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Abstract: Three heterocyclic dyes were synthesized having in mind the changes in the photovoltaic,
optical and redox properties by functionalization of 5-aryl-thieno[3,2-b]thiophene, 5-arylthiophene
and bis-methylpyrrolylthiophene π-bridges with different donor, acceptor/anchoring groups. Kno-
evenagel condensation of the aldehyde precursors with 2-cyanoacetic acid was used to prepare
the donor-acceptor functionalized heterocyclic molecules. These organic metal-free dyes are con-
stituted by thieno[3,2-b]thiophene, arylthiophene, bis-methylpyrrolylthiophene, spacers and one
or two cyanoacetic acid acceptor groups and different electron donor groups (alkoxyl, and pyrrole
electron-rich heterocycle). The evaluation of the redox, optical and photovoltaic properties of these
compounds indicate that 5-aryl-thieno[3,2-b]thiophene-based dye functionalized with an ethoxyl
electron donor and a cyanoacetic acid electron acceptor group/anchoring moiety displays as sen-
sitizer for DSSCs the best conversion efficiency (2.21%). It is mainly assigned to the higher molar
extinction coefficient, long π-conjugation of the heterocyclic system, higher oxidation potential and
strong electron donating capacity of the ethoxyl group compared to the pirrolyl moiety.

Keywords: heterocyclic push-pull dyes; thiophene; pyrrole; dye-sensitized solar cells; auxiliary
donor/acceptor heterocycles; synthesis

1. Introduction

Solar energy is a stimulating option for a renewable energy source, among others
available, owing to its abundance, simplicity and ability for direct conversion into electric-
ity [1,2].

Dye-sensitized solar cells (DSSCs) belong to the third-generation photovoltaic (PV)
devices [3], recently achieving a certified photocurrent conversion efficiency (PCE) of
13% [4]. Although the 1-Sun PCE of DSSCs is lower when compared to other emerging
PVs and conventional Si [5], DSSCs are attracting much research interest due to good
performance under dim and diffused light, possibility to produce semi-transparent and
flexible modules, simple architecture, sustainable components and low manufacturing
cost [6–22]; it makes DSSCs very feasible for building-integrated PV glazing [3,6].

Nowadays, with the rapidly increasing number of low-power wireless communication
devices, the Internet of Things (IoTs), the development of cordless powering for them
has become imperative [23,24]. DSSCs are perfectly fitted for indoor use to address this
challenge [25,26]: they display one of the highest among other PV technologies PCE under
artificial light—a record of 34.5% of PCE under 1000 lx light was attained recently [4].
DSSCs are safe for residential use as they are free from toxic soluble lead or tin compounds;
they can be produced with several true colors and have an attractive appearance for nice
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and harmonic interior integration. DSSCs devices have started entering the market of
indoor PVs [26,27].

The development of new metal-free organic dyes for DSSCs takes much research effort,
as properly designed and produced organic dye can display several advantages compared
to traditional Ru-complexes [28–33], which are high molar extinction coefficients, easy and
cheap synthesis and purification processes and variety and facility of structure alterations,
which originate vast options for straightforward tuning of the optoelectronic properties.

Usually, the organic dyes applied have a push-pull structure (donor–π-bridge–acceptor/
anchoring group), which promotes charge separation and transfer from the ground to
the excited state, wide-ranging spectral sensitivity, photostability, controlled aggregation
and charge recombination, appropriate Highest Occupied Molecular Orbital (HOMO) and
Lowest Unoccupied Molecular Orbital (LUMO) electronic energies and an anchoring group
for binding to the surface of a semiconductor [7–22,34–36].

Several studies reveal that heterocyclic molecules of the donor-acceptor type are
generally easy to synthesize. Additionally, the introduction of heterocycles with variable
electronic structure (electron-deficient or rich) and low aromaticity, into the π-conjugated
molecules are used to tune their optoelectronic and photovoltaic properties and improve
their thermal and photochemical stability. It is also well known that the position of the
heterocyclic nuclei on the π-spacers is an important factor. Both types of heterocycles,
electron-rich, such as thiophene and pyrrole, and electron-deficient, such as azole and azine
derivatives, i.e., (benzo)thiazole benzothiadiazole, pyridine, etc., can act simultaneously as
π-bridges and electron donors or acceptors, respectively [37–53].

