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Abstract
The involvement of a carboxylase in metabolism of C-2 alkenes by Ochrobactrum sp. strain TD and Pseudomonas putida strain AJ was

examined. With resting cells of strain TD grown on vinyl chloride, ethene, and ethylene oxide, the maximum specific rate of ethylene oxide

consumption decreased significantly in the absence of external CO2 in comparison to cells provided with room air or added CO2. The amount of
14CO2 incorporated into biomass by resting cells of strain TD grown on ethylene oxide increased more than 13-fold when the assay substrate was

ethylene oxide versus acetate. These results indicate that strain TD uses a carboxylase. Similar experiments were performed with strain AJ with the

results suggesting that a carboxylase is not involved. In this regard, strain AJ is more similar to various Mycobacterium isolates that also do not

appear to use a carboxylase during metabolism of vinyl chloride and ethene.
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1. Introduction

The involvement of coenzyme M (CoM) during aerobic

metabolism of propylene has been demonstrated in Xantho-

bacter strain Py2 and Rhodococcus rhodochrous strain B276.

The pathway involves epoxyalkane:CoM transferase, dehy-

drogenase, and oxidoreductase and carboxylase reactions,

yielding acetoacetate as a product [1–4]. The monooxygenase

and epoxide carboxylase genes for catabolism of propylene are

located on a large linear plasmid (320 kb), although these genes

are not clustered together [5]. Catabolism of acetone, an isomer

of propylene oxide (PrO), also involves carboxylase activity

under aerobic and anaerobic conditions [6].

Various bacteria have been isolated that use vinyl chloride

(VC) and ethene as sole sources of carbon and energy under

aerobic conditions, including several strains of Pseudomonas

[7–9] and Mycobacterium [10], one strain of Nocardioides [10],

one strain of Ralstonia [28], and one strain of Ochrobactrum

[9]. As with propylene, CoM is involved in the catabolic
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pathway for ethene and VC in several strains of Mycobacterium

[11,12] and in one strain each of Pseudomonas, Ochrobactrum

[13], and Nocardioides [14]. Coleman and Spain [12]

demonstrated that the product of epoxyalkane:CoM transferase

from ethylene oxide (EtO) is 2-hydroxyethyl-CoM, although

they did not evaluate the pathway beyond this intermediate. 2-

Chloro-2-hydroxyethyl-CoM was predicted to be the product

from VC-epoxide. No evidence was found for the presence of

epoxide carboxylase genes near the epoxyalkane:CoM trans-

ferase gene in Mycobacterium strain JS60. Conversion of

hydroxyethyl CoM to acetyl CoA was predicted to proceed

without incorporation of CO2 [12], as first suggested based on

biochemical studies with Mycobacterium strain E20 [15].

Sequencing results for linear plasmid DNA from Nocar-

dioides strain JS614 revealed several genes involved in alkene

metabolism including an alkene monooxygenase, epoxyalk-

ane:CoM transferase, CoA transferase, acyl-CoA synthetase,

dehydrogenase, reductase, and possible CoM biosynthesis

genes [14]. New evidence suggests that a carboxylase-like

protein was expressed in response to VC, ethene, and ethylene

oxide in Nocardioides strain JS614 [16]. However, no direct

biochemical tests were conducted for the presence of a

carboxylase in strain JS614.
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Because CoM is involved in aerobic catabolism of VC,

ethene, and EtO, we hypothesized that carboxylase activity

may be involved in the pathway for some of the microbes that

utilize these substrates, analogous to what occurs with

propylene in strains B276 and Py2. We evaluated Ochrobac-

trum sp. strain TD and P. putida strain AJ, which we previously

isolated and characterized with respect to growth on VC,

ethene and EtO [9] and the involvement of CoM in the

degradation pathway [13].
2. Materials and methods

2.1. Chemicals and media

VC gas (99.5%) was purchased from Fluka (Milwaukee, WI); ethene

(99.9%) from Matheson (Montgomeryville, PA); and EtO (99.5%) and PrO

(99%+) from Sigma–Aldrich (Milwaukee, WI). NaH14CO3 was purchased from

ICN Radiochemicals (50 mCi/mmol) (Irvine, CA). All other chemicals used

were of reagent grade. The mineral salts medium used to grow strains AJ and

TD is described in Hartmans et al. [17], except that the amount of (NH4)2SO4

was reduced to 0.67 g l�1. No vitamins or other complex growth factors were

added to the mineral salts medium. The nitrate mineral salts medium used for

growth of R. rhodochrous strain B276 is described in Whittenbury et al. [18].

