

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR TERCEIROS

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas
as regras e boas práticas internacionalmente aceites, no que concerne aos direitos de autor
e direitos conexos. Assim, o presente trabalho pode ser utilizado nos termos previstos na
licença abaixo indicada. Caso o utilizador necessite de permissão para poder fazer um
uso do trabalho em condições não previstas no licenciamento indicado, deverá contactar o
autor, através do RepositóriUM da Universidade do Minho.

ii

A C K N O W L E D G E M E N T S

I would like to thank Professor Miguel Rocha. Thanks for always helping me when I
needed and thanks for giving me all the tools I needed to understand the mysterious and
exciting world of deep learning. I would also like to thank for integrating me in the BisBII
group while I was only a student. The social and academic experiences not only helped me
improve my knowledge but also meeting and interacting with new people.

I would like to thank Vı́tor Vieira for always being available to help me in any task or
difficulty I had. Thank you for being not only a great professional but also a great friend
always ready to support me when I most needed. Thanks to my bioinformatics colleagues
that were always available to help me and had confidence in my skills in order to ask for
my help when they needed. Thanks to my friends for always being present when I needed
and for being such an important part of my life.

A really special thanks to U.DREAM Braga for believing in me more than I do myself.
UD helped me to know myself, to integrate better in the city of Braga. Furthermore, UD
taught me the way for me to achieve my goals and improve myself while changing the
world, even if it is by just a little.

Last, but not least, an heartfelt thanks to my parents and my family. I know the sacrifices
they did for me to be able to study and that’s why I always did my best. I know you don’t
fully understand why did I choose the degrees I did, but you never ever questioned the
reason behind my choices or asked me to change to more known degrees. I hope you’re as
proud of me as I’m grateful and proud of being your son.

iii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I
have not used plagiarism or any form of undue use of information or falsification of results
along the process leading to its elaboration. I further declare that I have fully acknowledged
the Code of Ethical Conduct of the University of Minho.

iv

R E S U M O

O cancro é uma das principais causas de morte em paı́ses desenvolvidos. Não é uma
única doença, mas um grupo de diferentes tipos de doenças com sintomas, tratamentos
e prognósticos especı́ficos. O diagnóstico precoce e a determinação do prognóstico são
essenciais para selecionar o melhor tratamento para cada caso.

”Deep learning” é um ramo da área da aprendizagem máquina que se tornou popular
nos últimos anos. Métodos de ”deep learning” têm sido empregados num conjunto de áreas
alargado nas quais se incluem veı́culos autónomos, processamento de linguagem natural,
visão por computador, saúde, entre outras.

O objetivo principal desta dissertação é o de desenvolver métodos de ”deep learning”
para prever cancro e o seu prognóstico a partir de dados de transcriptómica. A revisão
da literatura, a exploração de conjuntos de dados, o desenvolvimento de ”pipelines” e a
validação dos métodos usando casos de estudo são alguns das tarefas necessárias para
cumprir os objectivos do trabalho.

Os métodos desenvolvidos constituem uma ”pipeline” para criação de modelos a par-
tir de dados de expressão genética. A plataforma é capaz de ler dados de expressão
genética, fazer pré-processamento, treino, otimização e avaliação de modelos de apren-
dizagem máquina tradicionais e de ”deep learning”.

A plataforma foi demonstrada usando o dataset do Molecular Taxonomy of Breast Can-
cer International Consortium (METABRIC) que contém amostras de pacientes com cancro da
mama, como caso de estudo. Os dados de expressão genética de microarrays foram usados
para gerar modelos de aprendizagem máquina tradicionais, modelos de ”deep learning”
e modelos multi-tarefa. Os modelos foram usados para prever a expressão do receptor de
estrogénio (ER), do fator de crescimento epidérmico humano 2 (HER-2) e do recetor da proges-
terona (PR), bem como para prever o prognóstico de pacientes usando o Índice de Prognóstico
de Nottingham (NPI). Um segundo conjunto de dados permitiu uma validação adicional,
considerando dados de RNAseq.

De forma geral, os resultados foram promissores com as tarefas de classificação a obterem
bons resultados enquanto os modelos de regressão tiverem um menor desempenho. En-
quanto os melhores resultados foram obtidos com modelos de aprendizagem máquina
tradicionais, os modelos de ”deep learning” estiveram perto e poderiam obter melhores
reultados se os dados tivessem um maior número de amostras.

Palavras-chave: Cancro; Deep learning; Apredinzagem máquina; Transcriptómica

v

A B S T R A C T

Cancer is one of the major causes of death in developed countries. It is not a single disease,
but a group of different types of diseases with specific symptoms, treatments and prognosis.
Early diagnosis and prognostic assessment are essential to select the best treatment for each
case.

Deep learning is a branch of machine learning that became popular in recent years. Deep
learning methods have been employed in a broad range of areas including self-driving cars,
natural language processing, computer vision, health, among others.

The main goal of the thesis is to develop deep learning methods to predict cancer and its
outcome from transcriptomics data. Reviewing literature, exploring datasets, developing
pipelines and validating the methods using a case study are some of the tasks needed to
achieve the goals of the thesis.

The developed methods are implemented as a pipeline for creating models from gene
expression data. The framework is capable of reading and pre-processing these data, and
training, optimizing and evaluating traditional machine learning and deep learning models.

The framework was showcased by using the METABRIC dataset as a case study, which
contains samples from breast cancer patients. The gene expression microarray data from the
dataset was used to generate traditional, deep learning and multi-task models. The models
were used to predict the expression of Estrogen Receptor (ER), the subtype of breast cancer
regarding ER, Human Epidermal Growth Factor (HER-2) and Progesterone Receptor (PR) and
the prognosis of breast cancer patients with Nottingham Prognostic Index (NPI), respectively.
Another dataset allowed the use of single-cell RNAseq data and confirmed the main trends
of the results.

Overall, the results were promising with classification tasks obtaining good results while
regression models had a poorer performance. While the best results were obtained with
traditional machine learning models, deep learning models were near and could provide
better results if the dataset contained a larger number of samples.

Keywords: Cancer; Deep learning; Machine learning; Transcriptomics

vi

C O N T E N T S

1 introduction 1

1.1 Context and Motivation 1

1.2 Objectives 2

1.3 Organization of the text 3

2 machine learning and deep learning 5

2.1 Machine Learning Fundamentals 5

2.1.1 Supervised Learning 5

2.1.2 Unsupervised Learning 10

2.2 Supervised ML Models 11

2.2.1 Linear and Logistic Regression 11

2.2.2 K-Nearest Neighbor 13

2.2.3 Support Vector Machine 14

2.2.4 Decision Trees and Regression Trees 15

2.2.5 Ensembles 15

2.2.6 Feature Selection 17

2.3 Unsupervised ML Models 17

2.3.1 Hierarchical Clustering 17

2.3.2 K-means 18

2.3.3 Principal Component Analysis (PCA) 19

2.3.4 t-Distributed Stochastic Neighbor Embedding (t-SNE) 19

2.4 Artificial Neural Networks (ANN) 20

2.4.1 Perceptrons and neurons 20

2.4.2 Feedforward neural networks 22

2.4.3 Gradient Descent 23

2.4.4 Backpropagation Algorithm 25

2.5 Deep Learning 26

2.5.1 Deep Neural Networks (DNN) 26

2.5.2 Convolutional Neural Networks (CNN) 27

2.5.3 Recurrent Neural Networks (RNN) 28

2.5.4 Alternative Architectures 30

2.5.5 Training Algorithms 32

2.5.6 Overfitting and regularization 34

2.5.7 Hyperparameter optimization 35

2.5.8 Multi-task Learning (MTL) 36

vii

Contents viii

2.5.9 Transfer learning 37

2.5.10 Deep Learning Frameworks and tools 37

3 omics data and machine learning methods in cancer 39

3.1 Introduction 39

3.2 Cancer Data 40

3.2.1 Omics Data 40

3.2.2 Omics Databases 41

3.3 Machine Learning Application in Cancer 42

3.3.1 ”Shallow” Learning 43

3.3.2 Deep Learning 43

4 development 45

4.1 Software 45

4.1.1 Preprocessing modules 46

4.1.2 Shallow machine learning modules 48

4.1.3 DNN 50

4.1.4 Multi-task DNN 52

5 first case study 54

5.1 METABRIC: description of the dataset 54

5.1.1 Expression Dataset 55

5.1.2 Clinical dataset 55

5.2 Experimental setup 57

5.2.1 Pre-processing 57

5.2.2 Shallow learning 58

5.2.3 Deep Learning 59

5.2.4 Multi-tasking 59

5.2.5 Computational resources 60

5.3 Case study results 60

5.3.1 Overall results 60

5.3.2 ER prediction results 62

5.3.3 THREEGENE prediction results 62

5.3.4 NPI prediction results 63

5.3.5 Multi-tasking DNN results 64

5.4 Discussion 64

6 second case study 67

6.1 Description of melanoma dataset 67

6.1.1 Expression dataset 68

6.1.2 Metadata dataset 68

6.2 Experimental setup 69

Contents ix

6.2.1 Pre-processing 69

6.2.2 Shallow learning 69

6.2.3 Deep Learning 69

6.2.4 Computational resources 70

6.3 Case study results 70

6.4 Discussion 70

7 conclusion 72

a code explanation 84

a.1 Preprocessing 84

a.2 Shallow 86

a.3 DNN 88

a.4 DNN MT 90

b details of results - first case study 92

b.1 ER Model Results 92

b.2 THREEGENE Model Results 94

b.3 NPI Model Results 96

b.4 Multi tasking DNN Model Results 98

c detail of results - second case study 99

c.1 Melanoma Model Results 99

L I S T O F F I G U R E S

Figure 1 Overview of a supervised learning pipeline 6

Figure 2 Overview of an unsupervised learning pipeline 11

Figure 3 Schematic representation of an hierarchical clustering. 18

Figure 4 t-SNE visualization of MNIST dataset. Source: Maaten et al. [1]. 20

Figure 5 Schematic representation of a perceptron. 21

Figure 6 Graphs representing some of the most popular activation functions 22

Figure 7 Schematic illustration of a feedforward neural network 23

Figure 8 Example of a the curve of a loss as function of a parameter. Source:
Chollet et al. [2]. 24

Figure 9 Representation of binary classification DNN with three hidden lay-
ers. 27

Figure 10 Representation of convolution operation. Source: Chollet et al. [2]. 28

Figure 11 Representation of a Convolutional Neural Network (CNN). Source: Ma
et al. [3]. 28

Figure 12 Representation of a simple Recurrent Neural Network (RNN). Source:
Chollet et al. [2]. 29

Figure 13 Representation of a Long Short-Term Memory (LSTM). Source: Chollet
et al. [2]. 30

Figure 14 Illustration of a simple autoencoder 31

Figure 15 Example of a dropout with a 0.5 dropout rate. Source: Chollet et al.
[2]. 35

Figure 16 Simple representation of the developed modules. 46

Figure 17 Simple representation of the developed supervised learning pipeline. 46

Figure 18 Representation of Preprocessing class workflow. 48

Figure 19 Representation of Shallow classes workflow. 49

Figure 20 Schematic representation of the general Deep Neural Network (DNN)
architecture. The layers inside the rectangle are repeated for each
hidden layer added. 52

Figure 21 Schematic representation of the general DNN MT architecture. Output
1 and Output 2 represents separate output layers for two different
labels. 53

x

List of Figures xi

Figure 22 Barplot with comparison between ”shallow” and deep learning mod-
els for three endpoints. ER and THREEGENE metric is Matthews
Correlation Coefficient (MCC) while NPI is R squared (R2). 61

Figure 23 Barplot with comparison between ”shallow” and deep learning mod-
els for ER prediction. 62

Figure 24 Barplot with comparison between ”shallow” and deep learning mod-
els for THREEGENE prediction. 63

Figure 25 Barplot with comparison between ”shallow” and deep learning mod-
els for NPI prediction. 63

Figure 26 Barplot with comparison between simple DNN for THREEGENE
and multi-tasking DNN for predicting ER, HER-2 and PR. 64

Figure 27 Barplot with comparison between the different types of models for
cell malignancy prediction. The blue bars 70

L I S T O F TA B L E S

Table 1 Summary of main differences between supervised and unsupervised
learning 5

Table 2 Confusion Matrix for binary classification problems adapted from
Hossin et al. [4]. 7

Table 3 Metrics used for binary and multi-class classification problems based
in Hossin et al.[4] and Bourghorbel et al. [5]. 8

Table 4 Most commonly used activation function with respective formulas
and ranges 22

Table 5 Examples of popular databases regarding cancer or omics in gen-
eral 42

Table 6 Articles ”shallow” learning applications in various problems in the
field of oncology. 43

Table 7 Studies with distinct types of deep learning applications in bioinfor-
matics. 44

Table 8 Hyperparameters used in GridSearchCV for traditional classification
models. 50

Table 9 Hyperparameters used in GridSearchCV for traditional regression
models. 50

Table 10 Hyperparameters used in the random hyperparameter optimization
for DNNs. 51

Table 11 Clinical data available in the samples file. 56

Table 12 Clinical data available in the patients file. 57

Table 13 Hyperparameters used in GridSearchCV for traditional classification
models in METABRIC case study. 58

Table 14 Hyperparameters used in GridSearchCV for traditional regression
models in METABRIC case study. 59

Table 15 Set of values for the hyperparameters used in DNN experiments. 60

Table 16 Results of ”shallow” and deep learning experiments. ER and THREE-
GENe metric is MCC while NPI metric is R2. 61

Table A.1.1 Preprocessing properties 84

Table A.1.2 Preprocessing methods 85

Table A.2.1 Shallow properties 86

Table A.2.2 Shallow methods 87

xii

List of Tables xiii

Table A.3.1 DNN properties 88

Table A.3.2 DNN methods 89

Table A.4.1 DNN MT properties 90

Table A.4.2 DNN MT methods 91

Table B.1.1 Results of the ER predicting KNN model. 92

Table B.1.2 Results of the ER predicting LR model. 92

Table B.1.3 Results of the ER predicting RF model. 93

Table B.1.4 Results of the ER predicting SVM model. 93

Table B.1.5 Results of the ER predicting DNN model. 94

Table B.2.1 Results of the THREEGENE predicting KNN model. 94

Table B.2.2 Results of the THREEGENE predicting LR model. 94

Table B.2.3 Results of the THREEGENE predicting RF model. 95

Table B.2.4 Results of the THREEGENE predicting SVM model. 95

Table B.2.5 Results of the THREEGENE predicting DNN model. 96

Table B.3.1 Results of the NPI predicting KNN model. 96

Table B.3.2 Results of the NPI predicting EN model. 96

Table B.3.3 Results of the NPI predicting RF model. 97

Table B.3.4 Results of the NPI predicting SVM model. 97

Table B.3.5 Results of the NPI predicting DNN model. 97

Table B.4.6 Results of the ER, HER-2 and PR multi-tasking DNN. 98

Table C.1.1 Results of the cell malignancy predicting KNN model. 99

Table C.1.2 Results of the cell malignancy predicting LR model. 99

Table C.1.3 Results of the cell malignancy predicting RF model. 100

Table C.1.4 Results of the cell malignancy predicting SVM model. 100

Table C.1.5 Results of the cell malignancy predicting DNN model. 101

A C R O N Y M S

A

ADAM Adaptive Moment Estimation.

AE Autoencoder.

AI Artificial Intelligence.

ANN Artificial Neural Networks.

ANOVA Analysis of Variance.

API Application Programming Interface.

AUC Area Under The ROC Curve.

C

CNA Copy Number Alteration.

CNN Convolutional Neural Network.

CNV Copy Number Variation.

COSMIC Catalogue Of Somatic Mutation In Cancer.

CPU Central Processing Unit.

CSV Comma Separated Values.

CUDA Compute Unified Device Architecture.

CUDNN NVIDIA CUDA Deep Neural Network.

D

DA Denoising Autoencoders.

DEPMAP Cancer Dependency Map.

DI Departamento de Informática.

DNN Deep Neural Network.

xiv

Acronyms xv

DT Decision Tree.

E

EN Elastic Net.

ER Estrogen Receptor.

G

GAN Generative Adversarial Networks.

GDC The Genomic Data Commons.

GDSC Genomics of Drug Sensitivity in Cancer.

GEO Gene Expression Omnibus.

GPU Graphics Processing Unit.

GRU Gated Recurrent Unit.

H

HDF5 Hierarchical Data Format.

HER-2 Human Epidermal Growth Factor.

HGP Human Genome Project.

HPA Human Protein Atlas.

I

ICGC The International Cancer Genome Consortium.

J

JSON JavaScript Object Notation.

K

KNN K-Nearest Neighbor.

L

LR Logistic Regression.

Acronyms xvi

LSTM Long Short-Term Memory.

M

MAE Mean Absolute Error.

MCC Matthews Correlation Coefficient.

METABRIC Molecular Taxonomy of Breast Cancer International Consortium.

ML Machine Learning.

MSE Mean Square Error.

MTL Multi-task Learning.

N

NGS Next Generation Sequencing.

NPI Nottingham Prognostic Index.

P

PC Principal Component.

PCA Principal Component Analysis.

PCR Polymerase Chain Reaction.

PR Progesterone Receptor.

Q

QOL Quality of Life.

R

R2 R squared.

RELU Rectified Linear Unit.

RF Random Forest.

RGB Red Green Blue.

RMSE Root Mean Square Error.

Acronyms xvii

RNN Recurrent Neural Network.

ROC Receiver Operating Characteristics.

S

SAE Stacked Autoencorders.

SGD Stochastic Gradient Descen.

SNE Stochastic Neighbor Embedding.

SVM Support Vector Machines.

T

T-SNE t-Distributed Stochastic Neighbor Embedding.

TANH Hyperbolic Tangent.

TCGA The Cancer Genome Atlas.

U

UM Universidade do Minho.

V

VAE Variational Autoencoders.

W

WES Whole Exome Sequencing.

WGS Whole Genome Sequencing.

1

I N T R O D U C T I O N

1.1 context and motivation

Over the last years, cancer has been one of the major causes of death worldwide. Only
in the United States of America in 2018, 1.735.350 new cases were estimated to occur and
609,640 people were estimated to die [6].

Being cancer such a major threat for public health, crucial efforts have been made to
prevent, diagnose and treat the disease. Currently, cancer is the main focus of a considerable
part of biomedical research worldwide [6].

The survival probability of a cancer patient depends on a wide variety of factors. Cancer
specific type and subtype, stage of cancer, genetic profile and more factors are fundamental
for the treatment to be effective. A metastasized cancer is generally associated with a poor
prognosis and a more aggressive treatment. The effectiveness of the treatment is low, while
the costs and side effects are high. In order to reduce the number of deaths associated with
cancer, an early and detailed diagnosis is essential.

Cancer research was not always of the same magnitude. The impact of the advent of the
Next Generation Sequencing (NGS) in biomedical research was huge, including oncology. The
use of NGS technologies allowed a large generation of data obtained from cancer samples.
Databases as The Genomic Data Commons (GDC) contain large amounts of data generated
from genome sequencing and other technologies. With GDC and similar databases, the im-
portance of analyzing the existing data can be considered of the same or higher importance
than generating new data [7].

The information generated from NGS techniques is portrayed as ”Big Data”. The term is
used to express the large amounts of data that are generated. When considering ”Big Data”
from NGS, two types of data can be specified: raw data and processed data. Raw data
includes all the data directly outputted from the sequencing machine while the processed
data consists in the data resulting from the usage of processing methods on raw data, one
example being gene expression data. Processed data is smaller than raw data. The prob-
lem associated with gene expression datasets is the difficulty in processing and analyzing

1

1.2. Objectives 2

such large amounts of data. As gene expression datasets generally have significantly more
features than samples, the difficulty in training a predictive model is increased.

To create predictive cancer models, machine learning algorithms have been used on gene
expression datasets as well as other types of data. Using machine learning algorithms
on cancer related data can be useful for a wide variety of tasks. Diagnosing, predicting
prognosis, classifying specific types of cancer and predicting the effectiveness of a drug in
a specific patient are some of the tasks that machine learning can assist. Tools of this kind
are used for achieving what is considered to be precision medicine. In precision medicine,
genomic or other types of data are used to create a personalized treatment [8]. We can not
consider the models absolutely precise, but they can definitely assist physicians and other
health science workers in making the best possible decisions when treating cancer patients
[9][10][11].

Deep learning is a branch of machine learning based on artificial neural networks. Com-
paring to typical artificial neural networks, deep learning models possess multiple hidden
layers which are capable of extracting progressively higher level features and patterns from
raw data. The concept of deep learning is not new, so a typical question is ”If deep learn-
ing is not new, how come I have never heard of it?”. The answer consists in three points:
available data, computational power and algorithms/tools. In recent years, the increase of
available data, higher computational power associated with optimized algorithms and tools
like Keras and TensorFlow, allowed to fully exploit deep learning. Deep learning algorithms
have been applied to a wide variety of scenarios. Speech recognition, visual recognition and
natural language processing are some of the most common applications of deep learning.
Facebook, Amazon, Google, Microsoft, Android, Apple and Twitter are some of the com-
panies that use deep learning algorithms in applications of our daily routine. Self-driving
cars, product recommendation and language translation are other practical usages of deep
learning algorithms. The fact is that deep learning has the potential to significantly change
our lives [12].

Biology and biomedical sciences have also been affected by the rise in popularity of
the machine and deep learning. The models created with deep learning algorithms can
significantly benefit the cancer research community. Despite deep learning being ”new”, in
cancer omics, some papers have been published showing improvements over the common
”shallow” learning algorithms. Various deep learning architectures and techniques have
been used in the area, including transfer learning and multi-tasking models [13][14][15].

1.2 objectives

The main aim of the thesis is the development of deep learning models for the analysis of
cancer transcriptomics datasets. The models will be generated using supervised methods

1.3. Organization of the text 3

to predict diagnostic or prognostic outcomes for specific patients. More specifically, the
work will address the following scientific/technological objectives:

• Review the relevant literature for deep learning methods and their applications in
related scenarios;

• Studying the available data sources of cancer omics to identify suitable datasets, with
an emphasis on the data available on GDC;

• Developing deep learning supervised pipelines for cancer diagnosis and prognostic
predictions, using the available data and evaluating the different alternatives based
on the defined criteria;

• Addressing specific case studies for the validation of the methods, including differ-
ent types of cancer, building models, and generating and submitting predictions for
unknown data;

• Writing the thesis and, possibly, scientific publications with the main results of this
work.

1.3 organization of the text

Machine Learning and Deep Learning: The objective of this chapter is to give a basic
introduction of the machine learning fundamentals including the most popular types of
classical machine learning. Artificial neural networks will be explained in further detailed
because they are the basis of the concept of deep learning. Afterwards, the basic concepts
of deep learning including architectures and used libraries.

Omics data and machine learning methods in cancer: In this chapter the most popular
omics cancer databases will be explained. Applications of bioinformatics in cancer will be
reviewed as precision medicine among others. The final of the chapter is expected to show
machine learning applications on cancer omics data.

Development: The development chapter contains the explanation of the choices made
in the framework software implementation. The structure and the pipeline behind the
framework usage are explained as well as specific methods and tools.

First Case Study Showcase of the framework by using it to predict various clinical end-
points in a cancer patients using a gene expression dataset (microarrays). Presentation and
discussion of the results regarding the cancer dataset clinical endpoint prediction. Discus-
sion around the benefits and the disadvantages of the framework.

