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Abstract: Novel in-situ Ti-based matrix composites (TMCs) were developed through the reactive hot
pressing of Ti + NbC powder blends. Due to the chemical reaction that occurred in the solid-state
during processing, the produced samples were composed of an Nb-rich β-Ti phase that formed a
metallic matrix along with Ti2C as a reinforcing phase. By employing different proportions of Ti:NbC,
the phase composition of the alloys was designed to contain different ratios of α-Ti and β-Ti. The
present work investigated the corrosion and tribocorrosion behavior of the composites, compared to
unreinforced Ti, in a phosphate-buffered solution (PBS) at body temperature. Corrosion tests included
potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Tribocorrosion
tests were carried out using a ball-on-plate tribometer with sliding performed at open circuit potential
(OCP) and under anodic potentiostatic conditions. Results showed that the stabilization of the β

phase in the matrix led to a decrease in the hardness. However, the formation of the in-situ reinforcing
phase significantly improved the tribocorrosion behavior of the composites due to a load-carrying
effect, lowering the corrosion tendency and kinetics under sliding. Furthermore, localized corrosion
was not observed at the interface between the reinforcing phase and the matrix.

Keywords: Ti-based composites; niobium carbide; powder metallurgy; tribocorrosion

1. Introduction

Implants for the reconstruction of failed hard tissue are commonly made of metallic
materials, such as special titanium (Ti) and its alloys, cobalt–chromium (Co–Cr) alloys, and
stainless steels [1,2]. Among these metallic implants, the notable combination of higher
strength-to-weight ratio, superior corrosion behavior, and excellent biocompatibility have
been achieved with Ti alloys. By varying the composition of the alloying elements, a broad
range of properties is possible due primarily to the allotropic transformation of Ti in the
solid-state [3]. At room temperature, pure titanium exhibits a hexagonal close-packed
(HCP) structure, known as the alpha (α) phase, and, at a higher temperature (normally
above 882 ◦C), it changes to a body-centered cubic (BCC) structure, named beta (β) phase.
Roughly, Ti alloys can be classified according to their microstructures in terms of phase
constituents: α-type, (α + β)-type, and β-type [3–5]. Non-toxic and non-allergenic β-type

Metals 2022, 12, 908. https://doi.org/10.3390/met12060908 https://www.mdpi.com/journal/metals

https://doi.org/10.3390/met12060908
https://doi.org/10.3390/met12060908
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metals
https://www.mdpi.com
https://orcid.org/0000-0002-3464-9217
https://orcid.org/0000-0002-8212-874X
https://orcid.org/0000-0001-9138-9119
https://orcid.org/0000-0002-7219-1518
https://doi.org/10.3390/met12060908
https://www.mdpi.com/journal/metals
https://www.mdpi.com/article/10.3390/met12060908?type=check_update&version=2


Metals 2022, 12, 908 2 of 17

Ti alloys have been considered attractive metallic materials for long-term bone implant
applications due to low Young’s modulus [4–7], which contributes to overcoming the
stiffness-mismatch problem between the implant and bone [8].

Despite advances in new Ti-alloys recently developed for load-bearing implants, the
intrinsic poor tribological properties raise specific concerns for joint prostheses, such as hip
and knee [9]. Since articulating surfaces immersed in corrosive body fluids are subjected to
relative movements, accelerated degradation over time occurs through the synergistic effect
of wear and corrosion [9–11]. This tribocorrosion phenomenon may provoke the generation
of metallic ions and debris particles at an unexpectedly high level [12]. Consequently, these
complex degradation products affect the surrounding living cells and tissues, which can
create adverse local and systemic effects [12] and may ultimately lead to implant failure [13].
To enhance tribocorrosion behavior, surface modification techniques for β-Ti alloys have
been proposed [14], mainly by hard coating depositions. However, their inherent low
fracture toughness and their limited adhesion to the substrate may result, under sliding
conditions, in the formation of third-body particles, which act as extra abrasives [15]. Hence,
Ti matrix composites (TMCs) emerge as an attractive option for wear-resistant biomedical
applications since the well-integrated reinforcing phase can shield the matrix from the
load-carrying effect [16–19].

