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T his chapter addresses Voronoi cell-based algorithms, specifically the
”Relevant Vectors” algorithm, used to solve the Shortest Vector Prob-

lem, a fundamental challenge in lattice-based cryptanalysis. Several optimiza-
tions are proposed to reduce the execution time of the original algorithm.
It is also shown that the algorithm is highly suited for parallel execution on
both CPUs and GPUs. The proposed optimizations are based on pruning,
i.e., avoiding computations that will not, with high probability, improve the
solution. The pruning criteria is related to the target vectors norm relative to
the current best solution vector norm. When pruning is performed without
pre-processing, speedups up to 69× are observed compared to the original
algorithm. If a pre-process sorting step is performed, which requires storing
the norm ordered target vectors and therefore significantly more memory,
this speedup increases to 77×. On the parallel processing side, the multi-core
version of the optimized algorithm exhibits linear scalability on a CPU with
up to 28 threads and keeps scaling, albeit at a lower rate, with Simultane-
ous Multi-Threading with up to 56 threads. The lack of support for efficient
global synchronization among threads in GPUs does not allow for a scalable
implementation of the pruning optimization using these devices. Nevertheless,
a parallel GPU version of the non-optimized algorithm is demonstrated to be
competitive with the parallel non optimized CPU version, although the latter
outperforms the former when using 56 threads. It is argued that the GPU
version would outperform the CPU for higher lattice dimensions, although
this statement cannot be experimentally verified due to the limited memory
available on current GPU boards.
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1.1 INTRODUCTION
Since the mid-nineties, the cryptography community has been studying al-
ternatives to classical cryptosystems such as RSA and El-Gamal, as these
were shown to be vulnerable in the presence of quantum computers. These
cryptosystems were based on premises that the factorization of large numbers
exhibits an exponential time complexity. Shor’s algorithm [26, 25, 3] has shown
that this class of problems can be solved in polynomial time on a quantum
machine. Therefore, eavesdroppers with access to a sufficiently large quantum
machine can hack the systems and access communications.

Many cryptosystems have been proposed since the rise of this so-called
post-quantum era. Most of these cryptosystems are designed under the premise
(or belief, in most cases) that even if adversaries had access to large-scale quan-
tum computers, they cannot be broken. Lattice-based cryptosystems are a
very prominent type of post-quantum cryptosystems. They support advanced
cryptographic primitives such as Fully Homomorphic Encryption1, they are
relatively efficient in practice, easy to implement and, of course, believed to
be safe against quantum adversaries [18, 3].

Cryptosystems base their security on hard math problems, which are typ-
ically easy to solve for the users of the system but hard to solve for external
entities. The underlying idea is that the fundamental problems underpinning
the security of lattice-based cryptosystems, such as the Shortest Vector Prob-
lem (SVP), the Closest Vector Problem (CVP) and derivatives of these cannot
be solved (exponentially) faster with quantum computers, when compared to
conventional computers. Due to the connection between the problems and the
security of the corresponding cryptosystems, the algorithms that solve these
problems are commonly referred to as attacks.

Lattices are discrete subgroups of the n-dimensional Euclidean space Rn,
with a strong periodicity property2. A lattice L generated by a basis B, a set
of linearly independent vectors b1, ..., bm in Rn, is denoted by:

L(B) =

{
x ∈ Rn : x =

m∑
i=1

uibi, u ∈ Zm

}
, (1.1)

where m ≤ n is the rank of the lattice. When m = n, the lattice is said to
be of full rank. When n is at least 2, each lattice has infinitely many different
bases.

Note that, although there are non-integer lattices, lattice-based cryptog-
raphy commonly uses integer lattices in practice: solving lattice problems on

1A cryptosystem that supports Fully Homomorphic Encryption can implement any op-
eration on encrypted data, without decrypting data, which is particularly useful when e.g.
outsourcing sensitive computations on private data to a cloud server. The reader is referred
to the survey [17] for a practical perspective of Fully Homomorphic Encryption.

2We refer the reader to papers [23, 21] to learn more about lattices, especially in the
context of lattice-based cryptography.
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integer lattices is still hard, and integer lattices are easier to handle compu-
tationally (e.g. there are no precision/numerical problems). As an example,
Figure 1.1 shows a lattice in R2, where the basis is B = {b1,b2}. The vector
b3 shown in the picture is a linear combination of the basis vectors. This linear
combination also shows that b1 can be made shorter (in terms of Euclidean
norm, which is the default meaning of shortness in the context of this book
chapter) at the cost of b2, given that b3 is smaller than b1. This process,
of making lattice vectors (bases) shorter by adding/subtracting other lattice
vectors, is often referred to as vector (basis) reduction and is widely used in
various lattice algorithms.

FIGURE 1.1 Example of a lattice in R2 and its basis (b1,b2) in red.

Given that the security of lattice-based cryptosystems is based on prob-
lems like the SVP, CVP and approximated versions of these, they have been
widely studied over the last decade. In particular, many parallel, highly effi-
cient versions of algorithms that solve these problems have been devised and
put to the test, to assess their real hardness. Also, cryptosystems have certain
parameters, such as the key size, that have to be determined based on the al-
gorithms’ practical potential/performance. Setting these parameters too high
would lead to inefficient/slow cryptosystems, but setting them too low leads
to insecure systems. As such, a “sweet spot” has to be found in this trade-off,
so that systems are simultaneously efficient and secure. This can only happen
when the best attacks are implemented on the highest-end computer architec-
tures. This is also part of the work that we conduct and analyze in this very
same manuscript.

The SVP has been extensively studied during the last decades and two
main families of SVP-solvers have emerged. As this research progressed, they
evolved to become the standard algorithms in this context. The first family
is the set of sieving algorithms, which repeatedly sieve a list of vectors until
the shortest vector is very likely to be arrived at. The second most relevant
family of algorithms is the family of enumeration algorithms. These enumer-
ate all the possible vectors within a given search radius around the origin,
and therefore the shortest vector of the lattice is the shortest in that set of
enumerated vectors. Other than these two SVP algorithm families, many are
often mentioned and studied, but to a much smaller extent. Some of those
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families include random-sampling and Voronoi cell-based SVP solvers. The
span of research around SVP algorithms is quite extensive and impractical
to cover in this manuscript. To better grasp the history and evolution of this
field, we refer the reader to [15, 16, 17, 18, 27].

