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Resumo 

Nos últimos anos a identificação e sequenciação de proteínas transportadoras tem crescido, uma 

vez que estas são de extrema importância no corpo humano e em todos os seres vivos, sendo 

responsáveis pela absorção e movimentação de moléculas essenciais às células e ainda pela excreção 

de produtos do metabolismo celular. A identificação de genes que codificam proteínas transportadoras é 

muito importante em várias áreas, como farmacocinética e reconstrução de modelos metabólicos em 

escala genómica que permitem perceber a relação entre genótipos-fenótipos. 

De forma a tentar diferenciar proteínas transportadoras de não transportadoras duas abordagens 

foram realizadas, treinando e testando modelos de machine learning e de deep learning. Os dados 

utilizados provêm da base de dados TCDB, que contém proteínas transportadoras, e da base de dados 

Swiss-Prot, onde as proteínas foram filtradas para serem obtidas proteínas não transportadoras, obtendo 

no final um conjunto de dados equilibrado. De seguida, através desses dados foram obtidas 

características das proteínas através das suas sequências, sendo assim utilizado para treinar diferentes 

modelos de machine learning e deep neural networks. Nesta abordagem os modelos apresentaram um 

bom desempenho global, atingindo 89% de acerto na identificação de proteínas transportadoras. Todos 

os modelos treinados apresentam um elevado número de falsos negativos em comparação com o 

número de falsos positivos, indicando que a maior falha nos modelos prende-se na identificação de 

proteínas transportadoras como não transportadoras. 

O principal objetivo deste projeto prendia-se com a utilização de métodos de deep learning para 

identificar proteínas transportadoras, apenas utilizando as suas sequências de aminoácidos como 

entrada, comparando assim as duas abordagens realizadas. Desta forma, utilizando apenas as 

sequencias das proteínas, diferentes redes neuronais foram treinadas e testadas, desde redes neuronais 

recorrentes a convolucionais, obtendo um desempenho global muito semelhante ao da abordagem 

anterior, atingindo também um valor de 89% de acerto na identificação de proteínas transportadoras. 

Assim, foram alcançados modelos de desempenho preditivo semelhante sem a necessidade de calcular 

características. 

 

Palavras chave: Deep Learning; Machine Learning; Modelos; Proteínas transportadoras. 
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Abstract 

In the last years, the identification and sequencing of transport proteins has grown, once they are 

extremely important in the human body and in all living beings, being responsible for the absorption and 

movement of molecules essential to cells and also for the excretion of cellular metabolism products. 

Identification of genes that encode transport proteins is very important in areas, such as pharmacokinetics 

and genome-scale metabolic models reconstruction, which allow us to understand the relationship 

between genotypes and phenotypes. 

In order to try to differentiate transport proteins from non-transport ones, two approaches were 

taken, training and testing machine learning and deep learning models. The data used came from the 

TCDB database, which contains transport proteins, and from the Swiss-Prot database, where the proteins 

were filtered to obtain non-transport proteins, obtaining at the end a balanced dataset. Next, using this 

dataset, features were created from the protein sequences and used to train different machine learning 

models and deep neural networks. In this approach the models presented a good overall performance, 

reaching 89% accuracy in the identification of transport proteins. All trained models have a high number 

of false negatives compared to the number of false positives, indicating that the major failure in the 

models is the identification of transport proteins as non-transport proteins. 

The main objective of this project was to use deep learning methods to identify transport proteins, 

only using their aminoacid sequences as inputs, thus comparing the two approaches. Thus, using only 

the protein sequences, different neural networks were trained and tested, from recurrent to convolutional 

neural networks, obtaining an overall performance very similar to that of the previous approach, reaching 

once more 89% accuracy in the identification of transport proteins. Thus, we have attained models of 

similar predictive performance without the need to compute features. 

 

 

 

 

 

Keywords: Deep learning; Machine Learning; Models; Transport proteins. 
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1. Introduction 

1.1. Context and motivation 

Transport proteins are involved in the transportation of amino acids, sugars, proteins, cations, 

anions, mRNAs, water, hormones, electrons and substrates, playing an important role in the human body, 

especially in cellular functions like cell metabolism, ion homeostasis, signal and energy transduction, 

osmoregulation and several other process [31]. Transport proteins facilitate the absorption, uptake and 

efflux of many drugs, and are also responsible for the oxygen distribution, being vital to the growth and 

life of all living things. Due to transporters importance, their sequencing and analyses are very important 

on structural and functional biology, but also on fields like drug metabolism and pharmacokinetics, being 

also very relevant to genome-scale metabolic models reconstruction [12]. 

Nowadays, sequence analysis is a very common task used to predict proteins’ characteristics, 

mainly their functional annotation [3]. In this field, the molecular characterization of transporter proteins 

has seen a relevant growth. These are extremely important since they have a crucial role in the absorption, 

distribution and excretion of therapeutic drugs within the human body [4]. The accurate and automatic 

identification of genes encoding transport proteins and the carried metabolites are also essential for the 

development of accurate Genome-Scale Metabolic Models (GSMM’s) [5].  

GSMM’s are mathematical representations of living organisms that link genomic information to 

metabolic reaction networks allowing to understand genotype-phenotype relationships [1]. Thus, GSMM’s 

are used to predict, in silico, microorganisms’ responses to different genetic or environmental stressors, 

and, when containing transport proteins, they can associate genes to reactions [2]. 

On the other hand, Deep Learning is beginning to impact biological research and biomedical 

applications, as a result of its ability to integrate vast datasets, learn arbitrarily complex relationships and 

incorporate existing knowledge. Deep learning models are already used to predict, with varying degrees 

of success, how genetic variation alters cellular processes involved in pathogenesis, which small 

molecules will modulate the activity of therapeutically relevant proteins, and whether radiographic images 

are indicative of disease, among many other biomedical applications [6].  

Several machine learning (ML) and deep learning (DL) supervised models, widely used to analyse 

biological sequence data, based on common features extracted from the sequences, can be used to 

identify and characterize transport proteins [8]. In the neural networks used for deep learning, inputs are 

fed into an input layer and this layer feeds into one or more hidden layers. In the end, the model eventually 
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produces an output layer [9]. The performance of these models can be improved by introducing 

convolutional filters [3]. Also, recurrent neural networks, such as the Long Short Term Memory (LSTM) 

model were previously designed to handle sequences and were already used to predict, with high 

accuracy, the subcellular location of proteins using only the protein sequence information [3]. 

This dissertation emerges to address the development of accurate computational prediction 

methods, which will be able to predict if a protein is a transporter, from its amino acid sequence. One of 

the clinical applications of these methods is the prediction of potential inhibitors of multi-drug resistance 

transporters, as well as transporters that grant survival advantages to pathogenic microbes, which would 

help in the design of novel anti-microbial drugs [7]. 

 

1.2. Objectives 

The main aim of this work is to develop methods based in the use of deep learning models to 

address the identification of transporter proteins solely from their amino acid sequences, comparing their 

results with previous approaches for this task. This encompasses a number of scientific/technological 

objectives: 

• Review the state of the art Machine Learning and Deep Learning models, as well as sequence 

analysis algorithms and tools, and their applications in transport protein identification and related 

tasks. 

• Develop machine learning approaches that use features extracted from protein sequences as 

input, testing various models to predict whether a protein is a transporter or not. 

• Develop a deep learning (DL) approach with deep neural networks that uses the dataset 

containing features, thus trying to predict whether a protein is a transporter and comparing the 

results with the previous approach. 

• Develop several recurrent neural networks using different hyperparameters and types of layers, 

which should be able to predict if a protein is a transporter, from its amino acid sequence, 

comparing the results with other methods. 

• Validating these models with a large-scale dataset encompassing positive and negative cases, 

extracted from available public databases. 

1.3. Document Organization 

This document is organized in 7 chapters. The first one contemplates a brief introduction to the 

dissertation, where the principal areas are broached, and its motivation and objectives are announced.  
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Chapter 2 addresses a review of the state of the art with a more biological approach, where the 

concept of transport proteins and their importance are presented, and related to sequence analysis 

methods. Here, metabolic models are also explained and some general protein and transporter databases 

are introduced. 

Chapter 3 can be divided into three subsections. It starts with an introduction to some machine 

learning concepts and models, where neural networks have a special attention. Similarly, the next 

subsection is where deep learning concepts and models are presented, along with some bioinformatics 

frameworks and tools. Finally, at the end of this chapter, a table is presented that summarizes several 

papers in the sequence analysis field using machine learning and deep learning techniques. 

Chapter 4 presents the methods used throughout the thesis, introducing how the data were 

selected and treated, as well as the models and processes used in all approaches. This chapter also gives 

a brief explanation of the software developed and executed, and how the methods were applied, thus 

demonstrating all the development. 

Finally, at the Chapter 5, the results are presented and discussed for all the approaches taken. 

And, lastly, the conclusions of this dissertation are presented as well as the future work. 
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2. Transport Proteins 

2.1. Transport Proteins 

Transport proteins, a major class of solute-translocation system, are usually located at 

membranes and have a very important role in the human body, and all living species. Thus, besides 

playing an important role in membrane stability and architecture, transport proteins are also important 

for the regulation of metabolic functions, being responsible for roles in transport, absorption, and signal 

and energy transduction [10]. 

Regarding energy-coupling mechanisms, there are two classes of membrane transporters, 

abundant in all known species of eukarya, archaea and bacteria. The primary transport systems convert 

light or chemical energy into electrochemical energy, for instance solute concentration gradients across 

membranes. Secondary transport systems use the free energy difference stored in the electrochemical 

gradients of protons, for instance, to drive translocation reactions [10]. 

The cell membrane is highly impermeable to foreign substances, thus, the search for new 

transport proteins that allow the intercellular delivery of drugs, genes or proteins therapeutics has been 

an active and growing research area [11]. The molecular and functional characterization of transport 

proteins in animals and man is increasing significantly. These play an important role in attenuating the 

absorption, distribution and excretion (ADE) of drugs that have been shown to be substrates or inhibitors 

[12]. Therefore, carrier-mediated processes govern drug disposition and response, influencing the efficacy 

of drug therapy, playing critical roles in the overall disposition of drugs in clinical use, such as xenobiotic 

transport [12]. A key determinant in the extent of drug ADE is the lipophilicity of the substance, its affinity 

and ability to be dissolved in lipids. Due to the contribution of transport proteins, an increased lipophilicity 

is not always accompanied of an increased permeability [12]. 

There are two major classes of drug transporters: uptake or influx transporters, that facilitate the 

translocation of drugs into cells, and efflux transporters that export drugs from the intracellular to the 

extracellular milieu, usually against high concentration gradients. However, there are transport proteins 

that can exhibit both properties, influx and efflux [12]. 

Transport proteins have several functions in different parts of the human body (Figure 1), specially 

controlling the permeability across tissue membranes, such as the distribution of drugs in the body. For 

instance, the active biliary excretion is governed by transport proteins, mainly ATP-dependent 

transporters, such as P-glycoproteins and MRP2. Across the gastrointestinal tract, P-glycoprotein has a 
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clear role in absorption, limiting permeability. Similarly, at the blood-brain barrier (BBB), although 

increasing lipophilicity leads to increased BBB permeability, mediated efflux by P-glycoprotein limits brain 

penetration of a range of drugs, specially poorly lipophilic compounds, having possible consequences in 

therapeutic effectiveness of Central Nervous System (CNS) agents. Uptake transporters present in the 

sinusoidal membrane have also an important role in the liver, being a rate-limiting step in hepatic 

clearance and extraction of many drugs from the portal blood into hepatocytes. The kidney has an 

important role in the elimination of many drugs. Thus, carrier-mediated processes are involved in active 

renal secretion of drugs, mainly hydrophilic cations and hydrophilic anions [12]. 

Although transport proteins have already been considered as having a very important role in drug 

ADE, there are some factors that need to be considered with respect to variability in drug disposition and 

response, such as the fact that they are saturable, inducible, can be inhibited and display some degree 

of polymorphism [12]. 

In short, the extent of drug absorption and access to target tissue compartments depends on 

physicochemical properties of a drug, such as lipophilicity, pKa, size, as well as transport proteins affinity. 

Those proteins can be involved not only in the active absorptive efflux of drugs and xenobiotics, but also 

in the active absorptive influx of compounds, endogenous substrates, such as sugars, amino acids, 

oligopeptides, monosaccharides, bile acids, several water-soluble vitamins and hormones, that are 

extremely important and critical for maintenance of normal homeostasis [12] [12]. 

The contribution of transport proteins on drug ADE needs to be carefully considered in drug 

discovery and development, requiring appropriate in vivo models to evaluate the role of an individual 

transport protein in the disposition and elimination of drugs [12]. For instance, analyzing if transport 

proteins are implicated in a particular therapeutic target area, or whether these modulate the disposition 

and safety of co-medication [13]. P-glycoprotein in BBB already proved to have a decisive effect on the 

clinical usage of certain drugs. These models are also important to explore inhibitors of drug transporters, 

through mutant strains and specific genetic knockout models. As stated above, P-glycoprotein plays a key 

role on limiting the brain penetration. Thus, researchers suggested the possibility of reducing AIDS-

induced dementia complex by using selective and potent P-glycoprotein inhibitors, to improve brain 

penetration of HIV protease inhibitors [12]. 

The degree of expression and functionality of transport proteins can be influenced by substrate 

affinity, genetic polymorphism or even drug-drug interactions, affecting the therapeutic effectiveness, 

safety and target specificity of substrates [12]. 
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Because of the increasing preclinical and clinical evidence that supports a key determining factor 

of transport proteins in drug ADE, drug transporter science is now a rapidly emerging area in drug 

metabolism and pharmacokinetics, becoming a field that requires the identification of new transport 

proteins, as well as specific probe substrates and inhibitors for novel transporters [12]. This emerging 

field may lead to drug therapies that will further maximize target specificity, while minimizing unintended 

toxicities [12]. 

