CaVa: an example of the automatic Generation
of Virtual Learning Spaces

Ricardo G. Martini!, Cristiana Aratijo!', Pedro Rangel Henriques!, and Maria
Jodo Varanda Pereira?

L Algoritmi Research Centre, Department of Informatics
University of Minho - Gualtar, Braga, Portugal
2 Algoritmi Research Centre
Institute Polytechnic of Braganca, Portugal
rgm@algoritmi.uminho.pt,decristianaaraujo@hotmail.com, prh@di.uminho.pt,
mjoao@ipb.pt

Abstract. In order to construct web Learning Spaces (LS), more than
collect and digitalize information, a powerful data extraction and query-
ing engine and a sophisticated web publishing mechanism are needed.
In this paper, a system to automatically construct those learning spaces
based on a digital repository is presented. The system takes XML files
from repositories and populates an ontology (representing the knowledge
base, the core of our system) to create the triples internal representation.
A Domain Specific Language (CaVaDSL) will be used to specify the learn-
ing spaces based on that ontology. The formal description, written in that
DSL, will be processed by Cava®®™ engine to generate the final LS.

Keywords: Virtual Learning Spaces, Automatic Generation, DSL, On-
tology, XML, RDF

1 Introduction

‘Memory Institutions’ like museums, archives or libraries preserve nowadays their
collections, or assets, as Digital Objects (databases or annotated documents).
After digitalization and recording, the immediate goal is to explore those huge
sources of relevant information that constitutes the humanity’s cultural heritage;
this requires at least accurate search engines and powerful Web publishing mech-
anisms. Virtual Museums — this is, museums that are not located in a building
and has no physical objects to show — sprang out in this context. On the other
way around, they display in their exhibition rooms objects collected from digital
repositories. In that case, exhibition rooms (that in our work we call Learning
Spaces — LS) are Web pages; the visitor accesses the objects navigating on a
browser [I].

To create a virtual museum in the Web, it is necessary to query the reposi-
tory’s digital storage, and to process (transform and relate) the returned infor-
mation before publishing it as Web pages.

2 Ricardo G. Martini et. al

The work reported starts with a discussion on how to implement generic and
efficient tools able to extract automatically the necessary data (concepts and
relations) from the repository. We then discuss how to build the virtual museum
Web pages in a systematic way using a formal description of each room written
in a Domain Specific Language, CaVaPSL, designed for that purpose — in that
way the building platform can be easily adapted from one project to another.
Cava®“" is the generator that consumes the formal LS descriptions and creates
the queries to retrieve the information from the ontology data storage to display
it in the final Web pages, the Virtual Learning Space.

In the project under discussion, we deal with annotated documents, and
construct a text filter capable of automatically create triplesﬂ that will popu-
late the museum’s ontology.This text filter translates XML (eXtensible Markup
Language) documents into RDF (Resource Description Framework) notation.

As a case study, to illustrate the implementation of this process and its
successful application, we will use the assets of the Museum of the Person (MP)
21[3] 4.

In Section [2] we introduce the proposed CaVa architecture that is designed
to accomplish our aim: create Virtual (or Web-based) Learning Spaces from a
digital repository. After the general system overview, we go into details and, in
Section [3] we discuss the design and the development of the text filter, named
XML2RDF translator, whose function is to transform XML documents into RDF
triples. The creation of Virtual Learning Spaces (VLS) and how we extract
the information stored in the ontology to display on the Web (on the VLS) is
presented in Section[d] Also in this section, the approach is illustrated presenting
some exhibition rooms for the Museum of the Person, as a case study to test
both translators built. Finally, Section [5| presents the conclusion and directions
for future work.

2 Architecture of the System

The core, or heart, of this approach is an ontology that models the knowledge
domain related to the museum to be built. The platform that will be introduced,
CaVa [0] (Figure, splits the building process into a first module, the Ingestion
Function (XML2RDF), to extract data from the sources and upload the ontol-
ogy triples, and a second module, the Generator (CaVas®"), to automatically
generate the query for each exhibition room based on a formal specification and
a subset of the main ontology, and to organize the returned information to be
exhibited in adequate Web pages.

