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Abstract: Sesquiterpene lactones (SL), characterized by their high prevalence in the Asteraceae family,
are one of the major groups of secondary metabolites found in plants. Researchers from distinct
research fields, including pharmacology, medicine, and agriculture, are interested in their biological
potential. With new SL discovered in the last years, new biological activities have been tested, different
action mechanisms (synergistic and/or antagonistic effects), as well as molecular structure–activity
relationships described. The review identifies the main sesquiterpene lactones with interconnec-
tions between immune responses and anti-inflammatory actions, within different cellular models as
well in in vivo studies. Bioaccessibility and bioavailability, as well as molecular structure–activity
relationships are addressed. Additionally, plant metabolic engineering, and the impact of sesquiter-
pene lactone extraction methodologies are presented, with the perspective of biological activity
enhancement. Sesquiterpene lactones derivatives are also addressed. This review summarizes the
current knowledge regarding the therapeutic potential of sesquiterpene lactones within immune and
inflammatory activities, highlighting trends and opportunities for their pharmaceutical/clinical use.

Keywords: anti-inflammatory action; immune response; JAK-STAT; MAPK; NF-κB; sesquiterpene
lactones; structure–activity relationship

1. Introduction

Inflammation could generally be defined as a protective response by an organism
triggered by pathogens or endogenous stress signals [1]. Immune cells, mostly myeloid
cells, can specifically recognize pathogen-associated molecular pattern molecules (PAMPs)
or damage-associated molecular patterns (DAMPs), and initiate mechanisms to eliminate
the initial trigger, after which, the inflammatory process must be adequately resolved.
When allowed to continue unchecked, inflammation may result in autoimmune or autoin-
flammatory disorders, neurodegenerative diseases, or even cancer.

The immune system is a complex network of protein and cells interactions in dif-
ferentiated organs and tissues, with the goal to protect the organism from diseases and
substances identified as “non-self”. This system comprises a diversity of different cell
types and proteins. Each performs a specific mission, collaborating in a magnificent way
to the recognition and reaction against “non-self” [2]. Despite all elements of the immune
system interacting with each other, two types of immune responses can be considered: the
innate immune response and the acquired immune response [3]. Innate immune responses
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are carried out by cells that do not need previous activation to reach their maximum re-
sponse. These cells include neutrophils, monocytes/macrophages [4], eosinophils, and
basophils [5,6]. Neutrophils are the main mediators of a rapid innate host defense against
most bacterial and fungal pathogens, while natural killer (NK) cells are important in the
early stages against intracellular pathogens, particularly killing virally infected cells [7].
These immune cells have granules and are the most abundant of all white blood cells in
humans, killing microorganisms by microbicidal agents present in its granules and others
produced during activation [8]. Monocytes/macrophages are white blood cells of the
immune system, present in the bloodstream and tissues, respectively, which engulf and
digest microbes, cellular debris, and other foreign substances that affect the health of a high
number of organisms. This process, common to neutrophils, is named phagocytosis, and
acts to defend the host against infection and injury [9]. Most macrophages are located at
strategic points in the host organism where microbial invasion or accumulation of foreign
substances are likely to occur [10]. The basophils and eosinophils correspond to a low per-
centage of white blood cells, having a role more specific in allergic reactions and parasitic
infections [5,6]. In fact, it was suggested that eosinophils and basophils may mainly act as
regulatory cells in immune responses, in the context of allergy or parasitic infections, rather
than effector white blood cells, such as neutrophiles and monocytes/macrophytes [11,12].

Unlike innate immune responses, the adaptive responses are highly specific to the
particular pathogens/antigens that induce them. The acquired immune system is already
present at birth; immune memory formation only occurs after exposure of adaptive cells to
the specific antigen. This exposure occurs throughout life, but the first three years of life is a
critical period where most naive lymphocytes (B and T lymphocytes) are activated, greatly
enhancing immune memory formation [13]. In autoimmune diseases, such as rheumatoid
arthritis and multiple sclerosis, due to the persistence of autoantigen, autoreactive T and B
cells will be activated and maintained.

Mechanisms involving the entire inflammatory process, as well an individual’s im-
munomodulation response capacity, are not completely understood, but highlight extremely
important cellular players, as well as multiple regulatory levels. Currently, there are a
considerable number of anti-inflammatory medicines, with different therapeutic strategies
that may be summarized as: (i) reducing the activity of specific cytokines or their recep-
tors (e.g., P2 × 7 receptor inhibitors in certain viral infections [14]; cytokine suppressive
anti-inflammatory drugs (CSAIDs) inhibiting NF-κB and p38 MAPK signaling to avoid
pre-term birth); (ii) blocking lymphocyte trafficking into tissues (e.g., vedolizumab, an
anti-α4β7 integrin, for treating Crohn’s disease [15]); (iii) prevent the binding of monocyte-
lymphocyte costimulatory molecules; and (iv) deplete B lymphocytes (monoclonal anti-
bodies against CD20, rituximab, for non-Hodgkin lymphoma [16,17]). Prolonged exposure
to anti-inflammatory drugs, such as glucocorticoids and nonsteroidal anti-inflammatory
drugs, has been described as having considerable side effects, such as susceptibility to sec-
ondary infections. The pharmaceutical companies still search for the development of more
effective and less toxic anti-inflammatory agents, addressing other molecular responses, to
treat either acute inflammation or chronic inflammatory diseases.

Nature is a rich source for compounds with anti-inflammatory properties. This recog-
nition is nowadays underlined by the significant number (~25%) of FDA-approved natural
anti-inflammatory drugs, which are natural product derivatives [18]. From all secondary
metabolites that can be found in plants, the sesquiterpene lactones (SL) group is one of the
most prevalent and biologically significant, comprising over 5000 known compounds [19].
With new SL discovered in the last years, new biological activities have been tested, as well
as different mechanisms of action (synergistic and/or antagonistic) and structure–activity
relationships. SL exhibited a wide range of biological activities with impacts in human
health, ranging from antitumor, antimicrobial, antioxidant, hepatoprotective, among many
others, reported within a large list of published manuscripts. This review summarizes the
current knowledge regarding SL therapeutic potential regarding inflammation activities, as
well as highlights the responses that can be induced towards the immune system, aiming
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to bring into discussion the trends and opportunities for SL pharmaceutical/clinical use,
and awareness about putative harm effects.

