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ABSTRACT: Several reinforcing strategies have recently been developed to overcome glass brittleness and 6 

numerical simulations are essential to investigate the structural behaviour of such hybrid systems. Based on 7 

previous experimental results from monotonic quasi-static tests, this paper presents a numerical study about the 8 

flexural behaviour of glass beams reinforced with glass fibre reinforced polymer (GFRP) laminates bonded with 9 

two different adhesives: polyurethane and epoxy. The main objective of this study is to evaluate the efficiency of 10 

different constitutive models to simulate the non-linear behaviour of glass, considering the following factors: initial 11 

stiffness, cracking load, post-cracking stiffness, crack pattern and progressive failure. The glass is simulated using 12 

smeared crack (SCM) and damaged plasticity (DPM) models with static and dynamic numerical approaches. 13 

Particular attention is paid to the influence of the several parameters that influence the structural behaviour of glass 14 

(e.g. threshold angle), as well as to the interfaces between all the materials involved (e.g. thickness of the adhesive 15 

layer). In relation to static numerical approaches, dynamic numerical approaches require more computational effort 16 

and their dynamic effects may influence the structural responses obtained; however, they also show to be able to 17 

capture all the stages of cracking in greater detail, because stability during cracking formation is guaranteed even 18 

at smaller loading stages. Since DPM models do not allow considering a maximum absolute damage factor of 1.0, 19 

the smeared crack models simulate better the non-linear behaviour of glass. 20 

                                                           

a PhD Student, ISISE, IB-S, University of Minho, School of Engineering, Campus de Azurém, 4800-058 

Guimarães, Portugal. Email: a61858@alunos.uminho.pt 

b Assistant Professor, ISISE, IB-S, University of Minho, School of Engineering, Campus de Azurém, 4800-058 

Guimarães, Portugal. Email: eduardo.pereira@civil.uminho.pt 

c Associate Professor, ISISE, IB-S, University of Minho, School of Engineering, Campus de Azurém, 4800-058 

Guimarães, Portugal. Email: jsena@civil.uminho.pt  

d PhD Student, CERIS, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal. Email: 

luis.valarinho@tecnico.ulisboa.pt 

e Full Professor, CERIS, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, 

Portugal. Email: joao.ramoa.correia@tecnico.ulisboa.pt 

mailto:a61858@alunos.uminho.pt
mailto:eduardo.pereira@civil.uminho.pt
mailto:jsena@civil.uminho.pt


2 

KEYWORDS: Glass-GFRP composite beams; Numerical analysis; Smeared crack model; Damaged plasticity 21 

model; Dynamic effects; Structural behaviour. 22 

  23 



Rocha, J.; Pereira, E.; Sena-Cruz, J.; Valarinho, L.; Correia, J.R. (2021) “Numerical simulation of composites 

GFRP-reinforced glass structural elements under monotonic load.” Engineering Structures, 234: 111968, 22 pp. 

DOI: 10.1016/j.engstruct.2021.111968 

 

3 

1. INTRODUCTION 24 

Structural glass is nowadays of great relevance in contemporary architecture, due to its aesthetic and 25 

functional virtues [1, 2]. However, the structural behaviour of glass is substantially different from other building 26 

materials, such as steel and reinforced concrete [3]. The brittle behaviour of glass and the difficulties in anticipating 27 

its failure require the adoption of suitable safety measures. 28 

To improve the structural performance of annealed glass, the industry has developed glass toughening to 29 

increase its tensile strength and glass lamination to overcome its brittleness [1,4] In the first method creates 30 

compressive stresses on outer surfaces, closing flaws and, therefore, increasing its tensile strength. However, the 31 

breakage of tempered glass creates smaller fragments, which reduces the residual strength. On the other hand, the 32 

second method consists of joining two or more glass sheets using an interlayer. The glass lamination prevents the 33 

failure of the entire element (redundancy) and, due to the interlayer action, the fragments will remain in place. The 34 

structural performance of laminated glass elements has been addressed in several experimental (e.g. [4]) and 35 

numerical (e.g. [5]) studies, evaluating the influence of different interlayers, loading conditions and temperatures. 36 

In order to improve the post-cracking performance of laminated glass with fully tempered glass plies, interlayers 37 

with embedded reinforcement have also been studied (e.g. [6]). However, the brittle behaviour of glass is not 38 

eliminated by either method. 39 

In recent years, several reinforcing strategies have been developed to overcome glass brittleness [7], 40 

particularly the hybrid glass systems with timber (e.g. [8,9]), steel (e.g. [10–13]), Carbon Fibre Reinforcement 41 

Polymers, CFRP (e.g. [14,15]) and Glass Fibre Reinforcement Polymers, GFRP (e.g. [1,2,16–19]). Therefore, the 42 

selection of the type of adhesive to use is also critical, considering that there is a wide range of adhesives with 43 

different properties before and after hardening [20]. 44 

Numerical simulations are essential to investigate the structural behaviour of hybrid glass systems, or to 45 

design more complex or structurally demanding cases. However, the brittle behaviour of glass poses great 46 

challenges to the numerical simulations of structures comprising glass components, as well as the calibration of 47 

the material constitutive models adopted. Different authors have shown that the major challenges associated to the 48 

numerical simulation of structural glass behaviour, besides the calibration of the nonlinear constitutive models 49 

used for glass simulation, are (i) the realistic definition of the structural interaction between materials and (ii) the 50 

assessment of the post-cracking behaviour [19,21]. Several approaches have been used to study critical aspects 51 

related to laminated glass and/or hybrid glass structural elements: (i) the type of interlayer representation and 52 
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factors that influence its stiffness, such as temperature and load duration; (ii) the type of interaction between 53 

materials, mainly glass and reinforcement; and (iii) the type of constitutive models used to describe the non-linear 54 

behaviour of the glass and interlayer, as well as the behaviour of the reinforcement. 55 

Different constitutive models suitable for representing brittle or quasi-brittle behaviour have been used to 56 

simulate the non-linear behaviour of glass. While Neto et al. [18] have used a discrete crack approach, Valarinho 57 

et al. [19], Bedon and Louter [21–24] and Louter et al. [25] have used a smeared crack approach. Damaged 58 

plasticity approach was also used by Bedon and Louter [26]. The numerical simulations in Bedon and Louter [21–59 

24] were performed in the ABAQUS finite elements software, by employing the Rankine failure criterion for 60 

cracks detection. The “brittle failure” option was adopted to model cracking evolution in Bedon and Louter [21,22], 61 

while the “brittle shear” option was adopted in Bedon and Louter [23,24]. Finally, the study performed by Bedon 62 

and Louter [26] included the numerical simulation of post-tensioned glass beams using ABAQUS, by means of 63 

the “concrete damaged plasticity” model, commonly used for modelling concrete. 64 

Because glass is an extremely fragile material, which has low fracture energy, some studies have adopted 65 

strategies to overcome problems related to the convergence of numerical models, such as linear sequential elastic 66 

analysis. The aim was to avoid a possibly negative tangential stiffness, which is the main cause for convergence 67 

problems found in non-linear analysis [25]. However, all these strategies require additional regularization 68 

procedures to obtain mesh objective results [18]. 69 

Considering the importance of developing accurate approaches for the simulation of glass structures, and 70 

the challenges that normally are associated to the simulation of the behaviour of brittle materials such as glass, this 71 

study is aimed at assessing the in-depth details associated to the numerical simulation of reinforced structural glass, 72 

including both the force-deflection response and the cracking evolution. This work presents a numerical study of 73 

the structural behaviour of glass beams reinforced with GFRP laminates, which were simulated using different 74 

Smeared Crack (SCM) and Damaged Plasticity (DPM) models, available in FEMIX [27] and ABAQUS 6.14 [28], 75 

as well as different static and dynamic numerical approaches. In order to evaluate the efficiency of these models 76 

for the simulation of the post-cracking behaviour, the different numerical responses were analysed and compared 77 

considering the following factors: initial stiffness, cracking load, post-cracking stiffness, crack pattern and 78 

progressive failure. For this purpose, the material parameters derived by Valarinho et al. [19], based on 79 

experimental tests of glass-GFRP composite beams, were used. In this context, the present work addresses two 80 

main novel aspects, (i) concerning the comparison of different approaches for the numerical simulation of 81 

reinforced structural glass, since existing literature is absent in such critical analysis; (ii) on the other hand, 82 
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literature often refers ABAQUS/Explicit analyses without addressing the influence of dynamic effects; both factors 83 

are critical for accurate simulations. The paper identifies the most critical factors and possible strategies to obtain 84 

quasi-static analysis without excessive computational effort. 85 

2. TEST ON GLASS-GFRP COMPOSITE BEAMS 86 

The numerical simulations of glass-GFRP composite beams were based on an exploratory experimental 87 

study carried out by Valarinho et al. [19]. These beams were tested following the four-point bending setup. The 88 

glass-GFRP composite beam specimens, as shown in Fig. 1, consisted of annealed glass panels, with cross section 89 

of 12  100 [mm], reinforced at the bottom face with a GFRP pultruded laminate with a cross section of 90 

12  8 [mm]. These materials were joined using two different adhesives, with a 2.0 mm thick layer: (i) a 91 

polyurethane adhesive, Sikaflex 265, with low Young’s modulus and considered as a flexible adhesive, and (ii) an 92 

epoxy adhesive, SikaDur 31-fc, with high Young’s modulus and considered as a stiff adhesive. 93 

Double-lap joint specimens were also tested in tension by Valarinho et al. [19], in order to characterize the 94 

bond behaviour between GFRP and glass. From these tests the following main conclusions were obtained: (i) in 95 

the specimens with flexible adhesive, which exhibited an initial linear behaviour, a significant loss of stiffness 96 

before collapse was observed (see Fig. 2(a)), with failure characterized by debonding at the glass-adhesive 97 

interface; (ii) the specimens with stiff adhesive exhibited a practically linear behaviour until the collapse (see 98 

