
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Davide Rafael Santos Lagoa

Development of Bioinformatics tools
for the classification of transporter systems

December 2018

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Davide Rafael Santos Lagoa

Development of Bioinformatics tools
for the classification of transporter systems

Master dissertation
Master Degree in Bioinformatics

Dissertation supervised by
Oscar Manuel Lima Dias

December 2018

A C K N O W L E D G E M E N T S

Consciente de que este não foi um trabalho individual, são diversas as pessoas às quais devo
os mais profundos agradecimentos. Em primeiro lugar, ao meu orientador, Prof. Oscar Dias,
obrigado pelo tempo dispensado na partilha de conhecimentos, pela confiança nas minhas
capacidades, pela preocupação, disponibilidade e amizade demostradas ao longo de todo
este tempo. Agradeço ainda a oportunidade de desenvolver este trabalho e de o integrar
na KBase, a quem devo também um agradecimento, pois é bastante gratificante sentir a
valorização do nosso trabalho.

Ao Amaro, colega e amigo nesta jornada, pelas largas discussões e contributos para esta
dissertação, se hoje consegui alcançar um trabalho com qualidade, em parte a ti o devo.

À Catarina, que desde Vila Real partilhou todo este percurso comigo. Obrigado por
toda a amizade e por tantas vezes me arrancares de casa para ir beber aquele balde ou às
inúmeras jantaradas. Que nunca acabem...

Ao Ivo, que apesar de ter divergido da vida académica, depois de tantos anos continua
ser o melhor amigo que se podia desejar e continua a ter sempre as melhores histórias para
contar.

A ti Bruna, que me trouxeste para o mundo da Bioinformática. O teu contributo e apoio
em todas as situações tornam todos os percursos mais fáceis. O meu maior obrigado!

Por fim, à minha famı́lia. Aos meus avós que me estão sempre a perguntar quando vou
acabar a escola. À minha irmã que tanto me ajudou até aqui (vai ser um menino). A vocês,
Pai e Mãe, que de tanto abdicaram para que tudo isto fosse possı́vel. Ficarei eternamente
agradecido por tudo o que fizeram e fazem por mim.

i

A B S T R A C T

The Transport Systems Tracker (TranSyT) is a new approach to the problem of identifying
genome-wide transmembrane transport systems, annotating these with reactions. TranSyT
is the next iteration of TRIAGE (29), though more efficient and designed to overcome its
limitations. This new approach still relies on the TCDB (118) to perform the annotation of
transporters systems; however, TranSyT automatically retrieves and processes information
from this source.

The information available in TCDB allows determining which metabolites are carried
by each transporter system and the respective reactions. In TranSyT, these metabolites
are assigned with identifiers and hierarchies through Biosynth (81), which combines in-
formation retrieved from several sources such as ModelSEED, KEGG, MetaCyc and BiGG.
TranSyT generates new transport reactions using automatic text processing to determine the
direction (in/out or out/in), reversibility and most suitable transport type (e.g. symport,
antiport, etc) for each reaction retrieved from TCDB. All information is stored in a Neo4j
graph database. The identification of the genes encoding transporter systems is the only
module with user’s interaction, as the database is available for remote access, without the
need of storing it in the users’ machine. Users start the identification of the transporters af-
ter loading a genome and the respective taxonomy identifier. TranSyT uploads the genome
to its remote service and performs the homology search using BLAST against all records
available in TCDB. Afterwards, it selects the correct Transporter Classification (TC) family
to annotate each transport system and associates transport reactions to the encoded pro-
tein, creating Gene-Protein-Reaction (GPR) associations. The integration with genome-scale
models filters metabolites not available in the reconstructed network. The localization of
the reactions can be inferred from third-party tools such as PSORTb 3.0 or LocTree3. Other
tools that determine whether the genes encoding transport proteins have transmembrane
domains, allow assigning confidence levels to the systems.

The iAF1260 Escherichia coli model (38) was used to validate the developed framework.
TranSyT was able to automatically create reactions for nearly 75% of the metabolites de-
scribed in iAF1260 model transporters. Moreover, it allowed identifying transport reactions
incorrectly assigned to genes that do not encode reactions transporting such metabolites.

TranSyT is an open-source JavaTM software available at https://gitlab.bio.di.uminho.
pt/TranSyT, currently being implemented in merlin and KBase.

Keywords: TranSyT, Transporter Systems, TRIAGE, Transport Reactions, Genome-Scale
Metabolic Models, Transporters Inference, Bioinformatics

ii

https://gitlab.bio.di.uminho.pt/TranSyT
https://gitlab.bio.di.uminho.pt/TranSyT

R E S U M O

O Transport Systems Tracker (TranSyT) é uma nova abordagem ao problema de identificação
de sistemas de transporte transmembranares em genomas. O TranSyT é a próxima iteração
da ferramenta TRIAGE (29), embora mais eficiente e desenvolvido para ultrapassar as
limitações existentes. Tal como o TRIAGE, ainda depende da TCDB (118) para a anotação
de sistemas, no entanto, o TranSyT recolhe e processa automaticamente a informação desta
fonte.

A informação disponı́vel na TCDB permite determinar quais os metabolitos que são
transportados por cada sistema de transporte e quais as respectivas reacções. No Tran-
SyT, identificadores e descendentes hierárquicos são atribuı́dos aos metabolitos utilizando o
Biosynth (81), que combina informação de várias fontes, como o ModelSEED, KEGG, Meta-
Cyc e BiGG. O TranSyT gera reacções de transporte utilizando processamento automático
de texto para determinar a direcção (interior/exterior ou exterior/interior), reversibilidade,
e o tipo de transporte adequado (e.g. symport, antiport, etc) para cada reacção recolhida
da TCDB. Todas as informações recolhidas são guardadas numa base de dados de grafos
Neo4j. A identificação de sistemas transportadores codificados por genes é o único módulo
com o qual o utilizador tem interacção, visto que a base de dados está disponı́vel remota-
mente, não havendo a necessidade de armazená-la na máquina do utilizador. Ao carregar
um genoma e o respectivo identificador taxonómico, o utilizador é capaz de começar a
identificação dos transportadores. O TranSyT carrega o genoma para o seu serviço remoto
e executa a procura de homologias utilizando BLAST (3) contra todos os registos da TCDB.
De seguida, selecciona a famı́lia TC correcta para anotar cada sistema transportador e asso-
cia reacções de transporte à proteı́na codificada, criando associações Gene-Proteı́na-Reacção
(GPR). A integração com o modelo à escala genómica usada para filtrar metabolitos que
não estão indisponı́veis na rede. A localização dos sistemas pode ser inferida utilizando
ferramentas de terceiros, tais como PSORTb 3.0 ou LocTree3. Outras ferramentas que deter-
minam se os genes que codificam proteı́nas de transporte têm domı́nos transmembranares,
permitem a atribuição de graus de confiança às classificações.

O modelo iAF1260 da Escherichia coli (38) foi utilizado para validar a plataforma desen-
volvida. O TranSyT foi capaz de criar automaticamente reacções para aproximadamente
75% dos metabolitos associados a transportadores do modelo. Permitiu ainda identificar
reacções de transporte associadas a genes que não codificam reacções que transportam os
metabolitos que lhes são atribuı́dos.

TranSyT é um software open-source JavaTM disponı́vel em https://gitlab.bio.di.uminho.

pt/TranSyT, actualmente a ser implementado no merlin e na KBase.

iii

https://gitlab.bio.di.uminho.pt/TranSyT
https://gitlab.bio.di.uminho.pt/TranSyT

C O N T E N T S

1 introduction 1

1.1 Context and motivation 1

1.2 Objectives 2

1.3 Structure of the document 3

2 state of the art 5

2.1 Omics in Systems Biology 5

2.2 Modelling 6

2.2.1 Genome-Scale Metabolic Models 9

2.2.2 Reconstruction/simulation and optimization tools 13

2.3 Applications 15

2.4 Transmembrane proteins 15

2.4.1 TMA proteins predictors 18

2.4.2 TMB proteins predictors 19

2.5 merlin 22

2.6 Methods for automatic annotation of transporter systems 23

2.7 Transport Reactions Annotation and Generation - TRIAGE 26

2.8 KBase 31

2.9 Neo4j 32

2.10 Docker 33

2.11 Case Studies 34

3 methods 35

3.1 TranSyT’s architecture 35

3.2 Assessment of available methods to predict transmembrane β-barrels 38

3.2.1 Construction of the dataset 38

3.3 Validation of TCDB’s information 39

4 software development 41

4.1 merlin’s improvements 41

4.1.1 Database services 41

4.1.2 Compartments parsing and integration 41

4.1.3 SamPler 43

4.1.4 Annotation workflow 43

4.2 Implementation of TranSyT 45

4.2.1 TCDB scraper and family-specific transport reactions assembly 45

4.2.2 Metabolites identification and hierarchical ontology 50

iv

Contents v

4.2.3 Generate system-specific reactions 53

4.2.4 Identification of genes encoding transport systems 55

4.3 Compartmentalization and TMD identification 61

4.4 Third party tools 62

4.5 TranSyT’s validation 64

4.5.1 Validation per gene 65

4.5.2 Validation per reaction 65

4.5.3 Validation per metabolite 66

5 results and discussion 67

5.1 Assessment of available methods to predict transmembrane β-barrels 67

5.2 Validation of TCDB’s information 70

5.3 merlin’s improvements 72

5.3.1 Compartments parsing and integration 72

5.3.2 Annotation workflow 73

5.4 TRIAGE versus TranSyT 74

5.5 TranSyT’s user interface 78

5.6 TranSyT’s internal database 80

5.7 TranSyT’s validation 81

5.7.1 Validation per gene 81

5.7.2 Validation per reaction 82

5.7.3 Validation per metabolite 84

5.7.4 GPRs validation 86

6 conclusion 88

6.1 Conclusions 88

6.2 Prospect for future work 89

6.3 Outcomes 89

a support material 102

a.1 Blast result example to select TC family 102

L I S T O F F I G U R E S

Figure 1 Representation of GPR associations. 10

Figure 2 Example of a Metabolic Network. 11

Figure 3 Method of Optimization of Metabolic Adjustment 12

Figure 4 Example of uniport, symport and antiport processes. 16

Figure 5 Example of the structure of an α-helix. 17

Figure 6 Crystal structures of β-barrel membrane proteins of the outer mem-
brane of bacteria. Image from Kleinschmidt, 2005 (72). 17

Figure 7 a) Method to determine the shear number; b) Example of a beta-
bulge. 18

Figure 8 Process of TCGs identification. 30

Figure 9 Graph example. 32

Figure 10 Comparison between Docker and a Virtual Machine. In case of Type
1 VMs, host OS level does not exist. 33

Figure 11 Architecture of TranSyT. 37

Figure 12 TCDB scraper and family-specific transport reactions assembly pro-
cess 49

Figure 13 Example of an hypothetical relationship that can be found in Biosynth’s
graph database. 51

Figure 14 Metabolites identification process. 52

Figure 15 Representation of TransSyT’s internal database for 5 accessions. 55

Figure 16 Representation of the differences between the old and new “Com-
partments annotation panel”. 72

Figure 17 Representation of an hypotethical workflow for species Nitrobacter
vulgaris. 73

Figure 18 Results of automatic annotation using workflow represented in fig-
ure 17. 74

Figure 19 TRIAGE architecture. 75

Figure 20 TranSyT’s module for identification of genes encoding transporter
systems. 77

Figure 21 TranSyT’s initial GUI. 78

Figure 22 TranSyT’s configurations GUI. 79

Figure 23 TranSyT’s results GUI. 79

vi

List of Figures vii

Figure 24 Number of genes and metabolites in common between the iAF1260
model and TranSyT. 82

Figure 25 Comparison between the number of protein complexes found in
iAF1260 and TranSyT. 86

L I S T O F TA B L E S

Table 1 Bioinformatics Databases 8

Table 2 Tools for reconstruction of GSM models and modelling/analysis. 13

Table 3 Tools for prediction of transmembrane α-helices. 19

Table 4 Tools for prediction of TMAs and signal peptides. 19

Table 5 Some of the available methods for prediction of transmembrane β-
barrels. 20

Table 6 Some of the available transport databases. 23

Table 7 Simple example adapted from (79) representing TIP’s input and the
final result for each protein. Note: ’[ext]’ stands for ’extracellular’ 24

Table 8 Example of inner and outer compartments for the indicated mem-
branes. 42

Table 9 Structure used to decide the relative positions between compart-
ments. 47

Table 10 Family annotation scores for UniProt entry S7V9F2, calculated using
the default α = 0.4. 57

Table 11 Example of the data structure requested by the argument “blastData”
in the algorithm 1. 59

Table 12 Classification of a transport system using TMD and compartments
predictions. 62

Table 13 Third party tools used in the development of TranSyT. 63

Table 14 Results of each tool with the only false positive highlighted in yellow
and the only error in red. 69

Table 15 Comparison results and description of the respective classifications.
Data retrieved on April 2018. 70

Table 16 Summary of TranSyT’s internal database current contents. 80

Table 17 Results of Validation per reaction. 84

Table 18 Summary of the counts for validation per metabolite. 85

Table S1 Blast output of the alignment of entry UniProt entry S7V9F2 against
TCDB records. 102

viii

A C R O N Y M S

E. COLI Escherichia coli

TRIAGE Transport Reactions Annotation and Generation

TRANSYT Transport Systems Tracker

MERLIN Metabolic models reconstruction using genome-scale information

A Adenine

ABC ATP-binding cassette

ATP adenosine triphosphate

BIGG Biochemical, Genetic and Genomic

BLAST Basic Local Alignment Search Tool

BRENDA BRaunschweig ENzyme DAtabase

C Cytosine

CEB Centre of Biological Engineering

CHEBI Chemical Entities of Biological Interest

CPU Central Process Unit

DNA deoxyribonucleic acid

EC Enzyme Commission

ETC electron transport chain

FBA Flux Balance Analysis

FVA Flux Variability Analysis

G Guanine

ix

Acronyms x

GC Gas Chromatography

GPR Gene-Protein-Reaction

GSM Genome-Scale Metabolic

GUI Graphical User Interface

H2 H2 Database Engine

IUBMB International Union of Biochemistry and Molecular Biology

JSON JavaScript Object Notation

KBASE The Department of Energy Systems Biology Knowledgebase

KEGG Kyoto Encyclopedia of Genes and Genomes

KO KEGG Orthology

LMOMA Linear MOMA

ME Metabolic Engineering

MFA Metabolic Flux Analysis

MN Metabolic Network

MOMA Method of Optimization of Metabolic Adjustment

MS Mass Spectrometry

NCBI The National Center for Biotechnology Information

NGS Next Generation Sequencing

NMR Nuclear Magnetic Resonance

OPM Orientations of Proteins in Membranes

OS Operating System

PEP phosphoenolpyruvate

PGDBS Pathway/Genome Databases

PHMMS profile Hidden Markov Models

Acronyms xi

PTS phosphotransferase system

RAM Random Access Memory

RAST Rapid Annotation using Subsystem Technology

RAVEN Reconstruction, Analysis and Visualization of Metabolic Networks

RNA ribonucleic acid

ROOM Regulatory On/Off Minimization

SB Systems Biology

SBML Systems Biology Markup Language

SN Signaling Network

SVM Support Vector Machines

T Thymine

TC Transporter Classification

TCDB Transporter Classification Database

TCG Transport Candidate Gene

TM Transmembrane

TMA Transmembrane α-helical

TMB Transmembrane β-barrel

TMD Transmembrane Domains

TN Transcriptional Network

TR IDENTIFIER Transport Reaction identifier

TRANSATH Transporters via Annotation Transfer by Homology

UNIPROT Universal Protein Resource

URL Uniform Resource Locator

VMS Virtual Machines

1

I N T R O D U C T I O N

1.1 context and motivation

In the last decades, the improvement of Bioinformatics tools and the increasingly vast bi-
ological information available in databases, allowed the reconstruction and application of
Genome-Scale Metabolic (GSM) models. These models are now seen as tools that allow
obtaining a better understanding of cellular metabolism, and promote the development of
metabolic engineering strategies, which reduce the high cost and time consumption on a
larger batch of experiments (31).

The reconstruction of GSM models involves the assembly of all biochemical reactions that
take place inside of a target organism. Information about the compounds and the enzymes
involved in these reactions is initially retrieved from literature and biological databases (e.g.
The National Center for Biotechnology Information (NCBI) (24), Universal Protein Resource
(UniProt) (23), etc). However, it is important to notice that the reconstruction of these net-
works is a laborious and iterative process, as not only it is important to have the information
about the compounds involved in the reactions, but also the correct stoichiometry, reversibil-
ity and cellular location, for each reaction (31). Lately, the reconstruction of GSM models
has been simplified with the use of tools, such as Metabolic models reconstruction using
genome-scale information (merlin) (31) and ModelSEED (54). However, most of these tools
fail in the automatic identification and characterization of transport reactions. These have
to be manually added or removed, by the user, based on experimental data and literature
evidences, decreasing the quality of the models. Tools like ModelSEED, despite providing
transport reactions, are not able to associate these to genes. Therefore, the identification
of genes encoding transport proteins and the metabolites transported by those should be
improved, as these are important to reconstruct accurate GSM models, both for eukaryotes
and prokaryotes (38).

Metabolic models reconstruction using genome-scale information (merlin) is a JavaTM ap-
plication that allows reconstructing GSM models for any sequenced organism. It allows
performing the functional genomic annotation of its entire genome (31), and provides a
draft model, which can be easily curated within the framework, and later exported to the

1

1.2. Objectives 2

Systems Biology Markup Language (SBML) (61) standard format. Transport Reactions An-
notation and Generation (TRIAGE) (29), a tool currently embedded in merlin, performs
the identification of membrane transport systems and automatically generates transport
reactions for every metabolite transported by those carriers (29). Reactions generated by
TRIAGE can be directly integrated with GSM models, as all metabolites have Kyoto Ency-
clopedia of Genes and Genomes (KEGG) and/or Chemical Entities of Biological Interest
(ChEBI) identifiers. To our knowledge this tool is the only able to identify and generate
such reactions. TRIAGE’s pipeline for Transport Candidate Gene (TCG)s identification is
very strict, since it combines several tools to decrease the number of false positives, which
implies that a negative prediction in one of the modules will exclude the gene of the mem-
brane transport systems encoding genes set.

One of the main disadvantages of the current architecture of TRIAGE is that it is only
available while embedded in merlin’s core projects, which limits its accessibility. To exploit
the full potential of this tool, it is of paramount importance to provide TRIAGE in a stan-
dalone software, capable of generating results from a specific input. To accomplish this goal,
the internal structure of the database will be updated. During development, the software
was completely redesigned, implemented from scratch and followed a different philosophy,
completely independent from merlin; hence this software should have a new designation.
Here, TranSyT, a new software for the annotation of transport systems and generation of
transport reactions is presented. The development of this software, will ultimately allow its
inclusion in other platforms, such as merlin and The Department of Energy Systems Biology
Knowledgebase (KBase).

1.2 objectives

The main goal of this work is to improve TRIAGE, a Bioinformatics tool that performs the
identification and annotation of transport systems. To fulfill this objective, the following
tasks will be performed:

• Improve TRIAGE’s method of automatically generating reactions;

• Relax TRIAGE rigorous rules to improve the identification of transport systems;

• Include the identification of other membrane structures namely β-barrels in the tool’s
algorithm;

• Create a standalone application, allowing its inclusion in other software, such as KBase;

1.3. Structure of the document 3

• Compare TRIAGE’s internal transport systems database to the new updated version of
Transporter Classification Database (TCDB);

• Integration of the new tool in KBase.

1.3 structure of the document

chapter 2 - state of the art

This chapter presents a brief introduction to the reconstruction of GSM models and the
problematic of annotating and including transport reactions in these models. This section
consists of an overview of current methods for reconstruction of genome-scale metabolic
models, and methods for automatic annotation of transporter systems, such as merlin, and
a detailed description of TRIAGE. Available methodologies for the identification and anno-
tation of transmembrane transport proteins, including the existing methods for prediction
of transmembrane α-helices and β-barrel structures, are also discussed in this chapter. This
chapter closes with a brief description of the case studies.

chapter 3 - methods

After providing context regarding the application environment and functionalities of in-
terest, the methodologies that steered TranSyT’s architectural design are described in this
chapter. The methods used to perform the study that allowed assessing tools developed
to predict transmembrane β-barrels are described in this section. Finally, the process de-
veloped for validating TCDB’s recent updates, regarding transported compounds in each
transport system, is also detailed at this stage.

chapter 4 - software development

This chapter describes all improvements and new implementations performed in merlin,
as well as a detailed description of TranSyT’s software implementation. An explanation of
the methods used to validate TranSyT is also available in this section.

1.3. Structure of the document 4

chapter 5 - results and discussion

Results regarding merlin’s updates and new features are presented in this chapter. The
results of the study regarding β-barrels predictors and TCDB data validation, described
in chapter “Methods”, are shown and discussed here. A section with the outcome of the
development of a graphical user interface is provided, as well as the results of TranSyT’s
validation, and the main differences between TRIAGE and TranSyT.

chapter 6 - conclusion

Finally, all conclusions of the work developed are summarized at this chapter, and
prospects for the future are also discussed. An overview of the outcomes of this work
is also provided.

2

S TAT E O F T H E A RT

2.1 omics in systems biology

During 1953, while working in the Cavendish Laboratory in Cambridge, James Watson
and Francis Crick made a discovery that would forever change our perception of life: the
structure of the deoxyribonucleic acid (DNA) molecule. Considered one of the biggest
discoveries of the 20th century, this finding was responsible for the beginning of a new
era in Science (73, p. 5). The DNA is an anti-parallel double helix molecule, composed by
four organic compounds, nucleobases, that complement each other and are linked together
by hydrogen bounds: Adenine (A) - Thymine (T), and Guanine (G) - Cytosine (C) (73,
p. 8). Located inside the nucleolus of eukaryotic organisms and in the nucleoid (poorly
demarcated area that lacks of membrane’s boundaries to separate the genetic material from
the cytoplasm) of prokaryotic organisms, (2, pp. 5-9), the DNA is wrapped around histones
forming the chromosomes. These chromosomes (or single chromosome in prokaryotes), are
composed by genes that encode functional DNA. Since the discovery of DNA, science has
been evolving very fast, supported by the advance on technology, allowing nowadays to
be easier and cheaper to sequence the whole-genome of organisms, using technology like
Next Generation Sequencing (NGS) (88). With the increase of data available new fields of
science, such as Systems Biology (SB) (30), have emerged.

SB is a field of science that aims at understanding the complex systems of living or-
ganisms. It is commonly described as a holistic approach that has taken advantage of
computational tools and high-throughput experimental data to achieve its goal. Under-
standing the complexity of living cells can be useful in several areas, such as medicine (to
find new biomarkers for diseases, target drugs and new treatments) or industry (increasing
the productivity of a compound of interest, such as biofuels and pharmaceutical products)
(85). As this field aims at understanding the behavior and the relationships between the
elements of an active biological system, instead of an isolated cellular component, it uses
several techniques such as Genomics, Transcriptomics, Proteomics, and Metabolomics to
study these networks (27; 30).

5

2.2. Modelling 6

Genomics is the field of science that studies the organisms’ DNA (genome). Unlike genet-
ics that explores exhaustively the function and the composition of a single gene, genomics
aims at studying the complete set of genes within a cell, and how they interact leading to
the growth and development of the organism(73, p. 47). Gene expression can be summa-
rized in three main steps. During the first step, transcription, the gene’s DNA is transcribed
to pre-messenger ribonucleic acid (RNA). In the second step, this RNA is processed by splic-
ing (introns are removed, and exons are joined together) and the messenger RNA (mRNA),
the transcript, is created. The study of the complete record of these transcripts produced
by an organism during its lifetime, under specific conditions or in a unique cell, is called
Transcriptomics. Finally, the messenger RNA is translated by ribosomes into a protein.
The study of proteins, and the patterns in expression of proteins in a tissue or cell of an
organism during its lifetime, is performed with severak techniques available in the field
of Proteomics (27; 56). Both fields, Transcriptomics and Proteomics use high-throughput
methods in their analysis such as microarray analysis or RNA-seq (Transcriptomics), and
2D gel electrophoresis and Mass Spectrometry (MS) (Proteomics), obtaining valuable infor-
mation and complementing each other (56). Metabolomics provides the identification and
measurements of all metabolites available within a biological system, and the respective
concentrations, using combination of different techniques such as Gas Chromatography
(GC) and MS. Metabolite profiling has paramount importance for SB, as the availability of
metabolites will determine the connectivity between the networks (30).

2.2 modelling

The post-genomic era brought new data sources to Science. During the pre-genomic era, bi-
ological network reconstructions were performed with information retrieved from literature
and biochemical characterization of enzymes (30). Nowadays, various databases containing
most of the information required to generate networks at the genome-scale are available,
allowing this process to be automated. Examples of such databases are described in Table
1.