1.3. Organization of the text 4

Second Case Study Showcase of the framework by using it to predict if cells are ma-
lignant or non-malignant from tumor isolated from melanoma patients gene expression
dataset (single-cell RNA-seq). Presentation and discussion of the results regarding malig-
nancy prediction of tumor cells. Discussion around the benefits and the disadvantages of
the framework.

Conclusion: Conclusions regarding the result of the developed framework and future
works.

2

M A C H I N E L E A R N I N G A N D D E E P L E A R N I N G

2.1 machine learning fundamentals

Classical Artificial Intelligence (AI) surged in the 1950s with the expectation of being a revolu-
tionary technology. People thought that AI would allow to automatically translate, control
and obtain specialized advice from machines. Significant advances occurred in the be-
ginning but soon, many researchers started doubting such techniques. Some researchers
changed theirs focus from classical AI to different type of systems. The newly developed
systems focused on statistics and rapidly were named as algorithms belonging to the Ma-
chine Learning (ML) field [16].

Many applications of ML are presented to us in our daily lives. Recommendation systems
in websites, search engines, language translation, image recognition and generation are
some of the most common applications of ML [16].

Three main types of ML algorithms can be specified regarding their learning process
as presented in Table 1: supervised learning, unsupervised learning and semi-supervised
learning. In supervised methods, labeled training data are used to induce a model. Un-
supervised methods are used to discover new patterns or features from unlabeled data
exclusively. Semi-supervised methods usually use a small amount of labeled data and a
large amount of unlabeled data [2][16] [17].

Table 1.: Summary of main differences between supervised and unsupervised learning
Type of Learning Type of Data Feedback Outcome
Supervised Learning Labeled Data Direct Feedback Outcome prediction
Unsupervised Learning Unlabeled Data Absent Feature and pattern discov-

ery

2.1.1 Supervised Learning

Models trained with supervised learning are able to predict a set of output values given a
set of input values. Two types of variables can be predicted in supervised learning: contin-

5

2.1. Machine Learning Fundamentals 6

uous and discrete variables. Models trained with supervised learning can be either classi-
fication models (classifiers) or regression models. Classification models are used to predict
discrete variables (e.g. cancerous tissue or normal tissue), given a set of input features
from the sample. Regression models can predict a continuous variable (e.g. concentration
of alcohol in the blood) given a set of input features of a sample. The general pipeline
starts by collecting raw data as shown in Figure 1. The pre-processing of raw data includes
treating missing values and extracting features. Missing values cannot exist in the training
data, therefore handling missing values by generating values from averaging features or re-
moving samples is necessary. Furthermore, extracting columns of non-significant features
is also an important aspect to achieve better results [2][9].

After applying the pre-processing methods, training data is split into training and test
datasets, with the first being typically larger than the second. While the training dataset is
used to train the model, the test dataset is used to evaluate the performance of the model.
Feature normalization is applied rescaling different features to comparable values. Feature
selection can be applied not only to use the features that are relevant to the problem but
also to improve computer efficiency by reducing the number of features analyzed [2][9].

The processed training data is used to train the model. Each time the algorithm iterates,
the values of the parameters are updated and used. In the end of the training process,
error is estimated. To generate an error estimation a loss function is needed. The function
calculates the error between the predicted values and the real values. The loss is essential
for training algorithms as backpropagation. In these algorithms, the loss function calculated
error is used to update the coefficients of the model. The term ”loss” is applied to a single
sample while ”cost function” is used when multiple samples are predicted. Afterwards, the
test dataset is used to evaluate the performance of the model. Figure 1 represents a simple
view of the general pipeline used in supervised learning problems [2][9].

Raw Data

Processed Data

Pre-processing
Test Data

Model

Train Data

Data split
Training

Model Performance

Using test data for model evaluating

Figure 1.: Overview of a supervised learning pipeline

2.1. Machine Learning Fundamentals 7

Error Estimation

The performance of a model can be assessed by using independent test data. Different error
estimation methods can be applied to evaluate the performance of the model including
hold-out, cross-validation and leave-one-out.

Holdout The holdout method is one of the simplest partition techniques in ML. This
method consists in splitting the training data in two separate sets: training set and test set.
Generally in holdout, 2/3 of the dataset are used for trainning while the remaining 1/3 will
consist in an independent test set. Holdout is a good option when large amounts of data
are available. If the available data is small, the error estimation is highly variable depending
on the partitions created [18].

Cross-validation K-fold cross-validation consists in splitting the data into k partitions,
also called folds. One of the folds is chosen to be used for test and the remaining k-1 are
used for training. Thereafter, the previously stated process is repeated k times for the dif-
ferent partitions. In the end of the cross-validation, the overall error is calculated averaging
the error from each iteration. Cross-validation is the most popular error estimation method
used in ML [18].

Leave-one-out Leave-one-out is a specific case of cross-validation where k is equal to
the number of available samples in the data N. In leave-one-out, N error estimations are
calculated, with only one sample being used as test data in each iteration. The method is
not generally applied because of the associated high computational cost. Still, leave-one-out
can be a useful when small amounts of data are available [18].

Metrics

The performance evaluation of a model can be done using different error metrics. Different
types of metrics can be used depending if the problem is a classification or a regression
one. Confusion matrices are applied in binary classification problems. For classification
problems, the concept of confusion matrix (Table 2) is essential. While tn and tp represent
the correctly predicted negative and positive instances respectively, fn and fp correspond to
incorrectly predicted negative and positive instances, respectively.

Table 2.: Confusion Matrix for binary classification problems adapted from Hossin et al. [4].
Real Positive Real Negative

Predicted Positive True positive (tp) False positive (fp)
Predicted Negative False negative (fn) True negative (tn)

2.1. Machine Learning Fundamentals 8

A wide range of metrics can be formulated from the values observed in a confusion
matrix. The most common metrics can be observed in Table 3. The last four metrics are
extensions of binary classification metrics for multi-class classification problems. Accuracy,
precision and recall are popular metrics for evaluating performance. In Table 2, accuracy
is formulated for a binary classification problem, but this metric can be also applied to
multiclass problems. The formulation remains similar as overall accuracy is calculated by
dividing the sum of correct predictions by the total number of predictions. Each metric
has advantages and disadvantages when comparing to the others. F-measure and MCC
have been reported to be better in evaluating performance of models when comparing with
other metrics because they compute a balance between positive and negative measures, a
characteristic not present in other metrics [4][5].

Table 3.: Metrics used for binary and multi-class classification problems based in Hossin et
al.[4] and Bourghorbel et al. [5].

Metrics Formula Evaluation Focus

Accuracy (acc)
tp + tn

tp + f p + tn + f n
Ratio of correct predictions over
the total number of instances

Error Rate (err)
f p + f n

tp + f p + tn + f n
Ratio of incorrect predictions
over the total number of in-
stances

Precision (p)
tp

tp + f p
Positive patterns correctly pre-
dicted from total positively pre-
dicted instances

Recall(r)
tp

tp + tn
Positive patterns correctly pre-
dicted from the total of correct
predicted instances.

F-Measure
2 ∗ p ∗ r

p + r
Harmonic mean between recall
and precision values

MCC
tp ∗ tn− f p ∗ f n√

(tp + f p)(tp + f n)(tn + f p)(tn + f n)
Balanced measure that can be
used in classes with consider-
ably different sizes

Averaged Accuracy
∑l

i=1
tpi+tni

tpi+tni+ f ni+ f pi

l
Average effectiveness of all
classes

Averaged Error Rate
∑l

i=1
f pi+ f ni

tpi+tni+ f ni+ f pi

l
Average error rate of all classes

Averaged Precision
∑l

i=1
tpi

tpi+ f pi

l
Average of per-class precision

Averaged Recall
∑l

i=1
tpi

tpi+ f ni

l
Average of per-class recall

Averaged F-Measure
2 ∗ pM ∗ rM

pM + rM
Average of per-class F-measure

2.1. Machine Learning Fundamentals 9

Area Under The ROC Curve (AUC) is one of the most used metrics. As understood by the
name, the value reflects the area under the Receiver Operating Characteristics (ROC) curve.
A ROC curve is a plot that visually describes the performance of a binary classification
problem. The x axis represents the false positive rate, while the y axis represents the true
positive rate. The two previous values are calculated by dividing tp by condition positive
and by diving fn by condition negative, respectively. Unlike the aforementioned metrics, the
AUC represents the overall performance of a classifier model. For a binary classification
problem, the metric can be determined using Equation 1.

AUC =
Sp − np(nn + 1)/2

npnn
(1)

where is calculated with Sp = ∑ ri where the ri corresponds to the ith positive in the
ranked list. The number of negative and positive instances are represented by nn and np,
respectively. AUC not only can be used in binary classification problems but also in multi-
class problems. Although the AUC value shows better results when comparing to other
metrics as accuracy, the computational cost associated with AUC is high. The metric excels
in discrimination and evaluation tasks, but when large amounts of data are processed, the
time complexity of the problem is not negligible [4] [19][20].

The continuous output of regression problems require other type of metrics. Mean Square
Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) are the most
popular regression metrics. RMSE reflects the standard deviation between real and pre-
dicted values and a easier way to interpret MSE. MAE is the average of the absolute error
between real values and predicted values. While the MAE score is linear with all differ-
ences having the same weight, in RMSE the same does not occur [21][22][23]. Equations 2

and 3 represent the formulas for RMSE and MAE, respectively. MSE equation is equal to
RMSE formula squared.

RMSE =

√
1
n

Σn
j=1

(
yj − ŷi

)2
(2)

MAE =
1
n

Σn
j=1|yj − ŷi| (3)

where n represents the number of total predictions, yj and ŷj represent the real output value
and the predicted output values respectively.

Adjusted R Squared (adjusted R2) is another metric commonly applied to regression
problems. Adjusted R2 is used to understand how independent variables influence the

2.1. Machine Learning Fundamentals 10

variability of dependent variables [24]. Equations 4 and 5 are the equations for R2 and
adjusted R2.

R2 = 1−
1
n ∑n

i=1(yi − ŷi)
2

1
n ∑n

i=1(yi − yi)
2

(4)

R2
adj = 1−

[
(1− R2)(n− 1)

n− k− 1

]
(5)

while n,yi and ŷi represent the same as in RMSE and MAE formulas, k is the number of
explanatory variables present in the model.

Overfitting

As ML models are trained by using limited sets of data, it’s common that the model becomes
exceptional in predicting values or classes from the samples in the training. The problem
is that the model can be so overly fitted to the training data, that it becomes obsolete when
is used with new samples. Overfitting is the term used to represent this problem. Some
methods are used in order to decrease overfitting. Regularization methods as L1 and L2

regularizations are popular algorithms to assess overfitting problems. Cross-validation is a
popular technique used to detect overfitting as multiple models are trained with different
subsets of samples and by averaging the performance of all the models.

2.1.2 Unsupervised Learning

The goal of unsupervised learning differs from the goal of supervised learning. Unsupervised
learning intent is not directly to classify or predict a value given a set of N observations.
The objective is to detect patterns in the given data, without using labeled data. As large
amounts of data do not contain viable labeled data to be used, unsupervised learning is a
good alternative to supervised learning. The detected patterns can be useful regarding the
data and the context of the data. Furthermore, recently semi-supervised learning models have
been implemented for a wide range of problems. The value of semi-supervised models
consists in the capability of training supervised models without containing labeled data for
all the input observations [25].

As shown in Figure 2, the pipeline used for unsupervised learning is less complex when
compared to the aforementioned supervised learning pipeline. The pre-processing step is
similar, but the data does not need to be split in train, validation and test partitions to build
the model. Afterwards, by analyzing the built model, it is possible to improve the model.
The process of tuning consists in changing the values of the hyper-parameters to improve
the performance of the model.

2.2. Supervised ML Models 11

Raw Data

Processed Data

Pre-processing

Model

Model training

Analysis and
parameter tuning

Figure 2.: Overview of an unsupervised learning pipeline

The most common types of unsupervised learning models are k-means, hierarchical clus-
tering and Principal Component Analysis (PCA). t-Distributed Stochastic Neighbor Embedding
(t-SNE) is a recent approach of an unsupervised model focused on data dimensionality
reduction.

2.2 supervised ml models

2.2.1 Linear and Logistic Regression

Linear Regression

Linear regression is one of the first algorithms to be used in ML applications. For the last
30 years, linear regression has been used and remains an important application in statistics
and ML in general. Linear models receive a vector of input values xT = (x1, x2, ..., xp) and
the model predicts the output y, a numerical [25]. Equation 6 corresponds to the linear
regression formula.

ŷ = θ0 +
p

∑
j=1

xjθj (6)

where ŷ is the output of the linear regression model for a given xT vector, p is the number
of values in the input vector, θ is a vector with parameters values and θ0 is the intercept,
commonly referred as bias in the ML community [25]. If variable 1 is included in X and
the bias is included in the vector of parameters coefficients θ, the linear regression can be
calculated as an inner product in a matrix/vector form as shown in Equation 7.

ŷ = xTθ (7)

2.2. Supervised ML Models 12

Using the second variation of the linear regression formula, better computational effi-
ciency can be obtained.

In order to train a linear regression model, a cost function is needed, the most common
being MSE. For parameter estimation,the goal is to minimize the value of the cost function,
updating the coefficients in each iteration [25].

Logistic Regression

As Logistic Regression (LR) is used for binary classification problems, the dependent variable
is discrete. The term ”logistic” refers to the sigmoid or logistic equation applied to linear
regression. The sigmoid equation is represented as Equation 8.

φ(z) =
1

1 + e−z (8)

If the value of z is equal to 0, the sigmoid function probability is 0.5. If z >> 0, sigmoid
function approaches 1 and if z << 0, the function approaches 0. By considering the z value
equal to a multiplication of a vector of weights (coefficients of parameters) by a given input
vector, the LR is formulated as showed in Equation 9 [25][26].

hθ(s) =
1

1 + e−θT x
(9)

The weights θ are estimated by minimizing the cost function J(θ). Equation 10 represents
the formula for the cost function for LR [25] [26].

J(θ) = − 1
m

[
m

∑
i=1

y(i) log hθ(x(i)) + (1− y(i)) log(1− hθ(x(i)))

]
(10)

Regularization

Regularization methods introduce components to the cost function that represent model
complexity in the models to reduce overfitting and increase the robustness of the model.
Two major model regularization methods are generally used: L1 or Lasso regularization
and L2 or Ridge regularization.

L1 or Lasso regularization can be used for variable selection or shrinkage with linear
and logistic regression models. Lasso regularization consists in the addition of the absolute
values of the parameters multiplied by a λ hyperparameter. With the increase of λ the
model tends to under-fit, while a low value of λ tends to have a small effect in decreasing

2.2. Supervised ML Models 13

the overfitting of the model. The parameter shrinkage is proportional to the parameters
value θ. The cost function with L1 regularization is shown in Equation 11 [25].

J(θ) = − 1
m

m

∑
i=1

(hθ(xi)− yi)
2 + λ

n

∑
j=1

∣∣θj
∣∣ (11)

where hθ is the function for a linear or logistic regression that outputs the sum of the
multiplication of parameters with input values. In Equation 11, L1 regularization is added
to the MSE cost function of a linear regression [25].

L2 or Ridge regularization consists in an additional term added to the cost function sim-
ilarly to R1 regularization. While L1 regularization uses the absolute values, R2 regulariza-
tion uses the square of the parameters values. The cost function with Ridge regularization
is represented in Equation 12 [25].

J(θ) = − 1
m

m

∑
i=1

(hθ(xi)− yi)
2 + λ

n

∑
j=1

θ2
j (12)

While Ridge is not a robust solution, it has always one single stable solution, Lasso is
robust but has multiple unstable solutions. Lasso can shrink and select variables automati-
cally while Ridge is useful to work with values different from zero because it is efficient in
calculating the analytic solutions [25].

Elastic Net (EN)s are a combination of Lasso and Ridge regularizations. ENs combine the
feature elimination of L1 regularization with the coefficient reduction of L2 regularization.
The cost function for an EN is show in Equation 13 [25][27].

J(θ) = − 1
m

m

∑
i=1

(hθ(xi)− yi)
2 + λ

n

∑
j=1

θ2
j + λ

n

∑
j=1

∣∣θj
∣∣ (13)

An additional parameter α is used in some implementations to balance the weight of each
type of regularization technique has in the cost function as seen in the Scikit-learn package
[28].

2.2.2 K-Nearest Neighbor

K-Nearest Neighbor (KNN) is a non-parametric algorithm used for classification and regres-
sion. Being non-parametric allows the algorithm to be used in cases where there is no
knowledge regarding the dataset and can be used when the data does not have a normal
distribution [29]. KNN is a called a lazy learner because the training phase is almost in-
stantaneous. Comparing to a LR where during training phase the weights are updated, the
KNN instance only memorizes the training data. The computation mainly occurs when
a new sample is being classified. The KNN algorithm calculates the distance among the

2.2. Supervised ML Models 14

sample to be predicted and the ”k” nearest neighbors in the search space. The ”closest”
neighbors will serve as reference to classify the new sample. The distance between samples
can be calculated with different distance metrics, but the default metric for KNN is the
Euclidean distance. The Euclidean distance between x and y samples is shown in Equation
14 [30].

d(x, y) =

√
n

∑
i=1

(ai(x)− ai(y))2 (14)

where ”n” is the number of attributes in the samples and ”a” is the value of an attribute in x
and y instances. The value of K is an important factor that affects KNN models performance.
Having a small K can result in disparity of prediction values while a large value of K can
result in a model with a large bias. When used for binary classification problems, it is a
good practice to select odd numbers to avoid ties between votes. The previous practice can
be extended to multi-class classification problems by not using multipliers of the value of
possible classes [31].

2.2.3 Support Vector Machine

Support Vector Machines (SVM) are ML models based in four basic concepts: maximum-
margin hyperplane, kernel function, hyperplane separation and soft margin. The hyper-
plane concept consists in a straight plane in a high-dimensional space, capable of sepa-
rating the samples in the different categories. The term hyperplane is used because the
straight line can be used in one dimension (a point), in two dimensions (a straight line), in
three dimensions (a plane) and can mathematically be applied to higher dimensions.

Maximum-margin hyperplane consists in choosing the best hyperplane to separate the
samples of different classes. The samples to be classified can be separated by various high-
dimensional hyperplanes. What differentiates SVMs from other classifiers is the criterion
used in hyperplane selection. The chosen hyperplane is the one that separates two classes
with maximal distance between any data points from samples of distinct classes.

Soft margin is an SVM feature used to ignore part of the samples when computing the
loss function. Errors in datasets are common and can improve the difficulty of finding the
appropriate high-dimensional hyperplane. If a single ”error” has similar features to the
other class, then the chosen hyperplane would not separate the datasets easily. Soft margin
allows for the chosen hyperplane to contain outliers in the margin without affecting the
model training process.

Kernel functions are applied to the data for simplifying the selection of the hyperplane.
Frequently, datapoints cannot be easily separated in a low dimensional space. Kernel func-
tions project the data to higher dimensional spaces, allowing the data to be linearly sepa-

2.2. Supervised ML Models 15

rated. The choice of the appropriate kernel function is fundamental to the quality of the
SVM. The associated problem with the application of kernel models is the ”curse of dimen-
sionality”. With the increase in the number of variables, the number of possible solutions
and the probability of overfitting also increases. Furthermore, kernels can be applied to
non-vector inputs, increasing the types of data processed by SVMs. The combination of dif-
ferent types of data can occur because of the mathematical formalism that kernels provide
[25][32].

2.2.4 Decision Trees and Regression Trees

The application of Decision Tree (DT)s in ML was one of the first algorithms used to create
predictive models. DTs can be applied to classification while regression trees can be applied
to regression problems for discrete and continuous values predictions, respectively. In a
trees, each node corresponds to an input variable and each branch to a possible value.
Trees are efficient in the training process and easy to analyze. ID3 is one of the most
popular DTs, but further algorithms have originated from ID3. The class of a sample can
be predicted by crossing a DT from the top to the bottom evaluating the values for each
node(feature). Generally, the features with highest variation are the first to appear from a
top-bottom perspective. DTs have been used in ensembles as random forests and gradient
boosting algorithms because of the high efficiency associated to training [25][33].

2.2.5 Ensembles

In the current state of the art in ML, generally more than one model is trained for each
problem. The usage of multiple models in the same problem is called an ensemble. With
multiple models being used to generate outputs, some methods are necessary for choosing
the right prediction. Generally using ensembles decreases the risk of model overfitting and
improves the results.

Voting methods are used to predict the class output of the ensemble. Two types of
methods are currently used for class prediction models: majority voting or weighted voting.
Majority voting consists in creating a pool with the predicted class from each model and the
chosen ensemble output corresponds to the class with most votes. Weighted voting process
is similar but each vote has a different ”importance” in the voting process depending on the
model’s performance. A model with better predictive quality has more weight in the voting
process when compared to models with worse results. For regression problems, generally
two methods are used: averaging and weighted averaging. The simple averaging method
consists in calculating the mean of the outputs generated by the models. The weighted

2.2. Supervised ML Models 16

averaging method is similar to the weighed voting since different weights are applied to
each model output value [25] [34].

Bootstrap Aggregation (Bagging)

Bootsrap aggregation, also known as bagging, is an algorithm used to create ensembles.
Bagging can be used for different types of ML algorithms including trees, neural networks
among others. Given a D dataset, m models are created with different randomly selected
samples. It is important to emphasize that samples selected in an iteration, can be selected
again in the following. The number of samples used in each model training is the same.
Generally, 60% of the samples are used to train each model. Afterwards, the outputs of
the m models are averaged or voted in classification problems and the final output of the
ensemble is calculated in regression problems [25][35].

Boosting

Boosting can be considered a meta-algorithm to reduce bias and variance. Boosting ML
algorithms convert weak learners into strong learners. In the beginning, all data points
have the same weight and consecutively the same probability of being chosen to train the
model. After each weak model, the values of the weights are re-calculated. Samples classi-
fied incorrectly have a higher weight while correctly classified samples have lower weights.
Calculating new weights after each model, improves the results of the ensemble because
the next model is trained using more misclassified data. The described process causes the
next model to learn data the previous model could not learn. The final output of a boosting
method is the result of the voting or averaging of all generated models. The most popular
boosting algorithm is AdaBoost, but other boosting methods exist as xgboost, LPBoost and
gradient boosting [25][36][37][38][39].

Random Forest

Random Forest (RF) consists in an ensemble of DTs. RF can be used for classification and
regression problems as trees can process both types of ML problems. RF has a similarity to
bagging algorithm. Each generated tree uses only a subset of data in the training process,
similar to bagging. Furthermore, instead of selecting the features with highest variance for
criteria for spliting in the nodes, the features used in each tree are selected randomly. Using
only a subset of data in the training process and the random selection of features lowers
the correlation among individual trees. The robustness of RF results from the trees being
different among them to be able to captured features with low correlation. Further features
have been added to RF base algorithm. Extremely randomized trees or ExtraTrees add more
randomization to RF base algorithm. Each model generated by ExtraTrees uses the full

2.3. Unsupervised ML Models 17

dataset for training and the cut-point for each feature(node) is randomized instead of being
calculated the optimal value [25] [40].