 

 

 

 

 

 

 

 

 

2.1.1. Transport Classification system 

The Transporter Classification (TC), a functional/phylogenetic system, was designed to classify 

transmembrane transport proteins [14]. In 2002, this nomenclature was adopted by the Transport 

Nomenclature Panel of the International Union of Biochemistry and Molecular Biology (IUBMB) as the 

internationally acclaimed system for transport proteins classification [14] [15]. The transporter 

classification system consists of a set of representative protein sequences, where the transporters are 

classified with a five-character designation indicating the transporter class (a single digit), subclass (a 

letter), family (a number), subfamily (a number), the protein (a number), in this specific order. This 

functional/phylogenetic system reflects the mechanism, mode of energy coupling, polarity and substrate 

specificity of a transporter, providing much information [16]. 

The TC system is divided in a total of 9 classes of transporter families and each of these classes 

are subdivided into subclasses, as shown in Table 1 [15]. The first 5 classes are well-defined classes. 

Figure 1. Transport proteins and their role in drug disposition. Adapted from [12]. 

 Brain Transport 
P-gp, OAT3, 

MRP1, MRP5, 

OATP1 

 

Hepatic Uptake 
OATP2, OCT1, OATP8, 

NTCP, OATP-B, OAT2, 

OAT3 

 Biliary 

excretion P-gp, MDR3, 

MRP2, sPGP 

 

Renal secretion 
OAT1, OAT3, 

OCT1, OCT2, 

OATP 

 

Renal secretion 

P-gp, MRP1 

 

Intestinal Efflux 

P-gp, OCT1, 

MRP2, MRP1, 

OATP3, NTCP 
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Thus, when enough information is available a TC number can be assigned to a transporter [16]. The 

available classes are: 

• Class 1 consists of channel-type facilitators; 

• Class 2 includes electrochemical potential-driven transporters, also called secondary 

carrier-type facilitators; 

• Class 3 consists on primary active transporters that use a primary source of energy to 

drive active transport of solutes against concentration gradients; 

• Class 4 consists on the group of translocators, including transport systems that 

chemically alter the substrate during transport across a membrane; 

• Class 5 is for transmembrane electron carriers, includes systems that catalyze electron 

flow across a biological membrane [14]; 

• Classes 6 and 7 are currently unused and are intended for new classes of transporters; 

• Class 8 is reserved for accessory transport proteins, that is, proteins that function 

together with transport proteins; 

• Finally, Class 9 is for incompletely characterized transport systems, transporters whose 

information available is not enough to characterize and classify the transporter [16]. 

Phylogenetic analyses may reveal structure/function relationships. Thus, computational 

approaches are useful to track phylogenetic relationships and the pathways by which proteins have 

evolved. In short, the TC system enables an extensive body of knowledge for transport systems, having 

an important role for any researcher [14]. 

 

 

Table 1. Hierarchical system for classifying families of transporters of defined function in the TC system. 

Class Subclass 

1. Channels / Pores 

1.A. α-Helical protein channels 

1.B. β-Barrel protein porins 

1.C. Toxin channels 

1.D. Non-ribosomally synthesized channels 

1.E. Holins 
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2. Electrochemical Potential-driven 

Transporters 

2.A. Protein porters 

2.B. Non-ribosomally synthesized porters 

2.C. Ion gradient-driven energizers 

3. Primary Active Transporters 

3.A. P-P-bond hydrolysis-driven systems 

3.B. Decarboxylation-driven systems 

3.C. Methyltransfer-driven systems 

3.D. Oxidoreduction-driven systems 

3.E. Light absorption-driven systems 

4. Group Translocators 4.A. Phosphotransfer-driven systems 

5. Transmembrane Electron Carriers 
5.A. Two-electron transfer carriers 

5.B. One-electron transfer carriers 

8. Accessory Factors Involved in Transport 8.A. Auxiliary transport proteins 

9. Incompletely Characterized Transport 

Systems 

9.A. Transporters of unknown classification 

9.B. Putative uncharacterized transporters 

9.C. Functionally characterized transporters with 

unidentified sequences 

 

2.2. Sequence Analysis 

Protein sequence analysis is central to modern biological research and the need to understand 

the data is increasing. Sequence data can be useful to establish evolutionary relationships between 

proteins and to correlate gene structure, map active sites and domain boundaries [17] [18]. Sequence 

analysis allows to perform several tasks, such as to align two sequences to discover if these are related, 

phylogenetic comparison, motif detection, subcellular localization, domain detection, etc [18] [19]. 

Sequence analysis can also lead to identify mutations and translocations and can be helpful on cloning. 

Most of the sequence analysis methods are based on probabilistic modelling, for instance on 

sequence alignments, where score matrices are used to determine its significance, or on phylogenetic 

trees, in which maximum likelihood approaches can be used [18]. 

One of the most common tasks of sequence analysis is homology searching, that is, sequence 

similarity that allows identifying homologous sequences in databases providing, if the match between the 

sequences is statistically significant, important information about new sequences [20]. There are several 
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tools that allow running sequence similarity searches. One of the most used is the Basic Local Alignment 

Search Tool (BLAST) which provides several programs, such as nucleotide blast, protein blast, blastx, 

tblastn and tblastx, being a tool that can be used with both DNA/RNA and proteins [21]. 

Protein sequence analysis allows predicting important information about the protein, such as its 

localization, function and structure. There are, however, problems in the analysis of proteins associated 

to its post-translation modifications (PTM), which may hinder the analysis of the proteome in comparison 

to the genome. After the translation of the mRNA, proteins usually pass through modifications that can 

lead to changes in physical or chemical properties, or even to changes of localization, activity or stability 

[22]. 

Several bioinformatics tools were developed to facilitate sequence analysis. One example is the 

Staden Package, developed at the Medical Research Council (MRC) Laboratory of Molecular Biology, a 

sequence analysis open-source software that performs most tasks of sequence analysis, such as gene 

finding, pattern searching, comparison, secondary structure prediction and other tasks [23]. Another 

example is the HMMER tool, that uses profile hidden Markov models (HMM) for detecting sequence 

similarity of proteins or nucleotides and allows sequence alignment [24]. 

There are also specific tools for protein characterization. For instance, there are several tools 

available for protein localization using different models, algorithms and datasets, to predict the subcellular 

localization, such as PSORTb [25], TargetP [26], SubLoc [27]. Tools like Phobius [28], BOMP [29], 

TMHMM [30] allow assessing the topology of membrane proteins, thus helping to identify transport 

proteins. The Transporter Substrate Specificity Prediction Server (TrSSP [31]) implements SVM models 

(see section 3.1.2.4) and allows predicting membrane transport proteins and their substrate category 

[32]. 

In short, sequence analysis is extremely powerful and plays an important role in genomics era, 

and, consequently, hypotheses derived by computational methods will be a successful step in the design 

of experiments [33]. 

 

2.3. Databases 

With the rapid accumulation of genome sequences and, consequently, the increasing volume and 

variety of protein sequences and functional information, it is important to have available resources 

providing cornerstones for scientists. Areas like biological and biotechnological research, especially in the 
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field of proteomics, are information-dependent and databases of biological knowledge play an important 

role [34]. 

There are different types of databases, depending on its content and its biological interest, for 

instance, there are databases for nucleotides such as Genbank [35], DDBJ [36], and protein-based 

databases, such as SWISS-PROT [37], International Protein Index (IPI) [38] and the NCBI non-redundant 

database [39].  

One of the most used databases with protein sequences and functional information is the 

Universal Protein Resource (UniProt) [34]. This database was formed by uniting 3 different protein 

database activities which previously coexisted, the Swiss-Prot and TrEMBL [40] groups at the Swiss 

Institute of Bioinformatics (SIB) and European Bioinformatics Institute (EBI), and the Protein Information 

Resource (PIR) [41] group at Georgetown University Medical Center an National Biomedical Research 

Foundation. Thus, UniProt is a non-redundant database that provides protein sequences with annotations 

and functional information, being a single, centralized, authoritative resource [42]. The main aim of this 

consortium is to freely support biological and biotechnological research facilitating knowledge discovery 

by maintaining a high-quality, comprehensive, fully classified, richly and accurately annotated protein 

sequence knowledgebase [44]. 

The power of computational methods in transporter analysis and prediction is growing 

exponentially due to transporter proteins critical role in ADE of drugs, and in life science industries. 

Therefore, the large amount available data regarding transport proteins, and the need to facilitate its 

analysis, led to databases specialized on transport proteins such as the Transporter Classification 

Database (TCDB) [44] and TransportDB [43]. 

TCDB is a freely accessible web resource, containing curated data of published information that 

allows to analyze the unique characteristics of transport proteins, serving as a genome transporter 

annotation resource. This database offers, for each transport protein, information, such as: 

• the transporter classification (TC) number; 

• protein sequence; 

• structural, functional and evolutionary information; 

• 3D macromolecular structure; 

• and, protein domains. 
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These data provides access to hierarchical classification and several other resources for analyzing 

transmembrane proteins. In short, TCDB is originated from multiple sources such as Swiss-Prot and 

PubMed literature and is organized into transport families based on the TC system, being a centralized 

resource for transport protein data and their analysis [44]. 

TransportDB is a relational database that allows the comprehensive and comparative study of 

cytoplasmic membrane transport systems and outer membrane channels in different organisms whose 

complete genome sequences are available. This is a user-friendly web-interface with easy access, which 

provides tools like BLAST search and comparison between transporter and outer membrane channel 

contents, 3D structures and phylogenetic trees to these systems and channels. However, detailed 

information such as, as functional annotation, protein/DNA sequences, supporting bioinformatics 

evidences, publications and cross-referenced resource links are available for individual proteins. 

TransportDB, besides presenting the comprehensive transporter profiles, provides tools to view, search, 

compare and download the transporter data [44]. 

 

2.4. Metabolic Models 

Following the developments in genomics and since the first genome-scale reconstruction was 

published, there has been a huge focus on the behavior of complete biological systems and, consequently, 

the availability and usefulness of genome-scale metabolic models reconstructions have exploded [45] 

[46]. 

Genome-scale metabolic models (GSMM’s) are developed through the integration of biochemical 

metabolic pathways information with genomic and genetic data [49]. The process of developing these 

models is very complex, and the complete reconstruction of a GSMM can take up to one year. This 

process, presented on Figure 2, follows a protocol that can be summarized in six stages. The first consists 

on collecting data such as the Enzyme Commission (EC) and TC numbers, associated genes and gene 

products from different data sources. In the first step of the reconstruction process, the genome 

annotation or a reannotation, if the information available in public databases is not complete, is 

performed. The identification of the metabolic reactions associated with the organism, containing 

reactions catalyzed by the EC numbers previously identified and spontaneous reactions associated to the 

organism is performed in the second stage. Then, information concerning the stoichiometry of the 

organism is verified in online databases. The reactions localization, equation representing biomass 

formation, growth-associated energy requirements and other constraints, such as the reversibility of the 
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reactions and values of uptake boundary, are also required to complete the reconstruction of the GSMM’s 

are added afterwards. The next stage consists on assembling a reaction set, followed by the use of 

experimental data to finally validate the GSMM. The final step is an iterative loop, allowing to improve the 

GSMM [2]. 

The GSMM of an organism allows performing in silico simulations and, predict responses to 

different genetic or environmental stressors, providing a cheaper and faster alternative to wet lab 

experiments. Therefore, it is possible to gain better understanding of the observable phenotypes and 

coordinated functions of the cell from genome sequence and biochemical information of an organism 

[49] [2]. These models are used with the purpose of contextualizing high-throughput data, guide metabolic 

engineering and hypothesis-driven discovery, determine multi-species relationships and network property 

discovery [46]. 

GSMM’s allows predicting high-throughput experimental growth and gene deletion phenotypes. 

These models have to be robust and reliable, thus it is mandatory to annotate transport proteins, providing 

associations between genes and reactions. However, transport reactions are only included in models 

when evidences supporting the inclusion are available in experimental data or literature, though without 

gene-protein-reaction rules [49] [2]. 

Several tools that allow reconstructing GSMM’s are now available. For instance, the Metabolic 

Models Reconstruction Using Genome-Scale Information (merlin), a user-friendly Java application that 

can perform the reconstruction process for every organism whose genome is sequenced [48], and has 

been developed in the host group. Merlin includes tools for the identification and annotation of genes 

encoding transport proteins, can generate transport reactions for transport proteins and it also has tools 

for the compartmentalization of the model, being capable to predict the localization of the proteins 

encoded in the genome, thus allowing to localize the metabolites involved in the reactions induced by 

these proteins [47]. 

A well-curated metabolic reconstruction is very useful for biological discovery and engineering 

applications, by identifying specific areas where knowledge is lacking and provide a framework for the 

integration of high-throughput data [49]. Thus, it is important to identify transport proteins so transport 

reactions can be included in GSMM’s, providing association between genes and reactions and allowing 

the reconstruction of models more robust and reliable [2]. 



26 

 

 

 

 

 

 

 

 

  

Genome Annotated 

genome 

Metabolic Information 

Identifying reactions 

Stoichiometry 

Reactions localisation 

Biomass 

Energy requirements 

Other constrains 

Reaction set GSMM 

Databases 

Literature 

Experimental 

data 

Figure 2. Genome-scale Metabolic Model reconstruction process. Adapted from [48]. 
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3. Machine Learning and Deep Learning 

3.1. Machine Learning (ML) concepts 

Currently, there is a continuous generation of new data, of large dimensions, hence the 

designation of big data, and, consequently, the search of new methods / theories to process these data 

turning them into knowledge is also growing [49]. According to Kevin Murphy, machine learning can be 

defined “as a set of methods that can automatically detect patterns in data, and then use the uncovered 

patterns to predict future data, or to perform other kinds of decision making under uncertainty (such as 

planning how to collect more data!)” [50]. Machine Learning is part of artificial intelligence, computer 

science and statistics, and has been growing fast being applied on many biological problems, essentially 

on six domains: genomics, proteomics, transcriptomics, systems biology, evolution and text mining [51]. 

There are two main types of machine learning: supervised learning and unsupervised learning. 