First, some features must be highlighted for the design of bio-TMCs, because most of
their properties are linked to the interface between the reinforcement and the matrix [20].
The electrochemical behavior of Ti-based metallic materials depends mostly on the na-
tive oxide film formed on the surface, providing passivation in contact with biological
fluids [21]. In the case of metal matrix composites (MMCs), discontinuities and varia-
tions in chemical composition at the matrix/reinforcement interface can lead to localized
corrosion and/or galvanic coupling, accelerating the chemical degradation [22–25]. The
matrix/reinforcement interface is also a determinant aspect of wear behavior. For instance,
when the interfacial bonding is weak, the reinforcing phase can be pulled out under sliding
conditions, producing third-body particles, acting as extra abrasives, thus intensifying the
damages due to wear [26]. The desired strong interfacial bonding can be obtained by in-situ
processes [27], where chemical reactions occur to synthesize the reinforcement throughout
the matrix during composite fabrication. Additional advantages of in-situ composites
over ex-situ include the greater capability to produce small reinforcing phases with highly
homogenous and controlled distribution as well as chemically more compatible interfaces
(minimizing the likelihood of localized corrosion) at lower processing costs [28].

Therefore, from the tribocorrosion point of view, less damage to the protective oxide
layer can be expected if the bio-TMC has a strong interfacial bonding between the matrix
and the reinforcement because the load will be mainly carried by the reinforcing phase
(known as the load-carrying effect) [24,28,29]. Carbides, borides, and nitrides have been
applied to produce particulate-reinforced bio-TMCs, and their tribocorrosion behavior has
been investigated in simulated biological conditions [16,24,29]. For instance, Silva et al. [29]
demonstrated the improved tribocorrosion resistance of in-situ TMCs produced by the reac-
tive hot pressing of Ti + BN powder blends that resulted in α-Ti matrix with TiB and TiNx
as reinforcing phases. These in-situ reinforcements have a neutral electrochemical behavior
under static conditions, aside from ‘clean’ and physically compatible matrix/reinforcement
interfaces that avoid any type of localized corrosion. Another α-type bio-TMC studied
by some of the present authors [24] exhibited a lower tendency for corrosion and lower
corrosion kinetics under sliding due to the load-carrying effect. In this case, B4C particles
were the reinforcements that promoted the load-carrying effect since the composite was
produced by the hot pressing of Ti + B4C, and reactions in the interfacial zone occurred to
yield TiC and TiB phases.

To design in-situ β-Ti matrix composites, the present work applied, as a distinctive
approach, a β stabilizer alloying element in the composition of the reactant compounds
for in-situ reactions during hot pressing. Niobium (Nb) is described as a non-toxic and
non-allergenic element that has drawn considerable attention for the production of β-Ti
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alloys and has been reported as favorable for biomedical applications [4–8]. Considering
the reinforcing phase, carbides are extremely efficient in yielding wear-resistant TMCs;
therefore, niobium carbide (NbC) could be an option for the synthesis of in-situ β-type bio-
TMCs. A limited number of studies are available that concern the development of in-situ
bio-composites utilizing NbC, although NbC is widely applied as a reinforcement in high-
speed metallic tools (an outstanding wear-resistant application) [30–32]. Chang et al. [33]
recently studied NbC incorporation in a Ti alloy (Ti-8Mo-4Co) and processed the composite
by conventional sintering. During the process, a chemical reaction occurred between NbC
and the Ti alloy, precipitating TiC as the reinforcing phase, while Nb acted as a β-stabilizer
due to the solid solution in the Ti alloy matrix. The higher the NbC addition, the lower the
α-Ti phase remaining in the matrix; thus, the hardness decreased due to the predominance
of the β-Ti phase in the matrix, regardless of the higher precipitation of the reinforcement.
Therefore, instead of using a Ti alloy, commercially pure Ti (cp Ti) may be a potential
alternative to produce in-situ β-Ti matrix composites by adding NbC. In the present work,
5, 12.5, and 20 vol.% of NbC were introduced to cp Ti, the composites were processed by
reactive hot pressing, and their corrosion and tribocorrosion behavior were investigated in
a physiological solution.

2. Materials and Methods
2.1. Design of Novel In-Situ TMCs

To produce Ti-based in-situ composites, NbC was used as a reactant and mixed with
Ti, and different amounts were used to investigate its influence on the reaction products:
5, 12.5, and 20 vol.% of NbC. Both materials were used as powders, where D10 = 16 µm,
D50 = 36 µm, and D90 = 49 µm represent the particle size distribution of Ti (Grade 2, Alfa
Aesar), whereas D10 = 3 µm, D50 = 7 µm, and D90 = 16 µm represent the particle size
distribution of NbC (Goodfellow).

The raw powders were weighted with nominal volume fractions, placed in plastic
containers sealed in an Ar atmosphere, and then blended by ball milling at 130 rpm
for 4 h. The blends were placed into a graphite die, previously coated with a zirconia
paint to prevent chemical reactions between the powders and the mold. The composite
samples (10 mm in diameter and 3 mm in height) were synthesized by hot pressing at
1100 ◦C for 120 min under a 10−5 mbar vacuum and 40 MPa of constant pressure. The
heating was divided into two steps with heating from the ambient temperature at rates of
8 ◦C/min to 1000 ◦C and 1 ◦C/min from 1000 ◦C to 1100 ◦C, whereas the cooling rate was
10 ◦C/min. Unreinforced Ti samples were also produced under identical conditions to the
control group.

