
����������
�������

Citation: Ribeiro, D.; Matos, L.M.;

Moreira G.; Pilastri A.; Cortez, P.

Isolation Forests and Deep

Autoencoders for Industrial Screw

Tightening Anomaly Detection.

Computers 2022, 11, 54. https://

doi.org/10.3390/computers11040054

Academic Editor: Osvaldo Gervasi

Received: 24 February 2022

Accepted: 6 April 2022

Published: 8 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Isolation Forests and Deep Autoencoders for Industrial Screw
Tightening Anomaly Detection
Diogo Ribeiro 1 , Luís Miguel Matos 1 , Guilherme Moreira 2 , André Pilastri 3 and Paulo Cortez 1,*

1 ALGORITMI R&D Centre, Department of Information Systems, University of Minho,
4804-533 Guimarães, Portugal; id6336@alunos.uminho.pt (D.R.); luis.matos@dsi.uminho.pt (L.M.M.)

2 Bosch Car Multimedia, 4705-820 Braga, Portugal; guilherme.moreira2@pt.bosch.com
3 EPMQ-IT CCG ZGDV Institute, 4804-533 Guimarães, Portugal; andre.pilastri@ccg.pt
* Correspondence: pcortez@dsi.uminho.pt

Abstract: Within the context of Industry 4.0, quality assessment procedures using data-driven
techniques are becoming more critical due to the generation of massive amounts of production
data. In this paper, we address the detection of abnormal screw tightening processes, which is a key
industrial task. Since labeling is costly, requiring a manual effort, we focus on unsupervised detection
approaches. In particular, we assume a computationally light low-dimensional problem formulation
based on angle–torque pairs. Our work is focused on two unsupervised machine learning (ML)
algorithms: isolation forest (IForest) and a deep learning autoencoder (AE). Several computational
experiments were held by assuming distinct datasets and a realistic rolling window evaluation
procedure. First, we compared the two ML algorithms with two other methods, a local outlier factor
method and a supervised Random Forest, on older data related with two production days collected in
November 2020. Since competitive results were obtained, during a second stage, we further compared
the AE and IForest methods by adopting a more recent and larger dataset (from February to March
2021, totaling 26.9 million observations and related to three distinct assembled products). Both
anomaly detection methods obtained an excellent quality class discrimination (higher than 90%) under
a realistic rolling window with several training and testing updates. Turning to the computational
effort, the AE is much lighter than the IForest for training (around 2.7 times faster) and inference
(requiring 3.0 times less computation). This AE property is valuable within this industrial domain
since it tends to generate big data. Finally, using the anomaly detection estimates, we developed an
interactive visualization tool that provides explainable artificial intelligence (XAI) knowledge for the
human operators, helping them to better identify the angle–torque regions associated with screw
tightening failures.

Keywords: autoencoder; deep learning; Industry 4.0; isolation forest; one-class classification; unsu-
pervised learning

1. Introduction

The Industry 4.0 revolution forced most companies to adapt to a more fierce and
competitive market where having optimized productive processes can dictate whether a
company is successful or not. Within this context and in particular for the assembly indus-
trial sector, there is a pressure to reduce of costs whilst increasing efficiency. Indeed, with
the introduction of smart sensors and actuators, several modern factories use autonomous
or semi-autonomous robots capable of assisting human operators during production pro-
cesses. This occurs because some assembly tasks are hard to fully automate and thus it is
important to have a human-in-the-loop. An example of such task is the bonding process
between plastic parts or between plastic parts and electronic components. These are usually
achieved via welding, riveting, gluing, or by simply screwing parts together (which is the
focus of this paper).

Computers 2022, 11, 54. https://doi.org/10.3390/computers11040054 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers11040054
https://doi.org/10.3390/computers11040054
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-6270-3962
https://orcid.org/0000-0001-5827-9129
https://orcid.org/0000-0001-6139-0071
https://orcid.org/0000-0002-4380-3220
https://orcid.org/0000-0002-7991-2090
https://doi.org/10.3390/computers11040054
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers11040054?type=check_update&version=1

Computers 2022, 11, 54 2 of 15

Mechanically combining parts using screws is usually achieved with the help of
human-operated hand-held screwdrivers. Over time, these machines collect thousands of
real-time data points which are later used for quality assessment. Although the collected
data might vary from factory to factory, or from handheld screwdriver manufacturers, most
assume the minimum collection of angle–torque pairs. On process completion, these pairs
are used to plot a tightening curve, which is presented to the operator on a monitor above
the station. The operator is then prompted to infer on the process correctness using the
available data and a quality estimation produced by the handheld screwdriver machine
software. Despite defects being rare in this domain, some units require a more thorough
inspection to prevent faulty units from moving to the next assembly stations. Examples
of faulty processes are crossed or damaged threads, cracked or split parts and others. To
better understand the main reasons why a screwing cycle is deemed faulty, factories make
use of the collected data to build a defect catalog.

Due to the dynamic nature of the screw tightening process, which includes the intro-
duction of different models to be assembled over time, there is a constant need to update
defect catalogs. Although defect catalogs are empirically proven to work, they use a rather
static and meticulous data curation process that involves manual labor and screwdriver
software updates. Such rigid defect catalogs are unsuitable for industries that produce
millions of fastening movements each day. Thus, there is an opportunity to develop a
highly automated screw tightening inspection system by adopting machine learning (ML)
algorithms. While there is vast body of knowledge covering anomaly detection in several
domains, the advancements in the application of ML to fastening processes is rather scarce.
To the best of our knowledge, there are only a few studies which can relate to our approach
(as shown in Section 2).

In this work, we assume an anomaly detection task that consists in the automatic
detection of screw tightening process failures by employing unsupervised ML algorithms.
The goal is to feed these algorithms with only normal examples, creating data-driven
models that tend to trigger high anomaly scores when faced with “abnormal” data (i.e.,
outside the learned normal input space). This task is non-trivial due to several reasons.
First, as already mentioned, the screw tightening process is dynamic (e.g., assembly of
new products); thus, the ML models need to be continuously updated. Second, the data is
highly imbalanced, where only a tiny fraction of the examples correspond to failures (e.g.,
0.2%). Third, data is generated with a high velocity, thus resulting in big data that requires
a high computational effort by some ML algorithms.