In this text, we select one type of attack – SVP algorithms based on the
Voronoi cell of a lattice – that has been often mentioned in the literature
[1, 19, 4], but rarely studied or published about. In fact, it is often said that
this algorithm becomes impractical (mainly due to memory issues) somewhere
in dimension 14-20, but this support was never evidently backed up by tests.
Plus, other classes of SVP-solvers, such as enumeration and sieving, have
been subject of intense and ongoing investigation and optimization through
the past decade (e.g. [7, 13, 2, 12]). But Voronoi cell-based SVP-solvers, to
the best of our knowledge, have not been optimized since their first publica-
tion [1], back in 2002. Voronoi cell-based algorithms are, however, of interest
to study. First, they are asymptotically very appealing, which means that if
the lattice dimension is high enough, they should be competitive with other
classes of SVP-solvers. Secondly, there is a big room for practical improve-
ment in Voronoi cell-based algorithms, which could perhaps lead to tractable
implementations for high-dimensional lattices. In [5] we presented parallel ver-
sions, including an heterogeneous CPU+GPU implementation, of the original
algorithm. In this work, we take a first step towards optimizing the origi-
nal algorithm, therefore reducing the associated computational workload, and
further propose parallel implementations of the optimized algorithm.

Contributions. In this manuscript, we propose various improvements for
Voronoi cell-based algorithms, in the context of the SVP, and we show that
the improved algorithm is still suitable for parallel execution.

We have been able to show that this algorithm can be optimized by using
several norm-based optimizations. In particular, we show that computations
that are, with high probability, irrelevant in the context of the SVP can be
pruned. By considering previous states of the algorithm, namely the norm
of the shortest known solution vector, the algorithm’s workload can be dra-
matically reduced. Further workload reduction can be achieved if the target
vectors are sorted according to their Euclidean norm prior to the evaluation
of the solution vector.

We present a parallel version of the optimized Voronoi cell-based algorithm
for the SVP. It is optimized to achieve the shortest vector faster and performs
very well on architectures with multiple cores. This version was able to at-
tain linear speedups on CPUs, in our experiments, compared to the baseline,
original Voronoi-cell-based SVP-solver. Due to the lack of support for efficient
global synchronization among threads on GPUs we can not present a scalable
implementation of the optimized algorithm in these devices. Similarly to [5] we
show that the non optimized algorithm is highly suited for these architectures
and competitive with the non optimized multi core CPU version.

The meaning of our work is two-fold: first, we show that Voronoi cell-
based algorithms can be made more practical than previously reported. Such
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practicality is achieved by introducing the above mentioned norm-based op-
timizations, which are possible given that the goal is to solve the SVP. This
should help to shed further light on this class of algorithms. Secondly, we
show that the optimized algorithm is suited for parallelization, which makes
it appealing for parameter selection in lattice-based cryptosystems.

Roadmap. The remainder of this chapter is organized as follows. Section
1.2 presents Voronoi-cell-based algorithms including the algorithm exploited
in the context of this text. Section 1.3 introduces the experimental setup.
Section 1.4 presents an analysis performed on the algorithm, which serves as
the motivation for our optimizations, presented in Section 1.5. Section 1.6
describes our parallel implementations, both on CPUs and GPUs, as well as
their performance results. Section 1.8 concludes the chapter and points out
future lines of work.

1.2 SVP-SOLVERS BASED ON VORONOI CELLS
In this section, we briefly explain a Voronoi-cell-based algorithm by [19], which
can be used to solve the SVP, and the algorithm we used in this work, called
“Relevant Vectors”, presented by [1].

1.2.1 Voronoi-cell-based algorithm by Micciancio et al.

This algorithm, presented in [19], describes a deterministic approach to solve
the SVP (and other related problems), using the Voronoi cell V of a lattice as
a way to arrive at the shortest vector of the lattice.

The algorithm works by rank reduction, i.e., the solution in a given di-
mension k requires the computation of some procedures in dimension k − 1.
Micciancio et al. show that the computation of the n-dimensional Voronoi cell
of the lattice can be done by a series of CVP calls for the n-dimension lattice,
V(Ln) = k ·CVP(Ln), for a given number k of calls (for more details we refer
the reader to [19]). Furthermore, they also show that the CVP solution of an
n-dimensional lattice can be obtained by a series of CVP computations on the
associated (n− 1)-dimensional lattice, i.e. CVP(Ln) = k · CVP(Ln−1).

Therefore, the Voronoi cell of a lattice in dimension n can be computed
iteratively, starting on dimension 1 and working up towards dimension n.
The solution of the SVP is the shortest nonzero vector s ∈ L, which, within
the Voronoi cell context, is given by its shortest vector. More precisely, the
solution for the SVP in this case is given by the double of the shortest vector
of the Voronoi cell, as the frontier of the latter is, by definition, the midpoint
between 0 and the vectors that are closest to 0.

As for the implementation of this algorithm, we start with reducing the
basis and initializing the list of Voronoi relevant vectors with the first vector
of the reduced basis. With this lower dimension list, we iterate upwards to
dimension n, by generating a list of the so-called target vectors. For each of
these, a CVP function is computed, so that we end up with the Voronoi cell
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vectors, which is refined so that it only contains the relevant vectors. The
relevant vectors, which form the minimum set of vectors that describe the
Voronoi cell of a lattice, are shown in Figure 1.2, for a given 2-dimensional
lattice.

FIGURE 1.2 Example of a Voronoi cell in R2 (blue), and its relevant
vectors (red).

The algorithm’s time asymptotic complexity is O(22n) while its space com-
plexity is O(2n), n being the lattice dimension. To fully comprehend this al-
gorithm and its nuances, we refer the reader to [19], as we do not describe it
with full detail given that this algorithm is not used in this work.

1.2.2 Relevant vectors by Agrell et al.

The algorithm used (a Voronoi cell-based algorithm called “Relevant vectors”),
was presented in [1]. That paper also described several algorithms to determine
the solution to the SVP, CVP, and other related problems, and is shown in
Algorithm 1.

Function AllClosestPoints
Input: Matrix M, matrix H, matrix Q, vector s
Output: List of vectors X

Compute x = sQT ;
U = Decode(H, x);
Compute γ as the lowest value ||uM− s|| for all u ∈ U;
Compute X as all {uM : u ∈ U, ||uM− s|| = γ}
return X

Algorithmically, “Relevant vectors” can be described by four, distinct steps.
First, it starts by generating the needed target vectors, that are later on used
by a CVP-solver, in order to compute the Voronoi relevant vectors of the
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Algorithm 1: RelevantVectors
Input: Basis matrix B
Output: Relevant Vectors N

M = Reduce(B); /* for example, using the LLL algorithm */
[Q, R] = QR decomposition of M;
G = RT ;
H = G−1;
N = ∅;
forall vectors s ∈M do

X = AllClosestPoints(M, H, Q, s);
if |X| = 2 then

N = N
⋃
{2x− 2s : x ∈ X};

return N

lattice. Second, the coordinate system of the data that feeds the CVP-solver is
modified (i.e. the lattice basis and the target vectors). Details on the rationale
behind these steps can be found in [1]. The third step is then to run an
enumeration CVP-solver on each of the generated target vectors, a process we
refer to as “decoding”. This solver computes a set of vectors, which are then
converted to the original coordinate system, thus resulting in the final list of
candidate Voronoi relevant vectors. From these, only the valid vectors (in fact
Voronoi relevant vectors) are kept.

