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Braga/Guimarães, Portugal

mrocha@di.uminho.pt

Vı́tor Pereira
Centre of Biological Engineering

Department of Informatics
University of Minho, Portugal

LABBELS – Associate Laboratory,
Braga/Guimarães, Portugal
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Abstract—Recent developments in Generative Deep Learning
have fostered new engineering methods for protein design.
Although deep generative models trained on protein sequence
can learn biologically meaningful representations, the design
of proteins with optimised properties remains a challenge. We
combined deep learning architectures with evolutionary compu-
tation to steer the protein generative process towards specific
sets of properties to address this problem. The latent space of a
Variational Autoencoder is explored by evolutionary algorithms
to find the best candidates. A set of single-objective and multi-
objective problems were conceived to evaluate the algorithms’
capacity to optimise proteins. The optimisation tasks consider
the average proteins’ hydrophobicity, their solubility and the
probability of being generated by a defined functional Hidden
Markov Model profile. The results show that Evolutionary
Algorithms can achieve good results while allowing for more
variability in the design of the experiment, thus resulting in a
much greater set of possibly functional novel proteins.

Index Terms—Deep Learning, Generative Models, Protein
Design, Evolutionary Algorithms, Novel Proteins

I. INTRODUCTION

Proteins are macromolecules fundamental in organisms,
with a wide array of functions within cells, such as catalysing
metabolic reactions, providing transport for molecules, or
offering structural support and mechanical transduction.
The ability to effectively engineer proteins towards macro-
molecules with the desired traits and functions would result
in possibly vast applications [1].

A protein is composed of one or more long chains of amino
acids that correspond to the gene’s DNA sequence that encodes
it. The therapeutic applications resulting from the development
of novel proteins, such as enzymes, with enhanced properties
and modified applications [2], represent the primary feature
currently associated with protein engineering [3]. However,
this task is not without its share of obstacles, as the number of
potentially functional proteins is minimal within the universe
of all potential protein sequences [4].

Despite being fairly recent and relatively unexplored, deep
learning generative models have shown the ability to assist
protein engineering tasks in the search for novel viable protein
structures [5].

De novo protein design has been rapidly developing in
the last decade, allowing for the design of a variety of sta-
ble novel proteins. Before these successful accomplishments,
protein engineering consisted in modifying existing proteins
with function and structure similar to the desired [6] [7] [8].
After these initial endeavours, the field of de novo protein
design evolved exponentially, increasing both the number of
published efforts and the computational complexity of the
approaches used [7].

Current Deep Learning (DL) approaches have been in-
creasingly used in biological and life sciences thanks to the
major steps taken in hardware availability. These approaches to
protein design can follow an array of different processes [10].
Mapping a latent space to the sequence space is a common
approach usually performed through the use of Autoencoders
(AEs), and Generative Adversarial Networks (GANs) [9]. The
success of these methods sustains that it is possible to design
novel enzymes that carry out completely new reactions. These
techniques are more and more used, with applications in the
prediction of drug effects or drug repurposing [10].

A. State-of-the-art

Some endeavours have stood out concerning the previous
works developed to generate novel proteins applying Vari-
ational Autoencoders (VAEs) to the generation. Das et al.
proposed a VAE model capable of learning a representation of
antimicrobial protein sequences and generating new sequences
likely to have antimicrobial properties [11]. Costello and
Martin developed BioSeqVAE, a VAE variant that can generate
valid protein sequences that are likely to fold and function
[1]. Greener et al. used conditional VAEs to design proteins
with desired properties and novel protein folds. The authors
focused on the generation of metalloproteins [12]. Deep-
protein-generation is a framework that uses VAEs designed to
work with aligned and unaligned protein sequence data. The
objective of this framework is to generate functional variants
of luxA bacterial luciferase [13].
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B. Goals
This endeavour aims to use VAEs to design new proteins,

leveraging the use of EAs to navigate through the latent
space. This work’s pipeline receives, as input, protein data
entries from a supported dataset, carefully prepared to allow
the training, validation, and testing of the generative model.
The model is validated and evaluated, considering its ability
to produce new proteins, targeting desired properties and
diversity.

