they are declared;

• parallel expresses the concurrent execution of a
set of tasks, in which the combinator task ends
after completion of these tasks (fork-join model);

• repeat represents the iterative execution of a task,
in which this iteration is terminated when a break
is executed within its scope;

• select selects one from a set of tasks, where cho-
sen task is the first one in the sequence whose
guard action is activated in the component;

• switch selects one from a set of tasks, where the
selected task is the first one in the sequence whose
condition is evaluated to true.

The condition grammar of TCOL is similar to the
ones of C-like object-oriented languages. The current
set of variables that may appear in conditions is man-
aged by the certifier and they are updated by it during
the certification process. They are:

• formal properties: an associative array which
associates each pair <formal property, program>
to null, if no tactical component has tried or suc-
ceeded to verify (prove or disprove) the property;
false, if the property was verified by some tacti-
cal component but was refuted; and true, if some
tactical component succeeded to proved it;

• tc applied: an associative array that indicates, for
each tactical component orchestrated, whether it
has already been activated to verify the formal
properties assigned to it (false or true);

• Context arguments: it is possible to use in con-
ditions the arguments assigned to the context pa-
rameters of the abstract certifier by the contextual
contract of the concrete certifier.

5

4 The C4 Certifier

C4 (Computation Component Certifier Compo-
nent) is a kind of certifiers aimed at verifying formal
properties of computation components.

In HPC Shelf, computation components have a set
of units, which represent processes that run on dif-
ferent processing nodes of the target virtual platform.
Commonly, a component has a single parallel unit,
representing a team of units programmed in SPMD
(Single Program Multiple Data) style, where the same
code is executed in each unit. The units work on dif-
ferent data partitions and synchronize by exchanging
messages. This is the programming model of MPI
(Dongarra et al., 1995). Parallelism in a unit may also
be exploited by launching threads on the virtual plat-
form node that places it by using OpenMP (OpenMP,
1997).

A computation component may also be consti-
tuted by multiple parallel units. Also, it may have sin-
gleton units, each one running a distinct program.This
is the MPMD (Multiple Program Multiple Data) style.

Proving functional and safety properties of
message-passing based parallel programs is consid-
ered a challenge task, even for SPMD.

4.1 Tactical Components for C4

We had performed a systematic survey for decid-
ing which existing formal verification techniques and
tools tactical components could support for verifying
parallel programs in computation components. Our
findings are summarized in the following sections,
which discuss the two major classes of tools: deduc-
tive program verification and model checking.

4.1.1 Deductive Tactical Components

Tactical components for deductive verification are as-
sertional, since programs they verify must be dec-
orated with assertions of the Floyd-Hoare logic or
its extensions, such as: separation logic (Reynolds,
2002), for mutable data structures; Owicki-Gries rea-
soning (Owicki and Gries, 1976), for shared-memory
parallel programs; and Apt’s reasoning (Apt, 1986),
for distributed-memory ones.

A tactical component is purely assertional if the
properties it verifies are only in the form of specifica-
tion assertions, i.e., pre- and post-conditions of meth-
ods. In turn, a tactical component is non-purely as-
sertional when the properties it verifies are ad hoc,
i.e., properties created by the component developer
and stored in the component to be verified on it.

For deductive verification tools, the verification
time is not proportional to the number of units of the

component. However, the application of these tools
to distributed-memory parallel programs, especially
MPI ones, is still incipient. In fact, we have found
that only ParTypes (López et al., 2015) can verify
C/MPI programs, annotated in the syntax of VCC (Co-
hen et al., 2009), against a high-level communication
protocol, received by the certifier as an ad hoc prop-
erty. With respect to thread-based programming in C
and Java, explicit safety properties annotated in pro-
grams, as well as implicit ones (e.g. ensure that the
program does not make access to unallocated mem-
ory locations), can be verified with VeriFast (Jacobs
et al., 2011), provided that they are annotated with
separation logic assertions. In turn, Frama-C (Cuoq
et al., 2012) is a very expressive tool for verifying se-
quential C programs annotated as methods pre- and
post-conditions.