2.2. Characterization

The sample surfaces were prepared by grinding down to 2400 mesh size SiC paper and
polishing with a colloidal silica suspension down to 0.2 µm. After a surface preparation,
samples were ultrasonically cleaned in propanol for 10 min and rinsed in distilled water for
5 min. Then, after etching the samples in Kroll’s reagent (3 vol.% of HF, 6 vol. of % HNO3,
and 91 vol.% of H2O), the microstructure was analyzed by the secondary electron (SE) and
backscattered electron (BSE) mode of a field emission gun scanning electron microscopy
(FEG-SEM, FEI Nova 200, FEI Company, Hillsboro, OR, USA) equipped with energy
dispersive spectroscopy (EDS) for chemical composition analysis. The phase analysis
was performed by X-ray diffraction (XRD, Bruker D8 Discover diffractometer, Bruker
Corporation, Billerica, MA, USA, with Cu Kα radiation) scanning from an angle (2θ) of 20◦

to 80◦ with a 0.04◦/s step size. The phase percentage was calculated by Rietveld’s method
using standard crystallographic cards and the Panalytical Highscore Plus software (versão
3.0, Panalytical, Almelo, The Netherlands).

To ascertain the mechanical behavior, the average values of Vickers hardness were
determined by macroindentation measurements using the Officine Galileo Mod. D200
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tester, Officine Galileo technology, Florence, Italy, under 30 kgf load for 15 s over three
samples per condition with at least 5 indentations for each.

2.3. Corrosion Tests

For the corrosion tests, the previously described surface preparation procedure was
applied, and the samples were kept in a desiccator for 24 h before starting each test. A
three-electrode electrochemical cell (adapted from ASTM: G3-89) was used to perform
the corrosion tests. The samples with a geometric exposed area of 0.38 cm2 were used as
the working electrode (WE), a Pt electrode was used as a counter electrode (CE), while a
saturated Ag/AgCl electrode was used as a reference electrode (RE). All of the potentials
were measured and reported with respect to the saturated Ag/AgCl electrode. The elec-
trolyte consisted of a phosphate-buffered solution (PBS) with a composition of 8 g/L NaCl,
0.2 g/L KCl, 1.44 g/L Na2HPO4, and 0.25g/L KH2PO4 in distilled water with an adjusted
pH of 7.4. All of the corrosion tests were performed at body temperature (37 ± 2 ◦C). Elec-
trochemical cells were connected to a potentiostat (Gamry model Reference 600+), which
allowed the measurements of electrochemical impedance spectroscopy (EIS) and potentio-
dynamic polarization. Before starting each test, (OCP) measurements were performed up
to stabilization (i.e., when ∆E was below 60 mV/h). EIS measurements were performed
at OCP, scanning a range of frequencies from 105 to 10−2 Hz, with 7 points per frequency
decade, and the amplitude of the sinusoidal signal peak-to-peak was 10 mV. Potentiody-
namic polarization measurements started to scan at −0.2 VOCP up to 1.5 VAg/AgCl using
a scanning rate of 0.5 mV/s. The tests were repeated at least three times per condition to
ensure reliability and repeatability.

2.4. Tibocorrosion Tests

The same surface preparation of the samples and the three-electrode model applied
to the corrosion tests were also used for tribocorrosion tests, but in this case, a tribo-
electrochemical cell was located in a reciprocating ball-on-plate tribometer (CETR-UMT-2).
The potentiostat (Gamry model Reference 600) was connected to the electrodes, and the
experiments were performed in 30 mL of PBS at 37 ± 2 ◦C against an alumina ball (Ceratec,
10 mm in diameter). The tribological parameters were designated as 1 N normal load, 1 Hz
frequency, 3 mm total stroke length, and 30 min sliding time. Two different electrochemical
conditions were chosen for the tribocorrosion tests. In the first test condition, the OCP was
monitored for 180 min for stabilization, then sliding was performed under OCP, and finally,
the OCP was recorded after sliding. In the second test condition, the OCP was monitored
for 30 min, then an anodic potential equal to +0.5 V vs. Ag/AgCl was applied for 60 min,
followed by sliding performed under an anodic potentiostatic condition. The anodic
potential was selected according to the passive region taken from the potentiodynamic
polarization curves. The current was monitored during the entire test performed under
potentiostatic condition until 10 min after sliding. After all of the tribocorrosion tests,
the previously described ultrasonic cleaning procedure was applied to the samples, and
the worn surfaces were analyzed by an optical microscope (OM, Leica DM2500, Leica
Microsystems GmbH, Wetzlar, Germany) and SEM. At least three samples per condition
were applied to tribocorrosion tests in order to ensure reliability and repeatability.