In terms of implementation, the CVP-solver that “decodes” target vectors
is based on the Schnorr-Euchner method [24], which is an enumeration method
to compute the SVP and the CVP. This is called “enumeration” because the
algorithm enumerates all the possible solutions within a given radius. For
more detail on this algorithm, we refer the reader to papers on enumeration
algorithms [24, 7, 1].

To increase performance, it is desirable to reduce the input lattice basis.
This can be achieved, e.g., using the LLL algorithm (cf. [14]). Additionally,
this enumeration-based CVP-solver function requires the input lattice basis
to be in a lower triangular form. When this is not the case, we must transform
the basis to this form, while also transforming the input (target) vector(s) as
well. This can be done with e.g. a QR decomposition, in the form M = QR,
where R is a n × n upper triangular matrix and Q is a m × n orthonormal
matrix. As we deal with full-rank lattices, effectively we end up with Rn×n

and Qn×n, as m = n and n is the lattice dimension. We call the QR method
on the lattice basis (M in the decomposition), yielding R, which we must
transpose i.e. RT , to obtain the desired lower-triangular matrix3.

The other resulting matrix (Q), is used to transform the target vector into
the coordinate system of the lattice basis when in the lower-triangular form.

3The diagonal elements of this matrix must be positive.
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Note that when the QR decomposition is used, it is also needed to transform
the output of the decode function back into the original form (i.e. the original
coordinate system).

Once the basis is in the desired format, we generate the listM that con-
tains each of the si target vectors, i = 1, ..., (2n − 1) (in practice steps 1 and
2 of the mathematical description above can be done together), as shown in
Equation 1.2, iteratively.

M(M)
def
=

{
s = zM : z ∈ {0, 1/2}n − {0}

}
(1.2)

Afterward, the CVP-solver is executed on these inputs, yielding a list of
vectors U, that are processed according to Equation 1.3, resulting in the list
of vectors X.

γ = min
{
||uM− s|| for all u ∈ U

}
X =

{
uM : u ∈ U, ||uM− s|| = γ

} (1.3)

The computation of list X does not always result in a valid output. This
only happens when the list contains 2 vectors and 2 vectors only (they are
symmetric to each other, thus having the same norm), which are added to
the list of Voronoi relevant vectors N. Similarly to the algorithm in 1.2.1, the
solution of the SVP is given by the shortest of the Voronoi relevant vectors.

1.3 EXPERIMENTAL SETUP
Table 1.1 presents the details of the CPU based computing system used to
assess the proposed parallel algorithm. The clock frequency in parenthesis
shown in the table pertains to the maximum frequency of the CPU, which is
achieved using the Turbo Boost Technology. L1 cache values are split between
instruction cache (i) and data cache (d). System A runs CentOS x86_64 with
kernel version 2.6. The code has been compiled with g++ 7.2.0 with the -O3
optimization flag, as it delivered the best throughput performance.

The tests conducted in a GPU used system B, specified in Table 1.2, which
runs Ubuntu 16.04 x86_64 with kernel version 4.13. CUDA code was compiled
with NVIDIA CUDA Compiler 9.1 using the -O3 optimization flag and the
-arch=sm_61 -lcudadevrt -rdc=true flags. The GPUs have compute capa-
bility 6.1 and allow for dynamic parallelism (a kernel launch within another
kernel). The CPU code on this machine was compiled with g++ 5.4.0.

The lattice bases used in all tests were generated with the SVP-Challenge4
generator software, compiled using NTL version 9.3. The lattice bases gener-
ated using this tool are random (Goldstein-Mayer) lattices, which have no
specific characteristic to be exploited [9]. Additionally, these lattice bases are
reduced using the LLL algorithm before the main loop of the algorithm (c.f.
Algorithm 1). Unless specified otherwise, the tests presented in this work are

4https://www.latticechallenge.org/svp-challenge/
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TABLE 1.1 CPU based computing system. SMT stands for simultaneous
multi-threading and HT stands for hyper threading.

System A
Sockets 2
CPU Intel Xeon E5-2660v4
Clock frequency 2.0 GHz (3.2 GHz)
Cores per socket 14
SMT Yes (w/ HT, 28 threads)
L1 Cache 448 kB i + 448 kB d
L2 Cache 3.5 MB
L3 Cache 35 MB
RAM 128 GB

TABLE 1.2 Machine for GPU tests used in this work. SMT stands for
simultaneous multi-threading and HT stands for hyperthreading.

System B
CPU Intel Core i3 6100
Clock frequency 3.70 GHz
Cores 2
SMT Yes (w/ HT, 4 threads)
L1 Cache 32 kB i + 32 kB d
L2 Cache 256 kB
L3 Cache 3 MB
RAM 8 GB
GPU NVIDIA GeForce 1060 GTX
GPU Clock rate 1759 MHz
GPU RAM 6 GB

conducted with seeds 0 through 999. They represent a total of 1000 bases, up
until dimension 10, 100 bases for dimensions 11-15 and 10 bases for dimen-
sion 16 or higher. We present the arithmetic average of all tested bases (with
different seeds). We have turned off Turbo Boost, in order to have a better
sense of the scalability of the algorithm, and the results obtained were fairly
consistent. Executing the algorithm for more seeds would not impact the av-
erage execution time. In this context, we refer to “a test” as the execution of
the program across all the seeds. Also, our tests were only conducted in these
(small) dimensions, as the memory requirements of the algorithm grow ex-
ponentially. While individually they run relatively fast, performing 1000 runs
per dimension would be impractical.
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1.4 ALGORITHM ANALYSIS
From Equation 1.2 (c.f. Section 1.2.2), we see that the computation of the
Voronoi cell of a lattice involves the execution of the AllClosestPoints function,
for each of the (2n−1) vectors that make up the setM. However, in practice,
most of these calculations are unnecessary if our purpose is to find the solution
of the SVP. As such, we describe a series of tests that we conducted, which
lay the foundation of the proposed optimizations. For these tests, we used
Machine A.

1.4.1 Correlation between the norm of target vectors and solution vec-
tors

We posed the hypothesis of a possible correlation between the norm of the
target vectors and the norm of their respective solution vector, a test we
started out with. The motivation to test out this possible correlation stems
from the fact that, intuitively, the computation of a target vector with smaller
Euclidean norm (i.e. shorter) would also result in a shorter solution vector. If
this correlation held, then we could potentially exclude several target vectors,
by only decoding a few, small subset of these vectors, given that our purpose
is to arrive at the shortest vector.

We investigated this (possibly strong) correlation by testing out several
lattice bases, for dimensions 4-8, using different seeds. To this end, we sam-
pled some lattice bases in certain lattice dimensions, and studied the correla-
tion, generalizing it to higher dimensions (note that the correlation cannot be
known as target vectors are generated). Due to the impossibility of presenting
all the data, we showed three different correlations, for dimension 4 (seed 960),
dimension 5 (seed 0) and dimension 8 (seed 456). These are representative of
the full spectrum of obtained results.

