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Abstract: Aliphatic isocyanates and polyisocyanates are central molecules in the fabrication of
polyurethanes, coatings, and adhesives and, due to their excellent mechanical and stability properties,
are continuously investigated in advanced applications; however, despite the growing interest in
isocyanate-based systems, atomistic simulations on them have been limited by the lack of accurate
parametrizations for these molecular species. In this review, we will first provide an overview of
current research on isocyanate systems to highlight their most promising applications, especially
in fields far from their typical usage, and to justify the need for further modeling works. Next, we
will discuss the state of their modeling, from first-principle studies to atomistic molecular dynamics
simulations and coarse-grained approaches, highlighting the recent advances in atomistic modeling.
Finally, the most promising lines of research in the modeling of isocyanates are discussed in light of
the possibilities opened by novel approaches, such as machine learning.

Keywords: aliphatic isocyanates; atomistic modeling; molecular dynamics; coarse-grained models

1. Introduction

Isocyanates are a well-known family of versatile molecules, first synthesized in the
middle of the 19th century by C. A. Wurtz [1]. Many years later, in 1932, Otto Bayer
discovered a method to produce polyurethanes (PU) [2], which uses isocyanates as a basic
building block. Since then, they have rapidly become one of the most important molecules
in industrial chemistry, due to the extreme versatility and diffusion of polyurethane materi-
als [3,4]. The importance of isocyanates is not restricted to the vast field of PU chemistry,
but they are a key component for the synthesis and production of advanced materials.
Moreover, isocyanates became relevant molecules in astrochemistry and astrophysics, fol-
lowing their discovery in the interstellar medium [5].

In the large family of isocyanates, aliphatic polyisocyanate trimers and higher-order
polymers are particularly interesting, since they combine strong mechanical strength and
chemical stability to crosslinking capabilities and biocompatibility, hence rendering them
very appealing in the design and synthesis of novel PU-based materials.

Despite the avenues opened by experimental research efforts on aliphatic isocyanates,
the simulation community lagged behind, with the results that the availability of accurate
atomistic models capable of reliable predictions of the physical properties of isocyanates and
polyisocyanates is limited, especially when coming to fully atomistic molecular dynamics
simulations. This means that the possibility to explore and understand through simulation
and modeling the complex interplays between chemical composition and reactivity, local
structure, and physical properties of isocyanate-based materials is limited.

Given the above, the scope of this review is to give an overview of the active research
fields on isocyanates, in order to demonstrate their centrality in contemporary research and
the underline need for accurate models. In this optic, we will provide a summary of the
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atomistic simulation works regarding isocyanates, with a focus on recent achievements in
the field of atomistic modeling and the possibilities offered by novel techniques, such as
machine learning.

2. Isocyanates and Polyisocyanates: Definitions and Chemistry

Before discussing the applications of isocyanates, it is useful to introduce the chemistry
of isocyanates and their nomenclature. The isocyanate group chemical structure is made by
two adjacent double bonds connecting nitrogen (N), carbon (C), and oxygen (O) atoms, as
shown in Figure 1A. The peculiar position of the C atom, between the two electronegative
atoms N and O, induces a relatively large positive charge on it, resulting in a strong
electrophilic effect. Thus, the nucleophilic character of the N atom coupled with the high
electrophilicity of the C atom is what makes isocyanates so unique and widely employed.
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Figure 1. Hybrid resonance structures of the isocyanate functional groups for aliphatic (A) and
aromatic (B) structures.

Isocyanates are divided into aromatic and aliphatic structures. They are applied
differently and are rarely interchangeable. As the name indicates, aromatic isocyanates
have an aromatic moiety in the radical group, such as toluene diisocyanate (TDI), methy-
lene diphenyl diisocyanate (MDI) or xylene diisocyanate (XDI), while aliphatic ones con-
tain only alkyl chains, such as the hexamethylene diisocyanate (HDI) and isophorone
diisocyanate (IPDI).

When compared to aliphatic ones, aromatic isocyanates are characterized by a higher
reactivity with active hydrogens, due to the negative charge delocalization which is stabi-
lized by the resonance effect of the aromatic ring (Figure 1B).

