
UNIVERSIDADE DO MINHO

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA

DISSERTAÇÃO

Modern Front-End Web Development

Author: António Manuel Pereira do Anjo A67660
Supervisors: Rui Couto, José Creissac Campos

October 28, 2018



Acknowledgements

I would like to firstly thank my supervising professors José Creissac Campos and
Rui Couto for their availability and eagerness to help with their knowledge and
experience during the work period.

Secondly, I would like to thank all the Jumpseller team members that I worked
with, who have since the first day made me feel like part of the team and who I have
been lucky to learn from and become friends with.

I would finally like to thank my family, my girlfriend Sara and my good friends
José Francisco, João Miranda and Rui Pereira for the continued support over the
years.



iii

Abstract

The Internet is always evolving. The way content is generated, displayed and ac-
cessed is constantly changing with the advancements of technology.

As such, new tools, frameworks and technologies are constantly surfacing as a
way to deal with the challenges of this evolution. Keeping up with an increasingly
large number of options is, for Web Developers, as important as it is challenging.

With this challenge in mind, this dissertation aims to offer a deep look into the
current state of Front-End Web Development by going through relevant concepts
and doing an in-depth, comparative analysis of the different frameworks. In the
process, data will be collected, a case study will be developed and a developed ap-
proach will be validated, thus obtaining results and taking conclusions that will help
make the best possible decisions in the development process.

The author will be, during the work period, part of the Developer Team at Jumpseller,
working hands-on with these technologies.



iv

Resumo

A Internet está sempre a evoluir. A forma como o conteúdo de uma página é criado,
visualizado, e acedido está constantemente a alterar graças aos avanços tecnológicos.

Como tal, existem novas ferramentas, frameworks, e tecnologias em constante
surgimento, oferecendo métodos para lidar com os desafios desta evolução. O de-
safio de se manter a par de um número cada vez maior de opções é, para os Web
Developers, algo tão importante como é exigente.

Com este desafio em mente, o objetivo desta dissertação é oferecer uma análise a
fundo para o atual estado da arte do Desenvolvimento Web Front-End, percorrendo
vários conceitos relevantes e realizando uma análise comparativa detalhada sobre
as várias frameworks. Para atingir este fim, dados serão obtidos, será desenvolvido
um caso de estudo e uma abordagem será desenvolvida e validada, obtendo assim
resultados e tirando conclusões que irão auxiliar a tomada de decisões no processo
de desenvolvimento.

O autor irá integrar, durante o período de trabalho, a equipa de desenvolvimento
na Jumpseller, trabalhando diretamente com estas tecnologias.



v

Contents

Abstract iii

Resumo iv

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Motivation and Challenges . . . . . . . . . . . . . . . . . . . . . 3

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Technology and Concepts 6
2.1 Web Applications Development . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Web Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Web Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Responsive Web Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Flexible Layout and Content . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Media Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Styling and Behavior . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Node.js . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Framework Analysis and Approach Development 17
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Sass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Responsive Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.4 Weaknesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 React . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.1 Features and Principles . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 JSX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.3 State and Props . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.4 Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.5 Weaknesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.6 Seen On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Vue.js . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.1 Features and Principles . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.2 The Vue Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.3 Templates and Syntax . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.4 Interpolation, Directives and Data Binding . . . . . . . . . . . . 30



vi

3.4.5 Example Component . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.6 Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.7 Weaknesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.8 Seen On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Angular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5.1 Features and Principles . . . . . . . . . . . . . . . . . . . . . . . 34
3.5.2 Typescript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5.3 Templating and Data-Binding . . . . . . . . . . . . . . . . . . . . 36
3.5.4 Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.5 Weaknesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.6 Seen On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Brief Comparative Overview . . . . . . . . . . . . . . . . . . . . . . . . 38
3.7 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Case Study 41
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 The Languages Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Mobile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Mock-ups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.1 Desktop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.2 Mobile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.3 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.2 Desktop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.3 Mobile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 New Mock-ups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5.1 Desktop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5.2 Mobile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.6.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.6.2 System and Pre-Requisites . . . . . . . . . . . . . . . . . . . . . . 53
4.6.3 CSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6.4 Developed Applications . . . . . . . . . . . . . . . . . . . . . . . 55

4.7 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.7.1 Bootstrapping and CLI tools . . . . . . . . . . . . . . . . . . . . 57
4.7.2 Styling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.7.3 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.7.4 Component Communication . . . . . . . . . . . . . . . . . . . . 61
4.7.5 Conditional Rendering . . . . . . . . . . . . . . . . . . . . . . . . 62
4.7.6 Iterative Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.7.7 Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.7.8 Event Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.7.9 Project Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



vii

5 Validation - Jumpseller 67
5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1.1 Design and Development . . . . . . . . . . . . . . . . . . . . . . 67
5.1.2 Shared Components . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Work Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.1 Theme Options Remake . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.2 Facebook Messenger Jumpseller App . . . . . . . . . . . . . . . 69
5.2.3 New Admin Panel Menu Layout . . . . . . . . . . . . . . . . . . 73
5.2.4 Product Categories Section . . . . . . . . . . . . . . . . . . . . . 75
5.2.5 Products Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.6 Product Edition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.1 Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.2 Contribution and Learning Experience . . . . . . . . . . . . . . 84

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Conclusions 85
6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A Theme Options Screenshots 88

B Categories Screenshots 92

C Product List Screenshots 96

D Product Edition Screenshots 100

Bibliography 108



viii

List of Figures

1.1 The Jumpseller logo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Front-End and Back-End. . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 The Amazon front-page. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 HTML, CSS and JavaScript. . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Responsive Web Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Example of a non-responsive Web Design. . . . . . . . . . . . . . . . . . 11
2.6 flex-direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 flex-grow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.8 Foundation’s grid system example . . . . . . . . . . . . . . . . . . . . . 13
2.9 Example of a grid-based page layout using Bootstrap . . . . . . . . . . 13
2.10 “Hello World“ in React. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.11 “Hello World“ in Vue 2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.12 The Node.js logo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 The Bootstrap logo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Some of the Sass variables in Bootstrap 4. . . . . . . . . . . . . . . . . . 20
3.3 Bootstrap Grid Layout Example. . . . . . . . . . . . . . . . . . . . . . . 20
3.4 The Bootstrap 3.3 Starter Template. . . . . . . . . . . . . . . . . . . . . . 21
3.5 Bootstrap’s Responsive Navbar. . . . . . . . . . . . . . . . . . . . . . . . 22
3.6 The React logo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7 The Vue.js logo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.8 The Angular logo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.9 Venn diagram displaying main features of each of the selected frame-

works. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.10 The developed approach diagram. . . . . . . . . . . . . . . . . . . . . . 39

4.1 The Desktop version of the languages section. . . . . . . . . . . . . . . 42
4.2 The features of the languages section. . . . . . . . . . . . . . . . . . . . 43
4.3 Languages on Mobile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Languages on Mobile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 Language List Mock-up on Desktop . . . . . . . . . . . . . . . . . . . . 46
4.6 Language Mock-up on Desktop . . . . . . . . . . . . . . . . . . . . . . . 46
4.7 Mock-up on Mobile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.8 Mock-up on Mobile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.9 Language List Desktop Components . . . . . . . . . . . . . . . . . . . . 48
4.10 Language Desktop Components . . . . . . . . . . . . . . . . . . . . . . 48
4.11 New Language List Mock-up on Desktop . . . . . . . . . . . . . . . . . 50
4.12 New Section List Mock-up on Desktop . . . . . . . . . . . . . . . . . . . 50
4.13 New Language Mock-up on Desktop . . . . . . . . . . . . . . . . . . . . 51
4.14 New Mock-up on Mobile. . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.15 New Mock-up on Mobile. . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.16 JSON file containing the Data to be displayed . . . . . . . . . . . . . . . 53



ix

4.17 The developed applications, showing the list of sections within the
language list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.18 The developed applications, showing the strings translation area . . . 56
4.19 Configuring a new Vue app . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.20 Declaring routes in React . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.21 Component Communication in Vue . . . . . . . . . . . . . . . . . . . . 61
4.22 Conditional Rendering in React . . . . . . . . . . . . . . . . . . . . . . . 62
4.23 Iterative Rendering in Vue . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.24 Event Handling in React . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 The Facebook Messenger Jumpseller App. . . . . . . . . . . . . . . . . . 72
5.2 The Send-To-Messenger button included in a store. . . . . . . . . . . . 72
5.3 An example of a message sent automatically by the app. . . . . . . . . 73
5.4 Desktop version of the new admin panel menu. . . . . . . . . . . . . . 74
5.5 Mobile version of the new admin panel menu. . . . . . . . . . . . . . . 75
5.6 Product options on the old design. . . . . . . . . . . . . . . . . . . . . . 79

A.1 The Theme Options App - Desktop version (Cropped). . . . . . . . . . 88
A.2 The Desktop version allows you to preview how the store looks when

accessed from a mobile device. . . . . . . . . . . . . . . . . . . . . . . . 89
A.3 The Theme Options App - Mobile version. . . . . . . . . . . . . . . . . 90
A.4 All the functionalities of the App work on mobile, as was part of the

requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

B.1 The Desktop version of the product categories list. . . . . . . . . . . . . 92
B.2 The Mobile version of the product categories list. . . . . . . . . . . . . . 93
B.3 The Desktop version of the category edition page. . . . . . . . . . . . . 94
B.4 The Mobile version of the category edition page. . . . . . . . . . . . . . 95

C.1 The Desktop version of the product categories list. . . . . . . . . . . . . 96
C.2 Performing actions on the Desktop version of the product categories

list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
C.3 The Mobile version of the product categories list. . . . . . . . . . . . . . 98
C.4 Performing actions on the Mobile version of the product categories list. 99

D.1 The basic properties in the new Product Edition page, on Desktop. . . 100
D.2 The image gallery and product properties in the new Product Edition

page, on Desktop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
D.3 The shipping properties and the product options and variables table

in the new Product Edition page, on Desktop. . . . . . . . . . . . . . . . 102
D.4 The Custom Fields, Product Files and SEO in the new Product Edition

page, on Desktop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
D.5 Mock-up image of the Product Properties on mobile. . . . . . . . . . . 104
D.6 Mock-up image of the Product Images Gallery on mobile. . . . . . . . . 105
D.7 Mock-up image of the Product Options on mobile. . . . . . . . . . . . . 106
D.8 Mock-up image of the Product Variants on mobile. . . . . . . . . . . . . 107



x

List of Tables

1.1 Jumpseller User Locations . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1 CSS frameworks GitHub data as of December 2017 . . . . . . . . . . . . 17
3.2 JavaScript frameworks GitHub data as of December 2017 . . . . . . . . 18

4.1 Bootstrapping and CLI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Styling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4 Component Communication . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Conditional Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6 Iterative Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.7 Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.8 Event Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.9 Project Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



xi

List of Abbreviations

API Application Programming Interface
CLI Command Line Interface
CSS Cascading Style Sheets
DOM Document Object Model
HTML HyperText Markup Language
IDE Integrated Development Environment
SaaS Software as a Service
SDK Software Development Kit
SEO Search Engine Optimization
UI User Interface
UX User eXperience





1

Chapter 1

Introduction

For as long as the Internet has existed and visiting or creating a website has been
something that is available to anyone, the look, design and usability of a web page
has been a very relevant aspect of web development and a major aspect on whether
or not people are going to want to use a website (Flavián, Guinalíu, and Gurrea,
2006).

While this fact has maintained itself throughout the years, its meaning in terms
of what developers need to be able to achieve has always been changing as the Web
itself changes and evolves.

Concepts such as the Web 2.01 emphasized that a page’s content is, nowadays,
rarely ever static. It can be dynamic and user-generated, gathering information from
other places and displaying it as its own, with focus on usability and interoperability.

A computer is no longer the only way to view a website. Phones, Tablets or even
Smart Watches exist now as a very common way for people to access their favorite
websites and most needed services. This means that web pages have to be developed
in such way that they can adapt to different user experiences.

For reasons such as these, many technologies have surfaced over the years. In
different ways, shapes or forms, these technologies have been aiming to solve the
challenges of the ever-evolving Web.

Facing issues like device compatibility and cross-platform development, these
technologies strive to create simple ways for developers to build their projects in
a way where they can focus on their own specific requirements, without having to
worry about general issues. This is, in theory, a good thing for developers, as it
makes the development process faster and easier. But as more and more of these
technologies come to life, the more the issue of choosing which ones to use for each
project becomes prevalent.

As such, this dissertation aims to investigate the currently most popular tech-
nologies related to Front-End Web Development in its current state, presenting con-
clusions about the strengths and weaknesses of each of them.

During the work period, the author of this thesis will be part of the Jumpseller2

development team. As part of this internship, the author will work with front-end
technologies and directly in a Web Development environment. This means that the
work done as part of the Jumpseller team will be strongly tied to the scientific as-
pect of this dissertation, as the experience gathered will help to have a better under-
standing of the state of the art, and the extensive research will help make sure the
best decisions are made, both during the development processes the author will be
a part of and during the case study development and implementation.

1https://en.wikipedia.org/wiki/Web_2.0 - Web 2.0 (Accessed September 11, 2018)
2https://jumpseller.com/ - Cloud Ecommerce Solution (Accessed September 11, 2018)



2 Chapter 1. Introduction

1.1 Context

Throughout the work period, several projects will be developed within the scope of
the Jumpseller product (the logo is presented in Figure 1.1), most of which consist-
ing in the development of Web Interfaces, making use of technologies that aim to
improve the user experience of the application.

The developed components and interfaces will be integrated in the production
build of the Jumpseller application. This will be achieved in collaboration with the
company’s development team.

FIGURE 1.1: The Jumpseller logo.

Jumpseller is a SaaS (Software as a Service) solution, from Widetail3, for small
businesses to easily create an online store. It aims to make e-commerce easier for
everyone, so that businesses can focus on what they do best: building and selling
their products.

Today, merchants use the Jumpseller platform to manage every aspect of their
online business — from products to orders to customers, selling online, on mobile,
and on social networks.

Upon creating a store in the Jumpseller platform, store owners can then manage
it on its administration panel, a web application consisting of different, often com-
plex sections that enable the management and customization of various elements of
their store and brand - from the products to orders to customers, changing the store
appearance, selling on social networking platforms and integrating with a variety of
payment and shipping methods.

1.1.1 Overview

Aimed at Small and Medium-Sized Enterprises, Jumpseller has clients spread all
over the world, with a large percentage of those coming from Chile and other South
American countries. Table 1.1 shows the country distribution of its clients as of
December 2017, the time of writing of this section of the present document.

Chile 65%
Portugal 10%
Colombia 8%
Mexico 7%
USA 1.5%
Brazil 1%

Others 7.5%

TABLE 1.1: Jumpseller User Locations

3http://widetail.com/ - Widetail (Accessed Semptember 11, 2018)



1.1. Context 3

As of this time, the percentage of clients coming from Chile has been decreas-
ing, as Jumpseller keeps growing and gaining popularity in other countries. It is
expected that in the next few years more than 50 percent of the clients will be from
outside of Chile.

In November 2017, Jumpseller hit the milestone of 1000 active paying stores.

1.1.2 Motivation and Challenges

With a large amount of users - store owners and their clients - interacting with the
Jumpseller application, it is of utmost importance that an appropriate, pleasing user
experience is delivered to all of them.

This can be a challenging thing to achieve, as a large number of users implies a
wide variety of device types - desktop computers, mobile phones, etc - , a varying
degree of technical proficiency of the users - age and education levels of the users
may influence this - as well as other factors such as the computational power that the
average user from a certain country may have access to or the languages they speak.
Aspects such as these come as a result of the variety of countries where Jumpseller
is present.

As such, front-end work on the Jumpseller platform will revolve around the fol-
lowing principles.

• Ease-of-Use Some of the web components currently in use are old, outdated
and generally don’t provide an optimal user experience. This comes as a con-
clusion of the feedback obtained by the application’s user base and the number
of support tickets received over the years. As such, it’s in the company’s in-
terest that they are improved or replaced in order to guarantee interfaces that
are clean, free of unnecessary steps or annoyances and that are as simple as
possible.

• Device Compatibility Similarly, some of the functionalities found through-
out the platform work very poorly or not at all on mobile devices. Making
sure all functionality and presentation quality is kept across different devices
is a priority.

• Lightweight Approach The Jumpseller application should work well for ev-
eryone, regardless of their device’s computational power or average Internet
speed. This means that high performance should be a factor in choosing the
right approach to development.

The current problem with the platform is that many of the sections don’t re-
spect these principles: Some are poorly designed and coded, with a difficult-to-
understand flow and confusing layouts. Others don’t function well - or at all - on
mobile devices and some pages load unused code increasing the application’s load-
ing times unnecessarily. This may be a result of the current code having been written
without these principles in mind and without there having been a proper technology
selection methodology prior to their implementation.

During the work period, the author will be working on making the application
a better user experience by firstly analyzing the current implementations and iden-
tifying their problems and, on a second phase, working closely with the researched
technologies and using the most appropriate ones with these key principles in mind.



4 Chapter 1. Introduction

1.2 Objectives

The following objectives have been set for this dissertation.

• State of the Art Analysis

– Analysis and comparison of the most popular available front-end tech-
nologies.

• Approach Development

– Deep comparative analysis of the selected technologies, evaluating strengths,
weaknesses and how they respond to common problems.