The objective functions used in the present effort are mainly
inspired by the methods in Pepfun [14]. This tool implements
many methods to study peptides at the structure and sequence
level. In the context of this work, the selected evaluation
functions were:

• Average hydrophobicity (maximise);
• Rules of synthesis broken (minimise);
• Rules of solubility broken (minimise);
• Maximise the probability of a protein being generated by

a Hidden Markov Model (HMM) profile.
1) Hydrophobicity: Hydrophobicity plays a role in the

protein’s stability, with higher values being correlated to higher
stability [15] [16]. This metric is also presumed to be of
importance regarding the occurrence of protein aggregation
[17] [18]. One objective of optimisation envisaged in this
work was to maximise the average hydrophobicity of a protein
sequence. To determine this average score, we resorted to the
Eisenberg scale [19] for the hydrophobicity of each Amino
Acid (AA), averaging the score with basis on the sequence
length as Equation 1 presents.

Average hydrophobicity =
sum of AA’s hydrophobicity
total AAs in the sequence

(1)

2) Synthesis: The original definition for protein synthesis
is that the synthesis process represents the translation of the
genetic message by the ribosome into a polypeptide [20].
Various Cell-Free Protein Synthesis (CFPS) techniques and
machinery have been developed over the last decades to
manipulate this process. This process consists in generating
the protein through an in vitro process as opposed to an in
vivo one [21].

The events that we aim to avoid and consequently constitute
a breach in the rules of synthesis are:

• Two consecutive prolines;
• Presence of the DG and DP motifs;
• Sequence ending with the N or Q AAs;
• Charged residues at every 5 AAs;
• Presence of oxidation-sensitive AAs (M, C or W).
3) Solubility: Protein solubility is a thermodynamic param-

eter based on the concentration of a protein in a saturated
solution in equilibrium with a solid phase. This parameter
can be affected by extrinsic factors like pH , temperature,
ionic strength, and the presence of solvent additives. Moreover,
solubility can also be affected by intrinsic factors, for example,
by the AA conformation on the protein surface [22]. The rules
of solubility are as follows:

• Discard if the number of charged and/or hydrophobic
AAs exceed 45% of the total AAs in the sequence;

• Discard if an absolute total peptide charge with pH = 7
greater than +1;

• Discard if more than one glycine or proline in the
sequence;

• Discard if the first or the last AAs are charged;
• Discard if an AA represents more than 25% of the whole

sequence.

The synthesis and solubility rules used to monitor each
protein sequence were extracted from Pepfun [14]. When
asserting the rules in the context of an EA, proteins are
discarded by giving a fitness of plus infinity.

4) HMM Score: The last objective function maximises the
score produced by comparing a generated sequence against an
HMM profile. This score is produced through the use of the
HMMER software [23].

A profile HMM is a probabilistic model that condenses
position-specific information by analysing a multiple sequence
alignment and evaluating how conserved each AA is at each
position. An HMM allows for the detection of homologs
through the existence of significant similarities between pro-
tein sequences [24]. The higher this score is, the more likely
it is for a generated sequence to be homologous to the
sequences used to construct the HMM profile. Therefore, this
objective function allows selecting sequences that are more
likely to possess the intended functional profile during the
EA’s evolutionary process and as a post-processing filter. In
the particular case of the present work, we retrieved the profile
HMM of bacterial luciferase from Pfam [25], a database of
HMMs representing an extensive collection of protein families.

5) Net Charge: The net charge at pH = 7 is another
metric we want to monitor. A protein net charge, at any
given pH , is determined by the pK values of the protein
ionisable groups [26]. The pK values are a metric of an acid’s
strength on a base-ten logarithmic scale and are determined by
log10(1/Ka) where Ka is an acid dissociation constant [27].
The net charge of a protein is positive at pH values below
the Isoelectric point (pI), negative at pH values above the pI
and zero at the pI [28]. Although the net charge value of a
protein might not represent the most crucial factor in protein
stability, the proteins are expected to be less soluble near their
respective pI [28]. A higher magnitude in the net charge of
the protein should produce an increase or decrease in the pH
value, consequently raising the solubility [28].

The literature also indicates that the net charge is an
important property of the protein aggregation events [17] [18].

