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Abstract. The wheel-rail contact modeling is of paramount importance for the
dynamics of railway vehicles since it represents the interaction between the vehi-
cle and the track. Although, in most cases, the contact generated occurs between
convex surfaces which results in planar contact areas, the contact might take place
in concave surfaces when negotiation sharp curves or due to the wear of pro-
files. In that cases, the resulting contact area is not planar. This work proposes
a methodology to determine the shape of the contact patch in a curved surface,
where the normal direction varies along its lateral direction. This method is based
on a semi-Hertzian approach and discretizes the contact into longitudinal strips.
The normal pressure distribution is computed in each strip separately using a
non-Hertzian contact model and it is summed in a vector form to obtain the total
normal force magnitude. Regarding the tangential forces, a look up table approach
is considered. Finally, a trailer vehicle negotiating a curve is used to demonstrate
the effectiveness of this methodology.

Keywords: Railway dynamics · Contact forces · Conformal contact ·
Non-Hertzian

1 Introduction

The utilization of multibody systems methodologies to model the dynamic behavior of
railway vehicles has been gaining relevance in their design and development [1]. In that
sense, the wheel-rail contact interaction plays a preponderant role since it represents
the interface between vehicles and track system. The accurate modeling of the wheel-
rail contact is fundamental to analyze the dynamic response of the vehicle, in terms of
comfort and safety, for any running conditions, requiring taking into account several
complex phenomena that occur during contact [2].

Most of the wheel-rail contact force models available in the literature are limited
to their application in planar contact patches, i.e., non-conformal contact cases, or even
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to point contact simplification [3, 4]. Although the planar contact assumption covers
most of the possible interaction scenarios, in which the rail interacts directly with the
tread or flange, when negotiating sharp curves or due to worn profiles, the conformal
contact tends to occur in the running profile fillet zone. The common methods of contact
search tend to fail in finding a unique solution in a con-formal case, either using elastic
or constraint approach.

In this work, a methodology to consider a curved contact between wheel and rail
elements is proposed. In the case of interaction between a convex body and a concave
body, under the assumption of rigid bodies, an interpenetration region exists, and the
effective contact area is smaller due to the elastic deformation of the surfaces. However,
in the conformal case, the resultant contact patch tends to have a curved shape [5].

2 Curved Wheel-Rail Contact Model

In the context of the presented methodology, wheels and rails are mathematically rep-
resented by parametrized surfaces, i.e., the location of any point on each of surface can
be defined by two parameters. The surface of each rail is obtained through the sweep
of its cross-section along a given path, which is represented by a set of nodal points
and interpolated with a suitable spline. These nodal points define the position and ori-
entation of the rail as function its arc length, sr. Then, the rail profile is represented
by a two-dimensional function, in which the profile vertical coordinate f r is defined as
a function of the surface parameter that defines the lateral rail coordinate, ur. In turn,
since the wheelset is a body of revolution, the wheel surface can be defined by the
rotation of its cross-section about its own axis. Thus, any point in the wheel surface
is characterized by an angular position and a lateral coordinate. Similar to the rail, the
wheel profile is represented by a two-dimensional function, in which the wheel vertical
coordinate, f w, is dependent on the profile lateral position. The schematic representation
of this parametrization of the wheel and rail surfaces is given in Fig. 1, in which the
superscripts ‘L’ and ‘R’ denote the left and right elements, respectively.

The half-space approach is widely employed in the development of most wheel-rail
contact theories, for which the only exception is when using the finite element method
that is computationally intensive. This concept involves several assumptions, namely (i)
the characteristic sizes of the contacting bodies are large compared to the size of the
contact patch; (ii) the materials are homogeneous, isotropic and linearly elastic, and (iii)
the strains are small, and the inertia effects can be neglected [6]. Having in mind that
the size of the contact patch tends to increase due to the conformality between surfaces,
the first assumption can be violated. However, the elastic half-space assumption can be
kept since it is valid for smaller variations of the contact angle, as it is considered here.