In our previous work [1], we performed an initial exploration of a low-dimensional
input approach (angle–torque pairs) for anomaly detection for a small subset of the available
industrial data (corresponding to two days of production). Promising results were obtained
by two unsupervised learning ML algorithms: isolation forest (IForest) and deep dense
autoencoders (AE). In this extended paper, we further evaluate the robustness of the
proposed screw tightening anomaly detection methods by considering a wider range of
assembled products (three distinct products) and a larger number of industrial records,
collected during a longer time period (two months). By exploring more recent data, new
and different fastening curves were introduced in our system. Using these more richer
screw tightening datasets, we conduct several computational experiments, measuring the
anomaly detection performance and the required computational effort of the proposed
IForest and AE models. Moreover, we adopt a realistic and robust rolling window, with
several training and testing updates that are simulated over time. Finally, we also present a
novel dynamic anomaly detection threshold visualization tool that provides explainable
artificial intelligence (XAI) knowledge the human operators, supporting the identification
of specific angle–torque regions related with faulty screw processes. This paper is organized
as follows. Section 2 presents the related work. Next, Section 3 describes the collected
industrial assembly data, anomaly detection learning models, and evaluation procedure.
Then, Section 4 presents the experimental results. Finally, Section 5 discusses the main
conclusions and future work directions.

Computers 2022, 11, 54 3 of 15

2. Related Work

Screwdriving is among the common assembly methods used in industry that have
been particularly difficult to fully automate despite several continual efforts [2]. A simpler
characterization of the screwing curve using the angle–torque pairs was early proposed
by [3] and in our previous work [1]. Moreover, the angle–torque curve was also adopted by
the ISO rotary tool evaluation standards [4]. With the lower availability of anomalous data,
anomaly detection is often regarded as a one-class problem, which is a form of unsupervised
learning where fault detection systems are trained only on normal data. Classic algorithms
such as the local outlier factor (LOF), one-class support vector machine (OC-SVM), and the
more recent tree ensemble IForest method seem to perform relatively well on many of the
uses cases, as reported by [5,6]. The main drawbacks of these algorithms is that they tend
to require more computational effort, also offering no online update capability, thus being
less recommended to handle bigger volumes of data. Deep learning autoencoders (AE)
are less affected by such computational limitations. For instance, a linear increase in the
training set size typically results in an exponential computational cost growth in terms of
the OC-SVM training, while for the AE model the cost increase is also linear. Moreover, the
training of AEs can be sped up by adopting graphics processing units (GPU). Thus, AEs are
being increasingly adopted for anomaly detection tasks [7]. To the best of our knowledge,
only a small portion of research studies have employed AEs in this domain.

Considering the industrial screw tightening domain, the work of [8] demonstrated
the use of Bayesian rules and distance rejection heuristics to incrementally discover new
manufacturing defects, which were then clustered for interpretation purposes by a manu-
facturing expert. Using a similar clustering principle, [9] proposed a kernel density-based
pattern architecture that can successfully identify patterns in data and correctly categorize
them as good or bad. However, the proposed kernel density-based architecture is too
computationally expensive when handling larger datasets, which occurs in our analyzed
screw tightening industrial domain. Two supervised learning methods, namely, a linear
support vector machine (SVM) classifier and an artificial neural network (ANNs), were
compared on [10] on their capability to discriminate between four task states: “Successful”,
“Empty”, “Failed”, and “Jammed”. Although their discrimination abilities was roughly the
same, the linear SVM was slightly faster. While interesting results were achieved, this work
diverts from our approach under two important aspects. First, it assumes a supervised
learning approach, which requires labeled data that is often costly to collect (e.g., requiring
human effort and time). Second, the work of [10] is more focused on root-cause analysis
rather than providing a feasible solution to the problem. Another SVM experiment was
conducted by [11], which tried different kernel functions (e.g., linear and polynomial) to
monitor screwdriving processes on the cover of hard disks. Unlike our use case, this experi-
ment relies on the driver motor data instead of the data being produced by the handheld
machine. Yet, the proposed SVM approach is infeasible for our domain due to the required
high computational cost. For instance, when adopting a similar SVM algorithm using a
preliminary (and smaller) screw tightening dataset, the learning process halted after 40
hours of execution time. More recently, [12] designed a supervised learning experiment
using pairwise data (angle–torque) and a Long Short-Term Memory (LSTM) deep learning
architecture for the purpose of discriminating whether a fastening process is successful
or not. While good results were obtained, and similarly to [10], the experiments relied on
labeled data (with both normal and abnormal cases) that can be particularly difficult to be
obtained (e.g., requiring a manual data curation effort).

3. Materials and Methods
3.1. Industrial Data

This study was conducted within a large electronics manufacturer that supplies assem-
bled components (mainly automotive instrument clusters) to some of the most recognized
brands in the automobile industry. The assembly of a cluster is an extensive process with
multiple assembly stages. In this work, we focus on one of the final phases in the process,

Computers 2022, 11, 54 4 of 15

where the plastic housing is combined with either the printed circuit boards (PCB) or other
plastic parts. Bonding plastics or electronics to plastics can be achieved via a multitude of
techniques that involve glue, welding, or the use of screw fasteners. For the remainder of
the article, we optimize the validation process of screw tightening processes, which makes
use of threaded fasteners as the bonding mechanism for the units.

Validating a fastening procedure can be challenging, since it involves several real-time
variables. The manufacturing experts take their knowledge into account and leverage
the information provided by the handheld driver manufacturers to overcome most of the
problems inherent to the usage of this bonding technique. Despite the efforts to mitigate
most failure modes with approaches such as sequence based fastening, some deviations
still occur on the shop floor and the control mechanisms must be able to signal them fast
and accurately.

The plant standardizes most production lines to follow the most efficient layout in
terms of assembled clusters throughput per hour. Individually, each assembly station
follows a strict set of rules that check for violations in the correctness of the fastening
sequence. The assembly process starts with the operator inserting the raw plastic housing
in a assembly jig. This jig is designed with the “poka yoke” principle [13], which prevents
wrong or misaligned parts from being loaded into the assembly jig. A scanner installed
in a favorable position reads the imprinted identification code and verifies if the product
successfully passed the previous checkpoints and if the station is capable of executing this
assembly stage. The correct screw tightening program is then loaded onto the handheld tool.
This stage is fundamental because different variants of the same part can be produced on
the same machine where the threaded holes can be of different dimensions or be located in
different places. The settings specified in this program are also used as a baseline to compare
against the real values produced by the machine. The operator then guides the handheld
driver to a feeder which is always on and not controlled by the program. Once a screw is
loaded on the screwdriver bit, the operator is instructed to follow a predefined sequence
with the aid of instructions carefully illustrated on a monitor located above the assembly
station. Each inserted screw results in a good or fail (GoF) status message, presented on
the screen which indicates whether the fastening succeeded or not. Simultaneously, the
produced data is stored locally on a .csv file. Depending on the result, two different courses
of action can be performed: on failure—the operator is instructed to stop the procedure;
on success—the data is uploaded to a remote server where it will be thoroughly analyzed
by an expert tool that compares the produced data against a defect catalog. If no defect
is detected, the operator is instructed to proceed to the next unit. This new control flow
differs from the one presented in our past work [1], as the manufacturing experts deemed
it more important to detect false negatives (assembly cycles considered good but are not)
than further analysis of faulty units that would have to restart the assembly process.