The methodology applied in the present review was an examination of literature
conducted in 2021 between March and November via electronic searches, using Scopus,
Web of Science, Science Direct, Google Scholar, ClinicalTrials.gov, www.drugbank.ca, and
https://newdrugapprovals.org/, (accessed on 8 December 2021), and publications in
peer-reviewed scientific journals. The keywords used were structure–activity relationship,
inflammation, immune system, Nf-kB, MAPK, and JAK-STAT signaling mechanisms, all
combined with sesquiterpene lactones and/or sesquiterpene lactones derivatives. The
scientific names were validated by using Plant List, available online: www.theplantlist.org
(last accessed on 9 January 2022), International Plant Name Index, and Kew Botanical
Garden databases. The literature mentioned in this paper dated from 1971 to 2021 and were
limited to the English language. The final data collected through the authors’ discussions
were then compiled, evaluated, compared, and conclusion were drawn accordingly.

2. Sesquiterpene Lactones and Their Structure–Activity Relationships

Sesquiterpene lactones (SL) are a major group of secondary metabolites found in
plants [19] and could generally be included in the Cactaceae, Solanaceae, Araceae, and Eu-
phorbiaceae families, with a high prevalence in Asteraceae, where they can be found all
over [19].

The medicinal properties of SL have been used since immemorial times, initially
without the specific knowledge of what were SL. In folk medicine, it was usually used
as part of the plants to treat numerous diseases [19]; for example, using boiled leaves
of the plant Artemisia douglasiana in the treatment of gastric ulcers. These leaves present
dehydroleucodine—SL with proven effects in the treatment of peptic gastric ulcers [20].
SL biological activities are associated with adjuvant treatments for a wide range of dis-
eases, such as cancer and cardiovascular diseases, and neurodegenerative diseases, such
as Alzheimer’s and Parkinson’s [21,22], as well as malaria, diarrheal, viral infections (in-
fluenza, herpes simplex virus, SARS-CoV-2)) [23], bacterial infections, migraines, and
rheumatoid arthritis. They are even used to treat insect bites, presenting analgesic and
sedative effects [24–26].

The SL are derived from two main precursors—isopentenyl diphosphate (IPP) and
dimethylallyl diphosphate (DMAPP) [27]. These precursors can be generated in plants via
either the mevalonate pathway (MVA), which occurs within the cytosol, or the
2-C-methyl-D-erythritol (MEP) pathway, occurring in the chloroplasts [28,29]. IPP and
DMAPP are converted into farnesyl diphosphate (FPP) by the enzyme farnesyl diphosphate
synthase [27]. FPP is considered a common precursor for SL, but can be further converted
into sterols, triterpenes, or used for prenylation of proteins. This terpene subclass can be
organized based on a carbon-cyclic skeleton (Figure 1), as follows: (i) germacranolides
(with a ten-membered ring); (ii) elemanolides (with a six-membered ring); (iii) eudesman-
olides and (iv) eremophilanolides (both with six-membered rings); and (v) guaianolides;
(vi) pseudoguaianolides; (vii) hypocretenolides (with five- and seven-membered rings,
with a methyl group at the C-4 or C-5 position) [30,31].

The chemical structure shares an oxygen-containing ring structure with a carbonyl
function and structure–activity relationship (SAR) profile studies, attributed to the
α-methylene-γ-lactone group (αM γL) and a wide range of SL biological effects, as it exerts
activity by means of alkylation of thiol groups, commonly found in proteins (Figure 2) [32],
demonstrated to be crucial for SL inhibitory effects upon different molecular processes.
After 1991, interest in SL structure–activity relationships regained with the advent of novel
methods, namely comparative molecular field analyses, quantitative fractional accessible
molecular surface areas, self-organizing maps, and molecular descriptors, clearly associated
to an increase in publications related to SL structure–activity relationships. According
to Choodej et al., costunolide and eudesmanolide-type sesquiterpene derivatives, when
synthesized with no αM γL moiety in their structures, do not show any detectable activity
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in terms of decreasing TNF-α, even at high concentrations (50 µmol/L) [33], in compara-
tion to original costunolide with an IC50 value of 2.05 µmol/L [33], showing the essential
role of αM γL moiety for the anti-inflammatory effect on TNF-α secretion in activated
macrophages. Cynaropicrin also known to inhibit TNF-α and NO production in a dose-
dependent manner [34], when treated with SH compounds (i.e., L-cysteine, dithiothreitol,
and 2-mercaptoethanol) loses the inhibitory effect upon TNF-α and NO, suggesting that
cynaropicrin anti-inflammatory activity is mediated by conjugation with SH-groups of
target proteins [35] (Figure 2). More than 300 mM of cysteine (15-fold as a molar ratio
between cynaropicrin and L-cysteine) attenuates the suppressive effect of cynaropicrin up
to 90%, not only suggesting that a high molar ratio is required to completely abrogate the
cynaropicrin effect, but also that the binding affinity between cynaropicrin and the target
protein might be higher than that between cynaropicrin and L-cysteine [34].
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SAR profile studies have also demonstrated that SL αM γL moiety combined with
a C4-C5 epoxide ring can interact with the sulfhydryl groups through the αM γL [36],
as well as with the hydroxyl and amine groups through the epoxide ring. The use of
a prodrug approach, by addition of an amine group into the αM γL moiety, leads to
amino-derivatives with similar biological activities, increased solubility, and improves the
selectivity by reducing unspecific binding to biological thiols via the Michael-type addition
to the αM γL moiety. Similar approaches were successfully applied to several SL, namely
helenalin, costunolide, and parthenolide [37]. The SAR studies also demonstrated that an
ester group at C-8 might be more important than the αM γL moiety for SL cytotoxicity, as it
was demonstrated with 11,13-β-dihydro-lactucopicrin, lacking the αM γL moiety, but carrying
an ester group at C-8, was more cytotoxic to nasopharyngeal and liver cancer cells than lactucin
(the same structure but with an αM γL moiety and no ester at the C-8 position) [38].