Fig. 2(b)), eventually with glass failure. 99 

Fig. 3 presents the structural behaviour of the glass-GFRP composite beams with polyurethane (SFlex 100 

beams) and epoxy (SDur beams) adhesives obtained from four-point bending tests [19]. These composite beams 101 

presented linear elastic behaviour until the first crack appeared in the glass panel. Due to the brittle nature of glass 102 

failure and the inherent variability of its tensile strength, the cracking loads reached during testing have shown 103 

some scatter, as well as the post-cracking responses. This variability is associated to the numerous flaws contained 104 

by glass, which are randomly distributed in the material – such flaws, which are very small in size (not 105 

distinguishable by the naked eye) result mainly from the production process, and also from cutting and handling 106 

operations [29]. This inherent characteristic of glass explains not only the relatively high scatter of its tensile 107 

strength (e.g. Veer and Rodichev [30]), but also the occurrence of relevant size effects [31]. In the post-crack 108 

phase, a progressive loss of stiffness was observed after the development of a single crack in the case of the glass-109 

GFRP composite beams made with polyurethane adhesive (see Fig. 4(b)). In the case of the composite beams made 110 
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with epoxy adhesive, several cracks have developed, propagating towards the supports (see Fig. 4(a)). According 111 

to Valarinho et al. [19], the deflection increment before cracking (pre-cracking stage) ranged from 0.95 to 1.52 112 

mm/min and then, during the post-cracking stage, between 1.70 and 3.21 mm/min. In these tests, both the applied 113 

load and the mid-span deflection were measured at an average acquisition frequency of 5 Hz. All glass-GFRP 114 

beams were tested at an average temperature of 24 °C and 60% of relative humidity. 115 

The double-lap joint specimens have shown significant relative displacements between the glass pane and 116 

the GFRP laminate when flexible adhesives were used (about 20 times higher than for the stiff adhesives). For this 117 

reason, four strain gauges (SG1 to SG4) were installed at different locations of the SFlex-1 beam at its mid-span 118 

section: (i) SG1 was placed at the top edge of the glass panel; (ii) SG2 was placed at the bottom/bonded edge of 119 

the glass panel; (iii) SG3 was placed at the top/bonded edge of the GFRP laminate; and (iv) SG4 was placed at the 120 

bottom edge of the GFRP laminate. As depicted in Fig. 5, a significant slippage occurred at the bonded interfaces 121 

of SFlex-1, both before and after the first crack was formed. Therefore, Bernoulli’s hypothesis was not observed 122 

for these beams. 123 

3. NUMERICAL SIMULATION 124 

Based on an initial estimation of the material nonlinear parameters derived in Valarinho et al. [19], different 125 

material models, based in smeared crack and damaged plasticity approaches, were studied to simulate the non-126 

linear behaviour of glass, as detailed in the following sections. 127 

3.1 Smeared crack approach 128 

The smeared crack approach has been used by different researchers to describe the non-linear behaviour of 129 

brittle and quasi-brittle materials, e.g. concrete, masonry and glass. This approach can be categorized into fixed 130 

and rotating [32]. With the fixed concept, the orientation of the cracks is fixed during the entire computational 131 

process, whereas the rotating concept allows the orientation of the cracks to co-rotate with the axes of principal 132 

stress [32]. The multi-fixed crack concept provides an intermediate option. 133 

The multi-fixed concept, used by FEMIX [27], is suitable for tension-shear conditions, which is typical of 134 

fracture propagation problems [32]. The cracks start only under tension conditions, in mode-I, and subsequently 135 

propagate in tension-shear conditions. In the described behaviour, the maximum principal stress directions rotate 136 

after crack formation, which leads to increasing discrepancy relatively to the fixed crack directions. After the first 137 

crack, a new crack may appear when: (i) the maximum principal stress of an integration point exceeds the defined 138 
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tensile strength, and (ii) the angle between the direction of the existing cracks and the direction of the maximum 139 

principal stress exceeds the value of a predefined threshold angle. 140 

The smeared crack approach contributes to describe the structural behaviour of the material when the 141 

maximum principal stress exceeds the uniaxial tensile strength. The main assumptions of this numerical approach 142 

are: (i) the damaged area is distributed by a specific crack band width, h, and (ii) the constitutive law of the 143 

damaged material is characterized by a tension-softening diagram, which, together with the facture energy, Gf, are 144 

considered as material properties [33]. The type of tension-softening diagram and the number of cracks in each 145 

integration point are parameters required by the multi-fixed smeared crack approach [34]. 146 

Bazant and Oh [33], Sena-Cruz [34] and Rots et al. [35] proposed different ways to estimate the crack band 147 

width: (i) equal to the square root of the area of the finite element, (ii) equal to the square root of the area of the 148 

integration point, and (iii) equal to a constant value. The mesh objectivity must be ensured by the relationship 149 

between the crack band width and mesh size [32,34]. According to de Borst [36], the computational instabilities 150 

and convergence problems (e.g. snap-back instabilities) are avoided when the Eq. (1) is fulfilled. Therefore, the 151 

crack band width must be controlled to guarantee the stability and convergence of the smeared crack models. The 152 

other parameters are assumed to be constant properties of the material. The minimum facture energy required for 153 

a stable numerical process is given by Eq. (2), obtained from the manipulation of Eq. (1). 154 
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The smeared crack approach was formulated in such a way that not only tension-softening but also crack 156 
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The constant shear retention factor implies a linear ascending relation between shear stress and shear 160 

strain across the crack, as well as a constant crack shear modulus [32]. In addition to the arbitrariness in choosing 161 

this value, the shear stress can increase indefinitely with a constant shear retention factor and, consequently, the 162 

maximum principal stress directions in cracked elements rotate ceaselessly [32]. 163 

The ABAQUS uses a smeared crack approach with fixed concept (orthogonal cracks). Therefore, the 164 

maximum number of cracks at an integration point is limited by the number of stress components, e.g. 3 cracks in 165 

3D models and 2 cracks in 2D models. According to ABAQUS [28], although the fixed concept has the 166 

orthogonally limitation, it is considered superior to the rotating concept when the effect of multiple cracks is 167 

important, since the last concept is restricted to a single crack at each integration point. The shear retention factor 168 

is defined as a non-constant value through the Eq. (3). 169 

3.2 FEMIX smeared crack model (SCM-FEMIX) 170 

This Section presents the assumptions adopted in the numerical simulation of the glass, GFRP and 171 

adhesives for the simulation of the beams with the FEMIX software. Three different strategies were considered to 172 

simulate the adhesive joint of composite beams: (i) the Perfect Bond (PB) between the glass and GFRP laminate, 173 

neglecting the physical existence of the adhesive; (ii) the Linear Elastic Behaviour (LEB) of the adhesive, using 174 

plane stress elements for 2D models or solid elements for 3D models, and assuming perfect bond at the 175 

GFRP/adhesive and adhesive/glass interfaces; and (iii) the Non-Linear Behaviour (NLB) of the joint, using 176 

interface elements, simulating the non-linear behaviour of the interfaces (GFRP/adhesive and adhesive/glass) and 177 

the adhesive itself. 178 

3.2.1 Annealed glass 179 

According to the Guideline for European Structural Design of Glass Components [37], in the simulation 180 

the linear elastic behaviour of annealed glass a Young’s modulus, Eg, of 70 GPa, a Poisson’s ratio, νg, of 0.23 and 181 

a tensile strength, fg,t, which ranges from 30 to 80 MPa, were adopted. In composite beams models, the glass was 182 

simulated by linear elastic behaviour in compression and in tension, before cracking. Rankine failure criterion was 183 

used for the crack detection. After the cracking, non-linear behaviour of the glass was simulated by the smeared 184 

crack model. 185 

After a parametric study, in which the experimental and the numerical results were compared in terms of 186 

initial stiffness, cracking load, post-cracking stiffness, crack pattern and progressive failure of the composite 187 

beams, Valarinho et al. [19] defined the glass linear features required by this mechanical constitutive model. The 188 
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following properties were adopted: (i) tensile strength of 50 MPa, (ii) tension-softening diagram with linear shape, 189 

(iii) quadratic shear retention factor law, (iv) minimum mode-I fracture energy, Gg, to avoid snap-back instabilities, 190 

according to Eq.(2), and (v) crack band width equal to the square root of the finite elements area. A threshold angle 191 

of 30º was also defined for the development of new cracks, as well as the maximum number of two and three 192 

cracks in each element in 2D and 3D models, respectively. 193 

3.2.2 GFRP 194 

The GFRP was modelled as linear elastic material, for both compression and tension, assuming the 195 

following mechanical properties (obtained from tests): Young’s modulus, EGFRP, of 28.7 GPa, Poisson’s ratio, 196 

νGFRP, of 0.28. 197 

3.2.3 Interface 198 

Based on the parametric study described in Valarinho et al. [19], where three strategies were tested for 199 

the numerical modelling of the adhesive bonded joint, the perfect bond (PB) strategy was adopted to simulate the 200 

composite beam with epoxy adhesive (stiff adhesive). Previous numerical simulations showed that the two 201 

alternative strategies (PSE and NLB) did not accurately capture the experimental response after cracking, in terms 202 

of stiffness and ultimate load. 203 

The polyurethane adhesive of the SFlex beam was described by the non-linear behaviour (NLB) strategy 204 

using a non-linear bond-slip relationship, as suggested in Valarinho et al. [19]. The PB strategy was initially 205 

excluded because it neglected the physical existence of the adhesive layer. On the other hand, previous simulations 206 

using the PSE strategy showed higher post-cracking stiffness than the one observed in the experimental responses, 207 

since it was not able to simulate the adhesive failure. Assuming a bilinear bond-slip relationship, Table 1 presents 208 

the used properties: (i) the linear elastic tangential stiffness, Kt, (ii) the shear strength, τm, and (iii) the mode-II 209 

fracture energy, Gm. The linear elastic tangential stiffness was assumed to be the same in both directions of the 210 

adhesive layer. Finally, according to Sena-Cruz [34], a high value of the linear elastic normal stiffness, Kn, was 211 

adopted in order to avoid any influence on the shear behaviour of the interface elements. 212 

The non-linear bond-slip relationship used in Valarinho et al. [19] is governed by the Eq. (4), where τm 213 

and sm are the maximum shear stress and the corresponding maximum slip, respectively, and the shape of the pre- 214 

and post-peak curves are defined respectively by the parameters α and α’ [34]. The mechanical properties used to 215 
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model the polyurethane adhesive are presented in Table 2. The mode-II fracture energy, Gm, was calculated as the 216 

integral of the post-peak curve, according to Eq. (5). 217 
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3.2.4 Mesh strategy 219 