Regardless of the outcome, new files are made available on a remote data-server
(separate from the one running the expert tool) and are then subjected to Extract, Transform,
and Load (ETL) processes to make data easier to be worked on. Up until this stage, we have
no control over the generated data stream. We are currently reading this pre-processed data
using .parquet files partitioned by date but this process is undergoing some structural
changes which will fundamentally change the way we access new data, making it available
through Solace, an event broker tool [14].

Table 1 outlines some of the variables collected for each assembly process. The gran-
ularity of the data collated depends on a diverse set of factors, such as the type of the
machine in use or the type of product being produced. Some machines do not even support
the computation of the variables collected once per fastening (e.g., DTM based attributes).
Nevertheless, all machines support the collection of angle and torque values. For each
i process, there is a real-time generation of several k ∈ {1, 2, 3, . . . , Ki} values, where Ki
denotes the total number of observations where each part number can produce a different
Ki value. For each unique combination of i and k values, the machine collects hundreds
of angle (αi,k) and torque (τi,k) measurements. It should be highlighted that while there is

Computers 2022, 11, 54 5 of 15

no direct temporal variable in the collected attributes, the angle (αi,k) attribute can be used
as a sequential temporal measure of the fastening cycle. In effect, the angle represents the
rotation made by the screw during the fastening process. Thus, as the angle value increases,
the closer the screwing cycle is to reaching its end, which is often marked by an abrupt
increase/decrease of the torque value (e.g., screw head fastened to the surface).

Table 1. Description of the screw industrial data variables.

Variable Description

Hundreds of values (k) per screw fastening (i):

profile_angle (αi,k) Value for the angle (e.g., −208.1 degrees)
profile_torque (τi,k) Value for the torque (e.g., 35.6 Ncm)
profile_gradient Torque gradient for two consecutive angle values (e.g., 20)

Four values per fastening (one for each step):

profile_stepnr Screwing step number (∈{1, 2, 3, 4})
screw_total_angle Total step angle (e.g., 990 degrees)
screw_total_torque Total step torque (e.g., 39.3)

One value per fastening (i):

screw_dtm_clamp_angle Value for actual DTM Clamp angle (e.g., 79.1)
screw_dtm_clamp_torque Value for actual DTM Clamp torque (e.g., 30.2)
screw_timestamp Timestamp (e.g., “2020-10-08 06:30:51”)
part_number Product family identifier (e.g., “2222111”)
serial_number Product serial number (e.g., “11111”)
screw_number Screw number (∈{1, 2, . . . , 8})
screw_energy Total energy required (e.g., 19,959)
screw_total_angle Total angle (e.g., 2993 degrees)
screw_total_torque Total torque (e.g., 30,000 Ncm)
screw_gof (yi) Screwing process “Good” (1) or “Fail” (0)

A typical screwdriving cycle is characterized by four stages as per described in Table 2.
Should a process be successful (Figure 1), the unit needs to undergo all steps and meet the
transition conditions of each sequentially. During the initial stage (step 0), the screwdriving
machine rotates counterclockwise in an attempt to latch to the screw head. Although this
step is already part of the assembly process it is not relevant for the current analysis and
some machines do not even report it. The remaining three steps represent mechanical
milestones for the correct fixation of a screw to a plastic housing. There are some specific
situations where a successful procedure skips or adds an additional step. The main reason
for this behavior is related to the mechanical properties of the bonding units and the
capabilities of each assembly station. For example, the DTM attribute is not calculated if
the handheld driver does not support such a feature. For all others, the tool estimates the
clamping angle and torque for the fastening and then compares them to the actual values
(represented by screw_dtm_clamp_angle and screw_dtm_clamp_torque). These are some of
the computations the assembly machine executes to assess whether a process was finalized
successfully or not, returning a GoF label (attribute screw_gof).

Despite using one-class algorithms and selecting the angle–torque pairs as our input
features, the screw_gof variable, denoted as yi for the i-th screw tightening process, is
required during the data preparation step. Not only is it used to separate good from
bad fastening cycles, it also serves as our target variable during the model evaluation
stage. These labels are provided by the screwdriver and are computed by comparing the
curve signature against a predefined set of static rules. Although these rules are created
and tested by manufacturing experts, some cycles end up being misclassified. These rare
occurrences are usually reported and handled as fast as possible. However, and considering
the nature of this big data problem, it is not time- and computationally feasible to verify
all assembly cycles that are part of our dataset. Instead, we assume that these occurrences

Computers 2022, 11, 54 6 of 15

are very rare and thus that they do not impact on our anomaly detection training and
evaluation procedures.

0 500 1000 1500 2000
Angle

0

5

10

15

20

25

30

35

To
rq

ue

Product A
profile_stepnr

0
1
2
3

0 500 1000 1500 2000 2500 3000 3500 4000
Angle

0

10

20

30

40

50

To
rq

ue

Product B
profile_stepnr

0
1
2

0 500 1000 1500 2000 2500 3000 3500
Angle

0

20

40

60

80

100

120

140

To
rq

ue

Product C
profile_stepnr

0
2
3
4
5

Figure 1. Example of normal (“Good”) screw tightening cycles for three different products.

Table 2. The fastening process steps.

Step Description Transition Condition

Simple Torque Step (1) Serves as a transition to the next step when the
thread starts to be formed

Achieve either the transition torque or angle within
the parameterized time range.

Angle Step (2) Fixed number of turns conducted Min Angle < Angle Target < Max Angle within
stipulated time.

Torque Step (3) Apply a fixed torque value Min Torque < Torque Target < Max Torque within
stipulated time.

Seating Control Step (4) Apply a torque value from the screw seating value
to the part

Clamping Torque < Max Seating Torque; Min Total
Angle < Total Angle < Max Total Angle; Min Total
Torque < Total Torque < Max Total Torque.