VCC, VeriFast and Frama-C are verification fron-
tends. They verify annotated programs written in a
high-level language, generally translating them to an
intermediate verification language, which generates
verification conditions (VCs) and applies them to an
automatic or interactive prover. Intermediate verifica-
tion languages act as layers upon which verifiers are
built for other languages. Boogie (Barnett et al., 2006)
and Why3 (Bobot et al., 2011) are examples of them.

There is a wide variety of automatic provers, from
two main classes: SMT (Satisfiability Modulo Theo-
ries) solvers and ATP (Automated Theorem Provers)
provers. SMT solvers determine when formulas in
first order logic, in which some symbols of func-
tions and predicates have additional interpretations,
are satisfiable. Among them, we can mention Alt-
Ergo, CVC3, CVC4 and Z3. ATP provers, in turn, deal
with the task of proving that a conjecture is a logical
consequence of a set of axioms and hypotheses. They
include E, SPASS and Vampire. There is also a prover
for verifying floating-point arithmetic, called Gappa.

In general, a deductive verification tactical com-
ponent is composed of a verification frontend, an in-
termediate verification language, and a prover. Other
elements may appear. For example, plugins of verifi-
cation frontends, such as Jessie and WP, for Frama-C,
and ParTypes, for VCC, may add new features.

When there is a single possible composition, the
tactical component is named with the most special-
ized tool. For example, ParTypes is composed of Par-
Types, VCC, Boogie, and Z3. In turn, when there are
multiple ones, the name is composed of excerpts from
the names of the tools. For example, JFWCVC4 is
composed of Jessie, Frama-C, Why3, and CVC4.

6

4.1.2 Model Checking Tactical Components

The scarcity of deductive verification tools for MPI
programs has motivated us to investigate model
checking alternatives. The most relevant we have
found are ISP (In-situ Partial Order) (Vo et al.,
2009) and CIVL (Concurrency Intermediate Verifica-
tion Language) (Siegel et al., 2015). They verify a
fixed, although expressive, set of safety properties.
ISP verifies properties like deadlock absence, asser-
tion violations, MPI object leaks, and communica-
tion races (unexpected communication matches) on
C, C++ and C# programs carrying MPI/OpenMP di-
rectives. CIVL, in turn, includes the verification of
functional equivalence between programs.

All standard properties of a tactical component are
mandatory. For a specification assertion to be consid-
ered mandatory, it must be preceded by the annotation
@Mandatory. Otherwise, it is optional. Finally, with
respect to ad hoc properties, the component developer
must make the distinction. Examples of standard and
ad hoc properties are present in the case study.

4.2 Contextual Contracts

In general, computation certifiers differ from one an-
other by the set of tactical components they are able to
orchestrate. Therefore, contextual contracts of these
components must express characteristics of their as-
sociated tactical components.

Each certifier keeps track of the average verifica-
tion time of each property it verifies, keeping this in-
formation in the component description in the cata-
log of components. Thus, the component developer
can evaluate the cost/benefit of verifying a particular
property. Moreover, it may be interesting to her to
establish a maximum time that she is willing to dis-
pense with the verification of all formal properties on
her component. Thus, there is a quality context pa-
rameter in the certifier that must be valued with this
time and the Core will only choose certifiers that are
able to verify the properties within that time. The ini-
tial maximum verification time can be obtained by an-
alytical modeling or experimentation by the certifier
developer. The Core keeps track of the occurrences
of violations in quality parameters, including verifi-
cation time of certifiers. Such a kind of reputation
parameter influences the Core in determining the pri-
ority of components (certifiers) among the possible
choices calculated by the resolution procedure. How-
ever, a description of such a mechanism is out of the
scope of this paper.