Understanding biological networks has become increasingly important as more knowl-
edge and information is being generated. This allows understanding how a biological
system responds to changes of environmental conditions. To accomplish this objective,
metabolic, transcriptional, and signaling networks can be reconstructed. However, genome-
scale models that integrate these networks and others found in biological systems into one
comprehensive model, are still under development.

A Transcriptional Network (TN) can be seen as a snapshot of the state of expression
of the genome in a cell. As not all genes are expressed inside the cell at the same time,
this network provides a blueprint of the genes expression under specific conditions. A

2.2. Modelling 7

Signaling Network (SN) provides an overview of the proteins that transduce information,
with the purpose of changing the transcriptional state of the cell. By receiving these signals,
the cell is stimulated to adjust its transcriptional state accordingly to the environmental
conditions. A Metabolic Network (MN) model is used to characterize the metabolic status
of a cell. It is constituted by a series of biochemical reactions and constraints, and can be
modelled at different levels of complexity. The first level, is the cellular, in which only the
intakes and outputs are taken into consideration, whilst all other activities within the cell
are ignored. The second level is the functional level where the MN is divided by metabolic
functionalities, such as anabolism or catabolism. The third level, is related with pathways of
an individual functional group. At the basis of the MN, the fourth level, are the biochemical
reactions. This is the level in which GSM models are reconstructed (78).

2.2. Modelling 8

Table 1.: Bioinformatics Databases

Database Description Reference

ExPASy

Integrative portal that reaches a wide range of domains of
life sciences such as proteomics, genomics, evolutionary
biology, systems biology, population genetics, transcrip-
tomics, biophysics, etc.

(6)

MetaCyc

A non-redundant database, containing experimentally ver-
ified metabolic pathways. This curated database, contains
pathways involved in primary and secondary metabolism
and associated compounds, enzymes and genes.

(20)

BioCyc

As a collection of Pathway/Genome Databases (PGDBs),
BioCyc provides the predicted metabolic network for a
specific organism, including metabolic pathways, enzymes,
metabolites and reactions predicted by the Pathway Tools
and using MetaCyc as reference database. Additionally,
BioCyc provides tools for visualization and analysis of the
PGDBs.

(20)

Biochemical,
Genetic and
Genomic (BiGG)

A database containing high-quality, manually-curated
genome-scale metabolic models. (70)

KEGG
A database containing extensive information about genes,
enzymes, metabolites, reactions, and pathways. (94)

Reactome Manually curated resource of human pathways and reac-
tions.

(25)

BRENDA
A curated database containing functional and molecular
information of enzymes. (121)

Universal Protein
Resource
Knowledgebase
(UniProtKB)

A database about proteins consisting in two sections:
UniProt/Swiss-Prot, a manually annotated source contain-
ing information extracted from literature and from com-
puter analysis; UniProt/TrEMBL, containing data automat-
ically retrieved with computational methods, waiting for
manual curation.

(23)

SABIO-RK
A database containing comprehensive information about
biochemical reactions, their kinetic rate equations and ex-
perimental conditions.

(143)

Genomes OnLine
Database (GOLD)

A curated resource for comprehensive access to infor-
mation regarding genome and metagenome sequencing
projects.

(93)

NCBI
A collection of several databases that provides tools for
analysis, visualization, and retrieval of biomedical, ge-
nomic, and other biological information.

(24)

2.2. Modelling 9

2.2.1 Genome-Scale Metabolic Models

For the reconstruction of GSM models, a widely set of Bioinformatics tools that will be
later discussed in this document, is currently available. Its development is important in SB,
as these models can be used to systematically test and predict manipulations (e.g. genes
knockouts), without using expensive and time-consuming wet-lab experiments (85). The
reconstruction of GSM models is an iterative and laborious process described by Thiele and
Palsson as having at least 96 steps (130), which can be summarized in four main stages (30).

The first stage consists in the genome annotation by retrieving information from different
databases. The annotation should contain, ideally, information such as Enzyme Commis-
sion (EC) and TC numbers, as well as the associated genes and gene product names, if
available. As this information is retrieved from different databases, and the annotation
was likely performed after genome sequencing, it can be out-dated. Therefore, it might be
necessary to perform a functional re-annotation of the genome, to find possible gaps and
discard unnecessary information. Performing a precise and unbiased annotation is critical
for the development of high-quality GSM models, as the annotation is usually performed
once and assumed as correct (30).

Subsequently (stage two), based on the annotation and available literature, the assem-
bling of the MN is performed, through the identification of biochemical reactions associated
with the organism. In this stage, several steps must be followed, the first being, determin-
ing the GPR rules. Here, data retrieved from several databases is cross-checked to identify
the proteins encoded by the genes, and which are the reactions associated to those proteins.
In Figure 1, exceptions to the ’1 gene - 1 protein - 1 reaction’ rule can be found. Next, the
addition of spontaneous reactions is performed, followed by the validation of the reactions’
stoichiometry using online databases such as BRaunschweig ENzyme DAtabase (BRENDA)
(121), KEGG (94), and MetaCyc (20). The last step of the second stage, is the compartmenta-
tion of the identified reactions. This is an important task, as the availability of compounds
that have a role in the assigned reactions is not the same for every compartment of the
cell. Thus, a reaction will only take place, when the required metabolites are present in the
location predicted for such reaction (30; 114).

The third stage is the conversion of the MN to a stoichiometric model. Before the con-
version, it is mandatory to include reactions required for the formation of biomass, i.e. a
set of reactions that denotes a drain of building blocks (e.g. amino acids and nucleotides)
or, in alternative, reactions that lead to the production of macromolecules which constitute
the biomass. Subsequently, when all numeric values for the bounds of uptake/excretion re-
actions fluxes and the non-growth adenosine triphosphate (ATP) requirements are defined,
the complete set of reactions can be converted into a stoichiometric matrix. In this matrix,
the rows represent the compounds, while columns represent the chemical transformations.

2.2. Modelling 10

Figure 1.: Representation of GPR associations. Here, some exceptions to the ’1 Gene - 1
Protein - 1 Reaction’ rule are illustrated: one reaction can be catalyzed by multi-
ple enzymes (isozymes); several reactions can be catalyzed by the same enzyme
(promiscuous enzyme); one reaction is catalyzed by one protein that is consti-
tuted by subunits encoded by multiple genes (enzyme complex). Figure adapted
from Machado et al. (86).

Whereas, the entries of the matrix correspond to stoichiometric coefficients. The mathemat-
ical model can then be saved in the standard SBML (61) format, to allow further in silico
simulations and respective validation.

Finally, at the last stage, the mathematical representation can be used to compare the
organism’s behavior prediction with experimental data (31). This allows to increase the
predictive capabilities and accuracy of the model. To measure the in vivo fluxes of metabo-
lites within a cell, wet laboratory processes such as MS or Nuclear Magnetic Resonance
(NMR) spectroscopy can be used to analyze substrates labeled with stable isotope tracers,
such as 13C markers (142).

Other approaches, such as the constraint-based Metabolic Flux Analysis (MFA), aim to
determine the flux of metabolites, based on the knowledge of the metabolic network, mea-
surements of the fluxes, and in the assumption that these metabolites do not accumulate
inside the cells over time (15). A MN containing five metabolites is shown in Figure 2, being
A the only external substrate available to the system, with a maximum uptake of u. The
metabolites C and E are excreted by the system as metabolic products (114);

One problem regarding the MFA approach is that for most GSM models, the number of
reactions exceeds the number of compounds. This creates an under-determined system, as
there are more variables than equations (15). This problem is exemplified in Figure 2, in
which for nine fluxes, there are only five internal metabolites, resulting in four degrees of
freedom. To overcome this problem, other techniques, described next, were developed:

2.2. Modelling 11

Figure 2.: Example of a MN with (1) representing the reactions, the reversibility, and the
boundaries of the system. The network is composed by five metabolites (A to
E) and nine metabolites (vi). The flux v7 represents the metabolic substrate A,
and fluxes v8 and v9 represent the metabolic products C and E, respectively. (2)
contains the stoichiometry and reversibility of the network. (3) illustrates the
steady-state of the network. (4) shows the constraints of the fluxes, being u the
maximum uptake of substrate A. (5) represents the mass balance equations in
matrix format.

• Flux Balance Analysis (FBA): based on linear programming, FBA is used to deter-
mine optimal flux distributions of metabolites in steady-state, using a linear objective
function (maximization of growth rate for instance). Thus, it is possible to determine
the contribution of each reaction, for the observed phenotype (15; 114). The linear
programming formulation for the FBA problem can be specified as stated in 1;

maximize⇒ X

subject⇒ S · v = 0 (assumption o f steady− state)

αi ≤ vi ≤ βi , i = 1, · · ·N

(1)

Where X is the linear function to be maximized, S the stoichiometric matrix, v the flux
vector, α the lower bound, and β the upper bound.

2.2. Modelling 12

• Method of Optimization of Metabolic Adjustment (MOMA): based in the same sto-
ichiometric constraints as FBA, MOMA intermediates the difference between wild-
type conditions, with minimal perturbation, and the gene knockout for optimal flux
(126), by searching for a sub-optimal solution using quadratic programming. A graph-
ical representation of the sub-optimal solution is shown in Figure 3;

Figure 3.: The MOMA solution is found using quadratic programming. It is the point that
minimizes the distance between the optimal solution of FBA of knockout and
the FBA of wild type (MOMA of knockout). (Figure adapted from Nanette et al.
(16)).

• Linear MOMA (LMOMA): a version of MOMA that implements linear programming,
instead of quadratic programming (12);

• Regulatory On/Off Minimization (ROOM): like MOMA, searches for a flux distribu-
tion that is close to wild-type conditions, by minimizing the number of significant
flux changes using Mixed Integer-Linear Programming (127).

• Flux Variability Analysis (FVA): based on linear programming, it calculates the mini-
mum and maximum feasible flux of each reaction, providing the range of variability
in which the flux still respects a given set of constraints (87).;

However, it is important to emphasize that the GSM models’ reconstruction is an iterative
process; hence, the model should be tested and updated with new convenient information,
if required (114).

2.2. Modelling 13

2.2.2 Reconstruction/simulation and optimization tools

A wide set of Bioinformatics tools developed to perform computer simulations is currently
available. Besides the possibility of performing simulations for phenotype predictions, us-
ing the metabolic network analysis approaches aforementioned, some tools also offer to the
user the possibility of carrying out the reconstruction process as well. Examples of tools
able to perform phenotype prections are described in Table 2.

Table 2.: Tools for reconstruction of GSM models and modelling/analysis.

Tool Type of Software
Support for Model

Reconstruction
Support for MN

modelling/analysis
Reference

FASIMU Standalone D D (57)
OptFlux Standalone – D (115)
COBRA v2.0 Toolbox D D (120)
ModelSEED WebServer D D (54)
FAME WebServer D D (14)
FBA-SimVis Toolbox D D (47)
SBRT Standalone – D (144)
FluxExplorer Standalone D D (84)
CellNetAnalyzer Toolbox – D (71)
merlin Standalone D – (31)
RAVEN Toolbox D D (1)

MEMOSys
WebServer /
Standalone

D – (95)

MicrobesFlux WebServer D D (39)
CoReCo WebServer D – (103)
SurreyFBA Standalone – D (44)
SuBliMinal Toolbox D – (129)

As the reconstruction of GSM models is a laborious process that can take from weeks to
years, depending on the size of the genome and other factors, Bioinformatics tools that can
help speed up the process, while maintaining a high level of confidence, are of paramount
importance (31). The Rapid Annotation using Subsystem Technology (RAST) (7), is a fully
automated service for annotating bacterial and Archaeal genomes, though not performing
the remaining steps of the reconstruction process. Nevertheless, this tool can be used to fill
the gap of other tools like the FAME, MEMOSys, ModelSEED, and MicrobesFlux that do
not allow user to perform these annotations, and several other steps of the reconstruction
process.

Regarding compartments prediction, RAVEN, ModelSEED, and merlin assign automati-
cally compartments to the reactions, while FAME and MEMOSys allow the manual assign-

2.2. Modelling 14

ment of the locations. Although almost all tools provide support for both reconstruction
of the GSM models and modelling/analysis, they perform these steps using different ap-
proaches. For example, besides merlin and ModelSEED, all other tools that perform re-
construction neglect the GPR association, which are, as aforementioned in this document,
essential to understand the relationship between genes and reactions at the MN analysis
stage.

Despite the standardized methodology for the development of GSM models, important
information is still disregarded, and most of the times poorly annotated and consequently
excluded from the models, such as the genes encoding transport proteins (51). Transport
proteins and the promoted transport reactions, are usually obtained from experimental data
and literature. These reactions are often included in models for metabolites that have, at
least, one of the following three characteristics:

1. taken in from the medium

2. excreted from the cell

3. transported across intracellular membranes

Since this methodology does not allow to automatically associate genes with transport
reactions, it impairs the models’ predictions. Therefore, the proper identification of genes
encoding transport proteins and the metabolites transported by those carries, is extremely
important for the improvement of GSM models’ reconstruction (130). Regarding the anno-
tation of transporters, ModelSEED can perform this task, adding transport reactions based
on the information from the genome, but it is all targeted for prokaryotic organisms, adding
spontaneous reactions to fill in pathways when necessary (54). With this purpose, merlin in-
cludes a module specifically developed for the identification and semi-automatic annotation
of genes encoding transport proteins, the Transport Reactions Annotation and Generation
(TRIAGE) (29). Besides TRIAGE (merlin), none of the aforementioned tools is capable of
simultaneously identify, classify and annotate membrane transporters, while generating
reactions for each of these proteins, both for prokaryotic and eukaryotic organisms.

Regarding the tools that support MN modelling/analysis, all provide phenotype simula-
tion with at least one method (FBA). OptFlux and FASIMU provide also other methods such
as MOMA, ROOM, and MFA. Another functionality of the tools is the strain optimization.
Among the tools mentioned in Table 2, only SBRT, OptFlux, and COBRA v2.0 implement
OptKnock (18) and OptGene (99). OptKnock is a bi-level programming framework that
identifies the best set of genes to knockout in order to achieve a desired result, while Opt-
Gene (an extension of OptKnock) uses genetic algorithms that incorporates evolutionary
information, to identify the best genetic modifications, that allow achieving the desired
phenotype. MN analysis using FVA is supported by all tools, except for MicrobesFlux and

2.3. Applications 15

RAVEN. OptFlux and CellNetAnalyser also provide elementary flux modes and topological
network analysis.

All tools described in Table 2 support SBML format. Another important feature is provid-
ing to the user a graphical interface, as most of the times, the user is not familiarized with
command line based programs or similar approaches. Optflux, merlin, SBRT, and FluxEx-
plorer offer a user-friendly environment. Notice that Optflux was the first software to offer
a friendly interface for strain optimization.

2.3 applications

After reconstruction, metabolic models can be used in a myriad of applications from indus-
try to health. These models allow:

• predicting the phenotypical behavior of an organism, under different environmental
and genetic perturbations;

• performing the analysis of the robustness of the network, when changing the flux
levels of essential gene products;

• and performing in silico metabolic engineering (30).

Regarding health applications, GSM models’ simulations may lead to the identification
of optimal drug targets to attack pathogenic organisms. For example, identifying the or-
ganism’s essential genes allows performing gene knockouts that may lead the infectious
organism to death. If the drug developed to knockout the essential genes of the pathogenic
organism has no harmful side effects in the host, the drug can be further developed (30).

The use of microorganisms as cell factories for producing of drugs, biofuels and chemical
compounds of interest is currently exploited by Metabolic Engineering (ME), which aims
at modifying the metabolism of an organism, through genetic manipulations, to obtain an
improved strains. Initially, these modifications were performed randomly until the desired
result was achieved. These modifications became more localized, targeting a specific known
function of a network. Nowadays, the use of genome-scale models, allows performing
systems-wide manipulations, through the computation of genetic modifications with global
results (96).

2.4 transmembrane proteins

The plasma membrane is a semi-permeable structure in the cell that surrounds its surface
and is responsible for keeping all cellular structures inside, while allowing exchanges with
the extracellular environment. This membrane contains two layers of lipid molecules that

2.4. Transmembrane proteins 16

direct their hydrophobic tails, formed by fatty acids, towards each other with the objective
of forming a barrier that does not allow hydrophilic agents to cross it (2, p. 9). How-
ever, there are several types of transport to allow important compounds for the cellular
metabolism to cross the membrane. Uniporters have the function of moving a single so-
lute between compartments, while symporters and antiporters are related to a subcategory
of membrane transport proteins, the co-transporters, and are responsible for moving also
a second metabolite in equal or opposite direction, respectively. These transporters are
usually associated with Active Transport (2, p. 654) because solutes are moved against the
cell’s electrochemical gradient. Nevertheless, there are still other types of transport, such
as ATP-binding cassette (ABC), phosphotransferase system (PTS), and electron transport
chain (ETC). Examples of three types of transporters are illustrated in Figure 4.

Figure 4.: Example of uniport, symport and antiport processes.

These transports are mediated by Transmembrane (TM) proteins. These are a type of
integral membrane proteins, also called intrinsic proteins, that can be classified into two
different classes according to their secondary structure: α-helices and β-sheets (72).

Most of the intrinsic proteins can interact with the phospholipid bi-layer of the mem-
brane, because of the presence of hydrophobic side chains in the residues of the protein.
This property allows the protein to anchor on the cell’s membrane, allowing most TM pro-
teins to cross the entire phospholipid bi-layer. Transmembrane α-helical (TMA) proteins
consist mainly of hydrophobic residues and are mostly found in the cytoplasmic (or inner)
membranes of prokaryotic and eukaryotic organisms, performing a variety of biologically
important functions, such as the transport of compounds across the membrane and signal
transduction (133). An example of an α-helix is shown is figure 5.

On the other hand, Transmembrane β-barrel (TMB) proteins are located in outer mem-
branes of bacteria, mitochondria and chloroplasts (124; 65). These proteins perform di-
verse functions such as bacterial adhesion, structural integrity of the cell wall and material
transport, which allows organizing these proteins in subfamilies like porins (123), prepro-
tein translocases (108; 122), and lipocalins (40). Porins transport ions and small molecules

2.4. Transmembrane proteins 17

Figure 5.: Example of the structure of an α-helix.

that are not able to diffuse through the membrane. Preprotein translocases are found in
endosymbiont derived organelles, such as mitochondrion and chloroplast. This complex
allows the movement of proteins through the membrane. Lipocalins, have a variety of func-
tions such as transport of small hydrophobic molecules, formation of macromolecules, and
regulation of the immune response. Examples of TMBs are represented in Figure 6.

Figure 6.: Crystal structures of β-barrel membrane proteins of the outer membrane of bac-
teria. Image from Kleinschmidt, 2005 (72).

These proteins’ structure consists in a β-sheet, arranged in anti-parallel β-strands con-
nected by backbone hydrogen bonds, that coils and twists around itself, bounding the first
β-strand to the last one, creating a structure that resembles a barrel and is characterized by

2.4. Transmembrane proteins 18

the number of anti-parallel β-strands and by the shear number. The shear number, defined
by McLachlan et al. in 1979, can be described as the displacement between the β-strains, as
shown in Figure 7a (89). In 1998 Liu refined this definition, as according to him, a shear
number is not unique for a given β-barrel if it contains one or more uneven β-bulges (82).
A β-bulge, as shown in Figure 7b, is a region of irregularity in a β-sheet involving two
consecutive hydrogen bonds that include two residues, where the β-sheet is disrupted by
the presence of an extra residue (111). The strands of a β-barrel are also tilted from 36◦ to
44◦ relative to the barrel axis.

(a) (b)

Figure 7.: a) Method to determine the shear number; b) Example of a beta-bulge.

According to G. Schulz in β-Barrel membrane proteins, all known bacterial membranes’
β-barrels followed the same construction principle (124). Thus, the existence of β-strands
and β-sheets in a protein, does not indicate that the protein is a β-barrel. Also, according
to the author, the prediction of transmembrane β-barrels from a sequence, should be an
easy task for a program that takes these rules into consideration. A wide range of com-
putational methods for prediction of transmembrane α-helical proteins, with high levels of
accuracy and precision is already available. In recent years, the development of methods
for transmembrane β-barrels predictions has grown, with the introduction of algorithms,
web servers and databases to improve the quality of the predictions.

2.4.1 TMA proteins predictors

The TMA proteins are encoded by 20% to 30% of the genes in an organism and can be found
in all cellular membranes (76; 36). Some publicly available databases contain information
about this type of TM proteins such as TCDB (118), PDBTM (74), TOPDB (136), TOPDOM
(135), MPtopo (63), MPDB (106), TMPDB (62), and TMFunction (50). When dealing with
topology predictions, one of the largest problems is that due their high hydrophobicity, sig-
nal peptides are often mistakenly predicted as TM proteins. Signal peptides are sequences

2.4. Transmembrane proteins 19

with a length between 16 and 30 amino acids, responsible for directing proteins to the
correct compartment (2, p. 701). To overcome this problem, some predictions tools make
signal peptides prediction along with the topology prediction. Both types of predictors are
described in Tables 3 and 4.

Table 3.: Tools for prediction of transmembrane α-helices.
Tool Method Year System

TMHMM (75) Hidden Markov Model 2001

Web Server /
standalone soft.

HMMTOP 2.0 (137) Hidden Markov Model 2001 Web Server
MEMSAT3 (64) Neural Networks 2007 Web Server

OCTOPUS (139)
Hidden Markov Model and
Artificial Neural Networks

2008

Web Server /
standalone soft.

SCAMPI2 (102)
Search for hydrophobicity

in N and C terminals.
2015 Web Server

Table 4.: Tools for prediction of TMAs and signal peptides.
Tool Method Year System

PolyPhobius (66) Hidden Markov Models 2005

Web Server /
standalone soft.

Phobius (67) Hidden Markov Models 2007

Web Server /
standalone soft.

SPOCTOPUS (138) Hidden Markov Models 2008

Web Server /
standalone soft.

Philius (110) Bayesian Networks 2008

Web Server /
standalone soft.

TOPCONS2 (134) Consensus 2015

Web Server /
standalone soft.

CCTOP (33) Consensus 2015

Web Server /
standalone soft.

2.4.2 TMB proteins predictors

Part of the aforementioned databases for TMA proteins (TCDB, PDBTM, TOPDB, MPtopo,
MPDB, TMPDB, and TMFunction) also include information about certain families of β-
barrel proteins. Others, like PSORTdb (145), TMBETA-GENOME (49), TMBB-DB (42), Ori-
entations of Proteins in Membranes (OPM) (83), and OMPdb (131) only contain data of
TMB proteins. Regarding topology predictions, a brief summary of some tools available for
predicting TMB is shown in Table 5.

2.4. Transmembrane proteins 20

Table 5.: Some of the available methods for prediction of transmembrane β-barrels.
Tool Method Year System

BOMP (13) Motifs finding 2003 Web Server
MCMBB (8) Markov Chain Model 2004 Web Server
ConBBPRED (9) Consensus 2005 Web Server
TMBETA-NET (48) Neural-network 2005 Inactive
TMB-Hunt (43) k-nearest neighbor 2005 Inactive

partiFold-TMB (140) Boltzmann partition function 2007

Web Server /
standalone soft.

TMBpro (107) Neural-network 2007 Web Server
TMB-KNN (59) k-nearest neighbor 2008 Web Server

BetAware (119) Machine learning methods 2013

Web Server /
standalone soft.

BOCTOPUS2 (53) SVM and HMM 2015

Web Server /
standalone soft.

PredbβTM (22) Support Vector Machine 2015 Web Server
PRED-TMBB2 (132) Hidden Markov Model 2016 Web Server

A study assessing the performance of TMA predictors is already available in Tsirigos
et al.: Topology of membrane proteinspredictions, limitations and variations (133). Phobius, cur-
rently used by TRIAGE, is described in the study as prepared to tackle one of the major
problems in of topology predictions: signal peptides that are erroneously predicted as
transmembrane segments. Thus, as this tool is characterized as a good predictor, no further
assessments regarding TMAs are made in this work. However, one of the objectives is the
assessment of tools for predicting transmembrane β-barrels. Therefore, a study similar to
the aforementioned will be performed, regarding the following tools:

BOMP

The β-barrel Outer Membrane Protein (BOMP) predictor is a program, based on two mod-
ules, developed to recognize β-barrel proteins encoded within genomes of gram-negative
bacteria. The first module searches for C-terminal patterns typical of many TMB proteins,
while the second calculates an integral β-barrel score of the sequence, based on the simi-
larity to amino acids typical of transmembrane β-strands. BOMP apparently has no limit
to the number of sequences allowed for the submission, and also allows using Basic Local
Alignment Search Tool (BLAST) to retrieve additional information. The output is a table
containing the sequences with predicted β-barrels, classified with scores ranging from 0 to
5 (levels of reliability).