Table 3 describes the more recent and larger dataset that is explored in this paper. In
the table, the product names were anonymized for confidentiality reasons (termed here as
A, B, and C). These were selected based on their availability and in an attempt to cover a
diversity within the universe of products fabricated by the analyzed manufacturer. Each
product is composed of multiple part_numbers and is comprised of multiple fastening
cycles that share similar characteristics (e.g., angle–torque signature). For each individual
family, in this paper we collected two months worth of data (from February to March 2021),
which result in a total of 23,790 unique serial numbers and roughly 26.9 million individual
observations (67,337 fastening cycles times 400 data points per screw). As the research
literature suggests, datasets in this domain are usually highly unbalanced. In our case,
there is only a tiny percentage of faulty processes (e.g., 0.2% for Product A). Moreover, on
average, there are around Ki = 400 records (angle–torque pairs) per cycle.

Table 3. Statistics of the most recently collected datasets.

Unique Part
Numbers

Unique Serial
Numbers

Num. Good
Screws

Num. Bad
Screws Ratio

Product A 52 6189 8512 19 0.002
Product B 5 13,160 45,662 99 0.002
Product C 3 4441 13,163 102 0.008

Total 60 23,790 67,337 220

3.2. Anomaly Detection Angle–Torque Approach

Given the important of the screw tightening anomaly detection task, several experi-
ments were previously conducted by the manufacturing experts. A large range of experi-
ments were held, including the application of batch process monitoring procedures [15].

Computers 2022, 11, 54 7 of 15

However, this industrial anomaly detection task is non-trivial. Unlike other types of pro-
cesses (e.g., chemical reactions), there can be “normal” abrupt changes in the torque values,
as shown in Figure 1 in terms of the final angle–torque curve for Product A. In effect,
inefficient results were achieved when adopting the batch process monitoring attempts.
Nevertheless, in one of their attempts, the experts conducted a principal component anal-
ysis (PCA) that supported our assumption that angle–torque pairs are fundamental to
evaluate screwing processes. Moreover, when we started our research, we performed an
initial set of experiments using a larger number of input variables (from Table 1). Yet,
the ML models (e.g., LOF, IForest, AE) obtained much worst class discrimination results
while requiring an expensive computational effort. In some cases, such as when using
LOF, the computational training process even halted due to an out-of-memory issue. Based
on these results, we then opted to focus on the low-dimensional angle–torque input data
approach, which provided better results with a much lower computational effort. Thus, in
this work we developed two ML algorithms (IForest and AE) that make use of two data
features (angle and torque values) as the input values, producing then an anomaly decision
score (d). It should be noted that during training, the ML algorithms are only fed with
normal instances.

Considering that each fastening cycle is comprised of k ∈ {1, 2, . . . Ki} angle–torque
observations, the output of each detection model will contain di,k anomaly decision scores,
where i denotes the i-th screw being evaluated. The overall decision score (di) is computed
by averaging each individual score such that di = ∑i di,k/Ki. For each unique i value,
the resulting score (di) can be compared to a target label of a test set (yi), making the
computation of the Receiver Operating Characteristic (ROC) curve [16] possible. Given
that human operators require a class label, a fixed Th threshold value is adopted such that
for the i-th output is considered anomalous when di > Th. The overall procedure used to
compute the final screw classification score (di) is shown in Figure 2.

di score > Th True

False

Fail

Good

...

Machine
Learning

Model

d i,k d i,k...

Overall
Decision

Score

Figure 2. Schematic of the overall screw tightening anomaly detection process.

Selecting the most appropriate Th requires either domain knowledge or a semi-
automatic selection of the best specificity–sensitivity trade-off of a ROC curve generated
using a validation set (with labeled data). In this work, we assume the usage of domain
knowledge, as provided by the screw tightening human operators. To support the expert
Th value selection, we propose a specialized XAI interactive visual tool that includes a
threshold selection mechanism. The tool allows a finer control over the threshold selection
process, allowing experts to manually specify individual thresholds for different fami-
lies of products and to easily identify problematic angle–torque regions within the screw
tightening profile curves.

The data collected during each individual assembly process contains 44 unique at-
tributes spanning three granularity levels. Table 1 summarizes the 16 attributes related
to the actual fastening process, while the remaining 28 features are used by the assembly
management systems. As described in Section 3.1, each process is composed of multiple ob-
servations of angle–torque pairs (αi,k-τi,k) and the torque gradient between two consecutive

Computers 2022, 11, 54 8 of 15

angle values is grouped by step number. Each step is comprised of multiple fine-grained
observations, the total angle and torque for the given step. Subsequently, each step is
grouped under a specific fastening identifier, which, alongside the aforementioned data,
reflects the whole industrial screw tightening process.

While there is a large number of attributes, several experiments were conducted
beforehand by manufacturing experts to try and address the problem currently being
studied. Experts designed a multitude of experiments using multivariate techniques which
proved to be inefficient and incapable of discriminating good from bad screwing cycles.
For confidentiality reasons the results of such experiments can not be made public. In one
of their runs, the conducted Principal Component Analysis (PCA) further supported our
hypothesis that angle–torque pairs contain the bulk of the information necessary to evaluate
screwing processes. Additionally, during the set-up of our previous work [1] we composed
a group of experiments with multiple combinations of variables and encoding techniques
(such as one-hot encoding) which not only increased the overall model complexity but
proved to add no extra capacity to our models. As such, and given the previously obtained
results using older screw tightening data it was found that the low-dimensional angle–
torque input data provided a better anomaly detection performance while requiring much
less computational effort. Thus, all screw anomaly methods described in this work assume
just two input values: the simpler angle–torque pairs (αi,k, τi,k) for each (i, k) example.

3.3. Machine Learning Models

In our previous work [1], we compared several ML algorithms for screw tightening
anomaly detection: three unsupervised algorithms, namely, LOF, IForest, and a deep AE;
and the Random Forest (RF) supervised learning algorithm.

The LOF is a density-based algorithm [5] that heavily depends on K-nearest neigh-
bors [17]. It is designed as local because it depends on how well isolated an object is from
the surrounding neighborhood. Instead of classifying an object as being an outlier or an
inlier, an outlier factor is assigned describing up to which degree the object differs from the
rest of the dataset. It should be noted that LOF can be used to detect both local and global
outliers. Moreover, it can be trained with multi-class instances. In this paper, in order
to provide a fair comparison, we only use normal examples to fit the model, where the
outlier factor score is directly used as the anomaly decision score (di,k). For benchmarking
purposes, we also considered the RF model, which requires labeled training data and that
is build in terms of a large number of decision trees, which are then combined together as
an ensemble to get more accurate and reliable predictions [18].

