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Abstract: With the current technological transformation in the automotive industry, autonomous
vehicles are getting closer to the Society of Automative Engineers (SAE) automation level 5. This level
corresponds to the full vehicle automation, where the driving system autonomously monitors and
navigates the environment. With SAE-level 5, the concept of a Shared Autonomous Vehicle (SAV) will
soon become a reality and mainstream. The main purpose of an SAV is to allow unrelated passengers
to share an autonomous vehicle without a driver/moderator inside the shared space. However, to
ensure their safety and well-being until they reach their final destination, active monitoring of all
passengers is required. In this context, this article presents a microphone-based sensor system that is
able to localize sound events inside an SAV. The solution is composed of a Micro-Electro-Mechanical
System (MEMS) microphone array with a circular geometry connected to an embedded processing
platform that resorts to Field-Programmable Gate Array (FPGA) technology to successfully process
in the hardware the sound localization algorithms.

Keywords: Shared Autonomous Vehicle (SAV); Field-Programmable Gate Array (FPGA); microphone
array; sound source localization

1. Introduction

In the near future, autonomous vehicles will be sufficiently reliable, affordable, and
widespread on our public roads, replacing many current human driving tasks [1]. The
emergence of different autonomous applications will not only require accurate perception
systems [2], but also vehicles with high-performance processing capabilities with the ability
to communicate with cloud services and other vehicles, requiring low communications
response time and high network bandwidth [3]. One of the applications of autonomous
vehicles will be for shared mobility. This concept, which includes car-sharing or rent-by-the-
hour vehicles where passengers can partially or totally share the same trip, tend to become
a common practice in modern societies [1]. At the same time, the technological advances in
the automotive industry have highly contributed to the future of autonomous vehicles in a
sustainable urban mobility scenario [4,5]. The merging between autonomous driving and
shared mobility trends resulted in the emergence of the concept of Shared Autonomous
Vehicle (SAV) [1,6], which enables unrelated passengers to share the same vehicle during
their trips. The adoption of SAV will completely change the current paradigm of shared
rides and it will surely contribute to more sustainable and affordable passenger mobility in
urban areas [7].

In current ride-share or taxi services, despite the driver moderating the activities
inside the common space, some companies, such as Uber, Lyft, and Didi, have reported
several safety problems between passengers and drivers [8]. There have been records of
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harassment, assault and robbing passengers, and unfortunately no strict measures could be
taken since the company cannot have full control over the passengers, drivers, vehicles or
rides. In the context of an SAV, and since the vehicle will not require the driver’s control,
these problems can become worse since the absence of a moderator can leave the vehicle
vulnerable to misuse and inappropriate behavior between passengers, causing several
consequences both for the occupants and the car.

The safety of all occupants being a major concern, it is crucial to develop solutions to
ensure a normal ride during shared trips. Current trends aim at equipping an SAV with
sensor-based monitoring solutions to analyze and identify several situations inside the
vehicle’s shared space, for example, driver’s and passenger’s behavior, violence between
occupants, vandalism, assaults, and so forth, to trigger safety measures. Only by ensuring
the effectiveness of these triggers will passengers trust SAV solutions, which is essential to
bring forward their mass acceptance and adoption [7,9,10]. Current solutions that monitor
the activity inside the vehicle are mostly video-based systems [11–13]. In other fields,
these video-based solutions tend to be very useful as they can look through facial or object
movements to find possible sound sources in the environment [14–17]. However, video-
only solutions are not able to capture all the surroundings as they have a limited field
of view, making the classification and detection of all human actions inside the vehicle
difficult. Thus, it is almost mandatory to collect audio events inside the shared space [18].