Consequently, in the previous two decades, a large amount of investigation regarding
the structure/properties relationship of push-pull molecules have been reported due their
applications in photovoltaic devices [1–27], nonlinear optics [37,54], Organic Light Emitting
Diodes (OLEDs) [55], organic field-effect transistors (OFETs) [56], near infrared absorbing
(NIR) dyes [57], etc.

Metal-free heterocyclic dyes bearing functionalized thiophene spacers (oligothio-
phenes, fused thiophenes, etc.) are usually the most efficient reported sensitizers for
DSSC due to their excellent conjugation, charge-transfer properties and smaller geometry
relaxation energy [1–27,58–61]. On the other hand, the pyrrole heterocycle has more rarely
been used as a conjugated spacer in organic dyes [22,46,62–70], possibly due to its instabil-
ity, even though it possesses a smaller resonance energy, and could be easily functionalized,
not only on the 2-position, but also through the substitution reactions on the N–H bond.
In fact, our recent research [39–44,46] as well as reported results of other investigators
revealed that the stability of these push-pull systems could be enhanced and their optical
and electrochemical properties could be finely adjusted by inserting a pyrrole heterocycle
into a π-conjugated system and by alkylation or arylation of the nitrogen of the pyrrole
heterocycle [63,64,66–69].

Several acceptor/anchoring moieties, such as phosphoric and sulfonic acid, rhodanine-
3-acetic acid, aldehyde, pyridine, etc., can be used in DSSCs. Nevertheless, the most used
is carboxylic acid in the form of cyanoacetic acid, due to its stability, easy synthesis and
higher photovoltaic efficiencies. These results can be explained due to the coplanarity
of this anchoring group with the π-bridge as well as the good coupling with titanium
dioxide. It was also demonstrated that correctly designed organic dyes functionalized
with two anchors are advantageous to light harvesting, electron (or hole) injection and
dark current suppression and they are expected to have better temporal stability on the
surface of the electrode compared with the corresponding dyes bearing a single anchoring
group [19,22,34–36,48,71].

Earlier, we have communicated the synthesis and application of heterocyclic push-
pull sensitizers for DSSCs with several combinations of π-spacers, electron donor and
acceptor/anchoring moieties (Figure 1) [46–50].
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Figure 1. Push-pull heterocyclic sensitizers for DSSCs [46–50].

Taking into account our knowledge on the modification of electrochemical, optical
and photovoltaic characteristics of push-pull molecules through the auxiliary electron
acceptor or donor effect of heterocycles [39–50], as well as previous studies reported
by other groups [7–22,33–36,63–70], we are expanding the research to the preparation
of three thiophene and pyrrole-based donor-acceptor heterocyclic molecules. The novel
push-pull dyes are constituted by 5-aryl-thieno[3,2-b]thiophene, 5-arythiophene and bis-
methylpyrrolylthiophene π-bridges, with one or two cyanoacetic acid anchoring groups,
and different electron-donor moieties (ethoxyl and pyrrole electron-rich heterocycle). Opti-
cal and electrochemical properties, as well as the efficacy in DSSCs, are assessed.

2. Materials and Methods
2.1. General

N-Methyl-2-pyrroleboronic acid pinacol ester, 2,5-dibromothiophene and 2-cyanoacetic
acid were from Aldrich. All commercially reagents, solvents were used without purification.
Precursors 5-(4′-(diethoxy)phenyl]thieno[3,2-b]thiophene-2-carbaldehyde 3 [72] and 5-(4′-
(1H-pyrrol-1′′-yl)phenyl)thiophene-2-carbaldehyde 4 [41] were synthesized by us using the
experimental procedures described before. Thin-layer chromatography visualization under
Ultraviolet-Visible UV light was used to monitor the reaction progress. The purification
using silica gel chromatography and the characterization of the dyes, through melting point
data, Nuclear Magnetic Resonance (NMR) and UV-visible spectra as well as the study of
the redox properties, were obtained as described elsewhere [46,47,50,73].