In this work, we focus more on two unsupervised learning models that provided
competitive results in our previous work [1]: IForest and AE. All anomaly detection
methods were coded using the Python language. The LOF, IForest and RF methods as-
sumed the scikit-learn module implementation [19], while the AE was developed using
the TensorFlow library [20]. In order to provide a fair comparison, whenever possible we
adopted the default hyperparameter values assumed by the scikit-learn and TensorFlow
implementations. Before feeding the models, the angle–torque training data were normal-
ized by using the MinMaxScaler procedure of the sklearn library, scaling all inputs within
the range [0, 1].

Isolation forest is an anomaly detection algorithm which, as the name indicates, uses
the isolation principle to classify data as anomalous rather than modeling normality. It
leverages the power of smaller decision trees combining them into a single, more capable
architecture. As it makes no use of labeled data, it is an unsupervised model. It operates
based on the principle that anomalies are few and numerically different from normal
instances. This forces anomalous instances to be isolated easier (separated from all other
instances) than normal data. Using these principles as foundation, a tree structure is created
in an attempt to isolate every single instance by applying multiple splits with random
parameters and then assessing on their normality. Anomalous observations with fewer
attributes capable of describing them tend to be positioned closer to the root of the tree.

Computers 2022, 11, 54 9 of 15

This structure is usually regarded as an Isolation Tree (or iTree) and is the main component
of anomaly detection of this algorithm. As such, an IForest [21] is an ensemble of iTrees
that when combined can discriminate between good and bad data. Figure 3 summarizes
the working principle of this algorithm, where the data points with shorter average path
lengths are indicated as anomalies. On the other side of the spectrum, data points with
bigger average path lengths are considered normal. Data points which fall in between these
too extremities are classified as potential anomalies. These distances are computed and
expressed by scikit-learn as an anomaly score ranging from ŷi,k = −1 (highest abnormal
score) to ŷi,k = 1 (highest normal score), where ŷi,k denotes the IForest output for the k-th
angle–torque pair of the i-th screw tightening instance. In order to compute an anomaly
probability, we rescale the IForest score by computing di,k = (1− ŷi,k)/2.

......Anomaly

Potential
Anomaly

Normal
Instance

Figure 3. The Isolation Forest working principle, adapted from [22].

Unlike the IForest, an AE is a type of artificial neural network that learns normality
rather than computing abnormality scores. The AE is comprised of two main stages:
an initial stage where it learns a representation for a set of data (encoding), typically by
reducing the input data (the number of features describing the input data) and is usually
unaffected by noise; and a decoding stage, in which the model tries to reconstruct the
input signal. This neural network architecture imposes a bottleneck out of the encoding
stage (which forces dimensionality reduction), resulting in a compact knowledge image
of the original input, usually referred to as latent space. When applied to the specific case
of anomaly detection, the architecture accepts normal data as input and then attempts to
produce (α̂i,k, τ̂i,k) outputs which should be identical to the input pair (αi,k, τi,k), where αi,k
denotes the angle and τi,k the torque for the k-th measurement of the i-th screw tightening
instance. To ascertain the quality of this reconstruction, on each new (i, k) instance we
compute its Mean Absolute Error (MAE) [6], formulated as follows:

MAEi,k = (|αi,k − α̂i,k|+ |τi,k − τ̂i,k|)/2 (1)

The reconstruction MAE is used as the anomaly decision score di,k = MAEi,k for
each input instance, where higher reconstruction errors stand for a higher abnormality
probability. As previously mentioned, the architecture we developed assumes (αi,k, τi,k)
pairs as input and produces two output nodes which form a fully connected structure
including a stack of layers for both stages. All intermediate hidden layers are activated
using the ReLU function, contrasting with the output nodes which assumes a logistic
function (all αi,k and τi,k values are normalized ∈[0, 1] as previously described). To address
and reduce the internal covariate shift, which occurs when the input distribution of the
training and test set differ but the output label distribution remains intact, we apply a
Batch Normalization (BN) layer, discarding the need for dropout layers. In fact, batch
normalization also normalizes the layer inputs for each batch of data that passes through
it [23]. The development of this network architecture, all its assumptions and decisions
resulted from several trials, conducting during preliminary experiments using older screw
tightening data. Each experiment was conducted by imposing one bottleneck layer with
1 hidden node and a varying range of additional hidden layers. The best performing

Computers 2022, 11, 54 10 of 15

architecture was achieved when the AE was composed of 20 layers (input, BN, and output
layers) as shown in Figure 4. Additionally, all models were trained using the Adam
optimization algorithm (which proved to be slightly better than SGD in our test case), using
the previously described loss function (MAE), a total of 100 epochs and early stopping
(with 5% of the training data being used as the validation set).

11

2 2

1

Input
Features

Encoder

2

B
N

B
N

1

B
N

Latent
Space

B
N

1 1

B
N

2

B
N

Input
Features

Decoder

B
N

B
N B
N

Figure 4. The adopted deep dense AutoEncoder (AE) structure (the numbers denote the number of
hidden units per layer and the term BN represents a Batch Normalization layer).

As explained in Section 2, the AE model can be adapted to dynamic environments
when there are frequent data updates. In [24], two neural network learning modes were
compared: reset and reuse. When new data arrives and the neural network is retrained, the
former assumes a random weight initialization, while the latter uses the previously trained
weights as the initial set of weights.

3.4. Evaluation

With the goal of assessing a robust performance, for both IForest and AE methods we
assumed the realistic rolling window procedure [24,25]. This procedure includes a fixed size
window for the training (W) and test (T) data and that rolls over time by using a jumping
step (of size S), thus generating several training and testing model iterations (Figure 5). At
the end, there are a total of U = (D− (W + T))/S iterations, where D denotes is the total
number of screw cycles available in the analyzed data. During each rolling window iteration
execution, only the training data is used to fit the ML model, thus the test set is considered as
“unseen” data, meaning that it is only used for anomaly detection performance evaluation
purposes. The goal of this evaluation is to realistically measure the behavior of the anomaly
detection methods through time, assuming a continuous model retraining usage. Using the
most recently collected data (regarding the three analyzed products), and after consulting
the manufacturing experts, we assume a total of U = 8 standard rolling window train and
test iterations by fixing the following values: Product A–W = 6809, T = 851, and S = 106;
Product B–W = 36,529, T = 4566, and S = 570; Product C–W = 10,530, T = 1316, and S = 164
(all values related to numbers of screw fastening processes). We particularly note that
these values are much higher than the ones employed in our previous work [1]. This
occurs because previously we have collected only two days of screw industrial data, while
our product datasets (presented in this work) have a substantially higher number of data
records (67,337 fastening cycles related with two months).

