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We obtain an analytical expression for the linewidth of the 1s-exciton as a function of temperature
in transition metal dichalcogenides. The total linewidth, as function of temperature, is dominated by
three contributions: (i) the radiative decay (essentially temperature independent); (ii) the phonon-
induced intravalley scattering; (iii) the phonon-induced intervalley scattering. Our approach uses
a variational Ansatz to solve the Wannier equation allowing for an analytical treatment of the
excitonic problem, including rates of the decay dynamics. Our results are in good agreement with
experimental data already present in the literature and can be used to readily predict the value of
the total linewidth at any temperature in the broad class of excitonic two-dimensional materials.

The optical response of transition metal
dichalcogenides (TMDs) is characterized by strong
absorption peaks due to excitons formed at the K
and K′ points of the Brillouin zone [1, 2]. The peaks
commonly seen in absorption and photoluminescence
spectra are associated with the so called bright excitons,
in particular to the s−states (with vanishing angular
momentum) of the A and B series [1, 3]. The existence
of two distinct series of resonances comes about because
of the strong spin-orbit coupling which breaks the spin
degeneracy in these systems [4]. The effect of spin-orbit
coupling is particularly noticeable in the valence band,
where in the K valley the band with positive spin
polarization is shifted downwards relatively to the band
with opposite spin. In the conduction band this effect is
barely perceptible in MoS2, but plays a significant role
in WS2 and WSe2 [5].

Besides the optically active exciton states, TMDs
present a plethora of dark excitons [6–8], corresponding
to exciton states which may be formed, but cannot be
directly accessed optically. Examples of these are the
p−states [9], the spin-opposed excitons [10], and the
momentum dark excitons [11]. The first ones cannot
be directly activated with optical excitation due to
angular momentum conservation, however they can be
accessed in a pump-probe set-up where the pump laser
populates the 1s exciton state, and the probe induces
transitions between the 1s and the p−states [12]. The
spin-opposed excitons are composed of an electron and a
hole with opposite spins, and are not optically accessible
since the electron-light interaction does not produce the
required spin flip. At last, the momentum dark states
are composed of an electron and a hole with equal
spin, but separated in different momentum points of the
Brillouin zone. Due to the small momentum carried by
photons, these states are not optically active, however,

the momentum mismatch may be overcome and they may
be accessed due to additional coupling with phonons [13].

The rich optical properties of TMDs make them
some of the most prominent materials in the area
of nanodevices, with applications ranging from
photodetectors, to biosensors and valleytronics [14–
18]. The application of TMDs in devices at finite
temperature is limited by the linewidth of the 1s-
excitonic line [19]. Therefore, an understanding of how
this linewidth depends both on temperature and on
the dielectric media surrounding the two-dimensional
(2D) material is key to a complete description of device
performance based on this class of materials. The effect
of temperature is mostly dominated by carrier-phonon
scattering, and understanding the details of how this
scattering mechanism determines the linewidth is
essential. Even though this process has already been
studied both theoretically and experimentally [7, 11],
a simple analytical framework giving insight into the
underlying physics is lacking and is necessary.

In this Letter, we derive analytical expressions
describing the linewidth of the lowest-lying excitonic
resonance in TMDs at finite temperature. We account for
the contributions of radiative recombination and exciton-
phonon scattering, both intra and intervalley processes.
In order to describe these processes we obtain the exciton
energies and wave functions from the solution of the
Wannier equation using a variational Ansatz. Although
the methods and concepts used in this Letter are not
entirely new, the combination of all of them together
to give an unified analytically picture of the phonon
linewidth in TMDs is the major novelty of this work.