– Present an initial idea of an approach which can be used to facilitate the
process of choosing the right front-end technologies for a web develop-
ment project.

• Case Study Development

– Definition of a case study to be used in validating the proposed approach.

– Propose a technological approach to the defined problem.

– Development of web interfaces and components using the researched
technologies.

• Approach Validation

– Integration of the developed components with the enterprise back-end,
with help from the Jumpseller team.

1.3 Document Structure

This dissertation has the following document structure.

• Chapter 1 - Introduction Briefly present the context and motivation behind
this dissertation, as well as its main objectives and structure. Describe Jumpseller
and its functionalities, user base and current issues.

• Chapter 2 - Technology and Concepts Further contextualize the work that
will be done, by going over the most important concepts and technologies.

• Chapter 3 - Framework Analysis and Approach Development Present us-
age data and make a brief analysis of the most popular technologies in the
front-end development field, taking conclusions about them. Present an initial
idea of an approach in the form of a diagram.

• Chapter 4 - Case Study Define and implement a case study using the re-
search technologies, obtaining a practical experience and allowing for a more
detailed comparison between them and for validation of the proposed ap-
proach.

• Chapter 5 - Validation - Jumpseller Portray the author’s experience as part
of the Jumpseller development team, going over the work methodology, the
projects taken part of and using the experience to further validate the proposed
approach.



1.3. Document Structure 5

• Chapter 6 - Conclusions Provide conclusions about the work done on the
dissertation, presenting a summary of what was accomplished and reflecting
on what can be done in the future.



6

Chapter 2

Technology and Concepts

This chapter sets the context in which this dissertation is included, by providing
some key ideas and concepts about the current state of Web Development and Front-
End technologies.

Here, concepts relevant to this work such as Frameworks and Responsive Web
Design will be presented so that they are further explored later on in the document.

2.1 Web Applications Development

The front-end and the back-end are familiar concepts to any software developer, as
they are both essential components of any application, even if their distinction is not
always clear.

As such, the first thing that should be made clear before delving into further
concepts is the distinction between Front-End and Back-End in the context of the
development of Web Applications.

2.1.1 Web Applications

FIGURE 2.1: Front-End and Back-End.

Front-End

Front-End (see Figure 2.1, Frontend) refers to the parts of an application which exist
and run on the client-side and are responsible for creating and supporting the ele-
ments visible to the end user, representing its visual and interactive components. In



2.1. Web Applications Development 7

web development, this takes the form of a website. Front-end covers how the con-
tent is presented and includes all the interface elements that are displayed, such as
menus, transitions, dropdowns or modals (Nice, 2017). This part of web develop-
ment is often referred to as ’client-side’, as the code runs on the client’s browser - as
opposed to running on the server.

HTML (Hypertext Markup Language), CSS (Cascading Style Sheets) (Meyer,
2006), DOM (Document Object Model), JavaScript (Crockford, 2008), HTTP (Hy-
perText Transfer Protocol)1, and browser skills such as debugging and the browser’s
console are assumed for any type of front-end developer (Linley, 2017). In addition
to fluency in these languages and concepts, front-end developers generally need to
be familiar with frameworks and libraries that ensure responsive, usable content on
all devices that is a result of code that respects the principles of these practices.

FIGURE 2.2: The Amazon front-page.

Figure 2.2 shows the front-page of the Amazon2 website. Front-end elements
such as images, links, buttons and input fields show how content is generated, dis-
played and how it is built to react to the user’s actions.

Back-End

Back-End (see Figure 2.1, Backend) refers to the part of the application that is not vis-
ible to the end user and which lives and runs on the application server - where the
application runs and services such as database operations are provided. As such, it
is often called ’server-side’. The back-end of an application is responsible for the ap-
plication logic, which includes features such as calculations, data management (c.f.
databases) and providing APIs (Application Programming Interfaces, see Figure 2.1,
API). The interaction between the front-end and the back-end makes it possible for
the right data to be sent to the browser and for the client’s actions to be interpreted
and stored by the application and its database.

Back-End developers will generally have expertise in server-side languages such
as Ruby(Thomas, Hunt, and Fowler, 2005), Python3, PHP4 or Java(Sierra and Bates,

1https://developer.mozilla.org/en-US/docs/Web/HTTP - HTTP (Accessed September 11, 2018)
2https://www.amazon.com/ - Amazon (Accessed October 5, 2018)
3https://www.python.org/ - Python (Accessed September 2, 2018)
4http://www.php.net/ - PHP : Hypertext Processor (Accessed September 2, 2018)



8 Chapter 2. Technology and Concepts

2005) and the frameworks that run on them, as well as in database management
systems such as MySQL(MySQL, 2001), Oracle5 or MongoDB6.

Both of these, as well as a way of communication between them, are essential
for the functioning and represent the base components of a web application. This
relationship is shown on Figure 2.1. The communication is asynchronous (meaning
that the front-end application makes a request and waits for a response) and gener-
ally done using HTTP (R. Fielding, 1999) requests, such as GET, POST or PUT to,
respectively, retrieve, add or alter data.

A common format used for passing data in this type of communication is JSON7

- JavaScript Object Notation. This is a light-weight data interchange format that is
easily readable to humans and easy for machines to parse and generate.

It should be noted that, along with these terms, it’s common to find a third type of
Web development, called Full-Stack (Ihrig and Bretz, 2014). A Full-Stack developer
is one who is comfortable with both the client-side and the server-side aspects of
development and can work with both. Full-Stack frameworks also exist and attempt
to provide nearly everything needed to build and application.(Nice, 2017)

2.1.2 Web Pages

FIGURE 2.3: HTML, CSS and JavaScript.

HTML, CSS and JavaScript are the foundation of Front-End Development, and
work together to create, style and set the behavior of a web page. They are com-
monly represented by the logos shown on Figure 2.3.

HTML

HTML is the most basic building block of the Web. It describes and defines the
content of a web page. Its current latest major version is HTML5. (Mozilla, 2017b)

HTML uses markup - a system for annotating a document in a way that is syn-
tactically distinguishable from the text 8 - to annotate text, images, and other content
for display in a Web browser. HTML markup includes special "elements" such as

5https://www.oracle.com - Oracle (Accessed September 2, 2018)
6https://www.mongodb.com/ - MongoDB (Accessed September 2, 2018)
7https://www.json.org/ - JSON (Accessed September 2, 2018)
8https://www.merriam-webster.com/dictionary/markup+language - Markup Language Defini-

tion on Merriam-Webster (Accessed Sempteber 11, 2018)



2.1. Web Applications Development 9

<head>, <title>, <body>, <header>, <footer>, <article>, <section>, <p>,
<div>, <span> or <img>.

HTML can, by itself, define a layout of a website and its sections, but other tech-
nologies are generally used to describe a web page’s appearance/presentation (CSS)
or functionality/behavior (JavaScript).

CSS

CSS is a stylesheet language used to describe the presentation of a document written
in HTML or XML. (Mozilla, 2017a)

The current latest version, CSS3, is in the process of becoming the standard in
Front-End Development, as it comes with optimizations and is split into smaller
modules.

CSS works together with HTML by describing how elements should be rendered
on screen. It uses properties such as color, background-color, height, width and many
more.

header {
background-color:red;

}

LISTING 1: CSS Example

For example, having an HTML page that contains a <header> tag and includes
the CSS code snippet in Listing 1 will result in the header section of the page having
a red background.

JavaScript

JavaScript is an interpreted programming language with object-oriented capabilities.
It is most commonly used in web browsers and, in that context, its general pur-

pose core is extended with objects that allow scripts to interact with the use, con-
trol the web browser, and alter the document content that appears within the web
browser window. This embedded version of JavaScript runs scripts embedded within
HTML web pages. It is commonly called client-side JavaScript to emphasize that the
scripts are run by the client computer rather than the web server.

Client-side JavaScript combines the scripting ability of a JavaScript interpreter
with the DOM defined by a browser. HTML documents may contain JavaScript
scripts - using the <script> tag - and those scripts can use the DOM to modify the
document or control the web browser that displays it (Flanagan, 2006).

In sum, client-side JavaScript adds behavior to otherwise static web content.



10 Chapter 2. Technology and Concepts

2.2 Responsive Web Design

The concept of Responsive Web Design (Bryant and Jones, 2012) or Responsive
relates to the practice of building websites which are capable to adapt to the screen
size of the device accessing it, as shown on Figure 2.4.

FIGURE 2.4: Responsive Web Design.

Its implementation revolves around some key ideas: Grid-based flexible layouts,
flexible content with dynamic resizing and media queries.

2.2.1 Flexible Layout and Content

In responsive, layout and text sizes are not expressed in pixels. Instead, relative mea-
surements are used such as percentages, em (size relative to the font-size of the
element), rem (size relative to the font-size of the root element), vw (size relative to
the width of the viewport9) or vh (size relative to the height of the viewport).

Through this approach it is possible that all the components of the web page can
scale appropriately when the screen size changes, as seen on Figure 2.4. If absolute
measurements were used instead, the elements would remain the same size and
their readability and functionality would be compromised.

9Viewport - The browser’s window size.



2.2. Responsive Web Design 11

FIGURE 2.5: Example of a non-responsive Web Design.

Figure 2.5 shows an example of a website that is not responsive which, when
viewed on a smaller screen, its content becomes illegible.

Flexbox

The Flexible Box Module, usually referred to as flexbox, aims at providing a more
efficient way to lay out, align and distribute space among items in a container, even
when their size is unknown and/or dynamic (Coyier, 2018).

Development with flexbox starts by creating a flex container: an HTML element
with the display:flex CSS property. This establishes the formatting context for its
contents and enables flexbox layout configuration on itself and its child elements.

Beyond establishing the context, several other CSS properties allow for deeper
configuration of the created container and the layout of its contents. This includes,
for example, flex-direction which defines in which direction the container wants
to stack the flex items (row or column, shown in Figure 2.6) or align-items which
is used to align the flex items vertically in a variety of different ways such as center,
the top of the container or using a common baseline.

Additionally, there are properties which can be applied to the flex items, i.e.
the child elements of the container, such as flex-grow, shown on Figure 2.7, or
flex-shrink which specifies how much a flex item will shrink relative to the rest
of the flex items.



12 Chapter 2. Technology and Concepts

FIGURE 2.6: flex-direction

FIGURE 2.7: flex-grow

This module is used by the Bootstrap10 framework to help create the popular
grid-based layout.

2.2.2 Media Queries

Media Queries are a key component of responsive design (Mozilla, 2017c) and con-
sist of expressions which verify certain conditions of the page, applying different
CSS rules for each scenario.

This enables having a specific CSS rule set for certain screen sizes, thus support-
ing many different screen types and sizes without ever changing the actual content
of the web page.

For example, the media query in Listing 2 checks the screen size and applies
the padding property on the medium element only if the condition is met, i.e., if the
screen’s width is a value between 760 and 1080 pixels.

@media screen and (max-width: 1080px) and (min-width: 760px) {
.medium {

padding: 30px;
}

}

LISTING 2: Media Query Example

Besides the screen size, media queries can adapt to different scenarios regarding
screen resolution, orientation, light level and more11.

The combination of these concepts creates a strong solution to build dynamic,
responsive web applications (Sampaio, 2013).

10https://getbootstrap.com/ - Bootstrap (Accessed October 19, 2018)
11https://developer.mozilla.org/en-US/docs/Web/CSS/@media#Media_features - Media Fea-

tures on Mozilla (Accessed Semptember 11, 2018)



2.2. Responsive Web Design 13

Grid Systems

A Grid is a two-dimensional structure used to vertically and horizontally structure
a page’s content in rows and columns. For instance, Figure 2.8 shows the 12 column
container, where the header occupies the full width (12 columns), the main content 8
columns and the sidebar the remaining 4 columns. Figure 2.9 shows a similar repre-
sentation, where the different rows are composed of a different amount of columns,
depending on the type of layout desired.

FIGURE 2.8: Foundation’s grid system example

In frameworks such as Bootstrap or Foundation12, the grid is composed by 12
columns that can scale to an arbitrary size based on their max-width, defined as a
percentage of the screen size.

The use of responsive grids which scale with the window size is a key component
of responsive web design, as it allows otherwise static component to be displayed in
a fluid, scalable component.

FIGURE 2.9: Example of a grid-based page layout using Bootstrap

12https://foundation.zurb.com/ - Foundation (Accessed October 19, 2018)



14 Chapter 2. Technology and Concepts

2.3 Frameworks

In general, the term framework describes a real or conceptual structure which serves
as a base or guide towards building a product that expands it into something useful.

In Web Development, a large number of frameworks exist as a way to solve
commonly faced problems and to provide a way to make development easier and
more straight-forward, in such way that developers can focus on creativity and the
specifics of their projects.

Next follows the description of two kinds of web frameworks - Styling and Be-
havior driven - where a brief introduction and comparison of each is made.

2.3.1 Styling and Behavior

The distinction between the styling and behavior aspects of front-end development
means that the catalog of front-end frameworks can be divided into primarily visual-
oriented frameworks and primarily behavioral or building frameworks - even if
some frameworks include both style sheets and scripts.

Both kinds of frameworks can coexist within an application and will be consid-
ered in this analysis.

CSS Frameworks

A CSS Framework is a set of pre-prepared CSS styles that aim to easily provide
the developer a set of well-designed, standard-compliant layouts or components,
usually in line with the principles of Responsive Web Design. Some of the most
popular CSS frameworks include Bootstrap and Foundation.

More functional frameworks - such as Bootstrap - also come with some JavaScript
based functions and features, although these are generally design-oriented. This in-
cludes components like Dropdowns or Modals.

JavaScript Frameworks

JavaScript Frameworks, such as React (Gackenheimer, 2015)13 or Vue14, while all with
their own specific features and quirks, aim to offer ways for developers to efficiently
develop their front-end, with focus on metrics such as approachability, versatility
and performance.

This is often achieved by providing unique code syntax, templates and re-usable
components.

The two code examples shown on figures 2.10 and 2.11 demonstrate a “Hello
World“ in React and in Vue, showing how these frameworks work differently and
with different syntax to achieve a similar end - in this case, a blank page with the
text Hello World!.

13https://reactjs.org/ - React (Accessed September 11, 2018)
14https://vuejs.org - Vue.js (Accessed September 11, 2018)



2.3. Frameworks 15

FIGURE 2.10: “Hello World“ in React.

FIGURE 2.11: “Hello World“ in Vue 2.0.

2.3.2 Node.js

Node.js (Tilkov and Vinoski, 2010) is a JavaScript runtime built on Chrome’s V8
JavaScript engine15. This means that the Node run-time environment includes ev-
erything you need to execute a program written in JavaScript16. Its logo is shown on
Figure 2.12.

15https://nodejs.org/en/ - Node.js (Accessed September 3, 2018)
16https://medium.freecodecamp.org/what-exactly-is-node-js-ae36e97449f5 - What exactly is

Node.js? (Accessed September 3, 2018)



16 Chapter 2. Technology and Concepts

FIGURE 2.12: The Node.js logo

Node Modules

Modules in Node.js can be considered the same as JavaScript libraries, and represent
a set of functions one wishes to include in an application.

Node.js has a set of built-in modules which can be used without any further
installation, and additional modules can be imported to an application using the
require() function.

npm

npm, the Node Package Manager, makes it easy for JavaScript developers to share
and reuse code17 as well as managing dependencies within a project. It can be in-
stalled alongside Node.js and commands such as npm install or npm update can be
used to integrate new packages into an existing application or update all the existing
ones to their latest versions.

2.4 Summary

In this chapter some of the key concepts of modern web development such as Front-
End, Responsive Web Design, Frameworks and the technologies that come with
them have been presented, providing technological context for the next sections,
where the most important front-end development frameworks will be analyzed in
higher detail and put to test through a case study. These concepts and technologies
will also be important on relating the work projects the author will work on as part
of the Jumpseller team.

17https://www.npmjs.com/get-npm - npm (Accessed September 3, 2018)



17

Chapter 3

Framework Analysis and Approach
Development

This chapter presents an overview of the most relevant Front-End frameworks, con-
sidering usage data as the major factor for selecting the set of frameworks for analy-
sis.

This will define the basis for the analysis process to be developed on the later
stages of this dissertation.

Then, a comparative analysis of the frameworks is done, in order to develop an
approach to the issue of selecting the right technologies for a given project.

3.1 Overview

To get an idea of what are, as of December 2017 - the time of writing of the present
document - the most used web development frameworks, GitHub1 data was col-
lected and is displayed on Table 3.1 and Table 3.2. The number of stars and forks
is shown for each framework, respectively indicating GitHub users that liked and
copied the source code of each project.

The first selection of frameworks to be evaluated was made using popularity and
a GitHub collection of front-end JavaScript framework projects 2 as criteria.

Stars Forks
Bootstrap 119k 56k
Semantic-UI 38k 4k
Material-UI 31k 5k
Materialize 30k 4k
Foundation 26k 5k
Bulma 22k 1k

TABLE 3.1: CSS frameworks GitHub data as of December 2017

It can be concluded from this data that, looking at the CSS frameworks and based
on the defined criteria, Bootstrap is by far the most popular, with a sizable lead over
its contestants.