3. Results and Discussions
3.1. Microstructure and Physical Properties

Figure 1 shows the XRD peaks of the Joint Committee on Powder Diffraction Standards
(JCPD) cards of α-Ti and NbC phases and the XRD diffractograms of the composites
produced by hot pressing. As can be observed, after hot pressing, the peaks of NbC are
absent. For all the tested amounts of NbC blended with Ti, a solid-state reaction between
NbC and Ti occurred led to the formation of Ti2C, α-Ti, and β-Ti. With the greater addition
of NbC, intensities were higher in the peaks of β-Ti and Ti2C phases, and the intensities of
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α-Ti peaks were lower. These XRD results indicate that in-situ composites were obtained
after the hot pressing of Ti and NbC.
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Figure 1. XRD patterns of the Ti/NbC system.

The calculation of the phase percentage using Rietveld’s method resulted in Table 1
and showed that for the highest addition of NbC (20 vol.%), the obtained composite was
predominantly composed of β-Ti (48%) and Ti2C (42%), along with the small amount of
α-Ti phase (10%). For the composite obtained with the lowest addition of NbC (5 vol.%),
the predominant metallic phase was α-Ti (84%), together with β-Ti (8%) and Ti2C (8%). The
intermediate mixture of NbC (Ti + 12.5NbC) resulted in a well-balanced phase composition
of α-Ti (39%), β-Ti (29%), and Ti2C (32%) phases. In brief, by tailoring the amounts of Ti
and NbC reactants, in-situ composites could be designed in terms of the phase composition
of the matrix, from predominantly α-Ti to predominantly β-Ti, combined with the increase
in reinforcing phase precipitations.

Table 1. The phase composition (vol.%) of the hot-pressed samples.

Condition Ti α Ti β Ti2C

Unreinforced Ti 100% - -
Ti + 5NbC 84% 8% 8%

Ti + 12.5NbC 39% 29% 32%
Ti + 20NbC 10% 48% 42%
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Microstructures analyzed by SEM confirmed the XRD findings. Figure 2 presents the
micrographs of each obtained composite after etching with Kroll’s reagent. As indicated
by the arrows, Ti + 20NbC (Figure 2a) predominantly exhibited a β phase structure in the
matrix surrounding Ti2C particles, whereas Ti + 12.5NbC (Figure 2b) showed the reduced
presence of β phase along with the appearance of α + β lamellar microstructure in the
matrix. Finally, Ti + 5NbC (Figure 2c) had the lowest content of Ti2C particles, and the
matrix composed of α + β lamellar microstructure contained the predominance of the
α phase.
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Figure 2d presents the EDS spectra of the composite produced with Ti + 5NbC. Ti and
Nb were detected in the lighter region (Z2), whereas Ti and C were detected in the darker
region (Z3), and only Ti was detected in the gray region (Z1). These results indicate that the
Ti2C phase had a particle-like microstructure embedded in the metallic matrix composed
of Ti and Ti-Nb solid solution.

The increase in the amount of the β phase obtained with the higher NbC addition
influenced the hardness. Figure 3 provides the results of the Vickers hardness measure-
ments. With the lowest addition of 5 vol.% of NbC, the hardness increased in comparison
to unreinforced Ti. Therefore, as unreinforced Ti has an α phase structure, the reinforce-
ment increased the hardness of the composite. However, with a greater NbC addition, the
hardness slightly decreased, achieving 387 ± 11 HV30 for Ti + 20NbC due to the combined
effect of a softer matrix (β-Ti) with the reinforcing phase [34–38].
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Figure 3. Vickers hardness values.