SL carbon-cyclic skeleton molecular geometry organizations also imprint different
biological activities as the structural and chemical natures also change. The germacrano-
lides, with ten-membered rings, more easily adapt to different conformation structures
and therefore turn out to be more available to interact with different biological targets,
comparatively to eudesmanolides (with six-membered rings), which are more restricted
in their bioactivities. The example of heliangolides, containing furane rings, have been
described as more effective than guaianolides, on account to their greater conformational
flexibility. Studies of structurally-related pseudoguaianolides showed that the β-OH isomer
(parthenin) at C-1 is more active against ethyl phenylpropiolate-induced mouse ear edema
than the α-OH equivalent (hymenin) [39].

The different studies developed over the last years using SL-derivative strategies,
demonstrated the importance of different SL reactive centers, their impacts upon interaction
with biological targets, as well as their capacity to potentiate their clinical relevance, namely
increasing aqueous solubility, diminishing toxicity, acquiring better pharmacokinetics,
among many other important features [40].

3. Sesquiterpene Lactones in Medicine: Immunoregulatory Response and
Anti-Inflammatory Activities

In 2010, the SL in clinical trials were artemisinin, thapsigargin, and parthenolide [41].
Ten years later, in 2020, some SL isolated from the Asteraceae species, were already commer-
cially available, such as artemisinin and parthenolide [41,42]. Moreover, the SL alantolac-
tone, arglabin, costunolide, cynaropicrin, helenalin, inuviscolide, lactucin, parthenolide,
thapsigargin, and tomentosin are use in in vivo studies, preclinical, and few in clinical
studies. These SL show promising anti-inflammatory effects and their immunoregulatory
effects deserve attention, aside from their many biological activities [43]. The cellular and
molecular activities of SL will be described in detail below.

3.1. Immunomodulatory Effects of Sesquiterpene Lactones at the Cellular Level

Stimulation of immune cells lead to active inflammation through cytokine-mediated
actions. Table 1 summarizes the direct activities that have been described so far, of different
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SL on immune cells (and key cytokines) involved in innate and acquired immune responses.
Artemether, an artemisinin derivative, was found to significantly suppress the proliferation,
IL-2, and interferon-γ (IFN- γ) production by T cells triggered by T cell receptor engage-
ment [44]. Artemether significantly inhibited the T cell receptor engagement-triggered
MAPK signaling pathway, including phosphorylation of ERK1/2, JNK, and p38. The
authors further dissected that artemether majorly affecting the function of T cells, rather
than the antigen presenting cells to exert the immunosuppressive effects [44]. Cynaropicrin
presented equivalent effects upon T cell proliferation from splenocytes, as demonstrated
by Cho et al. The authors studied cynaropicrin anti-mitogenic effects upon T- and B lym-
phocytes treated with concanavalin A, phytohemagglutinin, and lipopolysaccharide. In all
cases, there was a decrease in T cell proliferation (either CD4+ or CD8+), known to play a
crucial role in chronic inflammatory processes though activation of inflammatory mast cells,
eosinophils, neutrophils, and macrophages, resulting in a massive production of chemical
mediators and pro-inflammatory cytokines. Schepetkin et al. (2018) tested thirteen SL
in regard to reduction of T cell activation [45]. The authors concluded that five SL, the
arglabin, grosheimin, agracin, parthenolide, and estafiatin, could inhibit T lymphocytes
receptors, therefore having immunotherapeutic properties (Table 1). Recently, the effects of
7-hydroxyfrullanoide in inhibiting CD4+ T cells and peritoneal macrophage responses were
investigated. The 7-hydroxyfrullanoide reduced IL-2 and simultaneously induced Ca2+ (an
intracellular chelator, which lowers lactate and rescues CD4+ T cell cycling) [46]. Moreover,
intraperitoneal administration of 7-hydroxyfrullanoide lowers serum inflammatory cytokines
IFN- γ, IL-6, reduces the effects of dextran sulfate sodium-induced colitis, and emphasizes the
anti-inflammatory potential of 7-hydroxyfrullanoide in lowering immune responses [46].

Abe et al. (2015) reports a role of the SL tagitinins isolated of Tithonia diversifolia in
activation and survival of human neutrophils [47]. Tagitinins C, F, and A decrease IL-6,
IL-8 and TNF-α production by human neutrophils (Table 1), but only tagitinin F did so
safely, without inducing neutrophil apoptosis. Aerial parts of Inula hupehensis Ling. have
a diversity of SL (eudesmanolides, germacranolides, and xanthanolide), all with an in-
hibitory effect against LPS-induced nitric oxide (NO) production in macrophages [48,49]
(Table 1). Moreover, Lee et al. (2018) reports in rats that the alantolactone, costunolide, and
dehydrocostus lactone isolated from Saussurea costus (Falc.) Lipsch have roles in allergic
asthma, by reducing the number of immune cells, particularly eosinophils, underlying
SL role in allergic immunity [50] (Table 1). Moreover, in rats, the inhibitory effects of SL
isolated from Eupatorium chinense L. on IgE-mediated degranulation of basophils, was re-
ported [51]. These immune cells keep their specific secretory immune products in granules
and may release them by exocytosis during an inflammatory response [52]. Therefore,
the inhibition of their degranulation reduces the immune response of these cells. The
effectiveness of some rich extracts of SL, e.g., Vernonia scorpioides L. ethanolic extracts,
containing diacethylpiptocarphol and hirsutinolides, were tested when applied topically in
acute and chronic cutaneous inflammation models in mice. The results demonstrated that
topical application of ethanolic extract of Vernonia scorpioides L. reduced edema and induced
myeloperoxidase activity to a comparable value to the reference drug dexamethasone, a
corticosteroid [53], meaning a reduction of neutrophil infiltration. Recently, an in vivo
study using lychnopholide, eremantholide C, and goyazensolide, three sesquiterpene lac-
tones extracted from Lychnophora species, were assessed regarding their anti-inflammatory
actions, using a monosodium urate (MSU) crystal-induced arthritis C57BL/6 mice animal
model. The tested SL exerted anti-inflammatory effects by inhibiting neutrophil migration
and blocking the release of TNF-α [54]. Budlein A, a SL from Viguiera robusta, presented an
in vivo response in a model of acute gout arthritis in mice. Budlein A reduced neutrophil
recruitment, phagocytosis of MSU crystals by neutrophils, and Il-1β and TNF-α mRNA
expression in the knee joints. In vitro, budlein A decreased TNF-α production, which might
be related to the inhibition of NF-κB activation. Furthermore, budlein A reduced the IL-1β
maturation, possibly by targeting inflammasome assembly in macrophages [55]. Similar
results were recently obtained with alantolactone in a collagen-induced arthritis DBA/1
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mouse model. Alantolactone at 50 mg/kg attenuates rheumatoid arthritis symptoms,
including high arthritis scores, infiltrating inflammatory cells, synovial hyperplasia, bone
erosion, and levels of the proinflammatory cytokines TNF-α, IL-6, and IL-17A, but not IL-10
in paw tissues. The number of splenic Th17 cells and the capability of native CD4+ T cells
to differentiate into the Th17 subset (one of the rheumatoid arthritis pathogenic pathways),
by downregulating STAT3/RORγt signaling by as early as 24 h of treatment, was also
achieved by alantolactone treatment [56]. Alantolactone therapeutic effects underlie the
suppression of inflammatory cytokines and the modulation of immune response.