2.4. Transmembrane proteins 21

MCMBB

Markov Chain Model for Beta Barrels (MCMBB) uses, as the name implies, a Markov
Chain model which captures alteration of hydrophilic-hydrophobic residues in the trans-
membrane β-strands of outer membrane proteins, while providing a low number of false
positives. The input is limited to 1000 sequences and the output is the probability of exis-
tence of a β-barrel, for each sequence. Positive values denote a higher likelihood of a given
sequence being a outer membrane protein with β-barrels.

partiFold-TMB

partiFold-TMB uses a set of algorithms for computing the Boltzmann partition function (32),
estimating β-strands residue interaction probabilities and performing individual β-contact
prediction. This tool accepts FASTA files as input and has a wide sort of customizable
configurations for the output files.

TMBpro

TMBpro is a method based in neural networks, which predicts secondary structures, β-
contacts and tertiary structures of TMB proteins. TMBpro accepts only one sequence for
each submission and the required length of each sequence is between 100 and 800 amino
acids. The results are sent by e-mail.

TMB-KNN

TMB-KNN uses a k-nearest neighbor strategy, discriminating TMB and non-TMB proteins
based on the Weighted Euclidean distance. This method is gradually improved by including
homologous sequences and searching for a set of residues and di-peptides for calculating
the distance.

BetAware

BetAware is a machine-learning tool developed for detecting and predicting the topol-
ogy of outer-membrane β-barrels in prokaryotes. For detection, this software is based
in N-to-1 network encoding (91) and Extreme Machine Learning (60) training algorithms ,
while for topology prediction a Grammatical Restrained Hidden Conditional Random Field
(GRHCRF) (37) model is applied. BetAware only accepts one sequence for each submission
and the next submission is only accepted when the first submission ends. This tool returns
the number of β-strands for the given sequence and their exact location, when TMBs are
predicted.

2.5. merlin 22

BOCTOPUS2

BOCTOPUS2 is an improvement of the previous prediction tool BOCTOPUS (52). Unlike
its predecessor, this tool can now predict lipid/pore-facing orientation of residues in the
transmembrane β-strands, using this information to improve topology predictions. This
tool also exploits the dyad-repeat feature of bacterial TMBs to identify transmembrane β-
strands. This software uses the Viterbi algorithm (41), Hidden Markov Model and Support
Vector Machines (SVM) to perform predictions. BOCTOPUS2 only accepts 5 sequences
for each submission and returns the number of β-strands for each TMB predicted and a
detailed chart with all predicted topologies and SVM scores.

PRED-TMBB2

PRED-TMBB2 (132) is an updated version of the PRED-TMBB (10). PRED-TMBB2 is able to
predict the topology of β-barrel outer membrane proteins, while simultaneously differenti-
ating them from water-soluble proteins. This method is based on Hidden Markov Models,
trained according to the Conditional Maximum Likelihood criterion and uses a database of
β-barrel outer membrane proteins (OMPdb) (131) as reference to reduce running time. It
also incorporates evolutionary information for better results. PRED-TMBB2 accepts up to
5 000 sequences as input, offers the user the option of running signal-peptide predictions
and to use a library of characteristic profile Hidden Markov Models (pHMMs) for β-barrel
regions derived from OMPdb, before performing predictions. As output, a table containing
the signal-peptide location, β-barrel, OMPdb family, number of β-strands, reliability and
some charts illustrating the locations of each β-stand, is presented.

2.5 merlin

merlin is a user-friendly JavaTM application, built on top of the AIBench software develop-
ment framework (45), which performs the reconstruction of genome-scale metabolic models
for every organism that has its genome sequenced (31). It performs several steps of the re-
construction process, including the functional genome annotation, using homology similar-
ity search tools such as BLAST (3) and the profile HMMER (34). Functional information is
retrieved for all homologous genes and the annotations are automatically scored, allowing
the user to change the automatic selection, dynamically (re-)annotating the genome (31).

merlin includes a module specifically developed for the identification and semi-automatic
annotation of genes encoding transport proteins, and also for generating reactions for those
carriers (TRIAGE (29)). Furthermore, merlin allows integrating TRIAGE’s data into existing
and draft metabolic models.

2.6. Methods for automatic annotation of transporter systems 23

2.6 methods for automatic annotation of transporter systems

Despite the exponential growth of sequenced genomes in recent years, the number of reli-
able tools available for automatic annotation of transporter systems to develop high-quality
reconstructions is still low (51). Some databases that provide information about these trans-
port systems, are available in table 6.

Table 6.: Some of the available transport databases.

Database Description Reference

TCDB

A database containing structural, functional, mechanis-
tic, evolutionary and disease/medical information about
transport systems, creator of the Transport Classification
(TC) system, the only system adopted by the International
Union of Biochemistry and Molecular Biology (IUBMB)
for the organization of transport proteins. A free access
database, currently with 17 399 entries and constantly in-
creasing this value, with cross-references to several other
databases, including UniProt. Is has also available tools
like BLAST to perform a rapid identification of trans-
porters using homology.

(117)

TranportDB 2.0

TranportDB 2.0 is a completely updated version of the
TransportDB database (109) containing the transporters re-
garding a wide set of organisms, and also capable of iden-
tify transporters in genomes submitted by the users. This
platform is also capable of performing comparisons be-
tween a set of genomes. The transporters comprised in this
database are organized accordingly to the TC system. Cur-
rently, there are available 2 760 organisms in this database,
being 164 of archaea and 39 of eukaryota.

(35)

ARAMEMNON

A database of 9 plant species. Besides information regard-
ing membrane proteins, this database also has information
of non-membrane proteins. It provides BLAST option for
homology search.

(125)

YTPdb

A wiki database containing the information of 298 trans-
porters regarding yeast Saccharomyces cerevisiae. Al-
though organized according to the TC system, it does not
provide TC numbers, and by being a wiki website, it all
pages are editable by the user.

(17)

ABCdb
A database devoted to the ABC transporters for prokary-
otic genomes, organized according to the TC system. (105)

2.6. Methods for automatic annotation of transporter systems 24

Lee et al. (79) developed a method for inferring and constructing transport reactions
associated with transporter proteins, based on the organism’s genome annotation. The
Transport Inference Parser (TIP) analyses the name of each protein, inferring the transport
reaction promoted by these proteins, as shown in Table 7.

Table 7.: Simple example adapted from (79) representing TIP’s input and the final result for each
protein. Note: ’[ext]’ stands for ’extracellular’

Input: protein function Output: Inferred transport reaction
predicted ATP transporter of cyanate cianate[ext] + H2O + ATP = cyanate + phosphate + ADP
putative phosphate ABC transporter,
ATP binding subunit

phosphate[ext] + H2O + ATP = 2phosphate + ADP

putative potassium channel K+[ext] = K+

sodium / proline symporter Na+[ext] + L− proline[ext] = Na+ + L− proline
lactose transport system permease
protein

H+[ext] + lactose[ext] = H+ + lactose

Other toolboxes, like Reconstruction, Analysis and Visualization of Metabolic Networks
(RAVEN) (1) or SuBliMinaL (129), generate transport reactions based on information re-
trieved from databases. These reactions, both for internal and external transporters, are
also integrated into metabolic models. RAVEN automatically retrieves information from
KEGG and BRENDA databases regarding existing models that are closely related to the
studied organism, based in the assumption that related organisms share metabolic capabil-
ities. Nevertheless, it also allows the user to add transport reactions manually and fill gaps
using KEGG Orthology (KO) IDs (68) to ensure a functional network. SuBliMinaL option-
ally provides to the user a default set of transporters, retrieved from BiGG, not relying on
genomic information.

Regarding the annotation of transporters, ModelSEED and Pathway Tools (69) can per-
form this task using RAST functional annotations to develop models, adding external trans-
port information based on the information from the genome, adding spontaneous reactions
to fill in pathways when necessary, but just for prokaryotic organisms.

A new webserver was released in 2017, the Transporters via Annotation Transfer by Ho-
mology (TransATH) (4), which claims to be able of automatically annotating transporter
systems, returning information like TC family, transported substrates, subcellular location,
and prediction of transmembrane segments. The authors claim that this software makes
use of Milton Saier’s (Saier’s lab - TCDB) protocol, automating it to annotate transporters.
Their method performs BLAST against the entire set of records present at TCDB, and infer
TC families through homology. Aplop and Butler manually pre-processed the substrates
available in TCDB and the groups to which these substrates belong, to perform the iden-
tification of which substrates should be carried by each transport system. Furthermore,

2.6. Methods for automatic annotation of transporter systems 25

the team plans to extract the manual annotations present in TRIAGE’s curated database to
improve their annotations. As the tool is still in beta version, the prediction of subcellu-
lar location is not yet implemented but will be carried out in the future by two different
external webservers: TM-Coffee (21) and LocTree3 (46). The prediction of transmembrane
segments is also performed by an external webserver: HMMTOP. When all calculations
and predictions are complete, TransATH displays the results in table format with an option
for downloading a .csv file, containing all aforementioned information. According to the
authors, TransATH takes up to 100 minutes to annotate a “typical fungal genome”, and
when the job is complete, notifies the user via e-mail, providing a web link to the results,
however this feature is not yet available.

Nevertheless, besides TRIAGE, none of the aforementioned tools can identify membrane
transport proteins, annotating these with reactions.

2.7. Transport Reactions Annotation and Generation - TRIAGE 26

2.7 transport reactions annotation and generation - triage

TRIAGE is a Bioinformatics tool available in merlin (31) that identifies and classifies trans-
porter proteins, based on the identification and classification of genes encoding transmem-
brane proteins. TRIAGE is entirely developed in JavaTM and uses H2 Database Engine (H2)
(92) or MySQLTM databases to store any retrieved or generated information. Although
TCDB is the main source, data is retrieved from five different databases. UniProtJAPI (98)
is used to retrieve phylogenetic data regarding TCDB’s transport systems entries, whereas
KEGG, ChEBI (28), and semantics SBML 2.0 (80) are used to gather additional information
for metabolite identification and characterization.

An internal database to help performing the TCG identification was also created and
filled with data retrieved from TCDB with the following fields (when available):

• UniProt accession number;

• protein name;

• organism;

• taxonomy;

• TC number;

• TC family;

• transported metabolite;

• direction;

• reversibility;

• reacting metabolites;

• and equation.

The field TC number (116) refers to a system analogous to the Enzyme Commission (EC)
system (11) used in enzymes classification. The TC system, unlike the EC system incor-
porates both functional and phylogenetic information, and bases its classification in five
parameters, corresponding each one to the five numbers or letters, separated by a dot,
present in the TC number. Thus, using the example provided by TCDB in its website, the
five parameters can be described as follows V.W.X.Y.Z:

• V - (a number) the transporter class;
• W - (a letter) the transporter subclass;

2.7. Transport Reactions Annotation and Generation - TRIAGE 27

• X - (a number) the transporter family (sometimes actually a superfamily);
• Y - (a number) the subfamily in which the transporter is found;
• Z - (a number) corresponds to a specific transporter with a particular substrate or range
of substrates transported.

The class parameter (V in the example), is composed by 7 categories, namely:

• 1.*.*.*.* - Channels/Pores: This category consists in α-helical or β-strand-type span-
ners that may be specific for a particular molecular species or molecules. This trans-
port system catalyzes the facilitated diffusion;

• 2.*.*.*.* - Electrochemical Potential-driven Transporters: Transporter systems included
in this category use uniport, antiport, or symport systems to drive species between
compartments against the concentration gradient;

• 3.*.*.*.* - Primary Active Transporters: Transport against a concentration gradient
with consumption of a primary source of energy (chemical, electrical, and solar);

• 4.*.*.*.* - Group Translocators: In this type of transportation an organic molecule is
transported across the membrane while being chemically modified.

• 5.*.*.*.* - Transmembrane Electron Carriers: Systems responsible for catalyzing the
electron flow across a biological membrane.

• 8.*.*.*.* - Accessory Factors Involved in Transport: This category is constituted by
transporter proteins that are complexed to known transport proteins. Auxiliary trans-
port proteins that do not actually participate in the transport process represent other
example, such as regulatory or energy coupling proteins.

• 9.*.*.*.* - Incompletely Characterized Transport Systems: Transport proteins with
unknown classification and putative transport proteins are assigned to this category.
Proteins from this class can be later moved to one of the aforementioned classes after
appropriate classification.

TRIAGE’s first assumption when performing the assignment of transporter systems to
genes is that transporter proteins are in membranes. Hence, the initial step is to remove
genes without Transmembrane Domains (TMD), to identify the TCGs (29). Only genes
with at least n TMD are classified as TCGs. This step, performed using either Phobius
or TMHMM, is crucial as a gene not predicted to have any transmembrane α-helices is
automatically excluded. TMHMM and Phobius are tools that use the amino acids’ sequence
to predict the number of α-helices. As described in Tables 3 and 4, both tools are available
through web services and standalone packages, thus users can run the tools locally.

2.7. Transport Reactions Annotation and Generation - TRIAGE 28

However, the rationale for identifying TCGs should include transmembrane β-barrels.
Currently, TRIAGE is not using any tool to determine the presence TMBs. Thus, TRIAGE’s
algorithm migth be missing transport systems associated with TMBs. These transporters
act as mediators in the process of moving metabolites from one compartment to another (2,
p. 656).

After identifying TCGs present in the genome’s sequences, an alignment against TCDB,
aiming at finding similarities with known transporter systems, is performed. Biojava (104)
was used to implement the Smith-Waterman algorithm (128), performing local alignments
to guarantee optimality and high sensitivity when sequences are homologous. A similarity
threshold based on the maximum score of the alignments can be defined by the user (10%
as default). However, as TCDB is a small database, when a minimum of 5 α-helices is
identified in the sequence, the threshold is lowered, justified by the strong evidence of a
transporter role. For every extra α-helix, the threshold is reduced 0.5% until it reaches half
of the original threshold value.

After completing the alignments and retrieving the information for the most similar genes
in TCDB, a score that determines which metabolites m will be assigned to each gene g is
calculated. This is done by weighting the frequency of each metabolite m within the ho-
mologous protein records. Moreover, as shown in equation 2 it is assumed that related
organisms will thrive in similar environments rather than dissimilar organisms. The bal-
ance between the frequency score (ScoreA) and the taxonomy score (ScoreB) is provided by
the parameter α, which takes values between 0 and 1.

Score = α× ScoreA + (1− α)× ScoreB (2)

The sum of the similarities of each homologous TCDB record that transports metabolite
m is divided by the sum of the similarities of all homologous proteins, to calculate the
frequency score (equation 3). Thus, Si refers to the similarity to the ith TCDB record, H is
the total number of hits, and Vmi is a binary variable described in equation 4.

ScoreA =
∑H

i=1 Si ×Vmi

∑H
i=1 Si

(3)

Vmi =

{
1, i f metabolite m is in record i
0, otherwise

(4)

The taxonomy score (equation 5) is calculated by dividing the taxonomy frequency by
the maximum taxonomy MT multiplied by the frequency of the genes that transport the
metabolite, though the score may be subject of a potential penalty. This is used to penalize
the score for metabolites that are associated to a low number of similar proteins, which
might result from an incorrect assignment, in which β is a penalty parameter with a value

2.7. Transport Reactions Annotation and Generation - TRIAGE 29

between 0 and 1, set by default as 0.05, and pm is the metabolite penalty described in
equation 6. ti is the number of common taxa between the organism to which record i
belongs and the target organism.

ScoreB =
∑H

i=1 ti ×Vmi × (1− pm × β)

MT ×∑H
i=1 Vmi

(5)

pm =

{
0, i f ∑H

i=1 Vmi ≥ MinHits

MinHits −∑H
i=1 Vmi, otherwise

(6)

The algorithm used to classify the metabolites is also used to classify how a metabolite is
transported. The same metabolite can be transported by carriers such as uniport, symport
or antiport, and the carrier chosen to the metabolite is based on which type has the highest
score. Nevertheless, if two types have the same score, both types are selected for that
metabolite.

TRIAGE also assigns sub-cellular locations to the identified transporters. This task in-
volves using the tools WoLF PSORT (58) or PSORTb 3.0 (146). Whereas WoLF PSORT is
able to predict compartments only for eukariotic organisms, PSORTb 3.0 only does it for
Bacteria and Archaea. As none of these tools provide a web Application Programming In-
terface (API) available to retrieve results, this section is implemented in a way that the users
submit their requests in the tool’s respective website, and when the results are ready, users
provide the file’s results to merlin. Then, the information is parsed, processed and stored
in the database. When generating the transport reactions, the secondary compartments
(if any) can be taken into account whenever their scores differ less than a user-defined
percentage, regarding the primary compartment. In addition, the user can also set which
compartments should be ignored, by writing in merlin the names of the compartments to
be ignored separated by ’;’.

After the metabolites and transport type selection, and the identification of the compart-
ments, the transport reactions can be generated. The whole process of TCGs identification
is briefly described in Figure 8.

2.7. Transport Reactions Annotation and Generation - TRIAGE 30

Figure 8.: Process of TCGs identification.

2.8. KBase 31

2.8 kbase

The Department of Energy Systems Biology Knowledgebase (KBase) is an online platform,
developed to solve the biggest problems of systems biology, prediction and design of bi-
ological functions for small and large-scale genomes (5). KBase increases the efficiency
of large-scale analyses by providing to the user an open source of information and tools.
Thus, users do not need to access data from different sources or learn several systems to
develop and run systems biology workflows. KBase allows creating narratives, in a user-
friendly graphic interface, in which users can download or upload data from other sources.
Users can employ tools from KBase’s wide catalog, divided in 10 categories, to perform the
analysis of such data:

• Read Processing

• Genome Assembly

• Genome Annotation

• Sequence Analysis

• Comparative Genomics

• Metabolic Modeling

• Expression

• Microbial Communities

• Utilities

• Uncategorized

Ultimately, KBase allows the user to share and publish their narratives and conclusions.
KBase is available at https://kbase.us/.

https://kbase.us/

2.9. Neo4j 32

2.9 neo4j

Neo4j https://neo4j.com/ is an open-source graph database with breakthrough perfor-
mance in the analysis of large amounts of data. Unlike relational databases, graph databases
allow maintaining performance, independent of the size of the database. The performance
of relational databases“join” queries, tends to decrease with the increase of the database
size. In graph databases, the performance is not affected by the size of the overall database,
as the execution time is only proportional to the size of the database that satisfies the query
(113, p. 8). Relational databases lack relationships, as these are designed to encode tabu-
lar structures, and are not prepared to process connections found in real world data (113,
p. 11). Thus, graph databases allow finding patterns and clusters of the data that may not
be obtainable in other resources. As graph databases can be represented in visual format
in a completely different way, these patterns can be found visually.

A graph is a set of vertices (nodes) and edges (relationships), in which several nodes can
be connected by different relationships. Edges can connect vertices in any possible way with
no restrictions, and an edge must have a start and an end vertex (example in figure 9). This
representation allows storing information for all varieties of fields, such as supply-chains,
rockets engineering, geoespatial systems, social networking, biological data, etc (113, p. 1).

Figure 9.: Graph example.

Next Generation Sequencing and other high-throughput technologies generate vast amounts
of data, in a cheap and scalable format, which were not previously accessible. However, the
availability of this information also depends on cost-effective ways to store data, and how to
efficiently make it public and easily queryable (97). Approaches like Bio4j are currently un-
dergoing to deal with this problem. Bio4j is an open-source framework powered by Neo4j
(90). The purpose of this project is to aggregate data available in different sources, into a
single one. This intends to solve problems like high performance access to data, integration,
and expression of the data (97). Bio4j is available at https://github.com/bio4j/bio4j.

https://neo4j.com/
https://github.com/bio4j/bio4j

2.10. Docker 33

2.10 docker

Docker https://www.docker.com/ is a software that performs virtualization at Operating
System (OS) level, allowing multiple isolated virtualized servers to run on a single physical
server, also known as containerization. Docker applications are built in “containers” that
are related to underlying “Docker images”, containing the system binaries and libraries
required by the applications to run. On the other hand, Virtual Machines (VMs) build and
isolate system resources, as well as entire working environments, running their own OS to
run other applications, whereas Docker isolates the applications themselves.

Docker provides an environment that ensures that applications work identically, inde-
pendently of the host OS installed in the infrastructure. Docker images usually have tens of
megabytes, unlike VMs that can take up to tens of gygabytes. Running on top of the host
OS, Docker shares with the host the resources of the infrastructure though the “Docker
Daemon”, which is the layer that manages differences between software and host OS/in-
frastructures, providing a uniform environment for the applications. On the other hand,
in VMs, the hypervisor is the entity responsible for creating and running VMs, allocating
Central Process Unit (CPU) and Random Access Memory (RAM) resources from the infras-
tructure to the virtual environment. This can be seen as running several machines in the
infrastructure of a single machine, largely decreasing the available resources to the host OS.
Hypervisors can be divided in two different classes: type 1 (or bare-metal hypervisor) and
type 2 (or hosted hypervisor). The difference between these classes is that type 1 hypervi-
sors run directly on host’s infrastructure, while in type 2 hypervisors, a host OS is required
to run on top of it. The differences between Docker and VMs are shown in figure 10.

Figure 10.: Comparison between Docker and a Virtual Machine. In case of Type 1 VMs,
host OS level does not exist.

https://www.docker.com/

2.11. Case Studies 34

2.11 case studies

Escherichia coli (E. coli) model iAF1260 (38) was used for the validation of TranSyT’s results.
E. coli is a well-known gram-negative, rod-shaped, facultative anaerobic Bacteria. It is com-
monly used as model organism in microbiology studies, and biological engineering, for
genetic manipulation and production of sub-products (77; 141). Most of the E. coli strains
are harmless to public health; however a few serotypes have been associated with food poi-
soning outbreaks (101; 112). The iAF1260 model is highly cited by the scientific community,
currently counting 1 310 citations, according to the Google Scholar search engine. This
model encompasses:

• 1 260 genes;

• 2 077 reactions;

– 1 387 metabolic reactions (67%);

– 690 transport reactions (33%);

• Gene-Protein-Reaction associations;

– 1 294 metabolic reactions (93%);

– 625 transport reactions (91%);

• 1 039 metabolites;

• 3 compartments;

3

M E T H O D S

3.1 TranSyT ’s architecture

After assessing the limitations of the current versions of merlin and TRIAGE, an outline
of the requirements that TranSyT should meet was performed. Planning was idealized as
follows:

1) Conduct a study to access the best method to find transmembrane β-barrels.

2) Perform a comparison between TRIAGE’s internal database and TCDB, validating the
new TCDB information regarding the metabolites transported by each system.

3) Design and implement a method to automatically web scrape all information available
in TCDB, for each transporter system.

4) Implement a method to assign identifiers to metabolites retrieved in the previous step.

5) Develop a strategy to identify relationships between compounds (hierarchical ontol-
ogy).

6) Use retrieved information to generate transport reactions for all transporters described
in TCDB.

7) Design and implement a suitable database to store all generated information.

8) Develop a strategy to associate genes with TCDB records.

9) Implement a method to perform the reactions’ compartmentalization.

With all planning delineated, the guideline foundations of how to implement the software
were also listed as follows:

• User’s interaction with the software should be only when initiating the software and
using controlled input (less interference as possible, to avoid human error);

35

3.1. TranSyT’s architecture 36

• Short running time, to allow implementation in KBase services;

• Use only the genome and respective taxonomy identifier as input to generate the
output;

• Design an implementation of modular software, allowing the modules to be easily
replaceable and easier to update and debug;

• Software should run standalone without requiring external webservices;

• Develop a strategy using the results of the predictions of proteins localization and
presence of TMD, to assign confidence levels to TranSyT’s output.

• Keep a backup record of all data generated to trace possible errors.

Following the aforementioned criteria, the software should encompass two different com-
ponents:

• the graphical interface with which the user will interact,

• the service component allocated in a server.

The graphical user interface is the module of TranSyT responsible for associating the
transport reactions to the genes submitted by the user. Whereas, the gathering of online
information, storage, and time/resources consuming tasks will be executed by the service
component. The service is responsible for creating/updating TranSyT’s internal database
and communicates with the graphical interface when required. The service component
will also be installed in a Docker component, as this facilitates the integration of the soft-
ware with both merlin and KBase. TranSyT’s architecture is illustrated in figure 11. The
development of the software was performed using JavaTM SE 10.

3.1. TranSyT’s architecture 37

Figure 11.: Architecture of TranSyT.

3.2. Assessment of available methods to predict transmembrane β-barrels 38

3.2 assessment of available methods to predict transmembrane β-barrels

Currently, TRIAGE does not include in its algorithm tools, nor report parsers, to include
transmembrane β-barrels prediction results. Hence, one of the objectives of this work,
is to improve the process of TMD identification, therefore refining the annotation results.
The tools described in Table 5, were submitted to comparison tests to assess which tool
should be integrated in the framework of TranSyT. Thus, eight tools that use different meth-
ods for prevision were analysed: BOMP, MCMBB, BetAware, PRED-TMBB2, parti-Fold,
BOCTOPUS2, TMBpro, TMB-KNN. The remaining tools presented issues in the webservers
that did not allow obtaining results (ConBBPRED, TMBETA-NET, TMB-Hunt, PredβTM).