Outside the automotive context, current audio-only sensor systems use microphone
arrays to localize different sound sources in a wide range of applications, for example, robot
and human–robot interactions [19,20], drones direction calculation [21], audio recording for
multi-channel reproduction [22], and multi-speaker voice and speech recognition [23]. In
such solutions, the accuracy and detection performance is affected by the array geometry,
where linear arrays are only able to localize sound sources in a 2D range [24], and circu-
lar [19,22,25], spherical [20,26], or other geometries [27,28] allow the system to localize in a
3D space. Besides the geometry, the number of microphones also affects the localization
accuracy [27]. Other hybrid approaches combine microphone arrays with video cameras
combined with facial recognition techniques to localize and detect audio sources, which
can be used to monitor the SAV [29,30]. However, they sometimes require complex sensor
fusion systems with high processing capabilities.

In a microphone array solution, the estimation of the Direction of Arrival (DoA) is
a well-known research topic. This mechanism can be applied to either a simple scenario
where only one sound source is present or to a complex setup with several sound sources
to be processed simultaneously. Several solutions allow the estimation of DoA for narrow-
band signals including high-resolution subspace algorithms like MVDR [31], MUSIC [32],
and ESPRIT [33]. Meanwhile, new research has suggested new directions in this field of
study [34–36]. Recently, different solutions that allow obtaining these results both in digital
signal processing-based systems [37–39] and in machine learning-based approaches [40,41]
have been proposed. Although these proposals are highly accurate, their application is
not always feasible in a real-time scenario. This is mainly due to the computational com-
plexity of these approaches being very high, essentially in implementing sound separation
mechanisms [42,43].

With the challenge of creating an audio-only sensor system to localize and identify
speakers without requiring a video-based solution, this work presents an embedded, cost-
effective, low-power, and real-time microphone array solution for speaker localization and
identification that can be used inside an SAV. To accelerate the processing tasks, the sensor
system resorts to Field-Programmable Gate Array (FPGA) technology to deploy dedicated
processing modules in hardware to interface, acquire, and compute data from different
microphones [44–49]. Moreover, the processing system provides a Robot Operating System
(ROS) interface to make data available to other high-level applications (for the identification
and classification of audio events) or to other sensor fusion systems. Finally, and since the
system deals with sensitive data, we have deployed the processing systems over a static
partitioning hypervisor to guarantee data security and prevent unwanted access of private
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information. This work was developed in partnership with Bosch Car Multimedia Portugal,
S.A., and contributes to the state-of-the-art with:

(1) a microphone array system to monitor sound events inside an SAV, which can be
easily integrated with other sensor fusion strategies for automotive;

(2) a hardware-based system with data acquisition and format conversion, i.e., Pulse
Density Modulated (PDM) to Pulse Code Modulated (PCM) to interface the micro-
phone array;

(3) hardware-accelerated algorithms to localize different sound sources that can achieve
good accuracy and performance metrics with real-time response.

The remainder of this paper is organized as follows: Section 2 describes the sensor
system architecture; Sections 3 and 4 detail, respectively, the design and implementation
steps to develop the sensor system (these sections are further divided in the microphone
array and the processing platform); Section 5 presents the system evaluation, while Section 6
concludes this paper with a summary of our findings; Finally, Section 7 discusses some
open issues regarding this research topic, pointing out some future work directions.

2. Sensor System Architecture

The sensor system’s architecture with all modules and their respective interactions is
depicted in Figure 1. It is mainly divided into three main blocks:

(1) the microphone array;
(2) the processing platform; and
(3) the ROS environment.

Figure 1. Sensor system architecture.

Microphone Array
The microphone array includes seven microphones in a Uniform Circular Array (UCA)

geometry. The output of each microphone is a PDM signal containing the necessary infor-
mation to localize and separate the sound sources. The microphone’s board is connected
to the processing platform through an FPGA Mezzanine Card (FMC) interface, which is
used to power the board, obtain data from the microphones, and provide the clock signal
to generate the data output.
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Processing platform
The processing platform is responsible for acquiring and processing, in real-time, the

