
Citation: Martins, L.M.; Ribeiro, N.F.;

Soares, F.; Santos, C.P. Inertial

Data-Based AI Approaches for ADL

and Fall Recognition. Sensors 2022, 22,

4028. https://doi.org/10.3390/

s22114028

Academic Editor : Jochen Klenk

Received: 28 March 2022

Accepted: 23 May 2022

Published: 26 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Inertial Data-Based AI Approaches for ADL and
Fall Recognition
Luís M. Martins 1,2,3 , Nuno Ferrete Ribeiro 1,2,3,4,* , Filipa Soares 1,2,3 and Cristina P. Santos 1,2,3

1 Center for MicroElectroMechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal;
lmartins2116@gmail.com (L.M.M.); a86677@alunos.uminho.pt (F.S.); cristina@dei.uminho.pt (C.P.S.)

2 LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
3 LABBELS—Associate Laboratory, 4710-058 Guimarães, Portugal
4 MIT Portugal Program, School of Engineering, University of Minho, 4800-058 Guimarães, Portugal
* Correspondence: nuno.fribeiro@dei.uminho.pt

Abstract: The recognition of Activities of Daily Living (ADL) has been a widely debated topic, with
applications in a vast range of fields. ADL recognition can be accomplished by processing data
from wearable sensors, specially located at the lower trunk, which appears to be a suitable option
in uncontrolled environments. Several authors have addressed ADL recognition using Artificial
Intelligence (AI)-based algorithms, obtaining encouraging results. However, the number of ADL
recognized by these algorithms is still limited, rarely focusing on transitional activities, and without
addressing falls. Furthermore, the small amount of data used and the lack of information regarding
validation processes are other drawbacks found in the literature. To overcome these drawbacks, a total
of nine public and private datasets were merged in order to gather a large amount of data to improve
the robustness of several ADL recognition algorithms. Furthermore, an AI-based framework was
developed in this manuscript to perform a comparative analysis of several ADL Machine Learning
(ML)-based classifiers. Feature selection algorithms were used to extract only the relevant features
from the dataset’s lower trunk inertial data. For the recognition of 20 different ADL and falls, results
have shown that the best performance was obtained with the K-NN classifier with the first 85 features
ranked by Relief-F (98.22% accuracy). However, Ensemble Learning classifier with the first 65 features
ranked by Principal Component Analysis (PCA) presented 96.53% overall accuracy while maintaining
a lower classification time per window (0.039 ms), showing a higher potential for its usage in real-time
scenarios in the future. Deep Learning algorithms were also tested. Despite its outcomes not being as
good as in the prior procedure, their potential was also demonstrated (overall accuracy of 92.55% for
Bidirectional Long Short-Term Memory (LSTM) Neural Network), indicating that they could be a
valid option in the future.

Keywords: activity recognition; falls; feature selection; dataset fusion; Machine Learning; deep learning

1. Introduction

The recognition of Activities of Daily Living (ADL) has been a widely debated topic of
study for the past several years with applications in a vast range of fields, from medicine
to supervision of a persons’ driving style, and even to sports training analysis, passing
through surveillance [1,2]. Several activities are being recognized nowadays. ADL related
to human locomotion, such as walking, running, moving up and down stairs, or just
sitting or lying down, are identified in several papers [2–6]. Other activities involving finer
gestures with the upper limbs, such as driving, talking on the phone, or eating are also
addressed [3,7]. Fall detection [8], recognition of sedentary behavior [9] and comfort in
smart homes [10] are just a few more examples of automatic ADL recognition applications.
The richness and diversity of human activities, as well as the large dimensionality of
the data gathered, make the recognition of human activities a difficult but promising
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endeavor [11]. Furthermore, intraclass variability (the same activity may differ from one
subject to the other) and interclass similarity (various activities may exhibit similar forms)
make recognizing human activities even more challenging [12].

The identification of human activities can be accomplished by processing signals
or image sequences gathered from one or more sensors, such as examining videos and
photos from cameras or motion data from inertial sensors [11]. When compared to video
and environmental sensor-based systems [13], wearable sensors show to be a suitable
option for ADL recognition in uncontrolled environments due to their small size, low
cost, and adaptability [5,6]. Several studies on activity recognition used wearable sensing
technologies [6], with simpler wearable systems relying on a single accelerometer sensor,
and others combining different sets of sensors on different parts of the body to fully
capture the subject’s movements [5,14]. Moreover, researchers have been creating various
publicly available benchmark datasets to evaluate human activity recognition algorithms [5].
The UCI HAR [15], Sisfall [16], Opportunity [17], and PAMAP2 [18] are some of the
most commonly used public datasets to train and evaluate inertial sensor-based ADL
recognition algorithms.

Offline activity recognition is the most basic method of activity recognition [14]. Sen-
sors are placed in the surroundings or directly on the subject in most applications. Data are
gathered, labeled, and supplied to classification algorithms for activity recognition [5,6,14].
Most offline approaches rely on supervised Machine Learning (ML) models for activity
recognition, such as Support Vector Machine (SVM), Decision Trees (DTs) and K-Nearest
Neighbors (K-NN) [6,14]. Moufawad et al. [19] used several features in a DTs algorithm to
differentiate nine classes of ADL, and an overall accuracy of 97% was obtained across all
activities. An accuracy of 80% for a set of 14 ADL classified was attained by Gomaa et al. [4],
and the smallest average sensitivity and specificity achieved by the proposed Random For-
est (RF) classification algorithm were 81% and 98%, respectively. Two ML algorithms were
implemented by Gupta et al. [20] for the classification of six classes of ADL—Naive Bayes
(NB) and K-NN. The overall accuracy of the system was about 98% from both the classifiers
and showed accuracy of more than 95% for all the activities. Awais et al. [21] used an
SVM classifier with RBF kernel to classify the four activity classes with data acquired from
several wearable sensors. Among all single-sensor solutions, the best performance was
accomplished by the sensor at the lower back (L5), with an F-measure of above 80%, and
there was a notable improvement in the performance of 7.3% from single-sensor solution
to a two-sensor solution.