Regarding tools using the same prediction method, only the latest ones were considered.
As the output of each tool is slightly different and not all of them predict the number of
β-strands, all outputs were converted to a Boolean (yes/no) value for each sequence.

3.2.1 Construction of the dataset

A dataset encompassing 25 proteins, unavailable in the tools’ training datasets, was as-
sembled using information from UniProt and OPM database to find the most reliable and
efficient tools for β-barrel predictions. OPM is a curated source of information about pro-
teins’ three-dimensional structure in the lipid bilayer, structural classification, topology and
intracellular localization, which also provides the Positioning of Proteins in Membranes
2.0 webserver (PPM 2.0) (83) for calculating the spatial positions of proteins in membranes.
OPM was used to select the proteins to be included in the database, because unlike OMPdb,
this database is not used by any of the assessed software and is manually curated.

Although some of these tools were designed specifically to predict β-barrels in the outer
membrane of gram-negative bacteria, three distinct organisms were selected for the con-
struction of this dataset, namely Homo sapiens, Escherichia coli and Arabidopsis thaliana, with
the purpose of testing the versatility of the tools regarding different organisms and mem-
branes. The datasets used for training the tools with machine-learning based methods were
taken into account for the construction of the test dataset. Thus, none of the sequences used
for training were selected for the test dataset, avoiding biased results.

The Homo sapiens and Escherichia coli proteins’ datasets encompassed 10 proteins, for each
organism: 5 β-barrels, 3 α-helical proteins and 2 β-stranded proteins (non-β-barrels). Re-
garding Arabidopsis thaliana, only 5 proteins were available in the aforementioned databases
and thus used. Such proteins included: 1 β-barrels, 2 α-helical proteins and 2 β-stranded.
The presence of α-helical proteins in the dataset has the objective of testing the capability of
each tool to differentiate between TMB and TMA proteins. The β-stranded sequences are

3.3. Validation of TCDB’s information 39

meant to assess which tools find the correct tertiary structure of the protein (barrel) and not
only the presence of β-sheets.

3.3 validation of tcdb’s information

Due to the lack of organized information in TCDB regarding the metabolites carried by
each described transporter, there was the need to create an internal database for TRIAGE
that was manually curated by several contributors. Here, for each entry, it was possible to
find TCDB’s information in a structured format, including transporter description, generic
transport reactions, type of transport (antiport, symport, uniport, etc), direction, reversibil-
ity, and the metabolites being transported. The task of determining which metabolites were
being carried was performed manually, through the revision of published articles cross-
referenced on TCDB’s web page for each transport system, as well as the assembly of the
generic transport reaction in a predefined format. Thus, there was a need to develop a
method that performs this task automatically.

Recently, TCDB included a “substrates”’ field in each transport system’s entry. However,
the method used to gather this information was not fully disclosed by TCDB. Hence, there
was the need to validate this information against TRIAGE’s internal curated database.

Therefore, a novel methodology that retrieves all online information available in TCDB
was developed. This method accesses the public FASTA file available at the mapping files
option in a static Uniform Resource Locator (URL) (http://www.tcdb.org/public/tcdb).
Then, a parser will be specifically developed to read this FASTA. This parser will allow to
identify each entry by the pair accession number and TC number. After listing all entries, a
web scraper able to find the web page relative to a specific transporter entry (accession num-
ber, TC number) and retrieve all information, will be developed. The following URL was
used to access these pages: “http://www.tcdb.org/search/result.php?acc=ACCESSION&
tc=TCNUMBER”, in which “ACCESSION” and “TCNUMBER” are replaced by the accession
number and TC number to search, respectively. It is important to search using both fields,
as different TC numbers are associated to one or more accessions and vice-versa. Whenever
one TC number has several accessions, this is evidence that such transport system is com-
posed of distinct subunits. This can be observed in TC number 3.D.5.1.1, which requires 7
accessions to form the Na-NDH enzyme complex. Alternatively, an accession can also be
present in several TC numbers, which unlike the previous case, is not as trivial to under-
stand. Milton Saier, in a personal communication via email, explained that this situation
represents the same protein participating in two different systems. For instance, entries
with accession P94360, ATPase encoded by gene MsmX is used to energize at least two
systems, 3.A.1.1.26 and 3.A.1.1.34, and must therefore be included in both cases.

http://www.tcdb.org/public/tcdb
http://www.tcdb.org/search/result.php?acc=ACCESSION&tc=TCNUMBER
http://www.tcdb.org/search/result.php?acc=ACCESSION&tc=TCNUMBER

3.3. Validation of TCDB’s information 40

After retrieving all data, a preliminary analysis revealed that a restricted number of
metabolites were misspelled in either TCDB or TRIAGE’s internal database. Moreover, the
same metabolites were occasionally written with different synonyms (i.e. sodium, Sodium
ion, Na, Na+, Na1+...). This led to the creation of a manually curated dictionary of “syn-
onyms and incorrections”. This dictionary has a keyword and synonyms or common mis-
spells associated with that key. Examples of such entries are listed below:

• Ca2+ =ca2+; calcium(2+); calcium; calcium2+; calciumions; ca+;

• Endolysin =endolysin; mureinhydrolase; lysin;

• Phosphatidyl serine =phosphatidylserine; ps;

• NO2- =nitrite; no2; nitriteanion; nitriteion; nitrousacid; nitrit; [no2]; no(2-); itrite;
itriteanion; itriteion; itrousacid; nitrit.

The words were written without white spaces, as metabolite names can have different
orthography variants, regarding white spaces.

4

S O F T WA R E D E V E L O P M E N T

4.1 merlin’s improvements

Releasing a new and improved version of TRIAGE, i.e. TranSyT, is a complex endeavour;
hence, urgent improvements/updates were performed in the parents framework’s source
code, to allow the release of merlin’s 3.5-beta version. This task allowed to deepen the knowl-
edge regarding both software’s source code and to determine which should be the major
improvements and how these should be implemented. Below, some of these improvements.

4.1.1 Database services

Although merlin currently uses MySQLTM or H2 as internal relational database manage-
ment system, the Hibernate framework (http://www.hibernate.org/) is currently being
implemented to map java objects to database tables. However, this project is still ongoing
and will not finish before TranSyT is available. All SQL queries were clustered according to
its “module”, to simplify the implementation of Hibernate in merlin.

For instance, for TRIAGE, all queries regarding the transporters module were moved
to the JavaTM class “TransportersDatabaseServices”, and for the compartments module to
the “CompartmentsDatabaseServices”, replacing the queries by generic methods that will
temporarily continue to use these queries while Hibernate is not implemented in merlin.
This step, besides expediting the transition to Hibernate, also revealed how important it is to
create a modular program, to allow the easy replacement of outdated software components.
This concept was taken into account when creating TranSyT.

4.1.2 Compartments parsing and integration

For compartments predictions, as aforementioned, merlin was able to parse the results pro-
vided by PSORTb 3.0 and WoLF PSORT reports. Nevertheless, due to updates in both
software’s output files, existing parsers had to be updated and new parsers had to be

41

http://www.hibernate.org/

4.1. merlin’s improvements 42

created (WoLF PSORT). While refactoring these parsers, a new one was created to offer
support for LocTree3, a software tool able to predict compartments in Eukaryotes, Bacteria,
and Archaea. The results loading process was also updated, and in the new version the
user has to provide the web link for WoLF PSORT and LocTree3 results. This option was
not available for PSORTb 3.0, as this software sends the results file by email, restricting the
direct access to the user itself.

As shown in figure 8, TCGs should to be located in membranes. After the confirmation
that a gene encodes a transport protein, the sub-cellular location is used to determine be-
tween which compartments a compound is carried. Manually annotated reactions retrieved
from TRIAGE’s internal database are generic and the compounds are allocated either to
the inside (in) or outside (out) of a putative membrane. An example of such reaction is
H+(in) ←→ H+(out), in which “in” represents the inner compartment of the membrane
that will receive the transport protein, and “out” the outer compartment of the same mem-
brane.

While generating transport reactions, whenever an error occurred when a compartment
was not recognized, TRIAGE would assume the default compartments (in - cytoplasm, out
- extracellular). As the inner and outer compartments were inferred separately, eventually
transport reactions that carried metabolites from a compartment to itself were created (i.e.
H+(Cytoplasm) ←→ H+(Cytoplasm)), which is obviously not a transport. This error was
overcome by creating a controlled dictionary and a controlled structure that determine the
inner and outer compartments of a specific membrane. In table 8, a small example of such
structure is shown.

Table 8.: Example of inner and outer compartments for the indicated membranes.

Membrane Outer Compartment Inner Compartment

Cytoplasmic Membrane Periplasm* Cytoplasm
Vacuole Membrane Cytoplasm Vacuolar lumen
Outer Membrane Extracellular Periplasm
Mitochondrial Membrane Cytoplasm Mitochondrial lumen
Cell Wall Extracellular Cytoplasm
Default compartments Extracellular Cytoplasm

*Periplasm for gram-negative bacteria, Extracellular otherwise

Another major improvement was the upgrade of merlin’s TRIAGE compartments anno-
tation panel, making it more appealing and less ambiguous. Now, to select the desired
threshold for secondary compartments, the user selects one of the values available in the
drop-down list. Thus, the secondary compartments (if any) can be taken into account when-
ever scores differ less then the user-defined percentage when compared to the primary com-

4.1. merlin’s improvements 43

partment. This threshold can be set from 0% to 50% in increments of 10% (more than 50%
is not available because a single secondary compartment does not have a score difference
superior to this value). Likewise, the option “compartments to ignore”, associated with
the compartments integration process was replaced by a different method. The process of
integration allows to assign the compartments predictions to the reactions encoded in the
genome. Thus, currently, when the button “integrate to model” is clicked, a new window
is opened asking the user which, if any, of the compartments available in the compartments
predictions are supposed to be ignored during integration. This is an important feature as
often these predictions return compartments such as “unknown”. In these cases, the user
can ignore such compartments, and a default compartment is assumed.

4.1.3 SamPler

Besides all aforementioned improvements, a new feature was added to merlin. SamPler
(26), a semi-automatic method for annotation of enzymes, was developed and integrated to
merlin. When merlin’s homology search is complete, a score is assigned to each EC number
using an equation similar to Equation 2 to each annotation using taxonomy score, frequency
score and a parameter α. However, the best value for the parameter α is not automatically
discovered and has to be calculated manually or using SamPler.

To determine the best value of α, the user has to manually annotate a small sample of
the genome (5% to 10%), allowing merlin to accept this sample as its standard of true. Next,
SamPler starts a wide set of calculations that allow determining the best value of α, upper
threshold, and lower threshold. Above the upper threshold, all entries are accepted as
correctly annotated, and below the lower threshold all entries are rejected as non-metabolic
genes. The user must then perform the manual annotation of all genes between the upper
and lower thresholds. Despite saving time when compared to the manual annotation of
the entire genome, this two stage annotation task can still become a very laborious and
time-consuming procedure for larger genomes.

4.1.4 Annotation workflow

This project ultimately led to the idea of another project with the purpose of improving
merlin’s enzymes annotation capabilities and researchers productivity during annotation.
Thence, a fully automatic method for annotating enzymes in merlin was proposed, in a
collaboration project with a first year master’s student.

When manually annotating a genome, researchers usually follow a strict workflow indi-
vidually designed, specifically for the genome in study. The idea for the fully automatic
method was that these pipelines can be adapted for automatic implementation in merlin, an-

4.1. merlin’s improvements 44

notating all entries using information already available in its internal database, consistently
replicating the user’s task without the human error factor. A user-friendly Graphical User
Interface (GUI) with a maximum of 9 slots was designed and implemented to collect the
pipeline’s parameters, which allow replicating most of the previously developed workflows.
This interface was divided into 4 different fields:

• The first field is composed of a drop-down list where the user can select if the step
selected will be relative to the species or the genus. If the empty option is selected,
the remaining fields become inactive and excluded from the pipeline;

• The second field is composed of a drop-down list containing all species or all genus
available in merlin’s internal database, depending of the option selected in the first
field. Also the option “any” is available for both options, in order to accept any
species or any genus;

• The third field is relative to the E-value threshold. Here, the user can define the
maximum threshold above which all annotations must be disregarded;

• The fourth field is a Boolean option where the user can select between matches with
UniProt reviewed entries or not.

In case that none of the conditions in each slot of the workflow is fulfilled, the user has
available an extra Boolean field that allows the entries to accept the default annotation when
no matches are found.

The process of assessing the correct annotation, for each gene, starts by searching the
best match among the homologous genes found in the similarity search. With this purpose,
an entry that meets the requirements of the first slot is sought among all available homol-
ogous genes. If no entries match the requirements, the process is repeated for the next
slot, until the entire workflow is iterated. If no entries meet the requirements of any slot,
the default annotation can be accepted or rejected, depending on the value of the Boolean
option “Accept default annotation if no match is found”.

To each annotation a confidence level is associated depending on which slot of the work-
flow the match was found. The confidence level is expressed in a sequential order with
alphabet letters, spanning from slot 1 (letter A) to slot 9 (letter I). The default annotation
also has a confidence level of “Default”. When the evaluation process is complete, merlin
saves the annotation into its internal database and refreshes the Enzymes Annotation panel
to reveal the results of the process. The confidence level of each annotation is shown in
column “notes”.

4.2. Implementation of TranSyT 45

4.2 implementation of TranSyT

After validating TCDB’s data and performing the study over the best method for TRIAGE’s
TMBs identification, the next stage was starting the implementation of TranSyT. As the
objective is to create a modular software, the implementation will be divided according to
the four main functionalities:

1) TCDB scraper and family-specific transport reactions assembly;

2) Metabolites identification and hierarchical ontology;

3) Generation of transport reactions for each transport system;

4) Identification of genes encoding transport systems (genome’s transporters annota-
tion);

The modularization principle was also taken into account when developing each of the
main systems.

4.2.1 TCDB scraper and family-specific transport reactions assembly

The first step was to retrieve the information available in TCDB for each transport system,
to generate the family-specific transport reactions. The scraper used to retrieve the infor-
mation for the validation process was slightly modified and re-implemented at this stage
to perform this task. As before, the latest FASTA is used, to guarantee that each time the
software is executed, all entries available at TCDB are utilized, and a backup record of the
FASTA file is saved. At this stage, the fields “Description”, “Accession Number”, “Species”,
and “Substrates” are retrieved and saved in TranSyT’s internal database.

The next stage was the implementation of a method to search for the webpages containing
the TC family information regarding the transporter systems saved. The URL http://www.

tcdb.org/search/result.php?&tc=TCFAMILY, in which the “TCFAMILY” was replaced by
the TC family number to be retrieved (1.A.1 for TC numbers 1.A.1.1.1 and 1.A.1.2.1, for
example), was used To access these pages. Here, information like superfamily, family, and
family-specific transport reactions can be retrieved. For instance, TC family 1.A.1, belongs
to the “VIC Superfamily” superfamily, whereas its family is “The Voltage-gated Ion Channel
(VIC) Superfamily”. The generic reaction is cation (out) ←→ cation (in). However, often
this information is missing for several TC families. All relevant data is retrieved using a
parser developed to process these HTML pages. As the information is unstructured and
without a structured format, errors are common during the parsing process. For instance,
the superfamily description is always found as it is always in the same position. However, it

http://www.tcdb.org/search/result.php?&tc=TCFAMILY
http://www.tcdb.org/search/result.php?&tc=TCFAMILY

4.2. Implementation of TranSyT 46

is more demanding to retrieve the family description, as frequently the scraper returns more
text than it should. Retrieving the transport reactions fields is even more challenging, as
the reactions are embedded in the webpage text, increasing the complexity of finding and
parsing them. Hence, several alternatives were included into the parser such as seeking
for known signs (+,−,→,↔) or sentences after a colon (“:”), as generally these equations
follow this punctuation mark. However, the fact that this punctuation mark is used in
several other occasions hardens this task. Other issues, like the reaction being so long
that it needs to be displayed in two or more separated lines, or the arrows separating the
reactants from the products being in different forms of text for the same symbol, or even
images, turned this task into an automatic text processing challenge.

After gathering all reactions the objective is to decompose them and assess which are
products or reactants, their compartments, reversibility, and transport type. Here, auto-
matic text processing is used again. While retrieving the reactions, the reversibility indica-
tion was instantaneously identified and replaced by TranSyT’s own reversibility. This token
is an unambiguous symbol used by TranSyT to indicate the reaction’s reversibility. This
makes the reactants, products and reversibility identification easier at this point. To find
the transport type, the transport between relative compartments needs to be identified first.
Implementing this part was, once again, challenging, as compartments information is often
between parentheses, but not always. Moreover, in seldom cases, the information between
parentheses is not related to the compartmentalization process. Occasionally TCDB is ex-
plicit and instead of the required in or out compartments, it has specific locations through-
out the cell. Again, a dictionary similar to the one used during TCDB’s validation process
was created using the same principles to solve these inconsistencies. A small example of
the entries listed in the dictionary is available below:

• inner membrane =innermembrane; innermonolayeroftheplasmamembrane;

• outer membrane =outermembrane; outermonolayeroftheplasmamembrane;

• lysosome =lysosome; intralysosomalspace; lysosomallumen; lysosomal;

• endosome =endosome; endosomallumen; endosomal;

• periplasm =periplasmofgramnegativebacteria; periplasm; innermembraneperiplasmic-
side.

Then, after identifying the two different compartments between which the transport takes
place, the identification of their relative position to each other is determined. This step
involved writing an organized array of compartments, which starts with the most outer
compartment, and ends with the lumen of the organelles present in the cytoplasm of the
cell (most inner compartments). As each position of the array is numerated, the lowest

4.2. Implementation of TranSyT 47

position is the out and greatest the in. An example of such structure is shown in table
9. For demonstration purposes, the column “Group” was added. The positions among
the members of each group is not relevant, as transport between compartments of the
same group are not biologically feasible. For instance, compounds can be transported from
the chloroplast to the cytoplasm across the chloroplast membrane, but not between the
chloroplast and another organelle, without passing through other structure such as the
cytoplasm first.

Table 9.: Structure used to decide the relative positions between compartments.

ID Compartment name Group

0 out

A
1 cells
2 extracellular
3 xylem
4 phloem
5 outer membrane B
6 periplasm C
7 cytoplasmic membrane

D
8 inner membrane
9 cytoplasm E
10 endomembrane F
11 endoplasmic reticulum membrane

G
12 peroxisomal membrane
13 chloroplast membrane
14 mitochondrial membrane
15 chloroplast intermembrane space

H
16 mitochondrial intermembrane space
17 mitochondria

I

18 chloroplast
19 intravesicular
20 endoplasmic reticulum
21 nucleus
22 golgi
23 lysosome
24 endosome
25 peroxisome
26 vacuoles
27 organelle
28 in

The results are then saved in files encoded in JavaScript Object Notation (JSON) format.
At this stage, family-specific reactions are yet to be generated, as seldom and/or rules can
be present in the reaction string. For instance, the below reaction:

4.2. Implementation of TranSyT 48

• SO42− or CrO42− (out) + nH+ (out) −→ SO42− or CrO42− (in) + nH+ (in),

will return the following reactions:

� SO42− (out) + nH+ (out) −→ SO42− (in) + nH+ (in)

� CrO42− (out) + nH+ (out) −→ CrO42− (in) + nH+ (in)

Thus, the objective is to find all rules using automatic text processing, and infer all family-
specific reactions.

The next step is to infer the type of transport of the family-specific reactions. At this
stage, all compartments were already converted into in or out. Thus, the identification
of the type of transport can be performed taking into account the following rules, when
reactants and products have the same metabolites and the following conditions on each
side of the reaction:

• one compartment and one metabolite =⇒ Uniport

• two or more metabolites and one compartment =⇒ Symport

• two or more metabolites and two compartments =⇒ Antiport

Other transport systems that do not comply with these rules are classified according
to information collected from TCDB, as for example, transporters belonging to TC family
3.A.1, which are known as ABC transporters. Despite this classification, there are cases
in TCDB that have several family-specific transport reactions, including different type of
transport. For such cases, automatic text processing is used to search in the description of
the transporter system for evidences of the correct type of transport. For instance, keywords
like “symport(er)”, “uniport(er)”, and “antiport(er)” are sought in the description, and
ultimately, for cases in which no evidences are found, in the subfamily description. At this
stage errors from previous processes are solved. A file containing exceptions was created
for this purpose. All errors not solvable through programming methods should be added
to this file. Then, all entries that have a corresponding match in this file are replaced by it.
Examples of such exceptions are the following cases that can be found for TC families 3.A.8,
5.A.1, and 4.C., respectively, in which the family-specific transport reactions are exhibited
as follows:

1) protein (cell cytoplasm) protein −→ (mitochondrial matrix or membrane)

2) 2 e− cytoplasm −→ 2 e− periplasm

3) Acyl − CoA −→ FattyAcid Coenzyme A

4.2. Implementation of TranSyT 49

In the first case it is possible to observe that the substrate “protein” that should be present
in the products is displayed in the wrong side of the equation. The second case has the com-
partments written in subscript and not between parenthesis. As TranSyT seeks parenthesis
for the compartmentalization, these compartments would be considered as substrates. For
the third case, the fact that the products of the reaction are not separated by the character
“+”, will lead to the interpretation that such string represents a single metabolite named
“Fatty Acid Coenzyme A”. Known exceptions like the ones described here and others, oc-
cur for 56 TC families in a universe of 1 176, which corresponds to less than 5%. Below,
examples of the correction of the reactions manually set in the exceptions file.

1) protein (cell cytoplasm) −→ protein (mitochondrial matrix or membrane)

2) 2 e− (cytoplasm) −→ 2 e− (periplasm)

3) Acyl − CoA −→ Fatty Acid + Coenzyme A

Solving these inconsistencies programmatically is not feasible, as the creation of universal
exceptions within the code to deal with similar cases, would create conflicts. Correct entries
would also be caught by these exceptions and rendered incorrect.

Another example is that occasionally TCDB does not displays the reversibility of a reac-
tion (e.g. cation [out] cation [in]). These occurrences have to be manually analyzed. Finally,
the results are once again saved in a file with JSON encoding, and the generation of family-
specific transport reactions is complete. A simple schematic of all stages of the process is
illustrated in figure 12.

Figure 12.: TCDB scraper and family-specific transport reactions assembly process

4.2. Implementation of TranSyT 50

4.2.2 Metabolites identification and hierarchical ontology

The metabolites retrieved during the previous phase are not annotated with database iden-
tifiers, as TCDB does not provide cross-references for the substrates described. Hence, it
is of paramount importance to provide identifiers to the metabolites present in reactions.
Without identifiers, these reactions cannot be integrated with metabolic reconstructions. As
stated by Thiele and Palsson at step 14 of the protocol for reconstructing GSM models, if
the metabolites do not possess identifiers of known databases, they cannot be recognized
by other scientists and software tools (130).

Biosynth (81), an open-source Bioinformatics software developed within the BioSystems
group at Centre of Biological Engineering (CEB) by Filipe Liu and available at https:

//github.com/Fxe/biosynth-framework, was used for this task. Biosynth is capable of
retrieving information from several online data sources and creating links between all in-
formation, based on cross-references available at each source, creating a local Neo4j graph
database. Among all features present in Biosynth, only the module to collect compounds
information was used. Thus, Biosynth was used to retrieve compounds information, from
the following databases: KEGG, BiGG, MetaCyc and ModelSEED. Unlike TRIAGE that uses
ChEBI, TranSyT uses MetaCyc to determine the metabolites hierarchical ontologies. The rea-
son for this transition is that ChEBI is too extreme when establishing relationships between
metabolites, creating unwanted relationships for modelling purposes, which often leads to
cyclic relations. Tis characteristic is not observed in MetaCyc hierarchies. odelSEED was
also one of the choices as the objective is to integrate TranSyT in KBase. esides KEGG
identifiers, also ModelSEED and Biochemical, Genetic and Genomic (BiGG) identifiers are
planned to be supported by merlin in its future versions.

Biosyn th creates relationships between metabolites that are previously cross-referenced
in the source databases, thus, in some cases links between data might be missing. For
example, if compound-X from MetaCyc does not have references to compound-X in KEGG,
these entries will be regarded as distinct compounds. Hence, when gathering information
from the graph database, instead of listing the metabolites by ID, these were listed according
to their names and aliases. Nevertheless, in seldom cases the same name is associated with
different metabolites. For instance, in MetaCyc, both Fructose and D-Fructose, although
being different entities, have the alias ”fructose” in common. Although being related, an
incorrect selection at this stage will lead to different outcomes when searching the related
metabolites in the hierarchical ontology.

Therefore, a method that iterates over all nodes present in Biosynth’s metabolites names
was developed to organize the data, avoiding collision between metabolites with the same
aliases. This method looks for all metabolites associated with the name being iterated based
on a default order of selection (KEGG, ModelSEED, BiGG, and finally MetaCyc). When

https://github.com/Fxe/biosynth-framework
https://github.com/Fxe/biosynth-framework

4.2. Implementation of TranSyT 51

the search is complete, all identifiers found in the search process are associated with the
name. Special cases, such as the duplication of metabolites in ModelSEED are addressed
by selecting the identifier with the lowest numeric value in the identifier, as those are the
commonly used ones. For instance, the same D-Glucose has two different identifiers with
the same chemical formula: cpd00027 and cpd26821. In figure 13 an hypothetical scenario
of the previous situations is represented.