2.2.6 Feature Selection

Feature selection is an essential step for the aforementioned models and supervised learn-
ing in general. Selecting the best subset of features to be used for model training is the
goal of feature selection. Features can be selected from already existing feature or new
features can be obtained by algorithms as PCA. Feature selection methods can be divided
among three major categories: filters, wrappers and embedded methods. Filters select fea-
tures without being influenced by model type. Filters are based in correlations and other
statistical metrics (e.g. entropy or information gain). The evaluated metrics are not specific
for each model, because they consist on measuring general properties and ranking feature
”usefulness” by the resulting statistics.

Unlike filter methods, wrapper methods evaluate the interactions among variables. Wrap-
per methods have a high computational time and effort when compared to filters because
multiple models must be trained with different subsets of features. The risk of overfitting
by using wrapper methods is high if the number of samples is reduced.

Embedded methods are similar to wrapper methods. The difference remains in the fact
that embedded uses a metric intrinsic to model training to train the model simultaneously
to feature selection. One example of an embedded method are elastic nets. They use L1 and
L2 regularization techniques during the training while features are ranked by their value
multiplied by the coefficients. The lower ranked features are removed from the training
process [25][41][42] .

2.3 unsupervised ml models

2.3.1 Hierarchical Clustering

The concept of hierarchical clustering is based in dividing data in clusters from top to bot-
tom or reverse. The algorithm is called hierarchical because depending on the level that
is examined, the members and number of clusters are different. In hierarchical clustering
the similarity is determined by calculating the distance among observations. The clustering
of observations iterates, grouping observations or groups of observations with the lowest
distances. Clusters in the bottom level contain a single observation while the above levels
contain more than one instance, with the top cluster containing all observations. Observa-
tions can be grouped using two different methods: divisive and agglomerative.

2.3. Unsupervised ML Models 18

The divisive method starts the clustering process with a single cluster with all the obser-
vations. Each iteration of the algorithm splits a cluster into two separate clusters. The goal
is to generate two different clusters with the highest distance/lowest similarity between two
groups of observations. The agglomeration method consists in a bottom to top approach.
In each iteration of the method, the two observations or groups of observations with largest
similarity/lowest distance are merged together into a single cluster. Each level has always
one less cluster when compared to the level below. An example of an hierarchical clustering
is illustrated in Figure 3. Different distance metrics can be used including Euclidean and
Manhattan distances. Average-linkage, single-linkage and complete-linkage are the three
main methods used to calculate the distance between clusters. While in single-linkage the
distance between two clusters is given by the the distance between the smallest distance
between two points in each cluster, in complete-linkage, the distance is given by the longest
distance between two points in each cluster. Average-linkage considers the distance as the
average of the distance of each point with all the points in the other cluster. [25][43].

5 1 4 2 3 9 6 10 7 8
Samples

0

10

20

30

40

Di
st

an
ce

Figure 3.: Schematic representation of an hierarchical clustering.

2.3.2 K-means

K-means is a class of clustering problems seeking to group observations with similar pat-
terns in clusters. In k-means, k is the input number of clusters provided as a parameter. The
performance of the algorithm is highly influenced by the value of k because each observa-
tion will be assigned to one of the k clusters. At algorithm start, a k centroids are set equal
to some observations. The goal of these centroids is to be the center of each cluster. In each

2.3. Unsupervised ML Models 19

iteration, each observation is assigned to the closest centroid and posteriorly, the values of
the centroids are recalculated to the mean value of the assigned observations. This recal-
culation can be seen as an optimization problem as the minimum value for the objective
function is searched in each iteration. The objective function is calculated by the sum of the
squared distances between each point and the centroid of the correspondent cluster. The
distance used to measure the distance among points and centroids is Euclidean distance.
The model runs until a given number of iterations is reached or no further improvements
occur. [25][44].

2.3.3 Principal Component Analysis (PCA)

PCA is a popular technique used to reduce the dimensionality of datasets with numerical
variables. PCA creates new variables from the original p variables. The q latent variables
are generated by calculating linear combinations.

The q variables explain the maximum variance in the original data. In this process, the
capability of identifying patterns is retained while variables with low variance are not used.
Resolving a maximization problem, the vectors can correspond to eigenvectors. Each eigen-
vector has the value of variance for the corresponding Principal Component (PC). The pro-
portion resulting from the ratio of the sum of the first q eigenvalues divided by the sum of
the variances of p original variables is equal to the proportion of the total variance of the
original data explained by the same first q PCs [25][45].

2.3.4 t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE is a recent powerful technique, that not only captures local patterns from data with a
large number of dimensions, but is also able to identify clusters in a global level. Stochastic
Neighbor Embedding (SNE), the first version of t-SNE, starts by calculating the conditional
probabilities from the Euclidean distances between instances. Each conditional probability
represents a similarity between the two datapoints, representing the probability of the first
datapoint to choose the second datapoint as neighbor, if neighbors were chosen depending
on their probability in the Gaussian curve centered in the first datapoint. The conditional
probability of similar datapoints is high, while different datapoints have probability values
approximated to zero. The cost function used in SNE and t-SNE minimizes the sum of
KullBack-Leibler divergences over the total instances using gradient descent which will be
explained in a later section. The quality of the local structure of the data is assessed by the
cost function.

t-SNE differs from the SNE in two points. First, the cost function is a symmetric version of
the originally used in SNE that uses more efficient and simple gradients. Second, instead

2.4. Artificial Neural Networks (ANN) 20

of using the Gaussian curve for calculating the similarity among two instances, Student-
t distribution is used. The disadvantages of t-SNE consist in not being able to use the
algorithm for other use than data visualization. The Student-T distribution cannot be used
for dimensions larger than three because of the Student-T heavy tails may not capture the
local data structures. The results of t-SNE can get worse if the algorithm is used in largely
intrinsic dimensional datasets. An example of a t-SNE visualization is shown in Figure 4

where each different symbol [1].

Figure 4.: t-SNE visualization of MNIST dataset. Source: Maaten et al. [1].

2.4 artificial neural networks (ann)

2.4.1 Perceptrons and neurons

A perceptron is the ancestor model of a neuron. A group of perceptrons or neurons are
needed to build an Artificial Neural Networks (ANN). A perceptron can have multiple con-
nections as inputs and outputs as seen in Figure 5.

Each connection has an associated weight or coefficient that modifies the input values.
The output z is the result of the sum of the input values from each previous perceptron
multiplying by a w coefficient as seen in Equation 15.

z =
m

∑
i=0

wixi (15)

2.4. Artificial Neural Networks (ANN) 21

Perceptron

Input 1

Input 3

Input 2 Output

x1

x2

x3

w1

w2

w3

z

Figure 5.: Schematic representation of a perceptron.

where m corresponds to the number of weights and by association, the number of input
connections. The ouput of the first perceptrons is binary (0 or 1). If the value of the
network is positive, the perceptron outputs the value 1, otherwise 0. Perceptrons can be
used in logic functions as OR, AND and NAND due to the binary ouput. Combinations
of perceptrons with simple logic functions as OR and NAND can be used to solve an XOR
(OR and NAND) [46].

In ANNs, neurons are the building blocks rather than perceptrons. The network input of
a neuron includes a bias value as shown in Equation 16.

z =
m

∑
i=0

wixi + bi (16)

The previous equation can be formulated in a vector form as shown in Equation 17.

z = wTx + b (17)

Another of the major differences between the modern neuron and the first perceptron
is the activation function φ(z). The outputted value of a neuron is not necessarily binary,
rather it is produced by φ(z). Firstly, the neuron calculates the net value z. Afterwards, the
z value is run through the activation function producing the neuron output value [46].

The most popular activation functions are softmax, sigmoid, heaviside step (binary), Hyper-
bolic Tangent (TANH) and Rectified Linear Unit (ReLU). Functions are used in different types
of problems and possess different ranges. Table 4 contains the ranges and formulas for the
most popular neuron activation functions. In deep learning, ReLU is the most used acti-
vation function in hidden layers. Sigmoid is popular in a wide range of application from
classical machine learning to recent deep learning architectures. In Figure 6 it is shown
how sigmoid, TANH and ReLU functions are visualized in plots [46][47].

2.4. Artificial Neural Networks (ANN) 22

Table 4.: Most commonly used activation function with respective formulas and ranges
Activation Function Formula Range

Softmax fi(~x) =
exi

∑J
j=1 exj

(0,1)

Sigmoid f (x) =
1

1 + e−x (0,1)

Heavy step f (x) =

0 f or x < 0

1 f or x ≥ 0

{0,1}

TANH f (x) =
(ex − e−x)

(ex + e−x)
(-1,1)

ReLU f (x) =

0 f or x < 0

x f or x ≥ 0

[0,∞)

(a) Sigmoid (b) TANH (c) ReLU

Figure 6.: Graphs representing some of the most popular activation functions

2.4.2 Feedforward neural networks

Feedforward neural networks are built by groups of neurons. The classic topology is com-
posed by one input layer, one or more hidden layers and one output layer. The first layer
contains one neuron for each input feature. In the last layer or output layer, the number
of neurons is equal to the number of possible labels in a classification problem while gen-
erally one single neuron is present in models for regression problems. Each layer is fully
connected with the posterior layer as shown in Figure 7 [25][47].

2.4. Artificial Neural Networks (ANN) 23

Input layer
Hidden layer

Output layer

Figure 7.: Schematic illustration of a feedforward neural network

In ANNs, the model is trained by updating the w parameters. The updated values of
w are calculated by comparing the error between predicted and real data. The training
process will be further explained in a later section. Equation 18 shows how to calculate the
output value of a neuron in a specific layer.

al
i = φ(∑

j
wl

ija
l−1
j + bl

i) (18)

where al
i is the output of the ith neuron from the lth layer. The al

i results from applying
the network input value of a neuron to φ(z) activation function. wl

ij represents the value
of the weight of the connection from the jth neuron to the ith neuron while al−1

j represents
the output value of the jth neuron in the previous layer. bl

i is the the value of bias added to
the ith neuron from the lth layer. The previous equation can be formulated in the following
vectorial form as shown in Equation 19 [25][47].

al = φ(wlal−1 + bl) (19)

In order to obtain an ANN output, one of the previous equations must be applied to
every neuron in each layer in a feedforward manner, from the input layer up to the output
one.

2.4.3 Gradient Descent

The process of model training fundamentally consists in giving slight adjustments to the w
weights. In each iteration, coefficients adopt new values after calculating the error between
the predicted and real values. One of the most popular approaches is gradient descent.
The gradient descent method takes advantage of differentiable operations and computes the

2.4. Artificial Neural Networks (ANN) 24

gradient of the cost function. Basically, gradient descent uses the previous assumptions to
compute the coefficients in order to minimize the loss function. Applying to an ANN, the
goal of gradient descent is to find the combination of w weights that minimizes the value
of the error [2]. At each iteration, weights are updated in the opposite direction of the
gradient. The iterative method of a Stochastic Gradient Descen (SGD) applied to ML follows
the steps present in Algorithm 1. While gradient descent uses all the samples to update
a parameter, SGD uses one sample or subset of samples (batch) to update a parameter in
each iteration [2].

Algorithm 1 Stochastic Gradient Descent (SGD)

Initialize the weights w
Define a step learning rate
for batch of training samples x and corresponding targets y do

y predicted = model(x,y)
loss val = loss function(y,y predicted)
gradient = grad func(cost,w)
w -= step * gradient

end for

The choice of step is essential for determining the minimum of the cost function. If
a large value is selected for the step factor, the algorithm can diverge or take random
locations without finding the optimal coefficient values. A small step value causes the
algorithm to take more iterations, increasing computational time, and the risk of finding a
local minimum instead of a global minimum increases considerably. Figure 8 shows how
the algorithm can be stuck in a local minimum if the value of the step is small.

Figure 8.: Example of a the curve of a loss as function of a parameter. Source: Chollet et al.
[2].

The algorithm previously shown can be called a mini-batch SGD. Other variants of the
SGD algorithm can occur, depending on the number of samples used in each iteration. The
true SGD uses one single sample and label in each iteration. The algorithm is efficient but

2.4. Artificial Neural Networks (ANN) 25

has high randomness. The batch SGD uses the entire batch in the training process updating
the weights more accurately but becomes more expensive. The balance in the number
of samples used in a SGD is the key to obtain good results without sacrificing accuracy.
AdaGrad, RMSProp and other, also known as optimizers, use momentum to increase the
speed of convergence and decreasing the probability of getting stuck in a local minimum
[2].

2.4.4 Backpropagation Algorithm

The backpropagation algorithm is used to calculate the gradient of a cost function regarding
an ANN using the chain rule of derivatives. A derivative of the network with respect for
the input of a given layer can be obtained from working backwards from the derivative of
the output. The algorithm can be applied to each layer starting from the output layer of
the ANN, to the input layer. After computing the gradients for each layer, the calculus of
the derivatives regarding the coefficients of each layer is simple. Starting in the output, the
error derivative of an output unit is computed by differentiating the cost function. In the
case of MSE, the equation of the error derivative is shown in Equation 20 [48].

∂E
∂yl

= yl − tl (20)

In the Equation 20, l refers to the output layer, t is the target values and y are the predicted
values. Equation 21 describes how a small change in the value of activation modifies the
error.

∂E
∂zl

=
∂E
∂yl

∂yl

∂zl
(21)

The degree of error variation caused by a small change in the activation value is calculated
with the Equation 20 equation multiplying by the partial derivative of yl regarding changes
in the value of activation zl . The next step is to calculate the error derivative of the previous
layer k regarding the variation of output yk. This includes the sum of the error derivatives
multiplied by the corresponding weights wkl as shown in Equation 22.

∂E
∂yk

= ∑
l ε out

wkl
∂E
∂zl

(22)

As shown in the previous equations, the chain rule of derivatives can be applied to ANNs.
The chain rule of derivatives allows a small change in x (4x) to be transformed into a small
change in y by multiplying4x by ∂y/∂x. Further equations can be linked to obtain changes
of variables by multiplying partial derivatives by the value of small changes in the variables
[48].

2.5. Deep Learning 26

2.5 deep learning

The previously assessed models can be classified as different forms of ”shallow” learning.
The ”shallow” term is used to distinguish the traditional models of ML from deep learning
algorithms. The ”deep” in deep learning is based in the depth of the model. While a typical
ANN has one hidden layer, a DNN can have multiple hidden layers. Each layer consists in
multiple units capable of non-linear processing data transformation and feature extraction.
The concept of deep learning is not new, but recently the conditions changed, providing the
means needed to take advantage of deep learning. The increase in computational power
(usage of Graphics Processing Unit (GPU), new and improved algorithms and the rise o ”Big
Data” fulfilled the needs [2][48].

The concept of deep learning is based in the human learning process. First, simple
concepts and patterns are learned, then more difficult and abstract concepts. Each hidden
layer works similarly to the biological process, learning simple patterns in the first layers
and abstract patterns in later layers. Deep learning models have been presenting good
results in the areas of speech recognition, image recognition, natural language processing,
bioinformatics and others. One table regarding diverse applications of deep learning in
bioinformatics will be presented in a later section [2][48].

2.5.1 Deep Neural Networks (DNN)

A DNN, also known as ”dense neural networks”, has small changes when comparing to an
ANN. The major difference is the number of hidden layers used in DNNs when comparing
to ANNs. DNNs are fully connected. As shown in Figure 9, the units in a given layer
have connections with previous and next layers. The generic DNNs can provide better
results comparing to the ANNs, but the improvements in results have their drawbacks. The
training of the DNNs is similar to ANNs, while it needs more computational power and
quantity of data than conventional ANNs. Other major problem with using DNNs is the
risk of overfitting. As the increased number of hidden layers better fits the data, overfitting
is a common issue. Overfitting can be solved by applying regularization methods as L1, L2

among others [2][48].

2.5. Deep Learning 27

Input layer Hidden layer (2700)

Hidden layer (600)

Output layer (1)

Hidden layer (1300)

Dropout 0.2

Dropout 0.2

Output

Dropout 0.2

Figure 9.: Representation of binary classification DNN with three hidden layers.

2.5.2 Convolutional Neural Networks (CNN)

CNN are mainly used for computer vision problems. The input of a CNN consists in
tensors with height, width and number of channels. The number of channels depends on
the colors of the images. Grey-scale images only have one channel while ”normal” images
contain three channels due to Red Green Blue (RGB) color model. A CNN contains stacks of
alternating convolutional and pooling layers. The number of dimensions of the images tend
to shrink while they go through the model. After the alternating stack of convolutional and
pooling layers, a layer is used to transform the tensors in vectors of only one dimension. In
the end, one or more dense layers (common layers) are used to determine the output of the
model.

The main difference from CNNs to other deep learning architectures is the convolution
operation. While dense layers detect global patterns, convolutional layers detect local pat-
terns. The convolutional layers can detect the local patterns in any location of a given image
and can be considered to follow a spatial hierarchy. The first convolutional layer detects
small patterns while the next layer will learn larger patterns based in the captured patterns
from the previous layers. The spatial hierarchy allows CNNs to learn abstract and complex
patterns that other models cannot learn. In a convolutional layer, patches are generated by
sliding a window trough an input feature map. Regarding the selection of patches, the di-
mensions and the stride parameters, can change significantly the method how patches are
captured. A dot product is computed with each patch and a kernel, creating transformed
patches. All the transformed patches are grouped together creating an output feature map.
The convolutional process can be observed in Figure 10. The maxpooling layers are used to
downsample the feature-maps reducing the number of coefficients of feature maps increas-
ing the efficiency. While convolutional operation applies a linear transformation to each
patch, maxpooling operation consists in an hardcoded max tensor operation applied only
outputting the maximum value. Another goal of maxpooling layers is to induce spatial

2.5. Deep Learning 28

hierarchies because each convolutional layer will receive a proportionally larger window
when compared to the previous layer. Figure 11 represents how a CNN works [2][48].

Figure 10.: Representation of convolution operation. Source: Chollet et al. [2].

Figure 11.: Representation of a CNN. Source: Ma et al. [3].

2.5.3 Recurrent Neural Networks (RNN)

Dense and convolutional layers used in the previous architectures do not have memory.
The fact of having no memory increases difficulty for training models from sentences and
other inputs where order matters. Biologically, the analysis of a word in a certain sentence
is different depending on the previous words in the sentence. RNNs differ from DNNs and

2.5. Deep Learning 29

CNNs because RNNs have a memory. RNNs process a sentence by iterating through the
sequence and maintaining a state with information relative to previous words [2][48].

As the algorithms cannot have raw text as an input, the data must be split in tokens.
After the tokenization process, each token must be associated with a numerical vector so
that the algorithm is fed with a sequence of vectors. Word embedding is a popular method
to develop the association between words and vectors. While one-hot encoding generates
high-dimensional, binary and sparse vectors, word embedding generates low-dimensional
dense vectors. As a word embedding is learned from data, generally more information
can be captured in considerably fewer dimensions. An important characteristic of word
embeddings are the geometric relationships between vectors. While each word could have
a randomly selected vector as one-hot encoding, in word embedding selection it is not
random. In the learning process of the embedding, similar words are assigned with similar
vectors. Semantic relationships can be learned, where relationship vectors can be applied
to word vectors to obtain new word vectors. One example is applying a relationship vector
”plural” to the word vectors ”cat” and ”dog” to obtain the word vector for ”cats” and
”dogs”. Each word embedding learned is specially useful when large amounts of data are
available. While this is true, it is possible to use already existing world embeddings, also
called pretrained word embeddings. These embedding are useful when low amounts of data
exist, making it impossible to train good quality RNNs [2].

In practice, a RNNs is a network with a loop that uses the previous output in the next
iteration, but the state is not preserved between different input sequences or samples as
seen in Figure 12. As a state corresponds to an output influenced by the previous outputs,
each state has relative information to all the previous segments of the sequences without
needing to maintain all the states [2][48].

Figure 12.: Representation of a simple RNN. Source: Chollet et al. [2].

The most popular types of layers used in RNNs are the LSTM and Gated Recurrent Unit
(GRU). LSTMs are capable of using old information in forward time steps. Contrary to
simple recurrent layers that consider the output of the immediately previous time-step, in
LSTMs, information relative to any of the previous states can influence the current time-
step as can be seen in Figure 13. GRUs layer use the same principle as LSTMs, although

2.5. Deep Learning 30

GRU can be considered streamlined to a certain point. GRUs are more computationally
efficient but sacrifice some representational power more significant in longer sequences [2].

Figure 13.: Representation of a LSTM. Source: Chollet et al. [2].

2.5.4 Alternative Architectures

The previous architectures are the most popular among the deep learning community. How-
ever, some recent architectures with unique concepts have been developed in recent years.
Creating photo realistic images, generating texts and similar achievements could not be
possible using the aforementioned networks. Two of the recently popular architectures are
Autoencoders and Generative Adversarial Networks (GAN).

Autoencoders (AE)

Autoencoder (AE) can be used in two different roles: dimensionality reduction and to create
generative models. The key to AE is the ”bottleneck” layer. As seen in Figure 14, in a
specific hidden layer, also known as bottleneck, the number of units is generally reduced
when compared to all the other layers. The role of the bottleneck layer is to capture the most
relevant features in a reduced number of dimensions while being able to reconstruct the
original sample from the bottleneck layer. Some variations of the generic AE exist, including
Denoising Autoencoders (DA), Stacked Autoencorders (SAE) and Variational Autoencoders (VAE)
[2][17][49].

2.5. Deep Learning 31

Input layer

Hidden layer

Output layer

Figure 14.: Illustration of a simple autoencoder

Similarly to the base AE, DAs try to capture features of the input. The difference resides
in the ”denoising” concept. Before being used for training the model, noise is introduced
into the input sample. The DA must be able to capture the essential features of the input
while being able to reconstruct the original sample. The level of noise added to the data is
variable, but ideally a large percentage of noise must be added if the dataset is small. DAs
generally create more robust models when compared to standard AEs [49][50].

SAE can use most of AEs stacked. Considering an SAE with two hidden layers, each of
the layers must be pre-trained. First, the raw input is used to train the first hidden layer.
Afterwards, the primary features captured by the first hidden layer are used to train the
second hidden layer to learn the secondary features. Having the two hidden layers ready,
the classifier can be trained using the secondary features obtained from the second hidden
layer. Finally, the model is assembled with input layer, two separate AEs and classifier.
Similar to CNNs, the first hidden layer tends to capture simpler patterns, while the later
layers learn more complex or abstract features resulting from the composition of patterns
from the previous layer [2][17][49].

A classical image AE creates a latent vector space capable of reconstructing the original
image. Instead of creating a latent vector space, VAE transform images in parameters (mean
and variance) of a statistical distribution. The input image is assumed to be generated
from a specific statistical distribution. The mean and variance are the parameters used to
randomly sample one data point to be decoded to the original input. The randomness
associated with VAEs provides robustness to the model because each point in latent space
can be decoded to an output. Great results have been obtained using VAEs to generate
realistic photo realistic images as reported by Pu et al.[2][17][51].

Generative Adversarial Networks (GAN)

GAN were presented by Ian Goodfellow in 2014. GANs are capable of creating realistic
images by pressuring forged images to be as similar as possible to the original. GANs are
composed by two parts: a generator network and a discriminator network. The generator
network creates new images from random input vectors while the discriminator networks

2.5. Deep Learning 32

predicts if an input image is real or forged by the generator network. Contrary to the
majority of deep learning architectures, GANs are not optimized to reach a minimum, but
to find a balance between the performance of the generator and discriminator networks [2].
The common steps to train a GAN are the following:

1. Create vectors from random points in the latent space;

2. Generate new images using the random vectors as input;

3. Cross real and generated images;

4. Train the discriminator with all the images with the respective labels;

5. Create new vectors from random points in the latent space;

6. Train the model with frozen discriminator, allowing to train the generator to be able
to fool the discriminator.

Generators never use the training set, because the information received for training is
received by the discriminator. Training a GAN is a difficult process because fine tuning
and heuristic tricks are needed to obtain good results. Although GANs have potential to
generate high realistic images, as the latent space is not continuous as VAEs, they may not
be applied to certain applications.