Taking into account the real geometry and the symmetry conditions of the glass-GFRP composite beams 220 

(see Fig. 1), only half span was numerically simulated (l = 700 mm). In the SDur beams, 8-node plane stress 221 

elements, with 2  2 Gauss-Legendre integration scheme, were used to simulate the glass panel and GFRP laminate 222 

(2D models). However, to compare the results obtained in the three material models (reasons are given in Section 223 

3.3.3), 20-node solid elements were also used to simulate the different structural materials (GFRP laminate and 224 

glass panel) of the SFlex beams (3D models). 225 

In the NLB strategy, in agreement with the previously presented assumptions, the adhesive layer was 226 

simulated by 16-node interface elements with 3 (height)  2 (thickness) using Gauss-Lobatto integration rule. The 227 

thickness of the adhesive joint was reproduced by positioning the glass panel at a distance of 2 mm from the GFRP 228 

laminate, which was then filled by the interface elements. 229 

Based on the sensitivity of mesh analysis carried out in Valarinho et al. [19], elements of 10  10 [mm] 230 

yield sufficiently accurate simulations. In the 3D models, only one layer of finite elements was used to describe 231 

the beam thickness (10 (width)  10 (height)  12 (thickness) [mm]). In order to avoid out-plane displacements, 232 

the z-direction displacements of the nodes located at the middle-thickness were prevented. 233 

3.3 ABAQUS smeared crack model (SCM-ABAQUS) 234 

As for the FEMIX smeared crack model (Section 3.2), similar assumptions and mechanical properties were 235 

adopted when using ABAQUS commercial package. The GFRP laminate was modelled as a linear elastic material 236 

with the same mechanical properties presented in Section 3.2.2. In the case of the simulation of the annealed glass, 237 

the smeared crack model available in ABAQUS/Explicit is suitable for quasi-static and dynamic analyses [28]. 238 
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The computational effort required by ABAQUS/Explicit depends on the density of the materials [28]. Thus, a 239 

density of 2500 and 1600 kg/m3 was adopted for the annealed glass and GFRP, respectively. By default, 240 

ABAQUS/Explicit considers the geometric nonlinearity through the “Nlgeom” setting. However, this option was 241 

ignored for the sake of simplicity because the influence of the geometric nonlinearity on the structural responses 242 

would be very small. 243 

3.3.1 Annealed glass 244 

The compressive behaviour of annealed glass was assumed as linear elastic. The brittle failure in tension was 245 

properly considered by adopting the “Brittle Cracking” mechanical model, using the “Brittle Shear” option to 246 

model crack evolution. This constitutive model is suitable for concrete brittle and quasi-brittle materials, and it 247 

was also adopted for glass [19,21–23,25,26]. Before the tensile strength is reached, the linear elastic behaviour 248 

was assumed. 249 

In the “Brittle Cracking” model, a Rankine failure criterion is used for the crack detection. The main 250 

parameters introduced in this material model are: (i) the tensile strength, (ii) the mode-I facture energy, and 251 

(iii) shear retention factor law (in “Brittle Shear” option). Similarly to the FEMIX models (Section 3.2), the 252 

following properties were adopted: tensile strength, ft,g, of 50 MPa, minimum mode-I facture energy, Gg, and 253 

quadratic shear retention law. The ABAQUS approach adopts, by default, a crack band width, h, equal to the 254 

square root of the finite elements area, as well as a linear tension-softening diagram when the “GFI” option (facture 255 

energy cracking criterion) is selected [28]. Therefore, the maximum crack opening strain, εmax
ck , required by the 256 

“Brittle Shear” option to define the quadratic shear retention law is given by Eq. (6), and was set to 8.010-4. 257 

 

max

,

2 gck

t g

G

hf
   

(6) 

3.3.2 Interface 258 

The PB and NLB strategies were used to simulate the SDur and SFlex beams, respectively. The interface 259 

GFRP/glass was modelled by adopting the “Surface-Based Cohesive Behaviour” with “Progressive Damage and 260 

Failure”. This interface model is suitable for situations where the interface thickness is negligible [28], so the 261 

thickness of the adhesive layer was not considered in the simulations. 262 
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The constitutive model of the interface was described by the linear elastic normal stiffness, Kn, the linear 263 

elastic tangential stiffness in each direction of the adhesive layer, Kt, the normal strength, σm, the shear strength, 264 

τm, and the mode-II facture energy, Gm, assuming a linear softening law. The interface material models used in 265 

FEMIX and ABAQUS were characterized by similar parameters, defined in Table 1. 266 

3.3.3 Mesh strategy 267 

Like in SCM-FEMIX, in these numerical models only half span of the composite beams was discretized. 268 

Considering the interface model adopted (see Section 3.3.2), ABAQUS/Explicit does not allow the edge-to-edge 269 

contact. Therefore, three-dimensional (3D) simulations of the SFlex beams was performed using 8-node solid 270 

elements with reduced integration (C3D8R). 271 

On the other hand, 4-node plane stress elements with reduced integration (CPS4R) were used to simulate 272 

the SDur beams (2D models). The 2  2 integration scheme in 4-node elements is not supported by 273 

ABAQUS/Explicit, as well as 8-node elements with 3  3 or 2  2 integration schemes [28]. The adhesive layer 274 

was simulated by 4-node zero thickness surface elements (SFM3D4), with 4 integration points (surface-to-275 

surface). 276 

A mesh of 5 (width)  5 (height) [mm] finite elements was adopted for SDur beam, in order to maintain a 277 

consistent number of degrees of freedom with respect to SCM-FEMIX (see Section 3.3.4), where the finite 278 

elements were assigned with a 2  2 integration scheme. Two layers of finite elements of 10 (width)  10 (height) 279 

 6 (thickness) [mm] were used to describe the thickness of the SFlex beam. This approach was adopted in order 280 

to avoid out-plane displacements, and the z-direction displacements of the nodes located at the middle-thickness, 281 

which are shared by the two layers of finite elements that describe the thickness of the beam, were prevented. The 282 

adoption of finite elements of 5 (width)  5 (height)  6 (thickness) [mm] would require a high computational 283 

effort and, in the case of the SFlex beam, would not significantly improve the capturing of its post-cracking 284 

behaviour, as verified by preliminary simulations. 285 

Linear elements (e.g. CPS4R and C2D8R) with reduced integration tend to be too flexible due to the 286 

hourglass problem. The distortions may be such that the deformations calculated at the integration point are all 287 

zero, leading to uncontrolled distortion of the mesh [28]. Hourglass is usually controlled by introducing 288 

counteracting internal nodal forces. The ABAQUS/Explicit provide five different hourglass controls: (i) relax 289 

stiffness (by default); (ii) enhanced; (iii) stiffness; (iv) viscous; and (v) combined (stiffness and viscous) [28]. 290 

According to Mostafawi [38], the viscous and combined hourglass controls give very large artificial energy and 291 
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are not appropriate for quasi-static problems. On the other hand, the enhanced hourglass control is not appropriate 292 

for nonlinear problems, since it provides increased resistance and may yield overly stiff responses [28]. In the 293 

present study the stiffness relax was adopted to control hourglass. 294 

3.3.4 Dynamic effects 295 

According to Chen et al. [39], (i) the loading time, (ii) the loading scheme, (iii) the damping ratio, (iv) the 296 

time increment size and (v) the time integration method are factors that affect the accuracy of quasi-static 297 

simulations with models that are intrinsically dynamic. The correct combination of these factors allows to reduce 298 

the dynamic effects of the models and obtain quasi-static responses. In ABAQUS, the viscous damping is defined 299 

as Rayleigh Damping, where the viscous damping matrix, C, is expressed as a linear combination of the mass 300 

matrix, M, and the stiffness matrix, K (see Eq.(7)). The damping ratio for the jth mode of the system can be 301 

expressed by Eq. (8). 302 
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The 0 and 0 parameters of Eqs. (7) and (8) are constants for mass and stiffness-proportional damping, 304 

respectively. On the other hand, j is the angular frequency corresponding to the jth mode. The period, T1, and the 305 

angular frequency, 1, of the fundamental vibration mode of the SDur beams, which were determined using the 306 

“linear perturbation procedures” available in ABAQUS/Standard, are equal to 0.255 seconds and 24.63 rad/s, 307 

respectively. According to Chen et al. [39], the loading time should be in the range of 50T1 to 100T1 (14 to 28 308 

seconds, approximately). As the SFlex beams have a lower stiffness than the SDur beams, since the polyurethane 309 

adhesive is flexible, a loading time of 17.5 and 12.5 seconds was used for the SDur and SFlex beams, respectively. 310 

The application of loading induces large dynamic effects, due to the initial velocity and acceleration [39]. 311 

A linear loading scheme was adopted because, as the loading rate is constant during the process, the acceleration 312 

is null during most of the loading process and its influence on the structural response is negligible. The adoption 313 

of a smooth loading scheme in general requires longer loading time or, to complete the process within the 314 
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predefined time, a higher loading rate. However, the increase of these two parameters could increase the dynamic 315 

effects [39]. 316 

In ABAQUS/Explicit, by default, the time increment scheme is fully controlled by the stability limit of 317 

the central difference method and requires no user intervention, which would always adopt a non-optimized value 318 

[28]. Therefore, an automatic time increment size was used. According to ABAQUS/Explicit [28] a small damping 319 

is introduced to control high frequency oscillations. The maximum stable time increment with damping is given 320 

by the Eq.(9), where ξmax is the ratio of critical damping of the vibration mode with the highest frequency (ωmax). 321 