Figure 13.: Example of an hypothetical relationship that can be found in Biosynth’s graph
database.

In this hypothetical scenario, it is possible to observe the relationships between the
metabolite identifiers of the four different databases and two names. According to the
previous rules, the annotation would be as follows:

• Glucose - cpd00027; C00031; glc D; META:Glucose.

• D-Glucose - C00031; cpd00027; glc META:D-Glucose.

This process lists all names and aliases, including identifiers, that describe metabolite
in Biosynth’s database (currently over 154 000 names). The family-specific transport reac-
tions, as well as the substrates associated with each transport system were retrieved from
TCDB in the previous stage. Hence, the next step involves assigning database identifiers
to all metabolites retrieved from TCDB. However, not all metabolites will have a direct
match, thus an algorithm that performs automatic text processing was developed. For ev-
ery metabolite described in TCDB, matches are sought in the following logical sequence,
until a match is found. When a match is found, the metabolite is then removed from the
set of metabolites to search.

4.2. Implementation of TranSyT 52

1. Direct match - identification through direct, case sensitive, match. This allows cases
like CO (carbon monoxide) not be associated with Co (cobalt).

2. Remove stoichiometric coefficients - often metabolites retrieved from reactions present
in TCDB have stoichiometric coefficient. By removing the stoichiometric coefficient,
direct matches are possible.

3. Case insensitive match - a case insensitive search of the compounds name allows
assigning identifiers to some metabolites.

4. Non-alphanumeric characters removal - metabolites names may contain white spaces
or other characters that impair automatic matching. Removing these non-alphanumerical
characters usually solves the problem for several entries.

5. Add prefix “D-” or “L-” to enantiomers - such as sugars and amino acids. For in-
stance, mycarose, requires either prefix L- or prefix D- before the name, otherwise
matches are not found for this case.

6. Case insensitive and non-alphanumeric characters removal - a combination of meth-
ods 3 and 4.

When the matching process ends, metabolites from TCDB have the corresponding ID
associated. A summary of the entire process of metabolites identificatio is described in
figure 14.

Figure 14.: Metabolites identification process.

4.2. Implementation of TranSyT 53

4.2.3 Generate system-specific reactions

The next stage encompasses associating the substrates retrieved from each transport system,
annotated with database identifiers in the previous stage, with the family-specific reactions.
This process allows creating the final substrate specific transport reactions, which will be
eventually assigned to each transport system. The metabolites assigned to each transport
system are used to replace the appropriate metabolites in the respective family-specific
transport-reaction, retrieved from TCDB and assembled in section 4.2.1. During this step,
the ontological descendants of the substrate are sought in Biosynth’s graph database. Al-
though MetaCyc provides the hierarchical ontology, the descendant metabolites will be
assigned with the identifier selected by the user, when available. Selected cases, such as
“lipid” (mostly for generic metabolites), encompass thousands of descendants. Thus, Tran-
SyT allows specifying the maximum number of generations to selected metabolites. The
default value of −1, does not impose any limit, 0 is the metabolite itself, and higher than
0, the desired limit. Metabolites not listed as special cases are assumed as unlimited (−1).
Descendant metabolites will provide reactions similar to their parent (replacing it in the
equation) and will be associated with the same transport system. Using the metabolites
molecular formulas, the created reactions are tested for mass balance, and only balanced
transport reactions will be accepted. However, in known cases, the reactions require balance
correction due the origin of the annotation. For instance, ABC transporters with metabolites
formulas retrieved from MetaCyc, BiGG, and ModelSEED will be lacking a proton. Alter-
natively, when using KEGG data, the reaction will require a molecule of water. Identified
cases are automatically corrected when the reactions are generated. TranSyT generates its
reactions based in evidences of the TC family reaction equation and also of the description
of the system, subfamily, family, and superfamily. If no evidences are found, the simplest
mechanism is assumed (reversible uniport). If symport or antiport evidence is found but
no default reaction is available, the co-transport of the metabolites described in the system
is performed with a proton.

When the reaction is approved, a hash code of the reaction is generated and sought in
TranSyT’s internal persistent database. If a match is found, the same ID is used to maintain
database integrity throughout versions. Otherwise, a new ID is generated and the reaction
hash code stored.

To generate the Transport Reaction identifier (TR identifier)s, a mechanism that easily
allows to understand the reactions encoded by the hash was developed and implemented.
The only common element to all identifiers is the sequence of characters “TR”, initials that
stand for “Transport Reaction”, that can also be preceded by the letter “i” in case of ir-
reversible reactions, and followed by the abbreviation of the type of transport. Next, all
reactants are alphabetically sorted and concatenated, followed by the respective compart-

4.2. Implementation of TranSyT 54

ment(“i” for “in”, “o” for “out”, or none of them in case of no compartment evidence), sep-
arated by the character “ ”. Below, examples of identifiers using metabolite’s ModelSEED
IDs and the respective encoded reactions:

• TRUni cpd00117o - D− Alanine (out)←→ D− Alanine (in)

• iTRUni cpd00117i - D− Alanine (in) −→ D− Alanine (out)

• TRSym cpd00034i cpd00067i - Zn2+ (in) + H+ (in)←→ Zn2+ (out) + H+ (out)

• iTRAnt cpd00034i cpd00067o - Zn2+ (in) + H+ (out) −→ Zn2+ (out) + H+ (in)

• iTRabc cpd00002 cpd00117o cpd00001 - ATP + D− Alanine (out) + Water −→
ADP + D− Alanine (in) + Pi + H+

The last step of this module is to store the information in a suitable database. Neo4j graph
database was selected for this step, due to its performance over relational databases when
dealing with densely connected data (55). Thus, all identifiers and TC numbers are the
nodes of the graph, and information like descriptions, names, formulas, and reactions are
properties of the nodes, and the edges (e.g. “has tc”, “has reaction” or “has metabolite”)
provide the type of relationship between nodes. All relationships are unidirectional, with
an accession number having none, one, or multiple TC numbers associated, and one TC
number owned by one or multiple transport reaction identifiers.

Before initiating the storage process, the taxonomy relative to each accession number is
also retrieved using UniProt API, due to the importance of the phylogenetic information
inherent to each transporter system. This is not used at this stage but it is important for the
last module of TranSyT. This search is performed while the server is creating or updating
the database, and this data will be available for users, during the identification stage. For
the storage process, multi-threading was not used because two threads can be creating
the same nodes or relationships at the same time. In a laptop running Windows 10 64-
bit, processor Intel(R) Core(TM) i7 first generation CPU 1.60 GHz, and 8 GB of RAM, this
process takes approximately 6 hours due the amount of information and relationships to
store (58 623 different reactions currently).

A small example illustrating the behavior of the graph database for 5 different acces-
sions is shown in figure 15. This figure allows visualizing the 3 subunits that integrate the
transport system with TC number 3.A.1.9.1. This figure also illustrates the aforementioned
example, where one single accession is associated with two different transport systems (TC
numbers). The high density of relationships is evident between reactions and metabolites,
as 10 out of the 11 reactions displayed share common metabolites.

4.2. Implementation of TranSyT 55

Figure 15.: Representation of TransSyT’s internal database for 5 accessions.

4.2.4 Identification of genes encoding transport systems

TranSyT’s last module is the one with which the final users will interact. The inputs for
performing a request to TranSyT are the genome and the taxonomy identifier of the organ-
ism being analyzed. As in TCDB itself, TranSyT uses BLAST to identify genes encoding
transporter systems. BLAST was implemented using the plugin recently developed for mer-
lin that uses the command line software BLAST+ (19) available for download in NCBI at
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/, currently in version
2.7.1. Having BLAST+ installed in the machine that is running TranSyT is not a prerequisite,
as TranSyT will run remotely in a server and send the results to the computer that made
the request. If all conditions are fulfilled, TranSyT proceeds and performs the BLAST using
the input genome against all sequences present in TCDB’s latest downloaded FASTA file.
This will be the the most time-consuming process of the last module, as the running time
depends on the performance of the machine and size of the genome.

TranSyT sets the following BLAST configurations, by default: scoring matrix BLOSUM62,
E-value threshold = 1E−10; query coverage threshold = 80%; bit score threshold = 50. The
default BLAST parameters were set, taking into account the Pearson’s study in An Introduc-
tion to Sequence Similarity (“Homology”) Searching (100), in which it is stated that bit scores
of 40 and E-values ≤ 1E−3 are significant for databases with less than 7 000 entries. As the
E-value is dependent of the size of the database, an increase of 10 to the bit score increases
the significance in a factor of 210, thus a bit score of 50 would be significant for a database

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/

4.2. Implementation of TranSyT 56

with less than 7 million entries (TCDB’s FASTA file currently contains less than 18 000
entries). Hence, a low E-value, a high bit score and 80% coverage of the query sequence
when querying a database as small as TCDB, can be regarded as a conservative approach.
This strategy will increase the number of false negatives rather than the number of false
positives. Nevertheless, all values are configurable.

After performing the alignments, the first step is to determine which TC family should
be assigned to a given entry. This task involved devising an algorithm that calculates the
score for each family among the BLAST hits for each entry. The family score is calculated
according to equation 2, that takes into account the frequency of the family (ScoreA) and
the similarity (ScoreB) of each hit, balanced by the parameter α that can take values between
0 and 1, (default value of 0.4, configurable). The default value of α was attributed to favour
the frequency without disregarding the similarity. Equation 2 was used in TranSyT for
several calculations as it allows taking into account several parameters.

As shown in equations 7 and 8, the frequency score is calculated by dividing the number
of hits for the TC family F, by the total number of BLAST hits. Similarly, equations 9 and
10 show that the similarity score is calculated by dividing the sum of the similarities of the
hits belonging to family F by the sum of the similarities of all hits.

ScoreA =
∑H

i=1 Fi ×V fi

∑H
i=1 Fi

(7)

VFi =

{
1, i f record i belongs to f amily
0, otherwise

(8)

ScoreB =
∑H

i=1 Si ×V f si

∑H
i=1 Si

(9)

VFsi =

{
1× Si, i f record i belongs to f amily

0, otherwise
(10)

In table S1 of the supplemental material, one can find the results of the alignments of
UniProt entry S7V9F2, to the whole set of records available in TCDB. A summary of the
results is presented in Table 10

Despite having a bit score of 955, the second BLAST hit’s (8.A.1.6.1) family 8.A.1 has
only 4 hits, whereas family 2.A.6 has 40 hits. The high frequency and similarity scores,
allows annotating this protein as belonging to 2.A.6 family. Despite this classification, this
protein is present in UniProt with a different annotation - family 8.A.1; however, this is

4.2. Implementation of TranSyT 57

Table 10.: Family annotation scores for UniProt entry S7V9F2, calculated using the default
α = 0.4.

TC Family Frequency Freq. Score Sim. Score Family Score

2.A.6 40 0.85 0.88 0.87
3.A.1 3 0.06 0.03 0.04
8.A.1 4 0.09 0.09 0.09

an unreviewed entry with 1 point of annotation score. Moreover, UniProt’s description
is “Efflux transporter, RND family, MFP subunit”. According to TCDB, proteins labeled
as “MFP subunits” belong to family 8.A.1, while the “RND family” belongs to the 2.A.6
family. In addition, both families are related, as proteins belonging to the latter family
function in conjunction with proteins from family 8.A.1, that belong to class 8 ”Accessory
Factors Involved in Transport”.

Therefore, TranSyT’s classification seems to be correct as family 2.A.6 had 40 BLAST hits
against TCDB which contains 139 proteins belonging to this family. Whereas family 8.A.1
accounted for a total of 4 hits hits against TCDB which contains 19 entries for such family.
This analysis show that the high number of hits is not correlated with the high availability
of entries in such family, as the percentage of hits per family is higher in the former case.

The next step of this stage is the association of transport reactions to the genes identified
as encoding transport proteins. TranSyT selects the reactions to associate to such genes
(annotated with TC families), using two different methods: “auto accept” and “compute
score”.

The first method accepts all transport reactions that fulfill the following conditions:

• Reaction associated with TCDB entry belonging to the annotated TC family;

• TCDB entry hit with an E-value below the automatic acceptance threshold (1E− 50
by default).

This method does not take the taxonomy of the BLAST hits into account, due to the high
similarity with the query sequence. All reactions, available in TranSyT’s internal database,
associated with TCDB entries that comply with these conditions will be assigned to the
respective genes of the organism being annotated.

The second method, follows the same philosophy as in TRIAGE’s approach. The ad-
vantage of using this method is that reactions not selected by the first method can still be
associated with the gene, if the BLAST hits’ proteins belong to organisms with taxonomic
classifications close to the case study. This score is calculated using 2 for each reaction asso-
ciated hits. Thus, for each gene g the frequency of each reaction r within the homologous
protein records is calculated (ScoreA). The common taxonomy between query and subject
sequences is also considered (ScoreB). Leverage between score is provided by the parameter

4.2. Implementation of TranSyT 58

α which takes values between 0 and 1. The default value of 0.8 for α was selected taking into
account that TCDB has a limited number of organisms represented in its database, mostly
belonging to Bacteria. Thus, if the case study organism does not belong to this domain, this
value should be reduced.

As shown in equations 11 and 12, the frequency score is calculated by dividing the sim-
ilarity of all homologous proteins promoting the reaction by the sum of the similarities of
all BLAST hits, for each protein encoding gene. Thus, Si refers to the similarity of the ith

BLAST hit encoding the reaction being scored, and H the total number of hits.

ScoreA =
∑H

i=1 Si ×Vri

∑H
i=1 Si

(11)

Vri =

{
1, i f reaction r ispresent in record i
0, otherwise

(12)

Likewise, as shown in equations 13 and 14 the taxonomy score is calculated by dividing
the taxonomy frequency ti by the maximum taxonomy MT, multiplied by the frequency
of the protein hits promoting the reaction and a penalty. This penalty is put forward to
penalize reactions that are associated to a low number of homologous genes by multiplying
pr with β, which is the penalty percentage with a value between 0 and 1 and set by default
as 0.3. The taxonomy frequency is calculated by counting the common taxa between case
study and the organism to which the ith homologous record belongs.

ScoreB =
∑H

i=1 ti ×Vri × (1− pr × β)

MT ×∑H
i=1 Vri

(13)

pr =

{
0, i f ∑H

i=1 Vri ≥ MinHits

MinHits −∑H
i=1 Vri, otherwise

(14)

Reactions with score above the defined threshold (0.5 by default) are associated to the
protein encoding gene. All variables present in the calculations are parameterizable in Tran-
SyT’s configuration files. To finalize the process, TranSyT uses the information regarding
metabolites present in the model to filter the reactions. Reactions containing metabolites
present in the model are accepted, all others are disregarded.

Unlike TRIAGE, TranSyT allows performing GPR associations. However, the search for
protein complexes formed by multiple subunits encoded by different genes is not straight-
forward. TranSyT’s approach to this problem takes advantage of the information available
TCDB regarding protein complexes together with the BLAST search results. The first step

4.2. Implementation of TranSyT 59

of this methodology is finding genes associated to every subunit of each complex and the
respective bit score, as shown in table 11.

Table 11.: Example of the data structure requested by the argument “blastData” in the algo-
rithm 1.

TC Number Accession Query Gene Similarity

3.A.1.9.1

P16679
Gene 1 0.7
Gene 2 0.5
Gene 3 0.66

P16682
Gene 4 0.58
Gene 1 0.25
Gene 3 0.8

P16683
Gene 2 0.5
Gene 3 0.25

This method assigns reactions accounting for similarities between query gene and the
subunits available in TCDB. For every TC number with evidence of forming a protein
complex of multiple subunits, TranSyT searches the genes belonging to the family of the
transporter system to create the GPR associations, using the method described in algorithm
1.

Algorithm 1 GPR association process - searchSubunits(arg1, arg2, arg3)

1: Input: blastData . Structure like table 11

2: invertedMapping . inverted mapping of columns “Accession” & “Query Gene”
3: assigned . initially empty map
4:
5: if assigned.size() == data.size() then
6: return assigned
7: end if
8:
9: allRemainingAccessions← blastData keys and remove all keys in assigned

10: accession, gene ← findBestGene(blastData, allRemainingAccessions, invertedMapping,
assigned) . algorithm 2

11:
12: if invertedMapping.get(queryGene) is empty or querygene == null then
13: return null
14: end if
15: assigned.put(accession, gene)
16:
17: return searchSubunits(blastData, invertedMapping, assigned)

4.2. Implementation of TranSyT 60

In this method, for accessions with similarities with only one entry, the association is di-
rect and automatically performed. For cases with several genes per subunit, the algorithm
selects the genes with the highest bit score. When multiple hits have the same value of bit
score, the lowest E-value is used as tie breaker. When a gene is associated with a subunit,
other subunits are discarded from the gene entry. If the total number of genes is less than
the total number of subunits, the association is reset, and the discard relations restored.
The algorithm 2 will then select the next highest scoring gene for the unannotated subunit,
and the previous methodology applied is recursively until all subunit are associated with a
different gene, as shown in algorithm 1.

Algorithm 2 Find gene with highest score - findBestGene(arg1, arg2, arg3, arg4)

1: Input: blastData
2: allRemainingAccessions
3: invertedMapping
4: assigned
5:
6: exclude← empty set
7: for each acc in allRemainingAccessions do
8: if data.get(acc) size == 0 then
9: return acc, data.get(acc)

10: end if
11: end for
12:
13: f ound← TRUE
14: while not f ound do
15: accession, gene← similarity with highest score not included in exclude
16:
17: if gene is empty then
18: return null
19: end if
20:
21: con f licts← remove accession from data and gene from other accessions
22: if con f licts == TRUE then
23: data removed is restored
24: f ound← FALSE
25: exclude.add(gene)
26: gene← empty string
27: end if
28: end while
29: return accession, gene

4.3. Compartmentalization and TMD identification 61

4.3 compartmentalization and tmd identification

The integration of TranSyT into merlin, will allow the input of two extra options: compart-
mentalization and TMD identification. The compartmentalization of all generated reactions
is straightforward, as the direction of transport of each metabolite was defined beforehand.
The integration process will employ the prediction tool already integrated with merlin for
TRIAGE, including LocTree3. Thus, TranSyT supports LocTree3, WoLF PSORT, and PSORTb
3.0.

The TMD identification will involve using Phobius for TMAs and PRED-TMBB2 for
TMBs. Phobius is already imbeded in merlin, but TMBs indentification is still not avail-
able. Thus a method that retrieves the predictions from PRED-TMBB2 webserver will be
implemented. Before starting the development, an email was sent to the authors querying
about the availability of a public API and source code for the predictor, to avoid the limita-
tions of using the webserver. The answer was that, at that moment, no API was available
and the source code of the tool was not available for sharing as it was part of a bigger pack-
age of tools yet to be published. Despite this answer, the authors agreed in upgrading the
webserver to accept batches of 20 000 sequences, instead of 5 000 before. Hence, a method
that accesses the webserver and retrieves the results of the identification was developed, as
well as a parser for the results.

Proteins with TMAs can be located in membranes. Likewise, the classification of predic-
tions containing TMBs has to be processed carefully, as β-barrels are found in the chloro-
plast membrane, and mithochondrial membrane of Eukaryotes and outer membrane of
gram-negative Bacteria. The results of both types of predictors (compartments and TMD)
can be combined to determine which entries have high evidences of being transporters,
without considering the homology results. This analysis will allow assigning confidence
levels represented by alphabetic characters spanning from “A” to “C”, as shown in table 12.
This method of classification allows annotating a system with the highest confidence (level
A), if both predictions are in agreement. If α-helices or β-barrels are associated with loca-
tion predictions in the correct membranes, and belong to the correct organisms, maximum
confidence is assigned. However, if proteins are predicted to be in other compartments,
confidence B is assigned. On the other hand, if the location prediction of a given protein is
not a membrane, though showing evidences of having TMD, such protein is assigned with
the intermediate level of confidence (level B). When proteins do not have evidence of being
located in membranes nor having TMD, the lowest level of classification is assigned (level
C).

This functionality will not be integrated to KBase version and will only be available for
merlin users, as this classification requires the input of results retrieved from third party
software tools.

4.4. Third party tools 62

Table 12.: Classification of a transport system using TMD and compartments predictions.

Compartment Prediction TMD Prediction Confidence Level

Outer membrane
Chloroplast membrane
Mitochondrial membrane

Alpha-helix A
Beta-barrel

(Gram-negative Bacteria or Eukaryote?)
yes A
no B

none B
Extracellular
Xylem
Phloem
Periplasm
Cytoplasm
Mitochondria
Chloroplast
Intravesicular
Endoplasmic
Reticulum
Nucleus
Golgi apparatus
Lysosome
Endosome
Peroxisome
Vacuole

Alpha-helix B

Beta-barrel
(Gram-negative Bacteria or Eukaryote?)

yes B

no C

none C

Any other membrane

Alpha-helix B
Beta-barrel

(Gram-negative Bacteria or Eukaryote?)
yes B
no C

none B

4.4 third party tools

Table 13 contains the type of license regarding each software/database used in the tool’s
development, along with a small description of the task performed by each one and source.
No terms or conditions of each license are infringed by TranSyT.

4.4.T
hird

party
tools

63

Table 13.: Third party tools used in the development of TranSyT.

Tool Task Type of license Source

Eclipse photon Development of the software Eclipse Public License - v2.0 https://www.eclipse.org/downloads/

TCDB TranSyT’s source database

Creative Commons Attribution
-Sharealike 3.0 Unported License
and the GNU Free Documentation
License

http://www.tcdb.org/

PRED-TMBB2 Prediction of TMB
Creative Commons Attribution-
NonCommercial-NoDerivs 3.0
Unported License

http://www.compgen.org/tools/PRED-TMBB2

Phobius Prediction of TMA GNU General Public License v3.0 http://phobius.sbc.su.se/

Biosynth

Biosynth database integrates
the entries of several databases
used by transyt, and provides
the necessary hierarchical
ontology

GNU General Public License v3.0 https://github.com/Fxe/biosynth-framework

Neo4j Used to generate TranSyT’s
internal database GNU General Public License v3.0 https://neo4j.com/

BLAST+ 2.7.1 TranSyT’s homology Search
Freely available to the public for
use without any restriction on its
use or reproduction

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/

merlin (local-alignments) Used to gather and process
BLAST+ results GNU General Public License v2.0 https://github.com/merlin-sysbio/local-alignments

MEWorkbench Read/Write SBML files
and used in validation

GNU Lesser General Public
License v2.1 https://github.com/MEWorkbench/biocomponents

LocTree3 Prediction of Compartments — https://rostlab.org/owiki/index.php/Loctree

PSORTb 3.0 Prediction of Compartments — http://www.psort.org/psortb/

WoLF PSORT Prediction of Compartments — https://wolfpsort.hgc.jp/

https://www.eclipse.org/downloads/
http://www.tcdb.org/
http://www.compgen.org/tools/PRED-TMBB2
http://phobius.sbc.su.se/
https://github.com/Fxe/biosynth-framework
https://neo4j.com/
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/
https://github.com/merlin-sysbio/local-alignments
https://github.com/MEWorkbench/biocomponents
https://rostlab.org/owiki/index.php/Loctree
http://www.psort.org/psortb/
https://wolfpsort.hgc.jp/

4.5. TranSyT’s validation 64

4.5 TranSyT ’s validation

As aforementioned, iAF1260 model of Escherichia coli was used to validate TranSyT’s results.
The bacterium model uses BiGG identifiers for metabolites and reaction. However, as Tran-
SyT is supposed to be integrated into merlin and KBase, it was decided that the validation
should be performed using ModelSEED identifiers. Hence, KBase beta tools for conversion
of identifiers were used. The first step was to use “Import model SBML from web” to up-
load the SBML model to KBase platform. The second step was use “Integrate Imported
Model into KBase Namespace” to convert all identifiers from BiGG to ModelSEED. Finally,
the new model was exported in the SBML format to proceed the validation process.

An algorithm employing project MEWorkbench, currently available at https://github.
com/MEWorkbench, was created to expedite and automate the comparison of TranSyT’s re-
sults with the model. This package provides methods that allow reading and converting
SBML files into container objects. Likewise, these containers can also be instantiated with in-
formation returned from TranSyT regarding transport reactions. After uploading the SBML
into the container, the number of reactions with several compartments, which was the rule
for defining transport reactions, was 718. Three different approaches for validation were
devised for this work: per gene, per reaction, and per metabolite. Note that the results con-
tainer only comprises reactions with metabolites available in the model, as all other were
discarded by TranSyT.