Table 1. SL described as having regulatory functions upon the immune system, highlighting im-
munoregulatory actions within acquired and innate responses.

Sesquiterpene Lactone Action Reference

Acquired Immune Response

Reduction of T cells production

Arglabin
Grosheimin

Agracin
Parthenolide

Estafiatin

↓ TCR [45]

Artemether (an artemisinin derivative) ↓ IL-2, interferon-γ (IFN- γ), TCR
↓ phosphorylation of ERK1/2, JNK, and p38 [44]

7-hydroxyfrullanoide ↓ IL-2, ↑↑ Ca2+ ⇒ ↓ CD4+

↓ IL-6, IFN- γ
[46]

Cynaropicrin ↓ proliferation of CD4+ and CD8+ T- and B- lymphocytes [34]

Deoxyelephantopin
Isodeoxyelephantopin ↓ lymphocytes [57]

Innate Immune Response

Macrophage Inhibition

Tagitinin C, F and A ↑ neutrophils apoptosis, ↓ IL-6, ↓ IL-8, ↓ TNF-α [47]

Neutrophils Inhibition

Diacethylpiptocarphol
Hirsutinolides ↓ neutrophil infiltration [53]

Lychnopholide
Eremantholide C
Goyazensolide

↓ neutrophil infiltration, ↓ TNF-α [54]

Budlein A ↓ Neutrophil recruitment, ↓ Il-1β and TNF-α mRNA [55]

Alantolactone ↓ TNF-α, ↓ IL-6 and ↓IL-17A, [56]

Costunolide ↓ Neutrophil recruitment, [55]

Eosinophils Reduction

Alantolactone
Costunolide

Dehydrocostuslactone
↓ Th2 cytokines (IL-4 and IL-3) [50]

Damsin
Neoambrosin Eosinophils [58]

[59]

3.2. Overview of Main Signaling Pathways Involved in Inflammatory Responses Modulated by
Sesquiterpene Lactones

The inflammatory immune response (IIR) is a physiological or systemic reaction
against harmful stimuli, as pathogens, damaged cells, and toxins [60], mainly played by
immune cells, such as monocytes/macrophages, lymphocytes, neutrophils, and dendritic
cells [61,62]. The purpose of IIR is to eliminate the initial cause of cell injury. The inflam-
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matory response can be classified as acute and chronic, the first contributes to repair of
tissue homeostasis, culminating in the resolution of the acute inflammation. Nevertheless,
uncontrolled acute inflammation could become chronic, impacting a variety of chronic
inflammatory diseases [63]. Several IIR pathways were described up to now, namely the
NF-κB pathway, MAPK pathway, and JAK-STAT pathway [64], which can be activated in
cells with contact to external agents, as the epidermal keratinocytes of skin [65], lung, and
intestinal epithelial cells [66,67], as well as in leukocytes from blood. These signal pathways
in non-immune cells have several effects in immune cells (such as macrophages), which
impact the inflammatory process. Due to the complexity of the inflammatory process,
below, we only present some examples of how these signal pathways affect immune cells.
As the focus of this review is to explore the role of the SL in the immune response and
anti-inflammatory activity, here we present a brief explanation of these pathways and how
SL can interact and regulate them.