3.2. Corrosion Behavior

Figure 4 shows the representative potentiodynamic polarization curves for unrein-
forced Ti and Ti + NbC composites. In the anodic domain, all of the potentiodynamic
polarization curves exhibited a well-defined passivation plateau usually attributed to the
presence of a protective oxide film. Notwithstanding, with the higher addition of NbC,
the obtained composites revealed a relatively narrower passive region since an increase
in the current densities occurred at high potentials, specifically around 1.2 VAg/AgCl for Ti
+ 12.5NbC and 1.1 VAg/AgCl for Ti + 20NbC. The increase in the current density at those
potential values can be attributed to the partial dissolution of the oxide film, which has been
reported when a more heterogeneous phase composition is obtained with higher content of
the alloying elements [39]. Kin et al. [40] also obtained similar corrosion behavior during
potentiodynamic polarization of Ti35Nb alloy samples in Hank’s solution. An increase in
the current density at high anodic potential values was linked to the high heterogeneous
phase composition of the alloy since that induced more defects in the oxide layer.
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The average corrosion potential (E(i=0)) and passivation current density (ipass) are
presented in Table 2 for all groups. Comparing the groups, the lowest corrosion potential
was observed for the unreinforced Ti group. As the NbC content increased, the corrosion
potential shifted to nobler values. The addition of NbC, according to the structural charac-
terization, promoted the formation of β Ti-Nb solid solution in the metallic matrix. It is
well-known that Ti-Nb alloys show more positive corrosion potential than pure Ti since Nb
is a nobler metal than Ti [34,38].

Table 2. Average values of corrosion potential (E(i=0)) and passivation current density (ipass).

Condition E(i=0) (VAg/AgCl) ipass (µA cm−2)

Unreinforced Ti −0.296 ± 0.012 1.89 ± 0.28
Ti + 5NbC −0.172 ± 0.041 2.46 ± 0.21

Ti + 12.5NbC −0.132 ± 0.027 2.88 ± 0.65
Ti + 20NbC −0.130 ± 0.034 3.25 ± 0.44

However, increased passivation current densities were observed with composites com-
pared to unreinforced Ti. The passive current density increased when NbC was added, with
no significant differences among the composites. This slightly higher corrosion kinetics
might be attributed to the presence of the Ti2C phase and eventual modifications of the
passive film. Similar results have been reported for unreinforced Ti-Nb alloys [34,38], where
the oxide layers were composed of TiO2 and Nb2O5 and, depending on the formation condi-
tions and thermomechanical history, may result in the formation of a different nature of the
oxide film. Furthermore, the galvanic coupling between the matrix and the reinforcement
may have occurred and contributed to the impairment of the corrosion behavior, as this
has commonly been reported for MMCs [22–25]. In this scenario, the EIS measurements
performed at OCP provided more precise insight into the corrosion mechanisms.

Figure 5a is the Nyquist diagram for unreinforced Ti and the composites. Each diagram
exhibits a single time constant, which is represented by the single semi-circle on the Nyquist
diagram and the single loop on the Bode diagram. Unreinforced Ti shows the largest semi-
circle diameter, which means higher corrosion resistance, whereas the diameter decreased
with the addition of NbC. EIS measurements also allowed the construction of the Bode
diagrams, presented in Figure 5b. Furthermore, the EIS results were fitted based on the
equivalent electrical circuit (EEC) defined in Figure 5c, where Re is the electrolyte resistance,
Rox is the oxide film resistance, and Qox is a constant phase element (CPE) considering the
non-ideal capacitance of the oxide film.

Analyzing the Bode diagram, the constant values of |Z| at high frequencies is the
typical response of the electrolyte resistance, where the phase angle is close to zero. In the
low- and middle-frequency range, the phase angle values approached −90◦ for all of the
conditions (for instance, −85◦ for unreinforced Ti and −82◦ for Ti + 20NbC), reflecting the
typical capacitive behavior of a compact oxide film. The impedance spectra were fitted
to the corresponding EEC using Gamry Echem Analyst software (version 5.61, Gamry
Instruments, Philadelphia, PA, USA). As shown in Figure 5c, CPE was used in the fitting to
allow the deviation of the ideal behavior of a capacitor, and when the n value is close to 1,
a non-ideal capacitor may be described by this element. All of the conditions presented n
values between 0.92 and 0.96; thus, the proposed model adequately describes the behavior
of the native oxide film in contact with PBS. The differences in the n values might be related
to the heterogeneities and roughness of the surface. Furthermore, the quality of the model
was evaluated through the goodness of fitting (χ2) values, and all groups presented values
around 10−4. Table 3 shows every parameter of each sample condition obtained after fitting
EIS data with the proposed EEC.
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Table 3. Equivalent circuit parameters obtained from EIS data.

