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A B S T R A C T   

Idiopathic Parkinson’s disease (IPD) and vascular parkinsonism (VaP) present highly overlapping phenotypes, 
making it challenging to distinguish between these two parkinsonian syndromes. Recent evidence suggests that 
gait assessment and response to levodopa medication may assist in the objective evaluation of clinical differ-
ences. In this paper, we propose a new approach for gait pattern differentiation that uses convolutional neural 
networks (CNNs) based on gait time series with and without the influence of levodopa medication. Wearable 
sensors positioned on both feet were used to acquire gait data from 14 VaP patients, 15 IPD patients, and 34 
healthy subjects. An individual’s gait features are affected by physical characteristics, including age, height, 
weight, sex, and walking speed or stride length. Therefore, to reduce bias due to intersubject variations, a 
multiple regression normalization approach was used to obtain gait data. Recursive feature elimination using the 
linear support vector machine, lasso, and random forest were applied to infer the optimal feature subset that led 
to the best results. CNNs were implemented by means of various hyperparameters and feature subsets. The best 
CNN classifiers achieved accuracies of 79.33%±6.46, 82.33%±10.62, and 86.00%±7.12 without (off state), with 
(on state), and with the simultaneous consideration of the effect of levodopa medication (off/on state), 
respectively. The response to levodopa medication improved classification performance. Based on gait time 
series and response to medication, the proposed approach differentiates between IPD and VaP gait patterns and 
reveals a high accuracy rate, which might prove useful when distinguishing other diseases related to movement 
disorders.   

1. Introduction 

Gait impairment is a common characteristic of patients with neuro-
degenerative parkinsonian syndromes, and it appears in the prodromal 
stages, with progressive evolution over time (Lord et al., 2013; Kubota 
et al., 2016; Ferreira et al., 2019; Rehman et al., 2019; Mirelman et al., 
2019). Evidence suggests that gait assessment can be a useful tool to 
support the diagnosis of idiopathic Parkinson’s disease (IPD) at an early 
stage (Rehman et al., 2019; Mirelman et al., 2019), along with the 
possibility of differential diagnosis of parkinsonian syndromes, such as 
IPD versus vascular parkinsonism (VaP) (Ferreira et al., 2019; Fernandes 

et al., 2018). However, the differential diagnosis between IPD and VaP is 
difficult to achieve, especially in the early stages, since these two dis-
eases present highly overlapping phenotypes (Zijlmans et al., 2004; 
Lehosit, 2015). Both diseases are characterized by bradykinesia, rigidity, 
gait impairment, and postural instability. IPD is the most common 
parkinsonian syndrome, with a high prevalence of over 180/100000 
inhabitants (Ferreira et al., 2017), while VaP is less frequent (3% to 5% 
of patients with parkinsonism) (Zijlmans et al., 2004). Compared to IPD 
patients, VaP patients often present less tremor but show frequent py-
ramidal tract signs and dementia. VaP patients also experience consid-
erable gait difficulty when walking, with more extended legs, hips, and 
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trunk and a prominent dragging of the feet, and a poorer response to 
levodopa medication (Zijlmans et al., 2004; Gupta and Kuruvilla, 2011; 
Ferreira et al., 2019). 