In this way, the damping reduces the stable time increment and, consequently, increases the computational cost.  322 
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max max
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Considering the numerical models presented in Chen et al. [39], the mass-proportional damping may 323 

become unstable and fail. On the other hand, to create the same level of critical damping in the lowest vibration 324 

mode, the stiffness-proportional damping requires more computational cost, since it causes a larger decrease in the 325 

maximum stable time. Thus, the mass-proportional damping, which has a higher damping efficiency for the low 326 

frequency vibration modes, was applied in this work. 327 

According to ABAQUS [28], an approximation to the stability limit is given by the Eq.(10), where Lmin 328 

is the smallest element dimension in the mesh and cd is the dilatational wave speed, calculated from the Eq. (11), 329 

where ρ is the density. In an isotropic and elastic material (e.g. glass), the effective Lamé’s constants λ̂ and μ̂ can 330 

be computed based on the Young’s Modulus, E, and Poisson’s ratio, υ, using Eqs. (12) and (13), respectively. 331 
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Analysing Eqs. (10), (11), (12) and (13), the computational effort can be reduced by increasing the material 335 

density, using the mass scaling, which reduces the dilatational wave speed, or increasing the dimensions of the 336 

finite elements. As all finite elements have the same dimensions, the last option was not adopted because it would 337 

decrease the number of degrees of freedom of the mesh. 338 

3.4 ABAQUS damaged plasticity model (DPM-ABAQUS) 339 

The assumptions and mechanical properties adopted in the previous models (see Section 3.3) were also 340 

used in case of the simulations with the Damaged Plasticity Model (DPM), mainly: (i) the GFRP was modelled as 341 

a linear elastic material (mechanical properties presented in Section 3.2.2); (ii) the PB and NLB strategies were 342 

used in SDur and SFlex beams, respectively; (iii) the “Surface-Based Cohesive Behaviour” with “Progressive 343 

Damage and Failure” were used to describe the interface GFRP/glass (mechanical properties presented in 344 

Table 1); and (iv) the finite elements CPS4R, C3D8R and SFM3D4 were used to simulate the SDur and SFlex 345 

beams. Although the DPM is available in ABAQUS/Standard, the simulations were performed in 346 

ABAQUS/Explicit for the sake of comparison and to avoid snap-back instabilities, mainly in the simulation of the 347 

SFlex beam that, comparing with SDur beam, has a more brittle behaviour. 348 

As stated before, the glass was model with the “Concrete Damage Plasticity” model. This model was 349 

originally used in the simulation of reinforced concrete elements [40–42], and then extended to the simulation of 350 

other quasi-brittle materials, e.g., glass [26] and masonry. The inelastic compressive and tensile behaviours are 351 

described by multi-hardening plasticity and a scalar isotropic damaged elasticity, respectively [28]. Thereby, the 352 

definition of the yield surface and the plastic flow are required by DPM-ABAQUS through the following 353 

parameters: (i) the dilation angle, ψ; (ii) the eccentricity, ϵ, which defines the shape of plastic flow; (iii) the ratio 354 

between the initial biaxial compressive yield stress, fbc, and the initial uniaxial compressive yield stress, fc; and (iv) 355 

the shape of yield surface, defined by Kc. The dilation angle was set to 1º. According to the recommendations in 356 

ABAQUS [28] for quasi-brittle materials, such as concrete, values of 0.1, 2/3 and 1.16 were considered for ϵ, Kc 357 

and fbc/fc ratio, respectively. 358 

The mechanical parameters required to simulate the tensile behaviour of glass are: (i) the yield stress, σt, 359 

(ii) the mode-I facture energy, Gf, and (iii) the damage law, defined by the dt parameter [28]. The minimum mode-360 

I facture energy was adopted to avoid snap-back instabilities, such as in the case of smeared crack models (see 361 

Sections 3.2 and 3.3). As mentioned in 3.3.1, when the GFI option is selected, the ABAQUS software assumes a 362 
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linear tension-softening diagram. Therefore, the maximum total displacement, umax, which also includes the elastic 363 

deformation, was determined by Eq. (14) and its value is equal to 1.514  10-2 mm.  364 

As glass has a brittle nature, the plastic strain, εt
pl

, is essentially null (εt
el = εt). According to ABAQUS [28], 365 

an excessive damage factor may have a critical effect on the rate of convergence. A damage factor of 0.99 was 366 

assigned to the maximum total displacement, which corresponds to a 99% reduction of the stiffness, taking into 367 

account recommendations given in [28]. Based on these aspects, the damage law adopted is presented in Fig. 6, as 368 

well as the corresponding mechanical constitutive model. 369 
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3.5 Parametric study 370 

The structural behaviour of glass composite systems can be divided in two stages, separated by the 371 

appearance of the first crack: the pre- and post-cracking stages. Initially, during the pre-cracking stage, glass 372 

behaves as a linear elastic material until the maximum principal stress exceeds its tensile strength, regardless of 373 

the numerical model adopted. Therefore, the pre-cracking response (e.g. stiffness and cracking load) is controlled 374 

only by elastic properties, such as Young’s modulus and tensile strength. On the other hand, during the post-375 

cracking stage, the behaviour of annealed glass is controlled by the constitutive models, through the material 376 

parameters required by each model to define the post-peak response (softening branch).  377 

However, the input parameters required to define the cracked behaviour of glass involve higher uncertainty, 378 

either due to the difficulty of measuring these material properties in glass (e.g. fracture energy) or because these 379 

constitutive models were not specifically developed to simulate glass (e.g. DPM-ABAQUS). Thus, a parametric 380 

study was carried out concerning these input parameters, namely the threshold angle (β) in SCM-FEMIX, the 381 

fracture energy (G) in SCM-ABAQUS and DPM-ABAQUS and, finally, the dilation angle (ψ) and the shape of 382 

the yield surface (K) in DPM-ABAQUS. For the sake of simplicity, only SDur beams were considered for this 383 

parametric study, due to their extensive cracking during the post-cracking behaviour. The results will be presented 384 

and compared in Section 4.1.2, in terms of structural response and crack pattern. 385 

As previously mentioned in Section 3.1, while a multi-fixed concept is used by SCM-FEMIX, SCM-386 

ABAQUS uses, by default, a fixed concept (orthogonal cracks). At integration points close to the bottom edge of 387 

the glass panel, large rotations in their maximum principal stresses are expected due to the shear stresses induced 388 

by the GFRP/glass interface. Thereby, special attention was given to the influence of the threshold angle on the 389 



Rocha, J.; Pereira, E.; Sena-Cruz, J.; Valarinho, L.; Correia, J.R. (2021) “Numerical simulation of composites 

GFRP-reinforced glass structural elements under monotonic load.” Engineering Structures, 234: 111968, 22 pp. 

DOI: 10.1016/j.engstruct.2021.111968 

 

17 

post-cracking response of SDur beams. For this purpose, a threshold angle of 90º (fixed concept) was also 390 

considered in SCM-FEMIX, later called SCM-FEMIX-90º. 391 

As glass is extremely brittle, its fracture energy is close to zero. However, according to Eq. (2), a minimum 392 

mode-I fracture energy should be used to avoid numerical instabilities in static analysis, taking into account the 393 

mesh pattern and the mechanical properties of the material, that is, the tensile strength and the Young’s modulus. 394 

In contrast, when adopting dynamic approaches, such as the one adopted by ABAQUS/Explicit [28], lower values 395 

than the minimum mode-I fracture energy can be used ensuring the convergence of models. In previous numerical 396 

studies on glass [21–24,26,43], a value of 3 J/m2 (0.003 N/mm) [44] has been used to define the fracture energy 397 

of annealed glass, regardless of the mesh size. Therefore, this value was also considered in this parametric study. 398 

On the other hand, the dilatancy is the physical phenomenon that describes the increase in volume of the 399 

material microstructure caused by shear stresses. This phenomenon is mainly associated with soils and quasi-brittle 400 

materials (heterogeneous materials). Compared to concrete, smooth surfaces are created when the glass breaks. 401 

Therefore, the dilation angle in glass is likely lower than in concrete, which is usually greater than 30º, according 402 

to Coronado and Lopez [41]. Values of 1º, 10º and 20º were considered. 403 

As the SDur beams were numerically simulated neglecting the physical existence of the adhesive layer, 404 

according to PB strategy (see Section 3.2.3), considerable shear stresses were expected near the bottom edge of 405 

the glass panel. Thereby, the influence of the yield surface shape was considered in this parametric study. Values 406 

of 0.5 (Rankine yield surface), 0.67 (recommended value in ABAQUS [28]), and 1.0 (Von Mises yield surface) 407 

were considered for the crack detection criteria. 408 

In addition to the material parameters required by the constitutive models, the post-cracking behaviour of 409 

glass-GFRP composite systems is influenced by the mesh pattern, which determines whether a numerical model 410 

is capable of capturing in detail all the failure processes that were observed experimentally. Thus, the ability to 411 

capture localized phenomena, such as the progressive detachment of the GFRP laminate towards the supports, can 412 

be substantially influenced by the mesh pattern adopted, both the mesh size and the number of integration points 413 

per finite element. In the present research 8-node plane stress elements of 10  10 [mm] with 2  2 Gauss-Legendre 414 

integration scheme were used in SCM-FEMIX, while 4-node plane stress elements of 5  5 [mm] with reduced 415 

integration (CPS4R) were used in ABAQUS models to simulate SDur beams. In order to assess the influence of 416 

the mesh pattern on each ABAQUS model, a sensitivity analysis was carried out considering two additional mesh 417 

sizes: 2.5  2.5 and 10  10 [mm]. 418 
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4. RESULTS AND DISCUSSION 419 

Figs. 7, 8 and 9 show the load (F) vs. deflection at mid-span (δ) responses of SDur and SFlex beams 420 

obtained from the numerical simulations, as well as the crack patterns obtained at relevant phases: (i) onset and 421 

end of the post-cracking stage of SDur beams, and (ii) after cracking for the SFlex beams. In SDur beams, the 422 

crack patterns are also presented at an intermediate stage of the post-cracking response to show the evolution of 423 

the cracking processes. The SDur beam analysis was stopped when the initial cracking load was fully recovered. 424 

On the other hand, in the simulation of SFlex beam, the analysis was stopped when the deflection of 12 mm was 425 

attained, since the post-cracking stage of these composite beams showed an almost linear steady recovery of the 426 

load carrying capacity. Additionally, the further computation was difficult due to pronounced numerical 427 

instabilities after this displacement was attained, most likely due to the large opening of the cracks already formed. 428 