As said above, our approach can be characterized by an architecture that
comprises: the repository; the Ingestion Function (M1) responsible for reading
the annotated documents, extracting and preparing the data, and store the in-
formation gathered; a Data Storage (DS) that contains the ontology instances;

3 A triple is a structure that represents a link (a semantic connection) between two
concepts through a relation in the form of subject-predicate-object interpretation
(e.g. U2 is-a band, Mark is-brother-of John, etc.).

CaVa: an example of the automatic Generation of Virtual Learning Spaces 3

TripleStore

N

|

XML

(((¢

LI

Data Generator Learning
Storage Spaces

Museum of Ingestion
- G
Function [M1-XML2RDF] [DS] [M2-Cava®en] [VLS]

the Person
Repository

Fig. 1. Proposed Architecture

an Ontology that describes the knowledge domain linking the concepts through
a set of relations; the Generator (M2) to receive and interpret the requests for
information, access the DS and return the answers that are combined to set up
the final VLS [6] [7] (see Figure [1)).

3 Data Extraction and Ontology Population: XML2RDF

The role of M1 - XML2RDF in Figure [I] is to read the annotated documents,
extract and prepare the data, and store the collected information. Thus, to de-
velop M1, it is necessary to observe the elements and structure that can appear
in input documents, write a collection of production rules based on regular ex-
pressions, and use a text filter generator to derive the final program.

In this case, the input structure is a structured collection of XML and the
output will be a sequence of triples (<subject, predicate and object>). In each
triple (subject and object) the concepts correspond to some of the data items
that are the value of the attributes of an XML element or even the element
content. The relations (predicate) linking concepts can be inferred from the
XML elements and their structure [§].

As discussed above, this process can be described using a set of production
rules. Each production rule is a pair: on the left side, we specify the element
we want to look for — regular expression (RE); The right side is a code that
transforms the input data and writes the respective output.

To illustrate the implementation of this proposal, we will use the assets of
the Museum of the Person (MP). The digital repository of the MP is composed
of three types of documents (BI - basic information, Legend - of the respective
photos, and Edited Interview).

From this repository, an ontology was built, using the CIDOC—CRME FOAPE|
and DBpediaﬁ standards, to store the information contained in the assets, in the

4 In: http://www.cidoc-crm.org/
® In: http://www.foaf-project.org/
5 In: http://wiki.dbpedia.org/

http://www.cidoc-crm.org/
http://www.foaf-project.org/
http://wiki.dbpedia.org/

4 Ricardo G. Martini et. al

form of triples. For more information on this concrete ontology, see:
http://npmp.epl.di.uminho.pt/cidoc_foaf_db.htmll

Thus, to process the digital repository referred above, we construct a text fil-
ter to process the input data automatically, producing a triple store - XML2RDF
[71[9][10]. This text filter was developed using the ANTLR (Another Tool for
Language Recognition) Compiler Generator system. ANTLR generates a lexical
parser that implements the desired text filter for data extraction, based on a set
of regular expressions.

This text filter receives as input an XML document. After reviewing and
processing it, the translator will issue a RDF description. The XML2RDF archi-
tecture is described in Figure 2] ANTLR, through the XML2RDF.g} grammar
file, generates the compiled XML2RDF .java class, including the Person.java
class, to create the desired XML2RDF processor [7][g].

@—’Qo“—’ Y

XML2RDF.g4 ANTLR XML2RDF.java Person.java

Processor QOQ

javac

XML2RDF.class
A

(Intermedlate
Represehtatlon)

Generator Extractor
MainLexerXML2RDF.class
Output T
~—__

QO“

!

E -
JAVA

MainLexerXML2RDF.java

Fig. 2. Architecture of Ingestion Function [XML2RDF)

An example of an ANTLR mode is shown in Listing [I] This grammatical
fragment renders an episode of General Character, when the person interviewed
narrates an episode of this type.