To investigate the potential of gait data to discriminate between VaP 
and IPD, a previous study (Fernandes et al., 2018) evaluated the effec-
tiveness of machine learning strategies, particularly multiple layer per-
ceptrons (MLPs) and deep belief networks (DBNs), based on the different 
gait measures (per gait cycle) acquired through wearable sensors. 
Similar to previous studies (Tahir and Manap, 2012; Manap et al., 2011), 
the above approach achieved good classification performance (classifi-
cation accuracy between 91.1% and 93.3%) in the ability to discrimi-
nate between normal and parkinsonian gait. However, when attempting 
to distinguish between VaP and IPD gait patterns, the performance of the 
classifiers decreased (with classification accuracy between 50% and 
63.3%). Therefore, there is a need to develop new approaches when 
evaluating the potential of gait data as a tool to support the differential 
diagnosis between VaP and IPD. Traditional mean and standard devia-
tion values of gait time series are used in the classification of different 
pathological gaits (Tahir and Manap, 2012; Manap et al., 2011; Wahid 
et al., 2015; Fernandes et al., 2018; Rehman et al., 2019). In a recent 
study (El Maachi et al., 2020), gait time series were used as input signals 
for automated IPD gait recognition. An accuracy of 98.7% was achieved 
using a convolution neural network-based approach. In contrast to most 
conventional methods, such as support vector machines (SVMs), random 
forest (RF), multiple layer perceptrons (MLPs), and deep belief networks 
(DBNs), convolutional neural networks (CNNs) are capable of automatic 
feature extraction from time/space series, eventually detecting superior 
features and eliminating the need for handcrafted feature engineering 
(Wang et al., 2019). This study introduced gait time series as input for 
the proposed approach based on CNNs. Furthermore, since the response 
to levodopa is considered a good biomarker for the diagnosis of VaP 
(Rektor et al., 2018)), the signals obtained in two different states—with 
and without the effect of levodopa–were considered. 

Different factors, including age, sex, height, weight, and walking 
speed, can affect a subject’s gait characteristics (Wahid et al., 2015; 
Wahid et al., 2016). The studies of Wahid et al. and Mikos et al. (Wahid 
et al., 2015; Wahid et al., 2016; Mikos et al., 2018) employed a multiple 
regression (MR) normalization method on gait data to minimize the 
effect of intersubject physical differences and self-selected speed. MR 
normalization was implemented in this study since, compared to other 
methods such as dimensionless equations and detrending methods, MR 
normalization achieved better results in reducing the interference of 
subject-specific physical properties and gait variables, thereby 
improving parkinsonian gait classification accuracy using machine- 
learning methods (Wahid et al., 2015). It has been shown that the ac-
curacy of IPD diagnosis through SVM and RF approaches improves from 
81% to 89% and 75% to 93%, respectively, when gait data are 
normalized using the MR approach (Wahid et al., 2015). As in (Wahid 
et al., 2015; Wahid et al., 2016; Mikos et al., 2018), here, age, height, 
weight, sex, and self-selected walking speed were used as independent 
variables. Additionally, this study included the subjects’ stride length as 
an independent variable, since this variable has been shown to signifi-
cantly affect foot clearance gait features (Alcock et al., 2018; Ferreira 
et al., 2019). 

In this paper, we propose a new approach to gait pattern differenti-
ation using CNNs based on time series gait data, which considers the 
effect of physical properties and response to levodopa medication. To 
the best of our knowledge, this is the first study that uses gait time series 
data and levodopa response in the prediction of IPD and VaP. The paper 
is organized as follows. Our experimental design and proposed approach 
are described in Section 2. The experimental results are presented in 
Section 3. A discussion based on the experimental results is presented in 
Section 4. Conclusions and future directions are described in Section 5. 

2. Materials and Methods 

2.1. Participants 

VaP and IPD patients were consecutively selected from Movement 
Disorder outpatient consultations. In compliance with published clinical 
criteria (Zijlmans et al., 2004), the diagnosis was supported by retro-
spective clinical history, with a longitudinal reassessment of clinical 
diagnosis. The exclusion criteria for all patients were the presence of 
resting tremor, moderate-severe dementia (CDR>2), musculoskeletal 
disease, and overt clinical progression since diagnosis (Hoehn-Yahr>3). 
The number of VaP patients was generally low (compared to that of IPD 
patients), and the exclusion criteria further reduced the number of VaP 
patients who could be included in the study. To obtain a balanced 
dataset, the number of IPD and VaP patients should be approximately 
the same. At the end of the recruitment phase, gait data from 14 VaP 
patients and 15 IPD patients were collected (Table 1). Thirty-six healthy 
adults of different ages and sexes were also recruited for the collection of 
gait data for use in the data normalization process (Table 1). The local 
hospital ethics committee approved the study protocol, submitted by 
ICVS/UM and Center Algoritmi/UM. Written consent was obtained from 
all subjects or their guardians. 