The abstract C4 certifier has currently the follow-
ing contextual signature:

C4

programming language = P : PLTYPE,
separation logic = S : SLTYPE,
floating point operations = F : FPOTYPE,
existential quantifier = E : EQTYPE,
message passing interface verif = M : MPIVERIFTYPE,
ad hoc properties = A : AHTYPE,
max verification time = MV : INTEGER

Here is the description of the context parameters:

• programming language: denotes the program-
ming languages in which programs that the cer-
tifier verify must be written;

• separation logic: states whether the certifier or-
chestrates tactical components able to verify pro-
grams annotated with separation logic assertions;

• floating point operations: indicates whether the
certifier is able to verify floating point operations,
by using the tactical component Gappa;

• existential quantifier: indicates whether the as-
sertions of programs to be verified by the certifier
contain existential quantifiers. SMT solvers are
not good at guessing witnesses for existentially
quantified variables (François Bobot et al., 2014).
In this case, if the certifier orchestrates a set of
SMT solvers and ATP provers, it is advisable that
it first invoke the ATP provers;

• message passing interface verif : states whether
that the certifier is able to verify MPI programs;

• ad hoc properties: informs whether the certifier
accepts ad hoc properties;

• max verification time: denotes the certifier max-
imum verification time (seconds).

PLTYPE, SLTYPE, FPOTYPE, EQTYPE,
MPIVERIFTYPE, AHTYPE and INTEGER are
abstract qualifier components that determine the
contractual bounds of the context parameters.

An example of contextual contract derived from
the contextual signature of C4 is the contextual con-
tract of the concrete certifier C4ImplMo, which will be
better contextualized in the case study:

C4ImplMo : C4

programming language = C,
separation logic = NOSEPARATIONLOGIC,
floating point operations = NOFLOATINGPOINTOPERATIONS,
existential quantifier = NOEXISTENTIALQUANTIFIER,
message passing interface verif = MPIVERIF,
ad hoc properties = ADHOCPROPERTIES,
max verification time = 30

Based on this contract, we can state that C4ImplMo

verifies C/MPI programs, accepts ad hoc properties
and its initial (experimental) maximum verification
time is 30 seconds.

C4ImplMo orchestrates two tactical components,
a model checking one (ISP) and a deductive verifi-
cation one (PARTYPES), which extend the following
contextual signature with no addition of parameters:

TACTICAL

message passing interface = M : MPITYPE,
number of nodes = N : INTEGER,
number of cores = C : INTEGER

7

0 <sequence>
1 <parallel>
2 <sequence>
3 <perform action="resolve" comp="ISP"/>
4 <perform action="deploy" comp="ISP"/>
5 <perform action="instantiate" comp="ISP"/>
6 </sequence>
7 <sequence>
8 <perform action="resolve" comp="ParTypes"/>
9 <perform action="deploy" comp="ParTypes"/>

10 <perform action="instantiate" comp="ParTypes"/>
11 </sequence>
12 </parallel>
13 <parallel>
14 <perform action="verify_perform" comp="ISP"/>
15 <perform action="verify_perform" comp="ParTypes"/>
16 </parallel>
17 <perform action="release" comp="ISP"/>
18 <perform action="release" comp="ParTypes"/>
19 </sequence>

Figure 2: The orchestration of C4ImplMo in TCOL

The parameter message passing interface states
whether the tactical component is implemented
through the MPI library (note the difference between
this parameter and message passing interface verif
of C4). The parameters number of nodes and num-
ber of cores mean, respectively, the minimum num-
ber of processing nodes and processing cores per pro-
cessing node that the target platform of the tacti-
cal component must contain. The orchestration per-
formed by C4ImplMo is governed by the TCOL frag-
ment in Figure 2.