While the highest reactivity of aromatic isocyanates is an advantage in terms of reaction
and conversion rates, conversely, the lack of selectivity and consequently reaction control
is certainly a disadvantage. The presence of substituents also affects the reactivity of
the isocyanate group, with electron-withdrawing substituents in ortho or para position
increasing it while donating substituents reducing it [6]; moreover, PUs based on aromatic
isocyanates typically have less resistance to sunlight and UV exposure, weak gloss retention
and significant discoloration when compared to aliphatic isocyanates.

Figure 2 shows the typical-NCO group reactions and their products [7]; they are
divided into two classes: addition reactions (primary and secondary) with an active
hydrogen-containing compound, such as amine, water, alcohol, carboxylic acid, urethanes
(Figure 2A–F) and self-addition reactions (Figure 2G–I). Urethane formation (A) occurs
when an isocyanate reacts with an alcohol group, forming a urethane linkage, or with a
sulfur group (B), to form a thiourethane molecule. Urea is obtained when isocyanate reacts
with amine groups (C) or water (F), with the release of gaseous carbon dioxide. The release
of CO2 is present in some reactions helping the formation of PU foams. The reaction be-
tween isocyanate and carboxylic acid (E) gives amide product, and finally, in (D) isocyanate
reacts with urethane giving an allophanate molecule.
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an active hydrogen-containing group, while schemes (G–I) represent self-addition reactions. In all
schemes R = −(CH2)n−.

The dimerization reaction (Figure 2G) of isocyanates results in the reversible formation
of a difunctional uretidione. Cyclotrimerization reaction of linear diisocyanates results
in the formation of a ring structure called an isocyanurate (Figure 2H) which, unlike the
uretdione, is very stable. Although quite slow if uncatalyzed [4], the dimerization and
cyclotrimerization reactions are spontaneous and, because of this, they limit the shelf-life
of isocyanate products [7].

The functionality “ν” is defined as the number of unreacted NCO groups in an
isocyanate molecule. Combining three linear diisocyanates will result in a trifunctional
isocyanurate. Clearly, isocyanurates can be further combined to obtain molecules with
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higher functionality. Conversely, combining three linear mono-isocyanates will result in
nonfunctional isocyanurates, which are equivalent to Figure 2H, except that the terminal
NCO groups of alkyl arms are substituted by −CH3 terminations.

3. Applications and Research Trends

Isocyanates are very versatile molecules and nowadays are employed in many different
fields, as summarized in Figure 3.

Polymers 2022, 14, x FOR PEER REVIEW 4 of 19 
 

 

nonfunctional isocyanurates, which are equivalent to Figure 2H, except that the terminal 

NCO groups of alkyl arms are substituted by −CH3 terminations. 

3. Applications and Research Trends 

Isocyanates are very versatile molecules and nowadays are employed in many dif-

ferent fields, as summarized in Figure 3.  

 

Figure 3. Overview of the applications of isocyanates discussed in Section 3. 

The most important application of isocyanates is in polyurethane (PU) production, 

of which they are one of the precursors, along with polyols. According to data on com-

pounds [8], the annual growth PU materials market was estimated at USD 18 billion in 

2020 with an increase of 5–6% in the period 2021–2025.  

The incredible versatility of PU materials and their properties makes them ubiqui-

tous: they are used as construction blocks, insulating foams, and flame retardants in the 

building industry, coatings in the automotive and space industry, and certain composi-

tions are suitable for the use as biomaterials [3,4,9].  

When aliphatic isocyanates and isocyanurates are employed, materials with better 

properties are generally obtained, when compared with other families. This is due to the 

fact that, when used, tri- and polyfunctional aliphatic isocyanurates combine crosslinking 

capability with the excellent mechanical properties, degradation resistance, and chemical 

stability provided by the isocyanurate ring [10–14]. Because of this, they are the basis of 

high-performance coatings [15–17] and porous materials [18,19], while their good optical 

properties make them ideal to be used as a matrix for nonlinear optically active devices 

[20].  

However, the viscosity of polyisocyanates grows with the degree of polymerization, 

constituting a limiting factor in their application [21]. A higher viscosity directly translates 

to difficulties in the application and mixing of the polyisocyanate precursor melt, and for 

this reason, lower-viscosity isocyanurates are mostly desired, possibly retaining their 

functionality. In this regard, the synthesis of ultra-pure functional and nonfunctional iso-

cyanate trimer liquids was conducted, and their viscosity was measured [22]. As shown 

in Figure 4, it was revealed that, in the case of functional trimers, the viscosity is strongly 

influenced by the alkyl arm length, with higher viscosities observed for lighter functional 

trimers (i.e., with shorter alkyl arms), while no such dependency and a much lower overall 

viscosity was found in the case of nonfunctional trimers.  