In this case, the extractor when it finds the opening mark of the block, which
corresponds to a General Character episode, activates the appropriate mode to

http://npmp.epl.di.uminho.pt/cidoc_foaf_db.html

CaVa: an example of the automatic Generation of Virtual Learning Spaces 5

Listing 1. Lexer Grammar: Mode to cope with "Episodes’ in an interview

1 mode sMP ;

2 mode sEPISCab ;

3

4 GetEPISCarac: []x’caracter="’ -> mode(sEPISCarac) ;
5 GetEPISQuem: [1*’quem="" -> mode (SEPISQuem) ;

6 GetEPISTitulo: [I*’titulo="’ -> mode (sEPISTitulo) ;
7 GetEPISTermo: []*’termo="" -> mode (sEPISTermo) ;
8 GetEPISTexto: ’>° -> mode (SEPISTexto) ;
9

10 mode sEPISCarac ;

11 GetCaracter: ~(’"’)+ { episCarac = getText(); } ;
12 OutCaracter: "’ -> mode (SEPISCab) ;

. other modes (sEPISQuem, sEPISTitulo, sEPISTermo, sEPISTexto) are similar ...

process the contents of this block. When it finds the block closing mark, the
processor exits the mode and returns to the initial mode.

The fourth initial auxiliary modes (lines 4-7) of Listing [I| contain specific
rules for extracting information from label attributes. The fifth auxiliary mode
(line 8) contains a specific rule for extracting the description of the General
Character episode.

The generation of the RDF output file is performed by the grammatical
excerpt shown in Listing [2l This grammatical fragment is composed of the rules
executed at the end of the processing to print the RDF triples stored in the
internal representation.

Listing 2. Lexer Grammar: Print Modes

if (general.size() > 0) {
System.out.println("<rdf:Description rdf:about=\"&ecrm;General Interviewed."
+countinterview+"\">");
System.out.println("<rdf:type rdf:resource=\"&ecrm;E55,Type\”/>");
System.out.println("<P2_has_type rdf:resource=\"&ecrm;General\“/>");
for (String item: general) {
System.out.println("<P3_has note rdf:datatype=\"&xsd;string\">"
+item+"</P3_has_note>");

OOO~NOUT WN -

-
o

System.out.println("</rdf :Description>");

,_.
-
-

In the next section, we detail the automatic generation of Virtual Learning
Spaces (VLS) to display information extracted from the XML2RDF translator
in a Web browser.

4 CaVa: automatic Generation of Virtual Learning

Spaces
Next sections deal with the formal specification in CaVaPS and the main module
of CaVa, called CaVa#°", which is a set of processors aiming at generating the
final Virtual LS [I1].

6 Ricardo G. Martini et. al

4.1 CaVaPSL: specifying Virtual Learning Spaces

CaVaPSl was designed having in mind its use by the curator of a museum, an
archivist, or any other cultural institution responsible. The syntax of the lan-
guage is simple but expressive, enabling the end-user to describe the exhibition
rooms in an easy way. The CaVaPSl structure is split into four major blocks
which describe the main configuration, the header, the content, and the footer
of the LS.

— The main configuration (mainconfig): specifies the LS title and main descrip-
tion (e.g. the text about the cultural institution). Moreover, it describes other
components related to the entire LS;

— Header (menu): specifies the main menu of the LS. It comprises: the brand,
background and foreground colors, behavior (if the menu should be fixed or
it should follow the scrolling), and type of the menu items (dropdown or
simple) with the label and the link;

— The content (exhibitions): the exhibitions’ list. Each exhibition comprehends:
a title, short description, and icon; additional info with title and a descrip-
tion; behavior (if the component of the list should stay opened (expanded)
or closed (collapsed)); exhibition type (must be “permanent”, “temporary”,
“future”, or “special”); a query operator (“all”: which searches for all occur-
rences of specified ontology concept and returns the set of result instances;
“one”: which searches for only one instance that matches the conditional
parameter and the ontology concept. It returns the first result found.);

— The footer (footer): specifies an area at the bottom of the page that com-
prehends: images and date, company or developer name, behavior (like the
header component), and style (if the footer is simple with the data men-
tioned or extended, having another options to specify (e.g. social networks
link)).

Notice that CaVaPSt can be extended to comprise more components, it is
just needed to create new productions in the grammar (CaVa8™@™™ar) that rules
the language. For the sake of space, CaVas'™™™ar ig not exposed in this paper. To
exemplify how to describe an element in CaVaPSt, Listingpresents a fragment
of a specification to generate the main menu of the “Museum of the Person”
Virtual Learning Space.

