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Abstract. We prove that special clean decompositions of a given element of a ring are in one-to-one
correspondence with the set of solutions of a simple equation in a corner ring. We then derive “constructive”
proofs that in many rings, regular elements are special clean by solving this equation in specific cases.
Other applications, such as uniqueness of decompositions, are given. Many examples of special clean
decompositions of 2-2 matrices found by this methodology are also presented.

1. Introduction

In this paper, all rings are assumed unital, R denotes a (unital) ring, J(R) its Jacobson radical, E(R) its set
of idempotents, and U(R) its set of units. If e ∈ E(R), then ē = 1 − e denotes its complementary idempotent.
We will use (Peirce) corner rings eRe (e ∈ E(R)) and the Peirce decomposition, which exhibits R as a Morita
context ring (given by the two rings eRe and ēRē, the bimodules eRē and ēRe, and multiplication as bimodule
homomorphisms). Given e ∈ E(R) the Peirce decomposition (equivalently the Peirce isomorphism) relative

to the idempotent e is given by the canonical isomorphism between the ring R and the matrix ring
(
eRe eRē
ēRe ēRē

)
.

The isomorphism sends an element a = eae︸︷︷︸
a1

+ eaē︸︷︷︸
a2

+ ēae︸︷︷︸
a3

+ ēaē︸︷︷︸
a4

to A =

(
a1 a2
a3 a4

)
(We will use upper

letters for images under the isomorphism, a.k.a elements written in matrix form).
We say a is (von Neumann) regular (resp. unit-regular) if a ∈ aRa (resp. a ∈ aU(R)a). By a result of Hartwig

and Luh [16], a is unit-regular if and only if it is the product of an idempotent and a unit. A particular
solution to axa = a is called a Von Neumann (or inner) inverse of a. A solution to xax = a is called a weak (or
outer) inverse. Finally, an element that satisfies axa = a and xax = x is called an inverse (or reflexive inverse,
or relative inverse) of a. A commuting inverse, if it exists, is unique and denoted by a#. It is the the unique
solution to:

ax = xa, axa = a, xax = x.
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It is usually called the group inverse of a. We let R# denote the set of group invertible elements. These are
exactly the strongly regular elements a such that a ∈ a2R ∩ Ra2.

Finally, we recall the following results about rings with stable range 1 and unit-regular rings.
A ring R has stable range 1 (and we note sr(R) = 1) if for all a, b ∈ R, aR + bR = R implies that (a + bc)R = R

for some c ∈ R. Vaserstein proved in [33] that the property is actually left-right symmetric, and in [34] that
right invertibility implies left invertibility in stable range 1 rings. Thus we will rather use the implication:
for all a, b ∈ R, ax + by ∈ U(R) for some x, y ∈ R implies that a + bc ∈ U(R) for some c ∈ R. In [21] Definition
3.1, this definition is localized as follows: an element a ∈ R has right (resp. left) stable range 1, and we note
srr(a) = 1 (resp. srl(a) = 1) if for all b ∈ R, ax + by ∈ U(R) (for some x, y ∈ R) implies that a + bc ∈ U(R) (for
some c ∈ R) (resp. xa + yb ∈ U(R) implies that a + cb ∈ U(R) for some c ∈ R).

By [34] Theorem 2.8, the property of having stable range 1 is inherited by corner rings (and the proof is
ring theoretical and constructive). So does the property of being unit-regular by [17], Proposition 8: Corner
rings of a unit-regular rings are unit-regular. A proof based on module cancellation is due to Ehrlich[12]
and Handelman[15]. The first ring theoritical (and elementwise) proof is probably due to Kaplansky, as
explained in [17]. The link between unit-regularity in a ring and unit-regularity in a corner ring is then
precisely studied in [26].

Many classes of rings have stable range 1: for instance, semi-local rings, right self-injective rings that
are Dedekind finite or 0-dimensional commutative rings have stable range 1. Also unit-regular rings have
stable range 1. More precisely, a result of Fuchs[13] and Kaplansky[19] (see also [14] Proposition 4.12)
characterizes unit-regular rings as regular rings with stable range 1. Once again, an elementwise version
is given in [21], where the authors prove (Theorem 3.5) by purely ring theoretical arguments that a regular
element a has left (resp. right) stable range 1 if and only if it is unit-regular.

In [4], Camillo and Khurana proved that unit-regular rings are clean. In [20] the authors give an
example of a unit-regular element that was not clean, thus showing that the link between the two notions
was intricate (on the other hand, clean elements need not be regular). Many other examples were then
given by Wu et. al. [37].

Actually, Camillo and Khuruna proved in [4] that elements of a unit-regular ring hold a stronger form of
cleanness called special cleanness in [1]. Special cleanness is indeed both a refinement of cleanness but also
of unit-regularity, as shown in [28] Theorem 4.1: a is special clean with decomposition a = ē+u, aR∩ ēR = {0}
iff it satisfies a = ē + u = au−1a.

The paper is organized as follows. Section 2 is devoted the our main theorem, that gives an equational
characterization of special cleanness for unit-regular elements. Then local (Section 3) and global conditions
(Section 4) are given wich ensure special cleanness of regular elements. We then consider unique special
decompositions in Section 5. In Section 6, we study further the class of rings with skew corner rings in
the Jacoson radical (eRē ⊂ J(R)(∀e ∈ E(R))). While in Section 4 it was proved that regular elements in such
rings are special clean, we prove that they are indeed strongly regular. Finally Section 7 is devoted to other
examples, notably of unimodular row matrices.