Moreover, on several benchmark datasets used by ML-based solutions, conventional
(CNN and LSTM) and hybrid (CNN-LSTM) Deep Learning (DL) models have lately shown
improved and promising performances, cutting down the time spent on data processing
and feature extraction [5,14]. Experimental results attained by Wang et al. [8] show that
lightweight neural networks have obtained better results than ML methods previously used
in fall detection. The best result was attained with the supervised Convolutional Neural
Network (CNN), which achieved an accuracy beyond 99%. Despite the great Fall Detection
accuracy results, other activities were not recognised. Altuve et al. [2] used sliding window-
based segments and several sequential Long Short-Term Memory (LSTM) neural network
to identify six human activities, obtaining 92.91% average accuracy. A Many-to-One LSTM
network architecture was used by Chung et al. [22] for the recognition of nine ADL and the
results show that activity gathered from inertial data with a sampling rate as low as 10 Hz
from four sensors is sufficient to recognize ADL with 93% accuracy. In the work developed
by Murad et al. [3], unidirectional, bidirectional, and cascaded architectures based on
LSTMs were created, and their effectiveness was evaluated on several benchmark datasets.
As it can be observed, overall accuracies over 92% were attained for each dataset, which
proved the efficiency of the created models for a broad range of activity recognition tasks. A
three-part modular system based on CNNs was proposed by Gil-Martín et al. [23] in order
to classify 12 different physical activities. Results show that when applying post-processing
techniques, isolated classification errors were reduced, improving the accuracy from 89.83%
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to 96.62%. Table 1 describes the datasets used by the analyzed works as well as the results
obtained by their Deep Learning algorithms.

Table 1. Datasets used for the evaluation of the Deep Learning algorithms analyzed in the literature
and respective description regarding sensing methods, sample frequency, participants, number of
activities (classes) recorded and algorithm performance (accuracy). In this table: A = Accelerometer,
G = Gyroscope, M = Magnetometer, B = Barometer and ADL = Activities of Daily Living.

DataSet Work Sensors Sample
Frequency

Participants Nº of
Classes

Accuracy

Private
Dataset

Chung et al. [22] A, G, M 100 Hz 5 9 93%

SisFall [16] Wang et al. [8] A, G 200 Hz 38 2 <99%

PAMAP2 [18] Gil-
Martín et al. [23] A, G, M 9 Hz 9 18 96.62%

UCI-HAD [15] Altuve et al. [2]
Murad et al. [3]

A, G, M 50 Hz 30 6 [2]-96.7%
[3]-92.9%

USC-HAD [24] Murad et al. [3] A, G 100 Hz 14 12 97.8%

Opportunity [17] Murad et al. [3] A, G, M 30 Hz 4 18 1 92.5%

Daphnet
FOG [25] Murad et al. [3] A 64 Hz 10 2 94.1%

Skoda [26] Murad et al. [3] A 98 Hz 1 11 1 92.6%
1 ADL related to hand gestures.

For the most part, the results achieved by Artificial Intelligence (AI)-based algorithms
for ADL recognition are highly satisfactory. However, the number of activities recognized is
still generally small, with the analyzed state-of-the-art detecting a maximum of 14 ADL (in
this case, with 80% accuracy) [4]. Moreover, the amount of data used, whether through data
acquisition protocols or through public datasets use, is small, since the largest public dataset
identified in our research contains data from 38 people [16], and the average number of
subjects found is less than 22, and with low variability. As a result, there is a greater demand
for large-scale data collection campaigns. Studies in the field of merging datasets and pre-
processing pipelines are also required in order to properly combine and decrease disparities
between data obtained from various sources [27]. Another issue discovered is that the
validation processes used in the algorithms are not stated or are inadequately explained
in some research. This may cause the developed models to perform well just on the used
dataset, but they perform poorly when evaluated on new datasets [28]. Furthermore,
despite the fact that some articles implement feature selection techniques, they do not
indicate which features and information are most essential for ADL recognition.

This manuscript addresses the aforementioned drawbacks and, in addition, addresses
a higher number of ADL than any other of the works analyzed before, recognizing a total
of 20 classes, including transitional activities (Sit-to-Stand, Stand-to-Sit, Lying-to-Stand,
Stand-to-Lying, pick objects from the ground, bending and turning) and falls (16 ADL and
four types of falls). Furthermore, this manuscript aims to answer the following research
questions concerning recognition/classification of 16 ADL and four types of fall events from
data collected from waist-located inertial sensors: (i) Which is the most suitable classifier
and what are the most relevant features? and (ii) Which approach, ML or DL-based models,
presents better performance?

With these objectives in mind, an AI-based framework was developed that allows
for the benchmarking of several classifiers, including Discriminant Analysis (DA), K-NN,
Ensemble Learning, DTs, SVM, CNN, mono and bidirectional LSTM, and CNN-LSTM
neural networks. Simultaneously, feature selection algorithms are used to extract only
the relevant features from the dataset’s lower trunk inertial data. Furthermore, a dataset
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fusion and normalization procedure is applied in order to gather a large amount of data to
improve the robustness of the suggested algorithms during the several validation steps.

The remainder of this paper is organized as follows. Section 2 explains the inertial
data-based dataset fusion and normalization process, feature extraction and selection
processes, and finally, the comparative analysis carried out during the models building and
evaluation. Then, Section 3 presents multiple results obtained with the proposed methods
for validation, evaluation and best model choosing, followed by comparative studies,
which try to uncover how changes in window size and model type can influence the final
performance of classification models. Finally, Section 5 concludes the document, offering
some remarks of the work developed along with directions for future improvements.

2. Methods
2.1. Public Dataset Fusion and Normalization

The proposed algorithm makes use of a large number of publicly available datasets to
validate activity recognition models based on inertial data collected from the participants’
waists. Thus, a vast dataset was built from the fusion and normalization of several ADL
public datasets. This process, to the best of our knowledge, has not been carried out
before in any other works of the kind, despite its importance being highlighted multiple
times [27,28]. Datasets that met certain requirements were searched: (i) be publicly available
online for download; (ii) contain inertial data collected from the lower trunk (back) of at
least accelerometers and gyroscopes; and (iii) contain postural daily activities and/or fall
events. The research carried out resulted in the gathering of the public datasets and the
three other team-own datasets, which are described in Table 2. The gathered public datasets
were as follows.