data retrieved from the microphone array module. It consists of the Xilinx Zynq UltraScale+,
which includes a MultiProcessor System on a Chip (MPSoC) with Programmable Logic
(PL) FPGA technology. This allows the acceleration in hardware of the microphone array
interface and the source localization algorithms. On the PL side, the PDM-to-PCM module
is responsible for converting the audio signal from the PDM to PCM format and for
applying filtering steps to prevent signal aliasing and spatial-aliasing [50]. The conversion
from PDM to PCM is required by the sound processing algorithm in the next hardware
block. This step is performed in the Signal Processing module, where a set of calculations
and bit operations in the FPGA are executed to estimate the DoA of the sound sources.
The processed data, which contain the estimated DoA and the acquired signal, are sent to
the Processing System (PS) through the Advanced eXtensible Interface (AXI) protocol in
the Advanced Microcontroller Bus Architecture (AMBA) bus. On the PS side, the data are
collected through a standard device driver supported by a virtualized embedded Linux
Operating System (OS).

ROS Environment/Interfaces
On top of the embedded Linux, we run the ROS environment to provide the processing

data (audio source data and localization) to higher-level applications that perform the
identification and classification of the audio events inside the vehicle.

Figure 2 depicts the ROS architecture of the microphone array for sound identifica-
tion and localization. Upon the arrival of new audio data, the MicArray Node reads and
processes the output from the localization algorithm in the PL, that is, the DoA and the
source audio sample in the WAV format, and publishes it to multiple topics according to the
audio source (one topic for each source). Finally, each audio source topic is subscribed to by
the Identification and Characterization Node, which applies the classification and identi-
fication algorithms and forwards data to higher-level applications for further processing.
Moreover, the system provides a collection of services, which act as an interface to exe-
cute several actions, for example, performing hardware initialization, change parameters,
configure the microphone array, and so forth.

Figure 2. ROS architecture/interface between the sound source localization and separation system
and the characterization algorithm.

3. Microphone Array System

To develop the sensor system, and to comply with the project’s requirements, the
microphone array must provide specific features such as: (1) have an UCA geometry with
a maximum diameter of 10 cm; (2) use up to seven low-power MEMS microphones; and
(3) include an FMC interface. In contrast to linear arrays, a UCA geometry allows the
use of sound source localization in a 3D space, and the FMC interface allows the Printed
Circuit Board (PCB) to be plugged into other platforms that support this connector. All
microphones are spaced five centimeters apart, providing a UCA with six microphones
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placed around the circumference (60◦ between microphones). Additionally, one microphone
is placed in the center to be used as reference during the computation of the algorithms.
The PCB layout also has six LEDs, placed around the array and parallel to the microphones,
to indicate the calculated localization of the detected sound source. The FMC connector,
placed at the bottom side, allows us to make the direct connection between the processing
platform and the microphones and LEDs.

Figure 3 shows the PCB layout developed for the microphone array. For testing
different microphone devices, this board supports three kinds of omnidirectional and low-
power MEMS microphones: INMP621 and ICS-51360 (from TDK InvenSense) [51,52], and
SPK0641HT4H-1 (from Knowles) [53]. Among other features, they all provide low-power
modes, data output in PDM format, and they all work with a clock signal around 2.4 MHz.
These features allow the utilization of the same controller for any board configuration.
However, and to simplify the sound source localization process, on each PCB prototype
only one type of microphone in the array can be used. Due to this geometry, the maximum
frequency that the system can handle is 3430 Hz, which is the spatial aliasing frequency,
fSpatialAliasing, as shown in Equation (1), defined by [50]:

fSpatialAliasing =
c

2d
, (1)

where c is the sound speed (in this case it was considered the sound speed in the air at
20 ◦C, 343 m·s−1), and d is the smaller distance between microphones, 0.05 m.

(a) (b)
Figure 3. Three-dimensional (3D) view of the PCB microphone array with the microphone position
(numbered 1 to 7). (a) Top-view. (b) Bottom-view.