2. The main theorem: constructing all special clean decompostions of unit-regular elements

Theorem 2.1. Let a ∈ R be unit-regular with inverse v−1
∈ U(R). Pose f = av−1 and let v have Peirce decomposition

V =

(
v1 v2
v3 v4

)
. Define function ϕ : f R f̄ × f̄ R f → f̄ R f̄ by ϕ : (x, y) 7→ yv1x + yv2 + v3x + v4.

Then the set of special clean decompositions of a is in one-to-one correspondence with the set of solutions to ϕ(x, y) ∈
U( f̄ R f̄ ). Precisely, any invertible u such that a − u is idempotent and au−1a = a has Peirce decomposition

U−1 = V−1

(
1 −x
−y −ϕ(x, y) + yx

)
= V−1

(
1 0
y 1

) (
1 0
0 ϕ(x, y)

) (
1 x
0 1

)
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with ϕ(x, y) ∈ U( f̄ R f̄ ), and conversely.
In this case, the idempotent ē = a − u has the form

Ē =

(
0 x
0 1

) (
0 0
0 ϕ(x, y)−1

) (
0 0
y 1

)
V.

Proof. Our methodoly goes as follows.

1. First step: Construct from v all unit-inverses of a;
2. Second step: Among these unit-inverses u−1, find those such that a − u is idempotent (if any).

So let a ∈ R be unit-regular with inverse v−1, and pose f = av−1. By a result of Hartwig and Luh [16], the set
UIa of unit-inverses of a has the following form:

UIa = {u−1 = v−1( f + k − f k f )|k ∈ R, f + k − f k f is invertible}.

In matrix form, we get that U−1 = V−1

(
1 −x
−y z

)
, where by the Schur complement theorem z − yx = ζ is a

unit in the corner ring f̄ R f̄ . Hence equivalently, unit-inverses are of the form U−1 = V−1

(
1 −x
−y ζ + yx

)
with

ζ a unit (in f̄ R f̄ ). So let U−1 be of this form. Then

U =

(
1 −x
−y ζ + yx

)−1

V

=

(
1 + xζ−1y +xζ−1

ζ−1y ζ−1

) (
v1 v2
v3 v4

)
=

(
v1 + xζ−1yv1 + xζ−1v3 v2 + xζ−1yv2 + xζ−1v4

ζ−1yv1 + ζ−1v3 ζ−1yv2 + ζ−1v4

)
As before f a = a = f v gives A =

(
v1 v2
0 0

)
. Pose ē = a − u. Then

Ē =

(
−xζ−1yv1 − xζ−1v3 −xζ−1yv2 − xζ−1v4
−ζ−1yv1 − ζ−1v3 −ζ−1yv2 − ζ−1v4

)
.

Put P =

(
0 x
0 1

)
, Z =

(
0 0
0 −ζ−1

)
, Q =

(
0 0

yv1 + v3 yv2 + v4

)
=

(
0 0
y 1

)
V and Z# =

(
0 0
0 −ζ

)
.

Then Ē = PZQ and QP =

(
0 0
0 ϕ(x, y)

)
, so that Ē2

− Ē = (PZQ)2
− PZQ = P(ZQPZ − Z)Q = PZ(QP − Z#)ZQ.

Let M =

(
1 −x
0 1

)
. Then MP =

(
0 0
0 1

)
and QV−1 =

(
∗ ∗

0 1

)
. Thus Ē2

− Ē = 0 iff MPZ(QP − Z#)ZQV−1 = 0

since M and V are invertible, which in turn is equivalent with(
0 0
0 −ζ−1ϕ(x, y) − 1

) (
∗ ∗

0 1

)
=

(
0 0
0 −ζ−1ϕ(x, y) − 1

)
= 0.

Finally ϕ(x, y) = −ζ is a necessary and sufficient condition for ē = a − u to be idempotent, or equivalently
since u−1 is an inner inverse of a, for a to be special clean with a = ē + u = au−1a.

Function ϕ can also be expressed as the matrix product ϕ(x, y) =
[
y 1

]
V

[
x
1

]
, or equivalently ϕ(x, y) =

(y + f̄ )v(x + f̄ ) (for x ∈ f R f̄ and y ∈ f̄ R f ).



X. Mary, P. Patrı́cio / Filomat 34:14 (2020), 4847–4860 4850

Example 2.2. Let D be a division ring and A ∈ M2(D) of rank 1. Then A can be decomposed in Smith’s normal form
as

A = P
(
α 0
0 0

)
Q = P

((
α 0
0 0

)
QP

)
P−1

for some invertible P,Q and non-zero α ∈ D. Thus A is similar to the matrix A′ =

(
α 0
0 0

)
QP which has the form

A′ =

(
a b
0 0

)
(for some a, b ∈ D) and special clean decompositions of A are in one-to-one correspondence with special

clean decompositions of A′. We now find the special clean decompositions of A′.

Asssume first that a , 0 and pose V−1 =

(
a−1

−a−1b
0 1

)
. Then A′V−1A′ = A′ and F = A′V−1 =

(
1 0
0 0

)
. By Theorem

2.1, the special clean decompositions of A′ (hence of A) are in one-to-correspondence with D2
\Ha,b, where Ha,b is the

hyperbola of equation yax + yb + 1 = 0 (since V =

(
a b
0 1

)
and any non-zero element is a unit in D).