II. MATERIAL AND METHODS

Hawkins-Hooker et al. [13] proposed two different VAE
architectures to generate functional variants of the luxA
bacterial luciferase. One model was designed to train on
raw sequence inputs, while the other on multiple sequence
alignments (MSA). The latter, termed MSAVAE, presented the
best results and was selected to be used in the present work.



We defined Single-Objective (SOOPs) and Multi-Objective
Optimisation Problems (MOOPs) to drive the generative pro-
cess toward proteins with desired properties. The generative
DL model from [13] was trained on a dataset of 69130
homologs of bacterial luciferase, extracted from the InterPro
database using the assertion IPR011251. The train/validation
split ratio was 80/20.

A. Variational Autoencoders

VAEs increase common autoencoders’ capacity by trans-
forming the input’s data to statistical distribution parameters
instead of compressing it as a fixed code in the latent space.
Therefore, VAEs assume that the input data is generated via
a statistical process. VAEs randomly select an instance from
the distribution through the mean and variance parameters,
decoding it into the original input. VAEs are trained via two
loss functions: reconstruction and regularisation loss function.
The reconstruction loss function ensures that the decoded
samples match the original inputs. The regularisation aims at
smoothing the latent space created by the encoder by making
its distribution resemble a normal one. The latent space’s
representations are real vectors of size 50.

The schematic representation of the VAE’s architecture
implemented in this endeavour is presented in Figure 1.

Fig. 1. Schematic representation of the VAE’s implemented in this work.

Both the encoder and the decoder use two hidden layers.
The latent space is generated using a flatten layer and 2 dense
layers. In the decoder, a combination of 2 dense layers was
applied. The hidden and output units use, respectively, ReLU
and Softmax activation functions.

B. Evolutionary Algorithms

Evolutionary Algorithms (EAs) have proven to be robust
methods to solve somewhat complicated optimisation prob-
lems [29], allowing the handling and solving of problems
with multiple, and even conflicting, objectives in a large and
complex search space [30]. Such is the case when conducting
protein design optimisation where conflicting goals need to
be leveraged to obtain functional proteins. In the context of
our experiment, the EAs optimise over the VAE’s latent space
representations and, therefore, EAs individuals are encoded as
real vectors as presented in Figure 2.

.

Fig. 2. Schematic representation of the optimization process.

The EAs, implemented using the jMetalPy [31] library,
were chosen to accommodate both single and multi-objective
optimisation problems, notably, a Genetic Algorithm and three
commonly used multi-objective EAs: SPEA2, NSGA-II and
NSGA-III. All are configured with a One-Point crossover and
two equiprobable mutation operators (a Single and a Gaussian
mutator) with respectively 60 and 75% probability of being
applied. The EAs use populations of 10 individuals and are
run over 160 generations, set as stopping criteria, and 100
repetitions.

C. Code Availability
The experiments use the GenProtEA’s framework imple-

mentation, developed entirely in Python, which is freely avail-
able at https://github.com/martinsM17/GenProtEA. A set of
scripts allows building datasets easily by providing an InterPro
accession. The protein sequences are automatically trimmed to
fit the generative model input and aligned. An HMM protein
profile is also produced in cases where none is available from
databases such as Pfam.

III. RESULTS AND DISCUSSION

We evaluated different sets of proteins taken from the raw
dataset, from sampling and decoding the VAE latent space,
and from the sets of proteins optimised using the EAs. Each
set is composed of 1000 sequences randomly selected. The
input of the objective functions is the proteins’ amino acid
sequence. As such, at each iteration of the EAs, the real vec-
tors, latent space representations, are transformed into amino
acid sequences using the VAE’s decoder. The VAE’s encoder
may be used to seed the EA initial population with protein
representations known to possess the coveted properties.

A. Single-objective optimizations
We divided the evaluation of the metrics according to

the nature of the optimisation problems. The first approach



considers SOOPs leveraging a Genetic Algorithm (GA) that
uses a Binary Tournament as a selection mechanism.

The raw dataset’s mean net charge value at pH = 7
is slightly lesser than the one observed when sampling a
large set of proteins from the VAE latent space, notably, and
respectively, −8 and −4. When optimising proteins towards
a specific goal, the net charge of the final population reflects
the objective at hand. When optimising for hydrophobicity,
solubility, synthesis, and against the HMM profile, the mean
net charge values were −2, −4.8, −1.2 and −8, respectively.