Figure 3. Overview of the applications of isocyanates discussed in Section 3.

The most important application of isocyanates is in polyurethane (PU) production,
of which they are one of the precursors, along with polyols. According to data on com-
pounds [8], the annual growth PU materials market was estimated at USD 18 billion in
2020 with an increase of 5–6% in the period 2021–2025.

The incredible versatility of PU materials and their properties makes them ubiquitous:
they are used as construction blocks, insulating foams, and flame retardants in the building
industry, coatings in the automotive and space industry, and certain compositions are
suitable for the use as biomaterials [3,4,9].

When aliphatic isocyanates and isocyanurates are employed, materials with better
properties are generally obtained, when compared with other families. This is due to the
fact that, when used, tri- and polyfunctional aliphatic isocyanurates combine crosslinking
capability with the excellent mechanical properties, degradation resistance, and chemical
stability provided by the isocyanurate ring [10–14]. Because of this, they are the basis of
high-performance coatings [15–17] and porous materials [18,19], while their good optical
properties make them ideal to be used as a matrix for nonlinear optically active devices [20].

However, the viscosity of polyisocyanates grows with the degree of polymerization,
constituting a limiting factor in their application [21]. A higher viscosity directly translates
to difficulties in the application and mixing of the polyisocyanate precursor melt, and
for this reason, lower-viscosity isocyanurates are mostly desired, possibly retaining their
functionality. In this regard, the synthesis of ultra-pure functional and nonfunctional
isocyanate trimer liquids was conducted, and their viscosity was measured [22]. As shown
in Figure 4, it was revealed that, in the case of functional trimers, the viscosity is strongly
influenced by the alkyl arm length, with higher viscosities observed for lighter functional
trimers (i.e., with shorter alkyl arms), while no such dependency and a much lower overall
viscosity was found in the case of nonfunctional trimers.
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The need of understanding this peculiar behavior of isocyanurate liquids led to the first efforts
in careful atomistic modeling and simulation of the liquid phase of aliphatic polyisocyanates.

PU-based microgels, that is polymer networks of micrometer-scale dimension [23],
have been synthesized and used for several biomedical applications, such as targeted drug
delivery [24–26], vascular embolization [27], shape memory biomaterials with improved
lifetimes [28]. Isocyanurate-crosslinked hydrogels are a very interesting class of materials,
due to their intrinsic versatility [29] and biocompatibility [9]. It has been shown that
by using isocyanate-end functionalized polymers, hydrogels with very good control of
the internal structure can be obtained [30,31], overcoming the limitations of traditional
crosslinking techniques, where an already formed crosslinker is added to the precursor
melt; such hydrogels show improved mechanical properties in the swollen state and have
shown promising potential in the production of contact lenses [32].

As already highlighted, the NCO group is very reactive. It is then not surprising that
isocyanates allow for a quick route for surface functionalization. In these applications,
the NCO group of an isocyanate-functionalized polymer reacts with the surface, forming
covalent bonds and resulting in polymer grafting. In this way, fluorinated polymers were
grafted to glass, providing it with antifogging and self-cleaning capabilities [33], while
other substrates, such as nanocarriers [34] and cellulose [35] have been functionalized in
this way. The same mechanism can also be used for the immobilization of various species
on a substrate [36,37]. Graphene is no exception: isocyanate functionalization allows
for an easier exfoliation and solubility of graphene oxide sheets [38] while making them
embeddable in a matrix to exploit the unique graphene properties [39–42].

In coatings technology, a way to improve the coating lifetime is by providing it with
self-healing capabilities. In this context, aliphatic [43] and non-aliphatic isocyanates [44–46]
have been used in the form of microcapsules. In these microstructures, the reactive iso-
cyanate molecules are stored within the capsule and are released upon damage. This allows
the isocyanates to react with the coating and establish new linkages, effectively restoring
the coating’s integrity; the same philosophy has been adopted in wood adhesives [47].
In general, with the appearance of new synthesis routes [30,48,49] and novel processing
and handling techniques, such as molecular layer deposition [50], the role of aliphatic
isocyanates in the production of advanced materials is expected to grow. For instance,
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the possibility of employing isocyanates in reactive inkjet 3D printing processes is very
appealing [51].