Second, assume that a = 0. Then b , 0 since rank(A) = 1 and posing V−1 =

(
0 1

b−1 0

)
then again F = A′V−1 =

(
1 0
0 0

)
.

Once again by Theorem 2.1, the special clean decompositions of A are in one-to-correspondence with D2
\Lb, where Lb

is the line of equation yb + x = 0 (V =

(
0 b
1 0

)
).

3. Sufficiency for special cleanness: local conditions

Unless otherwise stated, in the following a ∈ R is a given unit-regular element with unit inverse v−1,
f = av−1 and we use the notations of Theorem 2.1.

Our next two results build special clean decompositions from specific units in f̄ R f̄ (resp. f R f ). They
are direct consequences of Theorem 2.1.

Lemma 3.1. If yv2 + v4 (resp. v3x + v4) is a unit in f̄ R f̄ for some y ∈ f̄ R f (resp. x ∈ f R f̄ ), then a is special clean.

Proof. Consider the first case and assume that yv2 + v4 is a unit. Then ϕ(0, y) is a unit, and by Theorem 2.1
a is special clean. The second case is dual.

Lemma 3.2. Pose V−1 =

(
µ1 µ2
µ3 µ4

)
. If there exists y ∈ f̄ R f (resp. x ∈ f R f̄ ) such that µ1 − µ2y (resp. µ1 − xµ3) is a

unit in f R f , then a is special clean.

Proof. Assume that µ1 − µ2y is a unit (in f R f ) and pose Ỹ =

(
µ1 µ2
y 1

)
. Then Y/1 = µ1 − µ2y is the Schur

complement of 1 and is invertible, hence Ỹ is invertible. Thus ỸV =

(
1 0

yv1 + v3 yv2 + v4

)
is invertible, and

ỸV/1 = yv2 + v4 = ϕ(0, y) is invertible in f̄ R f̄ . Finally, as ϕ(0, y) is a unit, then by Theorem 2.1 a is special
clean.
The second case is dual.

Then we deduce:

Corollary 3.3. If srl(v4) = 1 in f̄ R f̄ (in particular if v4 is unit-regular in f̄ R f̄ ), then a is special clean.

Proof. Assume that srl(v4) = 1. As V−1V = I then µ3v2 + µ4v4 = f̄ . By left stable range 1, there exists t such
that tµ3v2 +v4 ∈ U( f̄ R f̄ ). Pose y = tµ3. Then yv2 +v4 is a unit in f̄ R f̄ and by Lemma 3.2 a is special clean.
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Corollary 3.4. If srr(µ4) = 1 in f R f (in particular if µ4 is unit-regular in f R f ), then a is special clean.

Proof. Assume that srr(µ4) = 1. As V−1V = I then µ1v1 + µ2v3 = f . By right stable range 1, there exists t
such that µ1 + µ2v3t ∈ U( f R f ). Pose y = −v3t. Then µ1 − µ2y is a unit in f R f and by Lemma 3.2 a is special
clean.

One may wonder what happens if one considers the element v1 instead of v4 or µ1. In this case, we are
able to prove special cleaness under the assumption of unit-regularity of v1 in f R f . But actually more can
be said in this specific case. Indeed, in [31] Theorem 3.14., the authors prove special cleanness of a under
the hypothesis that a is merely regular, but also unit-regular in a special corner ring. Moreover, in this case
they prove that a2 is also unit-regular. As an application of the main theorem, we recover Nielsen and Ster’s
result (in a slightly different form). Note that our proof relies heavily on their computations in the first step
(construction of the unit-inverse w−1). The case v1 unit-regular will then be deduced as a special case.

Proposition 3.5. Let a ∈ R be regular and b such that aba = a. Pose f = ab ∈ E(R). If the element a2b = f a f is
unit-regular in f R f , then a and a2 are special clean.

Proof. We use the Peirce decomposition relative to f . Let ν be a unit-inverse of a1 = a2b = f a f in f R f . Then
using the associativity of the product in(

1 − a1ν 0
0 0

) (
a1 a2
0 0

) (
b1 0
b3 0

)
gives (1 − a1ν) = (1 − a1ν)a2b3 = (1 − a1ν)a2b3(1 − a1ν). Pose

W−1 =

(
ν νa2
0 −1

) (
1 0

−b3(1 − a1ν) 1

) (
1 (1 − a1ν)a2
0 1

)
which is invertible as a product of units, then it holds that AW−1A = A and AW−1 = F. The special clean
equation relative to

W =

(
a1 a2

b3(ν−1
− a1) b3(1 − a1ν)a2 − 1

)
is

ϕ(x, y) = ya1x + ya2 + b3(ν−1
− a1)x + b3(1 − a1ν)a2 − 1.

Pose x = −νa2 and y = 0 (resp. y = −b3(1 − a1ν) and x = 0). Then ϕ(x, 0) = −1 (resp. ϕ(0, y) = −1) and a is
special clean.
We consider now a2 and pose c = bν. As (a2b)ν(a2b) = a2b then a2ca2 = a2bνa2 = a2bνa2ba = a2ba = a2 and a2

is regular. Pose z−1 = w−1(ν + f̄ ) which is invertible as a product of units. Then a2z−1a2 = a2w−1(ν + f̄ )a2 =
a2w−1νa2 = a fνa2 = a2bνa2ba = a2 since f̄ a = f̄ aba = f̄ f a = 0 and aw−1 = f = ab, and a2 is unit-regular with
unit-inverse z−1. In matrix form,

Z =

(
ν−1 0
0 1

)
W =

(
ν−1a1 ν−1a2

b3(ν−1
− a1) b3(1 − a1ν)a2 − 1

)
.