As concrete tactical components for the ones de-
scribed above, we cite, respectively, ISPImpl and
ParTypesImpl, which were implemented through the
MPICH2 library 1 and require at least 4 processing
cores in the target virtual platform:

ISPImpl : ISP [message passing interface = MPICH2, number cores = 4]

ParTypesImpl : PARTYPES [message passing interface = MPICH2, number cores = 4]

In C4ImplMo, the valuations to the contextual sig-
natures of the associated abstract tactical components
were the following, thus making ISPImpl and Par-
TypesImpl possible candidates returned by the Core,
by considering that MPI is a supertype for MPICH2:

ISP [message passing interface = MPI]

PARTYPES [message passing interface = MPI]

Suppose that in order to make a specific computa-
tion component certifiable, its developer has created a
certification binding between it and C4, for which the
following contextual contract has been provided:

C4

programming language = C,
ad hoc properties = ADHOCPROPERTIES,
message passing interface verif = MPIVERIF

This valuation states that she wants the compo-

nent to be certified by a certifier that verifies C/MPI
programs and accepts external properties (ad hoc).
Clearly, C4ImplMo is a candidate for this valuation.

1http://www.mpich.org/

5 Case Study: Montage

Montage (Mosaic Astronomic Engine) (Berriman
et al., 2004) is an astrophotography software toolkit
for composing astronomical mosaics (sets of images
of a specific area) that preserve the calibration and
the position of the original input images and may rep-
resent areas of the sky that are too big to be played
by astronomical cameras. Montage is used as a case
study in several scientific workflow research projects.

The toolset has a number of independent and self-
executable components that can be orchestrated for
obtaining the mosaic. In general, each component
takes as input a set of files and input parameters, and
outputs files (possibly images) for other components.
We have encapsulated them as computation compo-
nents of HPC Shelf. For that, they provide a sin-
gle computational action, written in C. Those parallel
ones use MPI for simulating the parallel execution of
instances of another associated sequential component,
each one working on distinct input files.

We illustrate the use of Montage components with
an existing workflow that generates a mosaic of the
Pleiades star cluster2, with the following components:

• MARCHIVELIST: given a sky coordinate and an
archive name, it retrieves, from IRSA (Infrared
Science Archive)3, a list of images that overlap
that position and stores them into the archive;

• MARCHIVEEXEC: retrieves from the server the
FITS (Flexible Image Transport System)4 images
of each image listed in an archive and stores them
into the current directory;

• MIMGTBL: generates metadata in a table from im-
ages contained in a directory;

• MPROJEXEC: reprojects images contained in a
directory, by using information contained in the
metadata table. In fact, it executes a set of in-
stances of the component MPROJECT in parallel.
Each one reprojects one or more images;

• MADD: coadds all images previously corrected
into the final image;

• MJPEG: generates a JPEG file for the final image.

For each image that overlaps the center of the
Pleiades cluster, the workflow keeps three versions of
it, each one in a different color band (red, infrared and
blue). The images of the same band are stored, re-
spectively, in the data source components DSS2RDIR,
DSS2IRDIR and DSS2BDIR. The color bands are pro-
cessed by separate parallel sub-workflows. At the

2http://montage.ipac.caltech.edu/docs/pleiades tutorial.html
3http://irsa.ipac.caltech.edu/ibe
4http://fits.gsfc.nasa.gov

8

Figure 3: The three sub-workflows of the Pleiades work-
flow. At the end, the images of each color band are com-
bined by the component MJPEG.

end, the images of each color band are overlapped,
thus generating the final image. Figure 3 shows the
orchestration logic of the computation components
of the Pleiades workflow. Due to the space restric-
tions, we have omitted, the contextual signatures of
the abstract components, the contextual contracts of
the concrete components, and the workflow code.

5.1 Certifying Montage Components

The highest processing load in Montage falls on the
parallel components, since their associated sequential
components perform the most critical computational
actions. Hence, our efforts focused on certifying these
components. They are: MADDEXEC, MBGEXEC,
MDIFFEXEC, MFITEXEC and MPROJEXEC. They
have a single parallel unit, running a SPMD program.

In order to certify the Montage parallel com-
ponents in batch mode, the developer may create
through SAFe a certification application, i.e. ded-
icated to certify components, by creating a parallel
computing system containing the components to be
certified and the associated workflow, described in the
SAFeSWL fragment in Figure 4.