The description presented in Listing 3| specifies a main menu that has a title
(brand), with foreground and background colors, a behavior (fixed at the top
of the page or scrolling). Moreover, this menu has some options related to the
number of items or submenus (in this case, 2): a dropdown submenu labeled “Ex-
hibitions”, which contains five sub-menus (“All”, “Permanent”, “Temporary”,
“Future”, and “Special”); and a submenu (a simple one) labeled “About”. For
each of these menu items, a correspondent webpage is created.

To build the desired main menu, as well as the whole LS, a set of processors
are necessary to analyze the CaVaPS specification and produce the Web page
code.

CaVa: an example of the automatic Generation of Virtual Learning Spaces 7

o e . . .
DSL

Listing 3. Fragment of the VLS menu specification in CaVa

1 menu [

2 brand: “Museum of the Person”,

3 background color:

4 foreground color:

5 behavior:

6 options [

7 label: “Exhibitions”, dropdown [

8 dropdown label: “Al1”, url: “exhibitions”,

9 dropdown label: “Permanent”, url: “permanent_exhibit”,

10 dropdown label: “Temporary”, url: “temporary_exhibit”,

11

12 . label: “About”, url: “about”, extension:

13

14 1]

4.2 CaVa®°": generating Virtual Learning Spaces

CaVa®°" is a set of processors that given the right input, produce the output
files (static and dynamic content) related to the final Virtual Learning Space in
accordance with the CaVaPSl specification. This paper describes two of those
processors: CaVa Processor, the core of CaVas”; and CaVaSPARQLTriples Pro-
cessor, which deals with the generation of dynamic content, i.e. the generation
of SPARQL queries.

CaVa Processor transforms a CaVa specification into various Web pro-
gram files written in different languages (HTML, PHP, JS, template engines,
CSS, etc.) that, when placed all together, configure multiple Web pages, i.e., the
final Virtual Learning Space. Figure [3] presents the schema of CaVa Processor.

DSL

P CaVa grammar

l processed by

l generates

stores CaVa Processor &

v
Used

cava Concepts ot ‘execures
and :

State [.zions)

Fig. 3. CaVa Processor schema

The rectangle identified by number (1) is related to the specification file
(extension “.cava”) describing a Virtual LS based on the rules of CaVaPSt. Tt
is the main input to the CaVa Processor. From the input specification, CaVa
Processor generates the static content of the LS (basically the .php and .tpl
(template) files). As can be seen in Figure [3] CaVa Processor is created by the
Compiler Generator ANTLR taking as input the CFG CaVaPSt. The CaVa
State circle represents the state files necessary to store some configurations (in
our case, used concepts and relations of the ontology) in a plain text file (.txt)
to be used by CaVaSPARQLTriples Processor.

8 Ricardo G. Martini et. al

The implementation of CaVa Processor was based on ANTLR’s Listeners
[12]. Basically, this means that for each production of our grammar, exists a
listener method that handles the recognized token and produces some output.
CaVa Processor normally receives an input, recognizes it and generates PHP
code (static content). So, for example, getting the Listing [3| as input, CaVa
Processor, through a listener method called “enterHeader()”, produces the code
shown in Listing [4

Listing 4. Generated PHP code for creating the menu according to CaVaPSt

specification

1 <7php

2 $data = array(

3 ‘brand’=>> “Museum of the Person”,

4 ‘bgColor’=>"crimson”,

5 ‘fontColor'=>“white”,

6 ‘behaviour’'=>“fixed”,

7 ‘options’=>array(

8 array (‘label’=>"“Exhibitions”, ‘dropdown’=>"“true”,
9 ‘dropdownListItems’=>array(

10 array (‘labelDropDown’=>“A11",

11 ‘urlDropDown’=>>“exhibitions”
12),

13 ... the ‘Permanent’ and ‘Temporary’ items are similar ...
14),

15 s

16 array (‘label’=>“About”, ‘url’=>“about”,

17 ‘dropdown’=>“false”

18 ,

19),

20)

21 $tpl = new SMTemplate();

22 $tpl->render (‘header’, $data);

The code of Listingis stored in a file (in this case, “header.php”) and later,
the content of the $data variable is passed to a template file (called “header.tpl”),
which contains some placeholders to deal with $data content and render the final
menu. Notice that the generation of the other files and content is similar to the
process of the creation of the LS menu.