Since the last line is equal to the last line of W, z3x + z4 = w3x + w4 = −1 for x = −νa2, and a2 is special
clean.

In matrix form, A = Ē + U = AU−1A with

U =

(
a1 − νa2b3(ν−1

− a1) a2 − νa2 (b3(1 − a1ν)a2 − 1)
b3(ν−1

− a1) b3(1 − a1ν)a2 − 1

)
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and

Ē =

(
νa2b3(ν−1

− a1) νa2 (b3(1 − a1ν)a2 − 1)
−b3(ν−1

− a1) −b3(1 − a1ν)a2 + 1

)
.

Not every special clean element is of this form. Consider for instance the integer matrix A =

(
2 1
0 0

)
∈

M2(Z). Then a1 = 2 is not regular in Z but A is special clean. Indeed AV−1A = A for V−1 =

(
0 1
1 −2

)
,

AV−1 =

(
1 0
0 0

)
and since V =

(
2 1
1 0

)
the special clean equation isϕ(x, y) = 2yx+y+x ∈ U(R), which admits for

instance the solution x = −1, y = 0. Computations give U =

(
1 1
1 0

)
and AU−1A = A, A−U =

(
1 0
−1 0

)
∈ E(R)

as required.
If we start directly with a unit-regular with inverse v−1 as before, then letting b = v−1 and f = ab = av−1

we get a2b = f a f = a1 = v1 and we deduce directly:

Corollary 3.6. If v1 is unit-regular in f R f then a and a2 are special clean.

4. Sufficiency for special cleanness: global conditions

By its very definition, function ϕ relies on the two skew corner rings f R f̄ and f̄ R f , and the corner ring
f̄ R f̄ . Thereofore, its seems reasonable to expect that global conditions on the ring inherited by corner rings,
or global conditions on (skew) corner rings will help solve the equation ϕ(x, y) ∈ U( f̄ R f̄ ). This is indeed
the case, as shown below.

Unless otherwise stated, in the following a ∈ R is a given unit-regular element with unit inverse v−1,
f = av−1 and we use the notations of Theorem 2.1.

4.1. Special cleanness under stable range 1

A direct application of Corollaries 3.3 and 3.4 gives:

Corollary 4.1. Let a be unit-regular with unit-inverse v−1, and pose f = av−1. If sr( f̄ R f̄ ) = 1 or sr( f R f ) = 1 then
a is special clean.

As recorded in the introduction, the classical result of Camillo and Khuruna ([4] Theorem 1) states that a
ring is unit-regular if and only if it is special clean. Also, it is known ([14] Proposition 4.12) that unit-regular
ring have stable range 1. In [5], Theorem 3 Camillo and Yu proved that an exchange ring has stable range
1 if and only if its regular elements are unit-regular. Then Chen ([6], Theorem 2.1) extended the result and
proved that an exchange ring has stable range 1 if and only if its regular elements are special clean. And in
[35] Theorem 3.3, Wang et. al. gave an elementwise version of the statement: if a ∈ R is regular and sr(R) = 1
then a is special clean. But the proof of Camillo and Khuruna, as well as the ones of Chen and Wang et. al.,
highly rely on module operations such as internal cancellation. Here we deduce their equivalences from
our previous results that use only ring theoretical arguments.

Corollary 4.2. Let R be a ring with sr(R) = 1 and a ∈ R. Then a is regular iff it is special clean.

Proof. As special clean elements are unit-regular, the condition is necessary. We prove that it is also sufficient.
So let a ∈ R be regular with inverse x ∈ R. Then ax + (1 − ax) = 1 and by stable range 1, exists y such that
a + (1 − ax)y = v is a unit. It follows that (ax)v = (ax)(a + (1 − ax)y) = axa = a and a is unit-regular as a
product of an idempotent and a unit (or directly av−1a = (axv)v−1a = axa = a) with inverse v−1, and pose
f = av−1(= ax). Then, as recorded in the introduction, by [34] the corner ring f R f has stable range 1. We
conclude by Corollary 4.1.
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This in turns provides alternative proofs of the results of Camillo, Khurana and Chen:

Corollary 4.3. Let R be a ring.

1. R is unit-regular iff all elements of R are special clean;
2. R is exchange with stable range 1 iff R is exchange and regular elements are special clean.

4.2. Special cleanness and the Jacobson radical
We now turn our attention to the skew-corner rings.

Corollary 4.4. Let a ∈ R be a regular element with inverse x ∈ R, and pose f = ax. If f R f̄ ⊆ J(R) or f̄ R f ⊆ J(R),
then a is special clean.

Proof. We first prove unit-regularity, and then we deduce special cleanness.