By assuming that certification bindings between
these components and C4 have been created, as de-
scribed in Section 4.2, the developer creates an appro-
priate service binding for information exchange be-
tween each one and C4, fixes the choice of C4ImplMo
for each one, sets up the single program of each Mon-
tage parallel component to be verified by both tactical
components of C4ImplMo, ISP and PARTYPES, and
records on each component, as an ad hoc property,
a ParTypes protocol to be verified against the imple-
mentation of its program. Finally, the developer re-

0 <parallel
1 <sequence>
2 <perform action="resolve" comp="mAddExec"/>
3 <perform action="certify" comp="mAddExec"/>
4 </sequence>
5 <sequence>
6 <perform action="resolve" comp="mBgExec"/>
7 <perform action="certify" comp="mBgExec"/>
8 </sequence>
9 <sequence>

10 <perform action="resolve" comp="mDiffExec"/>
11 <perform action="certify" comp="mDiffExec"/>
12 </sequence>
13 <sequence>
14 <perform action="resolve" comp="mFitExec"/>
15 <perform action="certify" comp="mFitExec"/>
16 </sequence>
17 <sequence>
18 <perform action="resolve" comp="mProjExec"/>
19 <perform action="certify" comp="mProjExec"/>
20 </sequence>
21 </parallel>

Figure 4: SAFeSWL code for orchestrating the Montage
parallel components in the certification application

Figure 5: Certification architecture of MPROJEXEC

quests the execution of the certification application.
SAFe then creates automatically the certification sys-
tem. Upon the activation of the action certify of a
component in the certification workflow, the compo-
nent joins the parallel certification system to be certi-
fied.

The architectural certification scenario concern-
ing to each Montage parallel component is simi-
lar and we particularize, for didactic purposes, for
the component MPROJEXEC, in Figure 5. For all
components, virtual platforms containing 20 process-
ing nodes were chosen. For the tactical compo-
nents of C4ImplMo, respectively, ISPImpl and Par-
TypesImpl were chosen, for which virtual platforms
with 4 processing node were chosen. As a Par-
Types protocol to be verified against the program of
MPROJEXEC, mProjExec.c, the protocol in Figure
6 was provided in this component. This protocol
states that mProjExec.c executes a sequence of eight
MPI Allreduce operations, each of which applies a
reduction (in this case, sum) of integers from all pro-
cesses and distributes the result back to all processes.

Operationally, when the orchestration concerning

9

to MPROJEXEC in the parallel certification system
terminates, the vector formal properties, maintained
by the certifier component, has the result of the verifi-
cation of all properties, therefore considering MPRO-
JEXEC certified with respect to C4ImplMo:
• formal properties[“mProjExec.c” , “no deadlock”] = true

• formal properties[“mProjExec.c” , “no MPI object leaks”] = true

• formal properties[“mProjExec.c” , “no communication races”] = true

• formal properties[“mProjExec.c” , “no irrelevant barriers”] = true

• formal properties[“mProjExec.c” , “protocol mProjExec”] = true

All parallel components except MBGEXEC were
certified. Indeed, ISP has detected a possible inter-
leaving in MBGEXEC that can lead to receiving an
empty buffer in a MPI Allreduce operation.

0 protocol mProjExec { allreduce sum integer[1]
1 allreduce sum integer[1]
2 allreduce sum integer[1]
3 allreduce sum integer[1]
4 allreduce sum integer[1]
5 allreduce sum integer[1]
6 allreduce sum integer[1]
7 allreduce sum integer[1] }

Figure 6: ParTypes protocol to be verified against the pro-
gram mProjExec.c, annotated with VCC assertions

6 RELATED WORK

Verification as a Service (VaaS) has been intro-
duced by (Schaefer and Sauer, 2011) to deal with
scale problems of software formal verification in
large-scale software systems. It is based on verifi-
cation workflows, which can run on service-oriented
computing environments, reducing the complexity of
verification services. Starting from a system and
properties to be verified, a verification workflow can
be performed by invoking verification tasks in an ap-
propriate order. The authors argue that cloud comput-
ing, by providing a service-oriented environment and
an extremely powerful shared processing infrastruc-
ture through an abstract interface, becomes the best
alternative to implement VaaS architectures.