1https://github.com/ - GitHub (Accessed September 11, 2018)
2https://github.com/collections/front-end-javascript-frameworks - Collections : Front End

JavaScript Frameworks (Accessed October 5, 2018)



18 Chapter 3. Framework Analysis and Approach Development

Stars Forks
React 83k 15k
Vue.js 76k 11k
Angular.js 57k 28k
Angular 31k 7k
Backbone 26k 5k
Ember.js 18k 3k

TABLE 3.2: JavaScript frameworks GitHub data as of December 2017

In the JavaScript category on the other hand, numbers are distributed slightly
more evenly, with React and Vue (the youngest of the three, having started in 2014)
closely on the top spots, and the two versions of Angular - Angular.js (the oldest of
the three, started in 2009) and Angular - Formerly known as Angular 2 on the next
positions.

In the following sections a deeper look will be taken at the most popular frame-
works in each category, evaluating its strengths and weaknesses and taking conclu-
sions about what makes them the most popular. These sections will aim to compare
the frameworks in terms of what their main features are, how certain common oper-
ations can be performed and their strengths and weaknesses.

A look will be taken at the main features that make Bootstrap the most popular
CSS framework as well as how it handles common problems and, on JavaScript
frameworks, a common point of comparison will be how data-binding works. This
refers to how data stored in the JavaScript variables or objects can be used in the
HTML template to be presented to the end user. Along with this, a small example of
a component or page built using each framework will be presented on its respective
section.

3.2 Bootstrap

FIGURE 3.1: The Bootstrap logo.

Originally created by a designer and a developer at Twitter, Bootstrap has be-
come one of the most popular front-end frameworks and open source projects in the
world. Since its first release in 2011, it has had multiple major updates and versions.
The current latest version is a beta build of Bootstrap 4.1 and its logo is shown in
Figure 3.1.

Bootstrap is an open source toolkit for developing with HTML, CSS, and JavaScript,
which allows developers to quickly prototype their ideas or build entire apps with



3.2. Bootstrap 19

Sass3 variables (further explained on Section 3.2.1), responsive grid system, exten-
sive pre-built components, and powerful plugins built on jQuery4, a JavaScript li-
brary designed to simplify the client-side scripting of HTML.

3.2.1 Sass

Since the first beta release of Bootstrap 4, the framework has been built on Sass. Sass
is a CSS extension language which strives to add power and elegance to the basic
language.

It does so by allowing the use of variables, nested rules, mixins and inline im-
ports. This helps keep large style sheets well-organized, and get small style sheets
up and running quickly.

Sass code, written on a .scss file is then compiled to plain CSS to be interpreted
by the browser.

#main {
width: 97%;

p, div {
font-size: 2em;
a { font-weight: bold; }

}

pre { font-size: 3em; }
}

LISTING 3: Nested CSS in Sass

The code example on Listing 3 shows the use of nested rules in Sass, and com-
piles to the plain CSS in Listing 4.

#main {
width: 97%; }
#main p, #main div {

font-size: 2em; }
#main p a, #main div a {

font-weight: bold; }
#main pre {

font-size: 3em; }

LISTING 4: Plain CSS compiled from Sass

Note that the Sass snippet on Listing 3 was written on the SCSS syntax, which is
similar to regular CSS. There is also the option of using the SASS syntax, which is
more concise and uses indentation rather than brackets to indicate nesting of selec-
tors, and newlines rather than semicolons to separate properties. The fact that it’s
more similar to regular CSS, however, makes SCSS a more popular choice.

3http://sass-lang.com/ - Sass: Syntactically Awesome Style Sheets (Accessed September 11, 2018)
4https://jquery.com/ - jQuery (Accessed September 11, 2018)



20 Chapter 3. Framework Analysis and Approach Development

For Bootstrap, Sass brings advantages with its use of variables. This means that
users can customize Bootstrap with a built-in custom variables file and easily tog-
gle CSS preference with the $enable- Sass variables. Some of these variables are
depicted in Figure 3.2.

FIGURE 3.2: Some of the Sass variables in Bootstrap 4.

3.2.2 Responsive Grid

Bootstrap uses a powerful mobile-first flexbox grid to build layouts of all shapes and
sizes thanks to a twelve column system and five default responsive tiers for screen
sizes. Rows and Columns are used as classes to set the grid layout of a page.

For example, the HTML code on Listing 5, using Bootstrap 4:

<div class="container">
<div class="row">

<div class="col-sm">
One of three columns

</div>
<div class="col-sm">

One of three columns
</div>
<div class="col-sm">

One of three columns
</div>

</div>
</div>

LISTING 5: Bootstrap Grid Layout Example

Results in the layout shown in Figure 3.3.

FIGURE 3.3: Bootstrap Grid Layout Example.



3.2. Bootstrap 21

3.2.3 Strengths

• Ease of Use Bootstrap allows developers to add good-looking, functional and
responsive components to their web pages with very little knowledge of HTML,
CSS or JavaScript required. Most of the features of Bootstrap are enabled sim-
ply by using certain class attributes on HTML elements.

• Large Community Being the most popular CSS framework, Bootstrap has a
great documentation, tons of community support and a lot of community made
free and professional templates.

3.2.4 Weaknesses

• Customization and Restrictions If developers intend their website to deviate
from the customary design used in Bootstrap, they will have to spend a lot of
time overriding styles and re-writing files, slowing down development.

This further increases one of the inherent issues of using a CSS framework -
the fact that it limits creativity. This has been made less of an issue with the
introduction of Sass variables in version 4.

• Code Extension While it is easy to understand, a Bootstrap page layout can
be quite verbose. Between creating containers, rows and columns for each
section, the resulting document will have a very large amount of elements and
code even on visually simple applications.

3.2.5 Example

To get a better visualization and understanding of how Bootstrap works, let’s take
a look of one of the official code examples provided by Bootstrap, shown on Figure
3.4. The is from the Starter Template5, the most basic of the ones available.

FIGURE 3.4: The Bootstrap 3.3 Starter Template.

5https://getbootstrap.com/docs/3.3/examples/starter-template/ - Starter Template for Bootstrap
(Accessed September 11, 2018)



22 Chapter 3. Framework Analysis and Approach Development

Examining the page source code, we can find the HTML markdown shown in
Listing 6 used to define the layout and its structure.

<nav class="navbar navbar-inverse navbar-fixed-top">
<div class="container">

<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed"
data-toggle="collapse"
data-target="#navbar"
aria-expanded="false"
aria-controls="navbar">

<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>

</button>
<a class="navbar-brand" href="#">Project name</a>

</div>
<div id="navbar" class="collapse navbar-collapse">

<ul class="nav navbar-nav">
<li class="active">

<a href="#">Home</a>
</li>
<li>

<a href="#about">About</a>
</li>
<li>

<a href="#contact">Contact</a>
</li>

</ul>
</div>

</div>
</nav>

LISTING 6: Starter Template Source HTML

This section of the code deals with the navigation bar on top of the screen, as
well as its responsive behaviour. Figure 3.5 shows that, on small enough screens, the
navigation bar changes its presentation to provide a better user experience.

FIGURE 3.5: Bootstrap’s Responsive Navbar.



3.3. React 23

This is achieved using the included navbar and collapse classes and their sub-
classes (navbar-header, etc.).

<div class="container">

<div class="starter-template">
<h1>Bootstrap starter template</h1>
<p class="lead">
Use this document as a way to quickly start any new project.
<br>
All you get is this text and a mostly barebones HTML document.
</p>

</div>

</div>

LISTING 7: Starter Template Source HTML - Continued

The part of the code shown in Listing 7 refers to the body of the page layout,
where the content is displayed. It should be noted that this HTML uses some classes
that are not defined in the document or part of Bootstrap, such as the starter-template
class.

It can be seen on this example how, even for a simple page, the code is quite
verbose and how this can pose an issue when scaling up to a large application.

3.3 React

FIGURE 3.6: The React logo.

Initially created by Jordan Walke and released in March 2013, React is now main-
tained by Facebook, Instagram and community developers and is currently the most
popular front-end JavaScript framework. Its logo is shown on Figure 3.6.

React is a declarative, component-based and compatible JavaScript library for
building user interfaces6.

6https://reactjs.org/ - React - A JavaScript library for building user interfaces (Accessed September
11, 2018)



24 Chapter 3. Framework Analysis and Approach Development

3.3.1 Features and Principles

• Composition The key feature of React is composition of components. Sections
of a page are written as encapsulated components which manage their own
state and are composed together to build complex UIs. By design principle,
components written by different people should work well together.

• Declarative API & the Virtual DOM The virtual DOM is a programming con-
cept where an ideal, or “virtual”, representation of a UI is kept in memory and
synced with the “real” DOM by a library such as ReactDOM. This enables the
declarative API of React: You tell React what state you want the UI to be in,
and it makes sure the DOM matches that state.

3.3.2 JSX

React components are typically written in JSX, a JavaScript extension syntax allow-
ing quoting of HTML and using HTML tag syntax to render subcomponents.

The code shown in Listing 8 is an example of a simple React component written
in JSX.

import React from 'react';

class Component extends React.Component {
render() {

return (
<div>

<p>My Content</p>
</div>

);
}

}

export default Component;

LISTING 8: Sample React Component

JSX code is then compiled into plain JavaScript, meaning that fundamentally,
JSX just provides s̈yntactic sugarf̈or the React.createElement(component, props,
...children) function. The JSX on Listing 9:

<MyButton color="blue" shadowSize={2}>
Click Me

</MyButton>

LISTING 9: Small Component showing JSX syntax



3.3. React 25

Compiles into the code shown in Listing 10:

React.createElement(
MyButton,
{color: 'blue', shadowSize: 2},
'Click Me'

)

LISTING 10: JavaScript compiled from JSX

JSX also uses self-closing tags for elements with no children - Note that the clos-
ing slash is syntactically required. Listing 11 shows an example:

<input type="text" className="sidebar" />

LISTING 11: Self-closing tags in JSX

While similar to regular HTML, JSX expressions present some differences. For
example, the class HTML attribute does not work in JSX and should be replaced
with className. Similarly, the value of the style attribute should be an object, not a
string, as exemplified on Listing 12.

<p className="my-paragraph" style={{paddingTop:0}}> Paragraph </p>

LISTING 12: JSX specific attributes



26 Chapter 3. Framework Analysis and Approach Development

Plain JavaScript expressions can be inserted into JSX code by using curly braces,
as seen on the example in Listing 13, which shows a select form with dynamically
rendered options.

<select>
{options.map(function(option){

return (
<option value={option.value}>{option.name}</option>

)
})
}
</select>

LISTING 13: Inserting plain JavaScript in JSX

JSX is optional and not required to use React. However, it provides a more read-
able, easier and faster to write approach.

3.3.3 State and Props

Two essential concepts in understanding how component behavior and inter-component
communication can be implemented in React are State and Props.

State and props (short for “properties”) are both JavaScript objects that trigger a
re-render when changed. While both hold information that influences the output of
render, they are different in one important way: props get passed to the component
(similar to function parameters) whereas state is managed within the component
(similar to variables declared within a function).

The state of a component is an object that is initially declared in the constructor()
method of a component, and its key-value pairs act as global variables which, when
modified via the setState() method, trigger the render() function of the compo-
nent to be called, thus re-rendering the component in the DOM.

This approach enables an easy way to do data binding in React.



3.3. React 27

constructor(props){
super(props);
this.state={

myVariable="Hello";
}
this.onChange = this.onChange.bind(this);

}

onChange(e){
this.setState({

myVariable=e.target.value
})

}

render(){
return(

<div>
Value: {this.state.myVariable}
<input defaultValue={this.state.myVariable}
onChange={this.onChange} />
</div>

)
}

LISTING 14: Data binding using State

In the example in Listing 14, we want the page to display the value of an input
field and have it automatically update with user input. So we create a function
onChange(e) and set it as the handler for the onChange event of the input. By doing
so, every time the value of the input field changes, the function gets called. When
the function is called, it uses the API method setState to alter the value of a variable
that we declared in the component constructor.

As changing the state of a component triggers a call to the render() function, the
component will be render again and will display the new value for the variable.

The use of props enables components to communicate with each other, by pro-
viding a way for them to pass variables and functions to their child components.

<ChildComponent value={value} onChange={handleChange} />

LISTING 15: Passing Props to a Child Component

The code shown in Listing 15, when placed on the render() function of a com-
ponent, calls for the rendering of a ChildComponent, and is passing a variable value
and a function handleChange as props. The instance of ChildComponent can then
access them, respectively, with this.props.value and this.props.onChange. This
way, parent components can communicate with their child components and vice-
versa.



28 Chapter 3. Framework Analysis and Approach Development

3.3.4 Strengths

• Performance React introduced impressive performance benchmarks7. With
the use of an in-memory virtual DOM, the framework knows just what to
change resulting in inexpensive DOM updates.

• Code Re-usability React introduced the concept of components as the core of
every large application. Components made code easier to reuse, maintain, and
test.

• Large, Bubbling Community Stemming from a big name like Facebook and
introducing innovative concepts, React enjoyed almost instantaneous adop-
tion from the front-end community, leading to a very large number of auxiliary
libraries and packages to be developed.

3.3.5 Weaknesses

• Getting Started Getting started with React is not as easy as it is with some
other frameworks. Not only does it come with a steep learning curve, but
its installation generally requires an external utility such as create-react-app
and/or a package manager such as yarn or npm.

3.3.6 Seen On

Some popular web applications which heavily use React include Facebook8, Insta-
gram9, Twitter10 and Airbnb11.

3.4 Vue.js

FIGURE 3.7: The Vue.js logo.

Vue (pronounced like view) is an open-source framework for building user in-
terfaces. Originally created by Evan You, it was initially released in February 2014
and is currently maintained by an international team of developers. As of December
of 2017, its latest version is 2.5.9.

7http://www.stefankrause.net/js-frameworks-benchmark7/table.html - JS Web Frameworks per-
formance benchmark - 2017

8https://www.facebook.com/ - Facebook (Accessed September 11, 2018)
9https://www.instagram.com/ - Instagram (Accessed September 11, 2018)

10https://www.twitter.com/ - Twitter (Accessed September 11, 2018)
11https://www.airbnb.com/ - Airbnb (Accessed September 11, 2018)



3.4. Vue.js 29

Vue is a progressive framework for building user interfaces, designed from the
ground up to be incrementally adoptable. The core library is focused on the view
layer only, and is easy to pick up and integrate with other libraries or existing projects12.
Its logo is shown in Figure 3.7.

3.4.1 Features and Principles

• Compatibility Designed to be incrementally adoptable, Vue can easily scale
between a library and a framework depending on different use cases. This
makes it so that the core library - which focuses on declarative rendering and
composition - has high compatibility with other JavaScript libraries and ad-
ditional features such as routing or state management are offered in officially
maintained supporting libraries and packages.

• Reactivity, Composition and Declarative Rendering Similarly to React, Vue is
based on the composition and nesting of components, and works with a Virtual
DOM to achieve reactivity and declarative rendering. This means Vue keeps a
virtual representation of the UI in memory and automatically (and only when
necessary) updates the DOM.

3.4.2 The Vue Instance

Every application starts by creating a new Vue instance, as shown on Listing 16:

var vm = new Vue({
// options

})

LISTING 16: The Vue Instance

When a Vue instance is created, an options object is passed to the function.
This object can contain several types of options that define the component’s behav-
ior. These options can be split into the following categories: Data, DOM, Lifecycle
Hooks, Assets, Composition and Misc. From the wide range of options available on
the API13, the following are some of the most used.

• El The el option provides the Vue instance an existing DOM element to mount
on. It can be a CSS selector string or an actual HTML element.

• Template The template option indicates a string template to be used as the
markup for the Vue instance.

• Data The data object in a Vue instance is what enables its unobtrusive reac-
tivity system. When an object is passed to a Vue instance as its data option,
Vue will walk through all of its properties and convert them to getter/setters.
These are not visible to the user but under the hood they enable Vue to per-
form dependency-tracking and change-notification when properties are ac-
cessed or modified. When a property in the data object is modified - i.e., its
setter method is called - the component will be re-rendered, thus achieving
reactivity.

12https://vuejs.org/v2/guide/ - Introduction - Vue.js (Accessed September 11, 2018)
13https://vuejs.org/v2/api/#Options-Data - Vue.js API - Options https://vuejs.org/v2/guide/



30 Chapter 3. Framework Analysis and Approach Development

• Props Properties - or props - refer to a list or hash of attributes that are exposed
to accept data from the parent component. It has an Array-based simple syntax
and an alternative Object-based syntax that allows advanced configurations.
This a way for parent components to pass data to child components.

• Lifecycle Hooks Multiple lifecycle hooks exist as options. These represent
functions that get called at certain points in the life cycle of a component. These
include, for example, beforeCreate - called synchronously immediately after
the instance has been initialized, before data observation and event/watcher
setup. Other options14 include created, mounted, updated or beforeDestroy.

• Methods The methods option includes user-defined methods to be mixed into
the Vue instance. These methods are automatically context-bound to the Vue
instance and can be accessed directly on it.

3.4.3 Templates and Syntax

Vue uses an HTML-based template syntax that allows for declarative binding of the
rendered DOM to the underlying Vue instance’s data.

Under the hood, Vue compiles the templates into Virtual DOM render functions.
Combined with the reactivity system, Vue is able to figure out the minimal number
of components to re-render and apply the minimal amount of DOM manipulations
when the app state changes.

Vue also supports JSX and the direct writing of render functions instead of using
templates - much like in React.