4. Processing Platform

The processing platform includes a PL system with FPGA technology, and a PS with
an Application Processing Unit (APU), which are both the main units used in this prototype.
The communication between both systems is achieved via the AXI protocol through the
AMBA bus and by resorting to the available Direct Memory Access (DMA) controller, and
the communication with the microphone array PCB is done through the FMC interface.
The processing platform deploys on the PL, the Signal Acquisition module (responsible of
acquiring and converting the signal of each microphone) and the Signal Processing module
(which includes the algorithm to localize the sound source). By its turn, the PS provides
support to the hypervisor, Linux OS, device drivers, and the ROS interfaces.

4.1. Signal Acquisition Module

The data acquisition module is responsible for generating a clock signal of 2.4 MHz to
interface the microphones and to collect and convert each microphone data output from
the PDM to the PCM format. Figure 4 displays the data flow between each microphone
and its corresponding acquisition block. Since the microphone output is a PDM signal with
a switching frequency of 2.4 MHz, the PDM to PCM converter block deployed in the FPGA
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is responsible for: (1) generating a clock signal at 2.4 MHz; (2) acquiring the data from
the microphone at the same clock frequency; and (3) converting the signal from PDM at
2.4 MHz to the PCM format at 8 kHz with a 24-bit resolution.

Figure 4. Data acquisition system with the PDM to PCM converter.

To convert the signal from PDM to PCM for each microphone [54], the processing
steps depicted in Figure 5 were used. The process has three stages, starting with a low-pass
filter that receives the PDM signal from the microphone and, after a quantization process,
outputs a new signal to the next block. Since the microphones use a sampling frequency of
2.4 MHz, the next block performs a decimation by a factor of 300, which creates a new signal
frequency of 8 kHz. These two stages are developed in the FPGA using a Cascade Integrator
Comb (CIC) filter block. The last stage corresponds to a Finite Impulse Response (FIR) filter
block, that performs a band-pass filter. This filter has the lower cut-off frequency at 70 Hz
to remove the Direct Current (DC) component, and it has the upper cut-off frequency at
3 kHz, which reduces possible aliasing phenomena (audio and spatial aliasing). Although
the bandwidth of the pass-band filter is between 70 Hz and 3 kHz, this range is enough for
the human voice’s fundamental frequency, which is commonly between 85 and 155 Hz for
an adult male, and 165 to 255 Hz to an adult female [55].

Figure 5. Block diagram of the conversion of PDM to PCM signal.

4.2. Sound Source Localization

The algorithm to localize the sound sources is presented in Figure 6. Since its working
principle is based on the signals energy, it requires data from all microphones to calculate
the DoA of the sound source. This task is performed in six sequential steps: (1) Absolute
Value; (2) Average Value; (3) Noise Removal; (4) Polar to Cartesian; (5) DoA Calculation;
and (6) Get Angle.

(1) Absolute Value: In this step, for each microphone, the input data (in PCM format)
are received at the same frequency of the sampling frequency (8 kHz) to calculate its
absolute value.

(2) Average Value: This step receives data from the previous block and calculates the
moving average for each microphone signal.

(3) Noise Removal: This block receives the data from the previous step and a user-
defined noise threshold signal (Noise Threshold). If the average value of the central
microphone is less than the Noise Threshold, then it is considered only background
noise in the environment, and the new average value for each microphone is set to
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zero. Otherwise, the average value of the central microphone is subtracted from the
remaining microphone’s data.

(4) Polar to Cartesian: This stage calculates, for each of the six UCA microphones, its
cartesian position multiplied by its corresponding average value. The output from
this block is the weight vector for each microphone according to the signal energy.

(5) DoA Calculation: In this step, the resultant of all vectors to output a cartesian vector
with the DoA estimation is calculated.

(6) Get Angle: This stage calculates the DoA angle from the cartesian vector.

Figure 6. Block diagram of the energy sound source localization algorithm.