1) Hydrophobicity: In the case of the average hydrophobic-
ity (Figure 3), the distribution of the VAE generated samples
presented a tendency toward higher values compared to the
ones from the raw dataset.

Fig. 3. Comparison between the samples from the raw dataset and samples
generated with and without using the GA to optimize the average hydropho-
bicity. The orange horizontal line represents the median value.

The results show that the protein sequences generated with
the VAE architecture have a distribution of much higher values
of average hydrophobicity compared to the one presented by
the samples extracted from the raw dataset. This comparison
indicates that the generated samples showcase not only a
higher median value but also a higher Interquartile Range
(IQR) and a maximum value of average hydrophobicity.

Optimising the average hydrophobicity using the GA re-
sulted in clear improvements over the previously evaluated
samples. Indeed, the median, IQR, maximum and minimum
values are higher in GA solution set distribution than in the
respective distributions for the raw dataset and direct sampling
protein set.

2) Synthesis: Analysing the number of synthesis rules bro-
ken (Figure 4), the generated sequences presented much lower
values than the ones observed in the distribution of the raw
samples. The results point to an overall better distribution of
the values concerning the number of synthesis rules broken in
the set of generated sequences. Compared with the set of raw
samples, the generated sequences, from which proteins were

Fig. 4. Comparison between the samples from the raw dataset and samples
generated with and without using the GA, concerning the number of synthesis
rules broken. The orange horizontal line represents the median value.

taken by direct sampling, present the lowest median value.
The same is observed concerning the IQR range, maximum
and minimum values. Overall, the generated sequences offer
a lower number of synthesis rules broken than the proteins in
the raw dataset.

The sequences generated with the use of the GA in the
optimisation process present the best results for the case of
minimising the synthesis rules broken. The use of the GA
resulted in a distribution where the median value, the IQR,
and the maximum and minimum values showcase the best
results compared with the previously evaluated distributions
concerning the number of synthesis rules broken.

3) Solubility: The previous tendency was not carried to the
case of the number of broken solubility rules. The results
(Figure 5) suggest that the samples from the raw dataset
have indeed better outcomes for the case of solubility rules
broken when compared with the representatives from the set
of generated sequences. It is observable that although the IQR
values are similar, the median value for the raw dataset is 2. In
contrast, in the case of the generated samples this value is of
3 solubility broken rules, contrasting with the results observed
for the Net Charge analysis. Indeed, a similar solubility score
would be expected for both datasets, which empathises the
need to validate the generated sequences somehow. We next
compare both samples using a profile HMM for the raw protein
dataset in this context.

All the optimised sequences present the same number of
solubility rules broken, 2. Once again, using the GA resulted
in clear gains over the previously evaluated distributions. The
IQR ranged between 2 and 3, and the overall values ranged
from 2 to 4 solubility rules broken.

4) HMM: An additional comparison between the generated
and raw samples, the HMM scores, helps elucidate how well
the generator can produce new proteins homolog to those it



Fig. 5. Comparison between the samples from the raw dataset and samples
generated with and without using the GA to optimize the solubility rules
broken. The orange horizontal line represents the median value.

was trained on. As expected, the samples from the raw dataset
present an overall much better distribution of HMM scores,
given that the raw dataset is constructed with luciferase-like
oxidoreductases (Figure 6). The best scores from the proteins
generated with the VAE architecture are much lower than the
ones presented by the raw samples.

Fig. 6. Comparison between the samples from the raw dataset and samples
generated with and without using the GA to optimize the HMM score. The
orange horizontal line represents the median value.

This result might indicate that the VAE was unable to
capture the distribution of the training set. Nonetheless, one
may aim to perform a guided exploration of the latent space,
sampling sequences in a more rational way.

The distribution of the samples generated using the GA to
maximise the HMM score presents an improvement over the

direct sampling of generative model latent space. However,
the proteins found by the GA with the best HMM scores
have this metric aligned with the median of the raw dataset
HMM scores. This result confirms that the VAE could not fully
grasp the luxA profile. New generative architectures using
distinct representation schemes, such as sequence features
(e.g., chemical descriptors and evolutional information) or
structural features (e.g., protein surface, secondary structure,
and inter-residue distance), are needed.