3.4.4 Interpolation, Directives and Data Binding

The most basic form of data binding is text interpolation using the “Mustache” syn-
tax (double curly braces), as shown in Listing 17:

<span>Message: {{ msg }}</span>

LISTING 17: The m̈ustaches̈yntax

The mustache tag will be replaced with the value of the msg property on the
corresponding data object. It will also be updated whenever the data object’s msg
property changes.

Directives, first made popular with AngularJS, are markers on a DOM element
(such as an attribute, element name, comment or CSS class) that tell the HTML com-
piler to attach a specified behavior to that DOM element using a JavaScript expres-
sion.

In Vue, directives are special attributes with the v- prefix.

<p v-if="seen">Now you see me</p>

LISTING 18: The v-if directive

14https://vuejs.org/v2/api/#Options-Lifecycle-Hooks - Vue.js API - Options - Lifecycle Hooks
https://vuejs.org/v2/guide/



3.4. Vue.js 31

In the example shown in Listing 18, the v-if directive would remove/insert the
<p> element based on the value of the expression seen.

Directives also enable data binding in Vue. The directive v-bind can be used to
handle a common data binding need - manipulating an element’s HTML attributes
based on a certain variable or condition.

<a v-bind:href="url">My Link</a>

LISTING 19: Data Binding using directives

In the example in Listing 19, href is the argument, which tells the v-bind direc-
tive to bind the element’s href attribute to the value of the expression url.

The v-on directive listens for DOM events (such as when the element is clicked
or an input field is changed) and runs a JavaScript expression when triggered.

<button v-on:click="counter += 1">Add 1</button>

LISTING 20: The v-on directive

The example code on Listing 20 shows a button with the v-on:click directive,
meaning that when it is clicked, the expression counter += 1. The handler expres-
sion can be a function call, allowing for complex event handling.

These two directives shown can also be written in a shorthand version, as :href
and @click respectively.

3.4.5 Example Component

The official vuejs-templates15 repository offers some sample templates of Vue ap-
plications. The following code snippets are taken from the simple template, a very
basic Vue setup in a single HTML file.

<head>
<script src="https://unpkg.com/vue"></script>

</head>

LISTING 21: Installing Vue

Installing Vue on a new project is as simple as placing the line of code shown on
Listing 21.

15https://github.com/vuejs-templates - vuejs-templates (Accessed Semptember 11, 2018)



32 Chapter 3. Framework Analysis and Approach Development

<body>
<div id="app">

<h1>\{{ greeting }}</h1>
<ul>

<li>
To learn more about Vue, visit
<a :href="docsURL" target="_blank">

\{{ humanizeURL(docsURL) }}
</a>

</li>
<li>

For live help with simple questions, check out
<a :href="discordURL" target="_blank">

the Discord chat
</a>

</li>
<li>

For more complex questions, post to
<a :href="forumURL" target="_blank">

the forum
</a>

</li>
</ul>

</div>
</body>

LISTING 22: Simple Template Source Code

The body section of the template, shown on Listing 22, is fairly straight-forward,
containing a header and a list with three items.

Throughout this section, we can see data binding being done in the form of the
"mustache tag" - displaying the greeting on the header section and by the use of
:href, the short hand version of the v-bind directive, being used to bind the href
attribute of the links to specific variables.



3.4. Vue.js 33

<script>
var app = new Vue({
el: '#app',
data: {

greeting: 'Welcome to your Vue.js app!',
docsURL: 'http://vuejs.org/guide/',
discordURL: 'https://chat.vuejs.org',
forumURL: 'http://forum.vuejs.org/'

},
methods: {

humanizeURL: function (url) {
return url

.replace(/^https?:\/\//, '')

.replace(/\/$/, '')
}

}
})

</script>

LISTING 23: Simple Template Source Code - Continued

A Vue instance called app is created on the script section, shown on Listing 23.
Let’s take a look at this example’s options object.

• The el option has a value of ’#app’. This means that the Vue instance is bound
to the DOM element which has the id "app".

• On the data object, four variables are defined which are then displayed on the
page via data binding. Having been defined on the data object, these variables
are reactive - meaning that their display will update if their values are changed.

• Additionally, the methods option is used to define an auxiliary method.

3.4.6 Strengths

• Performance Vue is a highly performant framework. Having taken the idea of
the Virtual DOM and intelligent, inexpensive DOM manipulation from React
and having achieved greater performance in other aspects such as loading and
compiling, Vue is an impressively high-performance framework.

• Approachability Vue is quick and easy to set up, is easy to understand and
provides extensive documentation. Combined with the facts that it uses HTML-
based templates and has relatively little code weight, this makes Vue a very ap-
proachable framework that should be simple to learn with a modest amount
of JavaScript knowledge.

• Familiar Concepts Vue sought to combine the best parts of frameworks like
React (Shadow DOM rendering, component encapsulation e.t.c) and Angu-
larJS (Templates, Directives, Reactivity) into one stable system. This means
that rather than introducing new concepts, Vue combines already familiar con-
cepts into a single package, making it approachable to both beginners and de-
velopers experienced in other frameworks.



34 Chapter 3. Framework Analysis and Approach Development

3.4.7 Weaknesses

• Young Age As a framework that combines all the best aspects from its strongest
competitors, it is difficult to point out a weakness in Vue. However, being of
relatively young age, it doesn’t feature the largest amount of supporting li-
braries or answered questions throughout developer forums. This is barely
a weakness, as Vue has impeccable documentation and support as well as a
dedicated, fast-growing community of developers.

3.4.8 Seen On

Some popular websites build using Vue.js include Font Awesome16, Laravel17 and
Gitlab18.

3.5 Angular

FIGURE 3.8: The Angular logo.

Angular - Formerly known as Angular 2 - is a complete rewrite from the team
behind Angular.js. Developed by Google, it was initially released in September 2016
and its current latest version is 5.0.1 and its logo is shown on Figure 3.8.

Angular combines declarative templates, dependency injection, end to end tool-
ing, and integrated best practices to solve development challenges. Angular empow-
ers developers to build applications that live on the web, mobile, or the desktop19.

3.5.1 Features and Principles

• Cross-Platform Angular provides the tools for developing progressive web
apps20, as well as native mobile apps and desktop-installed apps across Win-
dows, Mac and Linux, thanks to tools like the Ionic21 Framework and the abil-
ity to access native OS APIs.

16http://fontawesome.com/ - Font Awesome (Accessed Semptember 11, 2018)
17https://laravel.com/ - Laravel (Accessed Semptember 11, 2018)
18https://gitlab.com/ - GitLab (Accessed Semptember 11, 2018)
19https://angular.io/docs - Angular - What is Angular (Accessed Semptember 11, 2018)
20https://developers.google.com/web/progressive-web-apps/ - Progressive Web Apps (Accessed

Semptember 11, 2018)
21https://ionicframework.com/ - Ionic Framework (Accessed Semptember 11, 2018)



3.5. Angular 35

• Tooling and Productivity Angular features extended IDE support (Thanks to
Typescript), allowing for fast coding and debugging. It also comes with a
command-line utility tool designed to speed up the development process. Ad-
ditionally, it’s a template-oriented framework, allowing for quick creation of
UI views using powerful syntax.

3.5.2 Typescript

TypeScript - "JavaScript that scales" 22 - is an open source typed superset of JavaScript
that compiles into plain JavaScript. Built for application scale, it adds optional
types, classes, and modules to JavaScript. Typescript supports tools for large-scale
JavaScript applications for any browser, for any host, on any OS.

For a large JavaScript project, adopting TypeScript might result in more robust
software, while still being deployable where a regular JavaScript application would
run.

Angular is component-oriented. This means that Typescript’s classes will be a
very helpful feature when working with a large scale application. Tooling and de-
bugging is another important part of why using Typescript on Angular applications
makes sense.

TypeScript offers classes, modules, and interfaces. It supports optional static
type checking and is a perfect language for developers who are coming from Java
and C#23.

The Typescript code shown in Listing 24, found on the Typescript Playground24:

class Greeter {
greeting: string;
constructor (message: string) {

this.greeting = message;
}
greet() {

return "Hello, " + this.greeting;
}

}

LISTING 24: Sample TypeScript code

Compiles into the JavaScript shown on Listing 25.

22https://www.typescriptlang.org/ - TypeScript - JavaScript that scales (Accessed Semptember 11,
2018)

23https://medium.com/this-dot-labs/building-modern-web-applications-in-2017-791d2ef2e341 -
Choosing a front-end framework in 2017 - This Dot Labs - Medium (Last accessed September 29, 2018)

24http://www.typescriptlang.org/Playground/ - Typescript Playground (Accessed September 11,
2018)



36 Chapter 3. Framework Analysis and Approach Development

var Greeter = (function () {
function Greeter(message) {

this.greeting = message;
}
Greeter.prototype.greet = function () {

return "Hello, " + this.greeting;
};
return Greeter;

})();

LISTING 25: JavaScript compiled from TypeScript

Notice how the TypeScript defines the type of member variables and class method
parameters. This is removed when translating to JavaScript, but used by the IDE and
compiler to spot errors, like passing a numeric type to the constructor.

3.5.3 Templating and Data-Binding

As per the MVC (Model-View-Controller)25 or MVVM (Model-View-Viewmodel)26

patterns, in Angular, the component plays the part of the controller/viewmodel, and
the template represents the view.

The Angular template is written in HTML and almost all of its syntax is valid.
A notable exception is the <script> tag, which is not allowed for security reasons,
preventing script injections.

Apart from this, templating in Angular is fairly straight forward and similar to
what we learned earlier in this document (3.4.3).

Data binding in Angular can be achieved in different ways, the most basic one
being interpolation, via the use of double curly braces - such as on the example
shown in Listing 26.

<p>My current hero is {{currentHero.name}}</p>

LISTING 26: Data binding using double curly braces

Structural Directives in Angular, such as *ngIf or *ngFor are responsible for
HTML layout. They shape or reshape the DOM’s structure, typically by adding,
removing, or manipulating elements, based on the value of an expression.

<div *ngIf="hero" class="name">{{hero.name}}</div>

LISTING 27: The *ngIf directive

The code snippet on Listing 27 uses the *ngIf directive to specify that the element
in which it is included is only displayed if the value of the expression hero is true.

25https://en.wikipedia.org/wiki/Mode-view-controller - Model-view-controller (accessed Septem-
ber 3, 2018)

26https://en.wikipedia.org/wiki/Model-view-viewmodel - Model-view-viewmodel (accessed
September 3, 2018)



3.5. Angular 37

The Angular cheat-sheet27 contains a list of all the directives that can be used.

Two Way Binding - The *ngModel directive is a special one that enables two-way
data binding in forms.

<input [(ngModel)]="userName">

LISTING 28: Two-way binding

The code snippet shown in Listing 28 uses this directive to bind the value of the
input field to the variable username. Two-way data binding means, in this case, that
altering the value of the input field automatically updates the value of the variable,
and, similarly, if the value of the variable changes, the input field will update to
show the new value.

3.5.4 Strengths

• Tooling Angular has a big focus on Productivity. Having been written in Mi-
crosoft’s Typescript, it has extended IDE support for Typescript Angular Apps.
Angular also comes with Angular-CLI (Command Line Tools), which allow
users to very quickly start building, add components or tests and instantly
deploy.

• Large Community Stemming from Angular.js, which was initially released in
2009, Angular built up a large, dedicated community. This means more people
are actively going to be improving it by reporting issues, forking the project,
creating support packages and answering questions. It also means that there is
a lot of good documentation and tutorials for newcomers to explore and gain
knowledge in the framework.

3.5.5 Weaknesses

• Code Load and Weight Angular is a very heavy framework. A simple "Hello
World" application could easily be 1MB plus in size. This becomes less of an
issue as the scale of the application grows, but Angular generally requires a
lot of code and disk space for small achievements. Additionally, the added
compilation time and cost of parsing TypeScript into JavaScript can make de-
velopment builds difficult to work with.

3.5.6 Seen On

Being a Google-developed framework, Angular can be seen being used in a lot of
Google’s internal / smaller projects such as Google Analytics28 or AdSense29. An-
gular can also be seen being used on Splice30, NBA 31 or Royal Caribbean32.

27https://angular.io/guide/cheatsheet - Angular Cheat Sheet (Accessed Semptember 11, 2018)
28https://www.google.com/analytics/ - Google Analytics (Accessed September 11, 2018)
29https://www.google.com/adsense/start/ - AdSense (Accessed September 11, 2018)
30https://splice.com/ - Splice (Accessed September 11, 2018)
31http://www.nba.com/ - NBA (Accessed September 11, 2018)
32https://www.royalcaribbean.com/ - Royal Caribbean (Accessed September 11, 2018)



38 Chapter 3. Framework Analysis and Approach Development

3.6 Brief Comparative Overview

Based on the analysis made of the three most popular JavaScript frameworks, the
following conclusions can be taken.

Vue is a framework that, from the beginning, set itself to take the best from other
frameworks and put them together into one powerful yet approachable package.

Having been successful at doing so, Vue seems like a great choice and the only
significant argument against it is that it lacks the user base and accumulated re-
sources of React or Angular.

Briefly, we can classify these three frameworks the following way:

• Use React if You want to take advantage of open-source auxiliary releases from
big names and want to build a fast, powerful application.

• Use Vue if Time is a constraint and you’re looking to quickly and easily build
your project in an approachable yet powerful way.

• Use Angular if You’re building large scale apps with a lot of planned mainte-
nance and debugging and/or if you have plans to develop mobile apps.

These are initial conclusions that will serve as a leading point to a deeper com-
parative analysis that will be made in the next stages of the work period.

FIGURE 3.9: Venn diagram displaying main features of each of the
selected frameworks.

To complement these conclusions, Figure 3.9 shows a different presentation of
what could be learned about the most popular front-end frameworks at this stage of
the dissertation.



3.7. Approach 39

3.7 Approach

With these learnings, the goal is to develop an approach, with the intent of helping
developers make the decision on which JavaScript framework to use on their project,
based on their needs and requirements.

An initial idea from which this approach can be fully developed is presented in
Figure 3.10 in the form of a diagram.

In this diagram, only the three previously selected frameworks - React, Vue.js
and Angular - appear as valid choices, as they are the ones that have been previously
analyzed and of which a sufficient amount of knowledge has been gathered at this
point in the work period.

On the diagram, each round element represents a need, requirement or prefer-
ence and the arrow coming out of it will point to the framework or frameworks that
have been selected as more appropriate to deal with it.

For example, the element positioned at the top right of the diagram and labeled
"Performance" will point to Vue.js and React, as the analysis made led to the conclu-
sion that similar applications built using these two frameworks generally perform
better than ones built in Angular.

Additionally, the elements are color-coded, as the ones with the orange back-
ground refer to project requirements or developer-specific conditions such as be-
ing new to Front-End Web Development, having an Object-Oriented programming
background, etc. The elements with the gray background color represent more tech-
nical aspects such as performance requirements or the complexity of the applica-
tion’s component hierarchy.

FIGURE 3.10: The developed approach diagram.

This represents an initial idea of what the final approach may look like, after it
goes through further development and validation.



40 Chapter 3. Framework Analysis and Approach Development

This initial approach will be validated in Chapters 4 and 5, where a case study
development and the author’s work at Jumpseller will offer a practical test to what
was learned up to this point in this document.

3.8 Summary

In this chapter, an overview of the most popular Front-End frameworks was made,
by firstly collecting usage data considering the number of stars and forks on GitHub
to select the technologies to analyze.

Once selected, a look was taken at each of the frameworks by evaluating its
strengths and weaknesses, and taking conclusions about what makes them the most
popular. On each of these sections the main features of each framework were pre-
sented, small examples were provided and a look was taken at how certain common
operations are performed.

This comparative analysis allowed some initial conclusions to be taken about
how these technologies work and what situations they are most fit to handle. A
Venn Diagram was created to show what was learned about each of the selected
frameworks and how these learnings are shared between the three.

Finally, an initial approach was developed and presented in the form of a Di-
agram in the final section of the present chapter. This diagram presents several
types of requirements, needs or preferences along with an indication of which of
the analyzed JavaScript frameworks better handles the issue. With this, a base is set
for developing an approach which developers can utilize to select which JavaScript
framework to use on a given project, based on its needs and requirements of both
the project and the developer.



41

Chapter 4

Case Study

There is only so much that can be learned and studied about a development frame-
work by reading through its documentation and features list.

As such, this chapter intends to put the selected frameworks to test, by defining
a case study upon which these technologies will be put to use, allowing for a better
understanding of the strengths and weaknesses each one may carry.

To achieve this, the plan is to find a problematic section within the Jumpseller
platform, analyze what could be done to improve it and, with the help and feedback
from the team, envision a new, improved version by creating mock-up images of
what it should look like. After that, the new application will be developed using the
three different JavaScript frameworks previously chosen - React, Vue and Angular -
and comparisons between them and conclusions will be drawn and taken from the
experience.

4.1 Background

To define a case study upon which to work on, a few points were taken into consid-
eration.

Given the context of this work and the opportunity for its validation that comes
with it, it made sense to work on an existing section of the Jumpseller application,
so that one of the new implementations could later be validated by the team and
integrated with the enterprise back-end.

Beyond that, and being that this represents an opportunity to not only solidify
the knowledge and experience about the selected frameworks but also about UI/UX
Design, Design Patterns and Anti-patterns, it makes sense to find a specific applica-
tion, section or page that presents some clear issues and upon which some work can
be done to improve it - A section that could be agreed between the author and the
Jumpseller team had a less-than-ideal user interface, one that is too slow, confusing
or poorly implemented.