1. Sisfall [16]: Data acquired with 23 healthy young adults (19–30 years, 149–183 cm,
42–81 kg) and 15 healthy elderly participants (60–75 years, 150–171 cm, 50–102 kg)
with a device composed of two types of accelerometer and one gyroscope fixed to the
waist of the participants, who performed 19 ADL and 15 fall types.

2. FallAllD [29]: Data acquired from 15 healthy subjects (21–53 years, 158–187 cm,
48–85 kg) who used 3 devices equipped with an accelerometer, a gyroscope, a mag-
netometer and a barometer. A total of 44 classes of ADL and 35 classes of falls
were performed.

3. FARSEEING [30]: Large-scale collaborative database to collect and share sensor signals
from real-world falls. Real fall data are acquired from either 2 locations: waist or thigh,
and the acquisition devices are equipped with up to 3 sensors, namely accelerometer,
gyroscope and magnetometer.

4. UCI HAR [15]: Dataset recorded from 30 healthy subjects (19–48 years) by using
a waist-mounted smartphone with an embedded 3-axis accelerometer, gyroscope,
and magnetometer. This dataset contains six classes of ADL: walking, ascending
stairs, descending stairs, sitting, standing, and laying.

5. Cotechini et al. [31]: Dataset acquired from 8 healthy subjects (22–29 years old,
173–187 cm, 60–94 kg) using a wearable device containing a 3-axis accelerometer
and gyroscope, tied to the subject’s waist, that recorded subject’s acceleration and
orientation. Subjects simulated 13 typologies of falls and 5 types of ADL.

6. UMAFall [32]: A dataset acquired from a total of 17 healthy subjects (18–55 years,
50–93 kg, 155–195 cm). Accelerometer, gyroscope and magnetometer data were
colected from five wearable sensing devices, located on the subject’s chest, waist,
wrist, ankle and pocket. The participants performed 8 different ADL and 3 different
typologies of falls (except by those older than 50 years, who did not perform falls).

The used team-owned datasets were as follows.

1. +Sense [33]: Dataset with data acquired from 10 healthy subjects (44.02 ± 16.42 years,
67.5± 16.06 kg, 172± 7.93 cm) and 40 subjects with Parkinson’s disease (64.00 ± 10.60 years,
69.93 ± 11.41 kg, 165.93 ± 8.65 cm). A waist-mounted waistband, equipped with an
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accelerometer, a gyroscope and a magnetometer recorded subject’s data in walking
activity protocols.

2. SafeWalk [34]: Dataset acquired with 12 healthy subjects (25.33 ± 6.33 years old,
66.92 ± 10.07 kg, 1.74 ± 0.11 m). Five IMUs were attached to the lower back, both
back thighs, and to both feet of the subjects, who performed walking trials and front
fall events.

3. InertialLab [35]: Dataset which includes data from 11 able-bodied subjects
(24.53 ± 2.09 years old, 171 ± 10 cm, 65.29 ± 9.02 kg). Gyroscopes and accelerometers
were attached to six lower limbs and trunk segments. Walking in varying speed and
terrain (flat, ramp, and stairs) and including turns were the activities carried out by
the subjects.

The fusion of these various datasets, which include information from both adult and
elderly subjects, as well as healthy and unhealthy individuals, served two purposes. First,
to create a large and diverse dataset suitable for training ML models. The second goal was
to develop AI-based models capable of recognizing ADL regardless of the subject’s age and
health condition.

Table 2. datasets description regarding sensing methods and location, sample frequency, participants
and activities recorded, where: A = Accelerometer, G = Gyroscope, M = Magnetometer, B = Barometer
and ADL = Activities of Daily Living.

DataSet Availability Sensors Location Sample
Frequency

Participants ADL
Falls

SisFall [16] 1 Public A, G Waist 200 Hz 23 subjects <30 years
15 subjects >60 years

19 ADL
15 Falls

FALLALLD [29] 1 Public A, G
M, B

Chest, Waist,
Wrist

238 Hz 15 subjects
21–53 years

44 ADL
35 falls

FARSEEING [30] 1 Public A, G, M Waist, Thigh 20 Hz
100 Hz

20 subjects 2 Real falls

UCI HAR [15] Public A, G Waist 50 Hz 30 subjects
19–48 years

12 ADL

Cotechini [31] 1 Public A, G Waist 33, 33 Hz 8 subjects 5 ADL
13 Falls

UMAFall [32] Public A, G, M
Waist, Chest,

Wrists, Ankle,
Front pocket

20 Hz
17 subjects
18–55 years

8 ADL
3 Falls

+Sense [33] Private A, G, M Waist 100 Hz 10 Healthy
40 Pathological

1 ADL

SafeWalk [34] Private A, G, M Waist, Thighs,
Feet

30 Hz 12 subjects
25.33 ± 6.33 years

1 ADL
Fall

InertialLab [35] Private A, G, M Waist,Thighs,
Shank, Feet

200 Hz 7 subjects
23–26 years

5 ADL

1 Several activities in these datasets were grouped into one single class of basic activities. 2 Only data from
3 subjects were suitable to use.

A global dataset containing 6702 files covering a total of 20 ADL and falls conducted by
180 subjects (age = 33.60 ± 16.84 years, weight = 69.98 ± 10.99 kg, height = 168.99 ± 9.42 cm)
was generated. This vast amount of data is crucial for validation purposes since it is far
larger than any other dataset used in the AI-based ADL recognition research carried out.
Furthermore, the global dataset presents a balanced distribution regarding the subject’s
gender (M = 54%, F = 46%), also containing data from both young adults and elderly people.
However, despite the presence of elderly data, the average and standard deviation values
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show that the global dataset is still made up mostly of young adults, with the percentage of
people over 65 years old being just over 20% of the total dataset (37/180 subjects).

Due to the great variability found between datasets, it was necessary to normalize
the data from all datasets, according to the normalization procedure depicted in Figure 1a.
First, only data corresponding to the acceleration (accelerometer) and angular velocities
(gyroscope) of the sensors located in the subjects’ waist were considered. Then, the sensor
reorientation method was applied so that the axis orientation corresponded to the one
depicted in Figure 1b. Finally, all datasets underwent a resampling process so that the
sampling frequency was normalized to 50 Hz.