Condition Re (Ωcm2) Rox (105 Ωcm2) Cox (µFcm−2) n χ2 (10−4)

Unreinforced Ti 30.2 ± 1.0 25.6 ± 7.3 18.9 ± 1.4 0.958 ± 0.001 0.7
Ti + 5NbC 29.7 ± 0.6 5.2 ± 2.4 20.2 ± 0.5 0.954 ± 0.003 0.8

Ti + 12.5NbC 31.1 ± 0.8 5.6 ± 0.6 28.4 ± 2.9 0.933 ± 0.009 1.0
Ti + 20NbC 29.9 ± 0.9 5.8 ± 1.2 37.6 ± 5.6 0.928 ± 0.004 1.2

To facilitate the interpretation of the results, the Qox values were converted to Cox
(capacitance) using the equation presented in Figure 5c, derived from Brugg’s equation [41].
As seen in Table 3, the lowest Cox value was obtained with unreinforced Ti, and the values
increased as the NbC content increased, indicating the lower quality of the oxide film
formed. The values of Rox varied conversely but in accordance with the capacitance values,
confirming the highest resistance of the oxide film of unreinforced Ti. Indeed, as shown
above, the NbC additions promoted the incorporation of Nb into the Ti crystallographic
lattice, precipitating the β phase in the matrix. According to the literature, for Ti-Nb alloys
without quenching or any similar heat-treated condition, a stable β phase is obtained only
with an Nb content higher than 30 wt.% [35–37]. Recently, it was reported that the oxide
films of Ti–Nb alloys became thinner as the Nb content increased, resulting in the lower
corrosion resistance for Ti-40wt.%Nb [34]. Therefore, for the composites produced in the
present work, the decrease in the corrosion resistance may be linked with the lower quality
of the oxide film resulting from the higher heterogeneous phase composition of the bulk,
promoted both by the dissolution of Nb, which resulted in the precipitation of β-Ti phase
in the metallic matrix and by the precipitation of the Ti2C phase.
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As known, Cox (capacitance of the oxide film) is defined by C = ε0εr A
d , where ε0 is the

vacuum primitivity (ε0 ≈ 8.9 × 10−14 Fcm−1), εr is a dielectric constant of the oxide film, A
is the exposure area, and d is the thickness of the oxide film [41]. Therefore, the increase
in Cox with higher NbC addition (see Table 3) for the composites may be linked to the
reduction in the thickness of the oxide film, along with the variations in εr values resulting
from the different nature of their oxide film, which indicates impairment in its quality.

3.3. Tribocorrosion Behavior

The OCP evolution before, during, and after sliding, together with the corresponding
coefficient of friction (COF) recorded during sliding, are in Figure 6, which presents the
representative behavior of each composite compared to unreinforced Ti. When sliding
started, an abrupt drop in the OCP values was recorded for all samples due to the mechani-
cal damage of the oxide film and the exposure of the worn area to the electrolyte. After
sliding, the OCP values increased to approximately the values obtained before sliding due
to the recovery of the oxide film on the wear tracks. The exception was Ti + 5NbC, which
maintained around 500 s in intermediate values, which were about the values recorded for
unreinforced Ti, and only then increased up to the OCP registered before sliding (similar
behavior was recorded for the Ti + 5NbC samples, but varying the recovering time between
300 and 500 s). This behavior indicates slower repassivation kinetics.
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Regarding the behavior during sliding, Table 4 presents the average values of OCP
and COF, which were estimated from three tests for each studied condition. These obtained
values indicate a relatively lower thermodynamic tendency to corrode under sliding for all
composites, especially Ti + 20NbC and Ti + 12.5NbC, with potential averages higher than
−0.4 VAg/AgCl, compared to the unreinforced Ti (potential average around −0.5 VAg/AgCl).
Furthermore, unreinforced Ti and Ti + 5NbC presented more profound decreases in po-
tential when sliding started and similar sharp oscillations repeated during sliding. These
sharp oscillations may be linked to the formation of patches, which, after reaching a critical
thickness, are removed by the counter body. The average COF values tended to decrease as
the content of NbC increased. For Ti + 12.5NbC and Ti + 20NbC, COF averages were less
than 0.4, and the evolution of COF during sliding showed relatively lower values at the
beginning and gradually increased until the end of sliding but never exceeded the values
recorded for unreinforced Ti. On the other hand, unreinforced Ti and Ti + 5NbC obtained
a higher COF average aside from sharp oscillations linked to their OCP evolution. The
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repetitive thickening and breaking of the oxide patches may be attributed to unreinforced
Ti [24,29], while for the composites, the higher the amount of reinforcement, the lower
the tendency of this behavior to appear due, most probably, to the load-carrying effect of
Ti2C particles. As the content of the reinforcement increases, the effect of adhesive wear
decreases due to the reduction in the exposed metallic area [42]. Therefore, the smoother
COF evolution was recorded with a higher fraction of reinforcement.

Table 4. Average values of COF and potential during sliding performed under OCP.