2.2. Gait data acquisition 

Two Physilog® sensors (Gait Up®, Switzerland) were used to collect 
gait data. The sensors were attached to the dorsum of each shoe using 
two elastic bands. The sensors did not require any alignment or cali-
bration before the measurement. The participants were asked to walk a 
60-m continuous course (a 30-m corridor with one turn) at a self- 
selected walking speed. Patients were assessed twice: in the “off 
state”, after 12 h without any medication; and in the “on state”, 60 min 
after taking suprathreshold levodopa medication (150% of their usual 
morning dose). As in other studies (Thomas et al., 2017; Senek et al., 
2017), a suprathreshold 50% increase in the morning levodopa dose was 
administered to assess the magnitude of change from the off to the on 
states, thus supporting clinical diagnosis (Albanese et al., 2001). An 
additional objective was the rapid achievement of the best possible 
simulation of dopaminergic transmission (Albanese et al., 2001), as 
some gait impairments may be refractive under low doses of levodopa 
(McKay et al., 2019). The data recorded by the two sensors were con-
verted to the left and right gait time series per gait variable using gait 
analysis software (Gait Up®, Switzerland). The dedicated algorithms 
have been described elsewhere (Mariani et al., 2010; Mariani et al., 
2012; Dadashi et al., 2014). 

The collected spatial, temporal, and foot clearance gait variables 
used in this study were as follows: speed (velocity of one stride), cycle 
duration (duration of one stride), cadence (number of strides per min-
ute), stride length (distance between successive initial ground contacts 
using the same foot), stance (percentage of stride that the foot is on the 
ground), swing (percentage of stride that the foot is in the air), loading 
(percentage of stance between the heel strike and the foot placed fully on 
the ground), foot flat (percentage of stance where the foot is fully on the 
ground), pushing (percentage of stance between the foot fully positioned 
on the ground and the toe leaving the ground), double support (per-
centage of stride that both feet touch the ground), peak swing 

Table 1 
Anthropometric data of healthy controls and parkinsonism study groups.   

Controls IPD Patients VaP Patients 

Age (years) 52.76 ± 22.91  76.60 ± 4.29  80.53 ± 4.63  
Weight (kg) 68.84 ± 10.28  73.24 ± 12.53  66.17 ± 10.38  
Height (m) 1.68 ± 0.090  1.67 ± 0.082  1.61 ± 0.085  
Sex (Female/Male) 23/13 4/11 6/8  
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(maximum angular velocity during swing), strike angle (angle between 
the foot and the ground when the heel hits the ground), lift-off angle 
(angle between the foot and the ground when the toes are leaving the 
ground), maximum heel (maximum height above the ground reached by 
the heel), maximum toe clearance 1 (maximum height above the ground 
reached by the toes after maximum heel strike), minimum toe clearance 
(minimum height of the toes during the swing phase) and maximum toe 
clearance 2 (maximum height above the ground reached by the toes just 
before heel strike). 

2.3. Framework for classification modeling 

The proposed framework for the classification of gait patterns uses 
convolutional neural networks (CNNs) (LeCun et al., 1989) based on gait 
time series and the effect of medication (Fig. 1). When the latter is 
eliminated, the proposed framework is simplified to perform classifica-
tion modeling based only on off-state gait time series. In both cases, the 
gait time series data are preprocessed by using multiple regression 
normalization and feature selection approaches as a base before 
applying the CNN classifiers. 

2.3.1. Multiple Regression Normalization 
Each gait time series value was normalized using the following 

multiple regression model (Wahid et al., 2015): 

ŷi = β0 +
∑p

j=1
βjxij + εi (1)  

where ̂yi represents the prediction for the dependent gait variable for the 
ith observation, xij represents the jth independent variable, β0 represents 
the intercept term, βj represents the coefficient for the jth physical 
property, and εi represents the residual error for the ith observation. 