Iterations

1

2

U

3

...

Training Test

Training

Training

Test

Test

......

W

Full data (with examples)

Time

T

D

S
Training Test

Figure 5. Schematic of the adopted rolling window procedure.

Computers 2022, 11, 54 11 of 15

To evaluate the anomaly detection performance, we adopt the Receiver operating
characteristic (ROC) curve [16], which produces a visual representation of the ability of a
binary classifier to distinguish between normal and anomalous data as its discrimination
threshold varies. In the case of both the standard and static training rolling window
procedures, the ROC curves are computed by using the target labels and the anomaly
scores (di,k) for the T tightening test examples of each rolling window iteration. The overall
discrimination ability is then measured by the Area Under the Curve (AUC =

∫ 1
0 ROC dTh)

and the Equal Error Rate (EER). As argued in [26], the AUC measure has several advantages.
For instance, the measurement of quality is is unaffected by balancing issues in the dataset
(as previously explained, our datasets are highly unbalanced). Additionally, interpreting
its results is fairly easy and can be categorized as follows: 50%—performance of a random
classifier; 60%—reasonable; 70%—good; 80%—very good; 90%—excellent; and 100%—
perfect. The EER is used to predetermine the threshold value for which the false acceptance
rate and false rejection rate is equal [27]. Under this criterion, the lower the value, the more
accurate the classification. Given that multiple AUC and EER values are generated for each
rolling window iteration, the experimentation results are aggregated by computing their
median values and using the Wilcoxon non-parametric statistic test [28] to check whether
the paired median differences are statistically significant.

All experiments were executed on a M1 Pro processor with integrated GPU. For each
ML model, we collected the computational effort, measured in terms of the rolling window
average preprocessing, training, and testing (inference) time (all in seconds s), per anomaly
detection method. This is of particular interest to the manufacturing experts that need to
deploy the developed systems in an industrial context with near real-time requirements.

4. Results
4.1. Previous Experiments

In our previous work [1], three unsupervised (one-class) learning algorithms were
selected for an empirical comparison: LOF, IForest, and an AE. These methods were only
trained on normal instances. For benchmarking purposes, we also selected the popular
Random Forest (RF) method. However, we note that RF is a supervised learning method
that, contrary to the one-class methods, requires labeled data for the training procedure.
Thus, RF was trained with both normal and abnormal angle–torque instances. The dataset
used for training corresponds just to two days of screw tightening processes, collected in
November of 2020, and it included a total of 2,853,967 entries related with N = 6162 fastening
cycles. The adopted evaluation scheme was a rolling window, under the parameterization:
W = 5000, T = 500, and S = 33 (thus producing U = 20 model updates).

The obtained results are summarized in Table 4 and show that both the RF and IForest
achieved the highest discrimination scores with a median AUC score of 99%. The LOF
has shown the worst discriminating performance (AUC of 80%). When comparing both
AE learning modes, reuse and reset, the former provides slightly better median AUC
results and lower average computational training times (explained by the usage of the early
stopping procedure).

Table 4. Rolling window screw tightening anomaly detection results (best values in boldface font;
selected models in italic font).

AUC Train Inference
Time (s) Time (s)

LOF 0.80 18.30 0.12
RF 0.99 ? 25.33 0.12
IForest 0.99 ? 168.18 0.08
AE reset 0.93 ? 29.64 0.04
AE reuse 0.95 ? 23.00 0.04

?—Statistically significant under a paired comparison with LOF.

Computers 2022, 11, 54 12 of 15

It should be noted that the RF requires labeled data and it was included in the previous
experiments for benchmarking purposes. The IForest and AE results (particularly the reuse
mode) are very similar to the RF performance and these methods present the advantage of
not requiring labeled data.

4.2. Experiments with Larger and More Recent Data

In this section, we further compare the performance of the two unsupervised anomaly
detection methods that previously provided the best results (Section 4.1): IForest and AE
reuse. For such purpose, we adopt more recently collected data and that corresponds to
a larger time period (two months). Moreover, the analyzed datasets are associated with
three distinct assembled product families, which tend to produce different screw tightening
profile curves (as shown in Figure 1).

Table 5 summarizes the rolling window evaluation results for the three products
and the two selected learning architectures (IForest and AE reuse), while the individual
AUC and EER values (obtained for each rolling window iteration) are shown in Figure 6.
The results attest an excellent discrimination level that was achieved by the two learning
methods for all three products, almost reaching the perfect AUC value (in effect, we had
to increase the AUC precision values to three digits in order to distinguish them from
the maximum AUC = 1.0 value; Table 5). In terms of the discrimination power, both
methods present very similar performances. For instance, the maximum median AUC
difference is just 0.7 percentage points). Furthermore, as shown in Figure 6, the IForest
and AE reuse curves are very close (e.g., the maximum individual difference for the same
iteration is just 3.8 percentage points (second iteration for Product A). Turning to the EER
criterion, it clearly favors the AE models, which produce lower values for all three products
when compared with the IForest model. Moreover, the AE is computationally much faster
when compared with IForest. In effect, the latter method requires on average around
2.7 times more computational effort for training and around 3.0 times more inference time
(to detect if a screwing procedure is anomalous). Given that the screw tightening domain
often generates big data, this computationally light property of the AE reuse method is
highly valuable.

Table 5. Rolling window screw tightening anomaly detection results (best values in boldface font).

AUC EER Train Time (s) Inference Time (s)

IForest

Product A 0.998 0.840 115.933 0.018
Product B 0.999 0.899 1664.067 0.029
Product C 0.999 0.917 321.862 0.019

AE

Product A 0.996 0.793 61.250 0.005
Product B 0.996 0.832 842.869 0.012
Product C 0.999 0.593 76.467 0.006

1 2 3 4 5 6 7 8

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Product A

iterations

A
U

C

iForest
AE reuse
ideal method

1 2 3 4 5 6 7 8

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Product B

iterations

A
U

C

iForest
AE reuse
ideal method

1 2 3 4 5 6 7 8

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Product C

iterations

A
U

C

iForest
AE reuse
ideal method

Figure 6. AUC for each rolling window iteration.