To optimize the conversion steps, the Polar to Cartesian and the Get Angle, make use
of look-up tables. Additionally, the output from the Polar to Cartesian stage provides
information to control the LEDs in the microphone array. The output data corresponds to
the weight of each microphone according to the location of the sound source. This data are
processed to generate a Pulse-width Modulation (PWM) signal for each LED, which results
in a brighter light on the LEDs closer to the sound source.

4.3. Interface between the PL and the PS

The communication between the PS and the PL is made through the AXI-Lite protocol
over the AMBA bus. System data can be classified as: (1) data acquired by the microphones
and processed in hardware that includes the DoA estimation and the respective PCM signal,
transferred from the PL to the PS; and (2) control data transferred from the PS to the PL
that is used to configure the acquisition and localization systems. In the first case, that is,
data from the PL to the PS, the process is performed in two ways:

(1) the PCM signal data are written to the Block Random Access Memory (BRAM) directly
through a BRAM controller that defines the writing position. This data are accessed
by the PS through an AXI interface connected to the BRAM;

(2) the DoA data are directly set available to the PS via AXI-Lite interface.

In the second case, where the PL receives the control signals from PS, the AXI-Lite
protocol is used, where the PS can access control registers to enable the PDM-to-PCM
Converter and Signal Processing modules, and to configure the noise threshold inside the
sound source localization module.
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4.4. Software Stack

Figure 7 depicts the software stack that is supported by the PS. The ROS2 system,
supported by a virtualized Linux, is used to ease the integration of the microphone array
with the ROS network standard. As previously shown in Figure 2 from Section 2, it provides
specific interfaces of nodes and topics, allowing both for system flexibility, scalability, and
interoperability features. Moreover, to configure and capture the audio data packages
from the microphone array within the OS, a device driver was developed and included
in the custom Linux image. Finally, to guarantee data security and prevent unwanted
accesses from third parties to the audio data that flows through the system, an additional
virtualization layer was added through our in-house made static partitioning hypervisor
Bao [56].

Figure 7. System software stack.

5. Evaluation

In order to test and evaluate the speaker localization and identification prototype, we
have used the following experimental setup: (1) the sensor system prototype (Figure 8a);
(2) an audio sound source; and (3) a laptop computer with a ROS interface that subscribes
to the ROS topics. The laptop is connected to the processing platform through an Ether-
net interface (in a wired ad-hoc network using an SSH session) to control the prototype
system and store the acquired and processed data (signal data and DoA from each sound
source). Regarding the sensor system, three different steps were executed to demonstrate
its behavior with just one sound source:

(1) first step test evaluates and verifies the acquisition system, i.e., sampling, PDM to
PCM format conversion, and data filtering;

(2) second step evaluates the accuracy and precision of the localization system;
(3) lastly, the third step evaluates the localization system in the presence of a moving

sound source, checking the DoA and verifying the resulting angle with the actual
position of the sound source.

The center microphone is used as the reference to calculate the DoA, and the angle
measurements, with resolution of 1◦, start at 0◦ on the positive x-axis of the unit circle
graph (corresponding to the microphone number 5), and go counter-clockwise around the
circle until they are back at 360◦ (Figure 8b). Since the sensor system is to be placed in
the center of the vehicle’s roof and to bring the sound sources closer to the conventional
passenger locations, during the tests, the sound source was placed between 50 to 150 cm
away from the microphone array with an elevation of 45◦.
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(a) (b)
Figure 8. Sensor system prototype to localize and identify sound sources in an SAV and location of
each microphone in the PCB to calculate the DoA. (a) Sensor system prototype. (b) Microphone’s
location on a XY referential.