In these conditions, work is being done in a real environment in order to achieve
a real solution that will be put to use, solidifying the importance of this study.



42 Chapter 4. Case Study

4.2 The Languages Section

After browsing the different sections of the admin panel on the Jumpseller appli-
cation and consulting with the team, a consensus was reached that the Languages
section was a good example of a page that needed some work.

On this section, store owners can manage their store’s supported languages, by
choosing which languages should be used - which of those is the main language - as
well as customize the translations used on other languages. In its current version, it
looks like Figure 4.1.

FIGURE 4.1: The Desktop version of the languages section.



4.2. The Languages Section 43

From a brief analysis of this page it can be understood that this interface is not
ideal in several aspects. Let’s start by listing the features of the page and the actions
which can be performed on it, shown on Figure 4.2

FIGURE 4.2: The features of the languages section.

1. Cycle through the different supported languages.

2. Add a new language.

3. Set a language as the main language of the store.

4. Delete a language

5. Cycle through the different sections in which the translated strings are divided.

6. Toggle between displaying all strings or only the untranslated ones.

7. Translate all strings automatically (Using the Google Translate service API).

8. Automatically translate a string (Using the Google Translate service API).

9. Manually translate a string.



44 Chapter 4. Case Study

Upon a first analysis by the author, a few problems were found:

1. The interface feels cluttered. Having 9 is performable actions at a given point is
too much and represents the Bloated Interface Anti-pattern - A user interface
that tries to incorporate as many operations as can possibly fit into it with the
end result of confusing more than helping the user to perform his or her task.
(Toxboe, 2009)

2. The combination of a tab-based navigation on the language selection and a
list-based navigation for the strings makes the page feel incoherent.

3. The placement of the Delete and Set as Main actions is odd and unintuitive.
Beyond that, it requires scrolling on certain screen sizes, making it difficult to
find. Being that these are important actions, the user should be able to quickly
identify them.

4. The limited-space, horizontal listing of the categories makes it difficult to, at a
glance, identify which languages are currently supported. It is also currently
impossible to compare their completion status from the list.

4.2.1 Mobile

The mobile version of this page shares most of these issues and has a few of its own,
as seen on Figures 4.3 and 4.4.

1. The tab-based navigation works even worse in mobile, as the space is limited
and clashes with the “Add language” button.

2. Finding the section where strings can be translated - which is, ultimately, the
most important feature on this page - requires scrolling and is not immediately
apparent when a section is chosen.

3. The design of the translation area is extremely cluttered - elements clash and
are put out of their position and there are uneven margins and paddings. The
input field is also very small, which represents a problem on longer strings.



4.2. The Languages Section 45

FIGURE 4.3:
Languages

on Mobile.

FIGURE 4.4:
Languages

on Mobile.

4.2.2 Approach

Considering the issues found, research was done on how to resolve these problems
by looking at examples and studying common design patterns (Van Welie, Van Der
Veer, and Eliëns, 2001).

A few things were decided:

• Separating the language listing from the strings translation area makes a big
difference, as it allow a better distribution of features across interfaces and
results in a cleaner look and a better user experience.

• The language list will be a table-like structure similar to the list of strings in
the translation area, thus getting rid of the tab-based navigation and resulting
in a more coherent interface.

• A status indicator will be added to the language listing, to indicate whether or
not each language is currently in use on the store.

• The mobile version of the section will be completely re-done, using respon-
sive design technologies and implementing design patterns such as Cards and
Vertical Dropdown Menus.



46 Chapter 4. Case Study

With these ideas in mind, design work was done in order to better visualize these
suggestions.

4.3 Mock-ups

The first step towards implementing a new, improved version of this application
is to plan it by setting and end goal consisting of the features and experience that
the final product will offer. With that in mind, an interface design tool - Figma1 -
was used to create mock-up images of what the final implementation will look like,
considering the points and suggestions made on the previous section. These are
shown on Figures 4.5 and 4.6.

4.3.1 Desktop

FIGURE 4.5: Language List Mock-up on Desktop

FIGURE 4.6: Language Mock-up on Desktop

1https://www.figma.com/ - Figma: The collaborative interface design tool (Accessed September
11,2018)



4.3. Mock-ups 47

Looking again at the list of features, we can see that it has changed a bit and,
more importantly, it’s more distributed across the interfaces, allowing them to be
more visible and easy to find and use on a cleaner design.

4.3.2 Mobile

FIGURE 4.7:
Mock-up on

Mobile.

FIGURE 4.8:
Mock-up on

Mobile.

The proposed design for the mobile version of the app, shown on Figures 4.7 and
4.8, brings a lot of changes. Besides the better distribution of tasks among the two
pages, the translation area looks much nicer and distributes the translatable strings
using cards. These changes make it much more usable than the previous version.



48 Chapter 4. Case Study

4.3.3 Components

Additionally, and since this interface was designed keeping in mind its implemen-
tation in JavaScript and in component-based frameworks, Adobe Photoshop2 was
used to create the diagrams shown on Figures 4.9 and 4.10, representative of each
component that will make up the final application. This will help the development
process as it sets a plan of the structure that the application code will take.

FIGURE 4.9: Language List Desktop Components

FIGURE 4.10: Language Desktop Components

2https://www.adobe.com/photoshop - Photoshop (Accessed September 11,2018)



4.4. Feedback 49

4.4 Feedback

After developing the first mock-ups, a small meeting was arranged with the head
designer and the author’s supervisor at Jumpseller, with the objective of obtaining
feedback from someone with experience with real world situations and the Jumpseller
application, as well as UI design.

On this meeting, a few changes were agreed upon.

4.4.1 General

• The addition of an indicator of the language’s status (Active / Disabled) is
unnecessary, as there are no plans or necessity of implementing the feature on
the application back-end.

• With the removal of the status feature, it was agreed that the dropdown menu
in the language list was unnecessary, as the only feature it would unveil
would be the language deletion. This should be replaced with a Delete icon
or button.

• Adding a new language to the store is something that doesn’t happen too of-
ten, so the team felt that the “Add Language” button brought too much at-
tention to itself. It was suggested to find a new, more subtle placement for
it.

• When facing the list of translatable strings, which can be quite long, finding a
specific string that needs work may be complicated. As such, it makes sense to
implement a simple search feature.

• The “Translate All” feature is one that is seen as a necessary evil to the Jumpseller
team. While it has its use, it is costly in both processing and financial power (as
the translation service used for this feature requires that the company pays for
each translated string). As such, the team requested that the “Translate All”
button was presented in a more subtle, less obvious way.

• The team pointed out that, along with simple one-or-two-word strings, longer
and more complicated strings often find their way into the translation system.
As such, it was requested that new interface fully supported and adapted to
long strings.

4.4.2 Desktop

• As part of the principle of supporting long strings, it was requested that the
translation area be full-width, meaning that the sidebar should be removed
and a new place for the section list should be found.

4.4.3 Mobile

• While the horizontal scrolling to navigate the different translation sections in
mobile was positively received, it was pointed that there should still be a way
to view the full list of sections. It was suggested by the author and agreed
upon that clicking the section selection area should open a modal with the full
list of sections.



50 Chapter 4. Case Study

4.5 New Mock-ups

After gathering feedback, a new version of the mock-ups was created, with the intent
of fixing the issues that were pointed out and further building on the presented
ideas, represented on Figures 4.11 and 4.12.

4.5.1 Desktop

FIGURE 4.11: New Language List Mock-up on Desktop

FIGURE 4.12: New Section List Mock-up on Desktop

Along with the suggested visual changes, a significant change to the mobile ver-
sion was the introduction of an accordion menu where users can choose, from the
language list, the section on which they want to translate strings. This can be seen
on Figure 4.13.



4.5. New Mock-ups 51

FIGURE 4.13: New Language Mock-up on Desktop

A simple search bar was added to the translation area, where users can input a
search term used to filter the displayed translatable strings.



52 Chapter 4. Case Study

4.5.2 Mobile

Most of the changes done to the Desktop version transfered to their Mobile counter-
part, including the removal of the dropdown menu, the inclusion of the Delete icon
and the addition of a search feature, as shown in Figures 4.14 and 4.15.

FIGURE 4.14:
New Mock-
up on Mobile.

FIGURE 4.15:
New Mock-
up on Mobile.

4.6 Development

After all changes agreed upon were done to the mock-up images, the development
phase could be started.



4.6. Development 53

4.6.1 Data

Being strictly a front-end study, it was decided it was not necessary to develop a
back-end application to serve the data. Instead, mock data was loaded into each app
through a JSON3 file containing the information to be presented. The data object is
shown in Figure 4.16.

FIGURE 4.16: JSON file containing the Data to be displayed

4.6.2 System and Pre-Requisites

In order to use command line tools as well as managing packages installed within
each application, Node.js and a package manager such as npm4 (Node Package Man-
ager) or Yarn5 are required.

For this stage of development, the following version of each of the tools was
installed:

• Node 10.0

• npm 5.6.0

• Yarn 1.9.2

The applications were developed in a Linux Mint6 18.2 system and the IDE of
choice was Visual Studio Code7.

3https://www.json.org/ - JSON : JavaScript Object Notation (Accessed September 11, 2018)
4https://www.npmjs.com/ - npm (Accessed September 11, 2018)
5https://yarnpkg.com/en/ - Yarn (Accessed September 11, 2018)
6https://www.linuxmint.com/ - Linux Mint (Accessed September 11, 2018)
7https://code.visualstudio.com/ - Visual Studio Code - Code Editing. Redefined. (Accessed

September 11, 2018)



54 Chapter 4. Case Study

4.6.3 CSS

Bootstrap

Given that the main goal at this stage was to recreate the same application on dif-
ferent JavaScript frameworks, it was decided that Bootstrap would be used to create
the layout of the interfaces.

SCSS

Since the intention was to maintain visual parity across different components and,
further, different applications, it made sense to make use of Sass and, specifically,
variables and nesting.

Variables were used to set the colors to be used for the whole project. The SCSS
variables that were used to define colors such as green or light-gray are in the context
of the project (i.e. what is the corresponding hex) are listed on Listing 29.

$green: #6FCF97;
$dark-green: #219653;
$red: #d44946;
$yellow: #F2C94C;
$gray: #e6e6e6;
$light-gray: #f4f4f4;
$gray-text: #4f4f4f;

LISTING 29: SCSS Variables used

Nesting of CSS properties is one of the most useful features of Sass, and was
used to improve the readability and code weight of the style, specially considering
the naming convention adopted. The excerpt shown on Listing 30 demonstrates
both, as well as the use of the previously defined variables.



4.6. Development 55

.languages {
&__aux {

&--links {
color: $green;

}
&--chevron {

margin-right: 1em;
}
&--badge {

width: 5em;
font-size: 0.7em;
padding-top: 0.25em;
padding-bottom: 0.25em;

}
&--badge-active {

background-color: $green;
}
&--badge-disabled {

background-color: $yellow;
}

}
}

LISTING 30: CSS Property Nesting

4.6.4 Developed Applications

Given that the developed applications were made to mirror the mock-up images
created, they all share the same look. Figures 4.17 and 4.18 show screenshots of one
of the applications.



56 Chapter 4. Case Study

FIGURE 4.17: The developed applications, showing the list of sections
within the language list

FIGURE 4.18: The developed applications, showing the strings trans-
lation area

All versions of the developed application have the following functionalities:

• List the currently available languages and their completion status

• Set any language as main language

• Remove a language from the set of available languages

• Add a new language to the set of available languages

• List the sections and their completion status for each language

• Choose a section within a language to edit the translatable strings



4.7. Comparison 57

Upon choosing a language and section of strings to translate, the following fea-
tures become available:

• Search for a specific string to translate

• Toggle a filter to show all translatable strings or only the currently untranslated
ones

• Translate all the untranslated strings

• Manually translate a string

• Automatically translate a string

All these functionalities are present and working on mobile devices and smaller
screens, as the application is responsive and device-compatible.

4.7 Comparison

During the development of the interface on each of the JavaScript frameworks, some
differences (or similarities) among them came up and, as such, comparisons were
made between the three of them.
On this section, a list of points will be presented upon which a brief comparison of
how each of the framework handles specific stages or situations of development will
be made.

4.7.1 Bootstrapping and CLI tools

While both React and Vue can be added to any page by "traditional" methods, such
as adding a script tag to the index HTML file, other tools exist to get started with a
project. Meanwhile, the Angular documentation officially recommends the use of
Angular-CLI8.

React

The developed React app was bootstrapped using create-react-app9.
Create-react-app is a Facebook-created tool that allows for users to quickly create

React apps with no build configuration.
The utility is easily installed using a package manager and doesn’t require the

installation or configuration of any additional tools such as Webpack or Babel, as
they come pre-configured and hidden so one can focus on the code. It also sets up
scripts for running the app locally or building it for production.

Vue

The Vue project was started using the vue-cli10. This is an official CLI tool provided
by Vue that allows for the quick generation of projects using a variety of provided
build setups.

This is achieved by running the vue create script, which prompts a series of con-
figurations and generates a new, ready-to-work-on project, as shown on Figure 4.19.

8https://cli.angular.io/ - Angular CLI (Accessed September 11, 2018)
9https://github.com/facebook/create-react-app - facebook/create-react-app (Accessed September

11, 2018)
10https://cli.vuejs.org/guide/ - Vue CLI (Accessed September 11, 2018)



58 Chapter 4. Case Study

FIGURE 4.19: Configuring a new Vue app

Angular

Angular officially recommends the use of the Angular CLI.
Creating a new project with the Angular CLI is similar to how it is in React or

Vue and is done by running the ng new script, which creates a working application
out of the box, following the officially-recommended best practices.

The Angular CLI however steps up its game from the other CLI tools with the
ng generate command. This command, along with two supplied parameters (type
and name) allows the automatic generation and configuration of new components,
routes, services or pipes along with simple test shells for all of them.

Verdict

React Vue Angular
No Considerable
Advantage

Highly Configurable
Setup

Useful, Time-Saving
Development Scripts

TABLE 4.1: Bootstrapping and CLI

4.7.2 Styling

While the ability to easily include CSS files to style components is common to the
three frameworks, Vue and Angular share the fact that styles can be component-
scoped, while React generally imports styles globally.

React

Adding a stylesheet to React is quite conventional and consists of using an import
statement specifying the path of the CSS file to import.



4.7. Comparison 59

Vue

While import statements can be used, Vue components are different in that they have
a <style> element. Within this element, regular CSS properties can be added to the
project.

Additionally, this element can have the scoped property, which makes it so that
properties specified in the element are applied only to the template of the component
it’s inserted in.

Angular

Angular components specify on their constructor which CSS file or files will be
used for styling with the styleUrls parameter. This allows for component-scoped
stylesheets at the expense of creating extra files.

Verdict

React Vue Angular

No Considerable
Advantage

Scoped styling further
enables component
sharing

No Considerable
Advantage

TABLE 4.2: Styling

4.7.3 Routing

While they each have their specific syntaxes and quirks, routing mostly works in a
similar way in Angular and Vue. Routes are defined beforehand and router links are
used to navigate through the different sections. In React, different options exist, and
the one used in the case study features dynamic routing - Where routes are defined
during the rendering.

React

Although several options exist for implementing routing in React11, the most com-
monly used one is react-router, a declarative router built with the philosophy of
having dynamic routing. This refers to routing that takes place as the app is render-
ing, not in a configuration or convention outside of a running app12.

This means that the implementation of routes in React is quite simple for the
developer. As seen on Figure 4.20, and assuming the router has been imported
to the application, the application must be inserted within the <Router></Router>
tags, and routes are defined with the <Route/> component, on which a path is
passed along with which component or object should be rendered when the path
is matched.

11https://reactjs.org/community/routing.html - Routing - React (Accessed September 4, 2018)
12https://reacttraining.com/react-router/web/guides/philosophy - React Router (Accessed

September 4, 2018)



60 Chapter 4. Case Study

FIGURE 4.20: Declaring routes in React

With the routes set, links can be placed to navigate through the application with
the <Link/> component, which takes a parameter to that indicates the path it should
redirect to.

Vue

Vue Router is the official router for Vue.js13. Implementing basic routing in a Vue
project consists of three steps. Importing and adding Vue Router to the project, defin-
ing the routes and using them to initialize routing, and defining a <router-view />,
i.e., where the matched route content will be rendered. The first two are done in the
main.js file, whereas the router-view is placed on the template of the desired compo-
nent. This is shown on Listing 31.

const routes = [
{ path: '/', component: Table },
{ path: '/language/:code', component: Language}

]
const router = new VueRouter({

routes
})

Vue.use(VueRouter)

LISTING 31: Routing in Vue

Links can then be created using the <router-link to="/"/> syntax, where the
to parameter refers to the desired target path.

Angular

The Angular Router enables navigation from one view to the next as users perform
application tasks14. Routing in Angular is done very similarly to Vue, as it has the
same three steps. On the app.module.ts file, the router is imported and the routes
object is defined, and a <router-outlet /> is created on a component’s template.

Verdict

13https://router.vuejs.org/ - Vue Router (Accessed September 4, 2018)
14https://angular.io/guide/router - Angular - Routing & Navigation (Accessed September 4, 2018)



4.7. Comparison 61

React Vue Angular
Less pre-configuration
required and less code
overall

No Considerable
Advantage

No Considerable
Advantage

TABLE 4.3: Routing

4.7.4 Component Communication

Being three component-based frameworks, the way that parent components can
pass data down to their children and receive data back from them is similar and
consists of defining data objects on the child component and specifying which data
should be passed on the template of the parent component.