In supervised learning, also called predictive learning, the dataset used contains labelled instances. That 

is, given a labelled set of input-output pairs (the training set), supervised learning intends to learn a 

mapping from inputs, x, to outputs, y. Here, the dataset contains the inputs, which represent the features, 

attributes, each usually as a one-dimensional vector of numbers. The output, or response variable, is 

usually a categorical or numerical variable, representing, for instance, the class of each item. According 

to the type of output, the problem can be a classification or regression problem, if it is a categorical or 

numerical variable, respectively. Classification problems intend to map the input values to a set of discrete 

classes (the output). Usually, given a labelled training set, a function approximation is estimated in order 

to predict the output from novel inputs. Regression problems are similar. The major difference to 

classification problems is that the response variable is continuous. Problems like predicting temperatures 

or ages are examples of real-world regression problems [50]. 

At unsupervised learning, also called descriptive learning, the instances are unlabelled. In this 

type of machine learning, the goal is to find interesting patterns in the data, only having the inputs [50]. 

These types of algorithms are usually used to discover unknown but useful classes of items [52]. 

The process of developing a machine learning algorithm involves several essential steps. The first 

one consists on collecting data, that is, selecting from everything available, the features that are most 

informative and can be helpful in the problem resolution. The second step involves data processing, where 

missing feature values and noise are treated, for example. Then, feature selection or other methods can 

be applied, to transform the data, leading to a more comprehensive, non-redundant, relevant and reduced 
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data. Finally, after pre-processing and preparing the data, a training set and testing set are defined. Then, 

the training step follows, where the algorithm is trained with the training set, extracting knowledge from 

the data and creating a representative model of the information gained. This model is subsequently used 

to test the algorithm, with the inputs of the test set, the respective output attributes are predicted, being 

possible to evaluate the effectiveness of the model. After this evaluation of the model performance, it is 

possible to improve the model, using a different dataset or different methods. Finally, the last step involves 

the application of the validated model to new and unlabelled data, predicting unknown outputs [52]. 

 

3.1.1. Error Estimation 

Error estimation is used to evaluate the quality of the model for a given task and can help to 

choose the better learning method or model. There are different error metrics that can be used, according 

to the type of the problem [81]. 

On classification problems, during the testing are produced counts of the correct and incorrect 

classifications from each class. These counts are displayed into a confusion matrix, that shows the 

differences between the true (desired) values and the predicted ones, according to each class. The 

confusion matrix shows all the information about the classifier’s performance, presented on table 2 for a 

binary classification problem. From the confusion matrix, it is possible to observe the values that were 

correctly predicted, that is, the desired value and the predicted have the same class: True Positive values 

(TP), when the true value is positive, or the True Negative (TN), when the true value is negative. The 

values that were not correctly predicted are also possible to observe through the confusion matrix: False 

Negative values (FN), when the true value is positive but is predicted as negative, or the False Positive 

(FP), when the true value is negative but is predicted as positive [81]. 

 

Table 2. Consufion Matrix 

Confusion Matrix 
Predicted Values 

Negative Positive 

Desired Values 
Negative True Negative (TN) False Positive (FP) 

Positive False Negative (FN) True Positive (TP) 
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With these values, it is possible to extract more meaningful measures. The accuracy can be 

calculated dividing all the true values (TP and TN) by the sum of all the values (TN, TP, FN, FP), as seen 

on Equation 1. For multiclass classification, when there are more than two class labels, the accuracy is 

calculated as the sum of the diagonal (all correct predictions) divided by the sum of all the values. The 

precision of the algorithm, also known as positive predicted value, is calculated by the TP divided by the 

sum of all the positive predictions (TP, FP), as seen in Equation 2. The negative predicted value is the 

opposite of precision, being calculated by the TN divided by the sum of all the negative predictions (TN, 

FN), as seen on Equation 3. The specificity, type error I, can be calculated by the division between the 

TN and the sum of TN and FP, as seen in Equation 4. The recall, also known as sensitivity, can be 

calculated dividing the TP by the sum of TP and FN, as seen on Equation 5. The F-measure combines 

the values of precision (Pr) and recall (Re), being calculated by the multiplication of 2 with the 

multiplication of Pr by Re, divided by the sum of Pr and Re, as seen on Equation 6 [82]. 

Equation 1 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP + TN

TP + TN + FP + FN
 

Equation 2 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP
 

Equation 3 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 =
TN

TN + FN
 

Equation 4 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
TN

TN + FP
 

Equation 5 

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP + FN
 

Equation 6 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
Pr × Re

Pr + Re
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The higher the Recall, Specificity, and accuracy values, the better the model will be, however an 

increase in the Recall can lead to a decrease of the Specificity [70]. In order to evaluate the model, and 

the relationship between Recall and Specificity, ROC (Receiver Operating Characteristics) curves can be 

applied. This curve is useful to establish decision of threshold and to select a suitable operating point. 

The area under the ROC curve (AUC) is used as a measure of a classifier’s performance, since it 

represents the probability that a randomly chosen positive example is correctly rated. AUC is basically the 

probability of correct ranking and translates the ability of the model to discriminate between the two 

classes, so, the closer to 1 is the AUC, better the model can discriminate [81]. 

For regression problems, the difference between the predicted value and the real value 

corresponds to the error, and, based on the error of each example, error metrics can be calculated. The 

sum of squared errors (SSE) is one of these error metrics, calculated by the summation of the squared 

difference between the real value (𝑦𝑖) and the predicted value (�̂�𝑖), as seen in Equation 7.  Another error 

metric is the square root of the mean of squared errors (RMSE), as seen in Equation 8, and the mean of 

absolute deviation (MAD), as seen in Equation 9 [83].  

The lower these error metrics values are, more precise the model is. 

Equation 7 

𝑆𝑆𝐸 = ∑(𝑦𝑖 − �̂�𝑖) 2
𝑛

𝑖=1

 

Equation 8 

𝑅𝑀𝑆𝐸 = √
𝑆𝑆𝐸

𝑁
 

Equation 9 

𝑀𝐴𝐷 =
∑ |𝑦𝑖 − �̂�𝑖|

𝑛
𝑖=1

𝑁
 

There are several error estimation methods whose purpose is to improve the evaluation, based, 

for example, on resampling the original data. One technique is the Holdout, where the data is divided 

once into a learning set (also called training set) and a test set. This partition is based on a predetermined 
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p that represents the distribution between both sets, for instance, if p=1/4, the learning set will have 

three-quarters of the data and the test set a quarter [104]. 

Cross-validation (CV) is another effective method for estimating prediction error, that provides a 

more accurate evaluation, being one of the most used methods [84]. In K-fold cross-validation, the 

examples are randomly divided into mutually exclusive k-parts (k-folds) of equal sizes. Thus, k-1 folds are 

used as a training set for the algorithm, being used to generate the model, and the remaining fold is used 

as test set, to verify the performance of the model. In this way, the algorithm is tested k times, always 

considering a different fold for test, where the final error corresponds to the mean of the errors calculated 

for each of the folds [84]. 

Leave-one-out (LOO) is another cross-validation method, where, given a sample of size N, the 

training sample will correspond to N-1 examples and the sample left out will be the test set. Thus, we 

have N different training and test sets, and the process is repeated N times. This method can be 

equivalent to K-fold cross-validation, if the parameter k is set to N. The final value of the error corresponds 

to the sum of the errors of each test divided by N [89]. 

 

3.1.2. Overfitting 

One major problem associated to machine learning algorithms is overfitting. A machine learning 

algorithm is trained with training data to create a model that is capable of making predictions on new 

data. However, sometimes, the model is too restricted to the training data and represents them too well, 

memorizing their noise and characteristics, not being a good model to new data predictions. This is called 

overfitting, when a model is good to represent the training data and cannot find a general predictive 

model, not being able to make correct predictions on new data [53]. 

There are several ways to prevent overfitting, such as the use of regularization methods, dropout 

and early stopping, which will all be explained further [54].  Very large training sets and pre-training can 

also reduce overfitting. Reducing the complexity of models, for instance by applying feature selection, 

prevents overfitting. Methods like Variance Threshold select the features responsible for the variability of 

the data, excluding those that do present low variance, not given much data information, avoiding 

overfitting [105]. 
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3.1.3. Main machine learning models  

Linear and logistic regression 

A linear regression method intends to represent a relation between an independent variable and 

a set of dependent variables, allowing to predict the outcome variable for new values of the predictor 

variables [56]. Linear Regression is a method that tries to model this relationship with a linear equation 

that fits the data, where the outcome variable is assumed to be continuous [57]. 

Logistic Regression (LR) is a type of multivariable analysis with the ability to model binary or 

dichotomous outcomes. With a logistic function, that represents the best fitting model describing the 

relationship between a set of independent variables and a dependent variable, it is possible to estimate 

the probabilities of a given class. The probability function on LR is a sigmoid function that uses a set of 

weights (model parameters) and the input feature vector to calculate the probability of the output be equal 

to the input, equal to 1 (Equation 10). The error function is minimized using the gradient descent method, 

explained on section 3.2, Equation 11, allowing to estimate the parameters, θ. 

Equation 10 

ℎ𝜃(𝑥) =
1

1 +  𝑒−𝜃𝑇𝑥
 

 

Equation 21 

𝐽(𝜃)  =  −
1

𝑚
[∑ 𝑦(𝑖) log ℎ𝜃 (𝑥(𝑖)) + (1 − 𝑦(𝑖))𝑙𝑜𝑔(1 − ℎ𝜃(𝑥(𝑖)))]

𝑚

𝑖=1

 

This method is used with increasing frequency in the health sciences, since it is appropriate for 

models involving disease state and decision making. When applied to more than two classes, it is 

necessary to train a model for each class [56]. 

 

Regularization Techniques 

Regularization techniques allow to reduce overfitting without being necessary to change the model 

size or the training data. One of the most commonly used techniques is the L2 regularization, also known 

as weight decay, where an extra term, called regularization term, is added to the cost function. This term 
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is basically the sum of the squares of all the weights in the network multiplied by a parameter. This 

technique penalizes large weights and tend to make the model prefer small weights [55].  

Another regularization technique is the L1 regularization, where the unregularized cost function 

is modified by adding the sum of the absolute values of the weights, being similar to weight decay, 

penalizing large weights, however with a different behaviour [55]. 

 

Support Vector Machines (SVMs) 

Support vector machines (SVMs) are ML models introduced by Vapnik, suitable for working with 

high dimensional data, being capable of classifying samples and helping in the identification of those 

which have been wrongly classified [62]. Based on a set of labelled training data, support vectors are 

created and then they are used to calculate a hyperplane that separates the training data, a linear decision 

function with maximal margin between the vectors of the two classes. SVMs are capable to generate 

input-output mapping functions like a classification or a regression function. A classification function 

consists on categorizing the input data, and, when is not possible to divide the data into the two classes 

by a linear hyperplane, are often used nonlinear kernel functions (like Gaussian and spline kernels) that 

automatically realize a non-linear mapping to a new feature space. The technique of ‘kernels’ allows the 

input data to become more separable compared to the original input space, by transforming it to a high-

dimensional feature space [62] [63].  

SVMs have mathematical basis, in statistical learning theory, and are also based on the Structural 

Risk Minimization principle that intends to find a hypothesis for which it is possible to guarantee the lowest 

true error [63] [64]. 

Problems like pattern recognition and function estimation have already been solved applying 

SVMs [65]. Several other real-world learning tasks used SVMs, such as handwritten recognition, object 

recognition, and text classification [66]. Similarly, areas of biological analysis like microarray expression 

data, detection of remote protein homologies, recognition of translation initiation sites showed good 

results when SVM was applied [62]. 

 

Decision Trees 

A decision tree is based on a tree structure, containing nodes, where each node corresponds to 

an input attribute to be tested, and leafs, where each leaf corresponds to an output attribute’s value. Each 
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node contains a test that best splits the space of data to be classified, leading to other nodes, depending 

on the attribute presented, until finally a leaf is reached, where the prediction is obtained [60].  

 

Ensemble Methods 

Ensemble methods are learning algorithms that train multiple learners to solve the same problem, 

combining a set of learners to improve the performance of the overall system. One of the largest areas of 

supervised learning research is precisely the search for new methods for the construction of good 

ensembles [78]. 

There are several methods for constructing ensembles, some general techniques used are [78] 

[79]: 

- Resampling methods: this method consists in manipulating the training examples to generate 

different hypotheses. Different subsets of the training examples are generated and the algorithm 

is run several times, always with a different subset. There are several ways of manipulating the 

training set, the most common are Bagging, Boosting and cross-validation. 

- Feature selection methods: the input features available to the learning algorithm are manipulated, 

reducing the number of input features of the base learners, in order to generate multiple 

classifiers. This method only improves the accuracy when the input features are highly redundant.  

- Randomized ensemble methods: this method consists on inject randomness into the learning 

algorithm. For example, in the backpropagation algorithm the initial weights of the network are 

set randomly. 

Boosting is an ensemble learning method very used on classification trees, where successive 

trees are taken into account on points incorrectly predicted by earlier predictors, influencing the final 

prediction. This method is about producing a very accurate prediction rule by combining rough and 

moderately inaccurate rules [80]. In boosting methods, at each iteration of the algorithm, a different 

distribution or weighting over the training examples is used and the training set used is chosen based on 

the previous performance. In this technique, the examples most often misclassified by the previous base 

learner are placed with the highest weight and, then, a weighted majority vote is taken into account to 

combine the base rules [78]. 

Another ensemble learning method, also used on classification trees, is bagging. In bagging, the 

ensemble is formed by making bootstrap replicates of the training sets, using them to generate multiple 
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hypotheses and finally to get an aggregated predictor. Here, the samples are drawn randomly and with 

replacement. Unlike the previous method, bagging is effective with noisy data and successive trees do 

not depend on earlier trees and each one is constructed based on a bootstrap sample of the data [78] 

[80]. 

 

K- Nearest Neighbours 

 K-Nearest Neighbours, KNNs, is an instance based learning method that, instead of 

generating a model function, it stores the training data using it when a prediction is made. KNN is based 

on the fact that instances with similar properties are close, so a label can be determined by observing 

the class of its nearest neighbours. Thus, for classification problems, a label is predicted by locating its 

k-nearest neighbours and by obtaining the most frequent class label on those k training examples. For 

regression problems, instead of choosing the most frequent class of the k-nearest neighbours, the final 

result corresponds to the mean of its values. The proximity between the instances is measured by a 

distance metric, calculating the nearest neighbours. This distance metric intends to minimize the distance 

between two similarly classified instances and to maximize the distance between instances with different 

classes. Different distance metrics can be used (for instance Euclidean, Manhattan and Chebychev), 

depending on the type of the features and on the user [52]. 