The scatter plots in Figure 1.3 show that our thesis holds true, as we can
observe a moderately strong correlation in the terms we pointed out. The ac-
tual correlation depends upon the used lattice basis (i.e. dimension and seed).
For instance, some bases showed an almost perfect/linear correlation (such
as in dimension 4, seed 960), while others continued to show a correlation,
although not as evident as the remaining lattices. These results show the best
(Figure 1.3(a)), average (Figure 1.3(b)) and worst (Figure 1.3(c)) scenarios
for all the lattices we tested out, thus giving us the confidence to affirm that
a correlation holds.

Note that when the correlation is not as strong (for instance in Figure
1.3(c)), it does continue to hold for the shorter target vectors. In other words,
although there are large target vectors that result in large solution vectors, it
generally holds true that many small target vectors result in small solution
vectors, thus supporting the proposed thesis.

Given this data, we can conclude that, in general, as a correlation applies,
meaning that a shorter target vector yields a shorter solution vector, then the
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(a) Correlation for the basis
in dimension 4 (seed 960).

(b) Correlation for the basis
in dimension 5 (seed 0).

(c) Correlation for the basis
in dimension 8 (seed 456).

FIGURE 1.3 Correlation between the norm of the target vectors and
the norm of their respective solution vector, for three dimensions and
seeds. We omitted both axes values as they are irrelevant for correlation
purposes and added considerable complexity to the figures, thus making
it difficult to read them.

shortest of the target vectors should, in general, result in the solution to the
SVP. The correlation may become looser as we increase the lattice dimension,
but it seems to continue to hold for the smaller target vectors (cf. the left-most
vectors in Figure 1.3(c)), and we take advantage of that fact, as we show in the
next section. This correlation is actually the basis of some of the algorithmic
improvements we show in Section 1.5.

1.4.2 Percentage of target vectors that generate the shortest vector

From the previous results, we posed the hypothesis of whether we should
only decode a small percentage of target vectors; these would necessarily con-
tain the shortest solution vector (and, as a result, the solution for the SVP).
However, note that this is only true when the target vectors are sorted by
increasing norm.

Also, in general, the percentage of these target vectors should be larger as
the correlation gets weaker (i.e. we would need to pick more target vectors as
the correlation gets weaker for that specific basis). However, note that even
if the correlation for a specific basis is off in general, but holds true for the
first, shortest target vectors, then we would also need to decode a very small
percentage of target vectors. In fact, as shown in Figure 1.3, even in the worst
case of our tests, there is a correlation for the shortest target vectors, which
supports our rationale.

To test this second hypothesis, we generated all target vectors, chose the
smallest, and decoded it (i.e. computed its solution vector). We observed that
the solution vector of the first target vector was always also the solution of the
SVP, except for a handful of bases, which are shown in Table 1.3 (check the
position column, which shows the position of the shortest vector when the first
vector is not the shortest). This means that the shortest target vector does
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not yield the shortest solution vector (and the shortest vector of the lattice)
in less than 0.27% of the bases we tested.

TABLE 1.3 Position of the target vectors that originate the shortest
vector for the bases that failed.

Dimension #Incorrect Position(s) %solutions
4 0 — —
5 0 — —
6 1 21 33.33
7 0 — —
8 1 77 30.2
9 3 146, 260, 92 50.88
10 3 204, 200, 85 19.94
11 0 — —
12 0 — —
13 1 252 3.08
14 2 1246, 12865 78.53

15 5 4228, 911, 14181, 43.283495, 13599
16 1 2205 3.36
17 0 — —
18 0 — —
19 1 3010 0.57
20 2 11328, 856105 81.64

The percentage shown in the table regards the worst verified case of target
vectors that need to be decoded so that we arrive at the optimal solution.
However, note that these percentages may seem very high as we are testing
very low dimensions. Moreover, the maximum percentage of target vectors we
need to decode is highly dependent on the lattice basis we test. For instance,
decoding 0.57% of the target vectors in dimension 19 would suffice to arrive at
the shortest vector, while in dimension 20 one specific basis required as much
as 81.64% of the target vectors. This said, there should be no clear trend in
this regard.

As a result, we can affirm that, in general, sorting the target vectors by
increasing norm will, very likely, lead us to find the shortest vector faster than
randomly decoding target vectors as we generate them. This motivates a series
of optimizations, which we explore in Section 1.5.

1.5 ALGORITHMIC OPTIMIZATIONS
In the following, we show a series of optimizations that are based on the previ-
ous analysis of the algorithm. In order to test lattices with such an execution
time that allowed us to see the effects of the optimizations we implemented,
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we decided to use Machine A, as specified in Section 1.3 and g++ with the
O0 optimization flag. If we were to use Machine B and the O3 optimization
flag, some tests would run too fast, thus making it impossible to infer proper
conclusions (increasing the lattice dimension would quickly lead us to hit the
memory wall and impede proper testing).

1.5.1 Pruned decoding

Many of our optimizations stem from the fact that there is a relatively strong
correlation between the norm of the target vectors and the solution yielded
by the decoding process, as shown in Section 1.4. Therefore, we employ a key
idea: we can filter out (or “prune”) some of the target vectors, along with the
decoding process, if their norm “is big”. In particular, we should - with some
confidence degree - be able to prune out target vectors that have a norm larger
than the shortest norm (for any target vector) found at any given instant. In
theory, we could also use the norm of the solution vectors (and in particular
the norm of the shortest solution vectors found up until a certain execution
point of the algorithm) to prune out some of the target vectors. Note, however,
that this may introduce some uncertainty as a bigger target vector than the
shortest (solution) vector found at any point of the algorithm may actually
generate an even shorter solution vector. This is because target vectors may
yield, throughout the decoding process, shorter solution vectors. Note that we
have not studied this angle in our correlation analysis, presented in Section
1.4; this is merely an intuitive hypothetical relation that should work well in
practice.

In fact, in our experiments, this has proven to be a very effective opti-
mization, almost without compromising the solution. In other words, even
with this optimization - which we generally call pruning as we prune the set
of target vectors to test - we achieved the shortest vector of the lattice in
almost 99.999% of the experiments we carried out in this section.

If we regard the target vectors - which are to be decoded - as a set, we can
employ our optimization in the form of pruning. This may have several vari-
ants, but during our experiments, we found out that two forms are particularly
effective.

1.5.1.1 Simple pruning.

The first - and simplest - form of pruning we have employed is based on
discarding target vectors whose norm is larger than the norm of the shortest
(solution) vector found so far. We call this optimization “simple pruning”. We
do this by keeping a record of the shortest (solution) vector found throughout
the execution. This optimization has resulted in significant speedups, as shown
in Figure 1.4(a). The speedup of simple pruning also increased with the lattice
dimension.