(a) (b)

Figure 1. (a) Normalization process steps implemented in order to normalize the public datasets
for ADL recognition. (b) Desired sensors orientation. The inertial sensors have to be located on the
subjects’ waist. The arrows and letters x, y and z indicate the positive direction of the anteroposterior,
mediolateral and longitudinal axes, respectively.

2.2. ADL and Falls

The datasets, whether public or private, contain the great majority of ADL used for
activity recognition in the literature. Therefore, a total of 20 labels, including periodic
activities, static postures, transitions between postures and falls, were used in order to
cover all ADL listed in every dataset. It should be noted that some activities whose labels
in public datasets were considered different were recognized as the same activity in this
work, since their basic body movement is similar, e.g., the cases of Sisfall’s activity of sitting
in high chairs or low chairs were included in the “Stand to Sit” class; or even cases of
standing in different places, such as in the room and in the elevator, were all included in
the “Standing” class. Table 3 lists the ADL that were adressed in this work.

Table 3. Static postures and locomotion daily activities, postural transitions and fall events selected
to be recognized by the Machine and Deep Learning models.

Periodic Activities and Static Postures Transitions Fall Events

Walking Lying to Stand Forwards
Standing Stand to Sit Backwards

Sitting Sit to Stand Lateral
Lying Stand to Pick to Stand Syncope

Upstairs Stand to Lying
Downstairs Change Position (Lying)

Jumping Turning
Jogging Bending

A study carried out on how the ADL were distributed showed that the global dataset
is unbalanced, with a greater tendency toward cyclical activities, such as walking or lying
(29.73% and 18.52%, respectively), with only a small percentage of transitions between
activities and fall events, such as the fall by syncope, which is the activity with the least
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amount of data in the constructed dataset (0.27%). Figure 2 shows the percentage amounts
of each activity present in the created dataset.

Walking: 29,74%

Standing: 13,35%

Sitting: 7,9%

Laying: 18,52%

Upstairs: 4,53%

Downstairs: 4,44%

Jumpingg: 7,8%

Others(13 ADLs): 
13,72%

13.35%

29.74%

13.72%

7.9%

7.8%

4.44%

4.53%

18.52%

Figure 2. Percentage quantity of windows created of each activity present in the created dataset.
The activities are named according to Table 3.

2.3. Machine and Deep Learning Classifiers: Comparative Analysis

We performed a comparative analysis, whose strategy is illustrated in Figure 3, to de-
termine the most suitable AI-based classification model and the subset of features that
attains the best performance. In the next sections, every step of the proposed strategy will
be addressed. In this comparative analysis, the first approach consisted of training several
ML classifiers to classify the addressed ADL and fall events with different feature subsets.
The subsets of features with the best performance were then used in a second approach,
where several Neural Networks architectures were proposed, and their performances were
compared with the ML classifiers. Finally, for the best models found between ML and DL
approaches, a study to assess the influence of the window size used for feature extraction
on the classification model’s performance was carried out. It should be noted that all oper-
ations were performed on the global dataset without the use of any noise filters or other
sorts of processing, i.e., the raw inertial data were directly implemented in the referred
procedures. All the processes used for the development, validation and evaluation of these
ADL recognition algorithms were implemented offline using the Matlab 2021b version on a
Lenovo Legion Y540: processor—intel core i5, 9th Gen; graphics card—NVIDIA® GeForce®

GTX 1650; memory—8 GB DDR4 at 2666 MHz and SSD PCIe of 512 GB.
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Figure 3. Complete process for all the validation, training and evaluation of different Machine
Learning and Deep Learning models alongside the best feature set selected by diverse feature
selection methods.

2.3.1. Feature Extraction

Feature extraction was achieved through the sliding window method, where a signal is
segmented into several windows of equal size, on which different features can be calculated.
The most used sliding windows’ size corresponded to approximately 1 s for this type of
activity classification, and the overlap between consecutive windows can vary from 50% to
87% [1,5,14]. Within the scope of this work, firstly, a one-second window was selected for
the comparative analysis, which corresponds to a 50-sample window, with an overlap of
80% (Figure 4). In addition to the initial window size, 4 other different sizes were explored
in the window size study: 0.5 s; 1 s; 1.5 s; and 2 s. The overlap was kept at 80% for all tests,
despite the literature suggesting that it can also have a high impact on the classification
performance and computational cost for real-time applications [1,36]. The segmentation in
windows with a size of 1s and an overlap of 80% resulted in a total set of 666,660 windows
for the models’ training and evaluation. Similarly, for a window size of 0.5 s, 1.5 s, and 2 s,
a total of 1,366,289, 435,111, and 318,516 windows were obtained, respectively.

Thus, for each window, several features, such as the averages, maximums, mini-
mums, and standard deviations of each of the acceleration and angular velocity signals,
among other metrics, were extracted, making a total of 199 features calculated. A summary
of the extracted features can be seen in Table 4. The window labeling was carried out
according to the Mode Labeling Method, where the label of a given window would be the
mode of the labels present in that window’s samples [36].
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Figure 4. Signal segmentation example, using the sliding window technique example for feature extraction.
A sliding window across time is represented by windows 1 to 3.

Table 4. List of all extracted features from each window created. AP, V and ML refer to the anteropos-
terior, vertical and mediolateral axis, respectively.