5.1. Data Acquisition

To test the acquisition modules, the system was adapted to bypass the sound source
localization module and each microphone’s data were directly sent from the PDM-to-PCM
module to the device driver using the BRAM controller. During the tests, the sensor system
was exposed to different sound sources, which allowed the analysis of the behavior of the
PDM-to-PCM module at different frequencies and distances. Figure 9 depicts the results for
the three types of microphones available in the microphone array. The sound source used to
test the data acquisition was a controlled signal (sine wave) at different frequencies: 220 Hz
(Figure 9a); 440 Hz (Figure 9b), which is currently used as the reference frequency for tuning
musical instruments; 880 Hz (Figure 9c); and 1760 Hz (Figure 9d). All the sound sources
have their fundamental frequency within the bandwidth defined for the band-pass filter.

The results show that the microphones and the conversion module can achieve a good
performance in collecting sound within the frequency ranges defined by the band-pass
filter since the main characteristics of the original signals are present on the acquired
samples. However there are some differences in the received signal’s amplitude, which are
mainly associated with the receiving power of the collected signal, which can be affected
by: (1) the location and position of the microphones in the array; (2) the aperture size of the
microphone’s sound port; (3) and the aperture size of the PCB hole for the sound port. For
instance, the INMP621 and the ICS-51360 are located in the bottom layer of the microphone
array, which result in signals with lower amplitude values. Moreover, Figure 9a presents
some signal’s distortion and lower amplitudes, which are mainly due to the speaker’s
ability to generate lower frequencies.

For testing the band-pass filter we have generated sound waves at frequencies above
the filter’s cutoff frequency which is 3 KHz. Figure 10 shows the results in each microphone
type for two different frequencies, 3520 Hz and 7040 Hz. When the frequency is nearby the
cutoff frequency (3 KHz), the sound is attenuated according to the low-pass component of
the filter. However, at 3520 Hz, there are still some signal components since, by definition, at
the cutoff frequency the output drops below 70.7% of its input. For the 7040 Hz frequency,
there is only noise and the audio signal is nearly zero. These results show the correct
operation of the band-pass filter which is used to avoid temporal and spatial aliasing.
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(a) (b)

(c) (d)
Figure 9. Data acquisition by the three types of microphones at different frequencies. (a) Sine wave
at 220 Hz. (b) Sine wave at 440 Hz. (c) Sine wave at 880 Hz. (d) Sine wave at 1760 Hz.

(a) (b)
Figure 10. Sine wave acquisition for frequencies above the filter’s passband. (a) Sine wave at 3520 Hz.
(b) Sine wave at 7040 Hz.

5.2. Sound Source Localization

To evaluate the localization process, which is the most important goal of this project,
two different tests were executed: (1) a set of measurements to evaluate the sensor system
accuracy in terms of DoA, and (2) a tracking test. The accuracy test was executed with a
sound source at the 180º position using the controlled signal (sine wave) at different fre-
quencies: 220 Hz, 440 Hz, 880 Hz, and 1760 Hz. For each frequency, a set of measurements
was executed at different distances: 50 cm, 75 cm, 100 cm, and 150 cm. A total of 200 DoA
measurements were acquired for each experiment. Figure 11 presents the box plots of
the experiments. The results present a similar and high accuracy for all the frequencies
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tested. However, it is also possible to conclude that, with increasing distance, the precision
is affected.

(a) (b)

(c) (d)
Figure 11. Box plot of the DoA measurements at different frequencies and distances. (a) Sine wave at
220 Hz. (b) Sine wave at 440 Hz. (c) Sine wave at 880 Hz. (d) Sine wave at 1760 Hz.

Table 1 presents the accuracy calculated in each experiment. Regarding the distance
parameter, the accuracy is higher for smaller distances. When the test was performed at
50 cm, the accuracy reached at least 99.54%. At 880 Hz the system obtains the best overall
results, as the accuracy reached values above 99.20% for all tested distances.

Table 1. DoA accuracy at different frequencies and distances.