2.2. Synthesis
2.2.1. General Procedure for the Synthesis of Precursor 1 through Suzuki-Miyaura
Cross-Coupling

2,5-Dibromothiophene (0.241 g, 1.0× 10−3 mol) was coupled with 1-methyl-1H-pyrrol-
2-yl)boronic acid pinacol ester (0.580 g, 2.4× 10−3 mol), in a mixture of 1,2-dimethoxyethane
(DME) (8 mL), ethanol (2 mL), aqueous 2 M Na2CO3 (1.7 mL) and Pd(PPh3)4 (0.029 g,
3 mol%) at 85 ◦C under nitrogen. The reaction time (24 h) was determinate by thin
layer chromatography (TLC). The reaction mixture was extracted, after cooling, with
dichloromethane (3 × 20 mL), followed by extraction with a saturated solution of NaCl
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(20 mL). After the separation of the phases the organic layer was washed with water
(3 × 10 mL) and with a solution of NaOH (10%) (10 mL). The organic phase obtained was
dried (MgSO4) and filtered, and the solvent was removed, giving a crude mixture which
was purified using a silica gel chromatography column and mixtures of dichloromethane
and light petroleum of increasing polarity affording the pure coupled product 1 [74] .

2,5-bis(N-Methyl-1H-pyrrol-2-yl)thiophene 1. Light green oil (90%). 1H NMR (DMSO-
d6, 400 MHz) δ 3.74 (s, 6H, 2x NCH3), 6.04–6.05 (m, 2H, 2x H-4′), 6.24–6.25 (m, 2H, 2x H-3′),
6.85–6.86 (m, 2H, 2x H-5′), 7.09 (d, 2H, 3- and 4-H, J = 4.0 Hz) ppm.

2.2.2. General Procedure for the Synthesis of Aldehyde 2 by Vilsmeier-Haack Formylation

POCl3 (0.460 g, 3.0 × 10−3 mol.) was added to DMF (0.219 g, 3.0 × 10−3 mol) at
0 ◦C and the mixture was stirred for 5 min at 0 ◦C. Subsequently, precursor 1 (0.242 g,
1.0 × 10−3 mol.), dissolved in DMF (2 mL), was added dropwise with stirring. The reaction
mixture was heated at 60 ◦C during 4 h, after which the solution was cooled down to
room temperature and then transferred gradually into 10 mL of saturated sodium acetate
aqueous solution and stirred during 30 min. The organic layer obtained was diluted with
dichloromethane (25 mL), washed with saturated NaHCO3 aqueous solution (2 × 25 mL)
and dried with anhydrous MgSO4. The crude aldehyde 2 was obtained after evaporation
of the organic solvent under reduced pressure and its purification was made using a silica
gel chromatography column with mixtures of dichloromethane and light petroleum ether
with increasing polarity.

5,5′-(Thiophene-2,5-diyl)bis(1-methyl-1H-pyrrole-2-carbaldehyde 2. Yellow solid (50%).
1H NMR (DMSO-d6, 400 MHz) δ 4.05 (s, 6H, 2x NCH3), 6.58 (d, 2H, 2x H-4, J = 4.4 Hz),
7.10 (d, 2H, 2x H-3, J = 4.0 Hz), 7.52 (s, 2H, H-3′, H-4′), 10.9 (s, 2H, 2x CHO). MS (ESI)
m/z (%) = 299 ([M + H]+, 100). HMRS: m/z (ESI) found [M + H]+ 299.0860; C16H15N2O4S
requires 299.0854.

2.2.3. General Procedure for the Synthesis of Dyes 5–7 by Knoevenagel Condensation of
Aldehydes 2–4 with 2-Cyanoacetic Acid

Four drops of piperidine were added to ethanol solution of the aldehydes 2–4 (0.2× 10−3 mol)
and 2-cyanoacetic acid (0.022 g, 0.26 × 10−3 mol). The solution was stirred at reflux during
6 h. After this time the cooled mixture was evaporated to dryness. Recrystallization from
diethyl ether gave the pure products. A similar experimental procedure was used for the
synthesis of dye 7, but in this case, 0.65 × 10−3 mol of 2-cyanoacetic acid was used.

2-Cyano-3-(5′-(4′′-ethoxyphenyl)thieno[3,2-b]thiophen-2′-yl)acetic acid 5. Orange solid
(26%). Mp: 199–200 ◦C λmax (Ethanol)/nm 399 (ε, M−1cm−1 31,370). 1H NMR (DMSO-d6,
400 MHz) δ 1.32 (t, 3H, CH3, J = 6.9 Hz), 4.04 (q, 2H, CH2, J = 6.9 Hz), 7.00 (d, 2H, H-3′′, H-5′′,
J = 8.8 Hz), 7.63 (d, 2H, H-2′′, H-6′′, J = 8.8 Hz), 7.82 (s, 1H, H-3′), 7.98 (s, 1H, H-6′), 8.11 (s,
1H, H-3) ppm. Infrared (IR) (Nujol): υ 2206 (C≡N), 1615 (C=O) cm−1. Mass Spectrometry
(MS) (ESI) m/z (%) = 358 ([M + H]+, 100). High Resolution Mass Spectra (HMRS): m/z (ESI)
found [M + H]+ 358.0580; C18H16NO3S2 requires 358.0571.