Previous studies have indicated that gait data are significantly 
affected by the subject’s height, weight, age, sex (Senden et al., 2012; 
Dadashi et al., 2014; Wahid et al., 2016; Mikos et al., 2018), walking 
speed (Kirtley et al., 1985; Wahid et al., 2016; Mikos et al., 2018) and 
stride length (Alcock et al., 2018; Ferreira et al., 2019). Therefore, age, 
height, weight, sex, speed, and stride length were considered indepen-
dent variables. The model’s coefficients were estimated by using data on 
the mean values of the physical properties and gait features obtained 
from healthy adults. First, Pearson’s correlation coefficients and scatter 
plots among all variables were generated to examine the associations 
between the variables. Regression models were computed for all com-
binations of independent variables that presented a linear relationship 
with the dependent variable. Variance inflation factors (VIFs) were 
calculated to check the presence of multicollinearity. All models with a 
VIF value greater than 3.3 (Kock et al., 2012) were excluded. Akaike’s 
information criterion (AIC) and adjusted R2 metrics were used to select 
the best-fit model. For each regression model, a normal quanti-
le–quantile (Q − Q) plot of the residuals and a residual plot were 
generated to ensure the assumptions of normality of regression residuals 
and homoscedasticity, respectively. To identify influential outliers, 

standardized residual values were assessed (Tabachnick et al., 2007). In 
each subject group, the best-fit regression models were then used to 
normalize each gait variable by dividing the value of the original 
dependent gait variable, yi, by the predicted gait variable from (1), ŷi, 
by: 

yn
i =

yi

ŷi
(2)  

where yn
i represents the normalized gait variable for the ith observation. 

2.3.2. Feature selection 
Gait data are characterized by the high correlation between features 

(Rehman et al., 2019; Fernandes et al., 2018). To prevent redundancy 
and overfitting, feature selection was performed based on the mean 
values of the gait characteristics in the off state (Fig. 1) to find the 
optimal combination of features for the CNN classifiers. The mean values 
were scaled to have zero mean and unit variance. Feature selection was 
conducted by using recursive feature elimination (RFE) through RF, 
linear kernel SVM (L-SVM), and Lasso. During each step, the optimal 
number of features was selected based on their contribution to the 
classification accuracy obtained through stratified 5-fold cross- 
validation (Granitto et al., 2006). The general algorithm for RFE can 
be described as follows: the first step consists of selecting an initial set of 
features and an assessment of the importance of each; subsequently, the 
least important feature is removed from the current set of features. This 
procedure is iterated on the pruned set until the desired number of 
features is obtained or when there is only one feature left. 

2.3.3. Classification 
CNN classifiers were trained through three different datasets: off 

state, on state, and off/on state. The CNN classifiers were implemented 
using two convolutional layers; the final feed-forward neural network 
was also present in two deeper hidden layers. Different configurations of 
hyperparameters were evaluated for the classification of IPD and VaP 
patients. Multiple combinations between the number of filters, convo-
lution window size, stride length of the convolution operation, learning 
rates, dropout rates, and epochs were evaluated. In the case of multiple 
off/on state input data (Fig. 1), the CNN models shared the same 
hyperparameters. At each feature selection step, multiple configurations 
of CNN classifiers were implemented, and the classification performance 
was assessed. Finally, the optimal feature set was the one that achieved 
the best classification performance. The TensorFlow (Abadi et al., 2016), 
Keras (Chollet et al., 2015), and scikit-learn (Pedregosa et al., 2011) 
libraries within the Python programming language were used to develop 
and implement the classifiers. 

To evaluate the performance of the different classifiers, the accuracy, 
specificity, sensitivity, precision, and F1 score metrics were computed 
(Hossin et al., 2015). In this case, a false negative indicated that the 
classifier incorrectly predicted an IPD patient as a VaP patient. 