React

In React, when rendering a child component within a parent, data can be passed to
it as props. For example, if the intention is to pass a language object to a component
that renders list elements, one would declare the child component as <TableItem
language=english/>. From there, the child component can access that data using
this.props.language.

Methods can be passed as props, which enables the other way of communicating.
If a child component wants to alert the parent of an event, it can call a method which
was passed to it as props that will be executed in the parent component.

Vue

Vue, similarly, uses props for component communication, the difference being that
when creating a new component, the props that component will accept should be
declared. This is done by adding values to the props object of the Vue instance (As
seen on section 3.4.2).

Child-to-parent communication is, however, slightly different. Instead of calling
a method from the props, the child component can use the $emit function to emit an
event which the parent will be listening for.

FIGURE 4.21: Component Communication in Vue

For example, if the intention is to alert the parent that a button has been clicked,
the parent can add an event listener to the child component declaration and the
button can, when clicked, emit a corresponding event to pass the information above.
This is shown on figure 4.21.



62 Chapter 4. Case Study

Angular

Passing data to a child component is similar to Vue, as data received by the child
should be declared. This is done by using the @Input() decorator on the child com-
ponent, defining a set of parameters it expects to receive, along with their types. To
declare that the component expects to receive a string called name, one would use
@Input() name: string;.

On the parent, the data is passed down similarly to the other frameworks, by
adding it to the declaration of the child component. For example, <angular-child
name="World"></angular-child> would pass a name to the angular-child compo-
nent.

Child components in Angular can communicate to their parents in a similar way
to Vue, by emitting an event. To do so, the event must be declared by instantiating
an EventEmitter object. Afterwards, the component can call its emit() method to
pass data to the parent, who should have a corresponding event listener.

Verdict

React Vue Angular
Least verbose without
the need to declare all
data

No Considerable
Advantage

No Considerable
Advantage

TABLE 4.4: Component Communication

4.7.5 Conditional Rendering

While Vue and Angular use specific directives on that can be applied to HTML el-
ements to define whether or not they should be rendered, React resorts to plain
JavaScript to do so.

React

Conditional rendering in React works the same way conditions work in JavaScript.
JavaScript operators like if or the conditional operator - as exemplified on Figure
4.22 - can be used to create elements representing the current state letting React up-
date the UI to match them15.

FIGURE 4.22: Conditional Rendering in React

15https://reactjs.org/docs/conditional-rendering.html - Conditional Rendering - React (Accessed
September 4, 2018)



4.7. Comparison 63

Vue

On Vue, conditionally rendering a certain element or component consists of adding
the v-if="condition" directive to it. Doing this makes it so that the element is ren-
dered only if the condition is verified as true. This can be a variable or an expression.

Angular

Similarly, Angular offers the *ngIf="condition" directive to determine whether or
not an element should be rendered.

Verdict

React Vue Angular
JavaScript Operators Useful, simple Directive Useful, simple Directive

TABLE 4.5: Conditional Rendering

4.7.6 Iterative Rendering

Similarly to the previous point, looping through a data object to render it’s elements
is done in a much easier and less verbose way in Vue and Angular.

React

In React, iterating an object and rendering elements for each for its children makes
use of vanilla JavaScript functions. Specifically, the map() function is used, allowing
to, for each item in an object, run a function that takes it as an argument and returns
an element.

For example, to loop through an object and render an empty div for each of its
items, one would use object.map(function(item)return (<div></div>).

Vue

In Vue, achieving this is simpler, and consists of creating an element to return, and
adding to it the directive v-for="item in object", as shown on Figure 4.23. Then,
each item’s properties can be accessed using item.property.

FIGURE 4.23: Iterative Rendering in Vue

This results in rendering one of the specified element for each of the items in the
object which the application is iterating.

Angular

In Angular, iterative rendering is identical to Vue, with the difference being purely
syntactical. To achieve the same result, the directive used is *ngFor="item in object".



64 Chapter 4. Case Study

Verdict

React Vue Angular
Verbose operator in
comparison

Useful, simple Directive Useful, simple Directive

TABLE 4.6: Iterative Rendering

4.7.7 Lifecycle

Another feature common to the frameworks is the lifecycle of a component. Each
component has several “lifecycle methods” that can be overridden to run code at
particular times in the process, such as when the component is created, immediately
before, or when it updates.

React

React features lifecycle methods for mounting, updating and unmounting 16 such as
constructor(), componentDidMount(), componentDidUpdate() or
componentWillUnmount().

Vue

Vue comes with lifecycle methods for creation / mounting, updating and unmount-
ing 17 called created(), mounted(), updated() and destroyed().

Angular

Angular features a similar set of lifecycle hooks as React and Angular for each of the
three phases, namely ngOnInit(), ngOnChanges() and ngOnDestroy().

Verdict

React Vue Angular
No Considerable
Advantage

No Considerable
Advantage

No Considerable
Advantage

TABLE 4.7: Lifecycle

4.7.8 Event Handling

Event handling on elements is done similarly on the three frameworks. Angular
and Vue keep up their habit of using specific directives, while React uses element
properties on the HTML elements. This means the differences are very small and
strictly about syntax.

16https://reactjs.org/docs/react-component.html - React.Component - React (Accessed September
4, 2018)

17https://vuejs.org/v2/guide/instance.html - The Vue Instance - Vue.js (Accessed September 4,
2018)



4.7. Comparison 65

React

Handling events with React elements is very similar to handling events on DOM
elements18 with some small syntactic differences. Camel case is used rather than
lowercase and the value passed should be a function, rather than a string. It can look
something like Figure 4.24, where clicking the a element calls the handleClick()
function.

FIGURE 4.24: Event Handling in React

Vue

On Vue, the v-on directive can be used to listen to DOM events and run some
JavaScript when they’re triggered19.

For example, adding v-on:click="handleClick" will make it so that clicking the
target element will call the previously defined function handleClick(). The value
passed to the directive is an expression, meaning that creating a separate handler
method is not always necessary. In Vue particularly, just stating the name of the
desired method is enough, with no need of the typical parenthesis that represent a
function.

Angular

Similarly, in Angular, a directive can be added to an element to attach an event
handler to it, with the difference being purely syntactical. For example, <button
(click)="onClickMe()">Click me!</button> will make it so that clicking the tar-
get button will call the onClickMe() method. Similarly to in Vue, the passed value is
an expression.

Verdict

React Vue Angular
No Considerable
Advantage

No Considerable
Advantage

No Considerable
Advantage

TABLE 4.8: Event Handling

18https://reactjs.org/docs/handling-events.html - Handling Events - React (Accessed September 4,
2018)

19https://vuejs.org/v2/guide/events.html - Event Handling - Vue.js (Accessed September 4, 2018)



66 Chapter 4. Case Study

4.7.9 Project Weight

After development, the total project weight was measured for each of the frame-
works used.

React

The React project totaled 157,5MB.

Vue

The Vue project was the lightest of the three, at 118,7MB.

Angular

Angular resulted in the largest project, with a total of 299MB.

Verdict

React Vue Angular
No Considerable
Advantage

Lightweight Heaviest

TABLE 4.9: Project Weight

4.8 Summary

In this chapter, a case study was defined and developed, starting with the choice of
a section of the Jumpseller application that showed some issues and would make for
an interesting case study on all stages of Front-End web development.

Having selected the Languages section, an analysis was made of the current state
of the page, listing its issues and discussing what could be done to improve on them.
Once ideas were gathered, mock-up images were created in order to visualize what
a new implementation of the page could look like. These images were brought to
members of the design and development teams at Jumpseller, where they were dis-
cussed and feedback was gathered.

Once the agreed upon changes were made and the final product was envisioned,
the interfaces were developed on the three selected JavaScript frameworks: React,
Vue and Angular.

During and after the development stage, some conclusions were taken by com-
paring how certain aspects of development were handled on each of the frame-
works. Aspects such as initializing a project, adding styles or configuring routes
were compared and a verdict on which one featured considerable advantages on
each area was presented.



67

Chapter 5

Validation - Jumpseller

This chapter aims to portray the author’s experience as part of the Jumpseller de-
velopment team, going over the work methodology and the projects worked on and
technologies used during the work period. This also aims to further validate the
approach developed in earlier chapters through practical experience in a real Web
development setting.

5.1 Methods

5.1.1 Design and Development

The development of new user interfaces would begin on the design team, who
would work with UI Design Tools to develop a mock-up of what new interface
would look like.

Once complete, it would be presented to the development, encouraging discus-
sion and the gathering of feedback.

This would be repeated until the final product was agreed upon, at which point
the project would be passed to the developer, who would build the interface and
integrate it with the Jumpseller application.

5.1.2 Shared Components

One of the big reasons to use a component-based framework such as React for the
application Front-End is that it enables the sharing of code by different parts of the
system.

With that in mind, it was a point of focus during the development process to
keep the applications modular and separated in components that can be shared. An
example of a shared component would be an image gallery / upload section, which
will be part of the edition of a product, a category or a page, all these being different
sections of the admin panel that share a common component.

This mostly brings benefits in terms of readability and code weight (as it avoids
duplicate code and therefore wasted space), the latter being very valuable when
dealing with a relatively large project on an enterprise context.



68 Chapter 5. Validation - Jumpseller

5.2 Work Projects

In this section, the projects developed during the work period at Jumpseller will
be presented, along with their motivation, requirements, technologies used, a brief
description of their implementation process and some screenshots showing the final
product.

This section aims to help in further understanding the problems commonly faced
in front-end development in a real world setting, as well as setting requirements and
observing how the technologies used respond to those issues. All of this allows for
a better overall understanding of front-end development and the technologies used,
helping the author take conclusions about them.

5.2.1 Theme Options Remake

Rebuilt, from scratch, the Theme Options section of the Jumpseller application. On
this section, users can customize the theme of their online store by changing a cus-
tomizable set of options to their liking.

The Problem

Before, the Theme Options section had some design issues, as the navigation be-
tween its parts was often unintuitive, had too many buttons or was visually unap-
pealing.

More importantly, some of its features were very difficult - or near impossible
- to work with on devices with smaller screens, as the page content did not scale
properly resulting in a poor user experience.

As such, it was decided that the entire section would be rebuilt from scratch.

Project Requirements

• Device Compatibility : All options and functionality should work on mobile
devices, as the interface should adapt to different-sized screens.

• Ability to link to specific option set : Users should be able to get a link to a
specific part of the options list, to make collaborative work easier.

• New design : As the previous design was very old, the new section will have a
new and improved design. This is done in collaboration with a designer from
the Jumpseller team.

Technologies Used

• React

• React Plugins (React-Color1, React-FontAwesome2, React-Router3, React-Dropzone4)

• Bootstrap 4

1https://casesandberg.github.io/react-color - React-Color (Accessed Semptember 11, 2018)
2https://github.com/danawoodman/react-fontawesome - React-FontAwesome on Github (Ac-

cessed Semptember 11, 2018)
3https://github.com/ReactTraining/react-router - React-Router on Github (Accessed Semptember

11, 2018)
4https://react-dropzone.js.org/ - React-Dropzone (Accessed Semptember 11, 2018)



5.2. Work Projects 69

• JSX, HTML5, CSS3

• Webpack

Implementation

The Theme Options section is independent from the rest of the store administration
panel. As such, the new Theme Options was developed as a standalone React App.

To setup the basic app, the create-react-app5 utility was used. This tool automat-
ically creates the files needed for a basic React app to start running and be further
developed.

Since responsiveness and device compatibility is the main requirement and, ac-
cording to the methodology presented, it was in mind since the inception of this
project. As such, the next step was to include the Bootstrap framework in the app.

With the foundation set, work started on the basic layout of the application, even-
tually bringing in functionality with sample data.

After most of the intended functionality was achieved, the developed app was
integrated into the Jumpseller project, with the help of the development team. Once
integration was done, the application would start working with the Jumpseller API
to fetch and send real data. This brought some issues and posed an interesting chal-
lenge.

In parallel with the last stages of development, the design team at Jumpseller
worked on CSS styles that would help perfect the new design of the application.

Once everything looked complete, the application was ready to be deployed and
made public to the merchants.

After the application was deployed and made public, its utilization by hundreds
of clients brought to the development team’s eyes some issues in its functioning. As
such, after the release some time was dedicated to fixing bugs and improving parts
of the application.

Final Product

Screenshots of the final product of the Theme Options section can be found on Ap-
pendix A - Theme Options Screenshots.

5.2.2 Facebook Messenger Jumpseller App

Created, via the Jumpseller Apps platform6, an application which can be installed
on merchants’ stores that allows them to log into their Facebook accounts and link
their store’s pages to Jumpseller. This gives Jumpseller permission to send messages
through those pages, with the objective of giving customers the possibility to receive
updates on their purchases, orders and deliveries via Facebook Messenger.

The Problem

When an order in an online store is placed, the store will sometimes follow up that
order with e-mail messages. For example, alerting the customer when their order
has shipped or if there is a problem with the order or the payment.

5https://github.com/facebookincubator/create-react-app - Create React App (Accessed Semptem-
ber 11, 2018)

6https://jumpseller.pt/support/apps/ - How to build a Jumpseller App (Accessed Semptember
11, 2018)



70 Chapter 5. Validation - Jumpseller

While this has been the standard for a while, it is a fact that the average customer
often pays more attention to their Facebook account than to their e-mail inbox. This
means that e-mail may not be the best way for stores to create a means of communi-
cation with their customers.

As such, the Facebook Messenger App was developed as a way to allow mer-
chants to improve communication with their customers.

Project Requirements

• Customizable Opt-In message : Merchants should be able to customize the
message that the client receives when they opt-in to the feature.

• Minimal Permissions : In order to function, the App needs to obtain some
permissions from the user. It’s essential that the app does not ask for more
permissions than those it needs to function, as to protect each client’s personal
information.

• Usability : The App should be autonomous and functional in sending the mes-
sages. These messages should be simple, readable and with a good presenta-
tion.

Technologies Used

• Facebook for Developers

• Jumpseller API

• React

• Bootstrap 4

• JSX, HTML5, CSS3

• Webpack

• Ruby

• PostgreSQL



5.2. Work Projects 71

Implementation

The user application was developed as a standalone React App. As such, the project
was created using the create-react-app utility.

Besides this React App, a Facebook App7 was created. This is a necessary step to
get access to the Facebook API and its functionalities.

The next step was integrating the Facebook SDK into the project. With this came
a good amount of investigation about Facebook for Developers and how the API
works.

With the help of the development team, a Ruby controller was developed to pro-
vide a back-end for the application. This was done using the Sinatra8 framework,
which allows for very simple creation of web applications and endpoints.

This controller also included interaction with the database. The database man-
agement system used in Jumpseller is PostgreSQL. For testing purposes, ngrok9 was
used for creating secure tunnels to localhost, ths allowing the development team to
test the Facebook App while it runs on a local development machine.

Deploying the application and making it public to all stores and merchants meant
that a large number of users would interact with it. As such, a support page10 was
written, with instructions on how to use configure it.

Following the deployment and the influx of users, some bugs came to surface
which mean the following weeks involved support bugfixing tasks.

Being more than a front-end issue, this project posed a good, interesting chal-
lenge and allowed the author to better understand the behavior of the Jumpseller
back-end. This will undoubtedly be useful on future projects where interaction be-
tween front-end and back-end may play a key role.

7https://developers.facebook.com/ - Facebook for Developers (Accessed September 11, 2018)
8http://sinatrarb.com/ - Sinatra (Accessed September 11, 2018)
9https://ngrok.com/ - ngrok (Accessed September 11, 2018)

10https://jumpseller.com/support/facebook-messengerapp/ - Facebook Messenger App (Accessed
September 11, 2018)



72 Chapter 5. Validation - Jumpseller

Final Product

FIGURE 5.1: The Facebook Messenger Jumpseller App.

FIGURE 5.2: The Send-To-Messenger button included in a store.



5.2. Work Projects 73

FIGURE 5.3: An example of a message sent automatically by the app.

5.2.3 New Admin Panel Menu Layout

Remade the sidebar menu layout of the Store Admin panel with a better design and,
most importantly, more mobile-friendly interface.

The Problem

As each of the sections of the admin panel get re-made with better design and func-
tionality, the sidebar menu that allows navigation between those sections would
have to be re-done to keep up with the evolving designs and content.

As such, the menu was remade with a new, improved design that focuses on
readability and usability on devices of all sizes.

Project Requirements

• Compatibility with both Bootstrap 3 and Bootstrap 4: As the new layout will
be in use in a time period during which all the administration panel sections
are being remade individually - thus migrating from Bootstrap 3 to Bootstrap
4 -, this sidebar should look and function correctly regardless of the version of
Bootstrap the section is using.

• Device Compatibility: All options and functionality should work on mobile
devices, as the interface should adapt to different-sized screens.

Technologies Used

• HTML5, CSS3

• Bootstrap 3

• Bootstrap 4



74 Chapter 5. Validation - Jumpseller

Implementation

Being a menu that will be displayed on the same page as many different standalone
applications, it was decided that this would be a simple HTML/CSS menu with
very minimal snippets of JavaScript, using only Bootstrap as a framework for design
purposes.