Algorithm 3 Validation process

1: Input: sbmlPath
2: transytResults
3:
4: modelContainer ← readSBML(sbmlPath)
5: resultsContainer ← buildContainer(transytResults)
6:
7: validationByMetabolite(modelContainer, resultsContainer)
8: validationByReaction(modelContainer, resultsContainer)
9: validationByGene(modelContainer, resultsContainer)

https://github.com/MEWorkbench
https://github.com/MEWorkbench

4.5. TranSyT’s validation 65

4.5.1 Validation per gene

The validation by gene was performed by confirming if the metabolites transported by the
reactions associated to a given gene are the same in the model and in TranSyT’s reactions.
The metabolites were divided in two different sets: retrieved from the model or from Tran-
SyT. The validator determines if the metabolites of each set are present in the other set, and
the differences between them. When the process is complete, results are exported to an
Excel file.

4.5.2 Validation per reaction

The purpose of validating by reaction is to find if reactions are assigned to the same gene
both in the model and by TranSyT. Again, after instantiating both containers, only trans-
port reactions were retrieved from the model container and added to the TranSyT’s results
container. When a reaction retrieved from the model was already present in TranSyT’s
results container, the plugin returns an exception stating that such reaction was a dupli-
cate, and the respective gene association is manually verified. All non-matching reactions
were exported to an Excel file and semi-automatically analyzed using functions available at
Microsoft Excel R©. A pseudo-code regarding this validation process is shown in algorithm 4.

Algorithm 4 Validation process by reaction

1: Input: modelContainer
2: resultsContainer
3: duplicated← empty set
4: missing← empty set
5:
6: for each reaction in modelContainer.getAllTransportReactions() do
7: try
8: modelCointainer.add(reaction)
9: missing.add(reaction)

10: catch (ReactionAlreadyExistsException)
11: duplicated.add(reaction)
12: end try
13: end for
14:
15: WriteXLSX(missing)

4.5. TranSyT’s validation 66

4.5.3 Validation per metabolite

The purpose of performing a validation by metabolite was to understand if, independently
of the gene encoding the reaction, a metabolite can be still be transported even if using
different types of transport systems. As TranSyT’s TR identifiers can provide all informa-
tion regarding the reactants of a transport reaction (irreversibility, compartmentalization,
metabolites, and type of transport), a comparison between TR identifiers is adequate to
understand if the reactions are identical. Thus, TR identifiers were generated for each
transport reaction retrieved from the model, using the same algorithms developed for Tran-
SyT. Also, the metabolites location was replaced, as TranSyT does not include specific com-
partments information in its TR identifiers. Hence, the model’s compartments (external,
periplasm, cytoplasm), were converted to the “in/out” compartments used by TranSyT as
follows:

• external to periplasm −→ outside to inside

• periplasm to cytoplasm −→ outside to inside

• periplasm to external −→ inside to outside

• cytoplasm to periplasm −→ inside to outside

The TR identifiers created for the model’s reactions and the ones retrieved from TranSyT’s
reactions were exported to an Excel file, in which the function “VLOOKUP” was used to:

• find direct matches between TR identifiers;

• find similar reactions in the same type of transport;

• find metabolites transported by any other type of transport;

A summary of the process is shown in algorithm 5.

Algorithm 5 Validation process by reaction

1: Input: modelContainer
2: resultsContainer
3: modelTransportReactions← modelContainer.getAllTransportReactions()
4: transytReactionsIdenti f iers← modelContainer.getAllTransportReactions().getIDs()
5:
6: modelTransportReactions← correctCompartmentalization(modelTransportReactions)
7: modelReactionsIdenti f iers← generateTransytIdentifiers(modelTransportReactions)
8:
9: WriteXLSX(transytReactionsIdenti f iers, modelReactionsIdenti f iers)

5

R E S U LT S A N D D I S C U S S I O N

5.1 assessment of available methods to predict transmembrane β-barrels

Since TMB-KNN and partiFold webservers were not working (errors were thrown after sub-
mitting the sequences) and the e-mail with the results of TMPpro was never received, these
three tools were excluded from the analysis. The remaining five tools correctly predicted
the existence of 10 β-barrels in the 10 sequences regarding Homo sapiens and Escherichia coli,
but none predicted correctly the only β-barrel available for Arabidopsis thaliana, the only
false negative for all tools. In BetAware’s predictions, one of the sequences (α-helical) failed
every prediction attempt and the only answer provided by the webserver, after a while, was
fail. BOMP was the only predictor with a false positive in its results, predicting incorrectly
the β-stranded Homo sapiens protein P20023 (UniProt accession) as β-barrel. As shown in
table 5, BOMP, one of the first tools ever developed for the prediction of β-barrels, was
specifically designed to predict β-barrels in the outer membrane of gram-negative bacte-
ria, whereas this false positive was predicted for an eukaryotic organism. PRED-TMBB2,
BOCTOPUS2 and MCMBB, correctly predicted the absence of β-barrels in the remaining
sequences, while being able to identify the difference between β-stranded sequences with
no β-barrels from β-stranded sequences with β-barrels. The first two, considered the state-
of-the-art tools, predicted the number of β-strands for each β-barrel, with minor differences
between them (see column “#TM” in table 14). Although providing similar results, at the
time of the comparison, PRED-TMBB2 and MCMBB had a limit of 5 000 and 1 000 sequence
for each submission, respectively, while BOCTOPUS2 only allowed 5. Regarding running
times, once again BOCTUPUS2 is worse, taking hours for each submission, especially for
sequences with no β-barrels. As the accuracy of the predictions for PRED-TMBB2 and
MCMBB is identical and the running times are similar, a few minutes for this test dataset,
the only difference is the output format.

Despite the fact that BOMP has not been developed for predictions in eukaryotes, the
false positive in the results is an indication that its performance is impaired, as most of
the other tools were also developed for gram-negative bacteria and yet their predictions
were correct. BetAware has also lower performance when compared with PRED-TMBB2,

67

5.1. Assessment of available methods to predict transmembrane β-barrels 68

BOCTOPUS2, and MCMBB because it failed one of the predictions. In conclusion, PRED-
TMBB2, BOCTOPUS2, and MCMBB have the same accuracy but not the same efficiency.
For example, the running time and the number of sequences per submission are the major
problems found for BOCTOPUS2, making this server almost useless for a large dataset. Re-
garding the MCMBB and the PRED-TMBB2, the first returns the probability of a β-barrels
being present, while the second returns a wide range of information for each sequence,
such as OMPdb family, number of β-strands and reliability of each prediction, making it
the most complete between all the tools analyzed. It is also important to note that PRED-
TMBB2 prediction methods are based on Hidden Markov Models which, which according
to Bagos et al. 2005, are the most reliable predictors for β-barrels (9).

The study regarding the tools for TMBs prediction selected PRED-TMBB2 as the most re-
liable for TranSyT’s classifications due its overall performance when compared with other
tools.

5.1.A
ssessm

ent
of

available
m

ethods
to

predict
transm

em
brane

β-barrels
69

Table 14.: Results of each tool with the only false positive highlighted in yellow and the only error in red.

Entry Length Organism Topology
PRED-TMBB2 BOCTOPUS2

BetAware BOMP MCMBB
Prediction #TM Prediction #TM

1BXW A 175 Escherichia coli β-barrel yes 8 yes 8 yes yes yes
1TLY B 282 Escherichia coli β-barrel yes 12 yes 12 yes yes yes
2BRJ C 191 Arabidopsis thaliana β-barrel no 0 no 0 no no no
2JK4 A 299 Homo sapiens β-barrel yes 14 yes 16 yes yes yes
2K4T A 296 Homo sapiens β-barrel yes 14 yes 14 yes yes yes
3GP6 A 166 Escherichia coli β-barrel yes 8 yes 8 yes yes yes
4DCB 301 Homo sapiens β-barrel yes 10 yes 10 yes yes yes
4NTJ A 473 Homo sapiens α-helical no 0 no 0 no no no
4O6Y A 234 Arabidopsis thaliana α-helical no 0 no 0 no no no
4R9U B 338 Escherichia coli α-helical no 0 no 0 no no no
4X5M A 102 Escherichia coli α-helical no 0 no 0 no no no
5GLI A 471 Homo sapiens α-helical no 0 no 0 no no no
5JDP A 290 Homo sapiens β-barrel yes 14 yes 12 yes yes yes
5NIK K 664 Escherichia coli α-helical no 0 no 0 FAIL no no
5TZY A 499 Homo sapiens α-helical no 2 no 0 no no no
5XDO A 300 Homo sapiens β-barrel yes 16 yes 14 yes yes yes
5XPD A 298 Arabidopsis thaliana α-helical no 0 no 0 no no no
P00441 157 Homo sapiens β-stranded no 0 no 0 no no no
P0A910 352 Escherichia coli β-barrel yes 8 yes 8 yes yes yes
P0A917 174 Escherichia coli β-barrel yes 6 yes 8 yes yes yes
P0ACF8 140 Escherichia coli β-stranded no 0 no 0 no no no
P0ACJ8 214 Escherichia coli β-stranded no 0 no 0 no no no
P20023 1051 Homo sapiens β-stranded no 0 no 0 no yes no
Q39255 163 Arabidopsis thaliana β-stranded no 0 no 0 no no no
Q9SMT7 522 Arabidopsis thaliana β-stranded no 0 no 0 no no no

5.2. Validation of TCDB’s information 70

5.2 validation of tcdb’s information

While performing the comparison, all words from both databases were sought in the dictio-
nary. When a match was found, the keyword for the match replaced the sought word. The
result of this assessment was organized in 12 different classifications, as shown in table 15.

Table 15.: Comparison results and description of the respective classifications. Data retrieved on
April 2018.

Classification Description Frequency

Same The same metabolites in both databases. 2 643

Different Metabolites in both databases are completely different. 1 815

Unknown TCDB Internal database has results whilst TCDB has “unknown”. 569

Unknown Internal database TCDB has results whilst the Internal database has “un-
known”.

357

Unknown Both Both databases have “unknown” as metabolites. 559

Subset TCDB
All TCDB metabolites are present in the wider set of
metabolites described by the internal database. 340

Subset Internal database
All IntenalDB metabolites are present in the wider set of
metabolites described by TCDB. 331

None TCDB Cases where TCDB has ”none” as transported metabolites. 305

Proton TCDB The only difference is an extra H+ in TCDB’s metabolites. 3

Proton Internal database The only difference is an extra H+ in internal database’s
metabolites.

481

None Internal database No metabolites available in the internal database 158

Not annotated TCDB Entries without ”substrates” in TCDB. 88

TOTAL 7 649

Although the number of entries in TCDB was above 16 000 at the time of the study, only
7 610 entries characterized in the internal database were selected for comparison. Main-
taining TRIAGE’s manually curated internal database up to date is very demanding and
requires numerous person hours; thus, an automated approach was required. This short-

5.2. Validation of TCDB’s information 71

coming led to the development of TranSyT’s automatically updatable database, described
in this work.

The results described in table 15, show that approximately one third of the metabolites
represented in both databases are identical. Also, the “Unknown - Internal database” and
“None - Internal database” classifications assume TCDB annotation as correct, as it is not
possible to infer metabolites from “unknown” or “none”. “Subset - TCDB” is also assumed
as correct, as all metabolites described by TCDB are present in the internal database set.
“Proton - TCDB” and “Proton - internal database” can also be assumed as correct as the
only difference between the entries of both databases is an extra H+. Usually, the pres-
ence of a proton in the “substrates” field at TCDB, is associated to symport or antiport
mechanisms. However, this metabolite is already described in transporter families general
transport reactions. Thus, the comparison can be performed without it. Assuming all these
cases as correct, approximately 48% of the classifications remain as “incorrect”. The entries
of these groups were reviewed manually.

Regarding the classification “Different”, it was shown that a major portion of the dif-
ferences were due to hierarchical differences. For instance, TCDB is often more generic,
describing that a sugar is transported instead of sucrose, while the opposite happens with
the internal database. This problem will be resolved by TranSyT through the search for
metabolites hierarchical “descendants”. Other major difference was ions being transported
along with other substrates, with either one of the databases not including these ions. These
situations were ignored and TCDB was considered correct as when a ion is mandatory it is
included in the generic transport reaction (as for protons), and also because ions are not in-
volved in metabolic reactions. The same methodology is used for the classification “Subset
- Internal database”.

Of the total entries, 569 of them were classified as “Unknown TCDB”, as only TCDB
was missing the metabolites to transport. Likewise, the internal database had 357 entries
with unknown metabolites. Both databases described the metabolite associated to the same
entries as “unknown” in 559 cases. Metabolites classified as “none” occurred 305 times in
TCDB and 158 in the Internal database, with only one of them in common.

Therefore, TCDB was selected as source for the metabolites annotation because: (1) 52%
of the information was the same as the annotated in the internal database records; (2)
among the 48% “different” data there was no significant differences; (3) TCDB will contin-
uously keep updating the database information, adding new entries to the existing ones.
This allows TranSyT to keep retrieving data generated from TCDB without the need to cu-
rate it. Nevertheless, future errors found at TCDB’s substrates annotations can be overcome,
by adding exception to TranSyT’s annotation workflow.

5.3. merlin’s improvements 72

The file “Validation TCDB.xlsx” containing the complete data of the analysis performed
to assess TCDB information is available at https://nextcloud.bio.di.uminho.pt/s/

CKb3JNfCyGFrqy9.

5.3 merlin’s improvements

5.3.1 Compartments parsing and integration

merlin’s new “Compartments annotation panel”, including the window that opens when
the integration process is launched, is shown in figure 16.

Figure 16.: Representation of the differences between the old and new “Compartments an-
notation panel”. Green: new feature to clean all integrated data or just the
selected data; Red: The before (inside the yellow box) and after of some options.
Instead of typing values directly in the text boxes, the user can select between
options; Blue: After clicking “integrate to model”, a new window opens, asking
which, if any, compartments the user wants to be ignored.

Replacing the text boxes where the user would have to type text directly, by methods that
make available options to select, errors generated by bad input from the user are eliminated.
This option was also taken into account while developing TranSyT.

A new feature added to the panel is the “clean integration” option. If errors occur dur-
ing the integration process, it is possible to revert the model comparmentalization. This
process, can be individually performed to “biochemical reactions” and/or “transport reac-
tions”. A similar option was also developed for the “Transporters annotation panel”, which

https://nextcloud.bio.di.uminho.pt/s/CKb3JNfCyGFrqy9
https://nextcloud.bio.di.uminho.pt/s/CKb3JNfCyGFrqy9

5.3. merlin’s improvements 73

allows cleaning transporters integration. Before these implementations, integrations were
irreversible.

5.3.2 Annotation workflow

Regarding the automatic annotation of enzymes, the user will implement the annotation
pipeline in the window shown in figure 17. The slots are numbered from 1 to 9 and the
partition of workflow in 4 different fields is also obvious.

Figure 17.: Representation of an hypotethical workflow for species Nitrobacter vulgaris.

When the annotation process is complete, the “Enzymes annotation panel” is refreshed
and the confidence level of the annotations is shown in the column “notes”, as demon-
strated in figure 18.

The improvements made in merlin allowed achieving a more user-friendly GUI for compart-
ments integration, which allows to avoid errors from the user. Also the enzymes annotation
process was successfully improved, due the achievement of a fully automatic process for
the assignment of functions to genes.

5.4. TRIAGE versus TranSyT 74

Figure 18.: Results of automatic annotation using workflow represented in figure 17.

5.4 triage versus TranSyT

The main goal of this project is the development of a tool that performs the same tasks
as TRIAGE, using more efficient methods and overcoming TRIAGE’s major restrictions,
namely: TMDs identification;

• TRIAGE’s rigorous rules in TCGs identification;

• slow running time;

• and inability to automatically follow TCDB’s growth.

Figure 19 represents each iteration of the proteins identification process in TRIAGE. The
total number of genes in the genome is gradually reduced, based on one method at each
iteration. Genes predicted to encode TMAs are selected to be aligned against TCDB records,
using Smith-Waterman (128) algorithm running in the users’ computer. This approach
does not take into account proteins encoding TMBs, as no method was used to perform
such identification. TranSyT addresses this problem using a different approach. Instead of
iteratively reducing the number of genes at each stage, it combines the information retrieved
from several sources to assign confidence levels. In TranSyT, unlike TRIAGE, genes can be
considered transport systems even if no TMD are predicted on the sequence. Likewise,
TranSyT does not require the gene to have a location prediction on a membrane. TranSyT
assesses the homology against TCDB records and these alignments allow annotating genes
with TC families.

5.4. TRIAGE versus TranSyT 75

The TMD and location predictions allow assigning a confidence level to the identifica-
tion of transporter system. This feature is only available for merlin’s version, which uses
third-party tools to provide these predictions. KBase does not have tools to perform these
predictions and does not rely on third-party tools.

Figure 19.: TRIAGE architecture.

The homology search performed by TranSyT uses BLAST+ to perform the alignments and
several advantages resulted from this decision. The alignments can be performed remotely,
which expedites the process, and unlike TRIAGE, are performed to the entire genome. Us-
ing a machine running Windows 1064-bit Operative System, processor Intel(R) Core(TM) i7
first generation CPU 1.60 GHz, and 8 GB of RAM, alignments can be performed in average
in 5 minutes for the genome of E. coli, containing 4 140 genes. The same does not happen
with TRIAGE’s Smith-Waterman algorithm, in which an alignment of a batch of about 500
genes can take several hours.

5.4. TRIAGE versus TranSyT 76

Another major difference is the fact that TranSyT generates all transport reactions before-
hand storing them in its internal database. Whereas TRIAGE, generates the reactions for
every descendant metabolite after the identification of TCGs, increasing the time for anno-
tating the transporters. TRIAGE uses its manually curated database to generate transport
reactions, currently counting with 7 383 entries (42% of total TCDB entries). Efforts to
manually assemble this database are time-consuming and an endeavor for which several
researchers have contributed. Despite these efforts, TRIAGE still has less than half of the
total entries described in TCDB. TranSyT automatically retrieves information from TCDB
and generates the suitable transport reaction for each metabolite described, storing the in-
formation in its internal database, making it available per request. This allows TranSyTto
always be up-to-date with TCDB’s constantly increasing information.

When the process is complete, the output format of both tools is the same. However,
TranSyT is a standalone software that can be integrated into other tools (currently merlin
and KBase) or run independently, unlike TRIAGE that was built inside merlin’s framework.
Figure 19 represents the entire process of transporters identification and generation of reac-
tions to be executed by TRIAGE. The same process using a different approach is represented
in 20, that corresponds to TranSyT’s module for identification of genes encoding transporter
systems.

TranSyT’s architecture allows it to overcome TRIAGE’s limitation regarding TMB’s iden-
tification and running time. Also the internal database can be regularly updated, which is
not feasible for TRIAGE.

5.4. TRIAGE versus TranSyT 77

Figure 20.: TranSyT’s module for identification of genes encoding transporter systems.

5.5. TranSyT’s user interface 78

5.5 TranSyT ’s user interface

With the objective of creating a standalone friendly-user interface, TranSyT’s GUI was devel-
oped. When the user runs the software, the initial GUI opens and allows the user to input
the resources required for the classification of the transporters, and to select the optional
features. This GUI is shown in figure 21.

Figure 21.: TranSyT’s initial GUI.

TranSyT’s parameters configuration is available trough this user interface. Here, users can
open a new GUI (figure 22) that allows modifying the set of parameters stored in TranSyT’s
configuration file, namely:

• BLAST parameters E-value, bit score, and query coverage;

• α of equation 2 for TC families annotation;

• E-value for automatic acceptance of reactions;

• α, β, threshold, and minimum hits of equation 2 for score computing; default database
of the identifiers;

After clicking the “start” button in the initial GUI, the results are generated and displayed
in the results GUI (figure 23). A small summary of the process is displayed, providing infor-
mation about the total reactions generated, total metabolites participating in the reactions,
and total different TC families annotated. The total number of different transport types gen-
erated is shown. The results of the software can then be finnally exported in .csv or SBML
formats. Figure 23 illustrates an example of what would be the outcome of the iAF1260
model used in the validation process.

5.5. TranSyT’s user interface 79

Figure 22.: TranSyT’s configurations GUI.

Figure 23.: TranSyT’s results GUI.

5.6. TranSyT’s internal database 80

5.6 TranSyT ’s internal database

Neo4j was used to develop TranSyT’s graph database using the Neo4j Java Driver. This
database currently contains information regarding 17 321 transporter systems available in
TCDB. Table 16 illustrates the contents stored in the database. Of the total 6 015 metabo-
lites available, 5 002 were associated using hierarquical ontology search. A total of 58 623
reactions were generated for 1 176 families.

Table 16.: Summary of TranSyT’s internal database current contents.

Property Counts

TC systems (TC Number, Accession) 17 321

Accessions 17 221

TC Numbers 13 349

TC Families 1 176

Family-specific reactions 428

Metabolites 6 015

Descendent metabolites 5 002

Reactions 58 623

5.7. TranSyT’s validation 81

5.7 TranSyT ’s validation

5.7.1 Validation per gene

The iAF1260 E. coli model has 406 genes encoding 660 transport reactions and 65 reac-
tions without gene associations. Whereas TranSyT, provided 644 genes with significant
homology evidence (for an E-value of 1E-50) to transport systems listed in TCDB, and no
reactions without encoding genes. Yet, 11% of the genes present in the model were not avail-
able in TranSyT’s results. These genes include cases in which no homologies with TCDB
records were reported, and cases in which homology was reported but no reactions could
be generated, due the lack of elements in TCDB that allow generating reliable transport
reactions (for instance, no metabolites described for a transport system). A gene with locus
tag “s0001” was found in the model, encoding 13 transport reactions with 12 participating
metabolites. However, this gene cannot be traced to E. coli when sought in NCBI databases,
but to Shigella flexneri 5a str. M90T, a different organism. As the protein sequence encoded
by this gene is not present in E. coli genome, a similar result is not possible. When searched
in TCDB using BLAST, this protein also had low similarity with the records present in the
database.

The model describes 411 metabolites (including several ions) as participating in transport
reactions. Whereas TranSyT created transport reactions for 389 metabolites. Almost 35%
(143) of the metabolites present in the model’s reactions are not available in TranSyT’s
reactions set. Likewise, TranSyT also generated reactions for 121 metabolites not available
in the model transport reactions set. Analysis per gene, determined that for 59 genes, the
set of metabolites participating in transport reactions was exactly the same for the model
and for TranSyT. While the set of metabolites, participating in transport reactions, from
TranSyT was wider than the one from the model for 147 genes. Hence, almost 52% of the
model genes encoding transport proteins are associated with transport reactions involving
metabolites that TranSyT automatically associated with the same genes.

On the other hand, cases in which TranSyT associates metabolites to genes, where the
model associates to a larger set of metabolites (though including TranSyT’s set) are also
available. Most of these cases are related with genes associated to reactions that carry
metabolites not available in TCDB for those entries. Thus, TranSyT will not generate reac-
tions with those metabolites.

The average number of metabolites participating in transport reactions is 8 and 10 for the
model and TranSyT, respectively. These values are not much different and the maximum
deviation from this value is 66 for gene b0809 in TranSyT due high similarity with 36 sys-
tems of the same family (3.A.1), and the generation of reactions for every descendant of the
metabolites of those homologies. However, in the model, the maximum deviation is 247, a

5.7. TranSyT’s validation 82

Figure 24.: Number of genes and metabolites in common between the iAF1260 model and
TranSyT.

situation that happens for 4 different genes, b0929, b1377, b2215, and b0241. For these genes,
a wide range of metabolites is claimed to participate in the transport reactions associated
with such genes. However, several of the metabolites are not related in MetaCyc hierarchi-
cal ontologies, although, ions, sugars, nucleotides, amino acids, and several other classes of
metabolites are associated with these genes in the model. In TCDB, the annotation for such
transport system is a “porin transporting non-specific small molecules”, belonging to class
1.B.1. However, b0241 is annotated as phosphoporin transporting exclusively phosphate.
Another case of wider subset of metabolites per gene in the model is gene b0837. Here, the
gene has 5 metabolites in transport reactions. However, the gene has no similarities with
entries from TCDB, nor was annotated as a transport system by TranSyT. Thus, the model
annotation is likely incorrect as, according to TCDB, the proteins encoded by these genes
cannot transport such myriad of compounds.

5.7.2 Validation per reaction

The algorithm 4 used in the Validation per reaction allowed finding 175 perfect matches
with model reactions. The goal was determining if reactions encoded by a gene in the
model, are also the same in TranSyT for such gene. The automatic matching process finds
direct matches, thus the remaining were confirmed manually, to ensure that the reasons
of the mismatch were understood. Thus, using this strategy, information from UniProt,
ModelSEED, MetaCyc, and TCDB, was assessed to provide a correct classification for each
case.

5.7. TranSyT’s validation 83

In 91 cases, the reactions present in TranSyT were similar to the ones described in the
model. The metabolites being transported were the same. However, the type of transport
might not be the same. For instance, the model represents a Symport for a metabolite
M, but TCDB’s TC family reaction describes the transport of M as Uniport or Antiport.
Identical reactions with distinct reversibility were classified as similar. TranSyT generates
its reactions based in evidences of the TC family reaction equation and in the description
of the system, subfamily, family, and superfamily. Cases where no evidences were found,
simple transport, symport with proton or antiport with proton was generated, which can
explain part of the similar cases.