Step 1: Unit-regularity.
We consider Peirce decompositions of a and x relative to the idempotent f . As a1x1 + a2x3 = f and
a2x3 = f (a2x3) f ∈ f J(R) f = J( f R f ) (by assumption, one of the terms a2, x3 is in J(R), and the equality
f J(R) f = f R f ∩ J(R) = J( f R f ) for any non-zero idempotent f can by found for instance in [24]), then
a1x1 is a unit in f R f and x1 is left invertible in f R f . But dually x1a1 + x2a3 = f and x1 is right invertible,

so that x1 is a unit in f R f . Symetrically, a1 is a unit in f R f . Pose Ã =

(
a1 0
0 1

)
and X̃ =

(
x1 0
0 1

)
.

Pose V =

(
a1 0
−x3a1 1

)
. Then V is invertible with inverse V−1 =

(
x1 0
x3 1

)
and AVA = A so that A is

unit-regular.
Step 2: Special cleanness.

We now consider Peirce decompositions relative to 1 = av−1. As above from a1µ1 + a2µ3 = 1 and
a2µ3 = 1(a2µ3)1 ∈ 1J(R)1 = J(1R1) we deduce that a1µ1 is a unit in 1R1 and by symmetry we deduce
that µ1 is a unit in 1R1. We then conclude by Lemma 3.2.

Thus, if all skew-corner rings are contained in J(R), then any regular element is special clean. We will
see in Section 6 that in this case, a stronger result actually holds.

5. Uniquely special clean elements and uniquely special clean rings

Uniqueness of certain inverses or decompositions of elements is sometimes a key issue. Therefore,
scholars look for necessary and sufficient conditions for uniqueness, regarding either a specific element or
all the elements of the ring.

Regarding unicity of inverses, Hartwig and Luh [16] Theorem 4 proved in 1977 that a unit-regular ring
whose non-zero elements have a unique unit-inverse is either Boolean or a division ring . Recently, Danchev
[10] extended this result to regular rings and proved that regular rings whose non-zero elements have a
unique Von Neumann inverse are exactly division rings (in the same article, Danchev also studies other
uniqueness conditions).

On the other hand, uniquely (strongly) clean rings have notably been studied in [2], [8], [9], [7], [30],
[38], and uniquely clean elements by Khuruna et al [23]. It is notably known that a ring is uniquely clean
iff it is uniquely strongly clean and abelian, but that there exists uniquely strongly clean rings that are not
abelian (hence not uniquely clean). Also, uniquely clean elements need not be strongly clean in general,
but this is the case if every corner ring is clean.

Here we consider unicity of special clean decompositions. We say that an element a ∈ R is uniquely
special clean if there exists a unique u ∈ U(R) such that a− u ∈ E(R) and au−1a = a. A ring is uniquely special
clean if all its elements are. We start by some specific cases.

Lemma 5.1. Let R be a ring.
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1. A unit u ∈ U(R) is uniquely special clean;
2. An idempotent e ∈ E(R) is uniquely special clean iff it is central;
3. A strongly regular element z ∈ R# is uniquely special clean iff e = zz# is central.

Proof.

1. A unit u admits a unique inner inverse u−1 and u − u = 0 ∈ E(R).
2. Let e ∈ E(R), and assume that e is central. Then e = e1e and we can consider Peirce decomposition

relative to e = e1. But as e is central then eRē = ēRe = {0}. By Theorem 2.1 special clean decompositions
are in bijective correspondence with solutions of ϕ(x, y) = ē ∈ U(ēRē), with x ∈ ēRe = {0} and
y ∈ eRē = {0}. Thus e is uniquely special clean with unique decomposition e = ē + u = eu−1e with
u = e − ē = 2e − 1 = u−1.
For the converse, assume that e is uniquely special clean and let b ∈ R. Pose y = ēbe = be − eb. Then
y ∈ ēRe and ϕ(0, y) = ē ∈ U(ēRē). Thus e admits two special clean decompositions, one with u = 2e− 1

and a second one with v = 2e − 1 − y (V =

(
1 0
−y −1

)
). By unicity of the decomposition v = u whence

y = be − eb = 0, and since b was arbitrary, e is central.
3. Let z ∈ R#, and assume that e = zz# is central. We pose v = z + ē. As e is central then v is invertible

with v−1 = z# + ē. Then zv−1z = z and zv−1 = e. Thus we consider Peirce decomposition relative to e.
As e is central then eRē = ēRe = {0}, and by Theorem 2.1 special clean decompositions are in bijective
correspondence with solutions of ϕ(x, y) = ē ∈ U(ēRē), with x ∈ ēRe = {0} and y ∈ eRē = {0}. Thus e is
uniquely special clean with unique decomposition z = ē + u = eu−1e with u = z − ē,u−1 = z#

− ē.
For the converse, assume that z ∈ R# is uniquely special clean and let b ∈ R. Pose e = zz# and
y = ēbe = be − ebe. Then y ∈ ēRe and ϕ(0, y) = ē ∈ U(ēRē). Once again by unicity of the decomposition
y = be − ebe = 0 and be = ebe. Dually eb = ebe and as b is arbitrary then e is central.

We deduce the following characterization of uniquely special clean rings:

Corollary 5.2. Let R be a ring. Then it is uniquely special clean if and only if it is a strongly regular ring.

Proof. Let R be a uniquely special clean ring. Then it is regular and idempotents are central, hence it is
strongly regular (see for instance [27]).
Consider now a strongly regular ring R. Then it is regular and idempotents are central. Thus any element
z ∈ R is strongly regular with e = zz# central, thus uniquely special clean by Lemma 5.1.