Besides the generator of static content (CaVa Processor), CaVa8®® contains
other processor to generate dynamic content, i.e. generation of the SPARQL
queries and the exhibition room files.
As already mentioned, CaVaPSL allows, at the content (exhibitions) block,
the specification of query operators. When a query operator is defined in an
exhibition component, CaVa Processor stores the information about the state-
ment and delegates the processing to CaVaSPARQLTriples Processor, that is
the processor that knows how to handle with that information. In this stage, we
are concerned with the generation of dynamic content, more precisely SPARQL
queries.

To solve the automatic generation of SPARQL queries, we have used an ap-
proach that reuses well-stablished grammars (RDF and Turtle). Figurepresents
the CaVaSPARQLTriples Processor schema that deals with this concern.

CaVa: an example of the automatic Generation of Virtual Learning Spaces 9

dofines CaVaSPARQL grammar

l processed by

l generates

CaVaSPARQL Processor §&

R CaVaSPARQLTriples Processor £ \/E

generates
H ‘[generates
ROF/Turtle B
Specification ANTLR
A

| processed by

defines RDF grammar
described according to Turtle grammar

Fig. 4. CaVaSPARQLTriples Processor schema

Figure [4] shows the whole schema for the generation of SPARQL queries
(“rq” files) based on used concepts and relations (specified in the “content”
block of CaVaPSl) of the ontology. As presented in Section [2, CaVag® receives
as input the triples from the Data Storage and, based on the ontology, recognizes
the concepts and relations related to the operator specified in the CaVaPSt
specification. Thus, CaVaSPARQLTriples Processor recognizes the triples and
assembles the SPARQL query based on that set of triples that respect to a
determined ontology.

Aiming at generating the dynamic content of the Virtual Learning Space,
CaVaSPARQLTriples Processor recognizes the input, and based on ANTLR lis-
teners, processes the code and produces an output that is a SPARQL query.
So, from the CaVaPST specification file, recognized and processed by CaVa Pro-
cessor, when a query operator is found in the exhibitions block, it means that
CaVaSPARQLTriples Processor needs to access the CaVa State file (created by
CaVa Processor) to get the information needed to assemble the SPARQL query.

Having the concept and relations recognized, CaVaSPARQLTriples Processor
executes a sequence of actions in order to produce the right output (SPARQL
query) to be used in the exhibition room file in the final Virtual LS. These
actions are summarized as follows:

1. Expand each instance of the RDF file, selecting only those related to the
concept specified in the CaVaPS! specification;

2. Collect and store all those instances and information important to the final
query (those expanded in step 1);

3. Transform each instance name in a new variable of the SPARQL WHERE
clause (e.g. ?General Interviewed_11, ?General, etc.). Also transforms each
literal in a new variable of the SPARQL SELECT clause, naming each one
?7p--0, ?7p___1, and so on, depending on how many literals are found and
important to the query;

10 Ricardo G. Martini et. al

4. Concatenate the two SPARQL clauses (SELECT + WHERE) and the pre-
fixes needed (found in the RDF input file) in a string;

5. Create and write the SPARQL query file (.rq) containing the string’s content
of step 4.

Subsequently to the generation of the SPARQL query, it needs to be exe-
cuted. To perform this action, we have created another processor, called Query
Processor [I1], which receives the “.rq” generated file as input, searches for the
results in the triple store and returns the set of results found, storing it into a
JavaScript Object Notation (JSON) file to be consumed by the exhibition room
script file (in our case, a PHP file automatically generated by CaVa Processor)
and passed to the web browser to render it based on a template engine file (.tpl).

This configures a complete exhibition room inside a Virtual Learning Space,
where the user can navigate over the instances and the concepts of the ontology
according to the curator exposure. To conclude, this approach was used to im-
plement all the VLS of the Museum of Person. For the sake of space, to see some
screenshots and more details about the final VLS, visit
http://www4.di.uminho.pt/~gepl/paper-HD.