The starting point of our discussion is the introduction
of the exciton creation operator. This bosonic operator
describes the creation of an exciton with the electron in
the point ξe and the hole in the point ξh of the Brillouin
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zone, with center of mass momentum Q (measured
relatively to the ξe and ξh) and quantum numbers ν
(containing both the principal and angular quantum
numbers). This operator is composed of a superposition
of electronic operators that annihilate an electron in the
valence band and create one in the conduction band,
weighted with the Fourier transform of the exciton wave
function ψν(k). Then, we assume that the Hamiltonian
(containing kinetic and potential energy contributions)
is diagonal in this operator, with the eigenvalue Eν,Q =
Eg + Eν + ~2Q2/2M , where Eg is the band gap, Eν
the exciton binding energy, and ~2Q2/2M the kinetic
energy of the center of mass. Afterwards we compute
the commutator of the Hamiltonian with the exciton
operator using its representation in terms of exciton
operators and in terms of electron operators. Demanding
the equality of both results, the Bethe–Salpeter equation
(BSE) follows, whose solution yields the binding energies
and wave functions of the excitonic problem. The
interaction potential in the electronic Hamiltonian is
treated within the Rytova–Keldysh formalism [20–22],
which crucially accounts for the non–local screening in
the TMD monolayer. Fourier transforming the BSE (see
SM) we find the Wannier equation [23], a differential
equation in real space reading

− ~2

2µξeξh
∇2ψν(r) + VRK(r)ψν(r) = Eνψν(r), (1)

where µξeξh is the reduced mass of the electron-hole pair,
with the former and the latter located in the ξe and ξh
valley, respectively. In Eq. (1), VRK(r) is the Rytova–
Keldysh potential and ψν(r) the exciton wave function in
real space. The Rytova–Keldysh potential follows from
the solution of the Poisson equation for a point charge in
a thin dielectric and reads [20, 21]

VRK(r) = − π

2r0

[
H0

(
κr

r0

)
− Y0

(
κr

r0

)]
, (2)

where κ is the mean dielectric constant of the media
above and bellow the TMD layer, and r0 is a material
parameter which can be macroscopically associated with
a screening length, and is microscopically related with the
polarizability of the monolayer; H0 is the Struve function
and Y0 the Bessel function of the second kind, both of
order zero. The difference between momentum bright
and momentum dark excitons lies solely on the value of
the reduced mass, which should be computed with the
adequate effective masses. To obtain the location of the
exciton states the structure of the electronic bands must
also be know. In our study we used the band parameters
found from ab initio calculations in Ref. 5. When we
compare our results (see SM) with others found in the
literature, either by numerically solving the BSE [6], or
using density-functional theory (DFT) calculations [24],
a good agreement is found. We stress that the goal of

our approach is not so much the quantitative accuracy,
but rather the possibility of obtaining qualitative and
physically transparent results using simpler techniques
which can be explored analytically.

While the direct solution of the BSE requires a
delicate numerical diagonalization, Eq. (1) can be solved
with a variational approach [25], which allows us to
develop an analytical framework gaining insight into
the underlying physics. Different variational Ansätze
can be employed to solve this problem; here we opt to
use the simplest one, a single evanescent exponential
ψ1s(r) =

√
2/(πa2)e−r/a, similar to the wave function

of the Hydrogen atom. The value of a is determined
from the minimization of the energy in Eq. (1). The
comparison of this variational approach with the exact
diagonalization of the Hamiltonian [26] is given in the
SM. Following the scaling procedure to a dimensionless
representation proposed in Ref. 27, we can conveniently
describe the excitonic problem with a single effective
parameter r̃0 = r0µ/κ

2 instead of the three independent
ones we currently have. Noting that in the usual TMDs
one finds r0µ = 30 − 40 atomic units [27, 28], and
performing a power-law fit (including a deviation term)
of a vs r̃0 in the region of interest of the parameter space
(with κ ∈ [1, 5]), we realize that a is accurately described
by (see SM)

a

aB
w

κ

µ/m0
a0 +

√
r0/aB
µ/m0

, (3)

where a0 = 0.4 is determined by the fitting process, m0

is the bare electron mass, and aB is the Bohr radius.
If the fit had been performed in a region corresponding
to smaller values of r0, and consequently smaller r̃0, the
value of a0 would become ever closer to 0.5, just like
in the 2D Hydrogen atom, and in agreement with the
limiting case limr0→0 VRK(r) = VCoulomb(r). The fact
that in the relevant region of parameters for TMDs the
value of a0 differs from 0.5 reflects the non-Hydrogenic
nature of excitons in these 2D systems; the term