Owing to the priority of finding sustainable and environmentally friendly processes
in chemistry, alternatives to the traditional synthesis methods are thoroughly investigated,
aiming at finding petrol-free sources for the reactants and at reducing water consumption
and polluting compounds’ emissions. In this light, aliphatic isocyanates could be obtained
through green chemistry routes [11] and in 2015 the first commercial bio-based aliphatic
polyisocyanate product was introduced into the market [52]. These could be combined with
bio-based PU formulations [53]. The increased mechanical strength of aliphatic isocyanate
trimers allows for the use of starch as polyol [10]. In fact, the use of starch in the production
of PU composites not only yields but makes the final PU products biodegradable, although
the hydrophilic nature of starch limits its dispersion in hydrophobic PU polymers [54].

Blocked isocyanates [4] are also a promising way to provide a longer shelf-life and
lower toxicity than free isocyanates. The blocking reaction of the isocyanate group with
the active hydrogen of the blocking agent makes the NCO group non-reactive since the
weak bond between the active hydrogen and the N atom produces a compound that
is inert at room temperature but reactive at high temperatures. Furthermore, the use
of blocked isocyanates allowed for a safer and more controlled synthesis of urethanes.
As an example, Rolph et al. [55] synthesized a novel monomer, methacryloyl pyrazole,
based upon blocked diisocyanates to produce a crosslinked polymeric particle by the
postpolymerization reaction. This might allow a wide range of applications, such as
thermally responsive latent catalytic systems, formation of complex molecular architectures,
and single-chain polymer nanoparticles.

Another way to improve the isocyanate production process from a green chemistry
perspective is through the development of novel catalysts which could provide more
efficient production routes under milder conditions. In this sense, many promising options
have been explored [12–14,56–58].

In 2014, the Philae lander of the Rosetta spacecraft landed on the comet 67P/Churyumov–
Gerasimenko and analyzed its composition, finding methyl isocyanate [5]. This confirmed
the existence of isocyanates in the extraterrestrial space and, following this discovery,
methyl isocyanate and possibly ethyl isocyanate were observed in interstellar medium
and protostar gas clouds [59], identified by the strong and peculiar spectral line of the
NCO group. The presence of the ethyl isocyanate in the interstellar medium has been
later confirmed [60]. This claim is further supported by recent studies addressing the
formation and stability of isocyanates under astrophysical conditions [61,62], indicating
that methyl isocyanate/water mixtures appear to be stable at temperatures below 20 K.
In fact, elementary isocyanates are one of the very basic ingredients of life, being amino
acid precursors [63], thus understanding the behavior of isocyanates in these extreme
environments allows us to shed light on the chemical evolution that from elementary
molecules led to those capable of sustaining life [64].

4. Modeling and Simulation of Isocyanates

Having established the centrality and importance of isocyanates, not only in polyurethane
research but also in other fields, we will now focus on reviewing the theoretical and
computational studies on them. In Table 1, we summarize the main advantages, drawbacks,
and application fields of the methods treated in this section.

4.1. Ab Initio Studies

In view of the discussion on atomistic models for aliphatic isocyanates, it is important
to consider the more fundamental first-principles studies, since in many cases they offer
the only way to obtain reference data upon which to build classical atomistic models.

First-principles, or ab initio, methods have been historically focused on understanding
the reactivity and reaction pathways of isocyanates, while a lower consideration was given
to their physical properties and intermolecular interaction in gas and condensed phases.
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Moreover, most studies address very simple isocyanates, such as isocyanate ion (NCO-)
or isocyanic acid (HNCO), while a lower number target more complex ones. This is even
more true for aliphatic isocyanates. As a consequence of this, the liquid phase properties
of isocyanates have not been characterized from the ab initio perspective as well as their
chemistry, and this scarcity is directly reflected by the reduced availability of classical
atomistic models.

Table 1. Summary of the simulation techniques discussed in this review, along with their typical
applications, advantages, and drawbacks.

Method Applications Advantages Disadvantages

Ab initio

# Calculations for isolated
molecules, crystals, and
small clusters.

# Investigation of chemical
reaction mechanisms.

# Characterization of intra- and
intermolecular interactions.

# Adsorption properties.

# High accuracy.
# No need for

external parameters.
# Results can be used as

reference data for force
field parameterization at
larger scales.