6. A proof that special clean elements are reflexive inverses of strongly regular elements via Peirce
decomposition, and consequences

In [29] it is proved that unit-regularity can be weakened to group-regularity: a ∈ R is unit-regular iff it
admits a Von Neumann inverse z ∈ R#. In [28] this result is sharpened as follows: a ∈ R is special clean
iff it admits a reflexive inverse z ∈ R#. However, the proof is not direct and relies on the (b, c)-inverse of
Drazin[11]. Therefore, we propose in this section a direct proof (we use that strongly regular elements are
precisely units in Peirce corner rings). This decomposition, together with the previous results, will in turn
have interesting consequences.

Theorem 6.1. Let R be a ring and a ∈ R, e ∈ E(R). Then the following statement are equivalent:

1. There exists z ∈ U(eRe) such that aza = a, zaz = z;

2. The Peirce decomposition of a relative to the idempotent e is of the form A =

(
a1 a2
a3 a4

)
with a1 ∈ U(eRe) (with

inverse z) and a4 = a3za2;
3. u = a − ē ∈ U(R) and au−1a = a (a is special clean).
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Proof.

(1)⇒ (2) Let z ∈ U(eRe) such that aza = a, zaz = z. Under the Peirce isomorphim relative to e, E =

(
1 0
0 0

)
,

A =

(
a1 a2
a3 a4

)
and Z =

(
z 0
0 0

)
. As ZAZ = Z with z a unit in eRe we deduce first that za1z = z in eRe,

hence a1 is the inverse of z in eRe. Second from AZA = A we the get A =

(
a1 a2
a3 a3za2

)
.

(2)⇒ (3) Assume (2) and pose U = A − Ē =

(
a1 a2
a3 a3za2 − 1

)
. As a1 is a unit in eRe with inverse z then we

can compute the Schur complement of a1 in U, which is −1. Schur’s theorem then asserts that U is

invertible with inverse U−1 =

(
z − za2a3z za2

a3z −1

)
. But then also AU−1A = A and a is special clean with

a = ē + u = au−1a.
(3)⇒ (1) Finally assume (3), that is a is special clean with decomposition a = ē+u = au−1a, and pose z = u−1au−1,

z′ = eae and f = au−1. By construction z is a reflexive inverse of a. We now prove that it is strongly
regular with group inverse z# = z′ and that zz# = e. Under the Peirce isomorphism relative to f ,

A = FA gives A =

(
a1 a2
0 0

)
. But also FU = A so that a1 = u1 and a2 = u2. From this we deduce that

Ē = A − U =

(
0 0
−u3 −u4

)
(and we recover in particular that aR ∩ ēR = {0}). As Ē is idempotent, we

also get Ē2
− Ē =

(
0 0

u4u3 + u3 u2
4 + u4

)
= 0. Right multiplication by U−1 =

(
µ1 µ2
µ3 µ4

)
which is invertible

gives (Ē2
− Ē)U−1 =

(
0 0
∗ (u4u3 + u3)µ2 + (u2

4 + u4)µ4

)
=

(
0 0
∗ u4 + 1

)
= 0 (as from UU−1 =

(
1 0
0 1

)
we

get u3µ2 + u4µ4 = 1 in f̄ R f̄ ). Thus Ē =

(
0 0
−u3 1

)
and U =

(
u1 u2
u3 −1

)
. As the matrix U is invertible,

then the Schur complement ζ = u1 + u2u3 is a unit in f R f and U−1 =

(
ζ−1

−ζ−1u2
−u3ζ−1

−1 + u3ζ−1u2

)
. Finally

Z = U−1F =

(
µ1 0
µ3 0

)
=

(
ζ−1 0

u3ζ−1 0

)
, wich is group invertible with group inverse Z# =

(
ζ 0

u3ζ 0

)
= EAE

and

ZZ# = Z#Z = E =

(
1 0
u3 0

)
.

By looking at the proof of the theorem, we see that special clean decompositions are in bijective corre-
spondance with completely regular reflexive inverses. Precisely:

Corollary 6.2. Let R be a ring and a ∈ R be a special clean element. Then there is a bijective correspondance between
special clean decompositions and strongly regular reflexive inverses given by (e,u) 7→ z = u−1au−1 with reciprocal
z 7→ (e = zz#,u = a − ē), where a = ē + u = au−1a denotes the special clean decomposition.
In particular a is uniquely special clean if and only if it admits a unique reflexive inverse which is also strongly regular.

We are in position to prove the following theorem:

Theorem 6.3. Let R be a ring such that all skew corner rings eR(1− e), e ∈ E(R) are contained in J(R), and let a ∈ R.
Then a is regular iff it is strongly regular.

Proof. We have only to prove the implication. So let R be such a ring, and a ∈ R be regular. We make the
following steps.
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Step 1: First, by Corollary 4.4, a is special clean, and a = ē + u = au−1a for some e ∈ E(R),u ∈ U(R).

Step 2: By Theorem 6.1, a admits a Peirce decomposition relative to e of the form A =

(
a1 a2
a3 a4

)
with a1 a unit

in eRe (with inverse z) and a4 = a3za2. As skew corner rings are in J(R) by hypothesis then a2, a3 ∈ J(R)
hence a4 = a3za2 ∈ J(R) since J(R) is an ideal. It follows that a = z# + j, with z# = a1 ∈ R# and
j = a2 + a3 + a4 ∈ J(R).