Feature Number Feature Description

[1–6] Acceleration and Angular velocity (AP, V, ML)
[7–8] SumVM of acceleration and Angular velocity

[9–24]
Skewness and kurtosis of acceleration, Angular velocity (AP, V, ML)
and SumVM signals

[25–64]
Min, max, mean, variance and Std deviation of acceleration, angular
velocity (AP, V, ML) and SumVM signals

[65–70]
Correlation between V-ML, V-AP and ML-AP axis of acceleration and
Angular velocity

[71–77]
Slope, Total angular change, Resultant angular acceleration, ASMA, SMA,
Absolute vertical acceleration, Cumulative horizontal displacement

[78–102]
Peak-to-Peak, Root Mean Square and Ratio Index
of Acceleration, Angular velocity (AP, V, ML) and SumVM signals

[103–115]
Resultant angle change, Flutuation frequency, Resultant
of average acceleration and Resultant of standard deviation (AP, V, ML)

[116–117] Resultant of Delta changes of acceleration and Angular velocity

[118–133]
Gravity component, Displacement, Displacement range,
Cumulative sway length and Mean sway velocity (AP, V, ML)
Slope changes, Zero crossings, Waveform length of acceleration,
Angular velocity (AP, V, ML) and SumVM signals

[133–189] Energy, Mean frequency, Peak frequency and magnitude of acceleration,
Angular velocity (AP, V, ML) and SumVM signals

[190–195]
SumVM of resultant angular velocity, average acceleration
and Standard deviation, Maximum resultant angular velocity
and Acceleration in the horizontal plane

[196–199]
Acceleration exponential moving average, Rotational angle
of acceleration SumVM, Z-Score, Magnitude of angular displacement

2.3.2. Pre-Processing and Feature Selection

After the aforementioned extraction, min–max scaling [0, 1] was carried out to ensure a
low computational cost when building the models [37]. Since each of the datasets collected
data with different devices and sensors with various sensitivities, the normalization process
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was carried out for each public dataset separately in order to reduce the possible bias
derived from the different types, ranges, and sensitivities of the sensors used.

In order to understand what kind of improvements this feature selection process can
bring, nine Feature Selection Methods (FSM) with diverse types of selection (Filtering,
Wrapper and Embedded) were applied to the extracted features [38,39]. Covering the
three different types of selection methods mentioned above, the selected methods and their
respective type is indicated in Table 5.

Table 5. Feature Selection Methods Tested for ADL Recognition.

Feature Selection Methods (FSM) FSM Type

Infnite Latent Feature Selection (ILFS) [38] Filtering
Unsupervised Feature Selection with Ordinal Locality (UFSOL) [40] Wrapper
Feature Selection with Adaptive Structure Learning (FSASL) [41] Wrapper
Minimum-Redundancy Maximum-Relevancy (MRMR) [42] Filtering
Relief-F [43] Filtering
Mutual Information Feature Selection (MutInfFS) [44] Filtering
Feature Selection Via Concave Minimization (FSV) [45] Embedded
Correlation-Based Feature Selection (CFS) [46] Filtering
Least Absolute Shrinkage and Selection Operator (LASSO) [43] Embedded
Principal Component Analysis (PCA) [47] Filtering

Feature selection was also performed by the Principal Component Analysis (PCA),
as shown in Figure 5. Principal components (PCs) with a cumulative percent explained of
70% were chosen [47], and a resultant and proportional PC was created and used to rank
features. PCA also serves a secondary goal, which is to reduce the computational cost of
the comparative analysis. Rather than using all 199 features, the number of features used
was decided by multiplying the number of features having a PC value greater than 1

199
by 2 [34,48]. As a result, we chose a higher number of features for comparative analysis
than those chosen for PCA and with significant contributions to the variability of the data.
The success of this feature selection procedure will be determined by achieving the best
performance with a lower number of features than the number of features extracted (199).

Figure 5. PCA-based procedure to rank and obtain the most crucial features and to limit the compu-
tational cost of comparative analysis.
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2.3.3. Model Building and Evaluation

We compared the following five ML classifiers by using a set of procedures depicted in
Figure 3: DA with linear and quadratic approaches; K-NN with squared inverse distances;
Ensemble Learning; and DTs. Table 6 presents a description of these classifiers. A progres-
sive comparative analysis was carried out for each of these classifiers, where using the
several FSM (Table 5), it was studied with how many of the ranked features (from most to
least important), each of the classifiers obtains the best performance results. As previously
mentioned, achieving the best classification performance with a lower number of features
than the total number of extracted features in the previous step will show a successful
application of this feature selection procedure and progressive analysis.

Table 6. Machine Learning models evaluated in this work and respective descriptions

Model Reference Description

DA [49]
A method that finds combinations of features that separate two or more
classes of objects or events, searching for the most variance between
classes, and information that maximizes the difference between classes.

K-NN [50]

Compares each new instance with all datasets available and the instance
closest by distance metrics is used to perform classification. Since every
sample of the dataset must be checked for every instance, the time and
complexity of the method rises according to the dataset size.

Ensemble
Learning [51]

Creates multiple instances of traditional ML methods and combines
them to evolve a single optimal solution to a problem. This approach is
capable of producing better predictive models compared to the tradi-
tional approach.

DTs [52]

A model that predicts the value of a target variable based on numerous
input variables. A decision tree is constituted by an internal node, based
on which the tree splits into branches. The end of the branch that does
not split any longer is the decision.

Initially, we performed the hold-out (HO) method to split 70% of the created dataset’s
data for training and 30% for testing. The mentioned classifiers were used to obtain the
subset of the most relevant features by performing an initial five-fold cross-validation (CV)
with one repetition and using only training data. Once we determined the subset of the
most relevant features, we performed a five-fold CV with ten repetitions to the four best
classifiers from the previous step in order to evaluate the generalization capabilities of
each model. The two best classifiers from this step were chosen, and its hyperparameters
were optimized through a gridsearch process. The optimized ML classifiers and the neural
networks architectures were further trained with all training data and tested with the
test data from the HO method and the final performance of each classifier was compared
in order to choose the best AI-based classification models.

In order to understand if these can be a viable alternative to ML methods, the clas-
sification of ADL and fall events was also carried out using the four Neural Networks
architectures presented in Figure 6. As a result, the two best feature subsets acquired
from the validation steps were used as input to train and evaluate the DL models. The
performance of neural networks with the two best set of features was analyzed, and from
the performance results obtained, a choice between the ML-based and DL-based models
was made, for the most suitable classification model for ADL recognition. During all of
the operations, test specifications such as the loss function used, number of epochs, the op-
timizer employed, number of hidden layers, batch size and the Learning Rate were kept
constant for all the architectures. Table 7 provides a summary of all these characteristics
and respective values.
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Figure 6. Neural Networks architectures used in this manuscript. The input shown represents a single
feature window. (a) The CNN identifies correlations from the various features provided. (b) The
LSTM network detects crucial temporal features. (c) The BiLSTM network has a similar operating
mode as LSTM but with bidirectional LSTM layers. (d) The hybrid CNN-LSTM extracts temporal
patterns using convolutional features from the CNN convolutional layer. Based on [53].