# Computationally
very intensive.

# Limits in system size: up to
hundreds of atoms.

Molecular dynamics

# Prediction of physical and
thermodynamic propertiesin
condensed phases.

# Study of energy, mass,
momentum
transport processes.

# Much faster than ab
initio methods.

# Large-scale simulation
of condensed phases.

# Force fields are available
for reactive studies.

# Accuracy depends on the
quality of parametrization.

# The transferability of force
field parameters
needs testing.

Coarse-Grained
Molecular Dynamics

# Large-scale simulation of
complex structures and
their interfaces.

# Study of network formation
and degradation in
crosslinked and
phase-separated materials.

# Simple implementation
of network
formation reactions.

# Different levels of
coarse-graining
are available.

# Very large length and
time scales can
be simulated.

# Atomistic-scale details
are lost.

# Calculated CGMD
interaction parameters
affected by quality
underlying MD.

Isocyanates-containing species appear as intermediate compounds in catalytic pro-
cesses on metallic surfaces involving carbon monoxide and nitrogen oxides [65]. For this
reason, first-principle studies employing density functional theory (DFT) [66,67] have been
conducted in order to understand the interactions between the isocyanates and the catalytic
surfaces. Among the considered metals, there is copper [68–70], silver [71], palladium [72],
aluminum oxide [73], gold [74]. In all these cases, strong chemisorption between the iso-
cyanate species and the substrate was found, with the formation of a bond involving the
N atom. Similar studies have been conducted regarding the adsorption of isocyanic acid
on titanium dioxide and aluminum oxide surfaces [75,76], because of its importance in the
selective catalytic reduction processes of diesel engine exhausts.

Isocyanic acid, whose crystal structure resembles the one of carbon monoxide [77], is
also supposed to play a role in the chemistry of interstellar ices and comets [78], therefore
computational ab initio studies tried to understand its behavior in the extreme space
conditions. In this sense, DFT has been used to calculate the vibrational spectrum of
methyl isocyanates, in order to relate it with the astrophysical observations by Maté and
collaborators [61]. Incidentally, they used isocyanic acid as a starting point to guess the
methyl isocyanate crystal structure. Stable geometries of isocyanic acid-water clusters,
now expected to be found in astrophysical environments, have been studied with ab initio
methods [79,80]. More recently, ab initio molecular dynamics coupled with metadynamics
demonstrated that the presence of water and water/CO ice actually helps the formation of
methyl isocyanate [81].
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Moving the attention to aliphatic isocyanates and isocyanurates, the cyclotrimeriza-
tion reaction has been thoroughly investigated using ab initio method. Okumoto and
Yamabe [82] firstly studied the ring formation using DFT, focusing on the effect of the
presence of a catalyst and suggested that catalysts are needed to obtain trimers. A later
study [83] indicated that cyclotrimerization can still happen without a catalyst, with an
uretdione (i.e., an isocyanate dimer) appearing as an intermediate. Both works agree in
suggesting that, when a catalyst is present, cyclotrimerization formation goes through an
activated catalyst-isocyanate complex and uretdione appears as an intermediate state, and
was further confirmed by different studies [84,85]. This kind of information is extremely
useful for the definition of simple reaction models in studies that aim to investigate the
crosslinking process during network formation since the final state will be strongly influ-
enced by the reaction features (such as speed and reversibility character). Apart from the
trimer formation process, other reactions of aliphatic isocyanates have been investigated as
well, such as the urethane bond formation between isocyanates and alcohols [86].

Adhesion properties of isocyanates are of great interest because adhesives are one of the
main application fields of isocyanates. The adhesion of polyisocyanates on aluminum [87]
and steel [88] has been investigated, but these studies were limited to aromatic ones.

In a more general perspective, the knowledge of the physical origin of molecule-
substrate and even molecule-molecule interactions of isocyanates and polyisocyanates can
certainly shed light on their peculiar behavior, such as it was observed for viscosity, but
can also provide a solid ground for further parametrization and modeling; however, the
literature regarding aliphatic polyisocyanates is scarce in this regard. A comprehensive
study of the intermolecular interactions of aliphatic isocyanurate has been conducted using
ab initio calculations and MD simulations [89]. In functional trimer melts, three different
interactions were found, as schematically reported in Figure 5, that is the interaction
between the NCO groups, one between isocyanurate rings, and one between NCO groups
and isocyanurate rings, which was revealed for the first time. Interestingly, all interactions
involving isocyanurate rings are dominated by dispersion forces.
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Figure 5. Representation of the intermolecular interaction in aliphatic isocyanurates. From top left
and clockwise: NCO–NCO interaction, isocyanurate–isocyanurate interaction, NCO–isocyanurate in-
teractions. The colored regions are the result of an NCI calculation [90]. Reproduced with permission
from Ref. [89].