The procedure proposed is here to compute the shape of a curved patch is illustrated
in Fig. 2, in which the contact dimension is exaggerated for sake of understandability.

The first step consists of identifying the interpenetration region which limits are
obtained with the methodology provided in [3] and denoted by uw,lower and uw,upper for
the wheel lateral parameter, and by ur,lower and ur,upper for the rail lateral parameter.
Since the patch is not flat, there is no preferential direction, therefore, the profiles must
be parametrized according to their arc length. The wheel potential contact points can
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Fig. 1. Schematic representation of the wheel and rail surfaces parametrization

be represented by a three-dimensional curve and the angular parameter, sw, is given
as function of the lateral parameter and yaw angle, α. Hence, to perform this length’s
parametrization, the wheel has to be projected into the rail profile plane, since the rail is
considered an extruded body. This strategy transforms the identification of the contact
patch in a two-dimensional problem, which simplifies the process of evaluation the pen-
etration over the patch. Hence, after some mathematical manipulation, the expressions
to obtain the arc length for rail and the wheel interpenetration region are

Lr(ur) =
∫ ur

ur,lower

√
1 + f ′

r dur (1)

Lw(uw) =
∫ uw
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′′2
w

(
tan2αf ′2
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It must be noticed that the rail’s arc length just depends on the profile shape and
the boundaries of the interpenetration region, while the wheel’s arc length also depends
on the yaw angle and, therefore, requires its identification for each wheel-rail config-
uration. Then, both profiles are discretized in NS equally sized spaces, as schematized
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Fig. 2. Definition of the penetration along the interference region in the wheel lateral direction
for conformal contacts: (a) interaction of wheel and rail in a conformal region; (b) discretization
of the interpenetration zone by its arc length; (c) identification of the contact patch’s curved axis;
(d) establishment of size and center point of each strip; (e) evaluation of penetration in each strip;
(f) representation of the penetration along the interference region

in Fig. 2b. Consequently, the curved surface, s, in which the contact patch is contained
can be determined through the evaluation of the middle position between wheel and rail
points, as pictured in red in Fig. 2c. Since the points obtained are not necessarily equally
spaced in this curve, they have to be resampled and treated in a local coordinate system.
Furthermore, (xs,i, ys,i) expresses the coordinates of the ith strip, and �s is the width of
each strip, as depicted in Fig. 2d.

A curved axis s is established representing the direction along the contact patch for
which the normal and tangential directions are variable. Thus, the normal and tangential
vectors are found for each strip as

ns,i = {− sin θi cos θi
}T

(3)
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ts,i = {
cos θi sin θi

}T
(4)

in which the angle of each strip is defined as

θi = arctan
(
y′
s,i

)
(5)

where y’s,i denotes the derivative of ys in xs,i that is calculated from the splines produced.
Then, the penetration along the curved contact patch, which is measured in the normal
direction of each strip, as represented in Fig. 2e, is evaluated. Both points on rail and
wheel which define the limits of the interference of a given strip can be obtained through
the intersection between a straight line normal to the patch surface and the rail and
wheel profiles, respectively. After determining the intersection points for a given strip,
the penetration on that strip, δcp(si), is the distance between those points. Since the wheel
and rail contact is considered locally elastic, their surfaces tend to deform and, therefore,
establish an effective contact area which is smaller than the interpenetration region [7].
Hence, the limits of the contact patch, ss and se, are determined by solving the following
equation