In 20 cases, reactions from the model were different from TranSyT. Cases like this take
place when the gene has no homologies with TCDB entries (example aforementioned b0837)
or when the type of transport is completely different. For instance, the model represents
reactions associated with genes b0731, b0697, b1621, b2429, b2167, and b2169 as phospho-
enolpyruvate (PEP) dependent. Nevertheless, TCDB does not contain any TC family reac-
tion for family 4.A.2 to which these genes belong in such database. Thus, TranSyT will not
generate a similar reaction for those genes. The same can happen with ABC transporters or
RedOx dependent reactions for example.

For 54 reactions, it was not possible to find the metabolite transported in the model’s
reactions within TranSyT’s output, although the metabolite belonged to the class of the
metabolites described in TCDB for such entry because such relationship was not available
in MetaCyc’s ontology. This issue is associated to the lack of metabolites in MetaCyc’s
hierarchy for the described class of metabolites, or to the missassignment of identifiers
when searching TCDB metabolites in Biosynth. Several reactions (65) were not associated
to genes, and could not be traced in TranSyT. In 295 cases, the metabolites (or the class
to which those metabolites belong) described in the model’s transport reactions, were not
available in the TCDB entries identified as homologous of the genes associated with such
reactions, thus TranSyT will not generate such reactions. “Undefined” cases (4) are asso-
ciated to transport reactions in the model for metabolites whose formula is not available
in ModelSEED. Hence, reactions were generated by TranSyT for comparison. Finally, cases
with different types of reactions, having clear indications in TCDB of the TC family reaction
and transported metabolites, but with different representation in the model were classified
as “Wrong in model”. Cases were all genes encoding the reactions had no similarities
with TCDB were classified as such. This classification was attributed 14 times. Table 17

summarizes the counts of all different classifications.
As for almost half the entries the metabolites were not described in TCDB, it is difficult

to assess the performance of TranSyT in this validation. The absence of these metabolites
in TCDB’s E. coli records can be associated with missing annotations in TCDB or incorrect
gene-protein-reaction rules in the model. In the former case TranSyT’s capabilities of gener-

5.7. TranSyT’s validation 84

Table 17.: Results of Validation per reaction.

Classification Counts

Perfect match 175

Similar 91

Different 20

Wrong in model 14

Metabolite missing for gene(s)
homology in MetaCyc hierarchy

54

Metabolite not available in
homologous TCDB entries

295

No gene in model 65

Undefined 4
TOTAL 718

ating transport reactions for such systems is impaired. Whereas the latter case is associated
with errors in the model. Nevertheless, TranSyT’s predictions should be validated with
wet-lab experiments to assess robustness.

5.7.3 Validation per metabolite

Validation per metabolite was performed to determine whether metabolites transported in
the model participate in any of the reactions generated by TranSyT. In this approach, TR
identifiers were generated for all reactions in the model and then compared to the ones
generated by TranSyT, regarding:

1) perfect match;

2) a match in the same type of transport without compartmentalization;

3) a match in the same type of transport without compartmentalization and without
reversibility;

4) in any other type of transport.

Compartmentalization was excluded because of reactions with the same characteristics
but with reversed compartments. However, reversibility is important; thus, it was excluded
just in the next level of classification of the aforementioned workflow.

Using this approach, it was possible to identify 44% (316) perfect matches. The exclusion
of compartments allowed to match almost 2% more metabolites; however, disregarding also

5.7. TranSyT’s validation 85

the reversibility allowed identifying 9% more matches in the same transport system, which
is more visible in symport and PEP-dependent reactions. The next step was to exclude the
type of transport and comparing the metabolites participating in the transport. This enabled
identifying nearly 20% more matches. Nevertheless, 25% of the metabolites of the model
do not participate in any of the reactions generated by TranSyT. A possible justification
seems to be associated with the fact that several of these metabolites were classified in the
validation per reaction as “Metabolite not available in homologous TCDB entries”.

Table 18.: Summary of the counts for validation per metabolite.

Mechanism

Same
Same

(no Compartments)

Same
(no Compartments
no Reversibility)

Other No match TOTAL

ABC 12.1%(87) 0%(0) 0%(0) 1.1%(8) 4.5%(32) 17.7%(127)
Symport 8.4%(60) 0.1%(1) 4.7%(34) 5.6%(40) 2.5%(18) 21, 3%(153)
Uniport 21.2%(152) 1.1%(8) 2.2%(16) 9.2%(66) 14.3%(103) 48.1%(345)
Antiport 1.8% (13) 0%(0) 1.5%(11) 1.8%(13) 3.6%(26) 8.8%(63)
PEP 0%(0) 0%(0) 0.7%(5) 1.5%(11) 0%(0) 2.2%(16)
CoA 0.6%(4) 0.4%(4) 0%(0) 0.1%(1) 0.3%(2) 1.4%(10)
NAD 0%(0) 0%(0) 0%(0) 0.4%(3) 0.1%(1) 0.6%(4)
TOTAL 44%(316) 1.7%(12) 9.2%(66) 19.8%(142) 25.4%(182) 100%(718)

TranSyT was able to identify transport reactions for nearly 75% of the metabolites trans-
ported in the model. All files containing the validation data of the three methods of valida-
tion used are available in separate Excel documents https://nextcloud.bio.di.uminho.

pt/s/CKb3JNfCyGFrqy9.

https://nextcloud.bio.di.uminho.pt/s/CKb3JNfCyGFrqy9
https://nextcloud.bio.di.uminho.pt/s/CKb3JNfCyGFrqy9

5.7. TranSyT’s validation 86

5.7.4 GPRs validation

As observed during the validation per gene stage, TranSyT is able to associate reactions
to genes. Nevertheless, using the method described in Algorithm 3, TranSyT is also able
to find protein complexes composed by several subunits. Using this method, 293 complex
systems were found and associated to 454 different transport reactions. TranSyT was able
to successfully create GPR associations for systems as long as 13 subunits, such as:

• 3.D.1.1.1 - b2276 and b2277 and b2278 and b2279 and b2280 and b2281 and b2282 and
b2283 and b2284 and b2285 and b2286 and b2287 and b2288.

The complete model contains 88 complexes associated to 133 different reactions. How-
ever, to validate TranSyT’s GPR rules, the 316 perfect matches of the validation per metabo-
lite were compared to the model rules. Regarding these reactions, TranSyT found 95 dif-
ferent complexes for 86 reactions, whereas the model described 40 different complexes for
only 60 reactions. TranSyT’s rules were in agreement 52 times. When not in agreement, mi-
nor differences were found 3 times, with only one subunit being different. The remaing 5
different rules were completely dissimilar, with TranSyT creating rules with a greater num-
ber of subunits than the ones in the model. TranSyT was able to create gene rules for 21
reactions assigned with just one gene, and 5 reactions without any gene rule, in the model.
A graphical representation of the comparison is illustrated in figure 25.

Figure 25.: Comparison between the number of protein complexes found in iAF1260 and
TranSyT.

5.7. TranSyT’s validation 87

The validation of TranSyT’s classifications using the E. coli model iAF1260, shows that
TranSyT assigns transport reactions to 89% of the genes described as transporters by the
model, and generated transport reactions for almost 75% of the metabolites participating
in transport reactions in the model. Unlike the model, TranSyT assigned gene rules to all
reactions generated, including complexes formed by multiple genes when a reactions is
encoded by several subunits. All GPRs generated and data used in the validation process
are available https://nextcloud.bio.di.uminho.pt/s/CKb3JNfCyGFrqy9.

https://nextcloud.bio.di.uminho.pt/s/CKb3JNfCyGFrqy9

6

C O N C L U S I O N

6.1 conclusions

The work presented in this thesis aimed to develop a software that could identify, classify,
generate transport reactions, and annotate the genome of any organism. TranSyT is the
outcome of that goal, the next iteration of TRIAGE, set to overcome its limitations. Unlike
TRIAGE whose internal database was updated once every year through the effort of several
researchers, TranSyT is automatically updatable, having the ability to scrape TCDB more
frequently to follow its growth and changes. TranSyT’s architecture allows it to be fast,
generating results in a few minutes for a bacterial genome of the size of E. coli.

A process for the identification of transmembrane β-barrels was developed and imple-
mented in TranSyT to determine the reliability of the annotation, along with the predictions
of α-helices and compartments. This feature will only be available in merlin’s integrated ver-
sion and in TranSyT’s standalone version. To date, besides TRIAGE and TranSyT, no other
software is known to perform the classification of transporter systems while generating the
respective transport reactions.

The validation of the software shows that TranSyT was able to successfully generate re-
actions for nearly 75% of the metabolites transported in the iAF1260 model, matching the
metabolites involved in the reactions for 52% of the genes. Moreover, it allowed identifying
genes encoding transport reaction without homologies with any of the records of TCDB,
and genes that encode reactions not able of carry metabolites as described in the model.
Almost 90% of the genes encoding transport reactions in the model were also classified as
transporters by the software, and TranSyT allowed to find a gene not related to the organism
in the model and reactions not encoded by any gene. TranSyT’s capabilities of generating
GPRs allowed assigning 293 complexes to 454 reactions, including the assignment of GPRs
to reactions with no gene rule in the model. The validation also allowed noticing that Tran-
SyT reliance on TCDB might impair some predictions, as various TC families are lacking
reactions and almost 5 000 transporter systems are not associated with metabolites. This
represents a limitation, as homologies with these systems, will not be associated to reactions.

88

6.2. Prospect for future work 89

However, TranSyT is consistent in its classifications and uses the same methods to generate
automatically reactions for all transporter system, with virtually no human interaction.

All objectives of this project were accomplished, nevertheless the integration with KBase
is still an ongoing task. A standalone version of TranSyT is freely available at https://

gitlab.bio.di.uminho.pt/TranSyT.

6.2 prospect for future work

The search for reliable alternatives to TCDB is of paramount importance, as the expansion
of the database will ultimately increase the quality of the classifications, while decreasing
the dependency in one single source of information. Moreover, the search of more efficient
predictors for the optional features is a priority, as the levels of confidence are a good base to
assess TranSyT’s classifications. Current prediction tools, besides not providing instances
to be run locally in TranSyT’s webserver, slow down the whole process, reason why an
alternative must be sought.

6.3 outcomes

During the development of this thesis the following outcomes were accomplished:

• Cruz, F.; Lagoa, D.; Mendes, J.; Rocha, I.; Ferreira, E. C.; Rocha, M.; Dias, O. SamPler
a Novel Method for Selecting Parameters for Annotation Routines, submitted (under
revision), 2018

• Lagoa, D; Liu, F.; Ferreira, E.C.; Faria, J.; Henry, C.; Dias, O. Towards a genome-
wide transport systems encoding genes tracker. 5th Conference on Constraint-Based
Reconstruction and Analysis, Seatle, USA, 2018 (Poster)

https://gitlab.bio.di.uminho.pt/TranSyT
https://gitlab.bio.di.uminho.pt/TranSyT

B I B L I O G R A P H Y

[1] R. Agren, L. Liu, S. Shoaie, W. Vongsangnak, I. Nookaew, and J. Nielsen. The raven
toolbox and its use for generating a genome-scale metabolic model for penicillium
chrysogenum. PLoS computational biology, 9(3):e1002980, 2013.

[2] B. Alberts. Molecular biology of the cell. Garland science, 2017.

[3] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment
search tool. Journal of molecular biology, 215(3):403–410, 1990.

[4] F. Aplop and G. Butler. Transath: Transporter prediction via annotation transfer by
homology. 2017.

[5] A. P. Arkin, R. W. Cottingham, C. S. Henry, N. L. Harris, R. L. Stevens, S. Maslov,
P. Dehal, D. Ware, F. Perez, S. Canon, et al. Kbase: The united states department of
energy systems biology knowledgebase. Nature biotechnology, 36(7), 2018.

[6] P. Artimo, M. Jonnalagedda, K. Arnold, D. Baratin, G. Csardi, E. De Castro, S. Du-
vaud, V. Flegel, A. Fortier, E. Gasteiger, et al. Expasy: Sib bioinformatics resource
portal. Nucleic acids research, 40(W1):W597–W603, 2012.

[7] R. K. Aziz, D. Bartels, A. A. Best, M. DeJongh, T. Disz, R. A. Edwards, K. Formsma,
S. Gerdes, E. M. Glass, M. Kubal, et al. The rast server: rapid annotations using
subsystems technology. BMC genomics, 9(1):75, 2008.

[8] P. G. Bagos, T. D. Liakopoulos, and S. J. Hamodrakas. Finding beta-barrel outer
membrane proteins with a markov chain model. WSEAS Transactions on Biology and
Biomedicine, 2(1):186–189, 2004.

[9] P. G. Bagos, T. D. Liakopoulos, and S. J. Hamodrakas. Evaluation of methods for pre-
dicting the topology of β-barrel outer membrane proteins and a consensus prediction
method. BMC bioinformatics, 6(1):7, 2005.

[10] P. G. Bagos, T. D. Liakopoulos, I. C. Spyropoulos, and S. J. Hamodrakas. Pred-tmbb: a
web server for predicting the topology of β-barrel outer membrane proteins. Nucleic
acids research, 32(suppl 2):W400–W404, 2004.

[11] A. Barret et al. Enzyme nomenclature: Recommendations of the nomenclature com-
mittee of the international union of biochemistry and molecular biology. Academic,
San Diego, CA, 1992.

90

Bibliography 91

[12] S. A. Becker, A. M. Feist, M. L. Mo, G. Hannum, B. Ø. Palsson, and M. J. Herrgard.
Quantitative prediction of cellular metabolism with constraint-based models: the co-
bra toolbox. Nature protocols, 2(3):727, 2007.

[13] F. S. Berven, K. Flikka, H. B. Jensen, and I. Eidhammer. Bomp: a program to predict
integral β-barrel outer membrane proteins encoded within genomes of gram-negative
bacteria. Nucleic acids research, 32(suppl 2):W394–W399, 2004.

[14] J. Boele, B. G. Olivier, and B. Teusink. Fame, the flux analysis and modeling environ-
ment. BMC systems biology, 6(1):8, 2012.

[15] P. Bogaerts, K. M. Gziri, and A. Richelle. From mfa to fba: Legitimating objective
function and linear constraints. IFAC-PapersOnLine, 49(7):460–465, 2016.

[16] N. R. Boyle, A. A. Shastri, and J. A. Morgan. Network stoichiometry. In Plant Metabolic
Networks, pages 211–243. Springer, 2009.

[17] S. Brohée, R. Barriot, Y. Moreau, and B. André. Ytpdb: a wiki database of yeast mem-
brane transporters. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1798(10):1908–
1912, 2010.

[18] A. P. Burgard, P. Pharkya, and C. D. Maranas. Optknock: a bilevel programming
framework for identifying gene knockout strategies for microbial strain optimization.
Biotechnology and bioengineering, 84(6):647–657, 2003.

[19] C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, and T. L.
Madden. Blast+: architecture and applications. BMC bioinformatics, 10(1):421, 2009.

[20] R. Caspi, H. Foerster, C. A. Fulcher, P. Kaipa, M. Krummenacker, M. Latendresse,
S. Paley, S. Y. Rhee, A. G. Shearer, C. Tissier, et al. The metacyc database of metabolic
pathways and enzymes and the biocyc collection of pathway/genome databases. Nu-
cleic acids research, 36(suppl 1):D623–D631, 2007.

[21] J.-M. Chang, P. Di Tommaso, J.-F. Taly, and C. Notredame. Accurate multiple sequence
alignment of transmembrane proteins with psi-coffee. BMC bioinformatics, 13(4):S1,
2012.

[22] A. R. Choudhury and M. Novič. Predβtm: a novel β-transmembrane region predic-
tion algorithm. PloS one, 10(12):e0145564, 2015.

[23] U. Consortium. The universal protein resource (uniprot). Nucleic acids research,
35(suppl 1):D193–D197, 2006.

[24] N. R. Coordinators. Database resources of the national center for biotechnology in-
formation. Nucleic acids research, 44(Database issue):D7, 2016.

Bibliography 92

[25] D. Croft, A. F. Mundo, R. Haw, M. Milacic, J. Weiser, G. Wu, M. Caudy, P. Garapati,
M. Gillespie, M. R. Kamdar, et al. The reactome pathway knowledgebase. Nucleic
acids research, 42(D1):D472–D477, 2013.

[26] F. Cruz, D. Lagoa, J. Mendes, I. Rocha, E. C. Ferreira, M. Rocha, and O. Dias. Sam-
Pler a novel method for selecting parameters for annotation routines. Submitted for
publication, 2018.

[27] W.-D. Deckwer, D. Jahn, D. Hempel, and A.-P. Zeng. Systems biology approaches to
bioprocess development. Engineering in life sciences, 6(5):455–469, 2006.

[28] K. Degtyarenko, P. De Matos, M. Ennis, J. Hastings, M. Zbinden, A. McNaught,
R. Alcántara, M. Darsow, M. Guedj, and M. Ashburner. Chebi: a database and ontol-
ogy for chemical entities of biological interest. Nucleic acids research, 36(suppl 1):D344–
D350, 2007.

[29] O. Dias, D. Gomes, P. Vilaça, J. Cardoso, M. Rocha, E. C. Ferreira, and I. Rocha.
Genome-wide semi-automated annotation of transporter systems. IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics (TCBB), 14(2):443–456, 2017.

[30] O. Dias and I. Rocha. Systems biology in fungi. Molecular Biology of Food and Water
Borne Mycotoxigenic and Mycotic Fungi. CRC Press, Boca Raton, pages 69–92, 2015.

[31] O. Dias, M. Rocha, E. C. Ferreira, and I. Rocha. Reconstructing genome-scale
metabolic models with merlin. Nucleic acids research, 43(8):3899–3910, 2015.

[32] Y. Ding and C. E. Lawrence. A statistical sampling algorithm for rna secondary
structure prediction. Nucleic acids research, 31(24):7280–7301, 2003.

[33] L. Dobson, I. Reményi, and G. E. Tusnády. Cctop: a consensus constrained topology
prediction web server. Nucleic acids research, 43(W1):W408–W412, 2015.

[34] S. R. Eddy. Profile hidden markov models. Bioinformatics, 14(9):755–763, 1998.

[35] L. D. Elbourne, S. G. Tetu, K. A. Hassan, and I. T. Paulsen. Transportdb 2.0: a database
for exploring membrane transporters in sequenced genomes from all domains of life.
Nucleic acids research, 45(D1):D320–D324, 2016.

[36] A. Elofsson and G. v. Heijne. Membrane protein structure: prediction versus reality.
Annu. Rev. Biochem., 76:125–140, 2007.

[37] P. Fariselli, C. Savojardo, P. L. Martelli, and R. Casadio. Grammatical-restrained hid-
den conditional random fields for bioinformatics applications. Algorithms for Molecu-
lar Biology, 4(1):13, 2009.

Bibliography 93

[38] A. M. Feist, C. S. Henry, J. L. Reed, M. Krummenacker, A. R. Joyce, P. D. Karp, L. J.
Broadbelt, V. Hatzimanikatis, and B. Ø. Palsson. A genome-scale metabolic recon-
struction for escherichia coli k-12 mg1655 that accounts for 1260 orfs and thermody-
namic information. Molecular systems biology, 3(1):121, 2007.

[39] X. Feng, Y. Xu, Y. Chen, and Y. J. Tang. Microbesflux: a web platform for drafting
metabolic models from the kegg database. BMC systems biology, 6(1):94, 2012.

[40] D. R. Flower. The lipocalin protein family: structure and function. Biochemical Journal,
318(1):1–14, 1996.

[41] G. D. Forney. The viterbi algorithm. Proceedings of the IEEE, 61(3):268–278, 1973.

[42] T. C. Freeman Jr and W. C. Wimley. Tmbb-db: a transmembrane β-barrel proteome
database. Bioinformatics, 28(19):2425–2430, 2012.

[43] A. G. Garrow, A. Agnew, and D. R. Westhead. Tmb-hunt: a web server to
screen sequence sets for transmembrane β-barrel proteins. Nucleic acids research,
33(suppl 2):W188–W192, 2005.

[44] A. Gevorgyan, M. E. Bushell, C. Avignone-Rossa, and A. M. Kierzek. Surreyfba:
a command line tool and graphics user interface for constraint-based modeling of
genome-scale metabolic reaction networks. Bioinformatics, 27(3):433–434, 2010.

[45] D. Glez-Peña, M. Reboiro-Jato, P. Maia, M. Rocha, F. Dı́az, and F. Fdez-Riverola.
Aibench: a rapid application development framework for translational research in
biomedicine. Computer methods and programs in biomedicine, 98(2):191–203, 2010.

[46] T. Goldberg, M. Hecht, T. Hamp, T. Karl, G. Yachdav, N. Ahmed, U. Altermann,
P. Angerer, S. Ansorge, K. Balasz, et al. Loctree3 prediction of localization. Nucleic
acids research, 42(W1):W350–W355, 2014.

[47] E. Grafahrend-Belau, C. Klukas, B. H. Junker, and F. Schreiber. Fba-simvis: interactive
visualization of constraint-based metabolic models. Bioinformatics, 25(20):2755–2757,
2009.

[48] M. M. Gromiha, S. Ahmad, and M. Suwa. Tmbeta-net: discrimination and prediction
of membrane spanning β-strands in outer membrane proteins. Nucleic acids research,
33(suppl 2):W164–W167, 2005.

[49] M. M. Gromiha, Y. Yabuki, S. Kundu, S. Suharnan, and M. Suwa. Tmbeta-genome:
database for annotated β-barrel membrane proteins in genomic sequences. Nucleic
acids research, 35(suppl 1):D314–D316, 2006.

Bibliography 94

[50] M. M. Gromiha, Y. Yabuki, M. X. Suresh, A. M. Thangakani, M. Suwa, and K. Fukui.
Tmfunction: database for functional residues in membrane proteins. Nucleic acids
research, 37(suppl 1):D201–D204, 2008.

[51] J. J. Hamilton and J. L. Reed. Software platforms to facilitate reconstructing genome-
scale metabolic networks. Environmental microbiology, 16(1):49–59, 2014.

[52] S. Hayat and A. Elofsson. Boctopus: improved topology prediction of transmembrane
β barrel proteins. Bioinformatics, 28(4):516–522, 2012.

[53] S. Hayat, C. Peters, N. Shu, K. D. Tsirigos, and A. Elofsson. Inclusion of dyad-repeat
pattern improves topology prediction of transmembrane β-barrel proteins. Bioinfor-
matics, 32(10):1571–1573, 2016.

[54] C. S. Henry, M. DeJongh, A. A. Best, P. M. Frybarger, B. Linsay, and R. L. Stevens.
High-throughput generation, optimization and analysis of genome-scale metabolic
models. Nature biotechnology, 28(9):977–982, 2010.

[55] F. Holzschuher and R. Peinl. Performance of graph query languages: comparison of
cypher, gremlin and native access in neo4j. In Proceedings of the Joint EDBT/ICDT 2013
Workshops, pages 195–204. ACM, 2013.

[56] B. Honoré and M. Østergaard. Transcriptomics and proteomics: integration? eLS,
2003.

[57] A. Hoppe, S. Hoffmann, A. Gerasch, C. Gille, and H.-G. Holzhütter. Fasimu: flexi-
ble software for flux-balance computation series in large metabolic networks. BMC
bioinformatics, 12(1):28, 2011.

[58] P. Horton, K.-J. Park, T. Obayashi, N. Fujita, H. Harada, C. Adams-Collier, and
K. Nakai. Wolf psort: protein localization predictor. Nucleic acids research,
35(suppl 2):W585–W587, 2007.

[59] J. Hu and C. Yan. A method for discovering transmembrane beta-barrel proteins in
gram-negative bacterial proteomes. Computational biology and chemistry, 32(4):298–301,
2008.

[60] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. Extreme learning machine: theory and
applications. Neurocomputing, 70(1):489–501, 2006.

[61] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A. P. Arkin, B. J.
Bornstein, D. Bray, A. Cornish-Bowden, et al. The systems biology markup language
(sbml): a medium for representation and exchange of biochemical network models.
Bioinformatics, 19(4):524–531, 2003.

Bibliography 95

[62] M. Ikeda, M. Arai, T. Okuno, and T. Shimizu. Tmpdb: a database of experimentally-
characterized transmembrane topologies. Nucleic acids research, 31(1):406–409, 2003.

[63] S. Jayasinghe, K. Hristova, and S. H. White. Mptopo: A database of membrane protein
topology. Protein Science, 10(2):455–458, 2001.

[64] D. T. Jones. Improving the accuracy of transmembrane protein topology prediction
using evolutionary information. Bioinformatics, 23(5):538–544, 2007.

[65] T. Jores and D. Rapaport. Early stages in the biogenesis of eukaryotic β-barrel proteins.
FEBS letters, 591(17):2671–2681, 2017.