The importance of noncovalent interactions [90] in isocyanate systems has also been
confirmed by a study on the stability of diphenyl diisocyanate uretdiones [91], where
aromatic π stacking and van der Waals have been suggested as stabilization mechanisms
for the dimer; further, in the case of isocyanuric acid, these interactions are responsible for
the stability of complex supramolecular structures, such as rosette motifs [92] or molecular
cages [93].
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4.2. Molecular Dynamics Force Fields

Atomistic modeling techniques, namely MD and coarse-grained (CG) models are
among the most effective ways with which it is possible to accurately calculate the macro-
scopic properties of complex polymer systems, such as crosslinked networks and liquid
while connecting them with their atomic-scale interactions.

However, the application of these methods to isocyanates and isocyanate-based systems,
such as precursor melts, is hampered by the lack of accurate parametrizations. Isocyanates have
not been considered in the initial training set of the major force fields [94–97], which have
been mostly interested in organic compounds of biological interest, and in fact, until
recently, there were no specifically parametrized force fields for aliphatic isocyanates
and isocyanurates, thus accurate simulations were not possible. To have a quantitative
idea, while the experimental viscosity of hexamethylene diisocyanate (HDI) at 293 K is
2.3 mPas, calculating it in MD with an off-the-shelf GAFF [96] force field results in a tenfold
overestimation, with a value of 21.7 mPas [98]. More basic properties are overestimated
as well by GAFF, with a predicted density and vaporization enthalpy for HDI at 293 K of
1.084 g/cm3 and 117.1 kJ/mol, respectively, which compare with the experimental values
of 1.053 g/cm3 and 67.2 kJ/mol.

To fill this gap, a parametrization was developed [98] for aliphatic isocyanates and
isocyanurates, with the objective to improve the predictions for these molecules and then
use MD to investigate the connection between isocyanate molecular structure and viscosity.
The parametrized force field was proven to dramatically improve the prediction accuracy
of various physical quantities of isocyanates and polyisocyanates liquids. For instance, den-
sities and vaporization enthalpy predictions greatly improved after the reparametrization,
with calculated values for HDI at 293 K of 1.053 g/cm3 and 79.5 kJ/mol; moreover, viscosity
predictions dramatically improved, with a calculated value for HDI at 293 K of 2.8 mPas,
much closer to the experimental value and representing a 10-fold improvement when com-
pared with unparametrized GAFF results. As shown in Figure 6, the reparametrized force
field was used to successfully reproduce the viscosity trends observed for functional and
nonfunctional isocyanate trimers pure liquids and mixtures [98,99], meaning that it treats
correctly the intermolecular interactions. This information was indeed used to investigate
the effect of the intermolecular interaction of polyisocyanates on their viscosity, finding
that the presence of NCO-Ring interactions is the main factor behind the viscosity rise in
functional molecules [89].
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monds) trimer pure liquids at 298 K, as a function of the alkyl arm length, compared with experimental
results (full symbols). (B) Comparison of the calculated (triangle) and experimental (circles) viscosity
of a mixture of hexamethylene diisocyanate (HDI) and a nonfunctional trimer, at 298 K. The red lines
indicate the ideal Arrhenius behavior. Reproduced from Ref. [99].

The tremendous impact that a dedicated parametrization has on the predictive power
of simulations also emerges from the recent work of Emelianova and Gor [100]. In their
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study, they reparametrized a TraPPE force field to accurately describe the isocyanate NCO
group using ab initio calculations as reference data, and they used it to obtain accurate
predictions of the vapor–liquid equilibrium curves of linear isocyanates.

4.3. Coarse-Grained Models

Coarse-grained (CG) modeling [101,102], in which beads representing groups of atoms
are employed, are required to simulate processes at larger time and length scales. There is
a vast literature on the simulation of polyurethanes materials; however, in this paper,
we wish to highlight those works that explicitly consider the network formation process
involving isocyanates.