 

Naive Bayes 

Naïve Bayes classifier is a very simple Bayesian network, a graphical model for probability 

relationships among a set of variables which structure is a directed acyclic graph (DAG) and the nodes 

are in one-to-one correspondence with the features. The arcs of this network represents casual influences 

among the features. The process of learning a Bayesian networks starts by learning the directed acyclic 

graph structure of the network and determine its parameters. Naïve Bayes networks are composed of 

director acyclic graphs with one unobserved node and several observed nodes. Naïve Bayes networks 

assumes that these several observed nodes are independent of each other, however, this assumption is 

often wrong, leading to a less accurate classification than algorithms like ANNs (further presented in 

section 3.1.4. Artificial Neural Networks). There has been several attempts to improve NB performance 

trying to avoid the independence assumption. Naïve Bayes uses a single probability distribution to 

summarize the data and discriminate classes, being robust to missing values that will not impact the final 
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decision [52]. In short, NB is the simplest Bayesian classifier that is built with the assumption of 

conditional independence of the predicted values. 

 

Random Forests 

Random Forests (RF) are powerful machine learning classifiers, based on an ensemble learning 

algorithm developed by Leo Breiman, being an effective tool in prediction [58]. RF are based on the 

bagging method and intend to create a strong and stable classification, using a combination of several 

decision trees [59].  

A RF combines the classifications made by each decision tree, being necessary to the user to set 

the number of trees to be built and also the number of random split variables [58]. The random 

component of the algorithm is present on two steps during the training: selecting the node tests and on 

growing the tree, when a random subset of the variables is used, although each tree is already built with 

a bootstrap sample of the data [60]. RFs have several advantages: their non-parametric nature; high 

classification accuracy; efficient on large datasets; can handle thousands of input variables without 

variable deletion; robust to outliers and noise; give estimates of what variables are important in the 

classification; return a measure of error based on the out-of-bag cases for each fitted tree; do not overfit 

easily [58][61]. 

 

3.1.4. Artificial Neural Networks (ANNs) 

Artificial neural networks (ANNs) are computation systems inspired by biological neural networks 

designed to solve problems like pattern classification and recognition, prediction, optimization, associative 

memory, control, clustering and function approximation [67]. 

Basically, ANNs are modelled based on an analogy with the structure and behaviour of neurons 

in the human brain consisting of many simple, densely connected processing units. This basis on the 

human brain is due to its desirable characteristics like massive parallelism, learning ability, generalization 

ability, adaptivity, inherent contextual information processing, low energy consumption, and many others 

[67]. 

A neuron is a biological cell that processes information, receives signals, called impulses, from 

other neurons and transmits signals, by synapses, to other neurons [67][68][69]. In ANNs, artificial 
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neurons, called nodes of the network, are organized into layers and are connected to several other nodes, 

each with a different output value. The first layer is the set of input units, and only nodes from consecutive 

layers are connected. Each node has an output value, calculated by an activation function applied over 

the activation value. This activation is based on all its input values (the output of the nodes connected to 

it) times the respective connection weight.  

These nodes can transform, through an activation function, the input information to another form 

of output. There are four main possible activation functions usually used on ANNs: sigmoid, hyperbolic 

tangent (TANH), rectified linear unit (ReLU) or softmax functions [71]. The Rectified Linear unit, ReLU, is 

a non-linear activation function very popular that learns faster than other activation functions in networks 

with many layers. This function only activates a node if the input is positive or 0, giving as output the input 

itself, otherwise, the output is 0. ReLU is the most used activation function nowadays for neural networks 

with more than one layer [72]. The sigmoid function, also called logistic function, is differentiable, 

monotonic and the curve looks like an S-shape, taking values between 0 and 1. Both graphics, ReLU and 

sigmoid, and each activation function are illustrated on Figure 3. 

 

           Figure 3. Sigmoid and ReLU activation functions. Adapted from [71]. 

           

The synapses correspond to the edges of the network, and the knowledge is presented on the 

connection between nodes as weights, where each connection has a weight associated [73]. Learning is 

about finding weights that make the network perform as desired [69]. 

According to how nodes are interconnected, there are different network architectures that can be 

grouped into two categories: feed-forward networks and recurrent networks, where both can be 

represented by a graph. In the feed-forward networks graphs have no loops and, in the most common 
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family of this category, called multilayer perceptron, the neurons are organized into layers that have 

unidirectional connections between them. This category consists on networks that produce only one set 

of output values from a given input, that is, static networks. Another feature of feed-forward networks is 

the fact that the previous networks state does not influence their response to an input, being memory-

less networks.  

Contrary to feedforward networks, in recurrent networks, or feedback networks, loops occur 

because of feedback connection, that is, information flows in both forward and backward directions. 

Feedback networks are dynamic systems since, when an input pattern is presented, the neuron outputs 

are computed, and the inputs to each neuron are modified leading the network to enter a new state [67]. 

Several distinguishing features of ANNs make them valuable and attractive, for instance: ANNs 

are data-driven self-adaptive methods, they learn from examples and capture subtle functional 

relationships among the data; ANNs can generalize, being able to correctly infer the unseen part of a 

population not being sensitive to noise; ANNs are also universal functional approximators, where the 

network is able to approximate any continuous function to any desired accuracy; ANNs are nonlinear, 

useful on real world systems that are often nonlinear; ANNs are flexible, with a big applicability domain 

and; ANNs do a massively parallel processing allowing complex tasks to be performed in a short time 

[70]. 

ANNs already proved to be useful in the health area, such as on diagnosing myocardial infarcts 

and arrhythmias from electrocardiograms and interpreting radiographs and magnetic resonance images, 

being appropriate for situations with large data sets, problems with nonlinear structure and multivariate 

time series forecasting problems [68] [70]. 

 

Gradient Descent 

The gradient descent is an optimization method that intends to optimize the objective function. 

This algorithm basically “moves” between nodes, measuring the change in the error caused by weight 

changes, choosing the one that produces the lowest error. Then, the overall loss across all the training 

examples is calculated. Then, the gradient is calculated and the parameter vector is updated, that is, 

occurs a change of the weight in the direction of less error. This process is repeated until the weight 

arrives to a point where the error cannot go lower. The gradient is produced by the derivative of the loss 

function and gives the direction for the next step in the optimization algorithm [71]. 
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The Stochastic Gradient Descent (SGD) calculates the gradient and updates the parameter vector 

after each training sample. This algorithm, for an input vector with a few examples, computes the outputs, 

errors and the average gradient for those examples and, then, adjusts the weights. This process is 

repeated for each small set of examples (batch), until the average of the objective function stabilizes, 

achieving the greatest accuracy. The stochastic part is due to each small set of examples provides a noisy 

estimate of the average gradient over all examples [72]. 

 

Backpropagation 

The backpropagation algorithm is one of the most used training algorithms that minimize the cost 

(error) function for neural networks. It is an efficient gradient descent method applied to ANNs that can 

solve the problem of calculating the partial gradient for each of the weights in the network [73]. This 

method uses heuristic approaches, usually involving small modifications to the system parameters to 

improve system performance [74]. The term backpropagation is due to the fact that the error presented 

on the output is propagated backwards from the output layer to the hidden layer and then to the input 

layer. At each iteration occurs a forward activation to produce a solution and a backward propagation to 

modify the weights [75]. 

 

3.1.5. Data Processing 

Feature Selection 

Feature selection is a central problem in machine learning, consisting on identifying a 

representative sets of features for model construction. For instance, with feature selection it is possible 

to remove features of the data that are irrelevant to the task to be learned, leading to an easier and less 

time consuming execution of the learning algorithm. Thus, feature selection leads to a reduced execution 

time, a reduction in the amount of data needed to achieve learning, an improved predictive accuracy and 

a learned knowledge more compact and easily understood [76]. 

There are essentially three feature selection methods: wrapper, filter and embedded methods. 

The first method consists on applying the feature selection process coupled with the learning algorithm 

that is to ultimately be applied to the data. Filter methods use heuristics based on general characteristics 

of the data, ranking them, and then making a feature selection independent of the classifier. Although, in 

terms of the final predictive accuracy, wrappers often give better results than filters, they are 
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computationally more expensive, can be intractable for large databases containing many features and are 

less general [76]. The last method, embedded, performs variable selection in the process of training 

being specific to some classifiers [77]. 

 

3.2. Deep Learning concepts 

3.2.1. Deep Neural Networks (DNNs) 

Deep learning is an approach to machine learning that enables computer systems to improve 

with experience and data, creating a hierarchical representation of the concepts. These hierarchies involve 

several layers deep, and through this hierarchy of concepts it is possible to learn complicated concepts 

by building them out of simpler ones [85]. 

The application of deep learning to neural networks results on Deep Neural Networks (DNNs), a 

neural network with a deep architecture that has the capacity to learn more complex models [91][86]. 

Deep neural networks are inspired in the human brain, since it also has a deep architecture, and because 

humans organize their ideas hierarchically. However, although models with many hidden layers and 

hidden units are very flexible and allow more degrees of freedom, this leads to a major problem, overfitting 

[87].  

A deep neural network is based on the feed-forward neural network, but with more than one 

hidden layer, where all the nodes of one layer are connected to those of the next layer, that is, each layer 

is fully connected to the adjacent layer [88]. This architecture forms an acyclic graph. Each layer of the 

network can have a different number of neurons, and the neurons activation function is nonlinear. 

Analogously to ANNs, DNNs can be trained by the backpropagation algorithm using stochastic gradient 

descent [71] [88]. In order to prevent equal gradients in hidden units in a layer, allowing the 

backpropagation algorithm to run as supposed, the initial weights are set randomly with small values 

[87].  

Deep Neural Networks are extremely powerful models and have already proven to be very effective 

on problems like speech recognition and visual object recognition [89]. 

Overfitting can also occur on deep learning algorithms, and there are already some methods to 

solve this problem. One is Dropout, a technique that consists on dropping out units and their connections, 

removing them temporarily from the network, during the training, preventing units to co-adapt too much. 
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The dropped unit is chosen randomly and is retained with a fixed probability independent of other units. 

The fixed probability is usually 0.5, however it can be chosen by a validation set [54].  

Early stopping is also a method that can reduce overfitting in deep neural networks. This method 

consists on stopping the gradient descent after only a few iterations, before the model begins to overfit. 

The number of iterations is chosen, and, after that number of iterations the error on the test set is 

calculated. The model that produced the lowest error, that is, achieved better performance, will be the 

final model [88]. 

 

3.2.2. Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks were designed to process data that are in the form of multiple 

arrays, like signals (1D), images (2D) and videos (3D) [72]. At convolutional neural networks, the fully 

connected architecture of DNNs is altered by pruning many of the connections or by connecting patches, 

to achieve better performance [88]. 

In CNNs, each layer is 3-dimensional and the architecture of this network involves two types of 

layers: convolutional and pooling layers. The convolutional layer is organized in feature maps were each 

node is connected, through a filter bank, to local patches in the feature maps of the previous layer, for 

instance, each neuron in the first hidden layer will be connected to a small region of the input neurons. 

The filter bank is composed by a set of weights and all units in a feature map share the same filter bank, 

while different feature maps in the same layer use different filter bank. This organization allows to easily 

detect local motifs, thus, the convolutional layer role is to detect local conjunctions of features from the 

previous layer [55] [72]. Immediately after the convolutional layer, a pooling layer is used taking each 

feature map output and preparing a condensed feature map. Thus, the pooling layer is used to simplify 

the information in the output from the convolutional layer. The convolutional layer usually involves more 

than one feature map, therefore, to each feature map is applied pooling. The repetition of convolution 

layers followed by pooling layers will create the output model of the CNN, as showed on Figure 4 [55].  
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3.2.3. Recurrent Neural Networks (RNNs) 

Recurrent Neural Networks (RNNs) are a popular and powerful model for sequence tasks using 

data like text sentences, time-series and biological sequences. The RNN is characterized by its rich 

dynamics, once the hidden units use a nonlinear activation function, enabling to remember and process 

past information. At this architecture, the weights are shared across time and the hidden units are able 

to integrate information over many timesteps, using it to make accurate predictions. Therefore, the output 

depends on previous computations [90]. 

The gradients of the RNN, although easy to compute, tend to vanish or exponentially blow-up 

when backpropagated through time. That said, RNNs are difficult to train with backpropagation algorithm, 

not learning long-range temporal dependencies. One way to deal with this problem is to include “memory” 

units that store information over long time periods, using this information on a new activation function. 

Thus, the gradient at each output will be calculated based on the current time step and on previous ones 

[91]. 

One approach that uses memory cells to store information, using this information in a new and 

more sophisticated activation function, being good at finding and exploiting long range context, is the 

Long Short Term Memory (LSTM) architecture [3]. This architecture uses special hidden units, that 

remember inputs, and memory cells that act as gated neurons that copy its own real-valued state and 

accumulate the external signal. The content of the memory can be cleared by another unit that is 

multiplicatively gated to the unit. The principal goal of the LSTM is to estimate the conditional probability 

[91]. Long Short Term Memory model are designed to handle sequences and were already used to 

predict, with high accuracy, the subcellular location of proteins using only the protein sequence 

information [3].  

Figure 4. Convolutional Neural Networks. Adapted from [88]. Figure 4. Convolutional Neural Networks. Adapted from [88]. 
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The recurrent unit usually used is the traditional tanh. Another type of recurrent unit was recently 

proposed, referred as a gated recurrent unit (GRU). Both LSTM and GRU, applied to RNN leads to better 

performance on tasks with long-term dependencies [91]. 

As mentioned, RNNs are good at modelling sequence data for predictions, including biological 

sequences, especially LSTM recurrent neural networks because of its memory capacity and its ability to 

learn temporal dependencies. However, it is impossible to feed characters into a neural network. 

Therefore, it is necessary to map the characters of each sequence into a numerical representation, into 

numeric tensors. This process is called encoding and can be done in two different ways. One way is one-

hot encoding, where the sequence is transformed into vectors of 0s and 1s, that is, sequences are 

encoded as binary vectors.  