Canonical nuclear factor κB (NF-κB) signaling relies on transcription factors, including
p50 and RelA (p65) [68], which mediates the immune response by controlling gene expres-
sion that favors inflammatory response [61,64]. The activation of the canonical NF-kB is
stimulated by the reception of external stimuli in the cell surface, resulting in a double
phosphorylation of the inhibitor of nuclear factor kappa B (IkBα) in the cytoplasm by the
I-kappa-kinase (IKK), which results in its degradation, releasing RelA and P50 (Figure 3).
These two proteins enter in the nucleus controlling gene expression [61], namely several pro-
inflammatory genes, including those coding for cyclooxygenase-2 (COX-2), tumor necrosis
factor-alpha (TNF-α), inducible nitric oxide synthase (iNOS), and interleukin 1 beta (Il1β),
among many others [69], affecting immune response, cell apoptosis, cell-cycle progression,
inflammation, and oncogenesis [70]. NF-kB activation is also associated with activity and
chemoattraction of macrophages, chemoattraction of T lymphocytes, survival of neutrophil,
and maturation of dendritic cells [71–74]. The action mechanism of certain SL upon NF-kB
has been extensively studied. Parthenolide is recognized as a potent anti-inflammatory
agent [75], its bioactivity being driven by the capacity to deregulate the NF-kB signaling
pathway, in concentrations as low as 5 µM [41]. As described by Garcia-Pineres et al.,
the high binding selectivity allows parthenolide to form a covalent bond with cysteine-38
of the NF-kB RelA subunit [76], leading to its alkylation and, consequently, inhibition of
NF-kB DNA binding (Figure 3) (Table 2). The same germacrolide was also described as
potentiating the accumulation of IkBα in cystic fibrosis cells, with simultaneous inhibition
of NF-kB translocation, associated to a significant decrease in IL-8 expression [77] (Figure 3).
Artemisinin, a germacrolide, was able to inhibit the LPS/cytokine-induced increase of
NOS activity, promoted by inhibition of NF-kB nuclear translocation. As described by
parthenolide, artemisinin also shares the ability to prevent the LPS-induced proteolytic
degradation of IkBα protein and the consequent activation and translocation of NF-kB, ac-
counting for the suppression of iNOS gene expression and NO synthesis in cells stimulated
with LPS/cytokines [78] (Figure 3) (Table 2). Braquet et al. (1985) reported that the SL of
Ginkgo biloba, ginkgolides, favor the prevention of platelet aggregation and thrombosis [79]
(Table 2). The platelet-activating factor (PAF) signaling pathway plays a key role in the
initiation and progression of inflammatory and thrombotic reactions, by NF-kB and MAPK
signal pathways [80], with the ginkgolides having the ability to antagonize PAF-induced
platelet aggregation [81]. (Table 2). Santamarin, a sesquiterpene lactone isolated from
Aucklandia lappa (Asteraceae), increases heme oxygenase-1 expression by Nrf2 translocation
and suppression of NO, PGE2, TNF-α, and IL-1β production through NF-kB inhibition in
LPS-induced macrophages (Table 2) [82]. Recently, the suppressive effect of dehydrocostus
lactone, upon signal transduction via toll-like receptor (TLR) signaling pathway, demon-
strated this sesquiterpene lactone as an effective downregulator of NF-kB and interferon
regulatory factor 3, the representative transcriptions factors involved in the inflamma-
tory response, induced by TLR agonists, as well as diminished expression of COX-2 and
interferon inducible protein-10 [83] (Table 2). Weng et al. described, very recently, the
inhibitory action of lactucopicrin, a bitter sesquiterpene lactone of leafy vegetables, such
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as chicory, curly escarole, and lettuce, upon vascular endothelial NF-kB. The inhibitory
effect of lactucopicrin was not due to modulation of IKK-, IkBα-, or NF-kB RelA-binding
activity. Lactucopicrin reduced importin-α3 mRNA stability by 60.6%, resulting in reduced
steady-state expression of importin-α3 in inflammatory human aortic endothelial cells
(Table 2). Importin-α3 escorts Nf-kB to translocate to the nucleus [84], where it drives
the expression of a wide range of genes, including the vascular cell adhesion molecule
1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1), known to be elevated in
patients with either acute or chronic vascular inflammatory diseases. Thus, lactucopicrin
reduces vascular endothelial inflammation through inhibiting NF-kB activation promoted
by importin-α3 downregulation [84].
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The MAPK signaling pathway is initiated by the reception of external stimuli, as mito-
gens, which allow the phosphorylation and activation of a protein cascade. This pathway
comprises at least three components, a mitogen-activated protein kinase (MAPK), a MAPK
kinase (MAPKK), and a MAPK kinase kinase (MAPKKK). MAPKKKs phosphorylate and
activate MAPKKs, which in turn phosphorylate and activate MAPKs [85]. Activation of the
MAPK leads to phosphorylation and activation of ERK, JNK, and p38 transcription factors,
which initiate the inflammatory response [86], controlling the expression of a high variety of
genes, such as ElK-1, Sap-1, and MAPKAP [87], resulting in the control of cell proliferation,
apoptosis, and differentiation (Figure 3) [88]. Sesquiterpene lactone also has role in the
inhibition of the MAPK signaling pathway activation. Parthenolide, besides the effect upon
NF-κB described above, also inhibits the activation of the MAPK pathways, specifically con-
straining the activation of the ERK [89] (Table 2). Since MAPKs ERK and JNK activate AP-1,
Saadane A et al. demonstrated that parthenolide inhibited phosphorylation and activation
of ERK1 and ERK2 (Figure 3). Parthenolide did not alter the expression of all downstream
MAPK players, as it was described that parthenolide stabilized p46 JNK phosphorylation
as well as p38 in cystic fibrosis cells. Moreover, achillolide A, a sesquiterpene lactone
isolated from Achillea fragrantissima, was assayed in terms of the phosphorylation effect
upon SAPK/JNK and p44/p42 MAPK using Neuro2a cell model. The results highlight
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achillolide A efficacy, inhibiting phosphorylation of SAPK/JNK and p44/p42 MAPK and,
consequently, downregulating MAPKs [90] (Table 2). Alantolactone, isolated from the
root of Aucklandia lappa, in LPS-stimulated RAW264.7 cells and peritoneal macrophages,
inhibited iNOS, COX-2, as well as the downstream products, nitric oxide, prostaglandin
E2, and tumor necrosis factor-α. These effects were promoted by the inhibitory activity
of alantolactone upon NF-kB signaling and inhibition of IkBα phosphorylation and IKK.
At the same time, it also inhibits MAPK phosphorylation, including JNK, ERK, and p38,
promoted by the MyD88 signaling pathway [91] (Table 2).