Sound Source Distance
50 cm 75 cm 100 cm 150 cm

Sine
Wave

Frequency

220 Hz 99.62 % 98.92 % 98.33 % 97.33 %
440 Hz 99.54 % 99.56 % 96.94 % 97.45 %
880 Hz 99.92 % 99.20 % 99.48 % 99.46 %
1760 Hz 99.76 % 99.86 % 98.24 % 98.67 %

In the second evaluation, the system was tested with a moving sound source around
the microphone array that followed the pattern shown in Figure 12a. The result presented
in Figure 12b demonstrates with precision the location of the moving sound source. Because
the algorithm needs 64 samples to localize the sound source and the sampling frequency is
8 kHz, after the first DoA calculation is performed, the following are always available with
an 8 ms delay.
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(a) (b)
Figure 12. Moving sound pattern and respective calculated DoA. (a) Sound source path. (b) Direction
of arrival of a sound source over the time.

5.3. FPGA Hardware Resources

The FPGA implementation requires the resources described in Table 2. In terms of
LookUp Table (LUT) and LUTRAM, the implementation uses 8.09% and 4.47% of the
resources available in the platform, which corresponds to 18628 LUT and 4450 LUTRAM.
From the available 21,725 Flip Flop (FF) units, the system uses a total of 21,725 FF, which
corresponds to 4.71% of the available resources. The BRAM module is the most used
resource, requiring a total of 191 BRAM units corresponding to 61.22% of the available
BRAM in the platform. Due to the acquisition system that using the FIR and CIC blocks,
the system requires 49 of the available 1728 Digital Signal Processor (DSP) units (2.84%).
The hardware also requires 14 Input/Output (IO) pins, which corresponds to the seven
microphone inputs, one output for the clock signal used to drive the microphones, and six
outputs to control the LEDs PWM signal. Finally, to support the clock generator module,
the system requires one of the eight available Mixed-Mode Clock Manager (MMCM) units,
and five of the 544 existing Global Clock Buffer (BUFG) blocks.

Table 2. FPGA resources utilization.

Resource Utilization Available Utilization (%)

LUT 18,628 230,400 8.09%
LUTRAM 4550 101,760 4.47%

FF 21,725 460,800 4.71%
BRAM 191 312 61.22%

DSP 49 1728 2.84%
IO 14 360 3.89%

BUFG 5 544 0.92%
MMCM 1 8 12.50%

6. Conclusions

This article presents a sensor system solution to monitor sound events in an SAV cabin.
This solution is composed of a microphone array connected to a processing platform, which
provides the localization of the sound sources to higher-level application through an ROS
interface. Regarding the proposed solution and the tests performed, the implemented
system is able to acquire data from all microphones, filter the collected signals, and calcu-
late the DoA of one sound source with good accuracy results. Through individual ROS
topics, the MicArray Node makes the acquired audio samples available to other high-level
applications, in order to identify and classify the sound events. This way, it is possible
to identify the type of event that occurs and act accordingly. Concerning the architecture,
the system allows the deployment of independent hardware blocks for customization and
acceleration purposes.

We believe that, with the growing interest in developing autonomous vehicles, pas-
senger monitoring solutions like the one proposed in this article will surely contribute
one step further towards the option of SAV. To the best of our knowledge, there are no
audio-only solutions in the literature that are intended to monitor passengers inside an
SAV. From a broader perspective, this solution, as a concept, can be integrated in other
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applications beyond SAV, where the localization of a sound source in a real-time approach
is a major priority.

7. Future Work

Current work encompasses the exploration of more advanced and efficient algorithms
to localize multiple sound sources, such as variable step-size least mean square. Since
the individual data of each sound source are required, in a scenario where there are
multiple and simultaneous sources, it becomes mandatory to use a sound source separation
algorithm, such as independent component analyses with fast convergence. Moreover, an
open issue related to the vehicle interior is noise, and no matter how acoustically isolated
the vehicle is, the noise will always be present at different amplitudes. Thus, the next step
is to use localization and separation algorithms with self-adapting resources that change
the noise threshold, preserving the signal in the presence of noise. Furthermore, the sensor
system also needs to be tested in a situation closed to the SAV reality, for example, inside a
vehicle’s roof.
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