B. Multi-objective optimizations

One advantage of EAs, when compared with other guided
design strategies, is their ability to contemplate the optimisa-
tion of more than one objective. As illustrated in the previous
section, such is the case in protein design. We defined two
MOOPs to evaluate the EAs performance in multi-objective
optimisation tasks.

The first consisted in the minimisation of the number of
both synthesis and solubility rules broken. For this MOOP
we used two different MOEAs: the Non-dominated Sorting
Genetic Algorithm-II (NSGA-II) [35] and the Strength Pareto
Evolutionary Algorithm 2 (SPEA2) [36]. The second MOOP
added a third optimisation objective, the simultaneous max-
imisation of the HMM score. For this last MOOP we used
the Non-dominated Sorting Genetic Algorithm-III (NSGA-III)
[37].

1) Net Charge and HMM: The net charge of the sam-
ples generated with NSGA-III, optimising the three-objective,
present a distribution closer to the raw dataset. The remaining
MOEAs resulted in sequences with an overall higher mag-
nitude in the net charge values. This result might indicate
a positive correlation between the HMM scores and the net
charge values. Indeed, in the single objective optimisation,
proteins with optimised HMM had net charge values more
aligned to those observed in the training set.

The authors in [13] reported that the vast majority of
sequences generated by direct sampling were scored as hits
by the HMM (99.7%,) at an E-value threshold of 0.001. We
were however, unable to replicate such a result.

2) synthesis and Solubility : NSGA-II and SPEA2 present
solutions with similar fitnesses in the minimisation of the
number of synthesis (Figure 7) and solubility rules broken
(Figure 8). Also, the fitness values achieved by both MOEAs
in those objectives are similar to those obtained in single
objective optimization.

The number of synthesis rules broken indicates that both
SPEA2 and NSGA-II generated samples with good results.
These MOEAs present distributions of results with fewer rules
broken compared to the other approaches evaluated.

The NSGA-III’s solutions presented gains over the direct
sampling of the VAE latent space in all but one of the evaluated
metrics, the number of synthesis rules broken to which both
have similar results. When compared to the other two MOEAs,
NSGA-III had a worst performance in the optimisation of
solubility and synthesis. Such result highlights the conflicting



nature of optimisation objectives, reinforcing the need for
multi-objective optimisations in protein design.

Fig. 7. Comparison of the number of synthesis rules broken between the
MOEAs and the previously obtained results.

To analyse the results regarding the number of solubility
rules broken, we performed a comparison in the same fashion
as the previous one (Figure 8). NSGA-II and SPEA2 present,
once again, good results. The majority of the sequences break
only 2 rules of solubility, with a few outliers presenting 3
rules broken. The algorithm NSGA-III in its MOOP obtained
improvements over the case of generating sequences with VAE
and without any EA. The IQR value is the same, but the
median value stands at 2 solubility rules broken as opposed
to the 3 in the samples generated without an EA in the
optimisation.

Fig. 8. Comparison of the number of solubility rules broken between the
MOEAs and the previously obtained results.

We compared the results obtained by the MOOP using

NSGA-III regarding the maximisation of the HMM score
with the distributions from the raw dataset and the ones from
direct sampling using (Figure 9). The results demonstrate that
the generative process using NSGA-III in the optimisation
presents an improvement in the overall HMM scores compared
to the distribution of the samples generated without applying
an EA in the optimisation. These results indicate that the
optimisation goal of maximising the HMM score might lead to
a better comprehension of the distribution used in the training
set.

Fig. 9. Comparison of the HMM score between the NSGA-III and the
previously obtained results.

C. Discussion

The objective of this work was to construct a generative
process capable of generating novel proteins with desired
properties using a VAE model and EAs. The optimisation ob-
jectives for luxA proteins generation were defined in the basis
of the review of the state-of-the-art and literature. However,
alternative optimisation goals may be added, such as protein-
protein docking in the case of antibodies design.

The state-of-the-art review did not reveal any benchmarks
for the optimisation problems in the computational generation
of novel protein sequences with desirable properties. Since an
approach like the one developed in this work was not found
in any of the literature reviewed, the optimisation problems
were defined according to the literature on protein design,
specifically regarding protein sequence manipulation.