2.5.5 Training Algorithms

Over the past decade, different methods and algorithms have been improved to obtain
better results and be more efficient in either ”shallow” or deep learning. Algorithms as
RMSProp and Adaptive Moment Estimation (Adam) are improvements when compared to the
original optimizers as gradient descent algorithm. Batch normalization during the training
process and pre-training are also popular methods in the current state of the art.

Batches

Gradient descent is slow due to computing the gradient of the cost function for the parame-
ters of the entire dataset. As aforementioned, SGD is more efficient because one parameter
is updated for each training sample. Although SGD is faster and better at finding local min-
imum when compared to the original gradient descent, convergence at the exact minimum
is more difficult as the algorithm will keep overshooting. Other advantage of SGD is the
possibility of updating our model online by removing or adding new entries to the dataset.
The mini-batch gradient descent is a good balance between the previous algorithms. In-
stead of updating one parameter for each training example, one parameter is updated for

2.5. Deep Learning 33

each mini-batch n training examples. Depending on the quantity of data and the size of the
mini-batches, the algorithm can have a good trade-off between efficiency and quality of the
results. During the training process, batches can be normalized providing better accuracy
and efficiency [2][52].

Pre-training

One of the problems with training ML algorithms is the weight initialization. The starting
parameter values are random and can affect the training and performance of the model.
One way to avoid the problem is by pre-training the model. The pre-training can be
done with a different dataset related to the main dataset. The process can be unsuper-
vised because the objective is not to create a full operational model, but obtaining related
initial weights. SAE and Restricted Boltzmann machines are common methods used for
pre-training deep learning networks [52][53].

Momentum

The concept of momentum is applied in gradient descent in order to achieve better conver-
gence speeds and prevent getting stuck in local minima. The improvement is applied by
using a fraction γ of the update vector from the previous time step to compute the current
update vector as seen in the equations 23 and 24.

vt = γvt−1 + η5θ J(θ) (23)

θ = θ − vt (24)

where η is the learning rate, 5θ is the gradient and J(θ) is the cost function. The most
recent optimizers use the momentum concept in their formulations.

RMSProp

RMSProp is an algorithm with some similarities with gradient descent with momentum.
Contrary to gradient descent algorithm, RMSProp restricts vertical oscillations. Therefore,
larger learning rates can be used to converge faster. RMSProp adapts each learning rate
for each parameter. The computation is similar to gradient descent with momentum with
some differences as seen in Equations 25 and 26 [53].

vt = γvt−1 + (1− γ) ∗ g2
t (25)

wt+1 = wt −
η√

vt + ε
∗ gt (26)

2.5. Deep Learning 34

where g represents the gradient at time t and ε corresponds to a small value to ensure
the denominator is not zero. The value of γ is set to 0.9 by default and the value of ε is
generally 1e−10 [53].

Adaptive Moment Estimation (Adam)

Adam combines the approaches from gradient descent with momentum and RMSProp. For
each parameter, Adam not only stores the exponential averages of the gradients mt but also
stores the squares of the exponential averages of the gradients vt. The mt and vt estimates
for the first moment (mean) and second moment (uncentered variance) of the gradients,
respectively. Equations 27, 28 and 29 are the basis for computing Adam algorithm [53].

mt = β1mt−1 + (1− β1) ∗ gt (27)

vt = β2vt−1 + (1− β2) ∗ g2
t (28)

wt+1 = wt − η
mt√

vt + ε
∗ gt (29)

Generally, the values of β1 are set to 0.9, β2 set to 0.999 and ε to 10−8 [53].

2.5.6 Overfitting and regularization

One of the major problems of deep learning is overfitting. As deep learning networks are
able to capture a large number of patterns from the data, the occurrence of overfitting is
common. Different techniques are used to solve the problem. The most popular include
weight regularization, early stopping, dropout and data augmentation for CNNs. Weight
regularization methods as L1 and L2 were already assessed in the linear and logistic regres-
sion section [2].

Early Stopping

Early stopping can be used in iterative methods based on gradient descent, including SGD,
RMSProp and Adam. The goal of early stopping is to stop the algorithm when the model
stops improving. Gradient descent based algorithms run through epochs. While a model
trained with a small number of epochs has a high risk of underfitting, using a large number
of epochs increases the risk of overfitting. Early stopping evaluates the error in a validation
set not used for training at the end of each epoch and saves the model if the performance
is better when compared to the previous epoch. When the performance of a model stops
increasing for a specified number of epochs, the algorithm stops. The used model consists

2.5. Deep Learning 35

in the model with best results before early stopping the algorithm. As further epochs not
only take more time of the algorithm but also causes overfitting, early stopping is a popular
technique [2][54].

Dropout

Dropout is one of the most popular techniques used in neural networks for preventing
overfitting and improving the robustness of a model. Dropout when applied to a layer,
sets the output to zero of a random set of neurons as seen in Figure 15. The dropout rate,
usually set between 0.2 and 0.5, is the fraction of neurons that are randomly set to zero.
While during test no unit is set to zero, the output values of the layer are scaled down by
the dropout rate to balance the difference in the number of active units between training
and test. The dropout method introduces noise in the output values, making possible to
separate relevant patterns from coincidence patterns [2].

Figure 15.: Example of a dropout with a 0.5 dropout rate. Source: Chollet et al. [2].

2.5.7 Hyperparameter optimization

The number of layers, number of units, type of activation function and dropout rates are
some of the hyperparameters of a deep learning network. The concept of hyperparameters
was created for distinguishing from the training parameters also known as weights. There
is no correct method for selecting the best set of hyperparameters. If the best result possible
is the goal, arbitrary human choices are not sufficient. Most built models are sub-optimal
as hyperparameters were chosen based on intuition and experience. To achieve the model
with best performance, hyperparameter optimization should be done automatically [2]. The
most popular hyperparameter optimization techniques are grid search and random search.
Grid search tests every combination of hyperparameter values, training a model of each
possible combination. While grid search is an expensive method because it tests every
combination, random search selects n random combinations of hyperparameters, being n
a parameter corresponding to the number of iterations of the algorithm. Random search
is a stochastic technique, as it may not discover the best hyperparameter combination, but

2.5. Deep Learning 36

it is more efficient when compared to grid search. The steps of a random search are the
following:

1. Random selection of hyperparameters.

2. Build a model using the selected hyperparameters.

3. Train the model and evaluate the performance using validation data.

4. Select a new set of hyperparameters .

5. Repeat.

6. Measure the performance with test data for the best hyperparameters.

The key to obtain the best model efficiently, is using the past validation performances
to choose the next group of hyperparamenters. Updating hyperparameters is difficult con-
sidering two factors. First, computing the feedback is expensive because it requires fully
training a model. Second, the space of hyperparameters generally is discrete. Thus, less
efficient gradient-free methods must be used because the hyperparameter space is not dif-
ferentiable. The field of hyperparameter optimization is recent, but there are some available
algorithms as Hyperopt already available on Keras library. If building the best model possi-
ble is the goal, hyperparameter optimization is essential [2].

2.5.8 Multi-task Learning (MTL)

The large quantity of data needed to train a deep learning model is a recurrent problem.
A recent technique used to bypass the problem is using related tasks and training the
tasks simultaneously, called Multi-task Learning (MTL). MTL is a recent area in ML. The
goal of MTL is to improve performance of individual learners by training multiple learners
for different tasks, simultaneously. To use MTL in different tasks, they must be related
otherwise the technique will decrease the performance of the individual learners. In MLT,
two essential points exist. First, the relatedness among tasks. How tasks are somehow
related is fundamental for projecting the design for MTL models. The second point is the
nature of the tasks. As different types of tasks can be used in MTL models, different settings
must be applied.

MTL can be classified in different types depending on the nature of the tasks to be
learned, including: unsupervised learning, supervised learning, semi-supervised learning,
active learning, reinforced learning and online learning. Supervised, unsupervised and
semi-supervised follow the principles addressed in aforementioned sections. MTL active
learning uses unlabeled data to help improve the learning of labeled data. Unlabeled entries

2.5. Deep Learning 37

are selected and they are queried for the potential labels. In MTL reinforcement learning,
the learning of the tasks is focused on maximizing the cumulative performance of the tasks.
MTL online learning consists in the managing of sequential data for each single task. MTL
is an area of ML closely related to transfer learning, that will be further explained in the
next section [55].

2.5.9 Transfer learning

The goal of transfer learning is to improve classical ML by transfering knowledge learned in
separate, but related tasks, to improve the performance of a specific task. Transfer learning
can improve learning by three different factors. First, the performance of the model using
only the transferred knowledge without further training, is better when compared to the
model with random data. Second, the time spent in learning is reduced when the learning
process starts from related values instead of random values. Third, the final performance
obtained with transfer learning is better comparing to the same training process without
transferring knowledge. Multiple methods of transfer exist in transfer learning, including:
inductive transfer, bayesian transfer, hierarchical transfer and transfer with missing data or
labels [56].

When a transference technique decreases the performance of the model, then it is consid-
ered as negative transference. One of the goals of research in transfer learning is to develop
techniques to emphasize positive transfer among similar tasks while diminishing transfer
learning among unrelated tasks. When knowledge is transferred, a mapping of the features
must be done in order to correspond features among tasks. Transfer learning differs from
MTL in the type of training. Although the techniques use the knowledge from other tasks
in order to improve a task, transfer learning used knowledge from one task while MTL ben-
efits by simultaneously training multiple related tasks [56]. The use of word embeddings
in different problems than the original is an example of transfer learning [57]. Another
application of transfer learning is in CNNs. It is possible to use a pre-trained CNN model
without repeating the training process. The use of pre-trained models can be used as a
method for achieving better results or avoiding the training process by simply replacing
the last layer in a pre-trained CNN model [58].

2.5.10 Deep Learning Frameworks and tools

As deep learning has become more popular in recent years, a variety of frameworks and
tools have been developed. From frameworks to automate differentiation to libraries that
provide simple methods to create and train deep learning models. The tools to be used in
the thesis are Keras, TensorFlow and NVIDIA CUDA Deep Neural Network (cuDNN).

2.5. Deep Learning 38

Keras

Keras is a deep learning framework for Python that provides simple and intuitive tools to
design and train different deep learning models. As Keras has a MIT permissive license,
it can be used educationally or commercially. Keras has over 200.000 users ranging from
casual users, to researchers and engineers. Large companies as Google, CERN, Netflix
and hundreds more use Keras in some of their problems. A considerable number of start-
ups focused on deep learning use Keras as their major framework. In Kaggle, the popular
ML online contest, Keras has the spotlight as the last winners in deep learning used the
library. Keras runs over Theano or TensorFlow, backends capable of tensor manipulation
and differentiation. Keras allows simple and quick prototyping while running efficiently on
Central Processing Unit (CPU) or GPU [2][59].

TensorFlow

TensorFlow is a library focused on numerical computation, created as an open source project
by Google. The library is based in computation graphs, allowing multiple operations to
be applied to a data flow. TensorFlow is written with a Python Application Programming
Interface (API) over a C/C++ engine, providing a really efficient processing. TensorFlow
is available in a wide variety of platforms including Linux, Mac OS X and recently on
Windows. ML models focused on TensorFlow can be deployed in a various platforms from
Android systems to super computers with powerful GPUs. TensorFlow supports the Compute
Unified Device Architecture (CUDA) platform developed by NVIDIA. One important factor
is the data parallelism. As the non-linear operations used in a deep learning model can be
computed simultaneously, TensorFlow achieves a fast processing speed by using the multiple
cores available on GPUs. TensorFlow includes a visualization tool named TensorBoard where
various parameters and metrics can be visually observed in order to debug and optimize the
model. The documentation of TensorFlow is extensive, complete and user-friendly [2][59].

NVIDIA CUDA Deep Neural Network library (cuDNN)

cuDNN is a library developed by NVIDA that provides primitive computation of deep
learning networks on NVIDIA GPUs. The computation of low-level primitives allows a
simple integration of other high-level frameworks without requiring for the users to use any
particular framework or data format. cuDNN features high performance implementations
of typical operations as convolutions, activations, poolings among others. Furthermore,
cuDNN includes auxiliary tensor transformations methods for easier manipulation of four
dimensional tensors. TensorFlow and similar backend libraries for deep learning, rely on
cuDNN run efficiently by using NVDIA GPUs [2][59][60].

3

O M I C S D ATA A N D M A C H I N E L E A R N I N G M E T H O D S I N C A N C E R

3.1 introduction

More than three billion base pairs exist in the human genome. Around twenty thousand
genes are divided in 23 pairs of chromosomes with each chromosome in a pair differing
slightly from the other. The Human Genome Project (HGP) was a global initiative with the
goal of sequencing the entire human genome. The cost of the project is estimated to be
around 3 billion US dollars. The projected was lead by the US, but the International Hu-
man Genome Project Consortia included research centers all over the world. Although
the project was estimated to take 15 years starting in 1990, the final version of the human
genome was announced two years before scheduled, in 2003. The project provided and pro-
moted new discoveries in the biomedical research, precision medicine and drug discovery
fields. Currently, laboratories provide genome sequencing services under 1000 $ allowing
people to know their own genome [61][62].

Oncology is one of areas that took more advantage from the progress made with HGP.
Cancer is the disease of the century. Contrary to most diseases, cancer has hundreds of dif-
ferent types and subtypes. Each cancer has specific symptoms, behavior and treatments. A
generic cure for cancer does not exist, while some types of cancer can be treated effectively.
Mutations in some genes are already considered as biomarkers of cancer while the pres-
ence of specific alleles are considered as tumor associated genes because they increase the
probability of malignant tumor development. As each patient responds differently to the
same treatment, omics data become relevant. Knowing the genotype and gene expression
of a patient it is possible to choose the most effective treatment for the patient. This is the
goal of precision medicine [63].

Precision medicine can be roughly defined as selecting the most effective treatment for
a patient with the lowest secondary effects possible. Precision medicine can be applied
to all the pathology areas, but oncology benefits the most. As large numbers of subtypes
of cancer exist, multiple genes can be mutated in different groups. Knowing the specific
mutated genes in a cancer can be the difference between administrating a non-effective
drug with severe secondary effects and administrating an effective drug without adverse

39

3.2. Cancer Data 40

effects. Omics data are key to success of precision medicine. Genomics, transcriptomics,
proteomics, metabolomics among others, provide the data needed to create databases to
individually select the treatment for each patient. Genomics and transcriptomics are the
two major omics researched in context of cancer. Having knowledge of the genotype and
gene expression of a patient, the most effective treatment can be provided [64].

Omics data not only support the choice of the best drug, but also promote drug discovery.
In the following years after the HGP, incredible efforts were made in drug discovery. By
studying the genome and gene expression, identifying genes and proteins responsible for
a disease is possible. Knowing the target protein, the process of designing or discovering a
drug is easier when compared to random testing of compounds [17][65][66].

3.2 cancer data

3.2.1 Omics Data

After the conclusion of the HGP, the advent of Next Generation Sequencing (NGS). NGS
provided cheaper techniques to sequence our genes. With the reduction of sequencing
costs, the amount of data regarding the areas of genetics increased substantially. Research
centers and companies started to invest more efficiently in the quality and quantity of
sqeuenced genomes. The study of multiple genomes became essential for the study of
individual variability and a large number of diseases including cancer [67].

Omics data as aforementioned, can be divided a wide range of areas. Genomics, study of
genome by DNA analysis, transcriptomics, study of gene expression by mRNA, proteomics,
study of peptides and proteins, and metabolomics, study of compounds and metabolites
produced by metabolism. The previous omics are more popular but more recent omics
fields exist as epigenomics, study of epigenetic modifications and secretomics, study of
secreted compounds by the cell. A large number of techniques are used to obtain omics
data. In the context of the project, DNA sequencing techniques as Whole Genome Sequencing
(WGS), and mRNA quantification techniques as micro-arrays and RNA-Seq are some of the
techniques used in genomics and transcriptomics, respectively [68][69].

The research of mutations is essential to understand the source of diseases and how to
treat them. Multiple techniques are currently used for detecting mutations. DNA sequenc-
ing techniques as WGS and Whole Exome Sequencing (WES) coupled with bioinformatics
tools are some of the current methods for detecting mutations [67][70]. Polymerase Chain
Reaction (PCR) and eletrophoresis can be used to detect known mutations in specific genes
[71][72]. Single-cell sequencing can not only be used for detecting mutations in DNA but
also for sequencing and quantifying RNA similarly to RNA-seq technologies [73].

3.2. Cancer Data 41

Transcriptomics has a big role in the cancer research field. The cause is the difference
observed in gene expression between normal tissue and cancerous tissue. By analyzing
gene expression, not only can it be possible to classify samples, but also to discover which
mutations are responsible for the development of a tumor. Microarrays and RNA-Seq are
the main techniques used for measuring gene expression by quantifying the absolute or
relative levels of mRNA [74].

Microarrays were one of the first gene expression measuring techniques. The quantifi-
cation occurs by the hybridization between sample cDNA and the DNA strands fixed in
the probes. Microarrays are robust, easy to use, cheap and quantify the relative abundance
of mRNAs [75]. RNA-Seq is a relatively recent technique that not only measures mRNA
abundance but also sequence the transcriptome of the sample. Currently, RNA-Seq is pop-
ular because quantifies the absolute abundance of all the mRNAs, while being a relatively
cheap technique. Contrary to microarrays, RNA-Seq, does not require prior knowledge of
mRNA sequence [76].

3.2.2 Omics Databases

As obtaining data became affordable with NGS, large amounts of data were and are being
generated. Databases are essential because they serve as repositories for data and allow
sharing them with the community. As the data stored in repositories is in the order of
petabytes, analyzing the existing data instead of spending resources obtaining new is a
reasonable thought. New data is always useful, but as large amounts of data are available
in multiple databases, processing existing datasets can lead to new discoveries.

Various omics databases are available to the community. From general databases for
genomics and transcriptomics as GenBank, to specific cancer databases as GDC [77] .Table
5 contains information relative to multiple omics databases and their respective type of
stored data.

3.3. Machine Learning Application in Cancer 42

Table 5.: Examples of popular databases regarding cancer or omics in general
Database Type of Data Characteristics
GenBank Genomics Genetic sequences database of DNA data

available to the public.
Gene Expression Omnibus
(GEO)

Transcriptomics International repository that stores and
distributes high-throughput functional ge-
nomics data.

ArrayExpress Transcriptomics Repository of archive functional genomics
data from microarray and sequencing plat-
forms. Contains data imported from GEO.

Uniprot Proteomics Database containing protein sequence and
annotation data from multiple European re-
search centers.

Human Protein Atlas (HPA) Proteomics Program aiming to map all human proteins in
cells, tissues and organs using various omics
technologies.

GDC Multiple Omics Unified platform for omics data regarding
cancer. Contains data from multiple pro-
grams including The Cancer Genome Atlas
(TCGA).

The International Cancer
Genome Consortium (ICGC)

Multiple Omics Database from with genomics, epigenomics
and transcriptomics data regarding over
20.000 cancer genomes.

ChEMBL Compounds Manually curated database of bio-active
chemical molecules with proprieties similar
to drugs.

PubChem Compounds Open database for chemical compounds with
data regarding identifiers, properties, safety
among others.

Catalogue Of Somatic Muta-
tion In Cancer (COSMIC)

Multiple Omics Database with manually curated data and
Genome-Wide Screen data regarding somatic
mutations in cancer.

Cancer Dependency Map
(DepMap)

Multiple Omics The objective of DepMap is identifying ge-
netic and pharmacologic dependencies re-
garding cancer in order to discover genetic
targets and predict drug sensitivity.

Genomics of Drug Sensitivity
in Cancer (GDSC)

Genomics The goal of GDSC is to identify biomarkers
that can be used to identify subsets of patients
with better responde to specific anti-cancer
therapeutics.

3.3 machine learning application in cancer

With the beginning of ”Big Data”, all fields of research were influenced, including oncol-
ogy. First, various articles regarding ”shallow” and deep learning applications have been
published. Both unsupervised and supervised methods have been used, in either classical

3.3. Machine Learning Application in Cancer 43

machine learning or deep learning. The main problems assessed in the literature consist
in susceptibility prediction, diagnosis, recurrence, survivability, cancer subtyping and drug
sensitivity effectiveness prediction [78][79][80][81].

3.3.1 ”Shallow” Learning

Table 6 shows published studies using different approaches of ”shallow” learning to solve
various cancer problems. The objective of the table is to show how a wide range of problems
regarding cancer have been assessed using different types of supervised and unsupervised
learning approaches. The most popular models are SVMs and ANNs, with an increasing
popularity of ensembles as RFs and Boosting methods in the past recent years.

Table 6.: Articles ”shallow” learning applications in various problems in the field of oncol-
ogy.

Problem Type Title Method Ref.

Subtyping
Molecular classification of cancer types from microarray
data using the combination of genetic algorithms and sup-
port vector machines

SVM [82]

Identification of human triple-negative breast cancer sub-
types and preclinical models for selection of targeted thera-
pies

K-means
and consesus
clustering

[83]

Susceptibility
Breast cancer risk estimation with artificial neural networks
revisited

ANN [84]

Screening test data analysis for liver disease prediction
model using growth curve

ANN [85]

Survivability
Survival model in oral squamous cell carcinoma based on
clinicopathological parameters, molecular markers and sup-
port vector machines

SVM [86]

Predicting breast cancer survivability: a comparison of
three data mining methods

DT [87]

Recurrence
Development of Novel Breast Cancer Recurrence Prediction
Model Using Support Vector Machine

SVM [88]

Using Three Machine Learning Techniques for Predicting
Breast Cancer Recurrence

SVM [89]

Drug Sensitivity
The Cancer Cell Line Encyclopedia enables predictive mod-
elling of anticancer drug sensitivity

Bayesian net-
work

[90]

Machine Learning Prediction of Cancer Cell Sensitivity to
Drugs Based on Genomic and Chemical Properties

ANN and RF [91]

3.3.2 Deep Learning

As the popularity of deep learning only increased in the past decade, the number of appli-
cations is still reduced. The main problems assessed by the community consist in medical
imaging, biological sequences and protein structures [17][92]. In medical imaging, the most

3.3. Machine Learning Application in Cancer 44

popular architecture is the CNN. Organ segmentation[93], histology analysis [94], time-
series analysis [95] and abnormality detection [96] are some of the problems regarding
medical imaging. In the field of protein structures, the focus is to predict protein struc-
tures [97][98]. Deep learning plays a major role in current papers in the area of genomic
sequencing and gene expression analysis. Some of the problems assessed are gene expres-
sion inference [99], splicing patterns prediction [100], predicting miRNA targets [101] and
predicting effects of gene variants [102]. In Table 7 contains publications referring to appli-
cations of deep learning in general bioinformatics and cancer-specific problems.