Condition COF Eduring sliding (VAg/AgCl)

Unreinforced Ti 0.460 ± 0.002 −0.499 ± 0.044
Ti + 5NbC 0.414 ± 0.048 −0.438 ± 0.076

Ti + 12.5NbC 0.390 ± 0.047 −0.320 ± 0.016
Ti + 20NbC 0.366 ± 0.013 −0.350 ± 0.027

Tribocorrosion tests performed under anodic applied potential enabled further investi-
gation of the interactions between wear and corrosion. Figure 7 presents the anodic current
evolution before, during, and after sliding at an applied potential of +0.5 V vs. Ag/AgCl,
as well as the corresponding evolution of COF. Before sliding, the current density values
were stable due to the presence of the oxide film formed on the surfaces. During sliding,
the current evolutions showed different behaviors among the studied conditions. When
sliding started, unreinforced Ti presented a sharp increase in current density, whereas the
composites, in general, presented a smaller increase in current density, which remained
relatively stable around these values. As sliding proceeded, sharp increases in current
density were observed for unreinforced Ti, which were also observed for Ti + 5NbC, but less
frequent. After unloading the counter-material, the anodic current density of all conditions
returned to the values close to the ones recorded before sliding, indicating the repassivation
of the worn area. Regarding the evolution of COF, large oscillations went along with the
sharp increases in current density values for unreinforced Ti and Ti + 5NbC, whereas COF
remained more stable for Ti + 12.5NbC and Ti + 20NbC.
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Table 5 elucidates that the COF of all of the sample conditions under anodic applied
potential was higher than the values obtained under OCP. This increase can be associated
with the thickening of the oxide film due to the applied potential on the anodic domain.
In this case, the thicker oxide layer may correspond to a relatively rougher surface, and
when a counter-material promotes the cyclic damage, it may result in increased formation
of the oxidized third-body particles [24]. Likewise, the Ti + 20NbC condition recorded
a progressive increase in current density along with the evolution of the experiment,
culminating in high values in the final seconds of the sliding period (around 10 µA cm−2).
This behavior may be linked to the worse corrosion resistance among all studied conditions
since the EIS and potentiodynamic polarization results demonstrated a decreased quality
of the oxide film of the composites as they were produced with a higher addition of NbC.
Therefore, the effect of third-body wear must have been accentuated for the Ti + 20NbC
samples with the sliding performed under anodic applied potential. On the other hand,
the more reinforced the composites are, the lower the influence of adhesive wear, which
explains the variation in the COF values among the composites since the COF tended to
decrease with a higher addition of NbC. The intermediate content of NbC (Ti + 12.5NbC)
did not present the progressive increase in current density values as with Ti + 20NbC,
whereas its COF values tended to be lower than those recorded for Ti + 5NbC.

Table 5. Average values of COF and anodic charge (QA) estimated during sliding performed under
+0.5 V vs. Ag/AgCl.

Condition COF QA (mC)

Unreinforced Ti 0.487 ± 0.009 8.5 ± 2.3
Ti + 5NbC 0.570 ± 0.057 6.8 ± 5.4

Ti + 12.5NbC 0.520 ± 0.084 4.3 ± 1.8
Ti + 20NbC 0.498 ± 0.048 8.4 ± 2.1

As the applied potential value (+0.5 V vs. Ag/AgCl) corresponds to the passive
zone for all testing groups, the material degradation is assumed to have resulted from
two mechanisms: mechanical wear (Wmec), and wear accelerated corrosion (Wwac) [43].
Through this approach, the total volume loss after tribocorrosion (Wtot) is the sum of both
wear components. Individually for each studied condition, the contribution of Wwac is
proportional to the anodic charge (QA) estimated through the integration of the current
curves over sliding time. Although QA is also influenced by the molecular weight and
valance electron number, its value directly reflects the passage of current per area, thus
with lower QA, lower corrosion kinetics under sliding is expected. For the composites
and unreinforced Ti, the average QA values obtained with three samples per condition are
presented in Table 5. A significant difference can be seen for the Ti + 12.5NbC condition,
which exhibited the lowest QA value (around 50% of the value obtained by unreinforced Ti).

Representative micrographs obtained by OM and SEM of the worn surfaces after
being tested under OCP, are presented in Figure 8. First, as can be observed in Figure 8,
the relatively low level of surface damage on the composites after tribocorrosion testing
did not allow a valid measurement of the wear volume loss. In addition, there were no
macroscopic signals or changes in the color of the counter-body (alumina balls) after testing,
and the analyses of its surface on the microscale were discarded. Comparing the OM
images, unreinforced Ti (Figure 8a) presented a much larger wear track than the composite
samples. Parallel ploughing grooves and abrasion scratches can be observed on the worn
surface of unreinforced Ti, together with a discontinuous tribolayer (oxidized patches),
which are evidenced in BSE mode (Figure 8b). This surface morphology has been typically
reported in the literature for Ti and Ti alloys [29,44]. Figure 8c presents the EDS spectrum
1 (Z1) and 2 (Z2) obtained in the unreinforced Ti sample. As it can be seen, Z2 refers to
the bulk composition (only Ti), whereas Z1 (oxidized patches) shows signs of K, O, P, and
Na, indicating oxidation with the incorporation of elements from the PBS electrolyte. This
tribolayer may offer protection against wear and corrosion up to a certain thickness, but it
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can then be removed by the counter-material and thus accelerate the degradation, as was
discussed above.
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Ti + 20NbC (j–l).