MR 
Normalization

Feature 
Selection

CNN
Conv1D Max Polling Conv1D Global Max 

Polling

CNN
Conv1D Max Polling Conv1D Global Max 

Polling

Raw Gait Time Series 
Off State

Raw Gait Time Series 
On State

MR 
Normalization

Fig. 1. The proposed framework for classification modeling using Convolutional Neural Networks (CNNs).  
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3. Results 

3.1. Multiple linear regression models 

The best multiple regression models of spatial and temporal gait 
variables include speed as an independent variable. In this study, stride 
length was included as an independent variable in the regression models 
of the strike angle, lift-off angle, and maximum toe clearance 2 (Table 2). 
With the exceptions of swing/stance (adjusted R2 = 0.227), double 
support (adjusted R2 = 0.277), and maximum toe clearance 1 (adjusted 
R2 = 0.006), all the other models had adjusted R2 > 0.350 (see Table 3). 
The best-fit models had one, two, or three explanatory variables, and all 
six independent variables were included more than once. No influential 
outliers were identified in any of these models. 

3.2. Feature selection and classification 

By resorting to RFE using RF, optimal performance was achieved 
with four gait variables (Fig. 2). When employing both Lasso and L-SVM, 
optimal performance was obtained with four and five gait variables, 
respectively (Fig. 2). Based on the importance of the features obtained 
through each of the three methods illustrated in Fig. 2, the results 
showed that strike angle, maximum toe clearance 2, maximum heel 
clearance, peak swing, and cadence were the five common gait variables 
among the top eight variables in each method. The best performances 
were achieved by the RF-CNN classifier with accuracies of 79.33%, 
82.33%, and 86.00% without (off state), with (on state), and with the 
simultaneous consideration of the effect of levodopa medication (off/on 
state), respectively (Table 3). 

4. Discussion 

In this study, we developed a new approach using CNNs based on 
multiple regression-normalized gait data acquired through wearable 
sensors and the response to levodopa medication to classify and 
discriminate IPD and VaP gait profiles. 

Following the normalization analysis, walking speed emerged as the 
final result of several spatial and temporal gait variables, thus justifying 
the use of speed in our MR models to predict other spatial and temporal 
variables (see Table 2). Indeed, previous studies have demonstrated that 

speed is correlated with most spatial and temporal gait variables (Bejek 
et al., 2006; Wahid et al., 2015; Wahid et al., 2016; Mikos et al., 2018), 
and differences between groups (healthy subjects versus osteoarthritis 
patients (Zeni and Higginson, 2009)) may even be significantly diluted 
after speed is taken into account. Overall, this supports the opinion that 
the definition of normality ranges for all gait variables should always be 
defined with reference to walking speed (Kirtley et al., 1985). Addi-
tionally, stride length was included as an independent variable for the 
development of the MR models. Stride length has been shown to affect 
some gait variables, more specifically foot clearance (Alcock et al., 2018; 
Ferreira et al., 2019). Our results corroborate this hypothesis, since the 
selected MR models for strike angle, lift-off angle, and maximum toe 
clearance 2 include stride length as an independent variable (Table 2). 
Furthermore, the MR models that best predicted foot clearance patterns 
included stride length as an independent variable. As such, future work 
addressing foot clearance should always take stride length into account. 

The feature importance revealed by RF showed some similarities 
with the Lasso and L-SVM findings, although substantial differences 
were also present. These results might be explained by the fact that RF 
uses bootstrapping (sampling with replacement) to select the samples 
that are used to generate each decision tree. Furthermore, when 
generating each decision tree, only a subset of features is considered at 
each node when searching for the best node split (in the case of this 
study, only four features were considered at each node split). Another 
possible reason for the difference in results might lie in that RF is a 
nonlinear technique, while Lasso and L-SVM are both linear techniques. 
Given these results, if one is to gain sound knowledge of gait features and 
the habits of IPD and VaP populations, one should focus on the features 
that are consistently important across the feature selection techniques 
used: maximum toe clearance 2, cadence, strike angle, peak swing, and 
maximum heel clearance. However, since the gait features are highly 
correlated, it cannot be stated that these five are the only important gait 
features. When analyzing Pearson’s correlation between gait features, 
one can conclude that some features, such as cadence and ground cycle 
duration, are highly correlated; therefore, if cadence is considered an 
important feature, then ground cycle duration should also be an 
important feature. 