Table 7. Specifications for the use of the Deep Learning models depicted in Figure 6.

Specification Value

Epoch Number 100
Hidden Layers 150
Batch Size 64
Optimizer Adam [54]
Learning Rate 0.001 (Constant)
Loss Function Cross-Entropy

The last study evaluates which of the chosen window sizes provides better perfor-
mance results to the selected classifiers. Due to the great diversity in the classes to be
classified (static postures, cyclical activities, transitions between postures and falls) and
their duration, this study became imperative, in order to find the size that best fits the
activities to be classified. Furthermore, the time required to perform the training and
testing of the K-NN and Ensemble Learning classifiers for each of the window sizes was
also computed. This exercise had the objective of investigating the possibility of using one
of the algorithms that presented better performance in real-time situations.

The key performance indicators in the developed work were the Mathew’s correla-
tion coefficient (MCC) and the accuracy (ACC). The first evaluation metric exhibits good
representational features of unbalanced classes, as occurs in this study [55]. We used it for
model performance comparison and reporting. The ACC, as well as the sensitivity (Sens),
specificity (Spec), precision (Prec), and F1-score (F1S), were calculated for benchmarking
the findings of the literature.
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3. Results
3.1. PCA Outcomes

We determined that 11 PCs were necessary for a cumulative percent explained greater
than 70%. Furthermore, the resulting PC demonstrated that there were 55 features with PC
values greater than 1/199. After performing the PCA, we reduced the number of features
to lower the computational cost of the comparative analysis (Figure 5); i.e., instead of using
all 199 features, we only used the first 110 features ranked by any feature selection method
included in this study. Only training data split from HO method were used.

3.2. ADL and Fall Events Classification

The results attained from the five-fold CV with one repetition disclosed the Ensem-
ble Learning classifier as the one that presented the best performance among the used
classifiers (MCC = 85.78%; ACC = 94.59%) when using the first 65 features ranked by
the PCA method (Appendix A, Table A1). With the first 85 features ranked by the Relief-
F (Appendix A, Table A1), K-NN produced similar but inferior results (MCC = 85.10%;
ACC = 93.63%). DTs performed worse with the first 74 features ordered by the same
technique (MCC = 70.65%; ACC = 88.22%); and Quadratic and Linear DA had the worst
performance results with the first 55 and 66 features ranked by the Relief-F method, re-
spectively. The two best classifiers went through a five-fold CV with ten repetitions, and
we realized that increasing the number of repetitions did not change significantly the CV
results either for the Ensemble Learning (MCC = 85.79%; ACC = 94.59%) or K-NN classifier
(MCC = 85.05%; ACC = 93.62%). From this second CV stage, the Ensemble Learning using
the first 65 features ranked by PCA and the K-NN using the first 85 features ranked by
Relief-F were chosen for the next phases. Table 8 presents the main results for the two
phases of the CV process.

Table 8. Comparison of the best classification results (ACC, Sens, Spec, Prec, F1S, MCC), attained
after the 5-1 and 5-10 k-fold cross-validation steps for the K-NN and Ensemble Learning classifiers.

ML Model FSM CV Step Nº of
Features ACC (%) Sens (%) Spec (%) Prec (%) F1S (%) MCC (%)

K-NN
Relief-F

5 Fold
(1 rep.)

85 93.63 84.17 99.64 86.80 85.43 85.10
PCA 85 92.99 84.08 99.60 86.01 85.01 84.63

FSASL 70 91.49 81.39 99.51 83.66 82.48 82.02
Ensemble
Learning PCA 65 94.59 82.22 99.68 90.54 85.80 85.78

K-NN
Relief-F

5 Fold
(10 rep.)

85 93.62 ± 0.016 84.12 ± 0.066 99.64 ± 0.001 86.75 ± 0.055 85.38 ± 0.056 85.05 ± 0.056
PCA 85 92.95 ± 0.021 83.91 ± 0.094 99.60 ± 0.001 85.88 ± 0.085 84.86 ± 0.085 84.48 ± 0.086

FSASL 70 91.48 ± 0.026 81.40 ± 0.063 99.51 ± 0.001 83.59 ± 0.079 82.45 ± 0.066 81.99 ± 0.067
Ensemble
Learning PCA 65 94.59 ± 0.015 82.18 ± 0.067 99.68 ± 0.001 90.64 ± 0.073 85.79 ± 0.061 85.79 ± 0.060

When using test data from the HO data split method, the two best classifiers pre-
sented slight improvements in their performance in comparison to the results shown in
Table 8. However, the Ensemble Learning model presented lower results (MCC = 88.36%;
ACC = 95.44%) than the K-NN classifier (MCC = 93.19%; ACC = 97.27%) when tested
with unseen data, contrary to what was verified during the CV process. After the op-
timization stage, K-NN hyperparameters were: (i) distance—minkowski; (ii) distance
weight—squared inverse; (iii) exponent—0.5; and (iv) number of neighbors—1. Ensemble
Learning hyperparameters were: (i) Method—Bag; and (ii) number of learning cycles—37.
Table 9 depicts the main results obtained for the HO validation process.
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Table 9. Hold-out test results for the Ensemble Learning with the first 65 features ranked by the PCA
and for the K-NN classifier with the first 85 features ranked by the Relief-f.

ML Model FSM Nº of
Features ACC (%) Sens (%) Spec (%) Prec (%) F1S (%) MCC (%)

K-NN Relief-F 85 97.27 92.90 99.84 93.79 93.34 93.19
Ensemble
Learning PCA 65 95.44 85.97 99.73 91.67 88.43 88.36

3.3. Deep Learning Outcomes

The BiLSTM stood out among the neural networks in both case studies, using the
first 85 features ranked by the Relief-F method (MCC = 82.83%; ACC = 92.55%) and
the first 65 features ranked by PCA (MCC = 80.52%; ACC = 91.48%). However, in both
cases, it presented lower results when compared to Ensemble Learning and K-NN. On the
contrary, CNN presented the lowest performance results for both case studies, using the
first 85 features ranked by the Relief-F method (MCC = 37.87%; ACC = 57.01%) and the first
65 features ranked by PCA (MCC = 24.90%; ACC = 42.67%). Thus, the ML-based methods,
K-NN and Ensemble Learning, were considered the classifiers with better performance
for ADL and fall events recognition, among all tested classifiers, being selected for the
window size study and classification time analysis. Table 10 contains the main results for
the DL-based classification problem.

