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Abstract. The early-stage identification of structural damage still represents a relevant chal-

lenge in civil engineering. Localized damages if not readily detected can lead to disruption or 

even collapse, involving hazard to people and economical losses. Although the final goal of 

the identification is to localize and quantify the damage, a reliable discrimination between 

normal and abnormal states of the structure in the very early stage of the damage onset is not 

an easy task. In the field of Structural Health Monitoring (SHM) great attention has been paid 

to the development of damage detection methods based on continuous and automatic registra-

tion of the system response to unknown ambient inputs. The numerical algorithms exploited 

must be: (1) easy to implement and computationally inexpensive, eventually being embedded 

in the sensors; (2) as much independent on human decision as possible; (3) robust to the 

many sources of uncertainties affecting the monitoring; (4) able to detect small damage ex-

tents in order to provide an early warning; (5) suitable for the application in the case of few 

and sparse measurements collected only in the normal condition. The performance of a novel 

version of Negative Selection Algorithm, recently developed by the authors, is here analyzed 

with attention to these issues. The algorithm is tested against data collected on a segmental 

masonry arch built in the laboratory of the University of Minho and subject to progressive 

lateral displacement of one support. 
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1 INTRODUCTION 

In the context of Structural Health Monitoring (SHM), the Damage Identification (DI) and 

the early warning in case of damage onset are essential to support any engineered system 

management. Following the Rytter’s hierarchy[1,2], the DI process can be summarized ac-

cording to five main goals of increasing complexity: (1) Detection of existence; (2) Localiza-

tion; (3) Classification of the type; (4) Quantification of the extent; (5) Prognosis. Such a 

hierarchical structure requires that all the lower levels are available before attempting a higher 

level of information. Thus, the detection of existence is the first basic step that a monitoring 

strategy must fulfil but, in many cases, it is a complex problem to address. 

The SHM theory is based on the existence of a function f such that:  

 (1) 

where xX is a vector whose elements are all the features of the engineered system (e.g. a 

structure or infrastructure), y is a vector that describes the  condition of this system and v is a 

vector which accounts for the environmental and operational variables that affect the system 

features. In damage detection, the state vector y is a binary variable, namely y {Nonself, Self} 

or y {1,0}. The goal is the discrimination between a normal ‘0’ and an abnormal ‘1’, poten-

tially damaged, state of the system. Each feature vector x is a point of a multidimensional 

domain called input space, namely the space of the domain of each single feature of the vector. 

The DI task aims at assessing the system state by analyzing the values assumed by the fea-

tures. One of the main issues to tackle consists of the feature selection. Indeed, out of the po-

tentially infinite features of the engineered system, whose domains might also be infinite, the 

detection is carried out on a scalar valued space called feature space F  X [3]. Thus, the 

points   are the projection of the points xX, from the original input space to a space 

with reduced dimensionality. This process reduces the time requirement and the complexity of 

the problem, but also reduces the information content of the feature vector, including its sensi-

tivity to damage. A proper selection should aim at identifying features such that:  

 (2) 

In other words, the selected features must have a high sensitivity to the system condition y 

and a negligible sensitivity to operational and environmental variables v. 

Mathematically, the damage detection can be treated as a classification problem: given a 

point in the feature space related to a new acquisition of the monitoring system, assess wheth-

er the system continues in its normal state or shows an abnormal behavior. Thus, the goal is to 

define a classifier, namely an approximation of the inverse function:  

 (3) 

 This approximation is based on a set of known pairs x,y, i.e. a set of pre-measured sam-

ples. The nature of such pairs further complicates the damage detection problem as, normally, 

the only information available is for the system in normal condition, namely all the pairs are 

like x,0. This is a one-class classification problem which can be addressed only through few 

machine learning algorithms. The present study aims at discussing how a learning algorithm 

can be applied to real field testing data. A deterministic version of the Negative Selection Al-

gorithm (NSA), developed by the authors of this work and preliminarily tested on other case 

studies with simulated data [4–6], is here employed making use of the vibration signals col-

lected during a laboratory experimental campaign. The methodology is applied for the first 

time to a real case study under progressive damage scenarios. After describing the fundamen-

tals of the algorithm in section 2, the structure object of investigation is presented in section 

3.1. Then, the methodology to tailor the algorithm to the specific case study is discussed in 

section 3.2 followed by the description of the numerical tests used for the algorithm validation.  
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Based on the results, possible improvements to the methodology are provided in section 3.3. 

Finally, the main conclusions drawn from the work are summarized in section 4. 