2.2. Analytical methods

The total amount of VC, ethene, EtO, propylene, and PrO in culture and

serum bottles was determined by gas chromatographic analysis of headspace

samples, as previously described [7]. Protein was measured in the supernatants

using the bicinchoninic acid–copper assay with bovine serum albumin as a

standard [19]. Protein concentrations were determined by lysing cells at 65 8C
for 30 min in 3 M NaOH, neutralizing with 1 M HCl, and centrifugation

(10 min at 15,000 rpm; Sorvall Microspin 24S).

Glucose was measured by chemical oxygen demand using the Hach method

(Hach Company, Loveland, CO; kit range = 5–150 mg l�1). Acetic acid was

measured by high performance liquid chromatography (Waters 717, 600E)

using an Aminex HPX-87H column (300 mm � 7.8 mm) and a Micro-Guard

cartridge (30 mm � 4.6 mm; BIO-RAD, Herculues, CA), a 5 mM H2SO4

mobile phase, and a UV–Vis detector (210 nm; Waters 490E).

2.3. Cultures and growth conditions

Cultures were grown at 30 8C in 0.725 l, 2.3 l, or 2.5 l glass bottles. The

bottles that were used to grow cultures on EtO, ethene, or VC contained mineral

salts medium that filled 28% of the total volume, while those used to grow

cultures on propylene contained mineral salts medium that filled 20% of the

total volume. The initial amount of ethene and propylene provided was 10% of

the headspace volume. The initial amount of EtO and VC provided was 2%;

higher percentages of VC were inhibitory. Repeated additions of EtO and VC

were made as they were consumed, to provide enough substrate to reach the

exponential growth phase; the amount of VC and EtO remaining was never

allowed to decrease below 0.5% in the headspace. An adequate amount of

oxygen was present initially to reach the exponential growth phase so that it did

not have to be added during incubation. Cumulative substrate consumption was

monitored as a function of time and used to calculate protein accumulation

based on the observed protein yield [10]. From these curves it was apparent how

much substrate had to be consumed to reach the exponential growth phase. Cells

were harvested (see below) during the exponential growth phase for the

maximum utilization rate and CO2 incorporation experiments.

2.4. Effect of CO2 on maximum substrate utilization rates

Strains AJ, TD, and B276 were grown from an initial OD600 of 0.04–0.085

to exponential phase (estimated OD600 of 0.2–0.8, based on correlation of
substrate consumption and OD600). Cells were centrifuged (15 min at

10,000 rpm; Servall SS-3) and washed in 50 mM phosphate buffer (KP),

pH 7.2. Cells were centrifuged again, resuspended in 10–30 ml KP, and

1 ml was added to 10 ml serum bottles containing a micro stir bar. A higher

dilution level (100 ml KP) was evaluated with strain AJ to determine if a

difference in utilization rates could be detected at a lower cell concentration.

Resting cells are defined as cultures that have been washed and suspended into

KP buffer. This was done to minimize protein synthesis, based on the absence

of a source of nitrogen. The treatments tested were (1) with a CO2 trap; (2) with

CO2 and bicarbonate added; and (3) with normal room air. Preparation of CO2

free air and nitrogen, the CO2 trap, and the molar amounts of CO2 and

bicarbonate were the same as previously described [20]. Serum bottles were

placed on a magnetic stirrer (Lab-Line Multi-Magnestir) set at 4000 rpm.

Experiments were initiated by adding 2000 nmol of substrate per serum bottle.

Substrate consumption was monitored by gas chromatographic analysis of

headspace samples for VC, ethene, EtO, propylene, and PrO; high perfor-

mance liquid chromatography for acetate; and chemical oxygen demand for

glucose (see above).

2.5. Incorporation of 14CO2 into cell suspensions

Stains AJ and TD were grown on EtO and strain B276 was grown on

propylene to exponential phase. The cells were then centrifuged and resus-

pended in serum bottles containing 10 ml KP, as described above. Resting cells

are defined as cultures that have been washed and suspended into KP buffer.

This was done to minimize protein synthesis. Incorporation of 14CO2 into

biomass was determined as previously described [20]. NaH14CO3 was added

from a stock solution to give a specific radioactivity of 59 mCi/mmol of CO2–

NaHCO3. The solutions were incubated with the resting cells for 2 min followed

by addition of substrate (EtO, PrO, acetate, or glucose). Assays were prepared in

duplicate with one set of serum bottles containing 14CO2 while the other set did

not. When substrate consumption was complete, a 0.1 ml sample of the cell

solution was removed from the bottles containing NaH14CO3 and passed

through two filters (Whatman GF-A fiber filter placed on top of a 2.5 cm

Supor filter). The filters were washed four times with 50 mM NaHCO3–

K2HPO4 (pH 8.0) and placed into liquid scintillation cocktail (Scinti Safe

PlusTM 50%). Samples were counted for radioactivity with a Packard 2550 TA/

RB liquid scintillation analyzer.