Another form of encoding involves turning all sequences into equal lengths and then turning them 

into real  tensors. Subsequently, the network will have to start with a first layer called Embedding layer. 

Within the embedding layer, it is possible to be an learn word embedding, which will learn from data, 

learning word vectors and weights of the neural network. Another possibility is to use pretrained word 

embeddings, used when there is not enough data available to learn features on its own, being possible 

to load into the model a precomputed word embedding. This embedding layer is, basically, like a 

dictionary, that maps integer indices into dense vectors by checking these integers in an internal dictionary 

and returning the associated vectors that reflects the relationship between words. The embedding layer 

takes as input a 2D tensor of integers, where all sequences must have the same length, truncating longer 

sequences and padding with zeros shorter sequences. Then, a 3D floating-point tensor is returned, which 

can be processed by an RNN or a 1D Convolutional layer. At first, the embedding layer weights, i.e. its 

internal token vector dictionary, are initialized randomly, and these word vectors are then adjusted by 

backpropagation during training. However, when using a pretrained embedding layer, this layer's weight 

matrix is predefined and should not be updated throughout training, so it is necessary to freeze the 

embedding layer, not allowing it to be trainable [95]. 

 

3.2.4. Other networks 

There are several other networks that were influential for several years. One of them is the Deep 

Belief Network (DBN), a generative model, that is, where can be generated for the input activations, by 

specifying the values of some of the feature neurons and then running the network backward. Thus, this 

model can learn to reconstruct its input. DBNs can do unsupervised learning, being one of reasons of 
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interest in this model, that, for example, has already been used as a pre-training layer of DNN, increasing 

its performance. Despite these attractive features, feedforward and recurrent nets have achieved better 

results on several tasks like image and speech recognition [55]. One key component of DBNs is the 

restricted Boltzmann machine (RBM), a two-layer undirected graphical model with a set of binary visible 

units (first layer) and hidden units (second layer). These two layers are symmetric connected, being this 

connection represented by a weight matrix. At RBM, there is only one hidden layer and, these models are 

composed to form DBNs [92]. 

 

3.3. Applications to sequence analysis 

Over the last years, several studies in proteins and sequence analysis fields were published 

recurring to machine learning and deep learning methods. Some of these papers are chronologically 

summarized on Table 3. 

Gene expression differences can be very useful in diagnosing diseases. Thus, DNA microarrays 

with gene expression measurements, with information from tissue and cell samples, can be used to 

classify tissue samples.  The first paper, “Support Vector Machine classification and Validation of Cancer 

Tissue Samples Using Microarray Expression data” shows a new method that uses an SVM to analyse 

this kind of data. The data used, an unpublished dataset, consists of expression experiment results from 

samples from ovarian cancer tissues, normal ovarian tissues and other normal tissues, with 97 802 DNAs 

clones for each tissue, with a total of 31 tissue samples. However not with high confidence, perfect 

classification is achieved, and a sample is discovered and confirmed to be wrongly labelled. In order to 

demonstrate the generality of the method, experiments were also performed for two published datasets, 

one containing examples of patients with human acute leukemia and the other containing human tumour 

tissues and normal colon tissues [62]. 

The second paper in Table 3 presents the application of random forest with microarray data to 

gene selection for sample classification. Nine microarray datasets were used and the performance of the 

random forest model proved to be comparable to other classification methods. This approach also proved 

to select smaller sets of genes, while the gene selection procedure, producing likewise accurate 

predictions [61]. 

The third paper in Table 3 presents a transmembrane protein topology predictor, including signal 

peptide and re-entrant helix prediction, based on a support vector machine.  The dataset used for SVM 
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training contains 131 transmembrane protein sequences with known crystal structures and 416 globular 

proteins. The method uses evolutionary information and a total of five SVMs, where the outputs were 

combined in order to return a list of predicted topologies that incorporates signal peptide and re-entrant 

helix prediction and discrimination between TM and globular proteins. The method achieves a high 

topology prediction accuracy and was able to distinguish between transmembrane and globular proteins 

[103]. 

“MultiLoc2: integrating phylogeny and Gene Ontology terms improves subcellular protein 

localization prediction” shows an extended version of MultiLoc predictor that incorporates phylogenetic 

profiles and Gene Ontology terms that improves subcellular protein localization prediction. The model 

was trained with two different datasets, resulting in two different versions, one specialized for globular 

proteins, predicting up to five localizations, and the second version can predict all eleven main eukaryotic 

subcellular localizations. On both versions, MultiLoc2 shows to outperform the previous MultiLoc, 

specially when trained with the second dataset, allowing to predict eleven main eukaryotic subcellular 

localizations [102]. 

At “DNdisorder: Predicting protein disorder using boosting and deep networks”, a new sequence 

based approach, using boosted ensembles of deep networks for the prediction of protein disorder, is 

presented. On a dataset of 723 proteins, where a 10 fold cross validation was applied, this method proved 

to be successful, achieving an accuracy of 0.82. The deep neural network was trained using restricted 

Boltzmann machines and then a backpropagation procedure was used. The features used as input into 

the disorder predictor were values from a position specific scoring matrix (PSSM), predicted solvent 

accessibility and secondary structure, and a few statistical characterizations. Each one of these features 

needed to be encoded as a binary feature [99]. 

The paper “Prediction of Membrane Transport Proteins and Their Substrate Specificities Using 

Primary Sequence Information” introduces the use of an SVM model, using sequence information like 

amino acid composition, dipeptide composition, physico-chemical composition, biochemical composition 

and position-specific scoring matrices (PSSM), able to predict the substrate specificity of several 

transporter classes. This paper also presents a model capable of distinguishing transporters from non-

transporters [31]. 

K-mers features, Oligomers of length k, are used for modelling functions and properties of DNA 

and protein sequences, however, when k becomes large, statistical learning approaches that use these 

features are very susceptible to noise data. The third article in Table 3 presents a solution to this problem, 
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introducing alternative feature sets using gapped k-mers, creating a new classifier, gkm-SVM. This new 

approach demonstrates more accurate predictions of functional genomic regulatory elements and tissue-

specific enhancers [97]. 

The work “Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling” 

compares different recurrent units in recurrent neural networks, LSTM unit and gated recurrent unit 

(GRU), evaluating them on the task of sequence modelling. More specifically, these were evaluated in 

polyphonic music modelling, using three polyphonic music datasets, from four different repositories, that 

contains sequences where each symbol is a dimensional binary vector (93-, 96-, 105- or 108-

dimensional), and in speech signal modelling, using two internal datasets provided by Ubisoft where each 

sequence is an one-dimensional raw audio signal. The LSTM and GRU demonstrate to outperform the 

traditional tanh unit, specially on speech signal modelling [91]. 

The ninth paper present on the Table 3 demonstrates that the long short term memory (LSTM) 

model predict with high accuracy (around 90%) the location of proteins, only based on the protein 

sequence. The dataset used contains 5959 proteins, and each sequence was truncated to length 1000, 

to reduce the computational time. A LSTM model where convolutional filters were introduced and that 

was experimented with an attention mechanism is also presented in this paper, improving the 

performance, focusing on specific parts of the protein. All models were trained with gradient descent [3]. 

“DeepCNF-D: Predicting Protein Order/Disorder Regions by Weighted Deep Convolutional Neural 

Fields” introduces a new method, Deep Convolutional Neural Fields, that combines conditional neural 

fields (CNF) and deep convolutional neural networks, capable to improve the accuracy of predicting 

protein order/disorder. This method explores the long-range sequential information and assign different 

weights for each label during training and prediction. This method was trained and validated using 

Disorder723 dataset, the one used on the previous paper, and achieved a higher accuracy [100]. 

The paper “Predicting the sequence specificities of DNA- and RNA-binding proteins by deep 

learning” introduced a new approach, DeepBind, for predicting sequence specificities, based on deep 

convolutional neural networks. The convolutional network allows detecting motifs that can indicate RNA- 

and DNA-binding properties, such as variable-width gaps, position interdependence, and secondary 

motifs, or even suggest potential co-factors. This approach uses a set of sequences and determines a 

binding score for each sequence [96]. 
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The work “Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields” 

presents a new model, DeepCNF (Deep Convolutional Neural Fields), that is an extension of CNF, which 

is an integration of Conditional Random Field (CRF) and shallow neural networks. This new model can 

predict protein secondary structure, being capable to model complex sequence-structure relationship and 

interdependency between adjacent secondary structure labels. DeepCNF outperformed currently popular 

predictors [101]. 

The eighth paper in Table 3 proposes an approach for predicting binding affinities, once 

accurately predicting protein-ligand binding affinities can accelerate drug discovery, using 3D-

convolutional neural networks. This approach is also compared to other methods and several diverse 

datasets are used. This new method proves to be easy to use, fast and with good performance [98]. 

Finally, the last paper in Table 3 presents a novel function based approach to protein annotation 

and discovery called Deep Semantic Protein Annotation Classification and Exploration, D-SPACE. D-

SPACE is a multi-task and multi-label deep neural network that was trained over 70 million proteins and 

is capable of encoding proteins in high-dimensional representations (embeddings) enabling fast searches 

for functionally related proteins [106]. 

 

Table 3. Published papers of ML and DL over proteins and sequence analysis 

Article Title Year Method Ref 

Support Vector Machine 

classification and Validation of 

Cancer Tissue Samples Using 

Microarray Expression data 

2000 SVM [62] 

Gene Selection and Classification 

of Microarray Data Using Random 

Forest 

2006 Random Forest [61] 

Transmembrane protein topology 

prediction using support vector 

machines 

May 2009 SVM [103] 

MultiLoc2: integrating phylogeny 

and Gene Ontology terms improves 
Sep 2009 SVM [102] 
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subcellular protein localization 

prediction 

DNdisorder: Predicting protein 

disorder using boosting and deep 

networks 

2013 DN, RBM [99] 

Prediction of Membrane Transport 

Proteins and Their Substrate 

Specificities Using Primary 

Sequence Information 

June 2014 SVM [31] 

Enhanced Regulatory Sequence 

Prediction Using Gapped k-mer 

Features 

July 2014 SVM [97] 

Empirical Evaluation of Gated 

Recurrent Neural Networks on 

Sequence Modeling 

Dec 2014 RNN [91] 

Convolutional LSTM Networks for 

Subcellular Localization of Proteins 
Mar 2015 

Convolutional LSTM 

Networks 
[3] 

DeepCNF-D: Predicting Protein 

Order/Disorder Regions by 

Weighted Deep Convolutional 

Neural Fields 

May 2015 CNN [100] 

Predicting the sequence 

specificities of DNA- and RNA-

binding proteins by deep learning 

July 2015 CNN [96] 

Protein Secondary Structure 

Prediction Using Deep 

Convolutional Neural Fields 

2016 CNN [101] 

KDEEP: Protein-Ligand Absolute 

Binding Affinity Prediction via 3D-

Convolutional Neural Networks 

2018 CNN [98] 
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Deep Semantic Protein 

Representation for Annotation, 

Discovery, and Engineering 

2018 DNN [106] 

 

As it is possible to observe, in recent years, several papers developed in the field of bioinformatics 

applied to proteins use a deep learning approach, due to their great growth and success in recent years. 
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4. Methods and Software Development 

A previous work, developed by Daniel Varzim in his master dissertation in bioinformatics, at the 

University of Minho, used machine learning techniques to distinguish transport proteins from non-

transport proteins, based on features extracted using their amino acid sequences.  

In this work, in order to compare both approaches, machine learning and deep learning, the 

process of dataset creation was similar to Daniel Varzim’s work, and machine learning models were also 

created and tested. The baseline process developed is summarized in the workflow presented in Figure 

5. 

Daniel Varzim dissertation can be accessed in 

https://repositorium.sdum.uminho.pt/bitstream/1822/47386/1/Daniel%20Torres%20Varzim%20Faria

.pdf and the code developed in his work is available in the URL: 

https://github.com/DanielVarzim/Master-s-Thesis-. 

 

 

 

 

4.1. Data 

The data for both approaches contains an equal percentage of positive and negative cases, where 

the positive cases (transport proteins) were obtained by downloading the FASTA file from the TCDB 

database, containing all TCDB’s proteins, a total of 18004 transporter proteins. These 18004 transporter 

proteins were filtered, selecting only proteins whose sequence contains more than 20 amino acids and 

less than 1000, thus removing some outliers that could harm the quality of the dataset and its analysis, 

Negative Cases 

Download 
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33836 proteins 
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with 10000 

proteins 

Train set with 

13836 proteins 

Test set with 

10000 proteins 

Train ML and DL 

models 
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Figure 5. Workflow of the code developed. Figure 5. Workflow of the code developed. 
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turning into 16918 positive cases. A brief overview of the functions developed to obtain the positive cases 

is given in Table 4. 

The negative cases (non-transport protein) were obtained through the Swiss-Prot database, which 

contains well annotated and reviewed proteins, containing a total of 560,118 proteins. In order to only 

obtain non-transport proteins, the Swiss-Prot database was filtered with the query <NOT “transporter 

protein”>, <NOT “transmembrane”> and <NOT “transporter activity”>, resulting in a total of 443,040 

non-transport proteins. Finally, 16918 negative cases were randomly chosen from this dataset, to have 

the same number of negative cases and positive cases. Although they are randomly chosen, it is important 

to ensure that the non-transport proteins chosen are not longer than 1000 amino acids or shorter than 

20 amino acids, the same size range of the transporter proteins. In this sense, it was necessary to verify 

the length of the randomly chosen proteins to select new proteins if the sequence length was not between 

20 and 1000. 

To obtain the negative cases, a code was developed to select data, being the main functions 

briefly introduced in Table 5. To do this, this code starts by reading the dataset with 443,040 non-

transport proteins and then randomly selects 16918 numbers from 0 to 443040, so that the number of 

negative cases selected is the same as the number of positive cases. Then, using the FASTA file, the 

sequences are obtained and it is verified if their size is within the supposed range, 20 and 1000. If some 

protein does not satisfy this property, a new random number is chosen to replace that protein, and this 

process is constantly done until all proteins have sizes between 20 and 1000. Finally, using the FASTA 

file containing all the negative cases, the proteins information from the lines corresponding to the numbers 

randomly chosen that satisfied the length property are selected and written in a new fasta file containing 

now the SwissProt information from the 16918 negative cases.  