2 DETERMINISTICALLY GENERATED NEGATIVE SELECTION ALGORITHM 

NSAs are a family of algorithms based on a minimal common framework, initially devel-

oped by Forrest et al. [7] and later improved with additional contributions [18,19]. The com-

plete framework of the process underlying the NSAs is composed of several steps that are 

collected in three main consecutive stages: (1) Representation; (2) Censoring; (3) Monitoring. 

The first stage is an overhead operation consisting in the definition of the feature space and 

the coding of the data set. In this stage, the n features are projected onto a unitary space 

U=[0,1]n. To take into account the emergence of measurements that fall outside the range that 

is known during the training, such a range is increased by 20%. Future samples that fall out-

side this enlarged range are automatically labelled as damaged. It is also assumed that the uni-

tary space is divided into two complementary subsets, Self  and Nonself, such that:  

        (4) 

During the so-called censoring stage, the NSA analyses the training data set in the feature 

space to generate the detectors. The detector set is the tool used for anomaly detection, being 

a set of elements which covers and identifies the nonself portion of the space. Finally, in the 

monitoring stage, the new feature values, extracted from the system under analysis, are 

matched against the trained detectors, which bind to the ones that are likely to belong to an 

anomalous behavior of the system. The version of NSA used in the present study is called de-

terministically generated (DNSA), since the detectors are not randomly initialized before be-

ing matched against the training samples, but they are placed onto the unitary space according 

to a regular grid of given size. In order to reduce the time requirement and the complexity, the 

detection is carried out in a 2-dimensional feature space. Indeed, in Structural Health Monitor-

ing for civil engineering systems, it is common to analyze the structural behavior in terms of 

correlation between pairs of variables (for instance temperature/first frequency, tempera-

ture/second frequency, etc.) [10,11].  

3 APPLICATION AND VALIDATION THROUGH REAL VIBRATION DATA 

3.1 A masonry arch as case study  

The case study used to apply and validate the DNSA algorithm is a small-scale segmental 

masonry arch (Figure 1) built and tested in the structural laboratory of the Institute of Bio-

Sustainability of the University of Minho (Guimarães, Portugal) in order to investigate the 

effects that support settlements may have on the dynamic behavior of masonry arch bridges. 

The specimen consists of four rows of 39 brick units (100x75x50 mm3) assembled with stag-

gered lime mortar joints. It has a nominal span of 1900 mm, a springing angle of 40°, a nomi-

nal net rise of 430 mm and radial thickness of a 75 mm. Two lime bags of 25 kg each are 

symmetrically placed on the extrados to simulate the effect of backfill material [12,13].  

The structure is supported by two concrete abutments. The left support is fixed to the floor, 

whereas the other one is allowed to move in horizontal direction through a simple sliding sys-

tem. Progressive damage is induced by applying, in 5 steps, controlled and uniform increasing 

displacements to the movable support through a hydraulic jack. After each step, a dynamic 

identification test is carried out using the ambient noise as source of excitation. The vibration 

response of the arch is acquired through 8 accelerometers (model PCB 393B12, 0.15 to 1000 

Hz frequency range, 10000 mV/g sensitivity, 8μg resolution) of which four are kept fixed and 

four are moved according to 12 consecutive set-ups, allowing to record the response of 26 
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measurement points in normal direction and 26 in tangential direction (Figure 2a). This pro-

vides a set of 96 acquisitions for each scenario: 48 from the moving accelerometers and 48 

from the reference ones. The signals are sampled at 400 Hz for a minimum duration of 180 s, 

resulting in 72.000 data points per channel. 

 

Figure 1: Configuration of the specimen. 

 

                                       (a)                                                                                 (b) 

Figure 2: Test setup and crack pattern: (a) distribution of measurement points and accelerometers (A01 to A26); 

(b) location of settlement-induced cracks. 

Aiming at detecting the damage in the very early stage, only the first two damage scenarios 

(corresponding to 0.4 and 0.5 mm of incremental displacement, respectively) are considered. 

After the first step, three cracks start to appear (Figure 2b): c1 at the intrados, in the left re-

gion of the keystone; c2 at the extrados of the left springing (fixed support) and c3 at the ex-

trados of the right springing (moving support). The outset of cracks induces a considerable 

drop of the structural stiffness which is clearly reflected by the downshift of the main natural 

frequencies of the arch (particularly for modes 1, 4 and 5).  