We note that although in theory this optimization may result in a compro-
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mised solution (because we may filter out the target vector that results in the
shortest vector, as mentioned before), in practice, it barely happens (in our
experiments it failed for 11 bases out of 7550). We tested this optimization for
one thousand seeds of each dimension. The result was always coherent with
that of a deterministic SVP-solver, therefore showing that simple pruning did
not compromise the result in practice. We also expect this to be the case for
the vast majority of lattices in higher dimensions.

(a) Original algorithm and the simple prun-
ing version.

(b) Original algorithm and the Gaussian
pruning version (added margin of 15.5%).

(c) Original algorithm and the Gaussian
pruning version (added margin of 0.0%).

FIGURE 1.4 Original algorithm and pruned versions, from lattice di-
mension 10 to lattice dimension 20, on Machine A.

1.5.1.2 Gaussian pruning.

The Gaussian heuristic, presented in Equation 1.4, is a popular heuristic in
the context of SVP-solvers. This heuristic estimates the length of the shortest
vector of the lattice. It serves as the reference in the SVP-challenge5, which

5https://www.latticechallenge.org/svp-challenge/
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accepts entries of vectors whose norm is at most, 5% larger than the Gaussian
heuristic. In this work, we refer to this delta, i.e. the amount added to the
Gaussian heuristic, as the “added margin”, in Equation 1.4 as α.

α · Γ(n/2 + 1)1/n√
π

· (det L)1/n (1.4)

Γ(x) = (x− 1)! , x ∈ Z+ (1.5)

As we observed a relatively strong correlation between the norm of the
target vectors and the resulting solution vectors, together with the good results
of simple pruning, we decided to test a pruned version based on the Gaussian
heuristic (which we call Gaussian pruning). This reasoning is based on the
fact that, in theory, if simple pruning works well, a pruning based on the
Gaussian heuristic should also work well. This is due to two main ideas. First,
there is a connection (although obviously not linear, otherwise the shortest
target vector would always result in the shortest solution vector) between the
norms of the target vector and the solution vector, as we can infer from the
results in Section 1.4.2. Second, given this connection, applying the Gaussian
pruning to the target vectors would indirectly allow us to reduce the set of
target vectors that are likely to generate the shorter solution vectors. Given
that these connections are not linear, although improbable, the algorithm may
fail to find the shortest vector if Gaussian pruning is applied. In fact, following
the same rationale, we can say that this is true for both simple and Gaussian
pruning.

We tested Gaussian pruning with several error margins, for lattices in
dimensions 10-20, testing 500 seeds from dimensions 11 to 15 and 50 seeds for
dimensions 16-20 (due to time constraints). As Figure 1.4(b) shows, Gaussian
pruning also works very well in practice, achieving speedup factors of as much
as 51.26x. Again, we also expect the trend to continue as we increase the
lattice dimension.

In our experiments, Gaussian pruning only yields an invalid solution, with
an added margin of 15.5%, in 11 bases out of 7550. That is, in 7539 lattice
instances, the algorithm always found the shortest vector.

We tested the added margin of the Gaussian pruning extensively. We
started by using an added margin of 0% and the algorithm only failed to
find the shortest vectors in 24 lattice bases (out of 7550). Therefore, in the
vast majority of the lattice bases, the Gaussian pruning without an added
margin works very well. However, to be comparable with the baseline - the
reference algorithm - we needed to include an added margin that ensures the
shortest vector is found.

We selected an added margin of 15.5% for the experiments which outputs
the same number of wrong results (11 out of 7550) as the simple pruning, thus
allowing us to compare both versions in terms of execution time. We note that
although this added margin always resulted in an optimal solution, that may
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not be the case for all lattices in all dimensions, in which case we need to
update the added margin accordingly.

Yet, we tested the performance of the Gaussian heuristic for various added
margins. Not surprisingly, no added margin (i.e. Gaussian pruning with no
added margin) showed to attain the best performance, which we depict in
Figure 1.4(c). Note that running Gaussian pruning without any added margin
only failed in 24 out of 7550 lattice bases.

This indicates that there may be potential on a Gaussian pruned version
which works without added margin but another mechanism that detects over-
pruning, i.e. discarding the target vectors that would lead to better solution
vectors. Due to time limitations, we pushed this problem to future work.

1.5.1.3 Combined pruning.

Given the results of the two previous forms of pruning, we decided to com-
bine them, i.e. executing them one after the other. Figure 1.5 shows the per-
formance of a combination of simple and Gaussian pruning, in both orders,
against the performance of the individual pruning optimizations and the base-
line.

FIGURE 1.5 Original algorithm and the Gaussian (added margin of
15.5%), by both orders, combined and isolated, from lattice dimension
10 to lattice dimension 20, on Machine A.

As the figure shows, the combination of simple pruning with Gaussian
pruning (with an added margin of 15.5%) does not deliver a speedup. Never-
theless, we were able to obtain a performance improvement in a large number
of cases we conducted when refining some parameters (as these setups were
overall less efficient than those in the figure and thus not very relevant, we
refrained from showing them). We obtain a speedup of as much as 68.88x
when compared to the baseline. This version also fails in only 12 bases (one
more than simple or Gaussian pruning) out of all the 7550 instances tested.
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1.5.2 Increasing norm sort

Given the effectiveness of the pruning optimizations, we decided to design a
way so that shorter target vectors are executed first. To this end, we sort
all target vectors by increasing norm before the actual execution of the al-
gorithm, a process we refer to as “pre-sorting”. This is also motivated by the
results we arrived at in Section 1.4.2; From those results, we can conclude that
executing the shorter target vectors first will lead us to shorter solutions first,
thus increasing the pruning extent. Furthermore, as we will show throughout
this text, memory usage is a problem in Voronoi-cell algorithms, and this op-
timization can theoretically improve this, as there is a much smaller set of
target vectors to be decoded.

In theory, this enhances pruning as the number of pruned target vectors
will be larger - with simple pruning or combined pruning (but not with Gaus-
sian pruning) - if they are sorted (it does nothing if no pruning is applied, as
all target vectors are executed either way). In particular, we know for a fact
that the additional pruning is “safe” in the sense that it does not decrease the
likelihood of solving the SVP.

We call this “safety” as, by pre-sorting the target vectors, we are prior-
itizing shorter target vectors that, as we saw in Figure 1.3, lead to shorter
solution vectors in general. As such, we are effectively pruning out larger tar-
get vectors that would not lead to the solution of the SVP either way (with a
high probability). In fact, they could have been decoded if pre-sorting was not
used and they were some of the first target vectors in line of execution. There-
fore, the solution provided by these larger target vectors would eventually be
superseded by the solution vectors of smaller target vectors.