 

 

 

 

Table 4. Functions developed to select the positive cases. 

 Functions Description 

Get fasta id Returns the fasta id of the protein 
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Positive Cases 

Code 

Get sequence 

Receives an index and gets the sequence of the 

correspondent protein from the dataset with all non-

transport proteins. 

Select Positive 

Cases 

Reads the file containing all transport proteins and 

filters them by their sequence length, returning the 

fasta id from the ones that pass the length property. 

 

Table 5. Functions developed to select the negative cases and create it csv file. 

 Functions Description 

Negative Cases 

Code 

Chose rand 

Returns a list of 16918 randomly chosen negative 

cases from the 473,916 total negative cases, 

making sure the sequence sizes are between 20 

and 1000 

Get sequence 

Receives an index and gets the sequence of the 

correspondent protein from the dataset with all non-

transport proteins. 

Save Fasta 

Reads a file containing all the negative cases and 

writes an fasta with the randomly chosen cases that 

pass the length property 

 

 Since there are already two FASTA files containing the positive cases and the negative cases, it 

is necessary to join them into a single dataset. To do that, a data creation code was developed where the 

Fasta ID, Uniprot Accession ID, Sequence, Is Transporter, TCDB ID and Taxonomy Domain information 

for each protein are stored into a DataDoms Comma Separated Values (CSV) file, i.e., a plain text file that 

contains a list of data separated by commas. To begin with, an array with the referred columns is started 

and the FASTA file containing the negative data is read. For each protein present, the information needed 

to fill the dataset is obtained from the one present in the file, except for the domain taxonomy that is 

obtained by accessing Uniprot. This way, using the functionalities of the BioPython library, using the SeqIO 

parser of FASTA files that creates a record where information can be extracted, it is possible to obtain the 

Fasta ID and Sequence of each protein. Through Fasta ID, dividing it, it was also possible to get the 

Accession number and the TCDB ID. Finally, through Biopython's Entrez.efetch it is possible to access 
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Uniprot using the protein's Accession number and, using SeqIO again, it is possible to obtain the protein's 

taxonomy domain. However, if the protein information cannot be accessed with the Entrez.efetch module, 

Uniprot is accessed remotely to obtain the Taxonomy domain using the Requests library. This process is 

similarly done for the positive proteins, joining all the proteins in the same array and finally creating a 

CSV file that contains all the positive and negative cases. A brief explanation of the functions developed 

to perform this process can be found in the Table 6. 

Table 6. Functions developed to create the base dataset containing the positive and negative cases together. 

 Functions Description 

Data 

Creation 

Code 

Reverse Returns the text backwards. 

Get Fasta ID Returns the Id of the fasta record 

Get Uniprot Accession Returns the Uniprot Acession number of the record 

Get sequence Returns the record´s sequence 

Check if Transporter 

Verifies if the record is a transporter protein (returns 1) or 

a negative case (returns 0), by checking if the first three 

characters of record id match "gnl" (transporter protein) 

Get TCDB ID 

Returns the TCDB ID by reading the record id backwards 

until the character “|” is found and using the “reverse” 

function 

Get Domain 
Returns the Taxonomy Domain by accessing the Uniprot 

database. 

Negative Cases 

Reads the FASTA file containing the selected negative 

cases and, for each protein, obtains the information from 

the previous functions, adding this information to an array 

Positive Cases 

Reads the text file containing all TCDB proteins and obtains 

the information from the previous functions only for the 

proteins that are in the list returned from the Positive 

Cases Code, adding this information to the same array as 

negative cases. 

Create Joined Data 

Convert the array containing all cases into a DataFrame 

and finally saves this information into a csv file called 

DataDoms, containing all positive and negative cases. 
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4.2. Features and Protein sequences 

The process of creating machine learning models involves a good set of features (input attributes). 

After joining the positive and negatives cases into a single dataset, for each protein, 8 features were 

generated using their amino acid sequence as basis: 

1. Amino acid composition: This feature counts the number of times that each amino acid is 

present in the protein sequence, corresponding to an array with 20 columns, and divide this 

count by the length of the sequence; 

2. Amino acid physicochemical composition: Some amino acids have specific 

physicochemical properties. This feature is an array of 11 columns were each column contains 

the sum of the times each amino acid referred to one physicochemical property occurs in the 

protein sequence dividing it by the length of the sequence. The 11 groups of properties taken 

into account were: charged amino acids (D, E, K, H, and R), Aliphatic amino acids (I, L, and V), 

Aromatic amino acids (F, H, W, and Y), Polar amino acids (D, E, R, K, Q, and N), Neutral amino 

acids (A, G, H, P, S, T, and Y), Hydrophobic amino acids (C, F, I, L, M, V, and W), positively 

charged amino acids (K, R, and H), negatively charged amino acids (D and E), tiny amino acids 

(A, C, D, G, S, and T), Small amino acids (E, H, I, L, K, M, N, P, Q, and V), and finally, large 

amino acids (F, R, W, and Y). 

3. Dipeptide composition: contains the number of times a specific dipeptide occurs divided by 

the total number of dipeptides, that is, the number of amino acids on the sequence minus one. 

It is an array with a total of 400 columns. 

4. Alpha helices: contains the number of alpha helices estimated by the Phobius tool, having only 

one column. 

5. Signal peptides: this array with only one column contains two possible values, “1” for proteins 

with an estimated signal peptide, or “0” for proteins with no estimated signal peptide. This 

estimated signal peptide for each protein is obtained through the Phobius tool. 

6. Beta barrel: The BOMP tool predicts a beta formation or not, and this presence is represented 

in the array with “1” if a beta formation is predicted and with “0” if not. 

7. Subcellular location: The LocTree3 tool predict the subcellular location of each protein, that 

is represented as a number between 0 and 24, represented in binary on an array of 25 columns. 

Each number represents a different subcellular location: 0 is given when an error occurs; 1 - 
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“chloroplast”; 2 - “chloroplast membrane”; 3 - “cytosol”; 4 – “endoplasmic reticulum”; 5- 

“endoplasmic reticulum membrane”; 6- “extra-cellular”; 7- “fimbrium”; 8- “golgi apparatus”; 9- 

“golgi apparatus membrane”; 10- “mitochondrion”; 11- “mitochondrion membrane”; 12- 

“nucleus”; 13- “nucleus membrane”; 14- “outer membrane”; 15- “periplasmic space”; 16- 

“peroxisome”; 17- “peroxisome membrane”; 18- “plasma membrane”; 19- “plastid”; 20- 

“vacuole”; 21- “vacuole membrane”; 22- “secreted”; 23- “cytoplasm”; 24- “inner membrane”. 

8. Number of transporter related Pfam domains: contains the number of transporter related 

Pfam domains for each sequence. 

 

In order to obtain those features for each protein, a features creation code was developed, whose 

functions are briefly presented in Table 7. Here, for each feature, a CSV file is created and only after all 

files are created, corresponding to all features, a final file is compiled with all features. First, a directory 

where all the CSV files will be stored is created.  

Several features can be obtained just through the amino acid sequence of the proteins. The 

“Amino acid composition” is obtained by counting the presence of each amino acid in the sequence and 

dividing this count by the size of the sequence. For the “Amino acid physicochemical composition” 

feature, amino acids representing some physicochemical properties present in the sequence are counted 

and summed and them this sum is divided by the sequence length, for each sequence. The 

physicochemical properties observed are if it is Charged (amino acids D,E,K,H and R), Aliphatic (I, L, V), 

Aromatic (F,H, W, Y), Polar (D, E, R, K, Q, N), Neutral (A, G, H, P, S, T, Y), Hydrophobic (C, F, I, L, M, V, 

W), Positive Charged (K, R, H), Negative Charged (D, E), Tiny (A, C, D, G, S, T), Small (E, H, I, L, K, M, 

N, P, Q, V), Large (F, R, W, Y). Lastly, the “Dipeptide Composition” feature is also obtained by the amino 

acid sequence, where a counting of the presence of all possible dipeptides in each sequence is made, 

further dividing this count by the total of possible dipeptides in the sequence. 

The “Number of alpha helices” and “Signal peptide” features are both achieved using a Phobius 

REST API where, using the sequence of each protein it is possible to obtain the response URL information 

from the Phobius web site, containing the results for each protein. Thus, filtering this response, it is 

possible to get the number of alpha helices and if there is a signal peptide (1) or not (0). During this 

process a text file is also created with the Phobius IDs of all dataset proteins. The REST API, 

Representational State Transfer, allows to define a set of functions that can perform requests and receive 
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responses via HTTP from some web application, such as Phobius, obtaining the necessary information 

from a web site via any programming language. 

The “Beta barrel” feature is achieved using a BOMP REST API, where, similarly to the previous 

feature, using the protein sequence it is possible to access the URL response from the BOMP website, 

filtering this response to check if the protein has a beta barrel conformation. As in the previous feature, 

during this process a txt file is created with the BOMP IDs of all dataset proteins.  

The feature “Subcellular location” is obtained using a LocTree3 REST API. With the sequence 

and the domain of the protein it is possible to get the LocTree3JOB ID, using the LocTree3 REST API. 

Then, with these IDs the response URL from the LocTree3 web site is obtained and filtered, being possible 

to get the protein subcellular location. This subcellular location is rated within 1 and 24, where each 

number is a different possibility of subcellular location. This feature will be one-hot encoded using a binary 

representation, i.e., an array of length 25, with 24 zeros and 1 one that corresponds to the subcellular 

location of that protein. 

The “Number of transporter related Pfam domains” uses the NCBI and the Uniprot to obtain all 

Pfam domains for each protein. Then, comparing this Pfams to a list that contains all possible transporter 

related Pfams domains, it is possible to count the number of transporter related Pfam domains that each 

protein has.  

Table 7. Functions developed to obtain the features for all proteins and to create an csv file with all features. 

 Functions Description 

 

 

 

 

 

 

 

Count Aminoacid 
Returns the number of a given aminoacid in a 

sequence 

Create Aminoacid 

Composition 

Returns an array with the aminoacid composition of 

each example in the dataset 

Create aminoacid physico 

chemical composition 

Returns an array with the aminoacid composition based 

on the physico-chemical properties of each example in 

the dataset 

Count dipeptide 
Returns the number of a given aminoacid in a 

sequence 
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Features 

Creation Code 

Dipeptide Composition 

Counts each possible dipeptide in the sequence, further 

dividing that count by the number of possible dipeptides 

in the sequence. 

Create Dipeptide 

Composition 

Returns an array with the dipeptide composition of each 

example in the dataset 

Create PhobiusJobID 
Creates a text file with all Phobius Job IDs for all 

proteins 

Create num alphahelices 

signalpeptide 

Returns an array with the number of alpha helices for 

each protein and if it has a signal peptide (1) or not (0) 

Create BOMP Job IDs Creates a text file with all BOMP Job IDs for all proteins 

Create BetaBarrels Returns an array with the number of beta-barrels 

Create LocTree3JobID 
Creates a text file with the LocTree3 ID and another txt 

file with the ReqID 

Create location prediction 
Returns an array with the Protein Subcellular Location, 

in binary form. 

Create transporter related 

Pfam domains 

Creates a text file with all Transport Pfam domains that 

are found in the proteins of the dataset. Returns an 

array with the number of Transport Pfam Domains that 

each protein contains. 

Pfam domains 
Returns a list with only the names of all Pfam Domains 

related to transport proteins 

Create Features 
Executes the function for each feature and creates an 

csv file for each feature 

Create file with all 

Features 

Read all CSV files corresponding to all features and join 

them information into one array, saving this array in 

one only CSV file that now contains all features for 

proteins, all together. 

 

 

To execute deep learning models, as convolutional neural networks or recurrent neural networks, 

the input attribute was changed. In this deep learning approach, protein sequences were directly used as 



58 

input attributes. The process for obtaining the protein sequence dataset will be explained in the section 

4.3. Dataset creation and pre-processing.  

The models created based on the features previously showed intend to separate transport 

proteins from non-transport proteins. Thus, the output attribute, called “Is Transporter” will consist on 

one column array with two possible values, “1” assigned to transport proteins and “0” assigned to non-

transport proteins. Based on the column “Is Transporter” from the dataset containing all cases, the code 

to create the output attribute creates an array with 1 or 0´s depending if the protein is a transporter (1) 

or a negative case (0) and saves a CSV file with this information in an new Out_Attributes folder. 

This is classified as a binary classification problem. The output attribute created is used in both 

approaches, machine learning and deep learning approaches, while the input attribute changes. 

 

4.3. Dataset creation and pre-processing 

Two different datasets were created, one composed by the features created as shown in the 

previous section and the output attribute, and the other composed by the protein aminoacid sequences 

and the output attribute.  

The first dataset, used on machine learning models and DNNs, is a matrix of 461 columns 

(features and output attribute) and 33836 rows, half of which extracted from the TCDB database (positive 

cases) and the other half are negative cases randomly chosen from a dataset of non-transport proteins 

extracted from Swiss-Prot database.  

The second dataset contains the aminoacid sequences from the exact same proteins present on 

the first dataset and also the output attribute. It should be emphasized that the order of the proteins on 

both datasets is the same, so that the future division on train set, validation set and test set in every 

model contains the same proteins.  

Before creating both datasets, the base dataset that contains the basic information extracted from 

TCDB and Swiss-Prot databases was randomly shuffled to mix the positive and negative cases. Only after 

this reorganization of the base dataset, the two different datasets used on the models were created. 

To create the dataset and then shuffle it, a mixed dataset creation code was developed, with the 

functions briefly presented on Table 8. First, this code merges the two base datasets into one, creating a 

dataset with all features and its output from all proteins. Then, this dataset will be mixed, randomly 
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reordering the proteins (rows) so that the positive cases are not all together, as the negative cases, for 

further division of the dataset into training, validation and test data. This mixed dataset is saved as a CSV 

file Dataset_mixed. Finally, the new mixed dataset is split in two, separating the features from the output 

and new CSV files are created for each part. Now, there are two CSV files, one containing the Features 

and one containing the Output, both with mixed data, in the same order. 