2-Cyano-3-(5′-(4′′-(1H-pyrrol-1′′′-yl)phenyl)thiophen-2′-yl)acetic acid 6. Light brown
solid (32%). Mp: 223–225 ◦C. λmax (ethanol)/nm 379 (ε/dm3 mol−1 cm−1 26,858). 1H NMR
(DMSO-d6, 400 MHz) δ 6.28 (2H, tap, H-3′′′, H-4′′′, J = 4.4 Hz), 7.43 (2H, tap, H-2′′′, H-5′′′,
J = 4.4 Hz), 7.63–7.78 (6H, m, H-3′, H-4′, H-2′′, H-3′′, H-5′′, H-6′′), 8.07 (1H, s, H-3) ppm.
13C NMR (DMSO-d6, 400 MHz) δ 98.2, 111,1, (2 C), 116,5, 118,9 (2 C), 119,7 (2C), 125.0,
127.6, 129.0, 134.4, 140.5, 141.5, 146.6, 152.0, 163.6 ppm. MS (ESI) m/z (%) = 321 ([M + H]+,
13), 259 (16), 127 (14), 86 (100). HMRS: m/z (ESI) found [M + H]+ 321.0687; C18H13N2O2S
requires [M + H]+ 321.0692.

3,3-(Thiophene-2′′,5′′-diylbis(1′-methyl-1H-pyrrole-5′,2′-diyl))bis(2-cyanoacetic acid) 7.
Black solid (48%). Mp: 207–209 ◦C. λmax (DMSO)/nm 432 (ε/dm3 mol−1 cm−1 17,517). 1H
NMR (DMSO-d6, 400 MHz) δ 3.83 (6H, s, 2x CH3), 6.65 (2H, s, 2x H-4′), 7.38 (2H, d, H-3′,
J = 4.0 Hz), 7.42 (2H, s, H-4′′, H-5′′), 8.00 (2H, s, H-3) ppm. MS (ESI) m/z (%) = 433 ([M + H]+,
100), 102 (2). HMRS: m/z (ESI) found [M + H]+ 433.0965; C22H17N4O4S requires 433.0970.
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2.3. Preparation and Characterization of DSSCs

The efficacy of new dyes as photosensitizers in DSSCs was assessed. DSSCs were
assembled and characterized using procedures described in [50]. Five cells were prepared
for each dye and the average parameters are presented.

3. Results and Discussion
3.1. Design, Synthesis and Characterization of Dyes 5–7 and for the Aldehyde Precursor 2

Three novel donor-acceptor heterocyclic dyes 5–7 bearing diverse π-spacers consti-
tuted by aryl, thiophene and pyrrole nuclei, and different donor groups were produced,
keeping in mind the evaluation of their redox, optical and photovoltaic behavior. It is
well known that the synthesis and the study of the structure–photovoltaic performance
relationship of new metal free organic dyes in DSSCs is of great importance for under-
standing the prospects of this dyes for application in DSSCs. Moreover, the synthesis and
evaluation of novel heterocyclic dyes in which the pyrrole heterocycle is functionalized
in positions 1 or 2 performing simultaneously the role of auxiliary electron donor group
and π-spacer, are of great interest in order to disclose the best design for application as
sensitizers for DSSCs. Therefore, 5-aryl-thieno[3,2-b] thiophene 5, pyrrolylphenylthiophene
6 and bis-methylpyrrolylthiophene 7 derivatives, were synthesized and purified through
simple synthetic and isolation procedures (Schemes 1 and 2).
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The aldehyde precursors 2–4 were prepared using several synthetic methodolo-
gies developed by our research group. Therefore, aldehyde 2 was synthesized in 50%
yield, by Vilsmeier formylation of the precursor 2,5-bis(N-methyl-1H-pyrrol-2-yl)thiophene
1 [74], which in turn was prepared by Suzuki-Myiaura coupling, in 90% yield, of 2,5-
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dibromothiophene with 1-methyl-1H-pyrrol-2-yl) boronic acid, both commercially available
(Scheme 1).

On the other hand, compounds 3 [72] and 4 [41] were prepared directly through
Suzuki-Miyaura cross coupling, as described recently by our group of investigation.