The generative process resulted in distributions consistently
different from the ones observed in the original datasets. The
protein designs guided by EAs optimisation resulted in better
solutions than those collected by direct sampling. Furthermore,
the MOEAs allow the selection of proteins that show evidence
of having the best set of properties.

As previously mentioned, the model used in this work was
the one with the best results in the work of Hawkins-Hooker et
al. [13]. In their assessment, the authors refer that most of the



proteins experimentally tested showcased high luminescence
levels (a key feature of the proteins in the training dataset).
The evaluations performed in our endeavour indicated that,
in terms of the evaluation functions used, the model alone
could not capture the distributions observed in the original
dataset. The use of EAs, introduced in our work, offers a way
to mitigate this problem and might result in an even higher
success rate of the generated proteins.

D. Protein Structure Prediction

To infer the protein structure generated through our
designed experiments, we first selected the best-generated
sample from the case study using the NSGA-III. The chosen
protein had the highest cumulative score resulting from
subtracting the number of synthesis rules broken from the
HMM score. The resulting sequence was:

MKFSLFAEARNSQTHRFDKLVEQARLAEERDFTTVWTPEHHSHEFSPSPMVT

LAHLAAKTERVALGTAGIVAPLHPIRVAKEIAVLDHLSNGRAVVGFARGWTQ

TEFAAFGVASRQAGLREIVDAIQKLWADDTAEHVGQYVKIPKATAVPKPIQK

PHPPMWVAQGGPENFKWAAEHGAGFMVTLLGGLEEIEKRIKEFREAFDHEDP

KVAVLRHTHVTNKDGVRNVAIQFKREFSVQKNRRAEIAELADFTDESFHKRG

VFGSVDEVVDRLERLDGVDEIALDAKEVLDGLALLQEQHRAYFRA

In this case, the selected sample presents 57 synthesis rules
broken and an HMM score of 156,3. After selecting the protein
sequence, we leveraged the AlphaFold capabilities to infer the
protein’s structure. The AlphaFold software is a computational
tool developed by DeepMind [32] that predicts a protein’s 3D
structure from its amino acid sequence [33] [34].

The LDDT measures the percentage of correctly predicted
interatomic distances and the pLDDT indicates the confidence
in the local structure. The pLDDT metric ranges from 0 to
100 (Figure 10), and the presented predicted structure (Figure
11) showcases the levels of metrics in a colour-coded fashion.

Fig. 10. Predicted per-residue estimate confidence on a scale from 0 to 100.

The results showcase a majority of the residues scored
with very high or confident levels of confidence according to
pLDDT values.

Fig. 11. AlphaFold’s predicted structure of the selected protein sequence.

To determine AlphaFold’s confidence in the relative posi-
tions, another metric must be computed, the predicted aligned
error (Figure 12).

Fig. 12. AlphaFold’s predicted aligned error of the selected protein sequence.

The higher the error associated with the residue’s position,
the more faded tone of green. The results of the predicted
aligned error indicate, as in the case of the pLDDT metric, a
high level of confidence in the relative predicted positions of
each residue, with some shallow levels of confidence on some
residues.

E. Similarity Search

The protein sequence selected for the structure prediction
task was put through a similarity search using the protein
Blast tool. The best result is of a LLM class flavin-dependent
oxidoreductase with a total and maximum scores of 200, a
query cover of 94% and an E value of 4e−58 and a per cent
identity of 41.28%.



IV. CONCLUSION

Solubility, synthesis, stability, and aggregation of proteins
are vital aspects of protein design. We demonstrated that it
is possible to optimise these properties by combining deep
generative models and evolutionary computation to generate
and explore latent spaces of protein embeddings.

The developed work sets a foundation for future endeavours
opening a path to a wide range of further applications to this
process. There are various ways to improve the obtained results
by, for example, tuning the implemented architectures using
transfer learning, using new generative model architectures
(e.g., Geometric Convolutional VAE), or designing further
case studies using different EAs and objective functions (e.g.
docking). In particular, new biological problems may be ad-
dressed by exploring the presented architecture, for example,
the design of antibodies.
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