Table 8. Functions developed to create a Dataset with mix data. 

 Functions Description 

Create Mix 

Dataset Code 

Insert features 

Outattribute 

Merges the features and the output into one dataset, 

creating its csv file. 

Mix data 

Randomly mix the proteins from the dataset 

containing both the features and the outputs, saving 

it in a new csv file. 

Split features 

Outattributes 

Using the mixed data, splits the features from the 

outputs and saves both information, each in a csv 

file (Features_Dataset_mixed and 

Out_Attributes_Dataset_mixed). 

 

After creating the mixed dataset, a new code was developed to create the mixed dataset with the 

sequences to use it in the RNNs models. The code starts by reading the mixed dataset containing the 

features, used on machine learning code and DNNs, and selecting all proteins ids in the exact same order 

that they are on the Features_Dataset_mixed csv file. After collecting the ids, the original dataset, 

DataDoms csv file, is read and the protein sequences are stored. Finally, a new CSV file is created, 

Data_mixed_seqs, containing all protein sequences in the same order as the dataset containing the 

features, Features_Dataset_mixed csv file. It is important that both datasets contain the proteins in the 

exact same order so that in the future the proteins used as train set, validation set and test set will be the 

same in all models. 

The dataset containing the features needed to be pre-processed and transformed, once it may 

contain missing values and not be standardized or scaled. This preprocessing process was performed 

after the creation of the mixed dataset and before the use of data in machine learning models, executed 

at the beginning of the code developed to create the models when reading the data. This whole process 
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was performed using the Scikit-learn package, a Python toolkit with simple and efficient tools for data 

mining and data analysis. Scikit-learn is a well-designed machine learning package with tools to help 

classification problems, regression problems, clustering, dimensionality reduction, model selection and 

preprocessing, and also designed to interact with other python packages such as NumPy and SciPy. This 

package will be further used to created and train the machine learning models.  

Thus, by using Scikit-learn's Imputer preprocessing feature it is possible to replace all missing 

values ("Nan") with the column mean and, using the preprocessing feature StandardScaler it is possible 

to standardize the dataset by removing the mean and scale to unit variance. The standardization process 

was done only for non-binary features, i.e. the feature with the number of alpha helices and the feature 

with the number of transport related Pfam domains. Once just two features needed to be standardized, 

this process to standardize the dataset was applied when obtaining these two features. A variance 

threshold filter was also used, to remove features with zero variance, i.e., redundant features that had 

the same value for every protein that do not contribute to a better discrimination of the classes. This 

Variance Threshold filter was also applied with the scikit-learn package using its feature selection model. 

The dataset used on the deep learning approach contains protein sequences. In order to use 

them as input, it is first necessary to convert them into sequence of integers that can be interpreted by 

the models, using the class Tokenizer from the library Keras, using the backend TensorFlow (that will be 

further introduced), that enables to vectorize the text data. Then, it is still necessary to work around the 

variable sequence lengths problem by filling the sequences with the required number of zeros to have a 

common length in all sequences (padding), where the length of the longest dataset sequence was used. 

Keras is a high-level neural networks API, written in Python and capable of running on top of 

several backends as TensorFlow, Theano and Microsoft Cognitive Toolkit (CNTK) [95] and of running 

seamlessly on CPU and GPU. Keras is a Python library that enables the construction and training of 

several deep learning models, having models like neural layers, cost functions, optimizers, initialization 

schemes, activation functions and regularization schemes.  

As mentioned, Keras relies on a specialized, well-optimized tensor library, serving as its backend 

engine. The Keras backend used in this development was the TensorFlow. TensorFlow is a deep learning 

open-source software, built in C++, that operates at large scale using dataflow graphs to represent all 

computation, shared state and the individual mathematical operations, the parameters and their update 

rules, and the input pre-processing. This system supports advanced machine learning algorithms that 

contain conditional and iterative control flow, and contains tools that enable the visualization of networks 
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being possible to follow the training progress [93]. TensorFlow uses a declarative programming paradigm, 

that is, users can focus on the symbolic definition of what needs to be computed [94]. 

 

4.4. Models 

As mentioned earlier, both machine learning and deep learning approaches were taken.  

In the first approach, the dataset containing the features is used in seven different machine 

learning models, all applied using the Scikit-learn package: Naive Bayes (NB) model using the 

GaussianNB function as base estimator; Decision tree model using ExtraTreesClassifiers (ET) function; 

Support vector machine (SVM) model using the Support Vector Classification SVC function; K-

nearest neighbours (KNN) model using KNeighborsClassifiers function; Logistic Regression (LR) 

model using linear_model.LogisticRegression function; Random Forest (RF) using 

RandomForestClassifier function; Gradient Boosting (GB) using GradientBoostingClassifier function. 

All these models were firstly trained and tested with their default hyperparametes, presented on Table 9. 

The data was separated into a train set of 13836 proteins (the first 13836 proteins of the dataset) to train 

the models, a validation set of 10000 proteins and a test of 10000 to test the models and obtain their 

metrics scores. 



62 

Table 9. Information about the ML models trained. 

 

In order to improve the model’s performance, some techniques of ensemble methods were 

applied. Some resampling methods were implemented along the project, such as Bagging classifier, used 

in each machine learning model using the Sklearn package and its ensemble module. 

The machine learning models developed were also implemented with two voting classifiers, using 

VotingClassifier function from Sklearn package. This Voting Classifier prediction method can use a 

majority voting or a weighted majority voting. In the majority voting, Hard Vote Classifier, the final 

Model 
Scikit-learn 

Module 
Section Hyperparameters 

Naive Bayes (NB) sklearn.naive_bayes 3.1.3 
priors: None; var_smoothing: 1e-

9 

Decision Tree sklearn.ensemble 3.1.3 

n_estimators: 10; criterion: 

‘gini’;  max_deph: None;  

min_samples_split: 2; 

min_samples_leaf: 1 

K-nearest neighbours 

(KNN) 
sklearn.neighbors 3.1.3 

n_neighbours: 5; weights: 

‘uniform’; algorithm: ‘auto’; 

leaf_size = 30 

Support Vector 

Machine (SVM) 
sklearn.svm 3.1.3 

C: 1.0; kernel: ‘rbf’; degree: 3; 

gamma: ‘auto’; coef: 0.0 

Logistic Regression 

(LR) 
sklearn.linear_model 3.1.3 

penalty: ‘l2’; dual: False; tot: 

0.0001; C: 1.0 

Random Forest(RF) sklearn.ensemble 3.1.3 

n_estimators: 10; criterion: 

‘gini’; max_deph: None;  

min_samples_split: 2; 

min_samples_leaf: 1 

Gradient Boosting 

(GB) 
sklearn.ensemble 3.1.3 

loss: ‘deviance’; learning_rate: 

0.1; n_estimatiors: 100; 

subsample: 1.0; criterion: 

‘friedman_mse’ 

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.neighbors
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prediction corresponds to the class predicted by most of the models. Weighted voting classifiers considers 

that each model has a weight (given by the user) and the models with bigger weight have more influence 

in the final result. 

In order to train and test all these models, a model creation and evaluation code was developed. 

This code starts by creating a directory where machine learning models will be stored, "ML Models” and 

by loading the input dataset (Features_Dataset_mixed csv file) and the output dataset 

(Out_Attributes_Dataset_mixed csv file) as the variables “Input” and “Output”, respectively. 

After loading the variables containing the data, the Input variable will be treated and pre-

processed, as referred in section 4.3, using the Scikit-learn package and its preprocessing and 

feature_selection modules. 

Finally, using the Sklearn package, several machine learning models were trained and tested with 

the train set (the first 13836 proteins of the dataset and test set and the last 10000 proteins of the 

dataset), obtaining different metrics scores and its confusion matrix: Gaussian Naïve Bayer model, 

Decision Tree, K-Nearest Neighbors (KNN), Logistic Regression, Random Forest Classifier, Gradient 

Boosting Classifier and SVM. The first five algorithms were executed applying the Bagging Classifier 

ensemble method. All these models are saved on the “ML Models” folder.  

Finally, several voting classifiers are trained and tested and accuracy, ROC-AUC and F1 scores 

are obtained for hard vote classifiers. This process is repeated six times, creating different Weighted or 

non-weighted Hard votes and Soft votes classifiers. The first is a hard vote classifier without weights, 

where its final prediction corresponds to the class predicted by most of the models. The second and the 

third are weighted hard votes, with the weights [1,2,3,2,3,3,1] and [4,6,10,6,10,7,1] respectively, 

considering that each model has a weight where models with bigger weight have more influence in the 

final result. The fourth is just a Hard Vote without weights and only for the three models that demonstrated 

the best performance in the first part where they were trained with their default parameters (GB, RF and 

KNN). The fifth is actually a Soft Vote with weights [1,2,3,2,3,3,1] and the last one is a Soft Vote without 

weights. The final result in a Soft Vote is calculated by averaging out the probabilities calculated by each 

model, and, when is a weighted soft vote, models with a higher weight have more influence in the final 

result. All the weights are according the order of the trained models, presented on the next chapter on 

section 5.1, in Table 10. Their weights are set according to their performance in that same part, where 

the models that achieved the best performance were assigned higher weights, those that achieved the 

worst performance lower weights and the models with an average performance were assigned median 
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weights. In the Weighted Hard Vote two different weights were tested, trying to see if by defining a larger 

difference between the weights of the best and worst models and by using a ranking with more than three 

ratings the final result would be influenced. 

Since the models are first trained and tested with their default hyperparameters, as explained in 

the beginning of this section, a model optimization is made only to the model that in the first part 

demonstrates the best performance. This model optimization allows to find the best combination of 

hyperparameters for this model and to see if there is any change of improvement in the model 

performance. There are two common model optimization processes: Randomized Search and Grid 

Search. The first approach is used when, for example, there is a limited computational power and it is 

not possible to test all possible combinations of hyperparameters. So, instead of testing all possible 

combinations, this approach randomly selects a set of combinations and tests them, being this number 

of iterations defined by the user. The Grid Search approach runs all possible combinations of 

hyperparameters to find the best model, however, the runtime of this process can be massive. 

Due to limited computational power, the Randomized Search model optimization approach was 

the only one applied, using the validation set to optimize the model. This process is achieved using the 

model_selection module from Sklearn package. 

 

Finally, using the Keras library, the same featured dataset was used to train a Deep Neural 

Network (DNN) model. The code developed starts by reading the dataset containing the features of all 

proteins and use it to train deep neural network models (DNNs). First the data was separated into train 

set (size of 13836 proteins), validation set (10000 proteins) and test set (10000 proteins) and then 

several DNNs with different numbers of hidden layers and hidden units were trained. In the hidden layers 

of these models and in the last layer the activation function used was the relu function and the sigmoid 

function, respectively. Dropout layers of 0.25, 0.5 or no dropout layer were applied, and different 

optimizers were tested, rmsprop, adam and sgd_momentum. The models were tested with 50 epochs 

and a batch size of 512. 

In the deep learning approach, using the Keras library and the TensorFlow backend, Recurrent 

Neural Networks (RNN) and Convolutional Neural Networks (CNN) models were developed. 

Several models were trained, using a different number of hidden layers or hidden units, or even a different 

type of layer, such as LSTM or GRU. Models combining RNNs with convolutional layers were also 
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developed. All developed models will be presented in section 5 along with their results. The code 

developed to train and test the RNN starts by reading and treating the data. After reading the dataset 

containing the protein sequences the length of the longest sequence is obtained and stored in a variable. 

Then, through the TensorFlow and Keras libraries using the preprocessing module and the text Tokenizer 

function, the sequences are vectorized, where each amino acid is turned into an integer, and transformed 

into the size of the previously stored variable, where zeros are added so that all sequences are equal in 

length to the largest sequence. 

After data preprocessing, the various sets needed to train, validate and test the models are 

created, being the same used in the previous approach.  

Finally, using TensorFlow and Keras library, several deep learning models were trained and 

tested, combining different numbers of hidden layers or of hidden units and also different type of layers 

and neural networks. 

 

4.5. Performance Evaluation 

To evaluate models’ performance, after training the models, it is possible to use the metrics 

module from Scikit-learn that includes several score functions, performance metrics and pairwise metrics 

and distance computation. Thus, different score functions were computed such as accuracy, F1, ROC-

AUC and recall by comparing the true test set outputs with the predicted test set outputs, which were 

predicted using the predict function that receives the test set inputs. Also, using the metrics module, it 

was possible to compute the confusion matrix for each model to observe where the models are 

misclassifying the data and then calculate the specificity score.  

The performance evaluation for the deep neural networks was made by using the evaluate 

function which receives the test set inputs and predicts its outputs, comparing them to the true test set 

outputs and calculating the accuracy of the model. 

For RNNs, the evaluation of the model’s performance is similar to the DNN’s evaluation, made 

using the history function which returns the loss and accuracy values of both training and validation data. 

Then using the evaluate function it is possible to test the model obtaining these same metrics, loss and 

accuracy, for the test data. 
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The code of each algorithm developed in this work is freely available in GitHub at 

“https://github.com/AndreaFMSilva/Thesis”. 
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5. Results and Discussion 

5.1. Machine Learning Models 

As explained in the previous chapter, several machine learning models were tested and trained 

with their default hyperparameters using a featured dataset. These models were tested with the 

combination of the test and validation set. The different score metrics for each model are presented in 

Table 10.  

Table 10. Machine Learning Models performance evaluation for the test set (test + validation sets) 

Model Accuracy F1 ROC-AUC Specificity Recall 

Naive Bayes 0.8672 0.8513 0.8672 0.9746 0.7598 

ExtraTreeClassifier 0.8765 0.8712 0.8765 0.9178 0.8352 

K nearest neighbours 0.8855 0.8802 0.8855 0.9302 0.8408 

Logistic Regression 0.879 0.8674 0.879 0.9666 0.7914 

GradientBoosting 0.8916 0.8849 0.8916 0.9492 0.8340 

RandomForest 0.8817 0.8743 0.8817 0.9404 0.823 

SVM 0.8563 0.8339 0.8563 0.9912 0.7215 

 

In this first evaluation, the SVM model showed lowest performance in all scores. The gradient 

Boosting model was the only one achieving scores slightly above 0.89, on accuracy and ROC-AUC scores, 

achieving the best performance. The Random Forest and K nearest neighbours models presented very 

similar performance, close to the Gradient Boosting model, reaching score values of 0.88 in the accuracy 

and ROC-AUC scores. 