The simpler coarse-graining step is to merge hydrogen atoms H with heavier ones A, so
that –AHx groups are treated as simple units, termed united atoms. While there are united
atoms representations exist for the more popular force fields, such as for AMBER [103],
they still suffer from the problems caused by a lack of parametrization for isocyanates, as
proven in Ref. [100].

A coarser scale is obtained by replacing entire fragments or molecules with beads, as
done by the MARTINI [104] or AWSEM-MD [105] force fields, developed for the study
of large biomacromolecules. In such coarse-grained models, the modeling of chemical
reactions, especially formation and degradation processes, is greatly simplified, since they
can be represented as the formation and breaking of bonds between CG beads; moreover,
while adding additional complexity of parametrization, coarse-graining reduces signifi-
cantly the workload of simulation, because it reduces the amount of objects to model by
about 90% [106]; thus, MARTINI force fields have been used to investigate the crosslinking
formation process of PU networks [107] and the interaction between water and dangling
chains at the network surface [108]. Such studies are fundamental in revealing how reaction
conditions, such as solvent concentration, and mechanisms are strongly correlated with the
predicted final crosslinked structure. In these works, MARTINI force field parameters have
been obtained, starting from fully atomistic MD simulations using OPLS-AA [94] force
field. It was noted that isocyanate properties, namely density, were poorly predicted by the
CGFF. The same problem, that is, a large difference between the predicted and expected
densities at 300 K, was also observed by the same group in the density of hexamethylene
diisocyanate (HDI) [109], with a MARTINI-predicted density (at 300 K) of 0.89 g/cm3, that
is a 15% underestimation with respect to the experimental value.

While these errors can still be neglected when the number of isocyanate molecules
is much smaller than the other species, they will seriously affect predictions for systems
with a large content of isocyanates, such as polyisocyanate networks and isocyanate melts.
A correct treatment of the isocyanate moieties’ interactions between them and with the
other species is fundamental to obtaining a reliable representation of the system’s dynamic
properties and phases at any isocyanate concentration, especially if properties of the liquid
phase properties or initial stages of network formation process are under investigation.
As the inaccuracies of the MARTINI predictions originated from the use of a non-optimized
force field, we expect that the availability of reliable force fields for the simulation of
isocyanates and polyisocyanates can greatly improve the quality of the CG parameters and
thus their simulation predictive power.

Another coarse-grained method used for the mesoscale modeling and simulation
of isocyanate systems is Dissipative Particle Dynamics (DPD) [110–112]. DPD provides
some advantages compared to other CG methods. Firstly, DPD forces are always soft,
i.e., there are no repulsive cores with diverging potentials, thereby allowing for much
larger timesteps. In addition, DPD parameters might be directly related to Hildebrand
solubility parameters [113], which can be obtained from all-atom MD simulations [114].
Incidentally, the quality of the final DPD parameters obtained in this way is strictly related
to the accuracy of the underlying MD model.

DPD has been used to study the formation and morphology of isocyanate-crosslinked
networks at their free surface [115–117], polycarbonate-PU crosslinked materials [118],
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and polyethylene glycol hydrogels [119,120]. In the above-referred works, the precursor
system is generally a mixture of linear polymers and aliphatic isocyanate trimers, i.e.,
already formed crosslinkers, and the urethane bond formation is simply modeled as a
bond formation between the beads representing the isocyanate and alcohol groups. It has
been shown that within this simple scheme, the reaction parameters do not influence
the final structure and properties [121]. The formation of end-crosslinked nanogels from
isocyanate-functionalized prepolymers has been studied using DPD [122]. In this case, the
linking reaction is not the urethane bond formation, but the cyclotrimerization itself, which
is modeled as a two-step reaction, as it is shown in Figure 7A, with the formation of an
intermediate active NCO dimer. The simulated end-crosslinked nanogels demonstrated low
content of residual isocyanates and good swelling properties (Figure 7B). Moreover, it was
shown that the prepolymer chain length also influences the reaction process (Figure 7C),
and that a reversible dimerization reaction is needed to achieve high crosslinking rates
(Figure 7D).
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Figure 7. (A) representation of the reactive DPD model for isocyanate-end-functionalized
chains [99,122]. (B) Swelling curves as a function of the solvent-gel interaction parameter asg for
isocyanate-end-crosslinked nanogels, for different chain lengths n of the precursor polymer melt.
(C) Characterization of the crosslinking formation process as a function of precursor chain length.
(D) Characterization of the crosslinking formation process for a reversible (full) and nonreversible
(dashed) activated dimer reaction process. Color legend is the same for panels (C,D).