Fig. 10 shows the load vs. deflection responses obtained by using the three numerical models, as well as 429 

the experimental results obtained for the composite beams made with epoxy (SDur) and polyurethane (SFlex) 430 

adhesives (two test results are presented for each type of beam). Table 3 summarizes, for the simulated beams, the 431 

main parameters characterizing their structural behaviour: elastic stiffness, Kel, cracking load, Fck, and 432 

corresponding deflection, uck. 433 

4.1 SDur beams 434 

4.1.1 Pre-cracking stage 435 

In the pre-cracking stage, the assumptions of the PB strategy (perfect bond between the GFRP laminate and 436 

the glass) resulted in a slight difference between the numerical and the experimental stiffness of the response in 437 

the elastic domain, since the physical absence of the epoxy adhesive layer caused a small decrease in the section 438 

height (108 mm) and, consequently, in its flexural stiffness. 439 

While the load vs. deflection curve obtained from the SCM-FEMIX (static analysis) remains perfectly linear 440 

during the pre-cracking stage, in the ABAQUS models this does not occur. The equation of motion of a dynamic 441 

structural problem is described by Eq. (15), where: (i) F is the applied external force; (ii) M, C and K are the mass, 442 

damping and stiffness matrix of the structural element, respectively; and (iii) d, ḋ and d̈ are, respectively, the 443 

displacement, velocity and acceleration vectors. 444 

 F Md Cd Kd    (15) 

In order to evaluate the influence of the dynamic effects on the structural responses, Fig. 11 presents, step-445 

by-step (0.05 seconds), the relationship between the slope of the tangent line of the load vs. deflection curves 446 
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obtained from the ABAQUS models and elastic stiffness derived from the SCM-FEMIX (1.566 kN/mm). This 447 

relation, later designated Rk, is represented against the mid-span deflection in Fig. 11. The dynamic effects (inertial 448 

forces) are clearly visible at the beginning of the load vs. deflection curves obtained from the ABAQUS models, 449 

as shown by the rapid growth observed in Rk. The small perturbations of Rk caused by the high frequency vibration 450 

modes could be avoided by adopting stiffness-proportional damping, but the computational effort of the numerical 451 

models would increase and its accuracy would not significantly improve, namely regarding the cracking load. 452 

In all numerical models the same mechanical properties of the materials have been adopted, but Rk is 453 

generally less than 1.0 throughout the pre-cracking stage (see Fig. 11). This was expectable, because while the 454 

equation of motion of a static structural problem depends only on the displacement, in a dynamic structural 455 

problem it depends also on the velocity and acceleration, as defined by Eq. (15). The tangent line to the load vs. 456 

deflection curve obtained from the DMP-ABAQUS increases unexpectedly before cracking. In order to evaluate 457 

the influence of the dynamic effects in this artefact, Fig. 12 presents the ratio between the viscous energy, Ev, and 458 

work of the external forces, Ew, being the viscous energy the energy dissipated by damping mechanisms, including 459 

bulk viscosity damping and material damping. The Ev/Ew ratio shows that dynamic effects are not responsible for 460 

the oscillations in the Rk ratio of the DPM-ABAQUS. 461 

The first crack appears in the central region of the beam between the loading points in all models, inside 462 

the pure bending area. Taking into account this information, for the SDur beams, which were modelled assuming 463 

the perfect bond between glass and GFRP laminate (PB strategy), the analytical cracking load, Fck,a, is given by 464 

Eq. (16), where Iy = 1.111  106 mm4 (homogenized cross section), yg = 56.285 mm, x1 = 470 mm and 465 

hgfrp = 8.0 mm. On the other hand, considering the elastic integration method and neglecting the shear effects, the 466 

analytical deflection at mid-span corresponding to the cracking load, uck, is provided by Eq.(17), where 467 

x2 = 230 mm and EIy = 7.779  1010 N.mm2. In the numerical modelling the crack initiation occurs when the stress 468 

at the integration points located right above the bottom edge of the glass sheet reach the tensile strength. Table 4 469 

shows the elastic properties of SDur beams, computed from Eqs. (16) and (17), considering the assumptions 470 

mentioned previously. 471 
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In general, the numerical and analytical results have shown a good agreement. The small differences 473 

observed may be due to: (i) the analytical approach, which omits the shear deformation effects and, consequently, 474 

may slightly underestimate the vertical deformations; and (ii) the distance between the first integration point at 475 

which cracking occurs and the surface between the glass and the laminate, where cracking initiates. Additionally, 476 

the deflection immediately before and immediately after cracking, which should be approximately similar as 477 

captured by the numerical models, were observed to be different in the experimental responses. However, in this 478 

case this was probably due to the relatively low rate of the data acquisition system used during the experiments 479 

(mean value of 5 Hz) when compared to the very rapid development of cracking (not captured by the transducers 480 

readings), as well as the difficulty usually associated with the control of tests where abrupt losses of stiffness or 481 

load carrying capacity occur. 482 

4.1.2 Post-cracking stage 483 

Comparing the numerical and experimental results, it is generally observed that all the numerical models 484 

captured reasonably well the post-cracking behaviour of SDur beams. However, the final crack patterns of the 485 

three models show significant differences. The failure caused by the excessive damage on the bottom edge of the 486 

glass panel was satisfactorily represented by SCM-FEMIX, through the formation of several cracks at the 487 

glass/GFRP interface, starting at the loading points and propagating towards the supports. However, these cracks, 488 

which eventually lead to the laminate detachment, are not clearly visible in the case of ABAQUS models, resulting 489 

in higher stiffness of the load vs. deflection responses during the entire post-cracking stage when compared to 490 

SCM-FEMIX (see Fig. 10). The type of smeared crack approach may justify this difference. While the SCM-491 

FEMIX uses a multi-fixed concept, with a maximum of two cracks in each integration point and a threshold angle 492 

of 30º (see Section 3.2.1), the SCM-ABAQUS uses, by default, a fixed crack concept (orthogonal cracks), which 493 

in general leads to a stiffer response. 494 

As shown in Fig. 14, the smeared crack approach mainly influences the propagation of cracks and, 495 

consequently, the post-cracking behaviour. The final crack pattern of SCM-FEMIX-90º (see Fig. 13), with 496 

predominantly vertical and more distributed cracks, resembles better the SCM-ABAQUS crack patterns and the 497 

experimental results (see Fig. 4(a)). SCM-FEMIX 90º and SCM-ABAQUS correctly simulated the distribution of 498 

cracks between loading points, although they were unable to reproduce the increasing slope of the cracks towards 499 

the supports, as was the case with DPM-ABAQUS (see Fig. 9). Considering the higher stiffness of the epoxy 500 
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adhesive, the GFRP/glass interface induces high shear stresses in the integration points near the interface. 501 

Consequently, the maximum principal stresses experience large rotations. As result, SCM-FEMIX 90º shows 502 

higher post-cracking stiffness than SCM-FEMIX. 503 

Fig. 15 presents the structural response and the final crack pattern obtained from different mesh patterns 504 

(see Section 3.5). Like in SCM-FEMIX, SCM-ABAQUS with a fine mesh was able to capture the cracking at the 505 

GFRP/glass interface towards the support, resulting in lower stiffness during the post-cracking stage compared to 506 

the models with coarse meshes (5  5 and 10  10 [mm]). Therefore, the post-cracking behaviour of SDur beams 507 

obtained from SCM-ABAQUS is mesh dependent. According to ABAQUS [28], the smeared crack models 508 

inherently induce mesh sensitivity in the results. In opposition to SCM-FEMIX, SCM-ABAQUS requires an 509 

extremely fine mesh to obtain similar post-cracking behaviour, due to the lower sensitivity of the finite elements 510 

with reduced integration and the fixed smeared crack approach (orthogonal cracks). On the other hand, unlike 511 

SCM-ABAQUS, similar post-cracking responses were obtained from DPM-ABAQUS with different mesh 512 

patterns. As the maximum damage factor recommended by ABAQUS is 0.99 (see Section 3.4), all cracks retained 513 

a residual stress roughly corresponding to 1.0% of the glass’s tensile strength. However, regardless of that, DPM-514 

ABAQUS was unable to capture the cracking at the GFRP/glass interface, possibly due to the limitations 515 

previously discussed, which are inherent to the constitutive model adopted. 516 

While in DMP-ABAQUS the cracked behaviour of glass is simulated through the progressive loss of 517 

material stiffness, in SCM-ABAQUS the cracked behaviour of glass is divided into two components: (i) the elastic 518 

deformation of un-cracked material and (ii) the contribution of cracking. According to Jirásek [45], stiffness 519 

degradation modeling can be considered only as a first approximation when the damage derives from the initiation 520 

and propagation of micro-cracks, since the damage models are more appropriate to simulate materials weakened 521 

by micro-voids (e.g. concrete). Regarding the crack pattern, the shear cracks experimentally observed (see 522 

Fig. 4(a)) were captured by DPM-ABAQUS, unlike SCM-ABAQUS. 523 

According to Fig. 16, when the fracture energy of 3 J/m2 was considered, SCM-ABAQUS was able to 524 

capture the cracking at the GFRP/glass interface, in agreement with the SCM-FEMIX results, providing lower 525 

post-cracking stiffness in relation to the model with the minimum fracture energy and, in turn, better resembling 526 

the experimental results. Considering the numerical simulations previously performed by Valarinho et al. [19] 527 

using SCM-FEMIX, the absolutely accurate definition of fracture energy was not essential to capture the post-528 

cracking behaviour with precision. However, due to the dynamic nature of ABAQUS/Explicit, the more suddenly 529 
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the glass breaks (less fracture energy), the greater the dynamic effects which, in turn, influence the crack 530 

propagation and the structural response. In static analyses, like SCM-FEMIX, an extremely refined mesh of 531 

0.15  0.15 [mm] would be required to avoid convergence problems in the model with fracture energy of 3 J/m2, 532 

since the minimum mode-I fracture energy depends on the tensile strength and Young’s modulus of the material. 533 