[66] L. Käll, A. Krogh, and E. L. Sonnhammer. An hmm posterior decoder for
sequence feature prediction that includes homology information. Bioinformatics,
21(suppl 1):i251–i257, 2005.

[67] L. Käll, A. Krogh, and E. L. Sonnhammer. Advantages of combined transmembrane
topology and signal peptide predictionthe phobius web server. Nucleic acids research,
35(suppl 2):W429–W432, 2007.

[68] M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, and M. Hattori. The kegg resource
for deciphering the genome. Nucleic acids research, 32(suppl 1):D277–D280, 2004.

[69] P. D. Karp. Pathway databases: a case study in computational symbolic theories.
Science, 293(5537):2040–2044, 2001.

[70] Z. A. King, J. Lu, A. Dräger, P. Miller, S. Federowicz, J. A. Lerman, A. Ebrahim, B. O.
Palsson, and N. E. Lewis. Bigg models: A platform for integrating, standardizing and
sharing genome-scale models. Nucleic acids research, 44(D1):D515–D522, 2015.

[71] S. Klamt, J. Saez-Rodriguez, and E. D. Gilles. Structural and functional analysis of
cellular networks with cellnetanalyzer. BMC systems biology, 1(1):2, 2007.

[72] J. H. Kleinschmidt. Folding and stability of monomeric b-barrel membrane proteins.
2005.

[73] A. Klug. The discovery of the dna double helix. DNA, Changing Science and Society,
2004.

[74] D. Kozma, I. Simon, and G. E. Tusnády. Pdbtm: Protein data bank of transmembrane
proteins after 8 years. Nucleic acids research, 41(D1):D524–D529, 2012.

[75] A. Krogh, B. Larsson, G. Von Heijne, and E. L. Sonnhammer. Predicting trans-
membrane protein topology with a hidden markov model: application to complete
genomes. Journal of molecular biology, 305(3):567–580, 2001.

Bibliography 96

[76] A. Krogh, B. Larsson, G. Von Heijne, and E. L. Sonnhammer. Predicting trans-
membrane protein topology with a hidden markov model: application to complete
genomes1. Journal of molecular biology, 305(3):567–580, 2001.

[77] S. Y. Lee. High cell-density culture of escherichia coli. Trends in biotechnology, 14(3):98–
105, 1996.

[78] S. Y. Lee, S. B. Sohn, H. U. Kim, J. M. Park, T. Y. Kim, J. D. Orth, and B. Ø. Pals-
son. Genome-scale network modeling. In Systems Metabolic Engineering, pages 1–23.
Springer, 2012.

[79] T. J. Lee, I. Paulsen, and P. Karp. Annotation-based inference of transporter function.
Bioinformatics, 24(13):i259–i267, 2008.

[80] W. Liebermeister, F. Krause, J. Uhlendorf, T. Lubitz, and E. Klipp. Semanticsbml: a
tool for annotating, checking, and merging of biochemical models in sbml format.
2009.

[81] F. Liu. Evaluation and development of algorithms and computational tools for metabolic
pathway optimization. PhD thesis, Universidade do Minho, 7 2018.

[82] W.-m. Liu. Shear numbers of protein β-barrels: definition refinements and statistics1.
Journal of molecular biology, 275(4):541–545, 1998.

[83] M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, and A. L. Lomize. Opm
database and ppm web server: resources for positioning of proteins in membranes.
Nucleic acids research, 40(D1):D370–D376, 2012.

[84] R. Luo, S. Liao, S. Zeng, Y. Li, and Q. Luo. Fluxexplorer: A general platform for
modeling and analyses of metabolic networks based on stoichiometry. Chinese Science
Bulletin, 51(6):689–696, 2006.

[85] D. Machado, R. S. Costa, M. Rocha, E. C. Ferreira, B. Tidor, and I. Rocha. Modeling
formalisms in systems biology. AMB express, 1(1):45, 2011.

[86] D. Machado, M. J. Herrgård, and I. Rocha. Stoichiometric representation of gene–
protein–reaction associations leverages constraint-based analysis from reaction to
gene-level phenotype prediction. PLoS computational biology, 12(10):e1005140, 2016.

[87] R. Mahadevan and C. Schilling. The effects of alternate optimal solutions in
constraint-based genome-scale metabolic models. Metabolic engineering, 5(4):264–276,
2003.

[88] E. R. Mardis. The impact of next-generation sequencing technology on genetics.
Trends in genetics, 24(3):133–141, 2008.

Bibliography 97

[89] A. McLachlan. Gene duplications in the structural evolution of chymotrypsin. Journal
of molecular biology, 128(1):49–79, 1979.

[90] J. J. Miller. Graph database applications and concepts with neo4j. In Proceedings of the
Southern Association for Information Systems Conference, Atlanta, GA, USA, volume 2324,
page 36, 2013.

[91] C. Mooney, Y.-H. Wang, and G. Pollastri. Sclpred: protein subcellular localization
prediction by n-to-1 neural networks. Bioinformatics, 27(20):2812–2819, 2011.

[92] T. Mueller. H2 database engine, 2006.

[93] S. Mukherjee, D. Stamatis, J. Bertsch, G. Ovchinnikova, O. Verezemska, M. Isbandi,
A. D. Thomas, R. Ali, K. Sharma, N. C. Kyrpides, et al. Genomes online database
(gold) v. 6: data updates and feature enhancements. Nucleic acids research, page
gkw992, 2016.

[94] H. Ogata, S. Goto, K. Sato, W. Fujibuchi, H. Bono, and M. Kanehisa. Kegg: Kyoto
encyclopedia of genes and genomes. Nucleic acids research, 27(1):29–34, 1999.

[95] S. Pabinger, R. Rader, R. Agren, J. Nielsen, and Z. Trajanoski. Memosys: Bioinformat-
ics platform for genome-scale metabolic models. BMC systems biology, 5(1):20, 2011.

[96] B. Palsson. Metabolic systems biology. FEBS letters, 583(24):3900–3904, 2009.

[97] P. Pareja-Tobes, R. Tobes, M. Manrique, E. Pareja, and E. Pareja-Tobes. Bio4j: a high-
performance cloud-enabled graph-based data platform. bioRxiv, page 016758, 2015.

[98] S. Patient, D. Wieser, M. Kleen, E. Kretschmann, M. Jesus Martin, and R. Apweiler.
Uniprotjapi: a remote api for accessing uniprot data. Bioinformatics, 24(10):1321–1322,
2008.

[99] K. R. Patil, I. Rocha, J. Förster, and J. Nielsen. Evolutionary programming as a plat-
form for in silico metabolic engineering. BMC bioinformatics, 6(1):308, 2005.

[100] W. R. Pearson. An introduction to sequence similarity (homology) searching. Current
protocols in bioinformatics, 42(1):3–1, 2013.

[101] N. T. Perna, G. Plunkett III, V. Burland, B. Mau, J. D. Glasner, D. J. Rose, G. F. Mayhew,
P. S. Evans, J. Gregor, H. A. Kirkpatrick, et al. Genome sequence of enterohaemor-
rhagic escherichia coli o157: H7. Nature, 409(6819):529, 2001.

[102] C. Peters, K. D. Tsirigos, N. Shu, and A. Elofsson. Improved topology prediction
using the terminal hydrophobic helices rule. Bioinformatics, 32(8):1158–1162, 2015.

Bibliography 98

[103] E. Pitkänen, P. Jouhten, J. Hou, M. F. Syed, P. Blomberg, J. Kludas, M. Oja, L. Holm,
M. Penttilä, J. Rousu, et al. Comparative genome-scale reconstruction of gapless
metabolic networks for present and ancestral species. PLoS computational biology,
10(2):e1003465, 2014.

[104] A. Prlić, A. Yates, S. E. Bliven, P. W. Rose, J. Jacobsen, P. V. Troshin, M. Chapman,
J. Gao, C. H. Koh, S. Foisy, et al. Biojava: an open-source framework for bioinformatics
in 2012. Bioinformatics, 28(20):2693–2695, 2012.

[105] Y. Quentin and G. Fichant. Abcdb: an abc transporter database. Journal of molecular
microbiology and biotechnology, 2(4):501–504, 2000.

[106] P. Raman, V. Cherezov, and M. Caffrey. The membrane protein data bank. Cellular
and Molecular Life Sciences, 63(1):36, 2006.

[107] A. Randall, J. Cheng, M. Sweredoski, and P. Baldi. Tmbpro: secondary structure,
β-contact and tertiary structure prediction of transmembrane β-barrel proteins. Bioin-
formatics, 24(4):513–520, 2007.

[108] S. Rao, O. Schmidt, A. B. Harbauer, B. Schönfisch, B. Guiard, N. Pfanner, and
C. Meisinger. Biogenesis of the preprotein translocase of the outer mitochondrial
membrane: protein kinase a phosphorylates the precursor of tom40 and impairs its
import. Molecular biology of the cell, 23(9):1618–1627, 2012.

[109] Q. Ren, K. H. Kang, and I. T. Paulsen. Transportdb: a relational database of cellular
membrane transport systems. Nucleic acids research, 32(suppl 1):D284–D288, 2004.

[110] S. M. Reynolds, L. Käll, M. E. Riffle, J. A. Bilmes, and W. S. Noble. Transmembrane
topology and signal peptide prediction using dynamic bayesian networks. PLoS com-
putational biology, 4(11):e1000213, 2008.

[111] J. S. Richardson, E. D. Getzoff, and D. C. Richardson. The beta bulge: a common
small unit of nonrepetitive protein structure. Proceedings of the National Academy of
Sciences, 75(6):2574–2578, 1978.

[112] L. W. Riley, R. S. Remis, S. D. Helgerson, H. B. McGee, J. G. Wells, B. R. Davis,
R. J. Hebert, E. S. Olcott, L. M. Johnson, N. T. Hargrett, et al. Hemorrhagic colitis
associated with a rare escherichia coli serotype. New England Journal of Medicine,
308(12):681–685, 1983.

[113] I. Robinson, J. Webber, and E. Eifrem. Graph databases. ” O’Reilly Media, Inc.”, 2013.

[114] I. Rocha, J. Förster, and J. Nielsen. Design and application of genome-scale recon-
structed metabolic models. Microbial Gene Essentiality: Protocols and Bioinformatics,
pages 409–431, 2008.

Bibliography 99

[115] I. Rocha, P. Maia, P. Evangelista, P. Vilaça, S. Soares, J. P. Pinto, J. Nielsen, K. R. Patil,
E. C. Ferreira, and M. Rocha. Optflux: an open-source software platform for in silico
metabolic engineering. BMC systems biology, 4(1):45, 2010.

[116] M. H. Saier. A functional-phylogenetic classification system for transmembrane solute
transporters. Microbiology and Molecular Biology Reviews, 64(2):354–411, 2000.

[117] M. H. Saier Jr, V. S. Reddy, B. V. Tsu, M. S. Ahmed, C. Li, and G. Moreno-Hagelsieb.
The transporter classification database (tcdb): recent advances. Nucleic acids research,
44(D1):D372–D379, 2015.

[118] M. H. Saier Jr, C. V. Tran, and R. D. Barabote. Tcdb: the transporter classification
database for membrane transport protein analyses and information. Nucleic acids
research, 34(suppl 1):D181–D186, 2006.

[119] C. Savojardo, P. Fariselli, and R. Casadio. Betaware: a machine-learning tool to de-
tect and predict transmembrane beta-barrel proteins in prokaryotes. Bioinformatics,
29(4):504–505, 2013.

[120] J. Schellenberger, R. Que, R. M. Fleming, I. Thiele, J. D. Orth, A. M. Feist, D. C.
Zielinski, A. Bordbar, N. E. Lewis, S. Rahmanian, et al. Quantitative prediction of
cellular metabolism with constraint-based models: the cobra toolbox v2. 0. Nature
protocols, 6(9):1290, 2011.

[121] I. Schomburg, A. Chang, and D. Schomburg. Brenda, enzyme data and metabolic
information. Nucleic acids research, 30(1):47–49, 2002.

[122] D. Schuenemann, P. Amin, E. Hartmann, and N. E. Hoffman. Chloroplast secy is
complexed to sece and involved in the translocation of the 33-kda but not the 23-kda
subunit of the oxygen-evolving complex. Journal of Biological Chemistry, 274(17):12177–
12182, 1999.

[123] G. E. Schulz. Porins: general to specific, native to engineered passive pores. Current
opinion in structural biology, 6(4):485–490, 1996.

[124] G. E. Schulz. β-barrel membrane proteins. Current opinion in structural biology,
10(4):443–447, 2000.

[125] R. Schwacke, A. Schneider, E. van der Graaff, K. Fischer, E. Catoni, M. Desimone, W. B.
Frommer, U.-I. Flügge, and R. Kunze. Aramemnon, a novel database for arabidopsis
integral membrane proteins. Plant physiology, 131(1):16–26, 2003.

[126] D. Segre, D. Vitkup, and G. M. Church. Analysis of optimality in natural and
perturbed metabolic networks. Proceedings of the National Academy of Sciences,
99(23):15112–15117, 2002.

Bibliography 100

[127] T. Shlomi, O. Berkman, and E. Ruppin. Regulatory on/off minimization of metabolic
flux changes after genetic perturbations. Proceedings of the National Academy of Sciences
of the United States of America, 102(21):7695–7700, 2005.

[128] T. F. Smith and M. S. Waterman. Identification of common molecular subsequences.
Journal of molecular biology, 147(1):195–197, 1981.

[129] N. Swainston, K. Smallbone, P. Mendes, D. B. Kell, and N. W. Paton. The subliminal
toolbox: automating steps in the reconstruction of metabolic networks. Journal of
Integrative Bioinformatics (JIB), 8(2):187–203, 2011.

[130] I. Thiele and B. Ø. Palsson. A protocol for generating a high-quality genome-scale
metabolic reconstruction. Nature protocols, 5(1):93–121, 2010.

[131] K. D. Tsirigos, P. G. Bagos, and S. J. Hamodrakas. Ompdb: a database of β-
barrel outer membrane proteins from gram-negative bacteria. Nucleic acids research,
39(suppl 1):D324–D331, 2010.

[132] K. D. Tsirigos, A. Elofsson, and P. G. Bagos. Pred-tmbb2: improved topology predic-
tion and detection of beta-barrel outer membrane proteins. Bioinformatics, 32(17):i665–
i671, 2016.

[133] K. D. Tsirigos, S. Govindarajan, C. Bassot, Å. Västermark, J. Lamb, N. Shu, and
A. Elofsson. Topology of membrane proteinspredictions, limitations and variations.
Current opinion in structural biology, 50:9–17, 2018.

[134] K. D. Tsirigos, C. Peters, N. Shu, L. Käll, and A. Elofsson. The topcons web server
for consensus prediction of membrane protein topology and signal peptides. Nucleic
acids research, 43(W1):W401–W407, 2015.

[135] G. E. Tusnády, L. Kalmár, H. Hegyi, P. Tompa, and I. Simon. Topdom: database of
domains and motifs with conservative location in transmembrane proteins. Bioinfor-
matics, 24(12):1469–1470, 2008.

[136] G. E. Tusnady, L. Kalmar, and I. Simon. Topdb: topology data bank of transmembrane
proteins. Nucleic acids research, 36(suppl 1):D234–D239, 2007.

[137] G. E. Tusnady and I. Simon. The hmmtop transmembrane topology prediction server.
Bioinformatics, 17(9):849–850, 2001.

[138] H. Viklund, A. Bernsel, M. Skwark, and A. Elofsson. Spoctopus: a combined predictor
of signal peptides and membrane protein topology. Bioinformatics, 24(24):2928–2929,
2008.

Bibliography 101

[139] H. Viklund and A. Elofsson. Octopus: improving topology prediction by two-track
ann-based preference scores and an extended topological grammar. Bioinformatics,
24(15):1662–1668, 2008.

[140] J. Waldispühl, C. W. O’Donnell, S. Devadas, P. Clote, and B. Berger. Modeling ensem-
bles of transmembrane β-barrel proteins. Proteins: Structure, Function, and Bioinformat-
ics, 71(3):1097–1112, 2008.

[141] W. B. Whitaker, J. A. Jones, R. K. Bennett, J. E. Gonzalez, V. R. Vernacchio, S. M.
Collins, M. A. Palmer, S. Schmidt, M. R. Antoniewicz, M. A. Koffas, et al. Engineer-
ing the biological conversion of methanol to specialty chemicals in escherichia coli.
Metabolic engineering, 39:49–59, 2017.

[142] W. Wiechert, M. Möllney, S. Petersen, and A. A. de Graaf. A universal framework for
13c metabolic flux analysis. Metabolic engineering, 3(3):265–283, 2001.

[143] U. Wittig, R. Kania, M. Golebiewski, M. Rey, L. Shi, L. Jong, E. Algaa, A. Weidemann,
H. Sauer-Danzwith, S. Mir, et al. Sabio-rkdatabase for biochemical reaction kinetics.
Nucleic acids research, 40(D1):D790–D796, 2011.

[144] J. Wright and A. Wagner. The systems biology research tool: evolvable open-source
software. BMC systems biology, 2(1):55, 2008.

[145] N. Y. Yu, M. R. Laird, C. Spencer, and F. S. Brinkman. Psortdban expanded, auto-
updated, user-friendly protein subcellular localization database for bacteria and ar-
chaea. Nucleic acids research, 39(suppl 1):D241–D244, 2010.

[146] N. Y. Yu, J. R. Wagner, M. R. Laird, G. Melli, S. Rey, R. Lo, P. Dao, S. C. Sahinalp,
M. Ester, L. J. Foster, et al. Psortb 3.0: improved protein subcellular localization
prediction with refined localization subcategories and predictive capabilities for all
prokaryotes. Bioinformatics, 26(13):1608–1615, 2010.

A
S U P P O RT M AT E R I A L

a.1 blast result example to select tc family

Table S1.: Blast output of the alignment of entry UniProt entry S7V9F2 against TCDB
records.

Begin of Table S1

Accession TC Number Description Bit Score E-value

Q6VV69 2.A.6.2.23 Periplasmic linker protein - Burkh... 960 e-126

P0AE06 8.A.1.6.1 Acriflavine resistance protein A -... 955 e-126

Q6V6X9 2.A.6.2.18 Membrane fusion protein - Pseudomo... 949 e-125

P52477 2.A.6.2.6 Multidrug resistance protein MexA ... 930 e-122

Q9WWZ9 2.A.6.2.9 Toluene efflux pump periplasmic li... 900 e-117

Q93K41 2.A.6.2.49 AcrA protein OS=Klebsiella pneumon... 879 e-114

Q9F241 2.A.6.2.42 Putative membrane fusion protein O... 876 e-114

Q0VQY5 2.A.6.2.46 Multidrug/solvent RND membrane fus... 878 e-113

Q8GC84 2.A.6.2.19 EefA lipoprotein precursor - Enter... 858 e-111

Q93PU5 2.A.6.2.11 Toluene efflux pump periplasmic li... 859 e-111

Q8Y3G9 2.A.6.2.45 Probable acriflavin resistance lip... 845 e-109

Q2FD95 2.A.6.2.29 RND family drug transporter - Acin... 840 e-108

Q9KWV5 2.A.6.2.10 Toluene efflux pump periplasmic li... 824 e-106

P37636 8.A.1.6.3 Multidrug resistance protein MdtE ... 797 e-102

Q2AAU4 2.A.6.2.26 Membrane fusion protein VmeA - Vib... 778 e-99

Q9RBY9 2.A.6.2.41 SmeA OS=Stenotrophomonas maltophil... 768 e-97

Q67GM1 2.A.6.2.4 AdeD OS=Acinetobacter sp. 4365 GN=... 699 e-87

P43505 2.A.6.2.5 Membrane fusion protein mtrC - Nei... 694 e-86

Q2FD71 2.A.6.2.40 AdeA membrane fusion protein OS=Ac... 686 e-85

O87935 2.A.6.2.24 Putative membrane fusion protein A... 673 e-83

102

A.1. Blast result example to select TC family 103

Continuation of Table S1

Accession TC Number Description Bit Score E-value
Q9ZNG9 2.A.6.2.21 MexX - Pseudomonas aeruginosa. 563 e-67

B2FLY3 2.A.6.2.14 Putative multidrug efflux protein,... 458 e-52

Q9HY86 2.A.6.2.34 Probable Resistance-Nodulation-Cel... 423 e-47

Q8ZRG8 2.A.6.2.25 Putative cation efflux pump - Salm... 421 e-46

C5IZH0 2.A.6.2.47 Acriflavin resistance protein AcrA... 419 e-46

Q79MP5 2.A.6.2.31 Membrane fusion protein SdeA - Ser... 409 e-45

Q2FD82 2.A.6.2.44 Putative RND family drug transport... 398 e-43

Q9I3R2 2.A.6.2.35 Probable Resistance-Nodulation-Cel... 384 e-41

Q9I0V5 2.A.6.2.39 Probable Resistance-Nodulation-Cel... 382 e-41

Q8RTE5 2.A.6.2.22 CmeA - Campylobacter jejuni 371 e-40

P76397 8.A.1.6.2 Multidrug resistance protein mdtA ... 329 e-34

Q4VSJ3 2.A.6.2.20 Probable RND efflux membrane-fusio... 230 e-21

Q9HWH5 2.A.6.2.32 Probable Resistance-Nodulation-Cel... 227 e-21

A0Q8A4 2.A.6.2.28 Membrane fusion protein OS=Francis... 229 e-20

Q1LCD7 2.A.6.1.6 Membrane fusion protein (MFP-RND) ... 222 e-20

Q84BQ3 3.A.1.122.12 Putative periplasmic protein OS=Ps... 219 e-19

Q9I6X6 2.A.6.2.27 Probable Resistance-Nodulation-Cel... 215 e-19

P75830 3.A.1.122.1 Macrolide-specific efflux protein ... 202 e-17

Q9I6X5 2.A.6.2.27 Probable Resistance-Nodulation-Cel... 194 e-16

Q2FD52 3.A.1.122.18 Efflux transporter, RND family, MF... 192 e-16

Q1D664 2.A.6.1.10 Putative cation efflux system prot... 181 e-14

Q1CVN0 2.A.6.1.11 Putative cobalt-zinc-cadmium resis... 175 e-14

P37973 8.A.1.2.1 Nickel and cobalt resistance prote... 166 e-13

Q88RT5 2.A.6.1.5 Cobalt/zinc/cadmium efflux RND tra... 166 e-13

P13510 2.A.6.1.2 Cobalt-zinc-cadmium resistance pro... 156 e-11

Q44585 2.A.6.1.12 Nickel-cobalt-cadmium resistance p... 153 e-11

Q1CZ64 2.A.6.3.7 Efflux transporter, RND family, MF... 147 e-10

End of Table S1

	1 Introduction
	1.1 Context and motivation
	1.2 Objectives
	1.3 Structure of the document

	2 State of the art
	2.1 Omics in Systems Biology
	2.2 Modelling
	2.2.1 Genome-Scale Metabolic Models
	2.2.2 Reconstruction/simulation and optimization tools

	2.3 Applications
	2.4 Transmembrane proteins
	2.4.1 TMA proteins predictors
	2.4.2 TMB proteins predictors

	2.5 merlin
	2.6 Methods for automatic annotation of transporter systems
	2.7 Transport Reactions Annotation and Generation - TRIAGE
	2.8 KBase
	2.9 Neo4j
	2.10 Docker
	2.11 Case Studies

	3 Methods
	3.1 transyt's architecture
	3.2 Assessment of available methods to predict transmembrane -barrels
	3.2.1 Construction of the dataset

	3.3 Validation of TCDB's information

	4 Software Development
	4.1 merlin's improvements
	4.1.1 Database services
	4.1.2 Compartments parsing and integration
	4.1.3 SamPler
	4.1.4 Annotation workflow

	4.2 Implementation of transyt
	4.2.1 TCDB scraper and family-specific transport reactions assembly
	4.2.2 Metabolites identification and hierarchical ontology
	4.2.3 Generate system-specific reactions
	4.2.4 Identification of genes encoding transport systems

	4.3 Compartmentalization and TMD identification
	4.4 Third party tools
	4.5 transyt's validation
	4.5.1 Validation per gene
	4.5.2 Validation per reaction
	4.5.3 Validation per metabolite

	5 Results and Discussion
	5.1 Assessment of available methods to predict transmembrane -barrels
	5.2 Validation of TCDB's information
	5.3 merlin's improvements
	5.3.1 Compartments parsing and integration
	5.3.2 Annotation workflow

	5.4 TRIAGE versus transyt
	5.5 transyt's user interface
	5.6 transyt's internal database
	5.7 transyt's validation
	5.7.1 Validation per gene
	5.7.2 Validation per reaction
	5.7.3 Validation per metabolite
	5.7.4 GPRs validation

	6 Conclusion
	6.1 Conclusions
	6.2 Prospect for future work
	6.3 Outcomes

	A Support material
	A.1 Blast result example to select TC family