Knoevenagel condensation was used for the synthesis of donor-acceptor heterocyclic
dyes 5–7 (Scheme 2). Therefore, aldehyde precursors 2–4 and 2-cyanoacetic acid were
refluxed for 6 h in ethanol with the addition of four drops of piperidine as a catalyst.

Standard spectroscopic techniques were used to characterize the metal-free organic
dyes 5–7 (Table 1). 1H NMR spectra for all compounds showed the characteristic singlet of
the vinylic-H, which indicates the presence of the ethylenic spacer in these molecules.

Table 1. Reaction yields and data from UV-Vis spectra and 1H NMR for push-pull heterocyclic
dyes 5–7.

Dye Yield (%)
UV-Vis 1 1H NMR 2

λmax (nm) ε (M−1cm−1) Hvinylic (ppm)

5 20 399 31,370 8.11
6 32 379 26,858 8.07
7 48 432 17,517 8.00

1 UV-Vis spectra were performed in ethanol for all compounds, except for compound 7, where DMSO was used.
2 For all compounds, NMR spectra were recorded in DMSO-d6.

Absorption spectra in the UV-Vis range for the four push-pull heterocyclic dyes
synthesized was recorded, at room temperature, in an ethanol solution for dyes 5 and 6,
and in a DMSO solution for dye 7 due to solubility issues in other solvents (Figure 2). All
compounds exhibit a strong and broad absorption band, with the maximum absorption
dependent on the electronic properties of the donor group, strength for electron withdraw
of the anchoring group and overall π-conjugation of the molecule. Dye 6 exhibited the
shorter wavelength of 379 nm, which might be attributed to the presence of the pyrrole
heterocycle as the donor moiety; this is because the nitrogen electron pair is not available
for delocalization in the push-pull system due to its involvement in the aromatic system,
resulting in a higher electronic band gap [41,46,69,75]. Additionally, this dye has a small
conjugation due to its π-spacer constituted by an arylthiophene unit [52]. Dye 7 showed an
absorption band centered at 432 nm. An additional absorption band in the long wavelengths
manifests itself with an absorption peak at 698 nm. The band with a peak at 432 nm is
originated from π-π* transition in the conjugated system; the band centered at 698 nm
could be assigned to the absorption by 2,5-bis(N-methyl-1H-pyrrol-2-yl)thiophene moiety.
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3.2. Electrochemical Study

The energy levels of the LUMO and HOMO of the dye play an important role for
sensitization of DSSCs. For electron injection from the LUMO of a dye into TiO2 its energy
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level should be higher than the conduction band edge of semiconductor. Oxidized form of
the dye is regenerated only when the energy level of HOMO is below equilibrium potential
of the redox couple used. Cyclic voltammetry provided information on the oxidation and
reduction potentials for dyes 5–7, HOMO and LUMO energies [76] and their band gaps
calculated as ELUMO−EHOMO [77] (Table 2).

Table 2. Reduction and oxidation potentials; HOMO and LUMO energies and band gaps for dyes 5–7.

Dye Reduction 1

(V)
Oxidation 1

(V)
EHOMO

2

(eV)
ELUMO

2

(eV)
Band Gap 3

(eV)

5 −1.65 0.83 −5.22 −2.74 2.48
6 −1.96 0.53 −4.92 −2.43 2.49
7 −1.91 0.25 −4.64 −2.48 2.16

1 Measured in 1.0 mM solution of the dye in dry DMF with the addition of 0.1 M of [NBu4][BF4]. Scan rate
of potential 0.1 V s−1. Potentials (E) are given vs. Fc+/Fc redox coupl. 2 ELUMO = −(Ered + 4.39) (eV) and
ELUMO = −(4.39 + Eox) (eV) [46,73,76]. 3 Calculated as ELUMO−EHOMO [77].

The reduction potential for all dyes 5–7 is at −1.65, −1.96 and −1.91 V, respectively
(for details, please see the Figures S1–S3), which is less than the TiO2 conduction band
energy (−0.50 V), meaning that the injection of electrons from LUMO of the dye into TiO2
is permitted energetically [78]. The equilibrium potential of I3

−/3I− redox pair is 0.42 V,
which indicates that dyes 5 and 6, with oxidation potentials of 0.83 and 0.53 V, respectively,
will accept electrons from I−, and thus, return to their initial state. Dye 5 has higher
oxidation potential than dye 6 and it is regenerated easier. The oxidation potential of dye 7
(0.25 V) is much lower than that of the I3

−/3I− redox pair. Therefore, dye regeneration is
thermodynamically unfavorable.