Therefore, only in ABAQUS/Explicit it is possible to use a fracture energy lower than the minimum value given 534 

by Eq. (2), due to its dynamic nature. 535 

On the other hand, the DPM-ABAQUS model with fracture energy of 3 J/m2 provided a worse response 536 

than the model with the minimum mode-I fracture energy given by Eq. (2), both in terms of post-cracking 537 

behaviour and in terms of crack pattern. As mentioned in Section 3.4, DPM-ABAQUS is suitable to simulate 538 

concrete and other quasi-brittle materials. Therefore, although the ABAQUS/Explicit dynamic approach was used, 539 

DPM-ABAQUS showed difficulties to simulate materials with low fracture energy, like glass, resulting in crack 540 

patterns significantly different from those obtained experimentally. As shown in Fig. 16, when the lower fracture 541 

energy was used, the glass broke so suddenly that the zone comprised by the loading points was completely 542 

cracked. Thus, like in SCM-FEMIX, the minimum mode-I fracture energy given by Eq. (2) must also be used in 543 

DPM-ABAQUS. In addition, to avoid convergence problems during the analysis, a substantially longer loading 544 

time was required by the model with a fracture energy of 3 J/m2, thereby increasing the associated computational 545 

cost. 546 

As shown in Fig. 17, the post-cracking behaviour of SDur beams is not influenced by the dilation angle. 547 

As dilatancy describes the increase in material volume caused by shear stresses, the dilation angle would only 548 

significantly influence the post-cracking behaviour if the crack propagation was dominated by mode-II (shear 549 

stresses). Although the mixed-mode-I+II occurred close to the GFRP/glass interface, due to the shear stresses 550 

induced by the reinforcement, the crack propagation was mainly controlled by mode I fracture (tensile stresses). 551 

On the other hand, irrelevant differences were also found between the models in terms of crack pattern, namely 552 

the bottom edge of the glass panel, although more distributed vertical cracks have been obtained with a dilation 553 

angle of 1°, better resembling to the experimental crack pattern. However, to ensure the convergence of the 554 

numerical models with larger values of the dilation angle, longer loading times were required, increasing in turn 555 

the computational cost. Furthermore, according to Malm [46], for dilation angles close to 0º, the material’s 556 

behaviour is brittle, like glass, while for values close to the friction angle, the material’s behaviour is ductile. 557 

Regarding the shape of the yield surface, no significant differences are observed between the results 558 

provided by the distinct models (see Fig. 18), both in terms of post-cracking behaviour and crack pattern. When 559 
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the crack initiation is controlled by mode-I (tensile behavior), which is typical of brittle materials, the shape of the 560 

yield surface does not influence the material behavior. 561 

4.1.3 Dynamic effects 562 

The dynamic effects in ABAQUS/Explicit can be evaluated by comparing the kinetic energy, Ek, and 563 

internal energy, Et [28]. Fig. 19 shows the Ek/Et ratio for SCM-ABAQUS and DPM-ABAQUS during the entire 564 

numerical responses obtained. The Ek/Et ratio should typically be less than 10% in quasi-static analyses [28]. At 565 

the beginning of the pre-cracking stage there is a kinetic energy peak (inertial forces), but during the remaining 566 

numerical response it is negligible, including during the entire post-cracking stage. 567 

4.2 SFlex beams 568 

4.2.1 Pre-cracking stage 569 

As shown in Fig. 10, during the pre-cracking stage, a slight difference was obtained between experimental 570 

and numerical elastic stiffness. This difference may have been due to some discrepancies between the material 571 

parameters used to define the models and the real material parameters, as well as, although less likely, to the 572 

inherent experimental uncertainty, given that the displacements are small and the test is fast at this stage. Fig. 20 573 

presents the crack pattern and numerical response of SCM-FEMIX-A, which is compared with the previously 574 

obtained numerical responses in Fig. 21. The elastic stiffness of the SFlex beam is slightly higher when the 575 

thickness of the adhesive joint is not simulated, SCM-FEMIX-A (1.393 kN/mm). As the polyurethane adhesive is 576 

more flexible, during the pre-cracking stage the behaviour of the SFlex beam is influenced mainly by the glass 577 

panel (approximately 90% of the total beam cross section). Therefore, the effect of neglecting the adhesive 578 

thickness on the numerical response is not significant. 579 

Fig. 22 presents the Rk - Rδ relationship for each numerical model: Rk is the ratio between the slope of the 580 

responses obtained from SCM- and DPM-ABAQUS, calculated step-by-step (0.25 seconds), and the elastic 581 

stiffness derived from the SCM-FEMIX (constant value of 1.384 kN/mm), while Rδ is the ratio between the 582 

deflection during the pre-cracking stage and the deflection when the first crack occurred. Regarding the ABAQUS 583 

models, the SFlex beams showed to be more susceptible to high frequency vibration modes than the SDur beams, 584 

probably due to the three-dimensional simulation and to the explicit simulation of the adhesive joint (flexible). 585 
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This could be mitigated adopting a higher stiffness-proportional damping, but the computational effort of the 586 

numerical models would increase. 587 

SCM-ABAQUS and DPM-ABAQUS show higher cracking loads than SCM-FEMIX (see Table 3). In 588 

addition to neglecting the adhesive joint thickness, in the case of both ABAQUS models the integration scheme 589 

used may also explain this difference. As Fig. 22 shows, neglecting the adhesive joint thickness has marginal 590 

influence on the cracking load. 591 

Similarly to what was observed for SDur beams, also for the tests of the SFlex beams there seems to be a 592 

displacement jump right after cracking, which is probably due to the relatively low acquisition rate considering 593 

the velocity of the process involved, as well as the difficulty in controlling tests where abrupt losses of stiffness or 594 

load carrying capacity occur. 595 

4.2.2 Post-cracking stage 596 

All three numerical responses obtained are essentially similar when the post-cracking stage is considered. 597 

However, while the ABAQUS models show only a single vertical crack in the final crack patterns, SCM-FEMIX 598 

shows two cracks (see Figs. 7, 8 and 9). Besides the smaller sensitivity of the finite elements of the ABAQUS 599 

models, this difference can also be explained by the smeared crack approach used by each mechanical constitutive 600 

model, similarly to what was observed in the SDur beams. A multi-fixed concept with a maximum number of 601 

three cracks at each integration point and a threshold angle of 30º was used by the SCM-FEMIX, while the SCM-602 

ABAQUS uses, by default, a fixed concept (orthogonal cracks), with a maximum number of three cracks at each 603 

integration point (3D models) and a threshold angle of 90º. The SCM-FEMIX-A-90º (see Figs. 23 and 24) 604 

corresponds to the structural response of SCM-FEMIX with interface elements of zero thickness and a threshold 605 

angle fixed at 90º. 606 

Unlike the epoxy adhesive, the polyurethane adhesive induces low shear stresses at the integration points 607 

above the bottom edge of the glass panel. Therefore, after the first crack, the maximum principal stresses 608 

experience small rotations in relation to the initial direction of the crack. As the polyurethane adhesive allowed 609 

the GFRP reinforcement to slip due to its flexibility, the formation of a failure mechanism at the bottom edge of 610 

the glass panel that could cause the detachment of the GFRP laminate did not occur in the SFlex beams. In this 611 

way, although the threshold angle seems to have influenced the crack pattern of the SFlex beams, especially in 612 

relation to the appearance of a second crack, it has negligibly influenced the post-cracking load-deflection 613 

numerical response of the SFlex beams. 614 
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The slightly higher post-cracking load obtained in DPM-ABAQUS may result from a slightly higher 615 

residual stress in the crack response, which is a consequence of the difficulty that plasticity models experience 616 

when dealing with strong localization of deformations, such as cracks. Additionally, the DPM-ABAQUS was not 617 

assigned with an absolute damage factor of 1.0 at the maximum crack opening displacement, as mentioned in 618 

Section 3.4, retaining in the crack a residual stress of 1.0% of the tensile strength of glass. 619 

Table 5 compares the strain gauge measurements for the SFlex-1 beam with the values obtained from the 620 

three numerical models. Fig. 25 shows the experimental and numerical axial strain distributions along the mid-621 

span cross-section of that beam at the crack initiation load (Fck) and at the ultimate load (Ful). 622 

In general, the numerical models captured well the distribution of axial strains for Fck, with relatively low 623 

differences between numerical and experimental results. Moreover, the significant slippage at the bonded interface 624 

was properly captured by the three numerical models. This provides further validation of the numerical models, 625 

namely of the constitutive model used to simulate the bond behaviour of the adhesive layer (NLB strategy), as well 626 

as of the elastic properties of the glass and GFRP laminate. 627 

When Ful is approached, in general the evolution of the axial strains observed in the numerical models 628 

resemble well the ones measured at the mid-span section of the SFlex-1 beam (see Fig. 25(b)). All numerical 629 

models seem to indicate that the GFRP laminate is mostly subjected to an almost constant axial strain along the 630 

thickness, with the exception of the section where the crack localizes. The experimental measurements show that 631 

besides a predominant extension deformation of the laminate (constant strain throughout the thickness), there is 632 

also a visible rotation component (see SG3 and SG4), suggesting that in the experiments a crack occurred in the 633 

vicinity of the mid-span section, where the strain gauges are located, and caused this localized bending effect on 634 

the laminate. Additionally, the measured axial strain at the bottom edge of the glass panel (SG2) for Ful is 635 

approximately zero (see Fig. 25(b)), which is the likely result of the stress release caused by the formation of a 636 

nearby crack. Furthermore, the low interaction between the GFRP reinforcement and the glass substrate as a result 637 

of the low stiffness of the adhesive promoted large crack opening displacements that, in turn, induced a significant 638 

rotation effect on the GFRP laminate close to the cracked section (see Fig. 26), leading to compressive stresses at 639 

the top edge of the GFRP laminate and tensile stresses at its bottom edge. Nevertheless, the GFRP average axial 640 

strain obtained from the numerical model is quite close to the experimental one (1.61‰), providing further 641 

validation to the numerical models. On the other hand, the crack branching observed experimentally (see Fig. 4(b)) 642 

was not captured entirely by the numerical models. This resulted in a slight increase of the simulated flexural 643 
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stiffness of the SFlex beams, which in turn reduced the flexural stresses in the GFRP laminate. The numerical 644 

models presented some difficulty in capturing all features of the crack branching, which seems to have resulted in 645 

a stiffer numerical behaviour and in slightly higher ultimate loads (Ful) compared to the experimental data. 646 