To implement this optimization, we have to re-arrange the computation
of the algorithm, namely by generating the target vectors upfront (in con-
trast to calculating them on the fly - iteration by iteration - as it happens in
the original algorithm), so that we can sort them (by increasing norm). We
have implemented both the merge sort [11] and the quicksort [10] algorithms,
and compared them against std::sort, the C++ standard sorting library. The
latter, std::sort, performed better than the former and therefore we have per-
formed the rest of the tests with this implementation (the GNU Compiler Suite
also provides a parallel, OpenMP version of the std::sort algorithm, which is
useful for higher dimensions).

Given that we want to sort the target vectors (which are stored in a matrix,
in a row-wise manner), we have to compute an auxiliary vector with the norm
of each target vector. This is obviously not required, but it does avoid com-
puting the norm of a target vector each time it is needed. With the std::sort
implementation, given the nature of the library function, we store the norm
of each vector in a “struct”, where each element holds one target vector and
its norm; in this case, the sorting procedure is done by simply swapping the
memory pointers to the elements, instead of actually having to move the data
around.
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The performance results for combined pruning with pre-sorting are shown
in Figure 1.6. As the figure shows, we obtain a speedup of as much as 76.59x
by pre-sorting the target vectors in function of increasing norm (which com-
pares to 68.88x without sorting). As it happens without pre-sorting, the order
by which the pruning techniques are applied with pre-sorting has very little
significance in the execution time of the algorithm.

FIGURE 1.6 Original algorithm and the Gaussian (added margin of
15.5%) and Combined pruning, by both orders, with pre-sorting, from
lattice dimension 10 to lattice dimension 20, on Machine A.

Evidently, it would be a very strong optimization if we were able to find a
method to stop the algorithm once the shortest vector is reached, which is a
common problem for many SVP-solvers. Nevertheless, we were still unable to
come up with rules to stop the algorithm briefly after the shortest vector is
found, as it happens with other SVP-solvers, such as sieving [22, 20]. However,
we push this problem to future work.

1.6 PARALLEL IMPLEMENTATIONS FOR CPUS AND GPUS
In this section, we present both CPU- and GPU-parallel versions of the Rele-
vantVectors algorithm, the algorithm that served as the basis of this work. In
theory, this algorithm is embarrassingly parallel, as there are no dependencies
between iterations, i.e., we can execute several Decodes concurrently. We used
OpenMP for the parallel CPU version and CUDA for the GPU version.

1.6.1 CPU

The OpenMP compiler directives were applied to the main loop of the algo-
rithm Line 6 in Algorithm 1, where the generation of the target vectors takes
place, followed by the decoding of the mentioned vectors. As this process is in-
dependent between iterations, and there are no subsequent data races, threads
can run concurrently.

On top of parallelizing the algorithm, we have employed other optimiza-
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tions to the algorithm, regarding general memory usage/consumption and
memory access.

First, the result of decoding a target vector, if valid, yields two solution
vectors. As such, if we were to store every result of every decode, a matrix of
dimension 2(2n− 1)×n would be required, for an n-dimensional lattice. This
is impractical, as the memory requirement for this matrix grows exponentially
with the lattice dimension. To solve this issue, instead of storing every solution
vector, we only store the shortest vector found at the end of each decode pro-
cedure. This decreases the size of the matrix used to store the solution vector
to 1× n (or 2× n if we were to store both results of each decode). It requires
the use of a critical region so that threads cannot simultaneously access these
variables, which would lead to data races and a potentially incorrect result.

Second, originally the matrices were implemented as an array of arrays;
while this provides a very natural indexing notation, it is not very efficient
from a memory standpoint. Not only it requires several memory allocations
(and deallocations) for each matrix, there is no guarantee that the required
memory is allocated continuously in RAM. Therefore, the implementation
of matrices was changed (from an array of arrays) to a single, large vector.
This increases indexing computation slightly but improves memory locality
considerably.

Algorithm 2 shows the pseudo-code of the OpenMP-based parallel version
of the RelevantVectors algorithm.

Algorithm 2: Parallel RelevantVectors
Input: Basis matrix B
Output: Relevant Vectors N

M = Reduce(B); /* for example, using the LLL algorithm */
[Q, R] = QR decomposition of M;
G = RT ;
H = G−1;
N = ∅;
min_norm = ∞;

#pragma omp parallel for
forall vectors s ∈M do

X = AllClosestPoints(M, H, Q, s);
#pragma omp critical
if ||2x− 2s|| < min_norm then

min_norm = ||2x− 2s||;
N = {2x− 2s : x ∈ X};

return N
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1.6.1.1 Original version (no pruning and no pre-sorting).

We first parallelized the original version of the algorithm (i.e. without pruning
and without pre-sorting). Given that the execution time of each iteration is
different (as decoding different target vectors may be faster or slower), there
may be work imbalance among threads. In preliminary tests, we tested the
OpenMP static scheduler, but the results were not, unsurprisingly, optimal.
For that reason, the experiments we report were conducted with the OpenMP
dynamic scheduler, which assigns work to threads as they complete the previ-
ous tasks, thus balancing out the workload. Although this strategy does not
guarantee perfect load balancing, it usually minimizes the imbalance substan-
tially (usually at the cost of a given overhead, which may be smaller or bigger
depending on circumstances). As such, we still expect some threads to finish
ahead of others.

Figure 1.7 shows the execution time of the algorithm, on Machine A, for
lattices in dimension 16-20, and 1-56 threads. For readability purposes, we
display the speedups in Table 1.4.

FIGURE 1.7 Execution time for the parallel algorithm, on lattices in
dimensions 16-20, using 1-56 threads on Machine A.

TABLE 1.4 Speedups on Machine A, parallel non-pruned implementa-
tion running with 1-56 threads, in comparison to the parallel non-pruned
version running with a single thread.

Dimension 16 17 18 19 20
2 Threads 1.772 1.917 1.915 1.914 1.961
4 Threads 3.556 3.833 3.824 3.815 3.933
8 Threads 7.072 7.615 7.642 7.604 7.849
16 Threads 12.990 14.830 14.890 15.170 15.190
28 Threads 20.910 24.820 24.020 24.660 25.370
56 Threads 22.210 31.190 31.140 33.600 33.440
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We achieved higher speedups for higher lattice dimensions, due to lower
thread creation latency and improved the overall workload distribution. This
is particularly important because we aim at using our implementation in large
dimensions - as large as possible.

We also developed a parallel version of the optimized version, with pre-
sorting both turned on and off, with OpenMP. As we have seen, the order
of the optimizations was not relevant for performance, so we only used one
order. We also parallelized the generation of target vectors, as they can be
executed independently (both with and without pre-sorting).

1.6.1.2 Pruned version without sorting.

As shown in Figure 1.8, the parallel combined pruning version also scales well
(cf. Table 1.5 for readability purposes). Nevertheless, scalability is overall a
little lower than the non-optimized implementation due to the critical section
necessary for the optimizations of this particular version (note the contention
for more than 8 threads in Figure 1.8).