3.3. Evaluation of DSSCs Performance

Figure 3a presents photocurrent-voltage (I–V) curves of the DSSCs employing as
sensitizers the dyes 5–7. All the DSSCs show typical photodiode behavior. From I–V
curves, the key parameters of photovoltaic performance (efficiency, η; fill factor, FF; short-
circuit current density, JSC and open circuit voltage, VOC) of the DSSCs were calculated and
presented in Table 3.
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The lowest efficiency of DSSCs was observed for the cell sensitized with dye 6
(0.13%). The lowest values of open circuit voltage (0.37 V) and short-circuit current den-
sity (0.64 mA·cm−2) were also observed for the DSSC sensitized with dye 6. This is in
accordance with data obtained by cyclic voltammetry—the regeneration of the dye to its
fundamental state being inefficient will hinder the injection of electrons into the semicon-
ductor. Quantum yield of the photocurrent in the DSSC sensitized with dye 6 is less than
10% in spectral region above 370 nm (Figure 3b), confirming the low ability of photoexcited
dye to inject electrons into TiO2.

Dye 7 exhibited an intermediate performance as a sensitizer with a DSSC photovoltaic
efficiency of 0.40%. The best efficiency of this series of DSSCs, 2.21%, was achieved using
dye 5. The IPCE response of this cells is significantly higher and broads up to 580 nm.
Such a feature is attributed to the strong anchoring and electron withdrawing ability of
the 2-cyanoacetic acid, long π-conjugation of the heterocyclic system and the high molar
extinction coefficient of the dye (31,370 M−1cm−1).

4. Conclusions

Three donor-acceptor heterocyclic dyes 5–7 bearing diverse π-spacers (aryl, thiophene,
pyrrole), and different number of anchoring groups, were prepared having in mind the
evaluation of the redox and optical properties as well as the photovoltaic performance
in DSSCs. All heterocyclic dyes were synthesized by a combination of several method-
ologies, such as Suzuki-Miyaura cross coupling, Vilsmeier formylation, and Knoevenagel
condensation, and characterized using standard spectroscopic techniques.

The absorption spectroscopy study of all compounds exhibited strong and broad
bands of absorption, with the wavelength of maximum absorption dependent on the ability
for donation of electrons of the donor group, the strength of the acceptor/anchoring group
to withdraw electrons, and on the overall π-conjugation of the dye.

The prepared dyes were used as sensitizers in nanocrystalline TiO2 DSSCs, reveal-
ing photovoltaic conversion efficiencies in the range of 0.13%–2.21%. Dye 5, based on
aryl-thieno[3,2-b]thiophene spacer, functionalized with an ethoxyl donor group and a
cyanoacetic acid anchoring moiety/electron acceptor group, exhibited the highest overall
conversion efficiency (2.21%) as sensitizer, which is ascribed to long π-conjugation of the
heterocyclic system, higher oxidation potential, higher molar extinction coefficient and
strong withdrawing of electrons and anchoring ability of the cyanoacetic acid. Electrochem-
ical study of dyes 5–7 by cyclic voltammetry revealed that for dye 7, the oxidation potential
is lower than that of the redox couple I−/I3

−, indicating an inefficient regeneration of this
dye from its oxidized state.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/coatings12010034/s1. Figure S1. Cyclic voltammetry plots of
compound 2-cyano-3-(5′-(4′′-ethoxyphenyl)thieno[3,2-b]thiophen-2′-yl)acetic acid (5), in dry DMF
(C = 10−4 M); Figure S2. Cyclic voltammetry plots of compound 2-cyano-3-(5′-(4′′-(1H-pyrrol-1′′′-
yl)phenyl)thiophen-2′-yl)acetic acid (6), in dry DMF (C = 10−4 M); Figure S3. Cyclic voltammetry
plots of compound 3,3-(thiophene-2′′,5′′-diyl-bis(1′-methyl-1H-pyrrole-5′,2′-diyl))-bis(2-cyanoacetic
acid) (7), in dry DMF (C = 10−4 M). All the experiments were performed using glassy carbon as
working electrode, a platinum wire as counter electrode, and acetonitrile Ag/Ag+ electrode as
reference. [NBu4][BF4] (0.1 M) was used as supporting electrolyte and the collected data were
referenced to the potential of Fc/Fc+ couple.
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