In the JAK-STAT pathway, the Janus kinases (JAKs) are activated by ligands on the
cell surface receptors, as growth factors; then JAKs add phosphates to the receptor. This
allows the recruiting of two cytoplasmic signal transducers and activators of transcription
factor proteins (STATs) that bind to the phosphates, forming a dimer. The STAT dimer
translocate into the nucleus-binding target gene promoter regions, to regulate transcription
of inflammatory genes [92,93] (Figure 3), such as cytokines, (as IL-6) and growth factors, as
well as protooncogenes (p51 and Myc), initiating the inflammatory response by stimulating
cell proliferation, differentiation, cell migration, and apoptosis [94]. The immune cells
are also affected by this signal pathway. For instance, JAK-STAT signaling has a role
in the reprogramming of the macrophage and neutrophile phenotype, namely from the
proinflammatory M1 phenotype toward the anti-inflammatory M2 phenotype [95,96], and
a role in neutrophile-trafficking from blood to the inflammatory site [97]. JAK-STAT also
affects the differentiation of the T lymphocytes [98] and dendritic cells [99]. The JAK-STAT
signaling pathway can also be inhibited by SL. Cheng and collaborators demonstrated that
6-oangeloylplenolin directly interacts with the STAT3-SH2 function domain, inhibiting
the constitutive activation of STAT3 and ultimately downregulating the expression of
several proinflammatory molecules, among them IL-6 [100] (Table 2). Cynara cardunculus
leaf ethanolic extracts, mainly composed by cynaropicrin, have recently been described
as having the ability to reduce 86% of IL-6 expressed in skin keratinocytes [101]. The
sesquiterpene lactone antrocin, isolated from the plant Antrodia camphorata, inhibits the
JAK2/STAT3 pathway. This is explained by the suppression of the phosphorylation of
STATs and their subsequent nuclear translocations [102] (Table 2). Parthenolide, similar
to its effect upon NF-kB signaling, also covalently binds to JAK2 Cys178, Cys243, Cys335,
and Cys480 residues (Figure 3), all located in the SH2 domain, suppressing their kinase
activity, blocking STAT protein phosphorylation, and downmodulating the expression of
pro-inflammatory genes [103]. It is important to claim the preference of parthenolide to
JAKs over abundant proteins, such as tubulin and actin, demonstrating a certain degree
of specificity in terms of target Cys residues. The parthenolide effect upon STAT might
also be explained by the role of the nucleophilic methylene-γ-lactone ring upon ROS
induction, which was reported to regulate STAT signaling [104]. Other SL were also
reported as having inhibitory effects in the activation of STAT proteins, such as costunolide,
dehydrocostuslactone, cynaropicrin, and alantolactone through S-glutathionylation of Cys
residues in the STAT3 protein (Table 2). The presence of the α-β-unsaturated carbonyl
group directly interacts with GSH by Michael addition and induces a rapid drop in GSH
concentration, thereby triggering S-glutathionylation of STAT3 [105]. This event impairs
STAT3 phosphorylation, switching off the signaling cascade [58].
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Table 2. SL described as having roles in inflammatory signaling mechanisms, namely NF-kB, MAPK,
and JAK-STAT.

Inflammatory Signaling Mechanism SL Downstream Effect References

NF-kB

Parthenolide
Heliangin

Vlasouliolides E-I
Damcin

Ambrosin
Coronopilin

7-hydroxy frullanolide
Budlein A

Secoeudesma
sesquiterpenes lactone A

Costunolide
Gaillardin

Micheliolide

↓ RelA phosphorylation, ↓ NF-kB DNA binding
↑ IkBα, ↓ NF-kB translocation; ↓ IL-8

[89,106]
[107]
[108]
[109]
[110]
[111]
[112]
[55]
[113]

[114,115]
[116]

Artemisinin
Cnicin ↑ IkBα, ↓ NF-kB translocation, ↓ iNOS [78]

[117]

Santamarin ↓ NF-kB, ↑ HO-1, ↓ NO, PGE2, TNF-α, IL-1β [82]

Dehydrocostus lactone ↓ NF-kB, ↓ IFR3, ↓ COX-2, ↓ IIP-10 [83]

Lactucopicrin ↓ importin-α3 ↓ NF-kB [118]

NF-kB and MAPK
Alantolactone

Torilin ↓IKK, ↑ IkBα, ↓ NF-kB, ↓ AP-1 (MAPK), ↓ iNOS, ↓ COX-2 [91]
[119]

Ginkgolides ↓ PAF-induced platelet aggregation [81]

MAPK

Parthenolide ↓ ERK1/2 phosphorylation [89]

Achillolide A ↓ SAPK/JNK and p44/p42 MAPK phosphorylation [90]

2α-hydroxyl-3β-
angeloylcinnamolide ↓ ERK1/2, ↓p38 and ↓JNKs phosphorylation [120]

MAPK and JAK/STAT Damsin
Neoambrosin ↓ ERK1/2, ↓ STAT3, ↓ TNF-α, ↓ IL-6 and ↓ IL-12 [121]

JAK/STAT

Parthenolide
Antrocin

Costunolide
Dehydrocostuslactone

Cynaropicrin
Alantolactone

Damcin

↓ STAT phosphorylation (S-glutathionylation of Cys residues)

[103]
[102]
[105]
[122]
[109]
[123]

6-Oangeloylplenolin ↓ STAT3 activation (block STAT3-SH2 function domain), ↓
IL-6 [100]

Table 2 identifies other sesquiterpene lactones that exerted downregulation of NF-kB,
MAPK, or JAK-STAT signaling pathways, by similar molecular mechanisms, such as the
ones above-mentioned.

3.3. Promising Sesquiterpene Lactones under Pre-Clinical or Clinal Studies: Parthenolide,
Artemisinin, and Thapsigargin

The known biological activity of SL prompted some SL toward pre-clinical and, even-
tually, clinical trials. Parthenolide (Figure 4A), artemisinin (Figure 4B), both belonging to
the sesquiterpene lactone sub-group of germacranolides, and thapsigargin (Figure 4C),
a guaianolide, are lead compounds in clinical trials. Although these three SL and their
derivatives are used or are under clinical trials, mainly due to their anti-cancer properties,
these sesquiterpene lactones will be further explored within the present review, since most
mechanisms involved in tumoral responses are also crucial for anti-inflammatory activity.
The inherent risk of toxicity and the lack of selectivity are of high importance and frequently
impair their use.
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Parthenolide has low solubility in water and, consequently, reduced bioavailability,
which hampers its potential clinical use. A Phase I trial was conducted to investigate
pharmacokinetics and toxicology in a cohort of 12 adult cancer patients. Solid phase ex-
traction and mass spectroscopy were used to evaluate parthenolide plasma concentrations.
A starting dose of 1 mg/day was assessed with subsequent dose escalations to 2, 3, and
4 mg as daily oral capsules. The limit of detection in plasma was 0.5 ng/mL; no significant
toxicity was detected. The low doses of this SL administered were unbale to be detected,
likely due to poor bioavailability [124]. To increase solubility, several different parthenolide
derivatives were constructed by the diastereoselective addition of several primary and sec-
ondary amines to the exocyclic double bond [125]. Among these semisynthetic analogues,
N,N-dimethylamino-parthenolide (DMAPT) (Table 3) was selected as a leader compound
according to its pharmacokinetic, pharmacodynamic, and bioavailability properties [126],
and it was evaluated in a Phase I clinical trial for the treatment of hematological tumors,
with a potent suppression of the STAT3 signaling pathway [127]. DMAPT fumarate salt
(DMPAPT), being highly water-soluble (100x more than parthenolide), was rapidly con-
verted to parthenolide within body fluids [127]. DMAPT was assayed in a Phase I trial
against acute myeloid leukemia, acute lymphoblastic leukemia, and other blood and lymph
node cancers, but clinical trials ended-up being suspended. More recently, Darwish et al.
targeted parthenolide nanoencapsulation to improve drug delivery, designing polylactide
co-glycolide nanoparticles conjugated with anti-CD44 and encapsulating parthenolide.
The results highlighted the possibility of using nanotechnology to improve parthenolide
and/or its derivatives, biological activity [128]. Over the last 5 years, there were few
patents registered—regarding the elaboration of parthenolide (and derivative) nanocarri-
ers, and their putative uses within different pharmaceutical applications (patents N. CN
110292640, 2019; N. CN108721276, 2018; N. CN1087211330, 2018; N. CN106366068, 2017;
N. CN 109276553, 2017) [43].