3. Results

3.1. Effect of CO2 on maximum substrate utilization rates

The maximum specific rate of EtO consumption by resting

cells of strain AJ grown on ethene was not affected by CO2

removal (Fig. 1a) or addition of CO2 (Fig. 1b), suggesting that

CO2 is not a reactant in the catabolic pathway. When only room

air was available, the rate of EtO removal was similar to the

treatment with CO2 added (Fig. 1c). Different results were

obtained with ethene-grown strain TD. Removal of CO2

significantly slowed the rate of EtO consumption (Fig. 1d) in

comparison to adding CO2 (Fig. 1e) or providing only room air

(Fig. 1f). These results suggest CO2 may be involved as a

reactant in the catabolic pathway of strain TD.

Maximum specific EtO utilization rates for strains AJ and

TD grown on VC, ethene and EtO are summarized in Table 1.

The type of growth substrate did not alter the pattern of the

results described above. With strain AJ, the presence or absence

of CO2 did not have a significant affect on the rate of EtO

utilization. With strain TD, removal of CO2 by trapping in KOH

reduced the rate of EtO consumption by one order of

magnitude; adding CO2 above what was present in room air

did not alter the rate of EtO use.



Fig. 1. Effect of CO2 on the rate of EtO consumption by strains AJ and TD grown on ethene. Different symbols in a panel represent duplicate bottles. The ordinate

axis is the ratio of EtO concentration at time t to the initial concentration.
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Strain B276 was used as a positive control since previous

studies showed it incorporates CO2 during catabolism of PrO

[21]. As with strain TD, removal of CO2 significantly decreased

the maximum rate of substrate utilization by strain B276,

although providing an excess above what was available in room

air did not stimulate the utilization rate (Table 1). A decrease in

the maximum specific rate of PrO consumption during the same

type of resting cell assay, when CO2 was not available, has also

been shown with propylene-grown Xanthobacter strain Py2

[20].

Air was present in the headspace of the serum bottles during

the whole cell assays, so that oxygen was available to the cells.

When air was replaced with nitrogen to minimize the

availability of internally generated CO2 (via mineralization),

very little EtO consumption occurred with strains AJ and TD

(data not shown).
Table 1

Effect of CO2 on maximum specific substrate utilization rates for resting cells

Strain Growth

substrate

Assay

substrate

Substrate utilization rates

(nmol min�1 mg protein�1)a

Air only CO2 added CO2 removed

AJ VC EtO 17.8 (�0.1) 17.9 (�1.9) 18.0 (�1.8)

Ethene EtO 24.6 (�3.6) 23.6 (�0.1) 23.6 (�0.9)

EtO EtO 26.1 (�0.2) 25.7 (�5.9) 25.8 (�1.3)

TD VC EtO 12.1 (�0.6) 13.0 (�1.2) 5.8 (�0.1)

Ethene EtO 42.5 (�6.7) 40.2 (�2.1) 4.3 (�2.1)

EtO EtO 42.3 (�5.0) 41.8 (�1.5) 5.2 (�0.1)

B276 Propylene PrO 57.8 (�8.5) 55.6 (�1.4) 7.6 (�2.9)

a Average of duplicates; data ranges are in parentheses.
3.2. Incorporation of 14CO2 into cell suspensions

Incorporation of 14CO2 into resting cells is summarized in

Table 2. The amount of 14CO2 incorporated by strain TD grown

on EtO was more than 13 times higher when EtO was the

substrate compared to acetate (from 0.18 to 2.47 mol CO2 per

mol of substrate), the catabolism of which does not require

CO2. With strain AJ, there was no significant difference

between the amount of CO2 incorporated when the substrate

was EtO or acetate. Approximately twice as much CO2 was

incorporated by strain B276 when the assay substrate was PrO

versus glucose.