Step 3: We conclude by arguments of [18]. By citehuylebrouck1986generalized Proposition 1, as a = z# + j is
regular and z# is regular with reflexive inverse z, then

(1 − zz#) j(1 + zj)−1(1 − zz#) = 0.

But it then follows from Proposition 3 therein that a = z# + j is actually group invertible, which ends
the proof.

It is straightforward to see that the class of rings such that all skew corner rings are in J(R) contains the
weakly normal rings (rings such that Rea(1 − e) is a nil left ideal for any a ∈ R, e ∈ E(R) by [36] Theorem 2.1.),
since any nil ideal is contained in the J(R). It also contains those rings such that R/J(R) is abelian. Thus,
Theorem 6.3 appears as a common generalization of the following two results, whose proof rely on very
distinct arguments and are therefore recalled for convenience.

Proposition 6.4 (Lemma 3.1 (6) in [36]). Let R be a weakly normal ring, and a ∈ R. Then a is regular iff it is
strongly regular.

Proof. Let a, x ∈ R such that axa = a. Then e = 1− xa is idempotent and xa− x2a2 = x(1− xa)a(xa) ∈ Rea(1− e)
is nilpotent, (xa − x(xa)a)n = 0 for some n. As a(xa) = a then there exists b such that a(xa − x(xa)a)n =
a(xa − b(xa)a) = a − abxa2 = 0 and a ∈ Ra2. We conclude by duality.

Note that this proof is specific to weakly normal rings as it relies on the nilpotency of some elements
(and not their belonging to the Jacobson radical, that may contain non-nilpotent elements).

Proposition 6.5 (From [25]). Let R be a ring such that R/J(R) is abelian and exchange, and a ∈ R. Then a is regular
iff it is strongly regular.

Proof. By [25] Theorem 4.6., such a ring is quasi-duo. Note that this follows also from the combinations of
the following two results: an abelian exchange ring (here R/J(R)) is quasi-duo [3]; And R is quasi-duo iff
R/J(R) is [39]).
But in a quasi-duo ring, regular elements are strongly regular (see for instance the proof of Corollary 4.9.
(2) in [25]). This ends the proof.

In particular, Theorem 6.3 shows that the exchange property in Proposition 6.5 is superfluous.
Finally, we observe from Theorem 6.1 and Corollary 6.2 that, whereas cleanness relies obviously on

both the additive structure of the ring (via the sum) and the multiplicative structure (via the unit), special
cleanness does not. In particular we deduce the “apparently” intriguing result:

Corollary 6.6. Let (T,+, .) and (R,+, .) be two rings and let φ : (T, .)→ (R, .) be a semigroup morphism between
their multiplicative monoids. If a is special clean in T, then φ(a) is special clean in R.

Proof. Let a ∈ T be special clean, with decomposition a = ē + u = au−1a. Then z = u−1au−1 is group
invertible by Corollary 6.2 (with group inverse z# = eae) and a reflexive inverse of a. As φ is a semigroup
morphism, then φ(z) is group invertible with inverse φ(z#), and a reflexive inverse of φ(a). Thus φ(a) is
special clean by Theorem 6.1, with decomposition φ(a) = 1̄+ v = φ(a)v−1φ(a), where 1̄ = 1−φ(e) ∈ E(R) and
v = φ(a) − 1̄ ∈ U(R).
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Example 6.7. Let R be a commutative ring and T = Mn(R) be the ring of square matrices of size n over R. Then
φ : (T, .) → (T, .) defined by φ(A) = det(A).A is a monoid morphism, so that any special clean matrix A ∈ T also
satisfies that det(A).A is special clean in T.

Example 6.8. Let S,T be rings and M = (T, .) the multiplicative monoid of T. Form R = S[M] the monoid ring over
M. Then φ : M = (T, .) → (R, .) defined by φ : t 7→ 1S.t is a monoid morphism (that clearly does not respect the
additive structures of T and R). It follows that 1S.a ∈ R is special clean for any special clean element a ∈ T. But if
a = ē + u = au−1a is some special clean decomposition of a ∈ T, then 1S.ē + 1S.u is not a special clean decomposition
of 1S.a in general. However,

1S.a = (1S.1T − 1S.e) + V = (1S.a)V−1(1S.a)

is a special clean decomposition of 1S.a in R, with (1S.1T − 1S.e) ∈ E(R) and V = (1S.1T − 1S.e) − 1S.a ∈ U(R).

7. More examples and counter-examples

In [37] Proposition 4.3 Wu et. al. proved that a matrix of the form
(
s + 1 1

0 0

)
is always unit-regular but

never clean in Rs =

(
Z Z

s2Z Z

)
for s ≥ 3 (there is actually a typo in the statement of the their Proposition

4.3.: the matrix in the statement is
(
s + 1 s

0 0

)
but the matrix in the proof is indeed

(
s + 1 1

0 0

)
). They also prove

that the matrix
(
3 1
0 0

)
(s = 2) is unit-regular but not clean in

(
Z Z

23Z Z

)
. We give below a different proof

that A =

(
s + 1 1

0 0

)
is not special clean in Rs for s ≥ 3, and also prove that

(
3 1
0 0

)
is uniquely special clean

in R2 =

(
Z Z

22Z Z

)
(s = 2), and that

(
2 1
0 0

)
has infinitely many special clean decompositions in R1 =

(
Z Z
Z Z

)
(s = 1)

Corollary 7.1. Let s ≥ 1 and consider the matrix A =

(
s + 1 1

0 0

)
in the ring Rs =

(
Z Z

s2Z Z

)
. Then

1. A is unit-regular but not special clean in Rs for s ≥ 3;

2. A =

(
3 1
0 0

)
has a unique special clean decomposition in R2 given by A = Ē + U = AU−1A with U =

(
3 1
−4 −1

)
(and Ē =

(
0 0
4 1

)
).