FIGURE 1.8 Execution time for the combined Gaussian + Simple
pruned version of the algorithm, on dimensions 25-29, using 1-56 threads
on Machine A.

TABLE 1.5 Speedup of the parallel implementation for Gaussian and
Simple pruning, on Machine A.

Dimension 25 26 27 28 29
2 Threads 1.681 1.810 1.766 1.800 1.763
4 Threads 3.322 3.514 3.419 3.667 3.581
8 Threads 6.297 6.694 6.916 7.254 7.128
16 Threads 7.085 8.856 11.412 6.706 6.040
28 Threads 5.986 9.732 9.464 19.870 11.850
56 Threads 10.630 12.050 11.220 18.020 16.190
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As mentioned in Section 1.5.1.2, there is the possibility that the chosen
added margin may fail for some lattice bases that were not tested before, as
it is impossible to know upfront which added margin guarantees the optimal
solution. The number of bases that the algorithm did not return the optimal
solution was still residual. We also note that arriving at a short vector, as
opposed to the shortest vector, is still important, especially in the context of
a relaxed version of the SVP, usually referred to as α-SVP. In this work, we
will not expand on this topic, even though we note that short vectors are still
an important result in this context.

1.6.1.3 Pruned version with sorting.

Regarding the optimized version with the pre-sorting phase, in this setup,
we need to generate all target vectors upfront, and sort them, before the
algorithm actually computes the SVP. This uses up more memory than the
original algorithm, as we will show next.

As mentioned in Section 1.5.2, the GNU Compiler Suite already imple-
ments an OpenMP version of the std::sort algorithm, which we used in the
sorting phase. This way, the procedure is entirely parallel, including the gener-
ation and sorting of the target vectors, except for the synchronization among
all the threads (implemented with a critical section) to update the shortest
norm found, should they find one.

Figure 1.9 shows the execution time up to dimension 29, which is the
highest lattice dimension we can test with 128 GB of RAM. In dimension
29, using pre-sorting results in a speedup of almost 30% (for 28 threads) and
40% (for 56 threads), compared to the non-sorted version. With 56 threads,
using pre-sorting is also faster than the non-sorting version for dimension 28,
by approximately 26%. Until dimension 28 (for 56 threads) and dimension
29 (for 28 threads), the non-sorting version is faster, given that the time to
generate all target vectors, store/read them from memory and sort them is
higher than the gain throughout the algorithm.

It is worth note that this version requires more memory than the previous
ones. In the pruned version without pre-sorting, target vectors are decoded
and generated one by one (and the algorithm should stop long before all target
vectors are explored, per our optimizations). In this version, all target vectors
are generated (in order to be sorted) upfront, which consumes more memory
than in the non-sorted version. In essence, the pre-sorting creates a trade-off
between memory and execution time (because the solution is achieved faster).
The execution time to sort the vectors upfront was never relevant in our tests
(i.e. even with the sorting phase, the final time to solution was always lower).

Regarding memory, we should note that in the parallel versions, the mem-
ory required increases exponentially with the lattice dimension (as per the
original algorithm) but also linearly with the number of threads being used.
This happens because each iteration (and thus each thread) requires its own
auxiliary structures for the correct working of the decode function. These ma-
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FIGURE 1.9 Execution time for the combined Gaussian + Simple
pruned version of the algorithm, with pre-sorting, for dimensions 20-
29, using 28 and 56 threads on Machine A.

FIGURE 1.10 The calculated memory usage required by our combined
pruning implementation (essentially for the target vector-matrix), both
with and without pre-sorting. The number of threads does not make a
difference.

trices are initially allocated with a certain number of rows (the number of
columns is equal to the dimension of the problem) and, when needed, are
extended via reallocation.

Figure 1.10 shows the (calculated) memory usage of the implementation
in the worst-case scenario for a given dimension (i.e. the largest size measured
among all bases in a given dimension), both when sorting is used and when it
is not. As machine A has 128 GB of RAM memory, we were able to test the
optimized version with pre-sorting up until dimension 29. Running dimension
30 would require around 137 GB of memory available.

Table 1.6 shows the estimated memory usage of the combined pruning
implementation with pre-sorting, for dimensions 20 through 80 in increments
of 10, using 28 threads.
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Dimension Estimated
memory usage

20 83.89 MB
30 128.85 GB
40 175.92 TB
50 225.18 PB
60 276.70 EB
70 330.57 ZB
80 386.86 YB

TABLE 1.6 Estimated memory usage of the combined pruning imple-
mentation for dimensions 20-80, with pre-sorting.

1.6.2 GPU

As mentioned at the beginning of Section 1.6, we also present a parallel version
for GPUs, in CUDA, similar to [5]. Due to the inefficiency of software-based
critical sections in CUDA, we were forced to employ a larger matrix to hold
all solution vectors, similarly to the original algorithm. Should we be able to
implement an efficient critical section, threads would be able to compare the
solution vector they arrive at, against the shortest one found so far, without
the need to store the larger ones. This same reason prevented implementing a
CUDA version of the pruning optimization. Results are, therefore, presented
for the non-optimized algorithm. In this version, we calculate the target vec-
tors on the fly, as in the non-pruned and pruned versions without pre-sorting
(and in contrast to our CPU version with pre-sorting).

Our CUDA implementation contains a single kernel. We set up the ker-
nel so that each thread decodes a single target vector unless the available
memory is not enough (note that each thread allocates memory for auxiliary
structures). For instance, running dimension 20 on our GPU implies that each
thread will decode more than one vector. The first step of the kernel is to gen-
erate the target vectors, decodes them and stores the solution vectors in the
final matrix (list of vectors), similar to the CPU version. In the meantime,
the result of the decode is checked; if the test holds, the vector is stored in
the final matrix, otherwise, the thread dies (until dimension 19) or proceeds
to the following iteration (in dimension 20).

Until dimension 19, we set the number of threads equal to the target vectors
(in practice we set the number of blocks and threads per block). We set 128
threads per block, so the number of blocks changes based on the number
of target vectors. As we said, each thread is responsible for generating and
decoding a single target vector.

Figure 1.11 shows the execution time of our CUDA implementation, run-
ning with as many threads as target vectors (except for dimension 20, where
that number is halved), for several lattice dimensions.

The figure also includes the execution time of our CPU version of the
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FIGURE 1.11 Execution time for dimensions 10-20, for the non-pruned
CPU algorithm (1/56 threads on Machine A) and the parallel GPU non-
pruned algorithm (on Machine B). Note: The CPU execution times are
those of Section 1.6.1 for the non-pruned algorithm.

non-optimized algorithm, both with one and 56 threads. Up until dimension
13, the GPU implementation is slower than the CPU implementation, as the
penalty for transferring memory (matrices M, H, Q and N) over the PCI-
express bus to the GPU only becomes diluted/clouded for bigger dimensions
and the launch time of the GPU kernel (not excluded in the results) is also
diluted for bigger dimensions.