4.2.3 Dynamic effects 647 

Fig. 27 shows the Ek/Et ratio (kinetic energy/internal energy) for SCM-ABAQUS and DPM-ABAQUS 648 

together with the numerical load-deflection responses. As mentioned in Section 4.1.3, the Ek/Et ratio should 649 

typically be less than 10% in quasi-static analyses [28]. At the beginning of the pre-cracking stage a kinetic energy 650 

peak occurs, but after cracking the dynamic effects on the structural response are not significant. The damping 651 

introduced was sufficient to mitigate the dynamic effects during cracking, although the SFlex beams are very 652 

brittle. The kinetic energy reached high values at the beginning of the pre-cracking stage, exceeding the limit of 653 

10% suggested in ABAQUS [28]. This could be avoided by adopting a smooth loading scheme, as mentioned in 654 

Section 3.3.4, but this would require a longer loading time or greater loading speed during the post-cracking stage 655 

to complete the process within the predefined time (12.5 seconds). A longer loading time would increase the 656 

computational cost (hours), while a greater loading speed during the post-cracking stage would compromise the 657 

convergence of the numerical models. Despite the peak kinetic energy at the beginning of the pre-cracking stage, 658 

the analyses are quasi-static, since this phenomenon occurred during a very short period and was immediately 659 

mitigated by the damping introduced in the model. 660 

5. CONCLUSIONS 661 

In this paper, an extensive numerical study was carried out in order to assess the performance of the 662 

constitutive models currently available to simulate the behaviour of glass structural elements reinforced with 663 

GFRP, in particular the smeared crack and the damaged plasticity models. For this purpose the experimental results 664 

obtained in a previous study were considered, that involved four-point bending tests of glass beams reinforced 665 

with GFRP laminates adhesively bonded with two different adhesives: polyurethane (SFlex beams) and epoxy 666 

(SDur beams). 667 

The main conclusions may be summarized as follows: 668 

 All mechanical constitutive models showed to be suitable to conveniently simulate the non-linear 669 

behaviour of glass structural beams. The cracking patterns formed and the progressive loss of stiffness 670 

observed in the experiments were correctly captured by the numerical models, particularly in the case of 671 

the SFlex beams, which have an extremely brittle behaviour. The different material models adopted have 672 
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been essentially influenced by a common set of non-linear parameters: tensile strength, mode-I fracture 673 

energy, shape of the tension-softening diagram, and type of shear retention factor, which, in the case of 674 

the Damaged Plasticity Model, was replaced by the damage evolution law. 675 

 When compared to SCM-FEMIX, the computational effort required by ABAQUS models was very high, 676 

especially in the case of the 3D models of SFlex beams. The ABAQUS/Explicit, which is a dynamic-677 

based numerical approach, can also be used for quasi-static analysis by properly prescribing the loading 678 

time, the mass scaling factor, the loading scheme and, especially, the damping ratio. Although the 679 

damping ratio reduces the undesirable dynamic effects of the structural responses, its influence on the 680 

results obtained requires special attention. Considering the brittle nature of glass, the damping ratio is a 681 

numerical parameter that is very difficult to calibrate by experimental means. 682 

 SCM-FEMIX results were more accurate mostly due to the absence of dynamic effects related to the 683 

loading time, the damping ratio and others. As a result, during the pre-cracking stages of SDur beams, 684 

SCM-FEMIX did not show the same non-linearity of the numerical responses obtained from ABAQUS 685 

models. In different situations these dynamic effects can result in the under or overestimation of the 686 

cracking loads of the ABAQUS models. 687 

 The Damaged Plasticity Model is suitable for simulating the non-linear behaviour of glass structural 688 

elements. In comparison to the Smeared Crack Models (SCM), the structural responses obtained also 689 

represented well the post-cracking stage of glass-GFRP composite beams. However, the damaged 690 

plasticity model does not allow considering a maximum absolute damage factor of 1.0, which limits the 691 

reduction of the initial elastic stiffness to a maximum of 99%. Therefore, the effects of these residual 692 

stresses are present in the post-cracking response and they were mostly visible in the SFlex beams. 693 

 The numerical models performed in ABAQUS/Explicit, of a dynamic nature, showed to be able to capture 694 

in greater detail all stages of the effects of cracking on the structural responses because, as opposed to 695 

FEMIX models, much smaller load steps are easily implemented and this results in better stability during 696 

crack formation. 697 

 In the case of SDur beams, unlike the SFlex beams, the threshold angle showed to have a greater influence 698 

on the structural response throughout the entire post-crack stage, mostly regarding the crack patterns 699 

obtained. A threshold angle of 90º (ABAQUS models) seems to provide crack patterns which are more 700 

similar to experimental results at the initial stages of cracking. However, as cracking progresses, the 701 
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difficulties in simulating the rotation of the principal directions become evident. The multi-fixed crack 702 

approach (SCM-FEMIX) becomes more efficient in describing the progress of the cracking in the lower 703 

part of the beam towards the supports, which ultimately leads to failure by detachment of the GFRP 704 

reinforcement. 705 

 In SCM-ABAQUS, refined meshes should be used to capture localized phenomena (e.g. cracking at the 706 

GFRP/Glass interface) which, due to the lower sensitivity of finite elements with reduced integration and 707 

the threshold angle of 90º (fixed concept), showed not to be fully captured by medium or coarse meshes. 708 

Due to the assumptions inherent to the constitutive model, DPM-ABAQUS showed difficulties in 709 

capturing the cracking processes at the GFRP/Glass interface in SDur beams, regardless of the mesh size. 710 

 The minimum mode-I fracture energy should be used in opposition to values referred in literature, since 711 

convergence problems (e.g. snap-back instabilities) were avoided in SCM-FEMIX and, in DPM-712 

ABAQUS, structural responses and crack patterns resemble better the experimental ones. In SCM-713 

ABAQUS, models with fracture energy below the minimum value and medium size meshes seemed to 714 

provide responses and crack patterns similar to the ones obtained with the models with minimum fracture 715 

energy and fine meshes. However, also in SCM-ABAQUS, at least the minimum mode-I fracture energy 716 

must be used, because the lower the fracture energy, the greater the deleterious dynamic effects. In 717 

addition, if the dynamic effects excessively influence the crack propagation, better results can be obtained 718 

by changing either the loading scheme or the loading time. 719 

For quasi-static analysis, both ABAQUS material models showed to be suitable to simulate the non-linear 720 

behaviour of glass. In addition, these constitutive models provided better stability during crack propagation in 721 

relation to SCM-FEMIX, allowing to capture cracking in more detail by adopting small loading steps. However, 722 

the ABAQUS material models showed the following limitations: (i) the finite elements with reduced integration 723 

required by ABAQUS/Explicit, which implies the adoption of fine mesh patterns to capture localized phenomena 724 

(e.g. cracking at the GFRP/glass interface); (ii) the fixed crack approach used by default, which reduces the 725 

sensibility of finite elements close to the reinforcement; and (iii) the maximum damage factor of 0.99 allowed by 726 

DPM-ABAQUS, which leads to the retention of residual stress in cracks corresponding to 1% of the glass's tensile 727 

strength.” 728 

The numerical simulations carried out showed that the post-cracking behaviour of SFlex beams have less 729 

sensitivity to the mesh pattern and to the smeared crack approach, since one single vertical crack constitutes the 730 

crack pattern and the shear stresses at the GFRP/glass interface are negligible. Thus, the structural behaviour of 731 
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glass-GFRP composite systems with flexible adhesives are mainly influenced by the tensile strength of glass and 732 

the interface model used to simulate the adhesive layer. On the other hand, in SDur beams, where higher shear 733 

stresses at the GFRP/glass interface develop, the smeared crack approach and, mainly, the mesh pattern have a 734 

greater influence on structural responses. 735 
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Table 1: Mechanical properties used to simulate the polyurethane adhesive using the bilinear bond-slip 859 

relationship (NLB strategy). 860 

Kn [MPa/mm] Kt [MPa/mm] τm [MPa] Gm [N/mm] 

106 0.4048 1.70 3.50 
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Table 2: Mechanical properties used in [19] to describe the polyurethane adhesive joint of the SFlex beam. 862 

Kn [N/m3] τm [MPa] sm [mm] α [-] α' [-] 

106 1.70 4.20 0.90 3.00 
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Table 3: Elastic properties of the SDur and SFlex beams defined from the experimental and numerical responses, 864 

as well as the difference of the numerically obtained properties in relation to the respective experimental values. 865 

 SDur beams SFlex beams 

 Kel [kN/mm] Fcr [kN] uck [mm] Kel [kN/mm] Fcr [kN] uck [mm] 

SDur-1 1.63 6.28 3.85 - - - 

SDur-2 1.70 5.45 3.20 - - - 

SFlex-1 - - - 1.55 3.80 2.45 

SFlex-2 - - - 1.66 4.60 2.77 

SCM-FEMIX 1.57 (-5.7%) 5.02 (-14.4%) 3.20 (-9.2%) 1.38 (-14.0%) 4.40 (4.8%) 3.18 (21.8%) 

SCM-ABAQUS 1.55 (-6.9%) 5.04 (-14.1%) 3.25 (-7.8%) 1.41 (-12.1%) 4.76 (13.3%) 3.33 (27.6%) 

DPM-ABAQUS 1.56 (-6.3%) 5.11 (-12.9%) 3.27 (-7.2%) 1.43 (-10.9%) 4.79 (14.0%) 3.36 (28.7%) 
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Table 4: Mechanical properties of the elastic behaviour of SDur beams analytically calculated. 867 

Kel,a [kN/mm] Fck,a [kN] δck,a [mm] 

1.590 4.897 3.080 
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Table 5: Comparison between numerical and experimental axial strains in glass (SG1) and GFRP (SG4) 869 

corresponding to Fck and Ful, and relative differences (in brackets) between numerical and experimental strain 870 

values. 871 

 F = Fcr F = Ful 

 SG1 [‰] SG4 [‰] SG1 [‰] SG4 [‰] 