As mentioned, the Gradient Boosting model achieves the best performance, however, this result 

was achieved with the hyperparameters defined by default. So, a Randomized Search model optimization 

was made for this model, where the number of combinations was limited to 50 and the possible 

hyperparameters tested are presented on Table 11. 
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Table 11. Hyperparameters used on model optimization process 

Hyperparameter Values 

Nº Estimators [50, 100, 500] 

Max Depth [3, 5, 8] 

Learning Rate [0.05, 0.1, 0.2] 

Min Samples Split 
[2, 10, 100, 300, 

500] 

Min Samples Leaf [1, 10, 50] 

 

The best configuration of hyperparameters found in the Randomized Search process and the 

respective accuracy score are presented on Table 12. The results obtained in the model optimization 

process demonstrate an improvement over those obtained previously, presented in Table 10, slightly 

increasing the accuracy score to 0.899. This indicates that the hyperparameters set by default are not 

the best configuration for the highest score, being possible to improve its result, testing with even more 

possible hyperparameters. 

Table 12. Best configuration of hyperparameters found in Randomized Search process. 

HYPERPARAMETERS 
RANDOMIZED 

SEARCH 

Nº Estimators 500 

Max Depth 8 

Learning Rate 0.2 

Min Samples Split 100 

Min Samples Leaf 1 

TEST SET ACCURACY 0.8991 

 

After evaluating each model, an ensemble method was also implemented, Hard Voting classifiers, 

Soft Voting classifiers and Weighted voting classifiers, ensembling the models to combine their prediction 

capabilities into a better suited model. As mentioned in section 4.4, six different ensemble voting 

classifiers were implemented with the same train and test set as before. The scores from these ensemble 

voting classifiers, shown in Table 13, show no significant improvement over the scores presented in Table 
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10. However, within all these processes, the Hard Vote classifier with only the three best performing 

models demonstrated the best performance with an accuracy score of 0.894, slightly improving the result 

from the best performance model obtained with the Gradient Boosting model. The two weighted hard 

votes implemented showed no major differences in their results, indicating that defining a larger difference 

between the weights for the best and worst model has no major influence on the result compared to the 

weight used with a difference of only one unit between the three possible classifications. 

Table 13. Accuracy and F1 scores for ensemble voting classifiers. 

Ensemble 
Models 

Used 
Accuracy ROC-AUC F1 Recall 

Hard Vote All 0.8874 0.8881 0.8785 0.8075 

Weighted Hard Vote 

[1,2,3,2,3,3,1] 
All 0.8918 0.8923 0.8855 0.8299 

Weighted Hard Vote 

[4,6,10,6,10,7,1] 
All 0.8921 0.8927 0.8856 0.8281 

Hard Vote GB, RF, KNN 0.8939 0.8944 0.8823 0.8360 

Soft Vote 

[1,2,1,3,3,2,3] 
All 0.8904 0.8904 0.8811 0.8118 

Soft Vote All 0.8821 0.8821 0.8706 0.7930 

 

To understand and evaluate where the data are wrongly predicted, confusion matrices were 

created for each ML model trained in the beginning. The results from the confusion matrix to all models 

are presented on the table below (Table 14). 

Table 14. Confusion Matrices of the first fold from all models. 

NB Model ExtraTree model 

       Predicted 

Actual 
NO YES All 

        Predicted 

Actual 
NO YES All 

NO 4872 127 4999 NO 4588 411 4999 

YES 1201 3800 5001 YES 824 4177 5001 
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All 6073 3927 10000 All 5412 4588 10000 

KNN model Logistic Regression model 

       Predicted 

Actual 
NO YES All 

        Predicted 

Actual 
NO YES All 

NO 4650 349 4999 NO 4832 167 4999 

YES 796 4205 5001 YES 1043 3958 5001 

All 5446 4554 10000 All 5875 4125 10000 

GradientBoosting model RandomForest model 

       Predicted 

Actual 
NO YES All 

        Predicted 

Actual 
NO YES All 

NO 4745 254 4999 NO 4701 298 4999 

YES 830 4171 5001 YES 885 4116 5001 

All 5575 4425 10000 All 5586 4414 10000 

SVM model 

       Predicted 

Actual 
NO YES All 

NO 4955 44 4999 

YES 1394 3607 5001 

All 6349 3651 10000 

 

Analyzing the confusion matrices, it is possible to conclude that all models have similar results, 

where the number of FNs is higher than the number of FPs, misclassifying transport proteins as non-

transport proteins. The SVM model has the higher number of TN, however, is also the model that 

presents the higher number os FNs, reflecting on its specificity score being the highest of all (0.99), and 

its recall score being the lowest of all (0.72). On the contrary, the KNN model contains the higher 

number of TP but it also has the third higher number of FPs, reflecting on its recall score, being the 
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highest of all (0.84). Lastly, the ExtraTree model contains the higher number of FP, being reflected on 

its specificity score being the lowest of all (0.91), however being a high value compared to the worst 

recall score, showing that the models are effectively misclassifying transport proteins as non-transport 

proteins, not the other way around. 

The presence of transport proteins in the negative cases, due to the queries used to create the 

negative cases dataset, may influence this misclassification, being one of the possible reasons for this 

misclassification of transport proteins as non-transport proteins. 

 

5.2. Deep Learning Models 

5.2.1. Deep Neural Network 

To start the deep learning approach, some deep neural networks were trained and tested using 

the dataset containing protein features, to test whether DNNs can be more effective than machine 

learning models, using the exact same dataset as input data on all these models. Different DNNs were 

trained and tested, combining different numbers of hidden layers, hidden units, dropout rates and 

optimizer. Thus, a model optimization was performed testing different combinations of number of 

hidden layers (1,2  or 4), numbers of hidden units (64, 128 and 256), dropout rate (0, 0.2, 0.5) and 

optimizer (adam, rmrprop and sgd_momentum), training with 50 epochs and a batch size of 512. The 

best configuration found, presented on Table 15, achieved the best accuracy score for the test set of 

0.8918, showing no significant improvement over the machine learning models trained and tested. 

Table 15. Best hyperparameters configuration on DNN model optimization. 

Hyperparameters Value 

Number of hidden layers 4 

Number of hidden units 128 

Dropout rate 0.2 

Optimizer Adam 

Epochs 50 

Batchsize 512 
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This deep learning approach using protein features as input showed no improvement compared 

to machine learning models that use this same dataset as input. However, it has shown to resemble 

machine learning models, achieving a similar performance. 

 

5.2.2.  Recurrent Neural Networks 

Several deep learning models, such as RNNs, were developed using the dataset containing the 

protein sequences, trying to distinguish transport proteins from non-transport proteins and improve the 

results obtained in the machine learning models which use features as input. Thus, to test and evaluate 

the models performance the dataset was, once again, divided as mentioned in the previous chapter into 

the same datasets. 

Different types of neural networks were trained and different combinations of numbers of hidden 

layers and hidden units were tested. All trained models and their characteristics and scores are 

described in Table 16. All models start with an Embedding layer, and end with a Dense layer with 

sigmoid function as the activation function, returning 1 output. The models are then compiled with the 

rmsprop optimizer, the binary_crossentropy loss function and the metric defined is accuracy. Lastly, 

the model is trained and validated with the train set and validation set, respectively, with 10 epochs and 

a batch size of 128, and finally the model is tested with the test set.  

Table 16. Deep Learning Models characteristics and scores. 

Neural Network 

Nº of 

Hidden 

Layers 

Nº of 

Hidden 

units 

Train 

score 

Validation 

score 

Test 

score 

CuDNNLSTM 1 32 0. 8317 0.8058 0.8048 

CuDNNGRU 1 32 0.8214 0.8202 0.8240 

LSTM 1 32 0.7905 0.8252 0.8263 

GRU 1 32 0.8236 0.8313 0.8337 

Bidirection 

CuDNNGRU 
1 16 0.8083 0.8271 0.8268 

1D Convnet 1 32 0.8963 0.8740 0.8795 
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1D Convnet 2 32 0.8976 0.8834 0.8872 

1D Convnet + 

CuDNNGRU 
2 32 0.8972 0.8852 0.8857 

1D Convnet + GRU 2 32 0.8932 0.8810 0.8852 

1D Convnet + 

CuDNNLSTM 
2 32 0.8669 0.8434 0.8477 

1D Convnet + LSTM 2 32 0.8781 0.8735 0.8841 

CuDNNLSTM 3 16 0.8296 0.8369 0.8431 

1D Convnet + 

2 CuDNNGRU + 

Dropout (0.5) 

3 32 0.8932 0.8871 0.8928 

1D Convnet + 

CuDNNGRU + 

Dropout (0.5) 

2 128 0.9415 0.8395 0.8482 

1D Convnet + 

CuDNNLSTM + 

Dropout (0.5) 

2 128 0.8894 0.8756 0.8825 

2 1D Convnet + 

2 CuDNNLSTM + 

Dropout (0.5) 

4 128 0.8894 0.8750 0.8853 

1D Convnet + 

GRU 
2 128 0.9407 0.7969 0.8007 

1D Convnet + 

2 GRU + 

Dropout (0.5) 

3 
Convnet – 64 

GRU – 32 
0.9108 0.8885 0.8925 

1D Convnet + 

2 CuDNNGRU + 

Dropout (0.5) 

3 128 0.9768 0.8699 0.8758 

 

Almost all models with 1D Convnet overfit the data, some more than others, being better in the 

train and validation set than in the test set. One way to avoid the overfitting is to add dropout layers. 
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However, not always the addition of a dropout layer improves the test set score. For example, the last 

model presented on Table 16 has a very high train score value, however the test score of this model is 

much lower.  

Although overfitting occurs in the vast majority of networks tested, one of them has achieved a 

slightly higher test score than Gradient Boosting model, with an accuracy of 0.8928, however it cannot 

be considered a significant improvement. This score was obtained in the model composed by a 1D 

Convnet layer followed by 2 GRU layers with a dropout layer between them, with a rate of 0.5. One 

possible reason for no significant improvement is the embedding layer used in every network, which, 

being a freshly trained network, may not represent the data well. A possible approach is to use a pre-

trained embedding layer, preferably trained with protein sequences. 
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6. Conclusions and Further Work 

This work consisted on the application of machine learning and deep learning models to predict, 

through protein sequences, whether a given protein is a transporter or not.  

Seven different machine learning models were trained and tested.  Some ensembles of the 

models, such as Hard Voting classifiers and Weighted voting classifiers, were also implemented. In this 

machine learning approach, the best score obtained was of 0.8916 in both accuracy and ROC-AUC 

scores, corresponding to the performance of the Gradient Boosting model. In order to understand where 

the models were misclassifying the data, their confusion matrices were created and analyzed. Thus, it 

was observed that the number of FNs was greater than the number of FPs in all models, indicating that 

transporter proteins predicted as non-transporter proteins is the most common error.  

A hyperparameter optimization was also performed in the model that reached the best score, 

Gradient Boosting, thus slightly improving the accuracy to 0.899 through the Randomized Search 

process. Finally, an ensemble method was implemented by applying Hard Voting classifiers, Weighted 

voting classifiers and Soft Voting classifiers by testing different weights and testing only with the best 3 

models (GB, RF, KNN). However, no significant improvement over previous scores was obtained, only 

achieving a similar accuracy score of 0.8939 with the Hard Vote tested with only the best 3 models. 

To apply a deep learning based approach, some deep neural networks were trained and tested 

using the dataset containing the features, thus using the same input as the machine learning models. 

Here, the main objective was to see if DNNs can match/improve the results obtained with machine 

learning models when using the same dataset as input data. DNN hyperparameters were optimized, 

combining different numbers of hidden layers, hidden units, dropout rates and different optimization 

algorithms, obtaining a maximum accuracy of 0.8918 corresponding to a four layer model, with 128 

hidden units, with a dropout rate of 0.2 and Adam optimizer. Thus, with this configuration, no 

improvement over the machine learning models was verified, matching the best score obtained with the 

Gradient Boosting model with its default hyperparameters and not far from the score obtained in its 

model optimization process.  

Finally, the objective falls on the application of deep learning models to try to improve the results 

of the previous approaches, trying only to use the protein sequences as input. The main neural network 

used in sequences is the RNNs. Thus, several recurrent neural network models were trained and tested 

by combining different numbers of hidden units, hidden layers, epochs, but mainly by varying the type 
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of layers, using gated units, memory units, convolutional layers and even bidirectional layers. All models 

achieved accuracy test set scores greater than 0.80, demonstrating already a reasonable performance 

in the separation of transporter and non-transporter proteins using only their sequences as input data. 

The maximum accuracy obtained is of around 0.89, corresponding to the model consisting of a gated 

recurrent unit with two convolutional layers with dropout layers between them, and only 32 hidden units. 

Thus, the performance of the best RNN model resembles the performance of the best machine learning 

model, obtaining very close accuracies. Most models with a convolutional layer have demonstrated 

overfitting, and not even adding dropout to these networks has been shown to work in every case. 

Unfortunately, due to the limited computational power and the large dataset, it was only possible to test 

models with low numbers of hidden units and epochs. 

Finally, although a deep learning model capable of identifying transporter proteins with an 

accuracy of 0.89 was already found, it did not outperform the best machine learning model, Gradient 

Boosting model, only matching it. 

A possible change to improve the performance of the deep learning model is to change the 

embedding layer. All embedding layers used in the tested models are embeddings that are trained on 

the model itself with current data, which can lead to poor data classification. A possible improvement 

would be to use pretrained word embeddings, especially if it is a pretrained model with sequence 

proteins. It would also be interesting to change the filters used to obtain the negative cases through 

Swiss-Prot database, since there may be positive cases within the negative cases dataset. But, one more 

time, to train and test models with more layers and hidden units it would be interesting to do experiments 

with more computational power. 

In short, the proposed objectives were achieved despite the results obtained do not meet the 

idealized, thus, as mentioned, there is always room for improvement and future work. 
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