Table 7.: Studies with distinct types of deep learning applications in bioinformatics.
Problem Type Title Architecture Ref.
Organ segmen-
tation

Brain Tumor Segmentation Using Convolutional Neural
Networks in MRI Images

CNN [93]

Histology Multiple clustered instance learning for histopathology can-
cer image classification, segmentation and clustering

CNN [94]

Time-series
analysis

Recurrent neural network based prediction of epileptic
seizures in intra- and extracranial EEG

RNN [95]

Abnormality
detection

Large scale deep learning for computer aided detection of
mammographic lesions

CNN [96]

Protein struc-
ture prediction

Malphite: A convolutional neural network and ensemble
learning based protein secondary structure predictor

CNN [97]

Gene expres-
sion inference

Gene expression inference with deep learning DNN [99]

Splicing pat-
terns predic-
tion

Deep learning of the tissue-regulated splicing code DNN [100]

miRNA targets
prediction

deepMiRGene: Deep Neural Network based Precursor mi-
croRNA Prediction

RNN [101]

Effects of gene
variants predic-
tion

DANN: a deep learning approach for annotating the
pathogenicity of genetic variants

RNN [102]

Tumor drug re-
sponse

Predicting drug response of tumors from integrated ge-
nomic profiles by deep neural networks

DNN,AE [65]

Cancer predic-
tion

A deep learning-based multi-model ensemble method for
cancer prediction

DNN [103]

Prognosis pre-
diction

A multimodal deep neural network for human breast can-
cer prognosis prediction by integrating multi-dimensional
data

Multi-modal
DNN

[15]

Pattern extrac-
tion

Unsupervised feature construction and knowledge extrac-
tion from genome-wide assays of breast cancer with denois-
ing autoencoders.

DA [50]

4

D E V E L O P M E N T

In the current chapter, we will explain the project pipeline and details regarding the devel-
oped methods. The global goal of the framework is to allow users to generate supervised
models (”shallow” or deep) to determine diagnosis or prognosis of cancers. The program-
ming language used to develop was Python 3. The choice of the language rests in the
available libraries for implementing ML related software. The developed methods are avail-
able in the github repository https://github.com/omsoares/DeepLearning_Framework.

The developed framework should be easy to use, flexible and able to assess different
types of models with its different modules. The framework should be divided in separate
modules capable of working together in a pipeline or working individually for specific
tasks. The framework should allow users to load gene expression and patient/sample
clinical data files. It should be capable of treating the data, applying different normaliza-
tion, using feature selection techniques and splitting the data in train/test datasets. The
pre-processed datasets should be used to generate supervised ML models, including tradi-
tional and deep learning models. One of the modules should be implemented to generate
and train multi-tasking deep learning models capable of predicting more than one clinical
data label simultaneously. Each type of ML focused modules should also be capable of
performing hyperparameter optimization to obtain better results.

4.1 software

The framework’s architecture is divided into 4 main segments as seen in Figure 16:

• tPreprocessing: pre-processing data;

• Shallow: supervised ”shallow” or traditional learning pipelines;

• DNN: supervised DNN pipelines;

• Multi-task DNN: supervised multi-task DNN pipeline.

45

https://github.com/omsoares/DeepLearning_Framework

4.1. Software 46

Preprocessing Shallow DNN DNN_MT

DNN model
training
Hyperparameter
optimization
Model evaluation

Traditional
model's training
Hyperparameter
optimization
Model evaluation

Reading data
Handling Data
Normalizing data
Feature selection
Train test split

Multi-task DNN
model training
Hyperparameter
optimization
Model evaluation

Figure 16.: Simple representation of the developed modules.

The Preprocessing module allows reading and pre-processing the data before using it
for generating ML models. The module is capable of normalizing and transforming data as
well as performing feature selection and selecting the label or labels to be predicted from
the clinical data.

The modules of the Shallow category are used to develop supervised shallow ML models
while DNN modules are used to develop supervised deep learning models. In shallow mod-
ules, multiple types of classifiers or regressors are trained to obtain the best performance for
each type of model, using hyperparameter optimization. In DNN modules, different types
of hyperparameters are tested. DNN MT differs from the previous modules by being able
to generate multi-task multi-output deep learning models capable of predicting more than
one label in a single model. The general pipeline for the developed methods is presented
in Figure 17.

Gene
Expression

X

Clinical Data
y

Gene
Expression

X test

Clinical Data
y test

Gene
Expression

File

Clinical Data
File

Prepro-
cessing

Model Selection
CV

Best Model

Model Selection
Results

CV
Evaluation

Train Test
Evaluation

Evaluation
Report

Figure 17.: Simple representation of the developed supervised learning pipeline.

4.1.1 Preprocessing modules

The Python module Preprocessing is responsible for preprocessing data to be later used
in ML experiments. The class is capable of:

4.1. Software 47

• Transposing and selecting the intended labels;

• Handling missing data;

• Normalizing data;

• Applying feature selection methods;

• Generating and saving train and test datasets.

The Preprocessing class takes an expression dataset and a clinical data dataset as shown
in Figure 18. The class has a method for loading the datasets that has as arguments: the
integer index of the column where expression values start in the expression dataset, the
name of the column with the names/IDs of the genes, a list with the names of the columns
to be used as labels and the name of the column that contains the patient IDs. The files
are read using Pandas CSV reader, but text files can also be used as input. During the
loading method, missing data and rows where the label value in the clinical data dataset is
empty are dropped. The two generated Pandas dataframes have the same row indexation
corresponding to patient or sample IDs. While one the Pandas dataframes contain patient’s
gene expression data, the other contain metadata from the patient. A Pandas dataframe is
a two dimensional data structure similar to a table. The gene expression dataframe has an
expression value for a specific gene in each column with each row being from a different
patient. The other dataframe contains metadata regarding the patient in each column with
each row corresponding to a single patient. Figure 18 contains the pipeline that can be
performed using the Preprocessing module from the starting datasets to the ML ready
datasets with data handling, normalization, feature selection and dataset partitioning.

The dataframes can contain all entries or be divided in train and test dataframes accord-
ing to the user. During the preprocessing, normalization and feature selection techniques
can be applied. Normalization transforms data from different features into the same range
of values and feature selection reduces the amount of features used in model training as
previously mentioned in the supervised ML section 2.1.1. The normalization techniques
available are StandardScaler and MinMaxScaler methods from the Scikit-learn package. The
StandardScaler method transforms the values of each feature into values with a mean of 0

and standard deviation of 1. The transformation is performed by subtracting each value
by the mean of the values and dividing by the standard deviation. The MinMax method
transforms the values into a range between 0 and 1 or -1 and 1 if negative values exit [28].

As feature selection is an essential step in pre-processing as mentioned in section 2.2.6,
some feature selection techniques available in the framework are the mean absolute devi-
ation filter, variance threshold and SelectKBest methods from the Scikit-learn package. The
mean absolute deviation filter selects a given number of features with higher values of mean
absolute deviation. Mean absolute deviation is calculated by the sum of absolute deviation

4.1. Software 48

of each value to the mean, dividing by the number of values. The variance threshold is
a filter method which selects the features with variances above a specified threshold. The
SelectKBest method is a filter that selects the K features with higher scores. The metric used
to calculate the scores varies, but in the case of the framework, the method computes the
F value of an Analysis of Variance (ANOVA) test [28]. The Preprocessing class is a comple-
mentary module that can be used to apply a simple data pre-processing prior to ML usage.
Being complementary, the user is not required to use the class before applying to the ML
modules provided that the data is in the same format.

Gene
Expression

Data

Clinical
Data

Clinical
Dataframe

Clinical
Dataframe

Label Selection

Normalization +
Feature Selection

y Train

y Test

y

Train Test
Split

Gene
Expression
Dataframe

Treated Gene
Expression
Dataframe

X

X Train

X Test

Figure 18.: Representation of Preprocessing class workflow.

4.1.2 Shallow machine learning modules

Generating ”shallow” or traditional ML models can be useful depending on the available
data. The Python classes used to generate multiple traditional models are Shallow bin,
Shallow multi and Shallow reg that can be used to create shallow learning models for
binary classification, multi-class classification and regression experiments, respectively. All
the different model types used in each of the Shallow classes are from the Scikit-learn
package. Using the models from Scikit-learn allows for easy use of ML models and related
methods. As the structure of the models is similar, the implementation of new types of
ML models in the framework is easy. As shown in Figure 19, the workflow of the Shallow

classes can be summarized in the following points:

• Model selection: Grid search is used for finding the best hyperparameters for dif-
ferent types of ”shallow” learning models by training a model with each possible
combination of hyperparameters.

4.1. Software 49

• Best model: For each type of ”shallow” learning classifier or regressor, the model with
the best results is selected.

• Model evaluation: The best models are evaluated and the results are saved in a report
file.

y Train

y Test

GridSearchCV

Best Models:
LR

SVM
KNN
RF

GridSearchCV
Results

Train Test
Evaluation

CV Evaluation

GridSearch CSV
Report CSV Report

Text Report

Save Best Models

X Train

X Test

Figure 19.: Representation of Shallow classes workflow.

The types of ML algorithms available are: KNN, RF, LR and SVM for the classification
classes. In Shallow reg, KNN, SVM and RF are available. The description of the available
ML models was presented in section 2.2.
Shallow classes constructors take X and y dataframes or the same data divided in train/test

datasets and the number of folds to be used in cross-validation. As two or four matrices
can be provided to the class constructor, two types of evaluation can be applied. Cross-
validation is used for model evaluation if X and y matrices are provided while hold out
evaluation is executed if the input contains train and test matrices. If the experiment is
considered to be split in train and test, the test matrices are only used at the evaluation of
the model with best results after selecting model selection.

The model selection is performed by using GridSearchCV and different ML classifiers
and regressors available in the Scikit-learn library. Table 8 and Table 9 contain the hyper-
parameters used in the GridSearchCV for traditional classification and regression models,
respectively. In GridSearchCV, multiple models are trained with every parameter combi-
nation possible as mentioned in section 2.5.7. The model with best the performance is
selected based on the cross validation results. MCC, accuracy and R2 are the metrics used
to evaluate model performance during the model selection for binary classification, multi
class classification and regression problems, respectively. After model selection, a Comma
Separated Values (CSV) report file is generated with the results of the model selection,which
includes results from multiple metrics.

The best performing classification models are evaluated using different metrics (preci-
sion, accuracy, recall, log loss, AUC, F1 score and MCC). For the multi-class classification
experiments, log loss and AUC are not calculated. Furthermore, in regression experiments,
the evaluated metrics are R2, MAE and MSE as the metrics used for classification cannot be

4.1. Software 50

applied to continuous variables. More detailed information regarding metrics is available
in section 2.1.1. The scores of the metrics and the parameters of the model with best results
for each type of classifier or regressor are saved in a report file. The format of the report file
differs depending on the used evaluation method, CSV and text files for cross-validation
and text file for hold out evaluation. The models with best performance can be saved in the
pickle (binary) format to be used in further experiments.

Table 8.: Hyperparameters used in GridSearchCV for traditional classification models.

Model Hyperparameters

KNN n neighbors

RF n estimators

LR
C

penalty

SVM
C

kernel

gamma

Table 9.: Hyperparameters used in GridSearchCV for traditional regression models.

Model Hyperparameters

SVM
C

kernel

gamma

RF n estimators

EN
fit intercept

positive

selection

KNN n neighbours

4.1.3 DNN

The modules mentioned previously are used to generate traditional ML models but are not
able to generate deep learning models. With the objective of generating deep learning mod-
els three DNN classes are available: DNN bin, DNN multi and DNN reg. While the first two can
be used for binary and multi-class classification, the last is used for regression. The class
constructor takes the same X and y matrices and number of folds in cross-validation used
in the Shallow classes with the addition of a batch of hyperparameters. The DNN archi-

4.1. Software 51

tectures in the DNN modules were implemented using the Sequential model from Keras with
TensorFlow as backend. The hyperparameter tuning process is performed using random
selections of hyperparameters from a batch with lists of possible hyperparameter values.
The number of iterations of the tuning process and the hyperparameters are provided by
the user. The input hyperparameters must contain: the hyperparameters shown in Table
10.

Table 10.: Hyperparameters used in the random hyperparameter optimization for DNNs.
Hyperparameters

dropout
optimization
learning rate

batch size
nb epoch

units in hidden layers
units in input layer

early stopping
batch normalization

patience

The general architecture of the generated DNN models contains one input layer, one or
more hidden layers (Dense) and an output layer. One hidden layer is added for each ele-
ment of the list with the number of units for each hidden layer. For example, if units in hidden layers
= [5000, 2500, 1000], three hidden layers will be added with 5000, 2500 and 1000 units, re-
spectively. After each hidden layer, two layers are added: a batch normalization layer
(optional) and a dropout layer. The generic architecture of the DNN is shown in Figure 20.
The number of units in the output layer is selected according to the type of problem. While
a single unit is used in the output layer of binary classification and regression problems,
the number of units in the multi-class classification problems corresponds to the number of
possible classes of the label to be predicted. The activation function of the hidden layers is
ReLU and the activation function of the output layers are sigmoid, softmax and linear for bi-
nary classification, multi-class classification and regression, respectively. The loss function
varies depending on the type of problem: binary cross-entropy for binary classification,
sparse categorical cross-entropy for multi-class classification and mean squared error for
regression.

The results of the hyperparameter tuning are saved in a CSV file. The model with best
performance is fit and evaluated. The MCC, accuracy, R2 and loss are saved in a plot, as well
as a report with the evaluated metrics. The user can define the name of the directory where
the reports are stored and the file name of the reports. The metrics used for evaluating the
set of hyperparameters with best results are the same used in the Shallow classes for each
type of problem. The model can be saved to be used in future experiments. The architecture

4.1. Software 52

Input

Dense

Batch
Normalization

Dropout

Output

One or more
sets of two (three) layers

Figure 20.: Schematic representation of the general DNN architecture. The layers inside the
rectangle are repeated for each hidden layer added.

of the model is saved in a JavaScript Object Notation (JSON) file while the network weights
are saved in a separate Hierarchical Data Format (HDF5) file. The model is stored in two
different files because it is more versatile. The JSON file with the architecture can be altered
manually if the user wants. The HDF5 file with the model weights can be loaded in different
architectures for fine-tuning or transfer learning.

4.1.4 Multi-task DNN

The Python class DNN MT performs MTL with more than one output. The constructor takes
the same arguments of the DNN classes, with the addition of a list of labels to be predicted
and a list with types of problems associated with each label (binary, multi-class or regres-
sion). The DNN MT class uses the Keras Functional API, while the DNN classes use Keras Sequen-
tial model. The choice to use the Functional API was made considering the fact that the Keras
Sequential model cannot be used to create multi input or multi output DNN architectures.
One output layer is inserted for each label with the appropriate metric, output activation
function and number of units. Loss weights can be inserted to change the contribution of
each output to the loss value during model fitting. Figure 21 is a simple representation of
the type of architecture generated by the DNN MT module.

The model selection is similar to both Shallow and DNN classes but the criterion for se-
lecting the best performing model is different from the previous modules. Having more
than one output, we cannot select the best model based in a single metric value as at least
two outputs are predicted for each inserted input. The performance of the models is mea-

4.1. Software 53

Input

Dense

Batch
Normalization

Dropout

Output 1 Output 2

Figure 21.: Schematic representation of the general DNN MT architecture. Output 1 and Out-
put 2 represents separate output layers for two different labels.

sured by calculating the average of the metrics values for each output. The metrics used for
evaluating the performance during the model selection for each output individually were
accuracy for binary and multi-class classification problems and R2 for regression problems.

The model with the highest average of metric scores is selected for further evaluation as
it possesses the best overall performance of the tested models. The model can be evaluated
either by cross-validation with a CSV and text report, or holdout evaluation if the data
is partitioned in train/test data producing a text report. In the evaluation of the selected
model, the calculated metrics are the same used in the single label predicting DNN modules.

5

F I R S T C A S E S T U D Y

5.1 metabric : description of the dataset

Breast cancer is the second most common cancer worldwide the fifth cancer with overall
higher death count and the leading cause of cancer death in women. One of the main
problems of breast cancer is the heterogeneity of the disease. HER-2, ER, PR are relevant
receptors to diagnosis and treatment of different subtypes of breast cancer. HER-2 corre-
sponds to a receptor responsible for epidermal growth, while ER and PR are estrogen and
progesterone receptors, respectively. Depending on the presence of receptors in tumour
cells, the appropriate treatment must be assessed. Triple-negative breast cancer is more
challenging because the three types of receptors are not present and tumour cells do not
respond to most of the hormone therapies, resulting in a aggressive type of cancer with
a harsher treatment with chemotherapy, radiotherapy and surgery combination [104]. The
NPI score is a tool used in the prognostic of primary breast cancer. The NPI uses the
number of lymph nodes affected, tumor grade and tumor size to predict the percentage of
survival in the ten following years. Depending on the interval of values where it rests, the
survival chance ranges from 96% to 44% for cancer specific survival and ranges from 88%
to 42% for death caused by other causes [105].

The dataset used as case study was obtained from the cBioportal [106]. METABRIC is
a project between Canada and UK with the goal of obtaining subcategories of breast can-
cer based on molecular signatures obtained from gene expression, Copy Number Alteration
(CNA) and long-term clinical data. The collected data is composed from over 2,000 primary
fresh frozen breast cancer samples [107][108]. The METABRIC data available on cBioportal
comprises gene expression, CNA, mutation data and clinical files.

To demonstrate the developed methods, predictive models taking as input the gene ex-
pression data for three different targets were generated using the METABRIC dataset. The
targets are ER, THREEGENE and NPI. ER is a binary variable for the presence or absence
of estrogen receptors. THREEGENE is a multi-class variable where each class takes into
account the presence or absence of ER, HER-2 and PR. NPI is a continuous variable that is
used in breast cancer prognosis as already mentioned. Multiple shallow models and deep

54

5.1. METABRIC: description of the dataset 55

learning models were trained for each of the targets. Furthermore, a deep learning multi-
tasking model was trained to predict ER, HER-2 and PR simultaneously. The multi-tasking
model for the three receptors could be useful if it has better performance when compared
to the simple DNN for predicting THREEGENE.

5.1.1 Expression Dataset

The gene expression data was measured using the Illumina HT-12 v3 microarray platform.
The results were pre-processed and normalized. The raw data was obtained using a script
in R to process each chip. The raw data was pre-processed obtaining logarithmic intensities,
number of entries and standard errors. The resulting intensity matrices were concatenated
into a single matrix and pre-processed. The pre-processing included exclusion of arrays
with failed hybridization and arrays that failed in the multivariate outlier testing procedure
available in the Bioconductor package. ER-positive and ER-negative samples were sepa-
rated, normalized and averaged separately to obtain the target distribution. The probes
belonging to the target distribution were quantile normalized while the other probes were
interpolated using weighted normalized intensities of the probes within the target distri-
bution with highest similarity before normalization [107]. The previous processing of the
dataset was not part of the thesis work as the dataset available was already processed.

5.1.2 Clinical dataset

The dataset with clinical data is the result of merging two separate datasets removing the
duplicate columns. The original datasets contain clinical data from samples and patients.
The tables 11 and 12 contain all the available features in the metadata for samples and
patients, respectively. The number of patients and samples is the same as each sample is
provided for a single patient. The dataset contains data for 2508 samples/patients but a
significant portion has incomplete data. Numerical and categorical data are available in the
dataset. Age (discrete numerical variable), tumor size (continuous numerical variable), ER
status (binary categorical variable) and tumor grade (multi-class categorical variable) are
some examples of the data in the clinical dataset. Virtually any column can be used as
target for predictive models.

5.1. METABRIC: description of the dataset 56

Table 11.: Clinical data available in the samples file.

Clinical data Description

PATIENT ID Patient identifier

SAMPLE ID Sample identifier

CANCER TYPE Cancer type

CANCER TYPE DETAILED Specific type of cancer

ER STATUS Expression of ER

HER2 STATUS Amplification of HER-2

GRADE Grade of the cancer

ONCOTREE CODE OncoTree code of the cancer

PR STATUS Expression of PR

SAMPLE TYPE Type of sample

TUMOR SIZE Size of the tumor in millimiters

TUMOR STAGE Tumor stage

5.2. Experimental setup 57

Table 12.: Clinical data available in the patients file.

Clinical Data Description

PATIENT ID Patient Identifier

LYMPH NODES EXAMINED POSITIVE Number of lymphnodes positive

NPI Nottingham prognostic index

CELLULARITY Tumor cell content

CHEMOTHERAPY Administration of chemotherapy

ER IHC Immunohistochemistry test for ER

HER2 SNP6 HER-2 status measured by SNP-6

HORMONE THERAPY Administration of hormone therapy

INFERRED MENOPAUSAL STATE Inferred menopausal status based on
age

INTCLUST IntClust cancer subtype

AGE AT DIAGNOSIS Patient age when diagnosed

OS MONTHS Number of months survived

OS STATUS Alive or deceased

CLAUDIN SUBTYPE Claudin subtype of cancer

THREEGENE 3 gene classifier subtype

VITAL STATUS Cause of death in case of dead

LATERALITY Tumor location

RADIO THERAPY Administration of radio therapy

HISTOLOGICAL SUBTYPE Subtype based on tumor histology

BREAST SURGERY Type of surgery

5.2 experimental setup

5.2.1 Pre-processing

The pre-processing of the two datasets was similar among different experiments. The name
of the column with patient IDs, column or columns to be used as labels and the name of
the column with gene IDs were provided in each case to select the appropriate data. Both
datasets have the same indexation and rows where the labels missing were excluded from
the expression and clinical datasets. For ER and NPI, the number of remaining rows was
1904 while the number of remaining rows for the THREEGENE label was 1700. As all labels
must be available to generate predictive models, in the multi-tasking model with ER and

5.2. Experimental setup 58

THREEGENE, the datasets contained 1700 rows. After selecting the intended columns and
rows, the labels with categorical values were encoded into integers.

As the gene expression data was already normalized, no additional normalization method
was used. Feature selection was applied to select the best 5000 features. The choice to ap-
ply the feature selection to the traditional ML models was to remove features that would
not improve the model predictive performance. The feature selection of 5000 features was
also applied for the deep learning models because the full dataset contained 17530 features.
When the whole dataset was used in the deep learning experiments, a memory error would
appear. Although some methods were implemented to solve the problem, it could not be
fixed. The 5000 features with highest value of mean absolute deviation were selected to the
final dataframe. Mean absolute deviation was used as criterion for feature selection because
the higher the difference of values within a feature, the higher the probability of being use-
ful to model training. The pre-processed gene expression and clinical data datasets gave
origin to X and y train and test matrices.

5.2.2 Shallow learning

To predict each label individually, two types of ML experiments were executed. One
method used the Shallow modules to create multiple shallow learning models applying
grid search for each type of model. The number of folds used in the GridSearchCV was five.
The types of models and hyperparameters tested are presented in Table 13 and Table 14 for
classification and regression problems, respectively. The model with best results found in
GridSearchCV was then evaluated using the test dataset and the results were saved in both
text reports.

Table 13.: Hyperparameters used in GridSearchCV for traditional classification models in
METABRIC case study.

Model Hyperparameters

KNN n neighbors: [1, 3, 5, 7]

RF n estimators: [10, 50, 100, 200, 500]

LR
C: [0.001, 0.01, 0.1, 1, 10, 100, 1000]

penalty: [l1, l2]

SVM
C: [0.001, 0.01, 0.1, 1, 10, 100, 1000]

kernel = [linear, rfb]

gamma: [0.001, 0.01, 0.1, 1, 10, 100, 1000]

5.2. Experimental setup 59

Table 14.: Hyperparameters used in GridSearchCV for traditional regression models in
METABRIC case study.