√
r0/µ

further enhances this difference.
Now that the equation governing the excitonic problem

was found, and a simple variational approach of solving
it was introduced, we can move on to the computation of
the linewidth of the 1s−exciton in TMDs. Starting with
the radiative linewidth [29], and using Fermi’s golden
rule, we compute the optical matrix element 〈GS; 1q|E ·
r|1s,Q = 0〉 in the dipole approximation, where the final
state corresponds to the excitonic vacuum, |GS〉, with
an extra photon with momentum q in the light field.
Quantizing E·r in terms of photon and exciton operators,
and carrying out the calculation (see SM) one finds

γrad =
8π

κ
α (~vF )

2 Eg + Eν

(Eτ,szg )
2 ψ

2
ν(r = 0), (4)

where α ∼ 1/137 is the fine-structure constant, vF is
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the Fermi velocity (which may be obtained from first-
principles calculations), τ = ±1 and sz = ±1 are the
valley (K/K’) and spin (up/down) indices respectively,
and Eτ,szg is the noninteracting band gap, which is spin
and valley dependent and is obtained from first-principles
calculations [5]; the dependence of ψ2

ν(r = 0) on κ, µ
and r0 follows from Eq. (3). From Eq. (4) we expect
the radiative linewidth to increase as the material’s band
gap widens, and to decrease approximately according
to a power law as the surrounding dielectric screening
increases. Although our expression is independent of the
temperature, the radiative linewidth may vary with it
as a result of modifications in the band structure. This,
however, is beyond the scope of the present work.For the
most common TMDs we find γrad ∼ 5 meV, in agreement
with other independent results [29, 30].

In order to describe the linewidth originating
from exciton-phonon coupling one must consider
the mechanisms responsible for phonon-driven carrier
scattering. In the present discussion we will restrict
ourselves to the deformation potential framework [31–
34], which is expected to give the main contribution
for exciton-phonon scattering in TMDs. For intravalley
acoustic scattering we consider a first-order deformation
potential and a linear energy dispersion, that is, we take
a Debye approach. For intravalley optical scattering
and all intervalley processes we consider a zero-order
deformation potential and constant dispersion relations,
that is, an Einstein approach. The values of the
deformation potentials and the phonon energies are
obtained from DFT calculations, as the ones of Ref. 34.
The exciton-phonon coupling is defined as the individual
carrier-phonon coupling times the overlap of the wave
functions of the initial and final exciton states in
momentum space (see SM). Since in intravalley processes
the transferred momentum is small and negligible, this
sum effectively corresponds to the overlap of wave
functions near the same point in the Brillouin zone, and
may be approximated to 1; thus, the exciton-phonon
coupling element directly follows from the individual
carrier-phonon couplings (see SM).

To compute the intravalley scattering contribution to
the linewidth we once again turn to Fermi’s golden
rule, and for simplicity assume that intravalley scattering
conserves the quantum numbers of the exciton (a
reasonable assumption considering the large energy
required in, e.g. the 1s → 2s transition). Focusing
our study on the optically bright states, Q = 0,
only processes involving scattering through absorption
of phonons are possible. Applying Fermi’s golden rule
we find

γintra, ac ≈
∣∣Ξ(e) − Ξ(h)

∣∣2
ρv2ac

M

~2
kBT, (5a)
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FIG. 1. Intravalley scattering induced linewidth for four
different TMDs. The solid lines represent the contribution
from acoustic phonons, and the dashed lines represent the
combined contribution of acoustic and optical phonons. The
parameters of Ref. 34 were used.

and

γintra, op = M

∣∣D0,(e) −D0,(h)
∣∣2

2ρ~ωop
n(~ωop), (5b)

for the intravalley process due both to acoustic (ac) and
optical (op) phonons. Here Ξ(e/h) and D0,(e/h) are the
first-order acoustic deformation potential and the zero-
order optical deformation potential for electron/hole-
phonon intravalley scattering, n(~ω) is the Bose-Einstein
distribution, vac is the speed of sound in the TMD,
~ωop is the optical phonon energy, M = me + mh, ρ
is the mass density of the monolayer [35], and kB is the
Boltzmann’s constant. As expected [33, 34] we observe
that the intravalley linewidth from acoustic phonons
increases linearly with temperature. The contribution
from optical phonons presents the same temperature
dependence as the Bose–Einstein distribution function.
From DFT calculations one finds that the values of
the deformation potential make scattering with acoustic
phonons the dominant mechanism of the two [34], and
thus it is expected that the total intravalley scattering
linewidth increases linearly with temperature with a
small exponential correction. Also, we note that both
contributions are insensitive to dielectric screening from
the environment. In Fig. 1 we depict the intravalley
linewidth as a function of temperature for MoS2, MoSe2,
WS2 and WSe2. We observe that this linewidth takes
higher values for molybdenum (Mo) based TMDs than
for tungsten (W) based ones, because of the higher
effective masses and deformation potentials of the former.
Moreover, TMDs with the selenium (Se) are associated
with larger broadenings than the ones with sulfur (S);
this is due to the higher values of ρvac and ~ωop,
suppressing γintra, ac and γintra, op, respectively, in TMDs
with sulfur.