The GPU implementation is almost 15x times faster than the sequential
version and about 2,34x slower than the CPU running with 56 threads. As we
can see in the figure, the difference between both implementations gets smaller
with the lattice dimension, which is expected due to the penalty of memory
transfer and GPU initialization. Thus, we expect this GPU version to beat the
CPU version with 56 threads, for a sufficiently large lattice dimension (which
we cannot test due to memory limitations).

1.7 DISCUSSION
There are two different angles of our research that deserve comments. First,
the algorithmic optimizations that we propose, which greatly improve the
algorithm. The idea of speeding up SVP-solvers by empirical observations on
vectors is not new e.g. [6], but it was never applied to Voronoi cell-based
algorithms, to our best knowledge. The study of the correlation between the
norm of target vectors and their solution is, to our knowledge, unprecedented.
The “simple” and the Gaussian pruning is motivated by some optimizations
implemented in other SVP-solvers (for instance, the simple pruning is used in
sieving algorithms, while Gaussian pruning is used in enumeration algorithms
as a way to define a radius for a search space or prune the enumeration tree
[8]).
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Objectively, these optimizations greatly improve the algorithm, and sorting
target vectors is another great optimization as it decreases time to solution
even further. The sorting procedure is also very efficient and can be done in
parallel, therefore we see no concerns regarding adding this pre-processing to
the overall algorithmic routines.

A second angle for discussion is the performance of our parallel versions,
both for CPUs and GPUs. Although not all of our CPU implementations scale
linearly, they do scale fairly well. We are confident that, if further develop-
ments are made to the algorithm, these implementations could be used for
high lattice dimensions. The GPU implementation, on the other hand, has to
be revisited in order to integrate the proposed pruning optimizations. GPUs
currently lack efficient synchronisation mechanisms. This prevents sharing of
information (such as the current pruning norm) among threads while still
maintaining scalability. An interesting line of research in this context should
be to re-write the algorithm differently so that synchronization could either
be avoided or made parallel.

1.8 CONCLUSIONS
Attacks to post-quantum lattice-based cryptosystems require solving the com-
putationally hard Shortest Vector Problem (SVP). Different families of SVP-
solvers have been suggested over the last two decades, including Voronoi cell-
based algorithms. Proposed back in 2002 by Agrell et al., this family of algo-
rithms has not been optimized since, under the claim that its memory com-
plexity (exponential with the number of dimensions) renders it unpractical
even for low dimensions. However, Voronoi cell-based algorithms exhibit a
number of characteristics that justify a thorough study of their practicality
when a few optimizations are employed. In particular, their time complexity
is asymptotically very interesting, which could allow them to become compet-
itive with other SVP-solvers if the memory barrier can be overcome. Indeed
there is plenty of room for practical optimizations, which can eventually lead
to tractable implementations for high-dimensional lattices, unleashing their
true potential.

This work addressed the reduction of execution time of the "Relevant
Vectors" Voronoi cell-based algorithm, by tackling two different axes: i) algo-
rithmically reducing the number of operations required to reach a solution to
the SVP, and ii) parallelizing it for both CPUs and multi-core CPUs.

In order to reduce the workload we hypothesized that there is a correlation
between the norm size of the target vectors and the solution vectors. This cor-
relation was demonstrated to hold, which allowed us to propose pruning target
vectors based on the length of the shortest solution vector observed this far
and/or the Gaussian heuristic. Also, we have shown that pre-sorting the tar-
get vectors by increasing norm allows for a more effective pruning (by reorder-
ing computations), accelerating our optimized version further, notwithstand-
ing the additional sorting time. Altogether, our optimizations improved the
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throughput performance approximately 77x compared to the baseline imple-
mentation. Adding sorting on top of pruning provided an additional speedup
of as much as 40% up to dimension 29, but we estimate that it would be
considerably superior, should we be able to test higher dimensions.

The main drawback with sorting is that it currently requires storing all
target vectors, which results on a huge memory consumption. Naturally, we
could ignore/cut-off a substantial percentage (e.g., 70%) of the largest target
vectors right in the pre-processing stage, significantly reducing memory usage.
However, we have not done so yet as we would like to look for a cut-off for-
mula that translates to an approximated likelihood of still finding the shortest
vector (which would be a very interesting result in the context of the approx-
imate SVP problem). We note the potential of this idea, given that Voronoi
is not tractable in practice solely because target vectors become a bottleneck
memory-wise.

Additionally, we have shown that the algorithm and our optimizations
are well suited for multi-core CPU machines, as we devised and implemented
a scalable parallel version. We also optimized the algorithm’s memory map
and found that dynamic scheduling is mandatory since decoding time varies
for different target vectors. Our implementation scales linearly on multi-core
CPUs up to 28 threads and can even take advantage of SMT, although the
benefit is reduced given that the problem is compute-bound. We found no
reason why similar scalability will not hold for higher thread counts.

We also implemented the original algorithm on a GPU, using the CUDA
framework. The optimized pruning algorithm could not be tested, since it
would require recurrent use of critical sections, currently not efficiently sup-
ported by CUDA. Therefore, we could not use pruning to reduce the workload
and had to store all computed solution vectors, further increasing memory con-
sumption. Although our GPU version was never faster than our 56 threads
CPU version, we observed that the gap between the CPU and the GPU gener-
ally decreases with lattice dimension. This is a very promising result, hinting
that the GPU could become faster for higher lattice dimensions. Also the
CPU/GPU memory transfer penalty will be diluted for such higher dimen-
sions, further contributing to the GPU advantage. In the future, we expect
to develop better data structures for the GPU and optimize the CUDA code,
such that experiments with higher lattice dimensions become feasible.

This chapter represents a step forward on making Voronoi cell-based SVP-
solvers practical. It has shown that there is plenty of room for algorithmic
optimizations, namely workload reduction by pruning large target vectors. It
has also demonstrated that multi-core CPU parallel solutions scale and are
efficient. GPU solutions show a promising trend as the lattice dimensionality
increases, but further support is required for synchronisation primitives en-
abling efficient critical regions controlled access. The exponential space com-
plexity of Voronoi cell-based algorithms remains a challenge which has not
been directly addressed in this chapter. Educated discarding of a percentage
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of the largest target vectors on the sorting stage could represent a first step
on the right direction, reducing the constants associated with this complexity.

1.8.1 Open problems

This work leads to many lines of future work. In particular, we think that it
would be interesting to:

* Find a stopping criterion so that our optimized algorithm stops shortly
after the solution is found;

* Reduce the memory requirements of our GPU implementation by de-
veloping new data structures;

* Optimize our GPU implementation further, to take full advantage of
the architecture;

* Implement a heterogeneous version of our algorithm;

* Reduce the parallel CPU version memory requirements, by using only
a small part of the Voronoi cell.
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