Regarding the composites, OM images depict the thinnest wear track on the Ti + 12.5NbC
sample (Figure 8g), which can be attributed to the load-carrying effect given by the higher
content of the reinforcing phase. However, higher amounts of reinforcing phase might lead
to a deleterious effect, as indicated by the larger wear track displayed by the Ti + 20NbC
sample (Figure 8j). This behavior should be further investigated in future works but may
be attributed to the removal of reinforcing particles, resulting in more damage to the
metallic matrix. A discontinuous tribolayer formation was detected by EDS analysis in
each composite (Z1 EDS spectra for each sample).

Figure 9 presents the representative micrographs (OM and SEM) and EDS spectra
of the worn surfaces when sliding occurred under anodic applied potential. From the
OM images, it can be observed that unreinforced Ti and Ti + 5NbC showed a thinner
wear track (Figure 9a,d) when compared to the results obtained under the OCP conditions.
On the other hand, Ti + 20NbC showed the opposite trend with a relatively larger wear
track (Figure 9j).
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formed under anodic applied potential for: unreinforced Ti (a–c), Ti + 5NbC (d–f), Ti + 12.5NbC (g–i),
and Ti + 20NbC (j–l).

As was discussed before, the addition of NbC resulted in a decrease in the corrosion
resistance of the materials (increase in the passivation current density and a decrease in
the oxide film resistance), suggesting a less protective passive oxide film formed on the
composites. At the same time, as the addition of NbC increased, the percentage of the Ti2C
phase also increased, which can lead to an effective protective load-carrying effect during
tribocorrosion, if the Ti2C does not become organized in dense clusters, facilitating the
removal of particles during sliding. Therefore, as is suggested in Figure 9k,l, the presence
of the tribolayer aside from the signals of the removed Ti2C particles on the wear track of
Ti + 20NbC sample can be observed.

3.4. Limitations of the Present Study

The first insights into the tribocorrosion behavior of novel in-situ TMCs were investi-
gated in the present study. Regarding the combined factors which can play an important
role in the tribocorrosion resistance of composites, new directions for further research were
opened due to the obtained results, and the limitations of this paper should be highlighted.

Firstly, as shown, the addition of NbC results in the in-situ formation of new phases as
well as modification of the matrix structure and composition. Consequently, the formation
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of new phases may lead to complex electrochemical interactions (namely galvanic coupling)
at different scales, which were not within the aim of this paper.

Furthermore, the chemical composition, and physical properties of the passive oxide
film, which are also influenced by the base composition of the mixture, the processing
conditions, and the environmental aspects, were not investigated in this paper. Therefore,
further experiments should be conducted regarding these issues.

4. Conclusions

The present study evidenced the following:

• In-situ composites can be produced by Ti + NbC starting materials. When applying
hot pressing at 1100 ◦C for 120 min, the Ti powder reacted in the solid-state with NbC
powder, resulting in the dissolution of Nb into the metal matrix and precipitating Ti2C
as the hard-ceramic reinforcement. The higher amount of NbC applied led to a higher
amount of reinforcement and a higher amount of the Ti-Nb β phase in the matrix. For
20 vol.% of NbC, the final composite had a predominant β matrix reinforced with 42%
of Ti2C.

• The corrosion resistance of the composites was mainly affected by the different quality
of the oxide film. With the higher addition of NbC, the protection given by the oxide
film was reduced. On the other hand, as in-situ processing allows the production of
composites with low porosity and well-established matrix/reinforcement interfaces,
no effect was detected by EIS and potentiodynamic polarization tests of localized
corrosion or galvanic coupling.

• Improved tribocorrosion behaviors were registered for the composites. The best
tribocorrosion behavior was obtained with α-β matrix and high reinforced composite
(Ti + 12.5NbC), which exhibited the lowest corrosion tendency and kinetics under
sliding among all studied conditions together with a polished wear track. Furthermore,
the low corrosion tendency under sliding achieved with the predominant β matrix
composite (Ti + 20NbC) demonstrates that wear is not entirely hardness dependent.
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