Model Hyperparameters

SVM
C: [0.001, 0.01, 0.1, 1, 10, 100, 1000]

kernel: [linear, rbf]

gamma: [0.001, 0.01, 0.1, 1, 10, 100, 1000]

RF n estimators: [10, 50, 100, 200, 500]

EN
fit intercept: [True, False]

positive: [True, False]

gamma: [cyclic,random]

KNN n neighbours: [1, 3, 5, 7]

5.2.3 Deep Learning

In addition to shallow models, an experiment using DNNs was executed for predicting
each label. Using the DNN modules, multiple models were generated for each label using
a random selection of hyperparameters from a set. The set of hyperparameters provided
as input is presented in the Table 15. As the DNN modules do not perform grid search, the
number of models trained in the experiment do not cover all the possible combinations of
hyperparameters. The selected number of iterations was fifty as the tuning process should
provide good results. Although a higher number of iterations could provide better results,
the computational cost could be too expensive for the available resources. At each iteration,
a five-fold cross-validation was performed and the results stored until the end of tuning
process. The models with best results were evaluated using evaluated using the test dataset
and the results stores in text reports.

5.2.4 Multi-tasking

A single experiment was performed using the DNN MT module. The goal of the experiment
was to predict ER, HER-2 and PR in a single ML model. In addition to the batch of hyper-
parameters, X and y matrices, a list with the labels ER, HER-2, PR and a list representing
binary and multi-class were provided as input. The number of iterations, the number of
folds in cross-validation and the hyperparameters were the same used in the single label
predicting DNNs. The model with best average results was further evaluated with the test
dataset and reports were generated with multiple metrics values for each label.

5.3. Case study results 60

Table 15.: Set of values for the hyperparameters used in DNN experiments.

Hyperparameters Values

dropout [0.2, 0.3, 0.4, 0.5]

optimization [’Adadelta’, ’Adam’, ’RMSprop’,
’SGD’]

learning rate [0.015, 0.010, 0.005, 0.001, 0.0001]

batch size [16, 32, 64, 128, 256]

nb epoch [100, 150, 200]

units in hidden layers [[2048, 1024, 512], [1024, 128], [2048,
1024, 512, 128], [2048, 128, 16], [2048,
128], [2048, 512]]

units in input layer [5000]

early stopping [True, False]

batch normalization [True, False]

patience [80]

5.2.5 Computational resources

As high computational power is required for the of training multiple ML models with dif-
ferent combinations in the hyperparameters optimization process, the Search 6 cluster from
Departamento de Informática (DI), Universidade do Minho (UM) was used. As the traditional
ML models do not benefit from GPU usage for fast parallel computation but can bene-
fit from multi-threaded processing, the tradional ML models were trained using multiple
cores from the nodes 771-1, 771-2, 781-1 and 781-2 with Broadwell Intel CPU microarchi-
tectures from Search 6 cluster. The deep learning models were trained using a machine
with a NVIDIA GeForce RTX 2080 Ti GPU. The use of the GPU greatly reduces the amount
of time needed to train the deep learning models by using its multiple cores for parallel
computing.

5.3 case study results

5.3.1 Overall results

For each clinical data endpoint to be predicted, multiple ”shallow” and deep learning ex-
periments were executed. The Table 16 and the Figure 22 show the metric results for the
prediction of each label for ”shallow” and deep learning models. The metric used to select
the best model for ER and THREEGENE was MCC, while the metric for NPI was R2. The

5.3. Case study results 61

best performing model for each endpoint is highlighted in bold. The values of the calcu-
lated metrics and sets of selected hyperparameters during the model selection are available
in the appendix for both ”shallow” or deep learning models.

Table 16.: Results of ”shallow” and deep learning experiments. ER and THREEGENe metric
is MCC while NPI metric is R2.

Endpoint Model Metric

ER

KNN 0.8059

LR 0.9823

RF 0.9168

SVM 0.9234

DNN 0.8790

THREEGENE

KNN 0.5879

LR 0.8769

RF 0.8956

SVM 0.8791

DNN 0.8423

NPI

KNN 0.0799

EN 0.0116

RF 0.2288

SVM 0.1478

DNN 0.1604

ER THREEGENE NPI
0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
 sc

or
e

0.9823
0.8956

0.2288

0.879 0.8423

0.1604

Shallow VS Deep
Shallow
Deep

Figure 22.: Barplot with comparison between ”shallow” and deep learning models for three
endpoints. ER and THREEGENE metric is MCC while NPI is R2.

5.3. Case study results 62

5.3.2 ER prediction results

The MCC values calculated from the evaluation performed with the test dataset for each of
the generated models are shown in Figure 23. As seen in the previous barplot, the RF and
SVM obtained a similar MCC score. The DNN model presented a value of 0.879 slightly
lower than the RF model. The model with worst performance was KNN with a MCC of
0.8059, considerably lower than other models. LR was the best performing model with
0.9823 of MCC value.

KNN LR RF SVM DNN
0.0

0.2

0.4

0.6

0.8

1.0

M
CC

0.8059

0.9823
0.9168 0.9234 0.879

MCC scores for ER predicting models

Shallow
Deep

Figure 23.: Barplot with comparison between ”shallow” and deep learning models for ER
prediction.

5.3.3 THREEGENE prediction results

The results of the models used to predict the breast cancer subtype classification based on
ER, PR and HER-2 prediction (THREEGENE in the dataset) are shown in Figure 24. Sim-
ilar to ER predicting experiments, the MCC was used to compare the overall performance
among different types of predictive models. As seen in Figure 24, the majority of the gen-
erated models have a good performance. The only exception was the KNN model with a
MCC of 0.5879, considerably smaller score comparing with others. The remaining models
had a similar performance with the DNN model having the second lowest score with 0.8769

and the RF model having the highest score with an MCC of 0.8956. The LR model was the
second best performing model with a score of 0.8711, slightly lower when compared to the
SVM model.

5.3. Case study results 63

KNN LR RF SVM DNN
0.0

0.2

0.4

0.6

0.8

1.0

M
CC 0.5879

0.8769 0.8956 0.8791 0.8423

MCC scores for THREEGENE predicting models
Shallow
Deep

Figure 24.: Barplot with comparison between ”shallow” and deep learning models for
THREEGENE prediction.

5.3.4 NPI prediction results

The results of the evaluation using the test dataset of the NPI predicting models are pre-
sented in Figure 25. Contrary to previous experiments, the NPI predicting models seem to
have a worse performance, while we do not have any comparative result. While the larger
R2 score was of 0.2288 for the RF model, the model with worst performance, the EN model,
obtained a R2 score of 0.0116. The performance of NPI models was not only worse but more
heterogeneous among the types of models when compared to ER and THREEGENE mod-
els. The DNN model obtained an MCC of 0.1604, the second highest among the different
types of models.

KNN EN RF SVM DNN
0.0

0.2

0.4

0.6

0.8

1.0

R2

0.0799
0.0116

0.2288
0.1478 0.1604

R2 scores for NPI predicting models
Shallow
Deep

Figure 25.: Barplot with comparison between ”shallow” and deep learning models for NPI
prediction.

5.4. Discussion 64

5.3.5 Multi-tasking DNN results

The results of the multi-tasking DNN for predicting ER, HER-2 and PR endpoints simul-
taneously are presented in Figure 26. Although THREEGENE and the three endpoints
predicted in the multi-tasking DNN are used for the same clinical purpose the results can-
not be directly compared.

THREEGENE ER HER-2 PR
0.0

0.2

0.4

0.6

0.8

1.0

M
CC

0.8423 0.8536
0.9097

0.6732

Simple DNN vs Multi-task DNN
Simple DNN
Multi-task DNN

Figure 26.: Barplot with comparison between simple DNN for THREEGENE and multi-
tasking DNN for predicting ER, HER-2 and PR.

5.4 discussion

The obtained overall results were satisfactory with the exception of the NPI endpoint, while
we have no comparative performances available. As presented in Table 16 and in Figure 22,
the models trained to predict classification tasks seem to perform better when compared
to regression models. As presented in bold in Table 16 and presented in the orange bars
in Figure 22, the deep learning approach obtained lower scores when compared to the best
traditional ML models.

The performance of the framework providing better results for classification when com-
pared to regression problems can be due to a group of factors. It is possible that the gene
expression data in this dataset is not suited to regression problems. The NPI can be dif-
ficult to predict due to the type of data it represents. The number of affected nodes, size
of the primary tumor and stage of the tumor are the different variables used to calculate
the NPI. While the stage of tumor is a categorical variable, the number of affected nodes
and size of the primary tumor are numerical variables. Predicting the previous numerical
variables from gene expression data is a difficult task on itself, but adding a classification
task only increases the complexity of predicting the NPI in the case study. Although the re-
sults for the NPI endpoint prediction were poor, the capability of the framework to handle

5.4. Discussion 65

regression problems should not be considered to be weak. Other case-studies with different
continuous variables should be used to demonstrate the framework potential.

Overall, when comparing the results of traditional ML models and deep learning models,
the best traditional models outperformed the DNNs. Still, while the best performing model
for each case was a traditional machine learning model, the DNNs were better that part
of the traditional models in all cases. In all tasks, the DNNs were better than the KNN
models. In the classification tasks, the DNNs had similar performances when compared
to the traditional ML models. In the task of predicting NPI, the DNN was the second
model with highest R2. The two main factors responsible for these results are: the amount
of available data and the choice of hyperparameters. As mentioned in section 5.2.1 of the
case-study chapter 5, the number of samples (entries) was 1700 for THREEGENE and multi-
tasking DNN, and 1904 for ER and NPI models. The small amount of available data is not
enough for the DNN to achieve their best performance.

Applying feature selection can also be a factor that explains the results of the DNNs.
Although traditional ML models benefit from feature selection, the same cannot be said
for DNNs. As feature extraction occurs automatically in the training process of a DNN,
applying feature selection previously can prevent the model of having access to useful data.
The decision of applying feature selection to the dataset was made due to memory errors
that appeared when the whole dataset with over seventeen thousand features was used.
Various methods were used to clear the memory between iterations, but the problem could
not be fully solved.

The hyperparameters tested for the DNN architecture were randomly selected through
50 iterations from a given set of hyperparameters in each experiment. Two problems can
occur with the previous approach: the random selection and the input set of hyperparam-
eters. Performing a random selection is faster when compared to a extensive grid search,
but it does not check all possible hyperparameter configurations. It is possible that the con-
figuration with best results was not selected during the random search. The problem with
the input set of hyperparameters is that it can be provided without the most appropriate
hyperparameters for the problem. If provided with inappropriate hyperparameters, the
model is expected to underperform. One possible method to improve the results would be
to increase the number of iterations, testing a larger number of possible hyperparameter
configurations or performing the hyperparameter optimization with a grid search process.

The models predicting ER, THREEGENE and NPI presented different performances.
Overall, all models generated for predicting ER presented a good performance. The LR
model was the best for ER prediction. The KNN was the worst performing model in every
experiment with the exception of the NPI prediction task where the EN performed even
worse. The reason behind the poor scores could be that the remaining default hyperparam-
eters of KNN were not suited for the problem. The classifiers excluding KNN obtained a

5.4. Discussion 66

good performance with MCC scores around 0.90 for the ER prediction task. The THREE-
GENE prediction task presented good results although not as good as the ER predicting
models. The best performing model (RF) had a MCC of 0.8956 and accuracy and precision
scores over 0.9. As the classification task needed to predict four different classes, the results
can be considered to be good. The models to predict NPI underperformed when compared
to the classification models for ER and THREEGENE. The performance among regression
models was heterogeneous and not satisfactory. The model with best score was RF with an
R2 of 0.2288 and the worst was EN with a R2 of 0.0116. Overall, the ER and THREEGENE
classifiers shown good results while NPI regressor presented poor results.

As the simple DNN for predicting NPI had poor performance, the multi-tasking exper-
iment was only focused on classification tasks. As seen in 26, the results were not similar
for all the endpoints. The results presented in the figure cannot be directly compared. The
simple DNN for predicting the THREEGENE endpoint contains the classification regarding
specific combinations of the genes and there is no available data regarding the performance
of the model for classifying each individual gene. The most appropriate analysis would be
to compare the results of individual DNN models for each individual gene and compare
with the results of the multi-tasking DNN for prediction of the three genes. Comparing
the results of the simple DNN for predicting ER with the results of the multi-tasking DNN,
the simple model obtained a MCC score of 0.8790 while the multi-tasking model obtained
an MCC score of 0.8536. While multi-tasking model obtained a slightly lower result, the
same model was capable of predicting two other endpoints in a single training process. The
usage of multi-tasking in other cases can be useful for obtaining a model with reasonable or
even higher performance with a lower training time when compared to the training process
of multiple simple DNNs.

6

S E C O N D C A S E S T U D Y

6.1 description of melanoma dataset

Tumors cannot be considered to be an homogeneous group of malignant cells. A tumor
is a full complex ecosystem of different cell types including: malignant, immune and stro-
mal cells. The ecosystem is variable with different amounts of each cell type in the tumor.
Each different tumor composition and the interactions among different cells can affect the
development and behaviour of each specific tumor. As identifying the tumor cell compo-
sition and the interactions among cells in a tumor microenviroment remains a challenge,
understanding the full development of a specific tumor is still a difficult task to accomplish
[109].

The heterogeneous nature of a tumor is both an opportunity and a challenge in cancer
therapy. Having a variable cell composition in each tumor increases the difficulty in using
a general therapy for all tumors. However, the diversity in tumor cell composition allows
for the usage of targeted and immune therapies [109].

Skin cancer is one of the most common cancers. Among the different types of skin
cancer, melanoma is the most rare. Although the melanoma accounts for about 1% of the
total number of skin cancer cases, melanoma is responsible for the majority of skin cancer
deaths. The American Cancer Society estimates that in 2019 the number of new cases of
melanoma will be around 96,480 cases and that 7,230 are expected to die of melanoma [110].

The melanoma is a malignant neoplasm of the melanocytes cells that are are located in
the basal layer of the epidermis. Melanocytes are known because of the melanin produc-
tion, which is responsible for skin pigmentation and ultra-violet radiation protection. The
mortality of melanoma is around 11% for primary melanoma patients, while this value is
significantly higher in the cases of metastatic melanomas. The large mortality rate is due to
low efficacy of the generic cancer therapies that are currently used as treatment [111].

One example of a specific treatment for metastatic melanomas is the RAF/MEK inhibition
in melanomas with the BRAFV600E mutation. Although the previous inhibitors improve the
survival rate, almost all tumors develop a resistance to these drugs. Unfortunately, patients

67

6.1. Description of melanoma dataset 68

with lack of the BRAFV600E mutations cannot be treated with the previously mentioned
inhibitors [111].

The knowledge regarding melanoma tumor composition, microenvironment interactions
and response to drugs is essential to increase the survival rate of metastatic melanoma. The
ideal methods would be to analyse each tumor to identify the cell composition, interactions
among cells and the resistance of the tumor ecosystem to specific drugs [111].

The dataset used in this second case study was obtained from the GEO database [112].
The dataset with the acession GSE72056 is the result of single-cell RNA-seq of patients with
melanoma. Two separate files were used from the study: one dataset with the the processed
single-cell RNA-seq results and one dataset with metadata regarding the study. The devel-
oped framework was used to create classification ML models to predict if each cell was
malignant or non-malignant. The dataset was chosen because it shows that the framework
is capable of handling single-cell RNA-seq data, a technique increasing in popularity in
cell and molecular biology, and it shows that the framework is capable of easily adjust to
different datasets obtained from different sources.

6.1.1 Expression dataset

The cells used to obtain the single-cell RNA-seq results were obtained after disaggregating
the cells from the tumor in a suspension. The viable immune and non-immune cells were
recovered to be sequenced using flow cytometry. The cDNA was obtained for each indi-
vidual cell with a posterior library construction and parallel sequencing. The sequencing
protocol previously mentioned was the Smart-seq2 and the platform used for the single-cell
RNA-seq was the Illumina NextSeq 500. The dataset contains a total of 4,645 rows regarding
the same number of cells obtained from 19 patients and a number of columns of 23,686 with
each column regarding a different transcript. The previous protocol was already executed
and the dataset with the processed data was the only dataset available.

6.1.2 Metadata dataset

The majority of data available in the metadata dataset was not useful for the experiment.
However, the dataset contained data regarding the malignancy of each cell inferred by
Copy Number Variation (CNV) analysis (malignant, non-malignant or unresolved). As the
metadata dataset contained the same sample source identifier available in the expression
dataset, the cell malignancy data from the metadata dataset can be used to associate to the
single-cell RNA-seq data from the expression dataset.

6.2. Experimental setup 69

6.2 experimental setup

6.2.1 Pre-processing

The first step of pre-processing was performed by selecting the column with the malig-
nancy data in the metadata dataset. After selecting the intended column as a Pandas Series,
the rows with invalid values were eliminated in both datasets. The rows where the malig-
nancy data was empty (1,396 samples) or unresolved (85 samples) were excluded from the
datasets. The Pandas Series labels were encoded into integers for posterior usage in ML
classification models. The expression dataset was normalized using a Scikit-learn Standard-
Scaler method and feature selection was applied selecting the 5,000 features with largest
values of mean absolute deviation. The feature selection of 5,000 features was not only
applied to traditional ML models, but was also applied for the deep learning models be-
cause the full dataset contained 23,686 features. This was needed, since when the whole
dataset was used in the deep learning experiments, a memory error occurs due to current
hardware limitations. The final datasets were split in X and y (inputs and outputs) train
and test matrices using 75% of the data for training and the remaining 25% for testing. The
final train matrices contained 1,677 entries and the test matrices contained 560 entries.

6.2.2 Shallow learning

To predict the label regarding the malignancy of each cell, multiple traditional ML models
were trained using the Shallow bin class. For each type of model, GridSearchCV from Scikit-
learn was used with the number of folds set to 5. The hyperparameters used in the models
are the same used in the METABRIC case study as are presented in Table 13. The model
with best results found in GridSearchCV for each type of traditional ML model was then
evaluated using the test dataset and the results were saved in text reports.

6.2.3 Deep Learning

In addition to the different traditional ML models, DNNs were trained to predict the ma-
lignancy of the cells using the DNN bin class. The set of hyperparameters to be used in the
hyperparameter optimization is the same used in METABRIC case study and are presented
in Table 15. The number of tested hyperparameter combinations was set to 50. At each it-
eration, a five-fold cross-validation was performed. The model with best performance was
then tested with the test dataset and the results were stored in a text file report.

6.3. Case study results 70

6.2.4 Computational resources

The resources used in the melanoma case study were the same used in the METABRIC
case study. The traditional ML models were trained in the Search 6 cluster from DI, UM.
The traditional ML classifiers were trained in the cluster because the computation of these
models cannot take advantage of a GPU. The DNNs were trained using a server equipped
with a NVIDIA GeForce RTX 2080 Ti GPU.

6.3 case study results

The results regarding traditional and deep learning models are presented in Figure 27. As
seen in the previous figure, all the models had high values of MCC. The different models
had a similar performance with the exception of the KNN model that still obtained a high
value of a MCC of 0.9472. The model with highest performance regarding the MCC value
was the LR model. The DNN model was the second worst model regarding the MCC value,
but when compared to the LR MCC, the obtained metric value was just slightly lower. The
full results with multiple metrics for each model are presented in the appendix in C.1.

KNN LR RF SVM DNN
0.0

0.2

0.4

0.6

0.8

1.0

M
CC

0.9472 0.9962 0.9915 0.9923 0.9813
MCC scores for Malignancy predicting models

Shallow
Deep

Figure 27.: Barplot with comparison between the different types of models for cell malig-
nancy prediction. The blue bars

6.4 discussion

The results of the melanoma case study were concordant with the results of the METABRIC
case study. The different types of models had a strong performance in the task of predicting
the cell malignancy, confirming the capability of the framework to handle binary classifica-
tion models. Although the KNN model had a strong performance with an MCC of 0.9472,

6.4. Discussion 71

the model had the lower value of MCC among all the tested models similar to what occured
with the METABRIC dataset.

The DNN had a lower performance compared to the remaining models similar to what
occurred in the METABRIC case study. The cause for the lower performance can be due
mainly to the factors previously mentioned in the METABRIC case-study. Applying feature
selection, the reduced number of entries and the usage of random search of hyperparame-
ters for hyperparameter optimization were some of the factors that can explain the lower
performance of the DNN models.

Although the task for predicting the malignancy of a cell of low difficulty in the used
dataset, the generated models could be useful to assist in classification of cells as malignant
or non-malignant. As mentioned in the pre-processing section (6.2.1), 1,396 samples had
no data regarding the malignancy of the cells and 85 samples had unresolved results. Even
if we consider the samples with the malignancy column empty as entries that were not
completed when the sample was registered, the 85 unresolved cells malignancy could be
predicted using the developed ML models. Using the inference of the cell malignancy using
the CNV data with the addition of ML models could improve the labelling process of tumor
cells for single-cell RNA-seq experiments regarding cancer patients.

One of the goals of choosing the melanoma dataset was showing that the framework is
not only capable of handling microarray data, but also other gene expression techniques as
RNA-seq. In the specific case of the selected dataset, single-cell RNA-seq is an interesting
alternative as the method has been increasing in popularity in recent years. The good re-
sults, even for an easy prediction task, show that the framework can by applied to different
types of gene expression datasets provided including recent techniques.

7

C O N C L U S I O N

The developed framework consists in an easy-to-use approach to execute deep learning
experiments using gene expression data for individuals with entry-level knowledge of pro-
gramming, traditional machine learning and deep learning. It provides simple methods for
pre-processing datasets including normalization and feature selection techniques. Multiple
traditional ML models are available for usage with integrated hyperparameters otimization.
The framework allows the user to generate simple DNNs from an input set of hyperparame-
ters to predict a single endpoint and is capable of generating multi-tasking DNNs to predict
multiple endpoints in the same model.

Overall, the developed framework provided good results. Although the classification
tasks generated good results in the case studies, the regression task obtained a poorer per-
formance. The results obtained from RF and LR were better when compared to simple
and multi-tasking DNNs. The classification tasks were capable of predicting the expres-
sion of receptors in samples obtained from breast cancer tumor samples. The regression
modules were not able of predicting the NPI used to assess the prognosis in breast cancer
patients. For the METABRIC case-study, traditional ML models had a better performance
and took a shorter amount of time to train when compared to the DNNs. The performance
of the simple or multi-tasking DNNs could be improved if the the used dataset was larger
and the computational resources allowed the use of all the features of the dataset. For
the melanoma case study, the different types of models had a strong performance in the
binary classification task of predicting the cell malignancy using the data from experiment
metadata and single-cell RNA-seq.

In future work, implementing a more complete Preprocessing module with additional
normalization, scaling and feature selection techniques could be important to obtain better
results. Designing methods that allow users to custom design their own DNN architectures
to improve the framework’s flexibility and usage by advanced users is another important
goal. Redesigning the architecture or including more features than gene expression data
can be used to increase the overall performance of the DNNs. Refactoring the framework
to be more easy-to-use, streamlined and efficient could also provide a better Quality of Life
(QoL) and attract more users.

72

B I B L I O G R A P H Y

[1] L. van der Maaten and G. Hinton, “Visualizing Data using t-SNE,” Journal of Machine
Learning Research, no. 9, pp. 2579–2605, 2008.

[2] F. Chollet, Deep Learning with Python. Shelter Island,NY: Manning Publications Co.,
2017.