CNN classifiers showed higher performance on the off/on state than 
on the off state. These findings are consistent with the common clinical 
observation that VaP patients are less responsive or nonresponsive to 

Table 2 
Resulting multiple linear regression models for the gait variables. The adjusted R2 and Akaike information criterion (AIC) are shown. The independent variables are age 
(A), height (H), speed/velocity (V), sex (S), weight (W) and stride length (SL).  

Gait variable Multiple Linear Regression Model AIC Ajusted R2  

Temporal Variables 
Cycle Duration = + 0.84  − 0.0011⋅A  + 0.372⋅H  − 0.286⋅V     − 143.71 0.771 
Cadence = + 137.86  + 0.128⋅A  − 42.44⋅H  + 33.41⋅V     197.76 0.776 
Stance = + 67.71    − 5.933⋅V     146.57 0.227 
Swing = + 32.28    5.933⋅V     146.57 0.227 
Loading = + 16.72    + 2.68⋅V  + 2.41⋅S  − 0.129⋅W   154.30 0.363 
Foot Flat = + 63.20  + 0.079⋅A   − 17.73⋅V   + 0.162⋅W   190.02 0.662 
Pushing = + 21.81  − 0.067⋅A   + 14.88⋅V   − 0.076⋅W   181.53 0.600 
Double Support = + 35.78    − 11.89⋅V     187.90 0.277 
Spatial Variables 
Stride Length = − 0.23  − 0.0014⋅A  + 0.502⋅H  + 0.611⋅V     − 126.29 0.928 
Peak Swing = + 154.26    + 178.691⋅V     340.04 0.570 
Foot Clearance Variables 
Strike Angle = + 16.14   − 13.82⋅H   + 3.83⋅S   + 22.86⋅SL  195.22 0.515 
Lift-Off Angle = − 28.99  + 0.178⋅A      − 35.40⋅SL  214.51 0.767 
MaxHC = + 0.137  − 0.00065⋅A  + 0.085⋅H   + 0.030⋅S    − 147.28 0.449 
MaxTC1 = + 0.105       − 0.027⋅SL  − 170.17 0.006 
MinTC = + 0.013  + 0.0003⋅A       − 244.59 0.427 
MaxTC2 = + 0.023  − 0.00057⋅A    + 0.024⋅S   + 0.115⋅SL  − 181.17 0.736 

MaxHC: Maximum Heel Clearance; MaxTC1: Maximum Toe Clearance 1; MinTC: Minimum Toe Clearance; MaxTC2: Maximum Toe Clearance 2. 
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levodopa medication (Thanvi et al., 2005; Lehosit, 2015), thus 
improving on the differences observed in patients with IPD. In a recent 
study (Fernandes et al., 2018), multiple layer perceptrons (MLPs) and 
deep belief networks (DBNs) were used for the classification of IPD and 
VaP patients based on gait characteristics (e.g., mean stride length), 
achieving accuracies of 63.88% and 72.81%, respectively. The superior 
classification performance reached in the models presented here may be 
explained by the fact that time series are better able to capture the un-
derlying gait pattern differences between VaP and IPD patients. We 
hypothesize that this may also be explained by the high variability of 
walking events observed in IPD and VaP patients (Ferreira et al., 2019), 

indicative of the increased added value of using time series classifiers. In 
this study, the best CNN classifier was based on five gait features on the 
on/off state selected by the RF-RFE approach, with 86.00% ± 7.12 ac-
curacy, 80.00% ± 16.33 sensitivity, and 90.00%±20.00 specificity. To 
the best of our knowledge, these results achieved by the CNN classifiers 
constitute the best classification performances obtained for the differ-
entiation of IPD and VaP based on gait data. The five gait features 
differentiating VaP from IPD patients were stride length, maximum toe 
clearance 1, lift-off angle, strike angle, and loading. Our observation is 
consistent with previous work, showing that, characteristically, VaP 
patients have a shorter stride length, as well as a shuffling gait, which 