 Table 1 reports the dynamic identification results provided by the SSI-UPCX estimator 

[14] in terms of averaged frequency values for all meaningful vibration modes. In order to test 

the algorithm in unfavorable conditions, the classification is performed by analyzing the val-

ues of the second and third natural frequencies, whose variation between scenarios is the 

smallest. The test is carried out under constant environmental conditions. For each frequency, 
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the dataset is composed of 96 values extracted through peak-picking directly from the power 

spectral density of each acquisition. It is worth noting that the ambient vibrations are weak, 

and the response signals have a low signal to noise ratio, making the second frequency peak 

not clearly distinguishable. Nevertheless, it is interesting and reasonable to test the damage 

detection strategy against a dataset affected by such ordinary sources of uncertainties. 

 

Scenario 
Frequencies [Hz] 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Reference (D0) 30.06 50.95 59.44 95.23 120.62 

Damage 1 (D1) 26.31 50.28 59.04 80.47 113.16 

Damage 2 (D2) 23.4 48.86 58.14 75.75 111.44 
 

 Table 1: Arch eigenfrequencies variation over progressive damage scenarios. 

3.2 Training, validation and monitoring  

The classifier design and application are divided into three stages: (1) training; (2) valida-

tion; (3) monitoring. The latter step is the actual assessment of the system through the analysis 

of new measurements. The first two steps, instead, are offline preliminary tasks necessary to 

generate the classifier and tailor it to the specific case study. The training requires a set of 

samples that are fed to the DNSA to generate the detectors. As mentioned before, in one-class 

classification problems, the samples belong only to one class (e.g. the self space or normal 

state). In order to keep some of the collected self data for the validation and the monitoring, 

out of the 96 records, 50 points are randomly selected to form the training set. 

Each algorithm version requires the definition of a set of inner parameters, the so-called 

parameter setting. Once these parameters’ value is fixed, a specific algorithm instance is de-

termined. Different settings lead to different detectors sets and different performances. Thus, 

the parameter setting consists in comparing different algorithm instances. The parameters are 

analyzed as controllable variables which assume in their domains different values called lev-

els [15]. The comparison must be cast into a statistical design of the experiment (DOE) and 

analyzed in terms of a reliable performance metric. Considering the possible outputs of the 

detection, only two families of errors are possible: false positive (FP), namely normal samples 

classified as abnormal; and false negative (FN), namely abnormal samples classified as nor-

mal. Experience demonstrated that the trend of FPs and FNs for different parameter settings is 

inverse. Thus, it is not possible to reduce one family of errors without increasing the other and 

the performance metric should take both into account. When dealing with one-class classifica-

tion problems, this issue is quite complex because only one type of samples is known, thus the 

only possible inference is on the number of FPs. In [6] the authors developed a methodology 

based on the artificial generation of outliers of the normal samples’ distribution. The same 

methodology is here applied, so the classifier can be validated against known self samples and 

artificial nonself samples, referred as outliers. Three are the main parameters that affect the 

DNSA performance: (1) number of divisions of the side of the unitary space, which is directly 

related to the detector radius, rdet; (2) self radius, rself; (3) censoring distance, Cens.dist. The 

latter is a qualitative parameter that depends on the values of the other two. Thus, a three-level 

two-factor full factorial design (32 FFD) is used for the experiment, considering the two quan-

titative parameters (detector and self radii), repeated for three possible formulations of the 

censoring distance. The validating self set is composed of 23 samples out of the remaining 46 

(e.g. 96 minus the 50 used for the training). The validating nonself set is composed of 133 ar-

tificial outliers. Figure 3 displays the samples used for both training (D0-T) and validation 

(D0-V, Outliers) in the unitary feature space. 
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Figure 3: Normalized samples belonging to the training and validating sets. 

Table 2 reports the results of the parameter setting together with the performance metric. In 

the present work, the area under the Reception Operating Characteristic (ROC) curve, called 

AUC, is used for this purpose. The ROC curve plots, for each classifier, the False Positive 

Rate (FPR) and the True Positive Rate (TPR). The best combination of parameter levels cor-

responds to the highest value of the AUC which, for this case study, is: small rdet, medium rself 

and censoring distance equal to rdet + rself .  

 

Cens.dist=rdet  Cens.dist=0.5(rdet+rself)  Cens.dist=(rdet+rself) 

divisions rself AUC  divisions rself AUC  divisions rself AUC 

70 0.01 0.518  70 0.01 0.518  70 0.01 0.576 

70 0.035 0.518  70 0.035 0.576  70 0.035 0.776 

70 0.07 0.518  70 0.07 0.701  70 0.07 0.747 

20 0.01 0.626  20 0.01 0.579  20 0.01 0.662 

20 0.035 0.626  20 0.035 0.626  20 0.035 0.763 

20 0.07 0.626  20 0.07 0.726  20 0.07 0.690 

10 0.01 0.678  10 0.01 0.537  10 0.01 0.684 

10 0.035 0.678  10 0.035 0.638  10 0.035 0.698 

10 0.07 0.678  10 0.07 0.678  10 0.07 0.667 

 Avg. 0.607   Avg. 0.620   Avg. 0.696 

 Dev.st. 0.071   Dev.st. 0.073   Dev.st. 0.062 
 

Table 2: Results of the parameter setting. In bold the best combination of parameter levels. 