5 Conclusion

The description of Virtual Learning Spaces in a simple language, directed to
a specific user, boosts the generation of virtual learning environments and em-
powers the responsible of the cultural institution to focus only on the content
exposure (the structure of the exhibition rooms), arranging this content in a way
that the user deems most appropriate. This eliminates any problem regarding
the learning of various general-purpose programming languages by the person
in charge of the cultural institution, that is, learning the CaVaPS!" language it
is enough to specify and generate the desired Virtual Learning Space. Both the
DSL and the software artifacts to deal with it were introduced and explained
along the paper.

It is important to emphasize that we do not know about another similar
system that deserves to be studied or compared.

Many fresh ideas arise while developing such a project. However, as future
work the most important is to conduct experiments to assess the effectiveness
and usability of our proposal, as well as, to apply the approach to different sce-
narios and case studies. For this reason, performance tests were not included in
this study.

Acknowledgements: This work has been supported by FCT — Fundagdo para a
Ciéncia e Tecnologia within the Project Scope: UID/CEC/00319/2013. The work of
Ricardo G. Martini is supported by CNPq, grant 201772/2014-0.

References

1. Schweibenz, W.: The development of virtual museums. In: Virtual Museums.
Volume 57(3). ICOM (2004)

http://www4.di.uminho.pt/~gepl/paper-HD

10.

11.

12.

CaVa: an example of the automatic Generation of Virtual Learning Spaces 11

Almeida, J.J., Rocha, J.G., Henriques, P.R., Moreira, S., Simdes, A.: Museu da
Pessoa — arquitectura. In: Encontro Nacional da Associacdo de Bibliotecarios,
Arquivista e Documentalistas, ABAD’01, BAD (2001)

Simdes, A., Almeida, J.J.: Histérias de Vida + Processamento Estrutural = Museu
da Pessoa. In: XATA 2003 — XML: Aplicacoes e Tecnologias Associadas, Braga,
Portugal, UM (2003) 16

Martini, R.G., Aratjo, C., Almeida, J.J., Henriques, P.R. In: OntoMP, An Ontol-
ogy to Build the Museum of the Person. Springer International Publishing, Cham
(2016) 653-661

Martini, R.G., Librelotto, G.R., Henriques, P.R.: Formal description and automatic
generation of learning spaces based on ontologies. Procedia Computer Science
96 (2016) 235 — 244 Knowledge-Based and Intelligent Information & Engineering
Systems: Proceedings of the 20th International Conference KES-2016.

Aratjo, C., Henriques, P.R., Martini, R.G., Almeida, J.J.: Architectural approaches
to build the museum of the person. In: 2016 11th Iberian Conference on Information
Systems and Technologies (CISTI). (2016) 1-6

Aradjo, C.: Building the Museum of the Person Based on a combined CIDOC-
CRM/ FOAF/ DBpedia Ontology. MSc Thesis, Universidade do Minho (2016)
Aratjo, C., Henriques, P.R., Martini, R.G.: Automatizing ontology population to
drive the navigation on virtual learning spaces. In: 2017 12th Iberian Conference
on Information Systems and Technologies (CISTI). (2017) 1-6

Aratjo, C., Martini, R., Henriques, P.R., Almeida, J.J.: Building the Museum of
the Person from RDF Triples and SPARQL. Communications and Innovations
Gazette (ComInG) 1 (2016) 1-14

Aratjo, C., Martini, R.G., Henriques, P.R., Almeida, J.J. In: Annotated Docu-
ments and Expanded CIDOC-CRM Ontology in the Automatic Construction of a
Virtual Museum. Springer International Publishing, Cham (2018) 91-110
Martini, R.G., Henriques, P.R.: Automatic generation of virtual learning spaces
driven by cavadsl: An experience report. In: Proceedings of the 16th ACM SIG-
PLAN International Conference on Generative Programming: Concepts and Ex-
periences. GPCE 2017, New York, NY, USA, ACM (2017) 233-245

Parr, T.: The Definitive ANTLR 4 Reference. 2nd edn. Pragmatic Bookshelf
(2013)

	CaVa: an example of the automatic Generation of Virtual Learning Spaces
	Introduction
	Architecture of the System
	Data Extraction and Ontology Population: XML2RDF
	CaVa: automatic Generation of Virtual Learning Spaces
	CaVaDSL: specifying Virtual Learning Spaces
	CaVagen: generating Virtual Learning Spaces

	Conclusion