δcp(s) = (1 − ε)δmax (6)

where ε is the correction factor, which takes into account the deformation of the con-
tacting surfaces and δmax denotes the maximum penetration in the interference region.
This procedure is represented in Fig. 3, and it must be noticed that the first and last
strips have a smaller width compared with the remaining ones. For the effective contact
zone, the semi-Hertzian approach is considered where the contact pressure distribution
is elliptical only for the rolling direction. Thus, the longitudinal size of the i-th strip can
be given by the location of the leading edge as

xL(si) =
√
2Rs

w(si)
[
δcp(si) − (1 − ε)δmax

]
(7)

in which Rs
W is the radius of curvature of the wheel surface in the longitudinal direction

for a given strip.
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Fig. 3. Schematic representation of the identification of the contact patch limits
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Subsequently to the identification of the shape and size of the contact patches, the
normal pressure distribution evaluation on each patch is needed. Some of the methods
available on the literature depend on the location of the maximum penetration point to
calculate the contact pressure [7], which might produce numerical problems when two
peaks of penetration are found in the same contact area. Amethod proposed by Sun et al.
[8] is adapted to the curved contact model. In that sense, the contribution of each strip
for the normal contact force is computed as

fn,i = π2Eδcp(si)x2L(si)�s

4
(
1 − σ 2

)
⎛
⎝

∫ se

ss

∫ xL

−xL

√
x2L(η) − ξ2

ξ2 + (si − η)2
dξdη

⎞
⎠

−1

(8)

where E is the Young’s modulus and σ denotes the Poisson ratio. Since the normal
direction varies along the contact patch, the normal force magnitude cannot be summed,
thus, it is given by the vector sum of the force originated in each strip as

fn =
Ns∑
i=1

fn,ins,i (9)

This model is purely elastic, and a damping component can be added as

fdn = fncd (10)

where the damping factor is given as

cd =
⎧⎨
⎩
ce δ̇ ≤ −v0[
ce + (1 − ce)

(
3r2 − 2r3

)] −v0 < δ̇ < v0
1 δ̇ ≥ v0

in which r = δ̇ + v0
2v0

(11)

where ce expresses the coefficient of restitution, δ̇ represents the penetration velocity
and v0 is a tolerance velocity.

Regarding the evaluation of creep forces and spin moment, a lookup table with a reg-
ularization for a simple double-elliptical contact region, based on CONTACT software,
is considered [9]. This lookup table requires, as input variables, the parametrized spin
creepage, semi-axes ratio, creepage angle, parametrized creepage modulus and shape
number. An enhanced version of this lookup table is used, in which its discretization
was obtained after minimizing the interpolation error [10].

3 Example of Application

A multibody model of trailer vehicle negotiating a left curve is utilized as example of
application of the proposed methodology for the wheel-rail contact model. This model
includes 11 rigid bodies, namely 4 wheelsets, 4 axleboxes, 2 bogie frames and the
carbody. All details of this model can be found in [11]. The vehicle starts the simulation
with a forward velocity of 18.3 m/s and a lateral misalignment of 2 mm with respect to
the track centerline to promote some hunting motion.
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Fig. 4. Representation of (a) the location of the main contact point for each patch and their shape
for (b) t = 1 s (c) t = 6 s (d) t = 20 s and (e) t = 36.4 s for the right wheel of the leading wheelset.
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To analyze the obtained results, the contact in the right wheel of the leading wheelset
is examined in detail, since it is external to the curve and, therefore the contact can occur
in the wheel transition zone. Figure 4a shows the location of the contact points on the
wheel profile during the simulation. From the results, it is concluded that the rail interacts
with the wheel transition zone during negotiation where two different contact patches are
identified. The different shapes of contact patches determined are displayed in Figs. 4b–
e, where four different instants of simulation are considered. Figure 4d exhibits the
most non-elliptical contact scenario and coincides with the location in which the wheel
presents a concave surface.

4 Conclusions

A method for the determination of a curved contact patch on the interaction between
wheel and rail surfaces is presented in thiswork. Thismethodology considers that normal
contact direction might vary along lateral direction of the contact area and determines
the local penetration based on that assumption. A non-Hertzian method for the nor-
mal pressure evaluation is adapted to be applied in the curved contact. This contact
model has been applied to a dynamic simulation and demonstrated to be effective in the
determination of the contact patches and corresponding forces.
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