Table 10. Results for the test of the 4 Deep Learning architectures with the 85 first features ranked by
Relief-f and 65 first features ranked by PCA.

FSM Feature
Number Architecture ACC (%) Sens (%) Spec (%) Prec (%) F1S (%) MCC (%)

Relief-F 85

CNN 57.01 37.06 97.22 54.67 35.47 37.87
LSTM 92.06 79.58 99.55 84.25 81.02 81.01

CNN-LSTM 88.84 74.48 99.36 75.24 74.53 74.06
BiLSTM 92.55 81.14 99.57 85.56 83.14 82.83

PCA 65

CNN 42.67 26.46 96.15 54.49 22.27 24.90
LSTM 91.46 77.81 99.51 84.38 80.61 80.38

CNN-LSTM 88.55 74.33 99.35 75.09 74.36 73.88
BiLSTM 91.48 79.33 99.52 83.32 80.67 80.52

3.4. Window Size and Classification Time

The results attained in this last analysis, for the optimized K-NN and Ensemble
Learning classifiers, are depicted in Table 11. It should be noted that the same labeling
method was used during the feature extraction step for each window size selected for this
analysis. Both tables show a decreasing trend in the performance of the two classifiers as
the window size increases from 0.5 to 2 s.

Table 11. Window size comparative study results for the K-NN best optimized model with the
Relief-F feature selection model.

ML Model + FSM Window Size (s) Window
Overlap (%)

ACC
(%)

Sens
(%)

Spec
(%)

Precn
(%)

F1S
(%)

MCC
(%)

K-NN + Relief-f

0.5

80

98.22 95.20 99.90 96.04 95.62 95.52
1 97.27 92.90 99.84 93.79 93.34 93.19

1.5 96.30 91.73 99.79 91.15 91.41 91.22
2 95.33 90.53 99.74 88.51 89.44 89.22

Ensemble + PCA

0.5 96.53 88.94 99.79 94.09 91.29 91.21
1 95.44 85.97 99.73 91.67 88.43 88.36

1.5 95.01 85.60 99.71 90.76 87.64 87.62
2 94.51 85.21 99.68 89.37 86.92 86.79

In addition to the results obtained regarding performance metrics, the time required
to perform the training and testing of the K-NN and Ensemble Learning classifiers for
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each of the window sizes used in this last study was also computed. This exercise has
the objective of studying the possibility of using one of the combinations which presented
better performance results in real-time situations. Table 12 depicts the results obtained for
the training and testing time of each classifier and window size combination.

Through direct observation of Table 12, the K-NN classifier has a training time of
around four seconds, regardless of the size of the windows. The Ensemble classifier’s
training time shows an increasing trend as the window size decreases. On the other
hand, the time required to test only one window (last column of Table 12) is lower than
4.5 × 10−5 s for every window size tested in the case of the Ensemble Learning classification
model. The test time per window for the K-NN classifier shows an increasing trend as the
window size decreases.

Table 12. Classification time for the training and testing of the two best combinations of Machine
Learning (ML) model and Feature Selection Method (FSM), for each of the selected windows for the
window size study.

ML Model + FSM Window
Size (s)

Window
Overlap (%)

Test
Windows

Train
Time (s)

Test
Time (s)

Test Time
per Window (s)

0.5 409,740 4.36 213,588.88 0.521
1 199,997 4.18 66,782.58 0.334

1.5 130,421 4.70 12,633.08 0.097K-NN + Relief-f

2 95,482 4.09 6752.47 0.071
0.5 409,740 829.55 15.99 3.90 × 10−5

1 199,997 279.03 8.54 4.27 × 10−5

1.5 130,421 145.21 5.68 4.35 × 10−5Ensemble + PCA

2

80

95,482 100.23 3.94 4.13 × 10−5

4. Discussion

The ML-based classification was established with a combination of different classifiers
and feature selection methods, and it proved to be an accurate strategy. This process allowed
the most relevant features to be found for the classification of 20 distinct activities and fall
classes (Appendix A), which should aid in a time-effective and low computation strategy
for real-time ADL recognition. The PCA-based approach for reducing the computational
burden of the comparison analysis may therefore be judged effective, since for most of the
tested models and feature selection methods, the CV best performance was achieved with
fewer features than those initially extracted.

The success achieved regarding the performance of the classification models through
different validation methods, namely hold-out and cross-validation, shows the robustness
of the applied processes. The creation of a vast dataset also positively influenced the
performance results obtained. According to the results presented in Tables 11 and 12,
the Ensemble Learning classifier with a subset of the 65 first features ranked by the feature
selection method PCA, with a window of 0.5 s and an overlap of 80%, was the model which
showed the most potential for the classification of the 20 ADL classes in real time. Despite
not being the best performer in terms of evaluation metrics, it had a classification time lower
than the window advance time, allowing, in theory, its deployment in real-time situations.
In addition, for the Ensemble Learning classifier, the comparative analysis of the set of
features extracted by the different feature selection models provided a reduction in the
number of features by more than 65% from the 199 initial features, to a subset of 65 features,
also supporting the possibility of applying this type of models in real-time systems.