[3] Y. Ma, Z. Xiang, Q. Du, and W. Fan, “Effects of user-provided photos on hotel re-
view helpfulness: An analytical approach with deep leaning,” International Journal of
Hospitality Management, vol. 71, pp. 120–131, apr 2018.

[4] M. Hossin and M. Sulaiman, “A Review on Evaluation Metrics for Data Classifica-
tion Evaluations,” International Journal of Data Mining & Knowledge Management Process
(IJDKP), vol. 5, no. 2, pp. 1–11, 2015.

[5] S. Boughorbel, F. Jarray, and M. El-Anbari, “Optimal classifier for imbalanced data
using Matthews Correlation Coefficient metric,” PLOS ONE, vol. 12, p. e0177678, jun
2017.

[6] R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer Statistics, 2018.,” CA: a cancer journal
for clinicians, vol. 67, no. 1, pp. 7–30, 2018.

[7] F. Sanchez-Vega, M. Mina, J. Armenia, W. K. Chatila, and A. Luna, “Oncogenic Sig-
naling Pathways in The Cancer Genome Atlas,” Cell, vol. 173, no. 2, pp. 321–337.e10,
2018.

[8] B. A. Perkins, C. T. Caskey, P. Brar, E. Dec, D. S. Karow, A. M. Kahn, Y.-C. C. Hou,
N. Shah, D. Boeldt, E. Coughlin, G. Hands, V. Lavrenko, J. Yu, A. Procko, J. Ap-
pis, A. M. Dale, L. Guo, T. J. Jönsson, B. M. Wittmann, I. Bartha, S. Ramakrishnan,
A. Bernal, J. B. Brewer, S. Brewerton, W. H. Biggs, Y. Turpaz, and J. C. Venter, “Preci-
sion medicine screening using whole-genome sequencing and advanced imaging to
identify disease risk in adults.,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 115, pp. 3686–3691, apr 2018.

[9] E. Lin and H.-Y. Lane, “Machine learning and systems genomics approaches for multi-
omics data,” Biomarker Research, vol. 5, no. 1, p. 2, 2017.

73

Bibliography 74

[10] R. Fakoor, F. Ladhak, A. Nazi, and M. Huber, “Using deep learning to enhance cancer
diagnosis and classification,” Proceeding of the 30th international conference on machine
learning Atlanta, Georgia,USA, vol. 28, 2013.

[11] G. P. Way and F. Sanchez-Vega, “Machine Learning Detects Pan-cancer Ras Pathway
Activation in The Cancer Genome Atlas,” Cell Reports, vol. 23, no. 1, pp. 172–180.e3,
2018.

[12] A. Mosavi, “Deep Learning : a Review,” Advances in Intelligent Systems and Computing,
no. July, 2017.

[13] R. K. Sevakula, V. Singh, N. K. Verma, C. Kumar, and Y. Cui, “Transfer Learning
for Molecular Cancer classification using Deep Neural Networks,” IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics, pp. 1–1, 2018.

[14] T. Turki, Z. Wei, and J. T. Wang, “Transfer Learning Approaches to Improve Drug
Sensitivity Prediction in Multiple Myeloma Patients,” IEEE Access, vol. 5, pp. 7381–
7393, 2017.

[15] D. Sun, M. Wang, and A. Li, “A multimodal deep neural network for human breast
cancer prognosis prediction by integrating multi-dimensional data,” IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics, pp. 1–1, 2018.

[16] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization Methods for Large-Scale Ma-
chine Learning,” Society for Industrial and Applied Mathematics, vol. 60, no. 2, pp. 223–
311, 2018.

[17] M. Wainberg, D. Merico, A. Delong, and B. J. Frey, “Deep learning in biomedicine,”
Nature Biotechnology, vol. 36, no. 9, pp. 829–838, 2018.

[18] R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation and
model selection,” Proceedings of the 14th international joint conference on Artificial intelli-
gence - Volume 2, vol. 2, no. 0, pp. 1137–1143, 1995.

[19] M. J. Pencina, R. B. D’Agostino Sr, R. B. D’Agostino Jr, and R. S. Vasan, “Evaluating
the added predictive ability of a new marker: From area under the ROC curve to
reclassification and beyond,” STATISTICS IN MEDICINE, vol. 27, no. 1, pp. 157–172,
2008.

[20] J. Huang and C. X. Ling, “Using AUC and accuracy in evaluating learning algo-
rithms,” IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 3, pp. 299–
310, 2005.

Bibliography 75

[21] C. Willmott and K. Matsuura, “Advantages of the mean absolute error (MAE) over
the root mean square error (RMSE) in assessing average model performance,” Climate
Research, vol. 30, pp. 79–82, 2005.

[22] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast accuracy,”
International Journal of Forecasting, vol. 22, pp. 679–688, oct 2006.

[23] R. Todeschini, D. Ballabio, and F. Grisoni, “Beware of Unreliable Q2! A Comparative
Study of Regression Metrics for Predictivity Assessment of QSAR Models,” Journal of
Chemical Information and Modeling, vol. 56, no. 10, pp. 1905–1913, 2016.

[24] J. Miles, “R Squared, Adjusted R Squared,” in Wiley StatsRef: Statistics Reference Online,
Chichester, UK: John Wiley & Sons, Ltd, sep 2014.

[25] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Stanford, California: Springer, 2nd editio ed., 2017.

[26] M. A. Mansournia, A. Geroldinger, S. Greenland, and G. Heinze, “Separation in Logis-
tic Regression: Causes, Consequences, and Control,” American Journal of Epidemiology,
vol. 187, pp. 864–870, apr 2018.

[27] H. Zou and T. Hastie, “Regularization and variable selection via the elastic net,” Jour-
nal of the Royal Statistical Society. Series B: Statistical Methodology, vol. 67, no. 2, pp. 301–
320, 2005.

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Machine Learning in Python,”
Journal of Machine Learning Research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[29] M. E. Syed, “Attribute weighting in K-nearest neighbor classification,” no. November,
p. 50, 2014.

[30] K. Hechenbichler and K. Schliep, “Weighted k-Nearest-Neighbor Techniques and Or-
dinal Classification,” discussion paper, vol. 399, no. January 2004, p. 17, 2004.

[31] L. Jiang, H. Zhang, and Z. Cai, “Dynamic K-Nearest-Neighbor Naive Bayes with
Attribute Weighted,” Fuzzy Systems and Knowledge Discovery, vol. 4223, pp. 365–368,
2006.

[32] W. S. Noble, “What is a support vector machine?,” Nature Biotechnology, vol. 24,
pp. 1565–1567, dec 2006.

Bibliography 76

[33] L. Rutkowski, M. Jaworski, L. Pietruczuk, and P. Duda, “Decision Trees for Mining
Data Streams Based on the Gaussian Approximation,” IEEE Transactions on Knowledge
and Data Engineering, vol. 26, pp. 108–119, jan 2014.

[34] T. G. Dietterich, “Ensemble Methods in Machine Learning,” pp. 1–15, Springer, Berlin,
Heidelberg, 2000.

[35] T. Hothorn and B. Lausen, “Double-bagging: combining classifiers by bootstrap ag-
gregation,” Pattern Recognition, vol. 36, pp. 1303–1309, jun 2003.

[36] J. H. Friedman, “Greedy Function Approximation: A Gradient Boosting Machine,”
2001.

[37] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: a statistical
view of boosting (With discussion and a rejoinder by the authors),” The Annals of
Statistics, vol. 28, pp. 337–407, apr 2000.

[38] J. H. Friedman, “Stochastic gradient boosting,” Computational Statistics & Data Analy-
sis, vol. 38, pp. 367–378, feb 2002.

[39] G. Rätsch, T. Onoda, and K.-R. Müller, “Soft Margins for AdaBoost,” Machine Learning,
vol. 42, no. 3, pp. 287–320, 2001.

[40] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.

[41] I. Guyon, “An Introduction to Variable and Feauture Selection,” Journal of Machine
Learning Research, vol. 3, pp. 1157–1182, 2003.

[42] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and H. Liu, “Feature
Selection: A Data Perspective,” ACM Computing Surveys, vol. 50, pp. 1–45, dec 2018.

[43] C. M. Farrelly, S. J. Schwartz, A. Lisa Amodeo, D. J. Feaster, D. L. Steinley, A. Meca,
and S. Picariello, “The analysis of bridging constructs with hierarchical clustering
methods: An application to identity,” Journal of Research in Personality, vol. 70, pp. 93–
106, oct 2017.

[44] S. Gupta, R. Kumar, K. Lu, B. Moseley, and S. Vassilvitskii, “Local search methods for
k-means with outliers,” Proceedings of the VLDB Endowment, vol. 10, pp. 757–768, mar
2017.

[45] I. Jolliffe, “Principal Component Analysis,” in International Encyclopedia of Statistical
Science, pp. 1094–1096, Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.

[46] D. Graupe, PRINCIPLES OF ARTIFICIAL NEURAL NETWORKS, vol. 53. Toh Tuck
Link: World Scientific Publishing Co. Pte. Ltd., 2nd editio ed., 2007.

Bibliography 77

[47] D. Riesel, “A brief Introduction on Neural Networks,” Springer-Verlag, Berlin, p. Sec-
ond edition, 2007.

[48] Y. LeCun, Y. Bengio, G. Hinton, L. Y., B. Y., and H. G., “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[49] P. Baldi, “Autoencoders , Unsupervised Learning , and Deep Architectures,” pp. 37–
50, 2012.

[50] J. Tan, M. Ung, C. Cheng, and C. S. Grenne, “Unsupervised feature construction
and knowledge extraction from genome-wide assays of breast cancer with denoising
autoencoders.,” Biocomputing 2015, pp. 132–143, 2014.

[51] Y. Pu, W. Wang, R. Henao, L. Chen, Z. Gan, C. Li, and L. Carin, “Adversarial Sym-
metric Variational Autoencoder,” in Advances in Neural Information Processing Systems
30 (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, eds.), pp. 4330–4339, Curran Associates, Inc., 2017.

[52] S. Ruder, “An overview of gradient descent optimization,” pp. 1–14, 2016.

[53] D. Erhan, P.-A. Manzagol, Y. Bengio, S. Bengio, and P. Vincent, “The Difficulty of
Training Deep Architectures and the Effect of Unsupervised Pre-Training,” Twelfth
International Conference on Artificial Intelligence and Statistics (AISTATS), JMLR Workshop
and Conference Procedings, vol. 5, pp. 153–160, 2009.

[54] Y. Yao, L. Rosasco, and A. Caponnetto, “On Early Stopping in Gradient Descent
Learning,” Constructive Approximation, vol. 26, pp. 289–315, aug 2007.

[55] Y. Zhang and Q. Yang, “An overview of multi-task learning,” National Science Review,
vol. 5, no. 1, pp. 30–43, 2018.

[56] L. Torrey and J. Shavlik, “Transfer Learning,” in Handbook of Research on Machine
Learning Applications and Trends: Algorithms, Methods, and Techniques, ch. Transfer L,
Information Science Reference, 2010.

[57] B. Zoph, D. Yuret, J. May, and K. Knight, “Transfer Learning for Low-Resource Neural
Machine Translation,” CoRR, pp. 1568–1575, 2016.

[58] S. Hoo-Chang, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura,
and R. M. Summers, “Deep Convolutional Neural Networks for Computer-Aided
Detection: CNN Architectures, Dataset Characteristics and Transfer Learning and
Daniel Mollura are with Center for Infectious Disease Imaging HHS Public Access,”
IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1285–1298, 2016.

Bibliography 78

[59] A. Parvat, J. Chavan, S. Kadam, S. Dev, and V. Pathak, “A survey of deep-learning
frameworks,” Proceedings of the International Conference on Inventive Systems and Control,
ICISC 2017, pp. 1–7, 2017.

[60] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shel-
hamer, “cuDNN : Efficient Primitives for Deep Learning,” pp. 1–9.

[61] B. A. Fine, “The Evolution of Nondirectiveness in Genetic Counseling and Implica-
tions of the Human Genome Project,” in Genetic Counseling, pp. 101–118, Routledge,
jul 2017.

[62] F. S. Collins, M. Morgan, and A. Patrinos, “The Human Genome Project: lessons from
large-scale biology.,” Science (New York, N.Y.), vol. 300, pp. 286–90, apr 2003.

[63] R. J. DeBerardinis, J. J. Lum, G. Hatzivassiliou, and C. B. Thompson, “The Biology
of Cancer: Metabolic Reprogramming Fuels Cell Growth and Proliferation,” Cell
Metabolism, vol. 7, pp. 11–20, jan 2008.

[64] J. Larry Jameson and D. L. Longo, “Precision MedicinePersonalized, Problematic, and
Promising,” Obstetrical & Gynecological Survey, vol. 70, pp. 612–614, oct 2015.

[65] Y.-C. Chiu, H.-I. H. Chen, T. Zhang, S. Zhang, A. Gorthi, L.-J. Wang, Y. Huang, and
Y. Chen, “Predicting drug response of tumors from integrated genomic profiles by
deep neural networks,” may 2018.

[66] E. W. Sliwoski, Gregory. Kothiwale, Sandeepkumar. Meiler, Jens. Lowe Jr, “Computa-
tional Methods in Drug Discovery,” Pharmacological Reviews, vol. 66, no. 1, pp. 334–395,
2014.

[67] S. C. Schuster, “Next-generation sequencing transforms today’s biology,” Nature Meth-
ods, vol. 5, pp. 16–18, jan 2008.

[68] K. J. Karczewski and M. P. Snyder, “Integrative omics for health and disease,” Nature
Reviews Genetics, vol. 19, no. 5, pp. 299–310, 2018.

[69] K. Chaudhary, O. B. Poirion, L. Lu, and L. X. Garmire, “Deep learningbased multi-
omics integration robustly predicts survival in liver cancer,” Clinical Cancer Research,
vol. 24, no. 6, pp. 1248–1259, 2018.

[70] D. C. Koboldt, Q. Zhang, D. E. Larson, D. Shen, M. D. McLellan, L. Lin, C. A. Miller,
E. R. Mardis, L. Ding, and R. K. Wilson, “VarScan 2: somatic mutation and copy
number alteration discovery in cancer by exome sequencing.,” Genome research, vol. 22,
pp. 568–76, mar 2012.

Bibliography 79

[71] K. Hayashi, “PCR-SSCP: A method for detection of mutations,” Genetic Analysis:
Biomolecular Engineering, vol. 9, pp. 73–79, jun 1992.

[72] R. Fodde and M. Losekoot, “Mutation detection by denaturing gradient gel elec-
trophoresis (DGGE),” Human Mutation, vol. 3, pp. 83–94, jan 1994.

[73] C. Gawad, W. Koh, and S. R. Quake, “Single-cell genome sequencing: current state of
the science,” Nature Reviews Genetics, vol. 17, pp. 175–188, mar 2016.

[74] R. Kappelhoff, X. S. Puente, C. H. Wilson, A. Seth, C. López-Otı́n, and C. M. Over-
all, “Overview of transcriptomic analysis of all human proteases, non-proteolytic ho-
mologs and inhibitors: Organ, tissue and ovarian cancer cell line expression profiling
of the human protease degradome by the CLIP-CHIP DNA microarray,” Biochimica et
Biophysica Acta (BBA) - Molecular Cell Research, vol. 1864, pp. 2210–2219, nov 2017.

[75] S. Michiels, S. Koscielny, and C. Hill, “Prediction of cancer outcome with microarrays:
a multiple random validation strategy,” The Lancet, vol. 365, pp. 488–492, feb 2005.

[76] Z. Wang, M. Gerstein, and M. Snyder, “RNA-Seq: a revolutionary tool for transcrip-
tomics.,” Nature Reviews Genetics, vol. 10, pp. 57–73, 2009.

[77] M. A. Jensen, V. Ferretti, R. L. Grossman, and L. M. Staudt, “The NCI Genomic Data
Commons as an engine for precision medicine,” Blood, vol. 130, no. 4, pp. 453–459,
2017.

[78] Y. Chang, H. Park, H.-J. Yang, S. Lee, K.-Y. Lee, T. S. Kim, J. Jung, and J.-M. Shin,
“Cancer Drug Response Profile scan (CDRscan): A Deep Learning Model That Pre-
dicts Drug Effectiveness from Cancer Genomic Signature,” Scientific Reports, vol. 8,
p. 8857, dec 2018.

[79] Y. Yuan, Y. Shi, C. Li, J. Kim, W. Cai, Z. Han, and D. D. Feng, “DeepGene: an advanced
cancer type classifier based on deep learning and somatic point mutations,” BMC
Bioinformatics, vol. 17, p. 476, dec 2016.

[80] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun,
“Dermatologist-level classification of skin cancer with deep neural networks,” Nature,
vol. 542, no. 7639, pp. 115–118, 2017.

[81] J. A. Cruz and D. S. Wishart, “Applications of Machine Learning in Cancer Prediction
and Prognosis,” Cancer Informatics, vol. 2, p. 117693510600200, jan 2006.

[82] S. Peng, Q. Xu, X. B. Ling, X. Peng, W. Du, and L. Chen, “Molecular classification of
cancer types from microarray data using the combination of genetic algorithms and
support vector machines,” FEBS Letters, vol. 555, no. 2, pp. 358–362, 2003.

Bibliography 80

[83] B. D. Lehmann, Y. Shyr, J. A. Pietenpol, B. D. Lehmann, J. A. Bauer, X. Chen, M. E.
Sanders, A. B. Chakravarthy, Y. Shyr, and J. A. Pietenpol, “Identification of human
triple-negative breast cancer subtypes and preclinical models for selection of targeted
therapies,” Journal of Clinical Investigation, vol. 121, no. 7, pp. 2750–2767, 2011.

[84] T. Ayer, O. Alagoz, J. Chhatwal, J. W. Shavlik, C. E. Kahn, and E. S. Burnside, “Breast
cancer risk estimation with artificial neural networks revisited,” Cancer, vol. 116,
pp. 3310–3321, apr 2010.

[85] Y. S. Kim, S. Y. Sohn, and C. N. Yoon, “Screening test data analysis for liver dis-
ease prediction model using growth curve,” Biomedicine & Pharmacotherapy, vol. 57,
pp. 482–488, dec 2003.

[86] P. Rosado, P. Lequerica-Fernández, L. Villallaı́n, I. Peña, F. Sanchez-Lasheras, and J. C.
de Vicente, “Survival model in oral squamous cell carcinoma based on clinicopatho-
logical parameters, molecular markers and support vector machines,” Expert Systems
with Applications, vol. 40, pp. 4770–4776, sep 2013.

[87] D. Delen, G. Walker, and A. Kadam, “Predicting breast cancer survivability: a compar-
ison of three data mining methods,” Artificial Intelligence in Medicine, vol. 34, pp. 113–
127, jun 2005.

[88] W. Kim, K. S. Kim, J. E. Lee, D.-Y. Noh, S.-W. Kim, Y. S. Jung, M. Y. Park, and
R. W. Park, “Development of Novel Breast Cancer Recurrence Prediction Model Using
Support Vector Machine,” Journal of Breast Cancer, vol. 15, p. 230, jun 2012.

[89] L. Ahmad and A. Eshlaghy, “Using Three Machine Learning Techniques for Predict-
ing Breast Cancer Recurrence,” Journal of Health & Medical Informatics, vol. 04, no. 02,
p. 2018, 2013.

[90] J. Barretina, G. Caponigro, N. Stransky, K. Venkatesan, A. A. Margolin, S. Kim, C. J.
Wilson, J. Lehár, G. V. Kryukov, D. Sonkin, A. Reddy, M. Liu, L. Murray, M. F.
Berger, J. E. Monahan, P. Morais, J. Meltzer, A. Korejwa, J. Jané-Valbuena, F. A. Mapa,
J. Thibault, E. Bric-Furlong, P. Raman, A. Shipway, I. H. Engels, J. Cheng, G. K. Yu,
J. Yu, P. Aspesi, M. de Silva, K. Jagtap, M. D. Jones, L. Wang, C. Hatton, E. Pales-
candolo, S. Gupta, S. Mahan, C. Sougnez, R. C. Onofrio, T. Liefeld, L. MacConaill,
W. Winckler, M. Reich, N. Li, J. P. Mesirov, S. B. Gabriel, G. Getz, K. Ardlie, V. Chan,
V. E. Myer, B. L. Weber, J. Porter, M. Warmuth, P. Finan, J. L. Harris, M. Meyerson, T. R.
Golub, M. P. Morrissey, W. R. Sellers, R. Schlegel, and L. A. Garraway, “The Cancer
Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity,”
Nature, vol. 483, pp. 603–607, mar 2012.

Bibliography 81

[91] M. P. Menden, F. Iorio, M. Garnett, U. McDermott, C. H. Benes, P. J. Ballester, and
J. Saez-Rodriguez, “Machine Learning Prediction of Cancer Cell Sensitivity to Drugs
Based on Genomic and Chemical Properties,” PLoS ONE, vol. 8, p. e61318, apr 2013.

[92] C. Cao, F. Liu, H. Tan, D. Song, W. Shu, W. Li, Y. Zhou, X. Bo, and Z. Xie, “Deep
Learning and Its Applications in Biomedicine,” Genomics, Proteomics and Bioinformat-
ics, vol. 16, no. 1, pp. 17–32, 2018.

[93] S. Pereira, A. Pinto, V. Alves, and C. A. Silva, “Brain Tumor Segmentation Using Con-
volutional Neural Networks in MRI Images,” IEEE Transactions on Medical Imaging,
vol. 35, pp. 1240–1251, may 2016.

[94] Yan Xu, Jun-Yan Zhu, E. Chang, and Zhuowen Tu, “Multiple clustered instance learn-
ing for histopathology cancer image classification, segmentation and clustering,” in
2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 964–971, IEEE,
jun 2012.

[95] A. Petrosian, D. Prokhorov, R. Homan, R. Dasheiff, and D. Wunsch, “Recurrent neu-
ral network based prediction of epileptic seizures in intra- and extracranial EEG,”
Neurocomputing, vol. 30, pp. 201–218, jan 2000.

[96] T. Kooi, G. Litjens, B. van Ginneken, A. Gubern-Mérida, C. I. Sánchez, R. Mann,
A. den Heeten, and N. Karssemeijer, “Large scale deep learning for computer aided
detection of mammographic lesions,” Medical Image Analysis, vol. 35, pp. 303–312, jan
2017.

[97] Yang Li and T. Shibuya, “Malphite: A convolutional neural network and ensemble
learning based protein secondary structure predictor,” in 2015 IEEE International Con-
ference on Bioinformatics and Biomedicine (BIBM), pp. 1260–1266, IEEE, nov 2015.

[98] S. Zhang, J. Zhou, H. Hu, H. Gong, L. Chen, C. Cheng, and J. Zeng, “A deep learning
framework for modeling structural features of RNA-binding protein targets,” Nucleic
Acids Research, vol. 44, pp. e32–e32, feb 2016.

[99] Y. Chen, Y. Li, R. Narayan, A. Subramanian, and X. Xie, “Gene expression inference
with deep learning,” Bioinformatics, vol. 32, pp. 1832–1839, jun 2016.

[100] M. K. K. Leung, H. Y. Xiong, L. J. Lee, and B. J. Frey, “Deep learning of the tissue-
regulated splicing code,” Bioinformatics, vol. 30, pp. i121–i129, jun 2014.

[101] S. Park, S. Min, H. Choi, and S. Yoon, “deepMiRGene: Deep Neural Network based
Precursor microRNA Prediction,” apr 2016.