Artemisinin (Figure 4B) is widely used worldwide to treat plasmodium strains; its
biological value is recognized by the World Health Organization, with few restrictions, due
to the emergence of artemisinin resistance regarding malaria treatment. As shown in recent
years, artemisinin potential applications imply treatment of different infection agents. The
notoriously poor solubility of artemisinin in water and oil has led to the synthesis of several
chemical derivatives aimed at increasing its solubility without sacrificing the structural fac-
tors responsible for its therapeutic efficacy [129]. The different derivatives have been used
in preclinical animal models and in clinical patients, such as dihydroartemisinin (DHA),
artemether, artesunate, and arteether [130]. Few artesunate clinical trials focused on their
anti-cancer activities have been developed [131]. Oral artesunate was safe and well tolerated
up to 200 mg/day in a Phase I, dose-finding study, in 23 advanced breast cancer patients
(Table 3). Stable disease, considered as a clinical benefit, was observed in 10 patients
(150 and 200 mg). Progression was observed in the remaining assessable patients
(n = 5) and response assessments could not be performed for eight patients [132]. Clini-
cal and experimental studies also suggested that artemisinin and its derivatives possess
potent immune-suppressive abilities to treat autoimmune and allergic diseases. A se-
ries of novel artemisinin derivatives with lower toxicity, greater water solubility, higher
bioavailability, and potent immunosuppressive activity were developed, including 3-(12-
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β-artemisininoxy) phenoxyl succinic acid (SM735 [133]), 1-(12-β-dihydroartemisinoxy)-2-
hydroxy-3-tert-butylaminopropane maleate (SM905 [134–136]), ethyl 2- [4-(12-β-artemisininoxy)]
phenoxylpropionate (SM933 [137]), and 2’-aminoarteether (β) maleate (SM934 [138–140])
(Table 3)). Of note, SM934 was recently approved by the China Food and Drug Administra-
tion for a clinical trial, as a novel therapeutic agent to treat systemic lupus erythematosus
(SLE). These different derivatives shared potent immunoregulatory properties, with SM934
found to preferentially promote activated T cells into early apoptosis, leaving resting T cells
untouched [130], exhibiting extensive protective effects in chronic inflammation conditions,
such as clinically effective corticosteroids.

Thapsigargin structure (Figure 4C) was described in 1978 for the first time [141]. Dif-
ferent synthetic and semi-synthetic derivatives were developed due to their biological
activities. Mipsagargin, (8-O-(12-aminododecanoy)-8-O-debutanoyl thapsigargin)-Asp-γ-
Glu-γ-Glu-γGluGluOH, is a soluble licensed prodrug (G-202), https://www.drugbank.
ca/drugs/DB11813, accessed on 8 December 2021, containing a cytotoxic analog of thapsi-
gargin linked, via a carboxyl group, to the targeting peptide containing aspartic acid with
potential antineoplastic activity (Table 3). Mipsagargin is converted, through cleavage of
the peptide portion, into the active cytotoxic analog of thapsigargin, known to achieve
higher concentration of the active agents at the tumor site while avoiding systemic toxic-
ity [142,143]. In a recent clinical study with 25 patients, mipsagargin was well tolerated and
promoted prolonged disease stabilization in patients with hepatocellular carcinoma that
had progressed in prior treatment with sorafenib [144]. Thapsigargin dehydrocostuslactone
is another analogue synthesized by formation of a five-membered ring though a 1,8-addition
with a Grignard reagent, with completion of a regio- and stereoselective-butyrolactone
via an epoxide opening with dilithioacetate, and introduction of three exocyclic methy-
lene groups. This analogue inhibited TNF-α-induced NF-κB activation, and inhibited the
JAK/STAT3 pathway in breast cancer cells [133,145].

The presented clinical trials inspire new strategies for sesquiterpene lactone therapeutic
valorization. The findings seem promising; however, questions remain about their efficacy
as anti-inflammatory drugs. The concentrations upon which SL are pharmacologically
active are not well-described, reinforcing the importance of studying the pharmacokinetic
(ADME—absorption, distribution, metabolism, excretion) profiles of these molecules.

Table 3. Sesquiterpene lactones and their derivatives with clinical relevance.

Sesquiterpene
Lactone or Derivative Clinical Study References/

ClinicalTrals.gov Identifier

Dimethyl-amino-parthenolide (LC-1)
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4. Enhancement of the Biological Activity of Sesquiterpene Lactones

Anti-inflammatory activities, as well as modulations of the immune systems, make
SL attractive in pharmaceutical use. The possibility in biosynthetic engineering, as well as
the impact of new extraction methodologies to achieve SL-enriched extracts, are now being
addressed, in the perspective of two valuable tools for medicinal use of sesquiterpene lactones.