Now, let us consider the contribution from intervalley
scattering to the temperature dependence of the
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linewidth. For simplicity we will consider that only
the electron is scattered, going from the K valley to
other points of the Brillouin zone, while the hole remains
in the K valley. This approximation is not expected
to have a significant impact on the final result, since
the latter is a less efficient scattering process due to
the large momentum involved and the smaller values
of the deformation potentials [34]. The efficiency of
intervalley scattering is directly related to the electronic
band structure, and the relative position of the exciton
energy levels in different points of the Brillouin zone.
In molybdenum based TMDs, where the lowest lying
exciton state is located at the K valley, we do not expect
intervalley processes to play a significant role, since the
energetically more favorable scattering event K → K′ is
rather inefficient. However, the situation is significantly
different in tungsten based TMDs, where the conduction
band presents a satellite minimum halfway along the path
from the vertices of the Brillouin zone to its center, the Λ
valley. In this region the effective masses are larger than
in the K valley, leading to more tightly bound excitons.
As a consequence, in these TMDs a momentum dark
state at the Λ valley appears bellow the optically active
exciton. Since scattering events of the type K → Λ
are energetically favorable, and the required momentum
transfer is half of that required in K→ K′ processes, it is
expected that intervalley scattering offers a significant
contribution to the total linewidth in tungsten based
TMDs.

To compute the intervalley linewidth we return
to Fermi’s golden rule, modifying the interaction
Hamiltonian to explicitly include the valley information
of the carriers. The explicit form of the exciton-phonon
coupling for intervalley scattering is given in the SM. Just
as in the case of intravalley scattering events, the exciton-
phonon coupling is given by the product of the carrier-
phonon coupling with a sum in momentum space of the
wave functions of the initial and final exciton states,
which now refer to separated points in the Brillouin zone
due to the nature of intervalley scattering. This time
around, due to the large transferred momentum this sum
cannot be simply approximated to 1, and needs to be
explicitly computed. Since we have mapped the problem
of both bright and dark excitons to the Wannier equation,
which can be solved with a simple variational Ansatz,
the sum in momentum space can still be computed
analytically (see SM). Thus, the nonradiative decay rate
associated with the intervalley scattering of an electron
from the K to the ξf valley, with the hole remaining in
the K valley (scattering of a KK exciton to a Kξf one),

reads:

γinter,Kξf ≈
∑
λ,±

w

∣∣∣D0,λ,(e)
K→ξf

∣∣∣2
ρ~ωj,λ

8Mξf a
2
Ka

2
ξf

(
aK + aξf

)2[(
aK + aξf

)2
+ β2

ξf
a2Ka

2
ξf
j2
]3

×
[

1

2
± 1

2
+ n(~ωj,λ)

]
Θ
(
−∆Kξf ∓ ~ωj,λ

)
, (6)

where the sums are over the phonon modes λ (acoustic
and optical), and the emission/absorption (+/−) of
phonons and w is the degeneracy factor of the K → ξf
scattering event; j is the momentum given by K − ξf ,
Mξf = me,ξf +mh,K, is the translational mass of the Kξf
exciton, and βξf = mh,K/Mξf . The Heaviside function,
Θ(x), sets the threshold for energetically allowed

scattering processes, with ∆Kξf = ∆CB
Kξf

+ ∆binding
Kξf

the
energy difference of the conduction band edge at the K
and ξf valleys (∆CB

Kξf
) plus the difference of the binding

energy of the KK and Kξf excitons (∆binding
Kξf

); aξf (aK)
is the variational parameter associated with the wave
function of the Kξf (KK) exciton. The dependence of
a with the physical parameters µξe,ξh , κ and r0 is given
by Eq. (3).