Computers 2022, 11, 54 13 of 15

While the ERR criterion can be used to set classification score thresholds, the assumed
balance between false acceptance and rejection rate is not applicable to the analyzed
industrial screw tightening context, where a higher false acceptance rate is less costly
than failing to accept a valid unit. To better explain the anomaly detection results to the
human operators, we have developed an interactive tool that assumes a dynamic threshold
selection (Figures 7 and 8). The tool works by first loading a trained anomaly detection
model. Then, each time a new fastening cycle is analyzed (the inference process), the
operator can manually perform a real-time experiment with different threshold values (Th)
by using a slider button (shown at the bottom of the figures). Each time a new threshold is
selected, angle–torque regions with high anomaly scores (i.e., di,k > Th) are highlighted
(yellow colored points in Figures 7 and 8). As shown in the graphs, a lower threshold
produces a higher angle–torque region selection area.

0 250 500 750 1000 1250 1500 1750
Angle

0

5

10

15

20

25

30

35

To
rq

ue

threshold 0.20

Reset

0 250 500 750 1000 1250 1500 1750
Angle

0

5

10

15

20

25

30

35

To
rq

ue

threshold 0.80

Reset

Figure 7. Example of the dynamic threshold tool usage for a Product A torque reached too soon error.

0 500 1000 1500 2000 2500 3000
Angle

0

5

10

15

20

To
rq

ue

threshold 0.25

Reset

0 500 1000 1500 2000 2500 3000
Angle

0

5

10

15

20

To
rq

ue

threshold 0.50

Reset

Figure 8. Example of the dynamic threshold tool usage for a Product B stripped screw error.

The purpose of the interactive tool is twofold. First, it can be used by the human
operators to fix the final threshold, which is adopted to signal all abnormal screw cases.
Second, it can be used to better reason about the ML anomaly detection decisions. In
effect, the interactive threshold graphs works as an explainable artificial intelligence (XAI)
tool, helping in the identification of the angle–torque regions that were responsible for the
anomaly, which can potentially support the identification of screw anomaly causes.

We experimented the tool with both IForest and AE resuse methods. In general,
the same threshold level produced the same anomaly angle–torque region selection. To
simplify the visualization, the two selected XAI screw anomaly examples are related with
the AE reuse model. Figure 7 demonstrates a torque reached too soon error. Although
the tightening curve resembles the one presented in Figure 1, the model correctly detected
that the torque values for the corresponding angle were reached too soon (which usually
indicates a stripped plastic thread fault). In Figure 8, a different type of failure mode was
detected by the AE model. The unexpectedly steep torque values at the beginning of the
process point at a mating problem between the screw and plastic threads. This seems to
be confirmed by the expected values of torque being reached at a higher angle (meaning
the screwdriver had to perform a few more rotations). The apparent loss of torque in the

Computers 2022, 11, 54 14 of 15

middle of the curve signature is normal for some parts, given that the tolerances for the
screw cavities are rather high on this product.

5. Conclusions

The Industry 4.0 revolution is currently impacting several industry sectors. In par-
ticular, manufacturing industries are rapidly adopting such technologies, using sensor
data to build intelligent systems capable of providing detailed insights on a multitude of
manufacturing processes. In this paper, we addressed a major assembly manufacturer for
the automotive sector that adopts semi-automated industrial processes, involving both hu-
man operators and robotic machines. After the assembly process was complete, a two-step
validation approach was conducted by both parties, with the exception of faulty units. In
the event of a failure (signaled by the machine), human assessment is not required being
the unit sent to the rework station or the lab, if it is a recurrent failure. Good processes
are compared to a defect catalog that is composed of failures not detected by the machine
or the operator. This catalog follows a strict set of rules imposed by the manufacturing
experts, thus tending to be rather rigid, due to the human effort required for any updates.
Thus, there is room for improvement by using machine learning algorithms, creating a
data-driven model that can more quickly adapt to changes in the assembly environment
(e.g., assembly of new products).

In this paper, we explored two unsupervised approach methods for anomaly detection
in fastening cycles. We first compared the proposed methods (IForest and AE) with two
baseline methods (an local outlier factor and a supervised Random Forest), using two days
of industrial data collected in November 2020. Since competitive results were obtained, we
further evaluated the IForest and AE methods on a more recent and larger data, regarding
three types of assembled products and two months of production, from 12 February to
March 2021. In total, 67,337 fastening cycles and roughly 26.9 million angle–torque pair
observations were considered in this second evaluation stage. Overall, an excellent anomaly
discrimination detection performance was obtained by both methods, with the AE requiring
much less computational effort. Finally, we designed an interactive visualization tool that
provides XAI knowledge to the human operators, helping them to better identify the
angle–torque areas associated with anomalies.

In future work, we intend to deploy the proposed methods in a real production
environment, monitoring their performance during a prolonged period of time and also
obtaining a valuable feedback from the screw tightening human operators. Finally, we plan
to study the effect of other deep AE architectures, for instance by incorporating Long Short
Term Memory (LSTM) layers that can capture sequential data patterns [12].

Author Contributions: Conceptualization, D.R., L.M.M., G.M., A.P. and P.C.; methodology, L.M.M.,
A.P. and P.C.; software, D.R. and L.M.M.; validation, G.M., A.P. and P.C.; formal analysis, P.C.;
investigation, D.R. and L.M.M.; resources, D.R., L.M.M. and G.M.; data curation, D.R.; writing—
original draft preparation, D.R. and L.M.M.; writing—review and editing, L.M.M., A.P. and P.C.;
visualization, D.R., L.M.M., P.C.; supervision, G.M. and P.C.; project administration, G.M. and A.P.;
funding acquisition, G.M. and P.C. All authors have read and agreed to the published version of the
manuscript.

Funding: This work is supported by: European Structural and Investment Funds in the FEDER com-
ponent, through the Operational Competitiveness and Internationalization Programme (COMPETE
2020) [Project n 39479; Funding Reference: POCI-01-0247-FEDER-39479]. The work of Diogo Ribeiro
is supported the grant FCT PD/BDE/135105/2017.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Acknowledgments: The authors wish to thank the anonymous reviewers for their helpful comments.

Conflicts of Interest: The authors declare no conflict of interest.