Two versions of the same project were created, each one importing a version (3
and 4) of Bootstrap.

Starting with the basic layout and slowly adding the details, the projects were
developed in parallel, with the intent of having them look exactly the same. The
new design was based on mock-ups created by the Jumpseller design team.

Once the design and basic functionality was complete, the menu was integrated
in the Jumpseller project by members of the development team.

Final Product

FIGURE 5.4: Desktop version of the new admin panel menu.



5.2. Work Projects 75

FIGURE 5.5: Mobile version of the new admin panel menu.

5.2.4 Product Categories Section

Created a new section in the admin panel for merchants to create and manage the
categories under which their products are labeled. This functionality was previously
on the same section as the product listing, making for an overly complicated section.

The Problem

The product category management section of the store administration panel was
previously in the same page with the product listing and management section. This
made for an overly cluttered, busy and complicated interface.

Besides that, the category management part itself was very poorly designed, in
such way that too many clicks were required to do simple actions like editing a
category or moving it around in the list.

This section was also very bad to work with on mobile, as it content did not scale
properly requiring the user to navigate to the edges of the screen to find the desired
actions.

It was decided that a new section would be built from scratch, with a simple,
elegant design and very fast and easy functionality.



76 Chapter 5. Validation - Jumpseller

Project Requirements

• Drag-and-Drop: Users should be able to re-order the list of their store’s cate-
gories by dragging and dropping items in a list. This order should be saved
and remembered on the next visit.

• Hierarchy: Categories can have sub-categories. This should be kept in mind,
allowing users to specify a parent category when creating a new one. It should
also be compatible with the drag-and-drop feature.

• Searching: Users should be able to search for a specific category or set of cate-
gories by entering a search term.

• Device Compatibility : All options and functionality should work on mobile
devices, as the interface should adapt to different-sized screens.

• New Design: The new section will have a new and modern design, done in
collaboration with a designer from the Jumpseller team.

Technologies Used

• React

• React Plugins ( React-Router, React-Dropzone11)

• Nestable 2 12

• Bootstrap 4

• JSX, HTML5, CSS3, SASS

• Webpack

• Ruby

Implementation

As with previous React-based projects, the section was bootstrapped using create-
react-app. After that, the Bootstrap 4 framework was included in the project to
enable responsive behaviour. Work was firstly done on the categories list, before
moving on to the category edition page.

The first focus was on creating the page layout, keeping in mind the its separation
in components such as the search area, the list and the list item. At this point mock
data was being used and, as functionality started being brought into the application,
the hierarchic drag-and-drop feature presented itself as the biggest challenge. Re-
search was done and after experimenting with different plugins, it was chosen that
the application would use Nestable 2, as this is a modern version of the plugin used
on the old Jumpseller build and offers a way to implement all the desired features.
The plugin works by annotating DOM elements with class names such as dd-list
and dd-item, and initializing the plugin with a callback function, to be called when-
ever a change to the structure is made. On this callback method a request is made to
the back-end via HTTP to update the affected categories’ order and hierarchies.

11https://react-dropzone.js.org/ - React-Dropzone (Accessed September 11, 2018)
12https://github.com/RamonSmit/Nestable2 - Nestable 2 (Accessed September 11, 2018)



5.2. Work Projects 77

When functionality appeared done, the page was put to test with real data from
some of the busiest and more complex stores. At this point, and because some stores
have a large number of products and categories, performance presented itself as
an issue. Searching, for example, took an unacceptably long time. This happened
because a search request was being sent each time the user wrote a character in
the search input field. This resulted in too many requests being sent, clogging up
the back-end. As a measure to prevent this, it was made so that the search request
would only be made when the user stopped typing for 2.5 seconds, ensuring only
the necessary requests were made.

The mobile version of this section involved a small amount of changes, as its
content is fairly small and doesn’t cause many issues on smaller screens. Media
queries were added to change the appearance of the delete category button and the
page header.

The category edition page was implemented after the launch of the category
list, and was created as a separated application. Its layout and content were of sim-
ple implementation, as they mostly consisted of input fields. The biggest challenge
faced was the routing, as the page URL should reflect the category it corresponds to
or refer to the creation of a new category.

As such, and using react-router as previously, a method called urlControl()
was included and is called before rendering the page by the componentWillMount()
lifecycle hook. On this method, the URL is checked and, depending on the category
id found there, the page will present its information or open up the option to create
a new category.

Final Product

Screenshots of the final product of the Product Categories section can be found on
Appendix B - Categories Screenshots.

5.2.5 Products Listing

Re-made the products section of the admin panel, where products are listed and can
be managed, sorted, filtered and searched.

The Problem

The product listing section of the admin panel of the Jumpseller app used an old
layout which was cluttered, unresponsive and not visually appealing.

This is an extremely important section of a store’s administration, as organizing
the products they are selling is a big priority of a merchant. As such, it was very
important that all functionality was simple to use and presented in a clean, simple
way, and that all of it worked on a full range of devices.

Project Requirements

• Filtering: Products should be able to filtered by name (with a simple search
input), categories they’re inserted in, and status (available, out of stock, etc.).

• Sorting: The order in which products are displayed should be able to be cus-
tomized by integrating a drag-and-drop feature to the list.



78 Chapter 5. Validation - Jumpseller

• Performance: Stores using Jumpseller can have up to thousands of products.
This should be kept in mind during development, to make sure that the appli-
cation doesn’t have overly long loading times and isn’t slow when performing
actions on a large number of products.

• Usability: Actions such as changing status, adding to a category or deleting can
be performed on products. It’s an important requirement that these actions
are easy to perform to the average merchant, whether they are applied to a
single product or to many of them. This includes the ability to selecting specific
products or selecting all and performing bulk actions.

• Device Compatibility: All the actions should be able to be performed just as
easily on mobile devices, as product management represents one of the most
important aspects of managing an online store and should therefore be avail-
able on any device.

• New Design: The new product list should follow a design mock-up created
by the design team, with a clean and modern look that fits with the overall
aesthetic of the Jumpseller product.

Technologies Used

• React

• React plugins (React-Router, react-select13, React-Modal14)

• Bootstrap 4

• JSX, HTML5, CSS3

• Webpack

• Ruby

Implementation

This was a project that was picked up halfway through its development and had
been started by a former colleague at Jumpseller. As such, the process and the learn-
ing experience was slightly different for the author. This meant some time was spent
learning how the currently implemented features worked and how the code was
structured. Along with this process, the author was able to identify anti-patterns
- such as the "lava flow"15, code that was at some point used but is not currently,
making it useless - that could easily be fixed, setting a better starting point to work
on.

At the point of picking up this project most of the basic functionality was done,
and the remaining work started with design changes and optimizations to the code.

As, again, the application will be dealing with a large amount of data - as stores
can have up to thousands of products to list, performance was a big thing to be kept
in mind. One of the decisions made in this regard was that the application would
retrieve 30 products at a time from the database. This means that when an user
opens up the product list, only 30 products are displayed immediately. If they wish

13https://github.com/JedWatson/react-select - GitHub - react-select (Accessed September 5, 2018)
14https://github.com/reactjs/react-modal - GitHub - React-Modal (Accessed September 5, 2018)
15https://sourcemaking.com/antipatterns/lava-flow - Lava Flow (Accessed September 6, 2018)



5.2. Work Projects 79

to see more, scrolling down to the bottom of the page will load 30 more, until all the
products have been loaded. This avoids making a request to the database that will
return all of the products as this is both heavy on the database and will lead to a long
loading time on the front-end application. It should be noted that bulk actions can
still be performed on all products, even if they have not all been loaded, by having
a choice to select products individually, select all loaded products, or select all the
products in the database. To the same effect, the search function is also set to only
make a request if the user has finished typing in the input field, by using a request
timer that waits 2.5 seconds after the last character is inserted.

Final Product

Screenshots of the final product of the Product List can be found on Appendix C -
Product List Screenshots.

5.2.6 Product Edition

Re-made the product edition page, where a selected product can be edited in terms
of its basic properties (name, description, etc), shipping properties, images, product
options, custom fields, product attachments and SEO.

This is a page with a large number of features and high complexity, and repre-
sented the most ambitious and challenging of the projects developed by the author
at Jumpseller.

The product options section in particular is of high importance and complexity,
as it allows merchants to add different options (such as sizes, colors, patterns, etc)
and automatically generates a table of product variants with all possible combina-
tions of these options. This is exemplified on Figure 5.7 (with the old design).

FIGURE 5.6: Product options on the old design.



80 Chapter 5. Validation - Jumpseller

The Problem

The main problem with the product edition page in the Jumpseller application is its
usability in mobile devices. Some of the functionalities are very difficult to impossi-
ble to use on smaller screens as the interface is not responsive. Being one of the most
feature-rich and important sections of the admin panel, it’s important that this it is
re-done with a responsive, clean and usable interface.

Project Requirements

• Category Management: When editing a product, it should be easy to specify
which categories it’s inserted in, or create a new one if necessary.

• Image Gallery: The product images should be able to be uploaded and pre-
sented in a grid layout, where they can be sorted, edited or deleted.

• Variants Table: The variants table, generated automatically with the product
options set by the merchant, can become quite large as the number of options
grows. It’s important that performance is not an issue in this section, and that
the table is readable and usable in all devices and screen sizes.

• Custom Fields: Adding custom fields to a product (such as specific product
characteristics, comparisons or labels) on the old design is a laborious and
unintuitive process, with multiple modal windows popping up. The process
should be made more intuitive and simple, with a cleaner design.

• Tags input: For both the product options and custom fields, multi-value fields
should have only one input field, where users can add comma-separated val-
ues.

• Device Compatibility: All actions and functionality should work on mobile
devices, as the interface should adapt to different-sized screens.

• New Design: The new product page should follow a design mock-up created
by the design team, with a clean and modern look that fits with the overall
aesthetic of the Jumpseller product.



5.2. Work Projects 81

Technologies Used

• React

• React plugins (React-Dropzone, React-Tagsinput16, React-Modal, React-Select)

• Redactor Editor17

• Bootstrap 4

• JSX, HTML5, CSS3, SASS

• Webpack

• Ruby

Implementation

It was decided that, rather than creating a new application from scratch using create-
react-app as previously done, the product list application would be refactored to
include a new page where products could be created or edited. As such, that was the
first step on implementing the new product edition page, followed by the creation
of the basic page layout according to the mock-up images developed by the design
team.

Being a very functionality-rich page with several different components, all com-
plex on its own, the implementation of each of its features was done in a more
planned and pondered way, taking focus on each of its components at a time.

• Product and Shipping Properties: The first component of the page to be
implemented to its full functionality after creating the basic layout was the
section where users can edit product properties such as name and description,
as well as shipping properties such as height, weight, or package format. These
mostly consisted of simple input or select fields, with the exception being the
description field, where the Redactor Editor was implemented by including a
previously-created React component which uses the editor’s source code.

• Image Gallery: Users can upload multiple images to represent each prod-
uct. For the uploading, a previously-created component was used, where the
React-Dropzone plugin was implemented. This allows users to upload one or
multiple images at a time by dragging them onto a field or manually selecting
the files. Uploaded images should were set to be displayed as squares in a grid
layout - using CSS properties - with buttons that allow users to either delete or
edit the image. Clicking the edit button launches an image editor which is part
of the Redactor Editor. Finally, it was decided that if more than 6 images are
uploaded, only the first 6 are shown at first, with the visibility of the remaining
images being toggled by a "Show More/Less" button.

• Custom Fields: Merchants can add custom fields to their products to display
additional information about them, such as comparisons to other products,
extra labels or instructions. The most important aspect of the re-design was to
simplify the interface. This was achieved by including the list of custom fields

16https://github.com/olahol/react-tagsinput - GitHub - React-Tagsinput (Accessed September 5,
2018)

17https://imperavi.com/redactor/ - Redactor WYSIWYG html editor (Accessed September 5, 2018)



82 Chapter 5. Validation - Jumpseller

and corresponding values on the main page and using a modal to display the
field management options.

• Product Attachments: Users can attach digital files to their products. This
usually refers to digital products such as music or films, but it was decided
some changes would be made to accommodate a different scenario: Attaching
public, downloadable files to physical products, such as instruction manuals
for an electronic product. In terms of front-end this was quite simple, as it
consisted in two image uploading sections and, for each, a list of the uploaded
files, where they can be deleted or their names changed.

• Product Options and Variants: The product options section allows users to
add custom options to their products, such as size or color, and automatically
generates variants for every combination of those options, each of which hav-
ing properties which can be edited. This is a very complex component, as with
every change to the options list calculations need to be done to manage the
variants that come from them and the table should automatically update ac-
cordingly. In order to simplify this process for the user, a big change was the
implementation of a tags input field system that allows users to quickly add
values to their options by simply adding the values in an input field, separated
by a comma. Device compatibility was also a very important aspect of this sec-
tion, as the old design didn’t allow users to edit variant properties on mobile
devices. As such, media queries were used to change how the variants table
looks on smaller screens to, according to the design created by the design team,
allow users to have access to all functionality of this page on smaller screens.

After the conclusion of each component, the application was reviewed and tested
by the team, which led to the discovery of small bugs and issues and some discussion
of improvements. As such, the full implementation of the product edition page has
been a lengthy process which is approaching its conclusion at the time of writing
this document.

Final Product

Screenshots of the final product of the Product Edition page can be found on Ap-
pendix D - Product Edition Screenshots.

5.3 Conclusions

In the following sections, conclusions will be taken about the work period and projects
taken part of on the Jumpseller platform, in regards to the technologies used and
how the experience with them contributed to the dissertation, as well as what was
learned and how the work done contributed to the Jumpseller application and its
development team.

5.3.1 Technology

The main technologies used for the interfaces built during the work period at Jumpseller
were React and Bootstrap 4. This section aims to reflect upon the choice of these
technologies and what made them a good option.



5.3. Conclusions 83

With the proposed approach in mind, React was chosen as the JavaScript frame-
work to work with, as its component-based nature, combined with its high per-
formance and how easily it handles routing and complex component hierarchies
made it look ideal given the company’s requirements of performance and code re-
usability. The fact that many different applications with varying features would
be built made the fact that React is a widely popular framework with a very large
amount of community-made resources extremely valuable.

Code Sharing

Creating shareable and re-usable code was, from the beginning, one of the aspects to
keep in mind during development, as it was one of the reasons to adopt a component-
based framework to work with.

During the work period, several components were created with the intent of be-
ing used in multiple parts of the store administration panel, such as the ImageSection
component, which implements a section where users can upload and manage im-
ages, the SEO component that refers to the Search Engine Optimization properties of
a product, page or category, the RedactorEditor component that allowed the easy
implementation of the Redactor Editor on any page or the ShareLinks component,
that easily adds links to share the current page on various social networks.

In conclusion, the choice of React as a JavaScript framework allowed and in-
centivized the principle of code sharing and re-usability to be respected and imple-
mented.

Plug-ins

Being a very popular framework, React has a lot of people contributing with their
own plug-ins. Throughout the work period, various plug-ins were used in response
to specific needs or issues that came up during development. This includes React-
Router, the plug-in used to creating routing within the developed applications, React-
Dropzone, used for image uploading or React-Modal, used for creating modal menus.

This large amount of available plug-ins meant, during development, that there
was a solution already made for almost any issue that could be run into. With a
younger, less popular framework, this might not have been the case. As such, React
was a positive choice in this regard.

Bootstrap Variables

Bootstrap felt like a good choice as a styling framework, not only for its core func-
tionalities as a way to build responsive page layouts and its array of auxiliary classes,
but also for how customizable it is.

Since work was set to be done on multiple sections of the Jumpseller application,
the ability to customize certain aspects of Bootstrap such as the colors used on cer-
tain headings, border styles or the usage of gradients was very helpful. This was
achieved by creating a SCSS file where these customizations were made, and then
importing that file in all the developed interfaces.

As such, Bootstrap’s ability to be customized combined with its usage of SASS
variables made it a good choice in terms of customizing and convenience.



84 Chapter 5. Validation - Jumpseller

5.3.2 Contribution and Learning Experience

The hands-on experience with front-end technologies acquired at Jumpseller con-
tributed to this dissertation by further validating and verifying the analysis made
during the work period.

Working with a component-based JavaScript framework such as React in a real
world application environment highlighted the benefits of developing an interface
in separate, highly re-usable components. This also represents an advantage to the
company’s interests, as it allows future projects to implement this already made
code, reducing the time and effort said project may take.

React was the main technology used in Jumpseller, and this practical experience
validated the points made during the analysis part of this dissertation, such as its
large community and amount of community-made extensions and plugins or how
actions can be performed and goals can be achieved within the framework.

Learning the intricacies and best-practices of each framework and of front-end
web development in general allowed for not only better code to be implemented,
but for a knowledge base to be built upon which new developers can work on their
assigned projects, which highlights the author’s and this work’s contribution to the
company.

In a practical and measurable contribution, the number of customer support tick-
ets related to the re-worked interfaces attributed to the author was very low in com-
parison to other parts of the administration panel and would be reduced to zero
shortly after the release of each one, as any issues that existed would be promptly
fixed. This is, from the company’s stand point, a proof of an implementation of a
well-designed and well-functioning interface.

Furthermore, the work experience at Jumpseller was a very significant learning
experience for the author, as it allowed for technologies related to all the parts of a
web application to be explored, for concepts such as version control (Loeliger and
McCullough, 2012) and continuous integration (Fowler and Foemmel, 2006) in the
context of a real-world application to be appreciated, and for gaining familiarity
with work methodologies and frameworks.