According to the literature, windows with a larger size have the tendency to perform
worst in the recognition of shorter activities or transitions and better in the classification
of cyclical or static activities, which are maintained for longer periods of time. Further-
more, as the window size increases, the model’s capability to recognize ADL in real time
decreases [1,36]. As stated in Table 11, for smaller windows, the performance of the clas-
sifiers analyzed in this dissertation increases, thus corroborating what is described in
the literature.
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A direct comparison between the two best results obtained in tests performed with
Neural Networks (Table 10) and the process developed for ML classifiers (Table 11) shows
that the use of different architectures with the same features ranked by the best feature
selection methods as inputs did not produce as good results as when using the K-NN and
Ensemble Learning classifiers. The tested LSTM and BiLSTM achieved the best results in
terms of performance metrics when compared to the CNN and CNN-LSTM architectures
as well as in relation to the computation time of training and testing them. As mentioned in
the literature, LSTM has a more suitable architecture for classifying sequential data [3,22].
Moreover, as investigated in the literature, the results achieved by BiLSTM were slightly
superior to the basic LSTM [5,56]. The 85 features ranked by Relief-f returned performance
metrics results slightly higher than the 65 features ranked by the PCA, as what happened
in the studies carried out on ML models. CNNs are usually used in problems involving
image inputs, and in this process, the implemented CNN architecture received as input 1D
arrays of features extracted from sequential data. This method of use may justify the poor
results obtained with the CNNs in terms of performance metrics, given that the convolution
processes applied to extract features from the arrays used were not carried out in the most
effective way. Despite these poor performance results, other architectures involving this
type of networks should continue to be tested, with different type of inputs, such as the
raw inertial data, since several studies claim to obtain positive results in the recognition of
ADL with the use of this type of neural network [8,14,23].

Thus, this initial study of the behavior of several neural networks showed that despite
positive results in some of the cases tested, it did not reach the desired potential when
compared to the results obtained with the ML classifiers. This fact raises the need to carry
out several studies and some changes in the future in order to obtain performance results
higher than those found in the literature. The architectures used must be improved in the
search for better results in order to be comparable with the studies currently carried out in
the literature. Finally, and as mentioned in most of the works analyzed in the literature,
new tests should be carried out in the future with windows segmented from raw inertial
data as inputs rather than features, given the ability of neural networks to carry out a
process extraction of features [23].

5. Conclusions and Future Work

An algorithm to recognize sixteen ADL and four different types of fall (twenty classes
in total) from several AI-based classification models and feature selection models was
built in order to find the combination that presents better performance in this type of
classification. The performance of the different combinations was evaluated using the
following parameters: (i) performance evaluation metrics, (ii) subset of features used,
and (iii) classification time per window of the models.

Two different approaches (ML and DL) were investigated and compared: when
performing one waist-located inertial sensor-based ADL and fall events recognition. Fur-
thermore, a new procedure of fusion and normalization of public datasets was carried
out in order to generate a big enough dataset to validate the activity classification models
in order to battle concerns observed in the literature. Our long-term objective is to evaluate
these techniques on elderly waistband users to evaluate whether the results of this study
translate to identical outcomes in continuous real-life usage.

Taking into account the performance values as well as the classification times found in
this work for the machine used, it is concluded that the most effective AI-based classifier
was the Ensemble Learning classifier with the first 65 features ranked by the PCA feature
selection method. Moreover, the classification time per window in this combination was
lower than the window advance time in every window tested, which represents an encour-
aging result for the application of this algorithm in real time in the future. The DL outcomes
were not as good as in the prior procedure; however, their potential was demonstrated,
indicating that they could be a good option in the future with the appropriate future work
regarding the input data used and its architectures. Although the established methodology
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allows for a reduction in computing cost, we recommend using a sufficient processor so
that all classifiers respond rapidly.

The constructed dataset contains a large amount of successfully normalized data
for the validation of activity recognition algorithms. Different steps can still be applied
for its continuous improvement, such as the addition of more senior subjects’ data and
data-balancing techniques, such as data augmentation, to balance the amount of samples of
ADL represented on a smaller scale. However, the choice between using balanced data or
preserving the overall distribution of activities should be backed by a critical analysis of the
results obtained through a validation with data collected in day-to-day circumstances over
long periods of time. Data fusion from other sensors, such as magnetometers or barometers,
as well as the addition of other devices for data collection (such as smartwatches, which
do not impose any restrictions on the subject’s movements), may aid in the differentiation
of activities with similar movement patterns. Improved data-splitting methods must be
verified in the future to guarantee that the results attained were not due to the usage
of comparable data during the train and test stages of the model. Despite attaining per-
formance results comparable with the literature for bidirectional LSTM, considering the
higher number of classes classified, continued development of the tested neural networks
is needed. New and improved architectures, as well as ablation studies, should also be
conducted to determine the impact of the various settings and stages of each architecture on
ADL and fall events recognition. Furthermore, the constructed classifiers should be trained
and tested on the various public datasets independently in order to make a more direct
comparison between the methods covered in this study and those listed in the literature
that use the same datasets for evaluation.

This study contributes to the state-of-the-art with two versatile ADL and fall events
detection methods, which are capable of discriminating 20 classes of events. There is
also evidence that dataset fusion and normalization is imperative to guarantee a vast and
diverse amount of data for ADL recognition algorithms’ validation. Furthermore, it may
lead to the incorporation of these tools on instrumented waistbands or other devices for
real-time fall risk assessment in the future [57].
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Appendix A

In this appendix, the complete list of the selected features by the two feature selection
methods that presented the best performance results in Section 3 are presented. Table A1
shows the 85 first features ranked by Relief-F method and the 65 main features ranked by
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the PCA feature selection method. The feature numbers listed in this table correspond to
the numbering used in Table 4.

Table A1. Features ranked in descending order per feature selection model.

FSM No. of
Features Ranked Features

Relief-F 85

66,69,70,68,67,65,110,128,142,143,144,35,31,101,12,9,111,148,15,14,112,114,
151,45,11,20,13,188,10,42,109,102,113,85,153,96,154,17,147,23,41,103,145,146,
116,21,22,18,190,19,16,152,74,83,149,84,24,88,197,64,123,90,89,155,28,46,194,
174,59,48,71,60,29,61,191,62,115,97,32,40,91,80,87

PCA 65
9,97,188,42,102,43,101,128,144,113,148,110,184,31,142,154,116,83,41,103,111,
143,114,183,182,33,176,30,109,86,149,47,151,74,153,112,126,84,44,26,147,69,
180,127,100,145,115,27,155,146,120,4,35,85,36,1,42,7,91,46,45,186,175,192,96
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