Computers 2022, 11, 54 15 of 15

References
1. Ribeiro, D.; Matos, L.M.; Cortez, P.; Moreira, G.; Pilastri, A.L. A Comparison of Anomaly Detection Methods for Industrial

Screw Tightening. In Proceedings of the Computational Science and Its Applications-ICCSA 2021-21st International Conference,
Cagliari, Italy, 13–16 September 2021; Proceedings, Part II; Gervasi, O., Murgante, B., Misra, S., Garau, C., Blecic, I., Taniar, D.,
Apduhan, B.O., Rocha, A.M.A.C., Tarantino, E., Torre, C.M., Eds.; Springer: Berlin, Germany, 2021; Volume 12950, pp. 485–500.
[CrossRef]

2. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. 2009, 41, 15:1–15:58. [CrossRef]
3. Bickford, J. Handbook of Bolts and Bolted Joints; Taylor & Francis: Abingdon, UK, 1998.
4. ISO 5393:2017; Rotary Tools for Threaded Fasteners—Performance Test Method. International Organization for Standardization:

Geneva, Switzerland, 2017.
5. Breunig, M.M.; Kriegel, H.; Ng, R.T.; Sander, J. LOF: Identifying Density-Based Local Outliers. In Proceedings of the 2000

ACM SIGMOD International Conference on Management of Data, Dallas, TX, USA, 16–18 May 2000; Chen, W., Naughton, J.F.,
Bernstein, P.A., Eds.; ACM: New York, NY, USA, 2000; pp. 93–104. [CrossRef]

6. Alla, S.; Adari, S.K. Beginning Anomaly Detection Using Python-Based Deep Learning; Apress: Berkeley, CA, USA, 2019.
[CrossRef]

7. Zhou, C.; Paffenroth, R.C. Anomaly detection with robust deep autoencoders. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; pp. 665–674.

8. Ferhat, M.; Ritou, M.; Leray, P.; Le Du, N. Incremental discovery of new defects: application to screwing process monitoring.
CIRP Ann. 2021, 70, 369–372. [CrossRef]

9. Diez-Olivan, A.; Penalva, M.; Veiga, F.; Deitert, L.; Sanz, R.; Sierra, B. Kernel Density-Based Pattern Classification in Blind
Fasteners Installation. In Hybrid Artificial Intelligent Systems; Martínez de Pisón, F.J., Urraca, R., Quintián, H., Corchado, E., Eds.;
Springer International Publishing: Cham, Switzerland, 2017; pp. 195–206.

10. Matsuno, T.; Huang, J.; Fukuda, T. Fault detection algorithm for external thread fastening by robotic manipulator using linear
support vector machine classifier. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation,
Karlsruhe, Germany, 6–10 May 2013; pp. 3443–3450. [CrossRef]

11. Ponpitakchai, S. Monitoring Screw Fastening Process: an Application of SVM Classification. Naresuan Univ. Eng. J. NUEJ 2016,
11, 1–5. [CrossRef]

12. Cao, X.; Liu, J.; Meng, F.; Yan, B.; Zheng, H.; Su, H. Anomaly Detection for Screw Tightening Timing Data with LSTM Recurrent
Neural Network. In Proceedings of the 2019 15th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN),
Shenzhen, China, 11–13 December 2019; pp. 348–352. [CrossRef]

13. Shimbun, N.K. Poka-Yoke: Improving Product Quality by Preventing Defects; CRC Press: Boca Raton, FL, USA, 1989.
14. Solace. Advanced Event Broker. An Event Mesh for Connected Enterprises. December 2021. Available online: https://solace.com/

(accessed on 23 February 2022).
15. MacGregor, J.F.; Nomikos, P. Monitoring batch processes. In Batch Processing Systems Engineering; Springer: Berlin, Germany,

1996; pp. 242–258.
16. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]
17. Fix, E.; Hodges, J.L. Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties. INternational Stat. Rev. Rev.

Int. Stat. 1989, 57, 238–247. [CrossRef]
18. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
19. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
20. Gulli, A.; Pal, S. Deep Learning with Keras; Packt Publishing Ltd.: Birmingham, UK, 2017.
21. Liu, F.T.; Ting, K.M.; Zhou, Z. Isolation Forest. In Proceedings of the 8th IEEE International Conference on Data Mining (ICDM

2008), Pisa, Italy, 15–19 December 2008; IEEE Computer Society: Washington, DC, USA, 2008; pp. 413–422. [CrossRef]
22. Regaya, Y.; Fadli, F.; Amira, A. Point-Denoise: Unsupervised outlier detection for 3D point clouds enhancement. Multim. Tools

Appl. 2021, 80, 28161–28177. [CrossRef]
23. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In

Proceedings of the 32nd International Conference on Machine Learning (ICML 2015), Lille, France, 6–11 July 2015; Volume 37, pp.
448–456.

24. Matos, L.M.; Cortez, P.; Mendes, R.; Moreau, A. Using Deep Learning for Mobile Marketing User Conversion Prediction.
In Proceedings of the International Joint Conference on Neural Networks, IJCNN 2019, Budapest, Hungary, 14–19 July 2019; IEEE:
Piscataway, NJ, USA, 2019; pp. 1–8. [CrossRef]

25. Tashman, L.J. Out-of-sample tests of forecasting accuracy: an analysis and review. Int. J. Forecast. 2000, 16, 437–450. [CrossRef]
26. Pereira, P.J.; Cortez, P.; Mendes, R. Multi-objective Grammatical Evolution of Decision Trees for Mobile Marketing user conversion

prediction. Expert Syst. Appl. 2021, 168, 114287. [CrossRef]
27. Reich, C.L.; Vijaykumar, S. A Possibility in Algorithmic Fairness: Can Calibration and Equal Error Rates Be Reconciled? In

Proceedings of the 2nd Symposium on Foundations of Responsible Computing, FORC 2021, Virtual, 9–11 June 2021; Ligett, K.,
Gupta, S., Eds.; Schloss Dagstuhl-Leibniz-Zentrum für Informatik: Wadern, Germany, 2021; Volume 192, pp. 4:1–4:21. [CrossRef]

28. Hollander, M.; Wolfe, D.A.; Chicken, E. Nonparametric Statistical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2013.

http://doi.org/10.1007/978-3-030-86960-1_34
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1145/342009.335388
http://dx.doi.org/10.1007/978-1-4842-5177-5
http://dx.doi.org/10.1016/j.cirp.2021.04.026
http://dx.doi.org/10.1109/ICRA.2013.6631058
http://dx.doi.org/10.14456/nuej.2016.11
http://dx.doi.org/10.1109/MSN48538.2019.00072
https://solace.com/
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.2307/1403797
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1109/ICDM.2008.17
http://dx.doi.org/10.1007/s11042-021-10924-x
http://dx.doi.org/10.1109/IJCNN.2019.8851888
http://dx.doi.org/10.1016/S0169-2070(00)00065-0
http://dx.doi.org/10.1016/j.eswa.2020.114287
http://dx.doi.org/10.4230/LIPIcs.FORC.2021.4

	Introduction
	Related Work
	Materials and Methods
	Industrial Data
	Anomaly Detection Angle–Torque Approach
	Machine Learning Models
	Evaluation

	Results
	Previous Experiments
	Experiments with Larger and More Recent Data

	Conclusions
	References