SFlex-1 (Exp.) -0.53 0.20 -0.24 2.20 

SCM-FEMIX -0.59 (10.9%) 0.24 (20.1%) -0.26 (7.9%) 1.76 (-19.2%) 

SCM-ABAQUS -0.57 (7.2%) 0.22 (15.5%) -0.24 (-1.2%) 1.67 (-23.5%) 

DPM-ABAQUS -0.57 (7.2%) 0.22 (12.8%) -0.25 (4.4%) 1.56 (-28.6%) 

  872 



38 

LIST OF FIGURES 873 

Fig. 1. Four-point bending tests of the glass-GFRP composite beams: (a) schematic representation; 874 

(b) experimental setup [19]. Note: units in [mm]. 875 

Fig. 2. Load vs. relative displacement obtained from tensile tests on double-lap joints with polyurethane (a) and 876 

epoxy (b) adhesives [19]. 877 

Fig. 3. Structural responses (load vs. deflection) obtained from the experimental tests: (a) SDur beams; (b) SFlex 878 

beams [19]. 879 

Fig. 4. Experimental crack patterns: (a) SDur beams; (b) SFlex beams [19]. 880 

Fig. 5. Axial strains vs. load measured at different depths of the SFlex-1 beam mid-span section. 881 

Fig. 6. Damage law adopted for simulating glass behaviour. 882 

Fig. 7. Load vs. deflection curves of the SDur and SFlex beams obtained from the SCM-FEMIX, and 883 

corresponding crack pattern at different phases, (i), (ii), (iii) and (iv). 884 

Fig. 8. Load vs. deflection curves of the SDur and SFlex beams obtained from the SCM-ABAQUS, and 885 

corresponding crack pattern at different phases, (i), (ii), (iii) and (iv). 886 

Fig. 9. Load vs. deflection curves of the SDur and SFlex beams obtained from the DPM-ABAQUS, and 887 

corresponding crack pattern at different phases, (i), (ii), (iii) and (iv). 888 

Fig. 10. Load vs. deflection curves obtained from the experimental tests and distinct numerical models: (a) SDur 889 

beams; (b) SFlex beams. 890 

Fig. 11. Ratio between the slope of the load vs. deflection curves and the elastic stiffness for the SDur beams 891 

obtained from the ABAQUS models. 892 

Fig. 12. Ratio Ev/Ew along the tangent line of the load vs. displacement curves of the DPM-ABAQUS. 893 

Fig. 13. Load vs. deflection curves of the SDur beams obtained from SCM-FEMIX and SCM-FEMIX 90º, and 894 

corresponding crack pattern at different phases, (i), (ii), (iii), (iv), (v) and (vi). 895 

Fig. 14. Load vs. displacement curves of SDur beams obtained from the three initial material models and the SCM-896 

FEMIX 90º. 897 

Fig. 15. Sensitivity of both ABAQUS material models in relation to the mesh pattern. 898 

Fig. 16. Sensitivity of both ABAQUS model in relation to the fracture energy. 899 

Fig. 17. Sensitivity of DPM-ABAQUS in relation to the dilation angle. 900 

Fig. 18. Sensitivity of DPM-ABAQUS in relation to the shape of the yield surface. 901 

Fig. 19. Ek/Et ratio along the load vs. deflection curves of the SCM-ABAQUS (a) and DPM-ABAQUS (b). 902 

Fig. 20. Load vs. deflection curves of the SFlex beams obtained from SCM-FEMIX and SCM-FEMIX-A, and 903 

corresponding crack pattern at different phases, (i) and (ii). 904 

Fig. 21. Load vs. deflection curves of the SFlex beams obtained from the three material models and the SCM-905 

FEMIX A. 906 

Fig. 22. Elastic stiffness vs. deflection diagrams of the SFlex beams. 907 

Fig. 23. Load vs. deflection curves of the SFlex beams obtained from SCM-FEMIX and SCM-FEMIX A/90º, and 908 

corresponding crack pattern at different phases, (i) and (ii). 909 

Fig. 24. Load vs. deflection curves of the SFlex beams obtained from the three material models and the SCM-910 

FEMIX A/90º. 911 

Fig. 25. Comparison between numerical and experimental axial strains at the mid-span section of the SFlex-1 beam 912 

corresponding to (a) the cracking load Fck and (b) the ultimate load Ful. 913 

Fig. 26. Localized bending effect at the GFRP reinforcement caused by the formation and propagation of a crack 914 

in the glass pane (in the vicinity). 915 

Fig. 27. Ek/Et ratio along the load vs. deflection curves of the SCM-ABAQUS (a) and DPM-ABAQUS (b). 916 

  917 



Rocha, J.; Pereira, E.; Sena-Cruz, J.; Valarinho, L.; Correia, J.R. (2021) “Numerical simulation of composites 

GFRP-reinforced glass structural elements under monotonic load.” Engineering Structures, 234: 111968, 22 pp. 

DOI: 10.1016/j.engstruct.2021.111968 

 

39 
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(b) 

 
Fig. 1. Four-point bending tests of the glass-GFRP composite beams: (a) schematic representation; 918 

(b) experimental setup [19]. Note: units in [mm]. 919 
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Fig. 2. Load vs. relative displacement obtained from tensile tests on double-lap joints with polyurethane (a) and 921 

epoxy (b) adhesives [19]. 922 
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Fig. 3. Structural responses (load vs. deflection) obtained from the experimental tests: (a) SDur beams; (b) SFlex 924 

beams [19]. 925 
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(a) 

 

(b) 

 
Fig. 4. Experimental crack patterns: (a) SDur beams; (b) SFlex beams [19]. 927 
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Fig. 5. Axial strains vs. load measured at different depths of the SFlex-1 beam mid-span section. 929 
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Fig. 6. Damage law adopted for simulating glass behaviour. 931 
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SFlex beam 

 

(iv) 

 

Fig. 7. Load vs. deflection curves of the SDur and SFlex beams obtained from the SCM-FEMIX, and 933 

corresponding crack pattern at different phases, (i), (ii), (iii) and (iv). 934 
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SDur beam 
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(ii) 

 

(iii) 

 

 

SFlex beam 

 

(iv) 

 

Fig. 8. Load vs. deflection curves of the SDur and SFlex beams obtained from the SCM-ABAQUS, and 936 

corresponding crack pattern at different phases, (i), (ii), (iii) and (iv). 937 
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SFlex beam 
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Fig. 9. Load vs. deflection curves of the SDur and SFlex beams obtained from the DPM-ABAQUS, and 939 

corresponding crack pattern at different phases, (i), (ii), (iii) and (iv). 940 
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Fig. 10. Load vs. deflection curves obtained from the experimental tests and distinct numerical models: (a) SDur 942 

beams; (b) SFlex beams. 943 
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Fig. 11. Ratio between the slope of the load vs. deflection curves and the elastic stiffness for the SDur beams 945 

obtained from the ABAQUS models. 946 
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Fig. 12. Ratio Ev/Ew along the tangent line of the load vs. displacement curves of the DPM-ABAQUS. 948 
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SCM-FEMIX (see Fig. 7) 
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SCM-FEMIX 90º 
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Fig. 13. Load vs. deflection curves of the SDur beams obtained from SCM-FEMIX and SCM-FEMIX 90º, and 950 

corresponding crack pattern at different phases, (i), (ii), (iii), (iv), (v) and (vi). 951 

  952 

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10 12 14 16

L
o
ad

, 
F

 [
k

N
]

Deflection, δ [mm]

(ii)
(iii)(i)

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10 12 14 16

L
o
ad

, 
F

 [
k

N
]

Deflection, δ [mm]

(iv)
(v)

(vi)



52 

 
Fig. 14. Load vs. displacement curves of SDur beams obtained from the three initial material models and the SCM-953 

FEMIX 90º. 954 
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Fig. 15. Sensitivity of both ABAQUS material models in relation to the mesh pattern. 956 
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SCM-ABAQUS 
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Fig. 16. Sensitivity of both ABAQUS model in relation to the fracture energy. 958 
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Fig. 17. Sensitivity of DPM-ABAQUS in relation to the dilation angle. 960 
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Fig. 18. Sensitivity of DPM-ABAQUS in relation to the shape of the yield surface. 962 
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Fig. 19. Ek/Et ratio along the load vs. deflection curves of the SCM-ABAQUS (a) and DPM-ABAQUS (b). 964 
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SCM-FEMIX (see Fig. 7) 

 

(i) 

 

 

SCM-FEMIX-A 

 

(ii) 

 

Fig. 20. Load vs. deflection curves of the SFlex beams obtained from SCM-FEMIX and SCM-FEMIX-A, and 966 

corresponding crack pattern at different phases, (i) and (ii). 967 
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Fig. 21. Load vs. deflection curves of the SFlex beams obtained from the three material models and the SCM-969 

FEMIX A. 970 
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Fig. 22. Elastic stiffness vs. deflection diagrams of the SFlex beams. 972 
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SCM-FEMIX (see Fig. 7) 

 

(i) 

 

 

SCM-FEMIX-A-90º 

 

(ii) 

 

Fig. 23. Load vs. deflection curves of the SFlex beams obtained from SCM-FEMIX and SCM-FEMIX A/90º, and 974 

corresponding crack pattern at different phases, (i) and (ii). 975 
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Fig. 24. Load vs. deflection curves of the SFlex beams obtained from the three material models and the SCM-977 

FEMIX A/90º. 978 
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(a) 

 

(b) 

 
Fig. 25. Comparison between numerical and experimental axial strains at the mid-span section of the SFlex-1 980 

beam corresponding to (a) the cracking load Fck and (b) the ultimate load Ful. 981 
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Fig. 26. Localized bending effect at the GFRP reinforcement caused by the formation and propagation of a crack 983 

in the glass pane (in the vicinity). 984 

  985 



Rocha, J.; Pereira, E.; Sena-Cruz, J.; Valarinho, L.; Correia, J.R. (2021) “Numerical simulation of composites 

GFRP-reinforced glass structural elements under monotonic load.” Engineering Structures, 234: 111968, 22 pp. 

DOI: 10.1016/j.engstruct.2021.111968 
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Fig. 27. Ek/Et ratio along the load vs. deflection curves of the SCM-ABAQUS (a) and DPM-ABAQUS (b). 986 
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