The appearance of the transferred momentum j in the
denominator of Eq. (6)contributes to the suppression of
intervalley processes such as K → K′ when compared
to K → Λ. This is further enhanced by the

deformation potential D
0,λ,(e)
K→ξf , which is approximately

7 times larger in K → Λ processes than in K→ K′.
Considering that in Eq. (6) γinter is proportional to
the square of the deformation potential, it is clear
that the contribution from K → Λ is by far the
dominant one. Moreover, transitions involving acoustic
phonons have larger deformation potentials and thus
are more relevant than the ones assisted by optical
phonons. If ∆Kξf < 0, which is more likely to occur
in tungsten based TMDs due to the structure of its
conduction band, then intervalley scattering is highly
favorable and can occur via absorption or emission of
phonons. On the other hand, if ∆Kξf > 0 then
only absorption scattering channels are available, and
even those may be suppressed depending on how ∆Kξf

compares with the phonon energies. Contrary to
intravalley scattering, the contribution from intervalley
processes depends on the dielectric screening from the
environment, owning to its dependence on the variational
parameter a. Analyzing Eq. (6) combined with Eq. (3)
we predict a decrease of linewidth with increasing
dielectric screening roughly following a power law of
sixth order. Furthermore, as the dielectric screening
increases, the binding energies decrease, and the KΛ
excitons gets closer to the optically bright one, leading to
less energetically favorable intervalley processes, which
results in the suppression of scattering channels and
consequent decrease of the linewidth. This effect is
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depicted in Fig. 2, where we observe a sudden decrease
in the nonradiative linewidth due to the suppression
of the emission scattering channels. For higher values
of the substrate dielectric constant even the absorption
scattering channels could be suppressed, however for such
values of screening the intervalley linewidth becomes
almost insignificant even before the suppression of the
channel. Band gap engineering, and changes in the
effective masses may also be used to enhance (or
suppress) different scattering channels.
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FIG. 2. (Top) Nonradiative linewidth as a function of
the dielectric screening at T = 300 K. (Bottom) Different
contributions to the total linewidth of WS2 as a function of
temperature. Contributions labeled by KK refer to intravalley
scattering while the others refer to intervalley contributions.
The experimental points were taken from Ref. 11, while
parameters of Refs. 5 and 34 were used.

Now that all the necessary analytical expressions were
derived, we study the specific case of the variation of
the 1s−exciton linewidth in WS2 with temperature, and
compare our theoretical prediction with the experimental
data of Ref. 11; in Fig. 2 a good agreement between
theory and experiment is seen. We note that the total
linewidth is composed of a constant radiative term of
approximately 5 meV, combined with the almost linear
contribution from intravalley scattering (cf. Fig. 1),
and an exponentially increasing intervalley term. These
contributions amount to a total linewidth at room
temperature of approximately 25 meV. Moreover, the
intervalley contributions stems almost entirely from
K → Λ events, as a consequence of the low efficiency
of the K → K′ scattering events (something similar
would happen with the K→ Γ hole scattering). In the
low temperature region we observe that, contrary to
the intravalley linewidth, the intervalley term is finite

due to the efficient process of scattering with phonon
emission. As the temperature increases so do the
intra and intervalley contributions, presenting similar
magnitudes at room temperature. A similar calculation
for WSe2 yields an identical result, with a slightly
larger linewidth, as a consequence of the more favorable
intravalley scattering processes (cf. Fig. 1). For MoS2

and MoSe2, where intervalley processes are less efficient
the total linewidth is basically given by the radiative and
intravalley contributions.

In summary, solving the Wannier equation with a
variational Ansatz we obtained the binding energies and
wave functions of bright and dark excitons. Then,
employing Fermi’s golden, rule we derived analytical
expressions describing the radiative, intravalley and
intervalley contributions to the total linewidth of the
lowest-lying exciton resonance in different TMDs at
finite temperature. Our theoretical prediction is in
good agreement with experimental data. The derived
expressions, combined with parameters computed from
DFT calculations, allow for easily accessible estimates
of the different contributions for the linewidth at any
temperature value, and give insight on how these
quantities depend on the material and environment
parameters.
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