An improvement to the DPD modeling physical properties of isocyanate-based ma-
terial might be represented by the recently developed “slip-spring” method [123], where
fictitious springs between chains to recover the effects of polymer entanglement, lost in
DPD modeling, are introduced.

5. Outlook and Perspectives

Despite their long history, isocyanate molecules, especially aliphatic ones, are still con-
tinuously investigated. We have shown their role in defining the properties of crosslinked
materials, as well as how they can be used in nanoscale-structured materials, from nanogels
to functionalized surfaces. In this context, the simulation of the precursor melts and the
network formation process is extremely helpful in revealing the complex relationship be-
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tween microscopic structure and final properties; however, atomistic studies, especially
using all-atom molecular dynamics models, have been generally limited by the availability
of accurate force fields for isocyanates. The first steps have been already done in this direc-
tion [96,98]; however, a comprehensive force field capable of properly simulating aliphatic
isocyanates and isocyanurates and their interactions with polyurethanes in all-atom MD
has not been reached yet. Such a task is quite challenging, due to the rich interactions that
even simple isocyanates are capable of Ref. [89], and the chemical complexity observed
in polyurethanes.

In our opinion, further efforts in parametrization should be directed towards the
isocyanate group and isocyanurate ring interactions with urethane and urea groups, which
are present in isocyanate-crosslinked materials, except pure polyisocyanate networks.
This would allow us to obtain much better parameters for larger-scale CG simulations from
atomistic ones, regardless of the method used.

Concerning aromatic isocyanates, to the best of our knowledge, there is no specifically
developed parametrization yet. Compared to aliphatic ones, they are slightly more complex,
as the interaction of the phenyl groups with both isocyanate and isocyanurate species
should be taken into account.

Recent advancements on modeling techniques such as reactive force fields and ma-
chine learning open new interesting directions for investigations. Reactive force fields, such
as ReaxFF [124,125], and for which a variety of parametrization for organic molecules al-
ready exists, could be used to study the isocyanate reactivity e.g., in cyclotrimerization and
urethane formation; however, the complex chemistry of the isocyanate groups imply the
need of a very large initial parametrization set, and makes the parametrization strategy not
obvious. Such work can be indeed made easier by using deep-learning assisted tools [126].

Machine learning tools are extremely powerful in providing atomistic force fields with
ab initio accuracy [127]. In this sense, they are used to replace the parametrization process,
in which the quantum mechanical forces are approximated by more or less accurate classical
potentials, with an automated one. This allows for very accurate force fields that, when
used in MD simulations, effectively combine the ab initio accuracy with the simulation of
large time and length scales. In particular, Bayesian models [128] appear quite promising
for organic liquids [129]. Concerning isocyanates, it should be possible to obtain a machine-
learned force field for linear ones, with immediate applications in astrophysical problems,
where simple isocyanates are of interest.

Conversely, the treatment of isocyanate trimers might be extremely challenging. In de-
tail, the main obstacle in this sense is the complexity of the molecules and the presence of
long-range noncovalent interactions, which translate into a very large number of training
structures required to reach a good accuracy. Besides this, the transferability of these force
fields should be tested with extreme care. With this said, it is clear that either reactive
or machine-learned force field will dramatically expand our capabilities of simulating
isocyanate-based systems; hence, the possibility of obtaining them should be regarded with
extreme interest.

Regarding CG models, the development of machine learning and clustering algo-
rithms allowed to automate the process of fragmentation of the graph of molecular bonds
according to correlation of atomic displacements [130,131], or optimizing a general scoring
function based on excluded volume and reproducing a number of thermodynamic quan-
tities [132,133]. Such approaches might accelerate the optimization of CG parameters for
isocyanate-based systems to enable their accurate mesoscale simulations.

Finally, it is worth noting that, apart from reparametrization purposes, ML tools help
to combine information from atomistic simulations with experimentally known data to
predict macroscopic properties, thus avoiding the extreme burden of repetitive large-scale
simulations, thereby helping to accelerate the development of isocyanate-based materials
with the desired properties. In this fashion, it was possible to predict glass transition
temperatures [134,135] and elastic properties [136,137] of isocyanate-containing polymers,
based upon chemical molecular properties and chain mixtures simulations.
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