Table 3 
Performance measures obtained with each classifier trained based on the gait variables selected by the recursive feature elimination approach. All performance results 
are in percentage  

Best Model Accuracy Sensitivity Specificity Precision F1 Score 

Off State 
Random Forest - CNN 79.33 ± 6.46  80.00 ± 16.33  76.67 ± 20.00  83.33 ± 13.94  78.29 ± 6.36  
Lasso - CNN 78.67 ± 9.33  86.67 ± 16.33  70.00 ± 16.33  78.33 ± 11.30  77.95 ± 9.81  
Linear SVM - CNN 75.33 ± 10.02  66.67 ± 0.00  83.33 ± 21.08  86.67 ± 16.33  74.71 ± 10.32  
On State 
Random Forest - CNN 82.67 ± 10.62  86.67 ± 16.33  76.67 ± 20.00  83.33 ± 13.94  81.71 ± 10.90  
Lasso - CNN 78.67 ± 9.33  86.67 ± 16.33  70.00 ± 16.33  78.33 ± 11.30  77.95 ± 9.81  
Linear SVM - CNN 75.33 ± 10.02  80.0 ± 16.33  70.0 ± 16.33  76.67 ± 12.25  74.71 ± 10.32  
Off/On State 
Random Forest - CNN 86.00 ± 7.12  80.00 ± 16.33  90.00 ± 20.00  95.00 ± 10.00  84.95 ± 7.95  
Lasso - CNN 82.67 ± 10.62  86.67 ± 16.33  80.00 ± 16.33  83.33 ± 13.94  82.48 ± 10.62  
Linear SVM - CNN 82.67 ± 10.62  86.67 ± 16.33  80.00 ± 16.33  83.33 ± 13.94  82.48 ± 10.62   

Fig. 2. Selection of optimal number of gait features (left) and feature importance results (right) obtained based on Random Forest feature importance, Least absolute 
shrinkage and selection operator (Lasso) coefficients and Support Vector Machine Linear Kernel coefficients. 
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causes foot clearance impairments; in contrast, IPD patients display 
higher stride length, speed, and foot clearance measures (Thompson and 
Jankovic, 1999; Lehosit, 2015; Ferreira et al., 2019). 

Our work has some limitations that should be addressed. First, the 
regression models were based on a small control dataset, and only the 
independent variables presenting a linear correlation with each gait 
characteristic were considered. However, we noted that the same linear 
correlations were observed in the patient group, albeit with lower 
strength. Improved predictability of the regression models may be ob-
tained with a larger number of control subjects. An additional limitation 
is that the present findings show good classification performance using 
the proposed approach only in the context of moderate stages of Par-
kinson’s disease (Hoehn-Yahr < 3). Parkinson’s disease is a progressive 
neurodegenerative disease that develops over several years and, on 
average, for more than a decade (Poewe et al., 2017). Typically, in early 
Parkinson’s disease phases, patients present mild unilateral parkinso-
nian symptoms (e.g., bradykinesia, tremor and rigidity). Only after 
several years, in its moderate stages, do patients begin to present 
postural and gait impairments, although independent mobility is still 
preserved. In the absence of biological and imaging biomarkers, this 
clinical picture of a slowly progressive disorder is still the milestone of 
the differential diagnosis of Parkinson’s disease and atypical parkinso-
nian disorders, such as VaP. In routine daily practice, it is still not un-
common for patients to seek medical assistance only during the 
moderate stages of Parkinson’s disease, which, compounded by a lack of 
background history and future uncertainty, highlights the critical 
importance of clinical diagnosis. Moreover, since cerebrovascular dis-
ease is such a common medical phenomenon in the general population, 
there is growing evidence that patients may present mixed pathology (e. 
g., neurodegeneration caused by Parkinson’s disease aggravated by 
vascular pathology (Rektor et al., 2018)). As such, even though the 
proposed approach may lack reproducibility in the early and late stages 
of Parkinson’s disease, it is worthy of consideration for the moderate 
stages of Parkinson’s disease, a phase during which a differential diag-
nosis of atypical parkinsonian disease will prove to be very important. 