Bibliography 82

[102] D. Quang, Y. Chen, and X. Xie, “DANN: a deep learning approach for annotating the
pathogenicity of genetic variants,” Bioinformatics, vol. 31, pp. 761–763, mar 2015.

[103] Y. Xiao, J. Wu, Z. Lin, and X. Zhao, “A deep learning-based multi-model ensemble
method for cancer prediction,” Computer Methods and Programs in Biomedicine, vol. 153,
pp. 1–9, 2018.

[104] L. Zhang, Q. Yu, X. C. Wu, M. C. Hsieh, M. Loch, V. W. Chen, E. Fontham, and
T. Ferguson, “Impact of chemotherapy relative dose intensity on cause-specific and
overall survival for stage IIII breast cancer: ER+/PR+, HER2- vs. triple-negative,”
Breast Cancer Research and Treatment, vol. 169, no. 1, pp. 175–187, 2018.

[105] Y. Fong, J. Evans, D. Brook, J. Kenkre, P. Jarvis, and K. Gower-Thomas, “The Notting-
ham Prognostic Index: five-and ten-year data for all-cause survival within a screened
population,” Annals of The Royal College of Surgeons of England, vol. 97, no. 2, pp. 137–
139, 2015.

[106] J. Gao, B. A. Aksoy, U. Dogrusoz, G. Dresdner, B. Gross, S. O. Sumer, Y. Sun, A. Jacob-
sen, R. Sinha, E. Larsson, E. Cerami, C. Sander, and N. Schultz, “Integrative Analysis
of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal,” Science Sig-
naling, vol. 6, pp. pl1 LP – pl1, apr 2013.

[107] C. Curtis, S. P. Shah, S.-F. Chin, G. Turashvili, O. M. Rueda, M. J. Dunning, D. Speed,
A. G. Lynch, S. Samarajiwa, Y. Yuan, S. Gräf, G. Ha, G. Haffari, A. Bashashati, R. Rus-
sell, S. McKinney, A. Langerød, A. Green, E. Provenzano, G. Wishart, S. Pinder, P. Wat-
son, F. Markowetz, L. Murphy, I. Ellis, A. Purushotham, A.-L. Børresen-Dale, J. D.
Brenton, S. Tavaré, C. Caldas, and S. Aparicio, “The genomic and transcriptomic ar-
chitecture of 2,000 breast tumours reveals novel subgroups,” Nature, vol. 486, no. 7403,
pp. 346–352, 2012.

[108] B. Pereira, S. F. Chin, O. M. Rueda, H. K. M. Vollan, E. Provenzano, H. A. Bardwell,
M. Pugh, L. Jones, R. Russell, S. J. Sammut, D. W. Tsui, B. Liu, S. J. Dawson, J. Abra-
ham, H. Northen, J. F. Peden, A. Mukherjee, G. Turashvili, A. R. Green, S. McKin-
ney, A. Oloumi, S. Shah, N. Rosenfeld, L. Murphy, D. R. Bentley, I. O. Ellis, A. Pu-
rushotham, S. E. Pinder, A. L. BØrresen-Dale, H. M. Earl, P. D. Pharoah, M. T. Ross,
S. Aparicio, and C. Caldas, “The somatic mutation profiles of 2,433 breast cancers
refines their genomic and transcriptomic landscapes,” Nature Communications, vol. 7,
no. May, 2016.

[109] I. Tirosh, B. Izar, S. M. Prakadan, M. H. W. Ii, D. Treacy, J. J. Trombetta, A. Rotem,
C. Rodman, C. Lian, G. Murphy, M. Fallahi-sichani, K. Dutton-regester, J.-r. Lin,
S. W. Kazer, A. Gaillard, and K. E. Kolb, “Dissecting the multicellular ecosystem of

Bibliography 83

metastatic melanoma by single-cell RNA-seq,” Science, vol. 352, no. 6282, pp. 189–196,
2016.

[110] The American Cancer Society, “Melanoma Skin Cancer Statistics,” 2019.

[111] Y. Liu and M. S. Sheikh, “Melanoma: Molecular pathogenesis and therapeutic man-
agement,” Molecular and Cellular Pharmacology, vol. 6, no. 3, pp. 31–44, 2014.

[112] T. Barrett, S. E. Wilhite, P. Ledoux, C. Evangelista, I. F. Kim, M. Tomashevsky, K. A.
Marshall, K. H. Phillippy, P. M. Sherman, M. Holko, A. Yefanov, H. Lee, N. Zhang,
C. L. Robertson, N. Serova, S. Davis, and A. Soboleva, “NCBI GEO: Archive for func-
tional genomics data sets - Update,” Nucleic Acids Research, vol. 41, no. D1, pp. 991–
995, 2013.

A
C O D E E X P L A N AT I O N

a.1 preprocessing

Table A.1.1.: Preprocessing properties

Property Description

expr file Expression file path

clinic data file Clinical data file path

exprs Gene expression dataframe

clinic data Clinical data dataframe

n features Number of features

n samples Number of samples

features List of features

mt Boolean True for multi-tasking experi-
ments

84

A.1. Preprocessing 85

Table A.1.2.: Preprocessing methods

Method Description

read exprs data Reads expression file genes in
columns and samples in rows

read clinical data Reads clinical data file and generates
a dataframe with one or more labels

set feature number Sets the variable with the number of
columns

set list features Sets a list with the features

set sample number Sets the variable with the number of
rows

set index Indexes both dataframes with the
same indexation

nom to num Categorizes string values from one or
more labels to numeric values

load data Reads both files, sets index, feature
list, number of features and samples

get feature number Returns the number of features

get list features Returns the list of features

get sample number Returns the number of features

variance filter Selects features with variance higher
than a given threshold

mse filter Selects the n features with higher
mean absolute deviation values

filter genes Selects the n best features using Selec-
tKBest with f classif filter

normalize zero one Applies MinMaxScaler to expression
data

normalize data Applies StandardScaler to expression
data

save matrices train test Saves train and test matrices

split dataset Applies normalization, feature selec-
tion and returns train and test matri-
ces

A.2. Shallow 86

a.2 shallow

Table A.2.1.: Shallow properties

Property Description

X X matrix

y y matrix

X train, X test, y train, y test X and y train and test matrices

splitted Boolean True if X and y are split in
train and test

feature number Number of features

list models List of available types of models

model Scikit-learn object generated after
GridSearchCV

model name Name of model type

scoring Scorer used to evaluate performance
in GridSearchCV

cv Number of folds to be used in cross
validation

A.2. Shallow 87

Table A.2.2.: Shallow methods

Method Description

print parameter values Print hyperparameter values

predict values Returns a prediction for a given input

evaluate model Evaluates model performance using
different metrics

calculate scores cv Calculates and returns cross valida-
tion results

format scores cv Formats cross validation scores

save best model Saves the best performing model

load model Loads a stored model

write cv results Writes cross validation scores in a csv
file

write report Writes evaluation results in a text file

write report cv Writes the results of cross validation
applied to model evaluation

model selection (model type) Performs GridSearchCV for a type of
model

multi model selection Performs model selection and evalua-
tion

A.3. DNN 88

a.3 dnn

Table A.3.1.: DNN properties

Property Description

X X matrix

y y matrix

X train, X test, y train, y test X and y train and test matrices

splitted Boolean True if X and y are split in
train and test

feature number Number of features

parameters Dictionary with model hyperparame-
ters

filename Name for files generated in the exper-
iment

verbose If 1, prints the data during the DNN
training

parameters batch Batch of hyperparameters used in
model selection

model selection history Stores scores and history of DNN
training during model selection

cv Number of folds to be used in cross
validation

history History of the training of a DNN

A.3. DNN 89

Table A.3.2.: DNN methods

Method Description

print parameter values Prints hyperparameter values

create DNN model Creates a Keras sequential model

cv fit Performs cross validation

fit model Fits DNN model

print fit results Prints fitting results

predict values Returns a prediction for a given input

evaluate model Evaluates model performance using
different metrics

format scores cv Formats cross validation scores

model selection Performs a random search hyperpa-
rameter optimization

find best model Returns best performing model

select best model Loads the parameter configuration of
best the performing model

batch parameter shuffler Selects a random set of hyperparame-
ters

set filename Sets the filename

plot model performance Generates a graph with training met-
rics

write model selection results Writes a csv file with results of the
model selection

write report Writes a csv file with model evalua-
tion results

model fit results Fits and evaluates a model with the
given hyperparameters

save best model Saves the best performing model

load model Loads a stored model

multi model selection Performs model selection and evalua-
tion

A.4. DNN MT 90

a.4 dnn mt

Table A.4.1.: DNN MT properties

Property Description

X X matrix

y y matrix

X train, X test, y train, y test X and y train and test matrices

splitted Boolean True if X and y are split in
train and test

feature number Number of features

parameters Dictionary with model hyperparame-
ters

filename Name for files generated in the exper-
iment

verbose If 1, prints the data during DNN train-
ing

parameters batch Batch of hyperparameters used in
model selection

model selection history Stores scores and history of DNN
training during model selection

cv Number of fold to be used in cross val-
idation

history History of the training of a DNN

types List of types of ML problems of each
label

loss weights List with weight loss for each label

labels List with labels

labels number Number of labels

A.4. DNN MT 91

Table A.4.2.: DNN MT methods

Method Description

insert labels Inserts a new list of labels

insert loss weights Inserts a list of loss weights

create DNN model Creates a model with Keras functional
API

print parameter values Prints hyperparameter values

fit model Fits multi-task DNN model

predict values Returns a prediction for a given input

evaluate model Evaluates model performance using
different metrics

batch parameter shuffler Returns a random set of hyperparam-
eters

set new parameters Sets a set of hyperparameters to the
model

y splitter Splits the different labels

hold out fit Fits a DNN model and evaluates us-
ing test data

fold generator Generates and returns folds for cross
validation

cv fit Performs cross validation

model selection Performs a random search hyperpa-
rameter optimization

find best model Return best performing model

select best model Loads the parameter configuration of
the best performing model

best model selection Performs model selection and evalua-
tion

save best model Saves the best performing model

load model Loads a stored model

B
D E TA I L S O F R E S U LT S - F I R S T C A S E S T U D Y

b.1 er model results

Table B.1.1.: Results of the ER predicting KNN model.
Hyperparameters Metrics
algorithm: auto

leaf size: 30

metric: cityblock
metric params: None

n neighbors: 3

p: 2

weights: uniform

AUC: 0.8715

Accuracy: 0.9328

F1 score: 0.9574

MCC: 0.8059

Precision: 0.9302

Recall: 0.9863

Log loss: 2.3220

Table B.1.2.: Results of the ER predicting LR model.
Hyperparameters Metrics

C: 0.1
class weight: None

dual: False
fit intercept: True

intercept scaling: 1

max iter: 100

multi class: warn
penalty: l1

random state: None
solver: warn

tol: 0.0001

warm start: False

AUC: 0.9896

Accuracy: 0.9937

F1 score: 0.9959

MCC: 0.9823

Precision: 0.9945

Recall: 0.9972

Log loss: 0.2177

92

B.1. ER Model Results 93

Table B.1.3.: Results of the ER predicting RF model.
Hyperparameters Metrics

bootstrap: True
class weight: None

criterion: gini
max depth: None
max features: auto

max leaf nodes: None
min impurity decrease: 0.0
min impurity split: None

min samples leaf: 1

min samples split: 2

min weight fraction leaf: 0.0
n estimators: 200

oob score: False
random state: None

warm start: False

AUC: 0.9432

Accuracy: 0.9706

F1 score: 0.9811

MCC: 0.9168

Precision: 0.9680

Recall: 0.9945

Log loss: 1.0159

Table B.1.4.: Results of the ER predicting SVM model.
Hyperparameters Metrics

C: 0.01

cache size: 200

class weight: None
coef0: 0.0

decision function shape: ovr
degree: 3

gamma: auto deprecated
kernel: linear
max iter: -1

probability: False
random state: None

shrinking: True
tol: 0.001

AUC: 0.9602

Accuracy: 0.9727

F1 score: 0.9822

MCC: 0.9234

Precision: 0.9809

Recall: 0.9836

Log loss: 0.9433

B.2. THREEGENE Model Results 94

Table B.1.5.: Results of the ER predicting DNN model.
Hyperparameters Metrics

batch size: 256

dropout: 0.4
early stopping: True

learning rate: 0.01

nb epoch: 100

optimization: Adadelta
batch normalization: True

patience: 80

units in hidden layers: [1024, 128]
units in input layer: 5000

AUC: 0.9462

Accuracy: 0.9559

F1 score: 0.9710

MCC: 0.8789

Precision: 0.9778

Recall: 0.9644

Log loss: 1.5238

b.2 threegene model results

Table B.2.1.: Results of the THREEGENE predicting KNN model.
Hyperparameters Metrics
algorithm: auto

leaf size: 30

metric: cityblock
metric params: None

n neighbors: 3

p: 2

weights: uniform

Accuracy: 0.6965

F1 score: 0.6766

MCC: 0.5879

Precision: 0.7308

Recall: 0.6965

Table B.2.2.: Results of the THREEGENE predicting LR model.
Hyperparameters Metrics

C: 0.1
class weight: None

dual: False
fit intercept: True

intercept scaling: 1

max iter: 100

multi class: warn
penalty: l1
tol: 0.0001

warm start: False

Accuracy: 0.9129

F1 score: 0.9130

MCC: 0.8769

Precision: 0.9156

Recall: 0.9129

B.2. THREEGENE Model Results 95

Table B.2.3.: Results of the THREEGENE predicting RF model.
Hyperparameters Metrics

bootstrap: True
class weight: None

criterion: gini
max depth: None
max features: auto

max leaf nodes: None
min impurity decrease: 0.0
min impurity split: None

min samples leaf: 1

min samples split: 2

min weight fraction leaf: 0.0
n estimators: 500

n jobs: None
oob score: False

random state: None
verbose: 0

warm start: False

Accuracy: 0.9271

F1 score: 0.9271

MCC: 0.8956

Precision: 0.9290

Recall: 0.9271

Table B.2.4.: Results of the THREEGENE predicting SVM model.
Hyperparameters Metrics

C: 0.01

cache size: 200

class weight: None
coef0: 0.0

decision function shape: ovr
degree: 3

gamma: auto deprecated
kernel: linear
max iter: -1

probability: False
random state: None

shrinking: True
tol: 0.001

Accuracy: 0.9153

F1 score: 0.9155

MCC: 0.8791

Precision: 0.9160

Recall: 0.9153

B.3. NPI Model Results 96

Table B.2.5.: Results of the THREEGENE predicting DNN model.
Hyperparameters Metrics

batch size: 64

dropout: 0.3
early stopping: False
learning rate: 0.005

nb epoch: 150

batch normalization: False
optimization: SGD

patience: 80

units in hidden layers: [2048, 1024, 512, 128]
units in input layer: 5000

Accuracy: 0.8894

F1 score: 0.8888

MCC: 0.8423

Precision: 0.8894

Recall: 0.8894

b.3 npi model results

Table B.3.1.: Results of the NPI predicting KNN model.
Hyperparameters Metrics
algorithm: auto

leaf size: 30

metric: cityblock
metric params: None

n neighbors: 5

p: 2

weights: uniform

R2: 0.0799

MAE: 0.8914

MSE: 1.2396

Table B.3.2.: Results of the NPI predicting EN model.
Hyperparameters Metrics
fit intercept: True

positive: True
selection: random

R2: 0.0116

MAE: 0.8770

MSE: 1.3316

B.3. NPI Model Results 97

Table B.3.3.: Results of the NPI predicting RF model.
Hyperparameters Metrics

bootstrap: True
criterion: mse

max depth: None
max features: auto

max leaf nodes: None
min impurity decrease: 0.0
min impurity split: None

min samples leaf: 1

min samples split: 2

n estimators: 500

R2: 0.2288

MAE: 0.8253

MSE: 1.0390

Table B.3.4.: Results of the NPI predicting SVM model.
Hyperparameters Metrics

C: 0.001

cache size: 200

coef0: 0.0
degree: 3

epsilon: 0.1
gamma: auto deprecated

kernel: linear
shrinking: True

tol: 0.001

R2: 0.1477

MAE: 0.8545

MSE: 1.1482

Table B.3.5.: Results of the NPI predicting DNN model.
Hyperparameters Metrics

batch size: 64

batch normalization: True
dropout: 0.5

early stopping: False
learning rate: 0.01

nb epoch: 100

optimization: SGD
patience: 80

units in hidden layers: [2048, 128, 16]
units in input layer: 5000

R2: 0.1604

MSE: 1.0848

MAE: 0.8169

B.4. Multi tasking DNN Model Results 98

b.4 multi tasking dnn model results

Table B.4.6.: Results of the ER, HER-2 and PR multi-tasking DNN.
Hyperparameters ER Results HER-2 Results PR Results

batch size: 32

batch normalization: True
dropout: 0.5

early stopping: True
learning rate: 0.005

nb epoch: 200

optimization: SGD
patience: 80

hidden layers: [2048, 512]
units in input layer: 5000

AUC: 0.9475

Accuracy: 0.9281

F1 score: 0.9657

MCC: 0.8536

Precision: 0.9670

Recall: 0.9644

Log loss: 1.8140

AUC: 0.9790

Accuracy: 0.9549

F1 score: 0.9219

MCC: 0.9097

Precision: 0.9219

Recall: 0.9219

Log loss: 0.7256

AUC: 0.8361

Accuracy: 0.8343

F1 score: 0.8482

MCC: 0.6732

Precision: 0.8165

Recall: 0.8826

Log loss: 5.6598

C
D E TA I L O F R E S U LT S - S E C O N D C A S E S T U D Y

c.1 melanoma model results

Table C.1.1.: Results of the cell malignancy predicting KNN model.
Hyperparameters Metrics
algorithm: auto

leaf size: 30

metric: cityblock
metric params: None

n neighbors: 5

p: 2

weights: uniform

AUC: 0.9678

Accuracy: 0.9750

F1 score: 0.9803

MCC: 0.9472

Precision: 0.9640

Recall: 0.9971

Log loss: 0.8635

Table C.1.2.: Results of the cell malignancy predicting LR model.
Hyperparameters Metrics

C: 100

class weight: None
dual: False

fit intercept: True
intercept scaling: 1

max iter: 100

multi class: warn
penalty: l1

random state: None
solver: warn

tol: 0.0001

warm start: False

AUC: 0.9986

Accuracy: 0.9982

F1 score: 0.9986

MCC: 0.9962

Precision: 1.0
Recall: 0.9971

Log loss: 0.0617

99

C.1. Melanoma Model Results 100

Table C.1.3.: Results of the cell malignancy predicting RF model.
Hyperparameters Metrics

bootstrap: True
class weight: None

criterion: gini
max depth: None
max features: auto

max leaf nodes: None
min impurity decrease: 0.0
min impurity split: None

min samples leaf: 1

min samples split: 2

min weight fraction leaf: 0.0
n estimators: 100

oob score: False
random state: None

warm start: False

AUC: 0.9934

Accuracy: 0.9935

F1 score: 0.9945

MCC: 0.9915

Precision: 0.9923

Recall: 0.9923

Log loss: 0.4323

Table C.1.4.: Results of the cell malignancy predicting SVM model.
Hyperparameters Metrics

C: 0.001

cache size: 200

class weight: None
coef0: 0.0

decision function shape: ovr
degree: 3

gamma: auto deprecated
kernel: linear
max iter: -1

probability: False
random state: None

shrinking: True
tol: 0.001

AUC: 0.9962

Accuracy: 0.9964

F1 score: 0.9971

MCC: 0.9924

Precision: 0.9971

Recall: 0.9971

Log loss: 0.1234

C.1. Melanoma Model Results 101

Table C.1.5.: Results of the cell malignancy predicting DNN model.
Hyperparameters Metrics

batch size: 256

dropout: 0.5
early stopping: False
learning rate: 0.015

nb epoch: 150

optimization: Adam
batch normalization: True

patience: 80

units in hidden layers: [2048, 1024,512]
units in input layer: 5000

AUC: 0.9928

Accuracy: 0.9911

F1 score: 0.9928

MCC: 0.9813

Precision: 1.0
Recall: 0.9857

Log loss: 0.3084

	1 Introduction
	1.1 Context and Motivation
	1.2 Objectives
	1.3 Organization of the text

	2 Machine Learning and Deep Learning
	2.1 Machine Learning Fundamentals
	2.1.1 Supervised Learning
	2.1.2 Unsupervised Learning

	2.2 Supervised ML Models
	2.2.1 Linear and Logistic Regression
	2.2.2 K-Nearest Neighbor
	2.2.3 Support Vector Machine
	2.2.4 Decision Trees and Regression Trees
	2.2.5 Ensembles
	2.2.6 Feature Selection

	2.3 Unsupervised ML Models
	2.3.1 Hierarchical Clustering
	2.3.2 K-means
	2.3.3 Principal Component Analysis (PCA)
	2.3.4 t-Distributed Stochastic Neighbor Embedding (t-SNE)

	2.4 Artificial Neural Networks (ANN)
	2.4.1 Perceptrons and neurons
	2.4.2 Feedforward neural networks
	2.4.3 Gradient Descent
	2.4.4 Backpropagation Algorithm

	2.5 Deep Learning
	2.5.1 Deep Neural Networks (DNN)
	2.5.2 Convolutional Neural Networks (CNN)
	2.5.3 Recurrent Neural Networks (RNN)
	2.5.4 Alternative Architectures
	2.5.5 Training Algorithms
	2.5.6 Overfitting and regularization
	2.5.7 Hyperparameter optimization
	2.5.8 Multi-task Learning (MTL)
	2.5.9 Transfer learning
	2.5.10 Deep Learning Frameworks and tools

	3 Omics data and machine learning methods in cancer
	3.1 Introduction
	3.2 Cancer Data
	3.2.1 Omics Data
	3.2.2 Omics Databases

	3.3 Machine Learning Application in Cancer
	3.3.1 "Shallow" Learning
	3.3.2 Deep Learning

	4 Development
	4.1 Software
	4.1.1 Preprocessing modules
	4.1.2 Shallow machine learning modules
	4.1.3 DNN
	4.1.4 Multi-task DNN

	5 First Case Study
	5.1 METABRIC: description of the dataset
	5.1.1 Expression Dataset
	5.1.2 Clinical dataset

	5.2 Experimental setup
	5.2.1 Pre-processing
	5.2.2 Shallow learning
	5.2.3 Deep Learning
	5.2.4 Multi-tasking
	5.2.5 Computational resources

	5.3 Case study results
	5.3.1 Overall results
	5.3.2 ER prediction results
	5.3.3 THREEGENE prediction results
	5.3.4 NPI prediction results
	5.3.5 Multi-tasking DNN results

	5.4 Discussion

	6 Second Case Study
	6.1 Description of melanoma dataset
	6.1.1 Expression dataset
	6.1.2 Metadata dataset

	6.2 Experimental setup
	6.2.1 Pre-processing
	6.2.2 Shallow learning
	6.2.3 Deep Learning
	6.2.4 Computational resources

	6.3 Case study results
	6.4 Discussion

	7 Conclusion
	A Code Explanation
	A.1 Preprocessing
	A.2 Shallow
	A.3 DNN
	A.4 DNN_MT

	B Details of results - First Case Study
	B.1 ER Model Results
	B.2 THREEGENE Model Results
	B.3 NPI Model Results
	B.4 Multi tasking DNN Model Results

	C Detail of results - Second Case Study
	C.1 Melanoma Model Results