Only a few research initiatives on VaaS exist. In
(Mancini et al., 2015), a verification service is pro-
posed to show system correctness with respect to un-
controllable events through an exhaustive hardware
simulation by considering all relevant scenarios. In
(Bellettini et al., 2015), a Map-Reduce algorithm for
checking CTL formulas on a cloud is proposed.

The closest initiative to our work is the frame-
work proposed by Hu et al (Kai Hu et al., 2016).
They propose a robust VaaS framework, focusing
mainly on the dualism with the main concerns of SaaS
(Software-as-a-Service), such as the storage of veri-
fication tools and results, scalability issues and fault

tolerance. Their approach, however, allows the avail-
ability of verification tools in the cloud in a raw way,
thus requiring an application developer with skills in
the kind of verification supported by the tool, which it
is not often true. Also, their approach does not make
it possible to make assumptions about the comput-
ing platforms on which the verifications will be per-
formed. Indeed, the use of parallel computing plat-
forms for accelerating verifications is not a concern.

This paper introduces the first VaaS framework
aimed at HPC requirements. Also, it introduces in-
novative features compared to the framework of Hu
et al. For instance, application developers only select
certifier components for certifying components they
desire, and the entire certification process runs auto-
matically, by orchestrating tactical components in a
prescribed workflow. Moreover, certifier and tactical
components make use of HPC techniques, being able
to exploit different levels of parallelism supported by
HPC platforms (distributed-memory, shared-memory,
multi/many-core, accelerators, etc). Indeed, acceler-
ating component certification during orchestration is
a relevant concern since it is a prerequisite for running
certifiable components in an application.

7 Conclusions and Future Work

This paper introduced a VaaS (Verification-as-a-
Service) framework on top of the HPC Shelf platform,
thus attending requirements of component-based high
performance computing (CBHPC) platforms.

Such a framework aims at attesting the reliabil-
ity of components, w.r.t. both malicious behavior of
third parties codes and anomalous or erroneous be-
havior caused by programming errors. Such errors
are potentially more common in parallel components
of HPC Shelf, possibly invalidating scientific studies,
due to the production of results that are erroneous or
whose reliability cannot be proven, as well as waste
precious time in long-running computations.

In order to make the process of certifying compo-
nents less disruptive as possible, the concept of paral-
lel certification system, built of components, was in-
troduced for reusing the workflow already used by the
application provider to build parallel computing sys-
tems. In fact, component orchestrations in both kinds
of systems are operationally similar and can be over-
lapped without interference during execution.

The certification framework is an ongoing project
whose initial prototype has been developed in C#/MPI
and validated through the Montage application. These
implementations can be found at https://github.
com/UFC-MDCC-HPC/HPC-Shelf-Certification.

10

Figure 7: Execution times of the certification application

Figure 7 shows the experimental time for execut-
ing the certification application of the case study, by
varying the number of processing nodes and process-
ing cores per node engaged in the execution of the
tactical components. The sequential time was calcu-
lated outside HPC Shelf, simply by sequential calls to
the verification tools through a Shell Script program.
The parallelism was justified in all cases, leading in
some cases to a certification time of less than half the
sequential time. Such a gain can be useful to the ap-
plication provider, since the certification of certifiable
components is a prerequisite for running them. We
think that this gain could become even more evident
if components have more programs to be certified or
the certifier can orchestrate more tactical components.

An outstanding feature of the proposed certifica-
tion framework is extensibility, since new certifier and
tactical components may be smoothly added to deal
with the verification of different component kinds
and different classes of properties as verification tools
evolve. In particular, we intend to continue the in-
vestigation about verification tools for MPI programs,
since MPI is a de facto standard in HPC.