5. Conclusion 

We have shown that the proposed framework using CNN classifiers 
based on gait variables and the response to levodopa can support the 
differential diagnosis between VaP and IPD with high accuracy. In this 
respect, time series gait analysis may better reflect stride inconsistency 
and variability related to cognitive dysfunction and/or the loss of 
automaticity, which is subjacent to different parkinsonism syndromes. 
Further studies using larger datasets of IPD and VaP patients are 
necessary to better corroborate the results regarding the set of gait 
variables that would best constitute potential biomarkers and their 
intercorrelation with higher-order cognitive dysfunction. Moreover, the 
results show that the proposed approach can discriminate the two 
overlapping pathologies with great accuracy, which justifies its appli-
cation and evaluation in the discrimination of other movement 
disorders. 
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Leeuw, F.E., Pirtošek, Z., Rektorová, I., Schlesinger, I., Slawek, J., 2018. An updated 
diagnostic approach to subtype definition of vascular parkinsonism- 
Recommendations from an expert working group. Parkinsonism & related disorders. 
1 (49), 9–16. Apr.  

Senden, R., Meijer, K., Heyligers, I.C., Savelberg, H.H.C.M., Grimm, B., 2012. Importance 
of correcting for individual differences in the clinical diagnosis of gait disorders. 
Physiotherapy. 98 (4), 320–324. 

Senek, M., Aquilonius, S., Askmark, H., Bergquist, F., Constantinescu, R., Ericsson, A., 
Lycke, S., Medvedev, A., Memedi, M., Ohlsson, F., Spira, J., Westin, J., Nyholm, D., 
2017. Levodopa/carbidopa microtablets in Parkinson’s disease: a study of 
pharmacokinetics and blinded motor assessment. European journal of clinical 
pharmacology 73 (5), 563–571. 

Tabachnick, B.G., Fidell, L.S., Ullman, J.B., 2007. Using multivariate statistics. Pearson, 
Boston, MA. Vol.  

Tahir, N.M., Manap, H.H., 2012. Parkinson Disease Gait Classification based on Machine 
Learning Approach. J. Appl. Sci. Faisalabad (Faisalabad) 12, 180–185. 

Thanvi, B., Lo, N., Robinson, T., 2005. Vascular parkinsonism—an important cause of 
parkinsonism in older people. Age and ageing. 34 (2), 114–119. Mar 1.  

Thomas, I., Westin, J., Alam, M., Bergquist, F., Nyholm, D., Senek, M., Memedi, M., 2017. 
A treatment-response index from wearable sensors for quantifying Parkinson’s 

disease motor states. IEEE journal of biomedical and health informatics. 22 (5), 
1341–1349. 

Thompson, J., Jankovic, J., 1999. Clinical correlates of vascular parkinsonism. Archives 
of neurology. 56 (1), 98–102. Jan 1.  

Wahid, F., Begg, R.K., Hass, C.J., Halgamuge, S., Ackland, D.C., 2015. Classification of 
Parkinson’s disease gait using spatial-temporal gait features. IEEE journal of 
biomedical and health informatics. 19 (6), 1794–1802. Jun 29.  

Wahid, F., Begg, R., Lythgo, N., Hass, C.J., Halgamuge, S., Ackland, D.C., 2016. 
A multiple regression approach to normalization of spatiotemporal gait features. 
Journal of applied biomechanics. 32 (2), 128–139. Apr.  

Wang, J., Chen, Y., Hao, S., Peng, X., Hu, L., 2019. Deep learning for sensor-based 
activity recognition: A survey. Pattern Recognition Letters. 119, 3–11. 

Zeni Jr, J.A., Higginson, J.S., 2009. Differences in gait parameters between healthy 
subjects and persons with moderate and severe knee osteoarthritis: a result of altered 
walking speed? Clinical biomechanics. 24 (4), 372–378. May.  
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