The optimized classifier is used to simulate the monitoring of the arch. This means testing 

the classifier against the samples that it has not met before. The testing self set is composed of 

the remaining 23 samples, whereas the testing nonself set is composed of just 39 D1 samples 

and 16 D2 samples, since the others fall outside the unitary space and are automatically classi-

fied as damaged. The classifier shows a good performance against the damaged samples with 

a success rate of 82% for D1 samples and of 94% for D2 samples in terms of correct labelling. 

However, 48% of the new health samples are wrongly classified.  
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                                                      (a)                                                                              (b) 

 
                                                                                                  (c) 

Figure 4: Comparison of the optimized detector set against the testing sets: (a) self samples; (b) D1 samples and 

(c) D2 samples. 

3.3 Improved training  

Based on the detector set distribution, the quite “aggressive” behavior highlighted in Fig-

ure 4a is likely due to the sparsity of the self samples used for the training. These were mainly 

distributed in two regions. However, experience supports the idea that frequency values, in 

conditions similar to the one of the case-study, are continuously distributed over a single re-

gion. Thus, new emerging samples are expected to fall in between the two identified areas. 

Based on this assumption the classifier is improved by artificially generating self points ac-

cording to a bivariate normal distribution. The mean and the covariance matrices of the 50 

training samples are used to define the distribution. Before repeating the training, the new 

points which fall outside the area within the boundary that envelopes the prior training sam-

ples are rejected, assuming that this boundary delimits the known self region. Figure 5 shows 

the prior and the new training sets. The improved classifier is thus generated keeping the same 

parameter setting and tested against the same sets. Figure 6 shows the new detector set, com-

pared to the testing sets and Table 3 reports the confusion matrix for the two classifiers. The 

improved version outperforms the prior one. 
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Figure 5: New normalized training samples (ND0-T) compare to the original training set (D0-T). 

 
TN FP 

Tot. D0 

samples 
TP1 FN1 

Tot. D1 

samples 
TP2 FN2 

Tot. D2 

samples 

Prior classifier 12 11 23 32 7 39 15 1 16 

New classifier 17 6 23 30 9 39 16 0 16 
 

Table 3: Confusion matrix of the prior and the improved classifier over the same testing sets. 

 

                                                      (a)                                                                              (b) 

 
                                                                                                  (c) 

Figure 6: Comparison of the new detector set against the testing sets. 
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4 CONCLUSIONS AND FUTURE SCOPE  

The simple discrimination between the normal and the abnormal behavior of an engineered 

system is a complex task in many real-world applications. The lack of knowledge regarding 

possible abnormal conditions and the limited knowledge about the normal behavior itself re-

duce the number of non-model-based numerical methods suitable for damage detection pur-

poses (e.g. one-class classification). In the present work a combination of real and artificial 

data is proposed to improve the design of a tailored damage detection strategy for real-world 

applications. The analyzed case study consists of a segmental masonry arch built and tested in 

the laboratory of the University of Minho and the applied damage detection algorithm is a 

customized version of the NSA, developed by the authors in a previous work. Hitherto, the 

following preliminary conclusions can be drawn: 

 the performance is robust against the sources of uncertainties, as the noise in the signals 

or the modal feature extraction through a simplified peak-picking strategy; 

 the classification is successful for small damage extent – indeed the frequency downshift 

estimated for modes 2 and 3 was on the average 1.6% and 0.9% for the first damage sce-

nario (D1), and 1.9% and 2.3% for the second damage scenario (D2); 

 the artificial generation of new self and nonself samples, according to the training data 

distribution, improved the performance facing the reduced and sparse information availa-

ble; 

 the methodology might be suitable for sensor embedment, since the features are extracted 

from a single sensor acquisition. 

To realize the full potential of the algorithm, more research is needed. Indeed, although the 

cracks after the first displacement stage are barely visible in the arch, the drop in the first fre-

quency value might suggest that the damage is not as small as required for a proper assess-

ment of the algorithm sensitivity. Moreover, the strategy for artificial data generation should 

be tested on a larger dataset and the analysis should be cast in a statistical framework to infer 

the behavior of the final classifier in different conditions. 
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