We are also working on SWC2 (Scientific Work-
flow Certifier Component), a certifier for certifying
workflows of parallel computing systems of HPC
Shelf w.r.t. behavioral properties (safety and live-
ness). The architecture of such a component and
the formal modeling of the workflows it performs to
the mCRL2 (Groote et al., 2007) verification toolset
are aimed at enriching the formal specifications of
these components in order to increase their confi-
dence levels (not only for the detection of design
errors on them) and will be presented in a sepa-
rate paper. An implementation of such a component
on top of the certification framework was evaluated
through the certification of the Map-Reduce (Dean
and Ghemawat, 2008) processing workflow and re-
veals promising results, as can be seen in Figure 8.

We also argue that the reliability requirements

Figure 8: Map-Reduce workflow certification times

of HPC Shelf components may be extrapolated to
other component-based service-oriented HPC plat-
forms. In particular, our immediate interest is to port
the workflow certification service to other workflow-
based platforms, since the verifiable workflows pat-
terns in SWC2 are common to most of them.

From a broader perspective, we believe that the
inclusion, at design time of an application, of compo-
nents that in a reflexive way are able to inspect and
certify components is worth exploring for two rea-
sons. On the one hand, the inherent complexity of
cloud-based applications, given the heterogeneity of
resources and the open and decentralized control they
have, implies the need to scale up modeling and for-
mal verification tools. On the other hand, the cloud
itself is an ecosystem in which components that or-
chestrate verification engines may live and be invoked
to certify their own computations and the ways they
interact, as suggested in this paper. While the first
perspective has already been the focus of a number of
research initiatives (see, for example, the ABS project
(Albert et al., 2014)), the second one constitutes an
open challenge to the software engineering commu-
nity. The HPC Shelf platform with reflexive certifi-
cation of components enabled, as introduced in this
paper, is a step in this direction.

ACKNOWLEDGEMENTS

This paper is a result of the project SmartEGOV:
Harnessing EGOV for Smart Governance (Founda-
tions, methods, Tools) / NORTE-01-0145-FEDER-
000037, supported by Norte Portugal Regional Oper-
ational Programme (NORTE 2020), under the POR-
TUGAL 2020 Partnership Agreement, through the
European Regional Development Fund (EFDR).

11

REFERENCES

Albert, E., de Boer, F. S., Hähnle, R., Johnsen, E. B.,
Schlatte, R., Tarifa, S., and Wong, P. (2014). For-
mal modeling and analysis of resource management
for cloud architectures: an industrial case study using
real-time ABS. Service Oriented Computing and Ap-
plications, 8(4):323–339.

Apt, K. R. (1986). Correctness Proofs of Distributed Termi-
nation Algorithms. ACM Trans. Program. Lang. Syst.,
8(3):388–405.

Barnett, M., Chang, B.-Y. E., DeLine, R., Jacobs, B., and
Leino, K. R. M. (2006). Boogie: A Modular Reusable
Verifier for Object-oriented Programs. In Proceedings
of the 4th International Conference on Formal Meth-
ods for Components and Objects, FMCO’05, pages
364–387. Springer-Verlag.

Bellettini, C., Camilli, M., Capra, L., and Monga, M.
(2015). Distributed CTL model checking using
MapReduce: theory and practice. Concurrency and
Computation: Practice and Experience.

Berriman, G. B., Deelman, E., Good, J. C., Jacob, J. C.,
Katz, D. S., Kesselman, C., Laity, A. C., Prince,
T. A., Singh, G., and Su, M.-H. (2004). Montage:
a grid-enabled engine for delivering custom science-
grade mosaics on demand. In SPIE Astronomical
Telescopes+ Instrumentation, pages 221–232. Inter-
national Society for Optics and Photonics.

Bobot, F., Filliâtre, J.-C., Marché, C., and Paskevich, A.
(2011). Why3: Shepherd your herd of provers. In
Boogie 2011: First International Workshop on Inter-
mediate Verification Languages, pages 53–64.

Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D.,
Moskal, M., Santen, T., Schulte, W., and Tobies, S.
(2009). VCC: A practical system for verifying concur-
rent C. In Theorem Proving in Higher Order Logics,
pages 23–42. Springer.

Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles,
J., and Yakobowski, B. (2012). Frama-C. In Interna-
tional Conference on Software Engineering and For-
mal Methods, pages 233–247. Springer.

de Carvalho Junior, F. H., Lins, R., Correa, R. C., and
Araújo, G. A. (2007). Towards an Architecture for
Component-Oriented Parallel Programming. Concur-
rency and Computation: Practice and Experience,
19(5):697–719.

de Carvalho Junior, F. H., Rezende, C. A., Silva, J. C., and
Al Alam, W. G. (2016). Contextual abstraction in a
type system for component-based high performance
computing platforms. Science of Computer Program-
ming.

de Carvalho Silva, J. and de Carvalho Junior, F. H. C.
(2016). A Platform of Scientific Workflows for Or-
chestration of Parallel Components in a Cloud of High
Performance Computing Applications. In Lecture
Notes in Computer Science. Springer.

Dean, J. and Ghemawat, S. (2008). MapReduce: simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113.

Dongarra, J., Otto, S. W., Snir, M., and Walker, D. (1995).
An Introduction to the MPI Standard. Technical Re-
port CS-95-274, University of Tennessee.

François Bobot, Jean-Christophe Filliâtre, Claude Marché,
and Andrei Paskevich (2014). Let’s Verify This with
Why3. International Journal on Software Tools for
Technology Transfer (STTT), pages 1–19.

Groote, J. F., Mathijssen, A., Reniers, M., Usenko, Y., and
van Weerdenburg, M. (2007). The Formal Specifi-
cation Language mCRL2. In Methods for Modelling
Software Systems: Dagstuhl Seminar 06351.

Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Pen-
ninckx, W., and Piessens, F. (2011). VeriFast: A pow-
erful, sound, predictable, fast verifier for C and Java.
In NASA Formal Methods, pages 41–55. Springer.

Kai Hu, Lei Lei, and Wei-Tek Tsai (2016). Multi-tenant
Verification-as-a-Service (VaaS) in a cloud. Simula-
tion Modelling Practice and Theory, 60:122 – 143.

López, H. A., Marques, E. R. B., Martins, F., Ng, N., San-
tos, C., Vasconcelos, V. T., and Yoshida, N. (2015).
Protocol-based verification of message-passing paral-
lel programs. In Proceedings of the 2015 ACM SIG-
PLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
pages 280–298. ACM.

Mancini, T., Mari, F., Massini, A., Melatti, I., and Tronci, E.
(2015). SyLVaaS: System level formal verification as
a service. In 2015 23rd Euromicro International Con-
ference on Parallel, Distributed, and Network-Based
Processing, pages 476–483. IEEE.

OpenMP, O. (1997). A Proposed Industry Standard API for
Shared Memory Programming. OpenMP Architecture
Review Board, 27.

Owicki, S. and Gries, D. (1976). An axiomatic proof
technique for parallel programs I. Acta informatica,
6(4):319–340.

Reynolds, J. C. (2002). Separation logic: A logic for shared
mutable data structures. In Logic in Computer Sci-
ence, 2002. Proceedings. 17th Annual IEEE Sympo-
sium on, pages 55–74. IEEE.

Schaefer, I. and Sauer, T. (2011). Towards verification as
a service. In International Workshop on Eternal Sys-
tems, pages 16–24. Springer.

Siegel, S. F., Zheng, M., Luo, Z., Zirkel, T. K., Marianiello,
A. V., Edenhofner, J. G., Dwyer, M. B., and Rogers,
M. S. (2015). CIVL: the concurrency intermediate
verification language. In Proceedings of the Interna-
tional Conference for High Performance Computing,
Networking, Storage and Analysis, page 61. ACM.

Vo, A., Vakkalanka, S., DeLisi, M., Gopalakrishnan, G.,
Kirby, R. M., and Thakur, R. (2009). Formal Veri-
fication of Practical MPI Programs. SIGPLAN Not.,
44(4):261–270.

12

View publication statsView publication stats

https://www.researchgate.net/publication/317299420