Table 2 also shows the results in terms of the amount of 14C

incorporated into biomass as a percentage of the total

NaH14CO3 added. For strains AJ and TD, the amount of
14CO2 incorporated was approximately the same when no
Table 2

CO2 incorporation by resting cellsa

Strain Substrate Mol CO2 incorporated

per mol substrate

consumed

14CO2 incorporated

into biomass (% of

total 14C added)

TD EtO 2.47 (�0.16) 9.9 (�0.65)

Acetate 0.18 (�0.04) 0.72 (�0.14)

None – 0.68 (�0.07)

AJ EtO 0.35 (�0.02) 1.4 (�0.06)

Acetate 0.38 (�0.01) 1.1 (�0.02)

None – 0.65 (�0.12)

B276 PrO 0.99 (�0.06) 4.0 (�0.20)

Glucose 0.49 (�0.05) 1.5 (�0.20)

None – 1.4 (�0.10)

a Average of duplicates; data ranges are in parentheses.
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substrate was present and when acetate was added. Similar

results were obtained for strain B276 when no substrate was

added and when glucose was added. The amount of 14CO2

incorporated with substrates whose catabolism does not involve

carboxylase activity (in this case, acetate and glucose) was not

significantly different from the background amount of 14CO2

incorporation when no substrate was present. The significantly

higher percentage of 14C activity incorporated into biomass

during catabolism of EtO by strain TD and PrO by strain B276

is also apparent in Table 2.

4. Discussion

Strains TD and B276 are similar with respect to their use of

CoM and a carboxylase during metabolism of alkenes. With

strain B276, the expected stoichiometry is one mole of CO2

incorporated per mole of PrO [3]. Our results with strain B276

are in good agreement with this expectation (Table 2), although

the net amount of CO2 incorporation is lower when subtracting

out the background uptake based on glucose as a substrate. The

stoichiometry of CO2 incorporation by strain TD was

approximately two moles of CO2 per mole of EtO consumed,

after subtracting out the amount of 14CO2 incorporated when

acetate was the substrate (Table 2). Based on the proposed

pathway for ethene catabolism by Coleman and Spain [12], a

possible pathway for EtO metabolism by strain TD would

proceed by conversion to 2-hydroxyethyl CoM and oxidation to

2-ketoethyl-CoM followed by addition of one mole of CO2 to

each carbon as CoM is released. The presumptive C-4 product

would be oxaloacetate, with no net gain or loss of reducing

power. A similar pathway may occur when VC is converted to

2-chloro-2-hydroxyethyl CoM, although its conversion to 2-

ketoethyl-CoM involves an elimination reaction rather than an

oxidation, so a net input of reducing power would be required to

form oxaloacetate from VC.

Considering that strain TD appears to incorporate CO2

during EtO catabolism, it is not yet known why oxygen was

required for EtO utilization during the whole cell assay even

when an exogenous source of CO2 was provided. One

possibility is the need for ATP to drive EtO uptake or CO2

incorporation. The overall conversion of 1 mole of EtO plus 2

moles of CO2 to 1 mole of oxaloacetate is exergonic at the assay

pH of 7.2 (based on free energies of formation from Lide [22];

Madigan et al. [23]; Reid et al. [24]; Voet and Voet [25] and a

Henry’s law constant for ethylene oxide from Reid et al. [24]).

Nevertheless, one of the steps in the pathway may be

endergonic and require an input of ATP. Carboxylase activity

in acetone-grown strain Py2 and strain B276 is dependent on

the availability of ATP and GTP, respectively [26,27]. Resting

cell assays of strain Py2 and B276 were not tested in the

absence of oxygen to determine if the reaction with acetone

could proceed without oxygen. It is also possible that the

carboxylase-like enzyme in strain TD functions differently than

the one found in strain B276.

The substrate utilization assay and CO2 incorporation results

indicate that a carboxylase is not involved in the pathway for

EtO catabolism used by strain AJ. When growing on VC and
ethene, strain AJ appears to use a non-carboxylase pathway that

may be similar to the one proposed for various Mycobacterium

strains [12] and Nocardioides strain JS614 [14] via the

formation of carboxymethyl-CoM. The gene organization in

Mycobacterium strain JS60 based on sequencing results suggest

the involvement of a CoA transferase and acyl-CoA synthetase

[12]. These enzymes are located directly upstream from the

alkene monooxygenase and CoM transferase genes. Coleman

and Spain [12] suggested coenzyme A transferase and

synthetase transfer coenzyme A onto 2-ketoethyl-CoM while

removing CoM. Mattes et al. [14] further elucidated this

pathway in VC and ethene-grown Nocardioides strain JS614.

In summary, the results of this study provide evidence that

strain TD uses a carboxylase during catabolism of EtO (and by

extension ethene and VC), while strain AJ does not. Additional

studies are needed to further characterize the pathways. From

an application standpoint, identification of the enzyme(s) that

are unique to VC metabolism is a high priority (if indeed such

enzymes exist), in order to provide a basis for distinguishing

between the potential for VC and ethene biodegradation in

aerobic environments.
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