5.4 Summary

In this chapter, an overview of each of the work projects taken part of by the author
at Jumpseller was made, focusing on what the problems were and what was done
to fix it. Finally, conclusions were taken in terms of what was learned and how the
practical experience with these technologies helped fulfill the goals of this disserta-
tion, as well as in what ways did this work contribute to the company and how the
chosen technologies fit their needs.

Additionally, the work done in the context of this chapter provided practical use
cases where the approach developed on Chapter 3 could be validated, by seeing
some of the technologies in action and how well they responded to the issues and
requirements of each project.



85

Chapter 6

Conclusions

In this dissertation, the author integrated the development team at Jumpseller, to
work hands-on with modern front-end web development and some of the technolo-
gies it involves.

Motivated by the work to be done at Jumpseller, the concepts of modern, respon-
sive web development and the constantly growing array of technologies that exist
in the field to tend to the developers needs, three main objectives were set for this
work.

Firstly, a state of the art analysis was made, by analyzing relevant front-end tech-
nologies and concepts and selecting the most popular frameworks. As a large and
growing number of choices and possibilities in terms of technologies can both be
intimidating and represent an obstacle in development, making an initial selection
was an important step. Then, the selected technologies were compared and analyzed
more deeply by evaluating their main features, strengths and weaknesses, in order
to develop an approach which could be used to help developers to choose the most
appropriate ones for a certain project, given a set of requirements. This approach
was then validated in two steps, firstly through the definition and development of a
case study and secondly through the implementation of developed components on
the Jumpseller application as part of the development team.

The technological context in which this dissertation is included was first set by
providing some key ideas and concepts about the current state of Web Development
and Front-End technologies. In Chapter 2, important concepts such as Responsive
Web Design, Frameworks and Automated Testing were introduced.

An overview of the most relevant Front-End frameworks was presented, taking
usage data as the major factor for selecting the set of frameworks for analysis. The
selected frameworks were analyzed by finding their main features, evaluating their
strengths and weaknesses and taking conclusions about what makes them the most
popular.

A case study was developed on Chapter 4, with the intent of putting the pre-
viously analyzed frameworks to a practical analysis that would allow for a better
understanding of the strengths, weaknesses and quirks each one might carry. To
achieve this, the plan was to find a problematic section within the Jumpseller plat-
form and rebuild it from scratch, going through all the steps: Starting with an analy-
sis of what the problems were, UI/UX Design and creating mock-up images, gather-
ing feedback and implementing it on each of the selected frameworks. This allowed
for conclusions to be taken about each of them, by comparing how certain features
were implemented on each project and how the frameworks responded to common
issues.

The technological analysis and comparisons made, as well as the developed ap-
proach were put through further validation on Chapter 5, where the author’s expe-
rience as part of the development team at Jumpseller is portrayed by going over the



86 Chapter 6. Conclusions

work methodology, the projects worked on and the technologies used during the
work period.

6.1 Discussion

The detailed analysis and comparison made between the most popular front-end
web development frameworks, along with the case study that was defined and
implemented allowed for a better understanding of how the selected technologies
work, and how each of them responds to common issues and requirements in front-
end web development.

These findings allowed for an initial approach to be developed and to act as a
guideline on when to use which of the analyzed frameworks. The diagram that
was created points developers towards React, Angular or Vue.js, based on which
requirements their project has or what the developer’s background in programming
looks like.

This initial approach represents an open-ended part of this work, as it is currently
a foundation for future work to be done. The requirements shown in the diagram
can be expanded and refined, and their associations with each framework can be
made more accurate and justified.

This approach, while only an initial idea, has some limitations. The number of
frameworks included could and should be larger in order to yield results that are
accurate and contemplate a bigger scope of the available technologies. Additionally,
the approach should cover a wider set of requirements, to ensure it can be used on a
large number of projects with a large variety of given requirements.

The analysis made and the conclusions taken, along with the proposed initial
approach were validated by the two practical components of this dissertation: The
case study that was developed and the author’s experience as part of the Jumpseller
development team. While the latter method worked as a way of validation for this
work, it also represents a very specific domain, meaning that in a different area of
study the results obtained might have been different.

This work also provided a significant contribution to the company, as the combi-
nation of the analytical and the practical sides of this dissertation contributed to the
development of well-implemented, functional interfaces with re-usable code and
components as well as a knowledge base upon which future developers can learn
from and work on their assigned projects.

The company-scoped objectives set at the beginning of the work period of mak-
ing the application a better user experience by analyzing its issues, researching pos-
sible solutions and implementing new interfaces were completed, and validated by
the growth of the company and its user base.



6.2. Future Work 87

6.2 Future Work

In the future, and as a continuation of this work, more technologies such as Em-
ber.js1, Backbone2 or Bulma3 will be explored, analyzed and set to a comparison
with the current leading frameworks.

The method of analysis will be expanded with the implementation of more and
more significant tests, in order to obtain more meaningful results that will help in
the decision making process in what comes to finding the right tools for the product
to be developed. This includes, for example, the use of tools such as Selenium4 or
Mocha5.

The developed initial approach needs to be continued to be worked on, as it
currently represents a foundation upon which a better and more comprehensive ap-
proach can be built that will serve as a guide to choosing a front-end JavaScript
framework.

In the context of Front-End development at Jumpseller, work will continue to be
done on the administration panel, further exploring the experience acquired during
the work period of this dissertation and using metrics like the number of support
tickets as a way to verify the improvements made to the interfaces.

Finally, practical validation will continue to be done in different projects, both
within and outside of the scope of e-commerce, as the concepts and good practices
discussed and analyzed apply to all faces of front-end web development.

1https://github.com/emberjs/ember.js - Ember.js on GitHub (Accessed October 18, 2018)
2https://github.com/jashkenas/backbone - Backbone on GitHub (Accessed October 18, 2018)
3https://github.com/jgthms/bulma - Bulma on GitHub (Accessed October 18, 2018)
4https://www.seleniumhq.org/ - Selenium (Accessed October 18, 2018)
5https://mochajs.org/ - Mocha (Accessed October 18,2018)



88

Appendix A

Theme Options Screenshots

FIGURE A.1: The Theme Options App - Desktop version (Cropped).



Appendix A. Theme Options Screenshots 89

FIGURE A.2: The Desktop version allows you to preview how the
store looks when accessed from a mobile device.



90 Appendix A. Theme Options Screenshots

FIGURE A.3: The Theme Options App - Mobile version.



Appendix A. Theme Options Screenshots 91

FIGURE A.4: All the functionalities of the App work on mobile, as
was part of the requirements.



92

Appendix B

Categories Screenshots

FIGURE B.1: The Desktop version of the product categories list.



Appendix B. Categories Screenshots 93

FIGURE B.2: The Mobile version of the product categories list.



94 Appendix B. Categories Screenshots

FIGURE B.3: The Desktop version of the category edition page.



Appendix B. Categories Screenshots 95

FIGURE B.4: The Mobile version of the category edition page.



96

Appendix C

Product List Screenshots

FIGURE C.1: The Desktop version of the product categories list.



Appendix C. Product List Screenshots 97

FIGURE C.2: Performing actions on the Desktop version of the prod-
uct categories list.



98 Appendix C. Product List Screenshots

FIGURE C.3: The Mobile version of the product categories list.



Appendix C. Product List Screenshots 99

FIGURE C.4: Performing actions on the Mobile version of the product
categories list.



100

Appendix D

Product Edition Screenshots

FIGURE D.1: The basic properties in the new Product Edition page,
on Desktop.



Appendix D. Product Edition Screenshots 101

FIGURE D.2: The image gallery and product properties in the new
Product Edition page, on Desktop.



102 Appendix D. Product Edition Screenshots

FIGURE D.3: The shipping properties and the product options and
variables table in the new Product Edition page, on Desktop.



Appendix D. Product Edition Screenshots 103

FIGURE D.4: The Custom Fields, Product Files and SEO in the new
Product Edition page, on Desktop.



104 Appendix D. Product Edition Screenshots

Figures D.5 through D.8 show the mock-up images created by the design team at
Jumpseller, as the final product wasn’t finished at the end of the dissertation’s work
period.

FIGURE D.5: Mock-up image of the Product Properties on mobile.



Appendix D. Product Edition Screenshots 105

FIGURE D.6: Mock-up image of the Product Images Gallery on mo-
bile.



106 Appendix D. Product Edition Screenshots

FIGURE D.7: Mock-up image of the Product Options on mobile.



Appendix D. Product Edition Screenshots 107

FIGURE D.8: Mock-up image of the Product Variants on mobile.



108

Bibliography

Bryant, Jay and Mike Jones (2012). “Responsive Web Design”. In: Pro HTML5 Perfor-
mance. Berkeley, CA: Apress, pp. 37–49. ISBN: 978-1-4302-4525-4. DOI: 10.1007/
978-1-4302-4525-4_4. URL: https://doi.org/10.1007/978-1-4302-4525-4_4.

Coyier, Chris (2018). “A Complete Guide to Flexbox”. In: URL: https://css-tricks.
com/snippets/css/a-guide-to-flexbox/.

Crockford, Douglas (2008). JavaScript: The Good Parts. O’Reilly Media. URL: http:
//shop.oreilly.com/product/9780596517748.do.

Flanagan, D. (2006). JavaScript: The Definitive Guide. Definitive Guide Series. O’Reilly
Media, Incorporated. ISBN: 9780596101992. URL: https://books.google.pt/
books?id=k0CbAgAAQBAJ.

Flavián, Carlos, Miguel Guinalíu, and Raquel Gurrea (2006). “The role played by
perceived usability, satisfaction and consumer trust on website loyalty”. In: In-
formation & Management 43.1, pp. 1 –14. ISSN: 0378-7206. DOI: https://doi.org/
10.1016/j.im.2005.01.002. URL: http://www.sciencedirect.com/science/
article/pii/S0378720605000169.

Fowler, Martin and Matthew Foemmel (2006). “Continuous integration”. In: Thought-
Works) http://www. thoughtworks. com/Continuous Integration. pdf 122, p. 14.

Gackenheimer, Cory (2015). “What Is React?” In: Introduction to React. Berkeley, CA:
Apress, pp. 1–20. ISBN: 978-1-4842-1245-5. DOI: 10.1007/978-1-4842-1245-5_1.
URL: https://doi.org/10.1007/978-1-4842-1245-5_1.

Ihrig, Colin J and Adam Bretz (2014). Full stack Javascript development with MEAN.
SitePoint.

Linley, C. (2017). Front-End Developer Handbook 2017. Frontend Masters. URL: https:
//www.gitbook.com/book/frontendmasters/front- end- handbook- 2017/
details.

Loeliger, J. and M. McCullough (2012). Version Control with Git: Powerful Tools and
Techniques for Collaborative Software Development. O’Reilly Media. ISBN: 9781449345051.
URL: https://books.google.pt/books?id=aM7-Oxo3qdQC.

Meyer, E.A. (2006). CSS: The Definitive Guide: The Definitive Guide. O’Reilly Media.
ISBN: 9781449397258. URL: https://books.google.pt/books?id=rdtCRLXAL78C.

Mozilla (2017a). “CSS-MDN”. In: URL: https://developer.mozilla.org/en-US/
docs/Web/CSS.

— (2017b). “HTML-MDN”. In: URL: https://developer.mozilla.org/en- US/
docs/Web/HTML.

— (2017c). “Media Queries -MDN”. In: URL: https://developer.mozilla.org/en-
US/docs/Web/CSS/Media_Queries.

MySQL, AB (2001). MySQL.
Nice, Bradley (2017). “Front-End vs Back-End vs Full Stack Development”. In: URL:

https://medium.com/level-up-web/front-end-vs-back-end-vs-full-
stack-development-78267f545121.

R. Fielding J. Gettys, J. Mogul H. Frystyk L. Masinter P. Leach T. Berners-Lee (1999).
Hypertext Transfer Protocol – HTTP/1.1, RFC 2616. RFC Editor. URL: http://www.
rfc-editor.org/info/rfc2616.

http://dx.doi.org/10.1007/978-1-4302-4525-4_4
http://dx.doi.org/10.1007/978-1-4302-4525-4_4
https://doi.org/10.1007/978-1-4302-4525-4_4
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
http://shop.oreilly.com/product/9780596517748.do
http://shop.oreilly.com/product/9780596517748.do
https://books.google.pt/books?id=k0CbAgAAQBAJ
https://books.google.pt/books?id=k0CbAgAAQBAJ
http://dx.doi.org/https://doi.org/10.1016/j.im.2005.01.002
http://dx.doi.org/https://doi.org/10.1016/j.im.2005.01.002
http://www.sciencedirect.com/science/article/pii/S0378720605000169
http://www.sciencedirect.com/science/article/pii/S0378720605000169
http://dx.doi.org/10.1007/978-1-4842-1245-5_1
https://doi.org/10.1007/978-1-4842-1245-5_1
https://www.gitbook.com/book/frontendmasters/front-end-handbook-2017/details
https://www.gitbook.com/book/frontendmasters/front-end-handbook-2017/details
https://www.gitbook.com/book/frontendmasters/front-end-handbook-2017/details
https://books.google.pt/books?id=aM7-Oxo3qdQC
https://books.google.pt/books?id=rdtCRLXAL78C
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries
https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries
https://medium.com/level-up-web/front-end-vs-back-end-vs-full-stack-development-78267f545121
https://medium.com/level-up-web/front-end-vs-back-end-vs-full-stack-development-78267f545121
http://www.rfc-editor.org/info/rfc2616
http://www.rfc-editor.org/info/rfc2616


BIBLIOGRAPHY 109

Sampaio, Ana Isabel (2013). “Responsive Web Design”. In: URL: http://mei.di.
uminho.pt/sites/default/files/dissertacoes//eeum_di_dissertacao_
pg20190.pdf.

Sierra, Kathy and Bert Bates (2005). Head First Java: A Brain-Friendly Guide. " OŔeilly
Media, Inc."

Thomas, David, Andrew Hunt, Chad Fowler, et al. (2005). Programming Ruby: the
pragmatic programmersǵuide. Raleigh, NC: Pragmatic Bookshelf,

Tilkov, S. and S. Vinoski (2010). “Node.js: Using JavaScript to Build High-Performance
Network Programs”. In: IEEE Internet Computing 14.6, pp. 80–83. ISSN: 1089-7801.
DOI: 10.1109/MIC.2010.145.

Toxboe, Anders (2009). “User Interface Anti-Patterns”. In: URL: http://ui-patterns.
com/blog/User-Interface-AntiPatterns.

Van Welie, Martijn, Gerrit C Van Der Veer, and Anton Eliëns (2001). “Patterns as
tools for user interface design”. In: Tools for Working with Guidelines. Springer,
pp. 313–324.

http://mei.di.uminho.pt/sites/default/files/dissertacoes//eeum_di_dissertacao_pg20190.pdf
http://mei.di.uminho.pt/sites/default/files/dissertacoes//eeum_di_dissertacao_pg20190.pdf
http://mei.di.uminho.pt/sites/default/files/dissertacoes//eeum_di_dissertacao_pg20190.pdf
http://dx.doi.org/10.1109/MIC.2010.145
http://ui-patterns.com/blog/User-Interface-AntiPatterns
http://ui-patterns.com/blog/User-Interface-AntiPatterns

	Abstract
	Resumo
	Introduction
	Context
	Overview
	Motivation and Challenges

	Objectives
	Document Structure

	Technology and Concepts
	Web Applications Development
	Web Applications
	Web Pages

	Responsive Web Design
	Flexible Layout and Content
	Media Queries

	Frameworks
	Styling and Behavior
	Node.js

	Summary

	Framework Analysis and Approach Development
	Overview
	Bootstrap
	Sass
	Responsive Grid
	Strengths
	Weaknesses
	Example

	React
	Features and Principles
	JSX
	State and Props
	Strengths
	Weaknesses
	Seen On

	Vue.js
	Features and Principles
	The Vue Instance
	Templates and Syntax
	Interpolation, Directives and Data Binding
	Example Component
	Strengths
	Weaknesses
	Seen On

	Angular
	Features and Principles
	Typescript
	Templating and Data-Binding
	Strengths
	Weaknesses
	Seen On

	Brief Comparative Overview
	Approach
	Summary

	Case Study
	Background
	The Languages Section
	Mobile
	Approach

	Mock-ups
	Desktop
	Mobile
	Components

	Feedback
	General
	Desktop
	Mobile

	New Mock-ups
	Desktop
	Mobile

	Development
	Data
	System and Pre-Requisites
	CSS
	Developed Applications

	Comparison
	Bootstrapping and CLI tools
	Styling
	Routing
	Component Communication
	Conditional Rendering
	Iterative Rendering
	Lifecycle
	Event Handling
	Project Weight

	Summary

	Validation - Jumpseller
	Methods
	Design and Development
	Shared Components

	Work Projects
	Theme Options Remake
	Facebook Messenger Jumpseller App
	New Admin Panel Menu Layout
	Product Categories Section
	Products Listing
	Product Edition

	Conclusions
	Technology
	Contribution and Learning Experience

	Summary

	Conclusions
	Discussion
	Future Work

	Theme Options Screenshots
	Categories Screenshots
	Product List Screenshots
	Product Edition Screenshots
	Bibliography