4.1. Metabolic Engineering for Sesquiterpene Lactones Specialized Production

Over the last few years, researchers have taken advantage of the advances in genomics,
transcriptomics, and metabolomics, which have resulted in a greater understanding of
the pathways and regulatory mechanisms involved in the biosynthesis of specialized
terpenoids. The presence of gene clusters has impacted technology in unravelling biosyn-
thetic pathways, not yet clarified, favoring the metabolic engineering of target compounds.
Regarding the gene clusters metabolized so far, we can mention those related to the biosyn-
thesis of terpenoids containing enzymes that converge to several terpenoid structures
that can be modified by additional enzymes, opening a range of possibilities for other
compounds, such as SL. For high throughput production of SL, increasing total production
of their main precursors, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate
(DMAPP) are vital prerequisites. Furthermore, elucidating new ways to replenish IPP and
DMAPP are different, yet effective methods to improve sesquiterpene lactone production.
Modification at the level of the MEP/MVA pathways is of great importance to obtain
improved content of the precursors; modifications in these pathways are usually via the
regulation of specific enzymes. Negative regulatory genes could be silenced from the
biosynthetic line, and some gene modules could undergo recombination or replacement
by auxiliary genes [146]. The translation of modular genetic pathways with an ample
supply of precursors has been successfully applied to producing artemisinin. Another
complementary approach involves heterologous production platforms. Malhotra et al.
used double tobacco transgenic lines with a three-fold enhancement of IPP, resulting in a
higher expression and an efficient photooxidation of dihydroartemisinic acid to artemisinin,
with great biological activity [147]. Equivalent approaches are easily upscaled to the in-

https://www.drugbank.ca/drugs/DB11813
https://www.drugbank.ca/drugs/DB11813


Molecules 2022, 27, 1142 15 of 22

dustry’s productivity needs, making compounds of interest available, with competitive
production costs.

4.2. Non-Conventional Sesquiterpene Lactone Extraction and Purification Processes

Solid–liquid extraction is a fundamental key in the assessment of the biological poten-
tial of SL. Throughout the years, several extraction methodologies and extraction solvents
have been applied to the extraction of SL, with a focus on improving their biological po-
tential. Recently, to increase the anti-inflammatory activity, non-conventional and green
extraction methodologies, such as supercritical CO2, were applied upon extraction of
SL [148]. Besides the providing efficiency, when compared to the traditional one, supercriti-
cal CO2 presented a higher selectivity (53 µg/mg) and allowed the reduction of organic
solvents consumed [148]. The produced extracts were tested for their anti-inflammatory
potential; a decrease on the activity of the calcineurin/Crz1, the S. cerevisiae orthologue
of the human nuclear factor of the activated T cells (NFAT) pathway was observed. The
SFE extract, rich in 11β,13-dihydrolactucin, lactucin, 11β,13-dihydrolactucopicrin, and
lactucopicrin, was able to inhibit 61.74 ± 6.87% of the transcription factor activity with
a concentration of 50 µg/mL, an inhibition rate in the same range of those observed for
the immunosuppressant pharmaceutical drug FK506, also known as tacrolimus [148],
indicating the possibility of application of this extraction method on the production of
sesquiterpene lactone-enriched anti-inflammatory extracts using green technologies at
reduced costs. Moreover, a SFE purified fraction, containing a mixture of 8-deoxylactucin
and 11β,13-dihydro-8-deoxylactucin, presented enhanced anti-inflammatory activity, based
on the capacity to decrease the activity of the calcineurin/NFAT orthologue, IC50 of
7.2 ± 3.15 µg/mL [148].

Nevertheless, an improvement on biological potential can also be achieved by separa-
tion processes, as the classic and solid phase extraction and/or liquid extraction. Liquid
extraction, although representing extra organic solvent consumption, is still one of the
main procedures for compound purification, where a higher biological activity of active
fraction can be achieved. Ferrari et al. studied the anti-inflammatory activity of ethanol
extract from aerial parts of Lychnophora trichocarpha and its ethyl acetate fraction [149].
Topical treatment with ointments containing ethanol extract, its ethyl acetate fraction
and SL, lychnopholide (Lyc), and eremantholide C reduced carrageenan-induced mice
paw edema. Comparative to the ethanolic extract and ethyl acetate fraction, the latter
promoted low paw swelling (0.062 ± 0.04 mm) when compared to the initial extract
(0.112 ± 0.05 mm), with these results correlating to the content of SL [149]. Recently,
Bras et al. studied the application of organic solvent nanofiltration on the purification of
cynaropicrin from Cynara cardunculus leaf extracts, where the removal of low molecular
weight compounds resulted in an increase of extract bioactivity, expressed in terms of
fibroblast Bj5-ta cell viability [150].

5. Conclusions

The chemical structures of SL allow for different target interactions. The α-methylene-
γ-lactone moiety is the structural feature with higher relevance in regard to the bioactivity
of SL. SL are able to modulate different cellular responses, with a recognized impact on
immune modulation and inflammatory response, a production decrease of IL-6, IL-8, and
the TNF-α of neutrophils, inhibition of macrophage LPS-induced nitric oxide production,
eosinophils reduction, favoring the degranulation of basophils, inhibiting T lymphocyte
receptors, and suppressing lymphocyte proliferation, as cell reducing dendritic cell matura-
tion. At the molecular level, SL impact three mainly inflammatory signal pathways, NF-kB,
MAPK, and JAT-STAT, of non-immune cells, such as epidermal keratinocytes. The gene
expression resulting by the action of these signal pathways will affect the proliferation,
survival, maturation, differentiation, chemoattraction, and trafficking of immune cells.

Appropriate in vivo studies addressing the anti-inflammatory potential of sesquiter-
pene lactones, as well as evaluating their toxic properties, genotoxicity, and embryotoxicity,
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are needed. The slightly different chemical structures of SL might induce different bio-
logical activities; for this reason, it is important to properly understand the toxicological
profiles of these compounds. The efficacy of biological activity is missing link between
toxicity and selectivity, which needs to be potentiated. Comprehensive clinical trials are
needed to establish the efficacy of SL and/or their derivatives, as safe anti-inflammatory drugs.

In the near future, there needs to be more advances in pharmacokinetics and nanotech-
nology. Although with some recent developments, the solubility enhancement will dictate
the extension of sesquiterpene lactone use, and the eventual routes of administration. All
evaluations will lead to new knowledge and strategies regarding the biological and clinical
relevance of sesquiterpene lactones, in regard to inflammation response, or their related
comorbidities.
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