3. A =

(
2 1
0 0

)
has 6 special clean decompositions in R1 =M2(Z).

Proof. Pose V =

(
s + 1 1
−s2

−s + 1

)
. Then V is invertible with inverse V−1 =

(
−s + 1 −1

s2 s + 1

)
and AV−1A = A

so that A is unit-regular with unit-inverse V−1. Pose F = AV−1. Then F =

(
1 0
0 0

)
and the matrix form is

precisely the Peirce decomposition associated to F. By Theorem 2.1, A is special clean if and only if the
equation ϕ(x, y) = y(s + 1)x + y − s2x − s + 1 ∈ Z−1 is solvable. As y ∈ s2Z we pose y = s2k. The equation
becomes s [s [kx (s + 1) − x + k] − 1] + 1 = −ζ with ζ = ±1.

Case 1: ζ = −1. The equation becomes s [s [kx (s + 1) − x + k] − 1] = 0 and since s is left-cancellable, s [kx (s + 1) − x + k]−
1 = 0. Thus s is right-invertible, which is incompatible with s ≥ 2. We conclude that the equation has
no solution for ζ = 1 and s ≥ 2. For s = 1, y = k and the set of solutions is {(x, y) ∈ ZZ2

|2yx− x + y− 1 =
0} = {(−1, 0), (0, 1)}.
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Case 2: ζ = 1. The equation becomes s [s [kx (s + 1) − x + k] − 1] = −2. In particular this equation is solvable
only if s divides 2 and we can conclude that A is not special clean for s ≥ 3.
Assume s = 2. Then 2 [3kx − x + k] − 1 = −1 hence 3kx − x + k = 0. This equation has a trivial
solution (0, 0). If k , 0 then x , 0 and conversely, and x|k, k|x so that either x = k or x = −k. In
the first case the equation becomes 3x2 = 0 which has no solution in Z∗. In the second case the
equation becomes −3x2

− 2x = 0 which has also no solution inZ∗. There is a unique solution given by

U−1 = V−1

(
1 x
−y −ϕ(x, y) − yx

)
with x = 0, y = 0 and ϕ(x, y) = −ζ = −1, thus U = V.

Finally assume s = 1. Then the set of solutions is

{(x, y) ∈ Z2
|2yx − x + y + 1 = 0} = {(−2, 1), (−1, 2), (0,−1), (1, 0)}.

As W =

(
3 1
8 3

)
, U also satisfies

(
3 1
0 0

)
W−1

(
3 1
0 0

)
=

(
3 1
0 0

)
(W−1 =

(
3 −1
−8 3

)
), we deduce that

A =

(
3 1
0 0

)
is uniquely special clean without being uniquely unit-regular (in R2).

It is informative to consider what happens if one starts from W instead of V in the application of Theorem
2.1. We then get the function ϕ(x, y) = 3yx + y + 8x + 3 and we try to solve ϕ(x, y) = −ζ with ζ ∈ U(R), and
y = 4k.

Case 1: ζ = −1. The equation becomes 12kx + 4k + 8x = −2 which has no solution.

Case 2: ζ = 1. The equation becomes 12kx + 4k + 8x = −4. The only solution is x = 0, k = −1 so that there is a

unique special clean decomposition with U−1 = W−1

(
1 0
4 1

)
=

(
−1 −1
4 3

)
= V−1 and we recover U = V.

As also A =

(
3 1
0 0

)
is not strongly regular in R2 (1 + A − AW−1 =

(
3 1
0 1

)
is not a unit, see for instance

[32]), we get that a uniquely special clean element need not be strongly regular. Also the idempotent e
related to the special clean decomposition (equivalently ē = a − u) is not central. More precisely eu = a but

ue , a (UE =

(
3 1
−4 −1

) (
1 0
−4 0

)
=

(
−1 0
0 0

)
), and the (unique) special clean decomposition of a is not even a

strongly clean decomposition.
We continue the investigation of such 2-by-2 matrices and consider the following result of Khuruna and

Lam [20] Corollary 3.6. (a connected ring is a ring with only trivial idempotents).

Lemma 7.2. Let K be a connected commutative ring, and consider the matrix A =

(
a b
0 0

)
∈ M2(K).

1. If a ∈ 1 + K−1, then A is always clean.
2. If otherwise, then A is clean iff there exist x0, y0 ∈ K such that ay0 − bx0 = 1 and y0 + x0K contains a unit of

K. (In this case, A is also unit-regular).

We build up upon this lemma and prove that for K = Z:

Lemma 7.3. Any unit-regular and clean matrix A of the form A =

(
a b
0 0

)
∈ M2(Z) is special clean.

Proof. We consider three cases: a = 0, 2 and otherwise.

Case 1: a = 0. Let A =

(
0 b
0 0

)
∈ M2(Z) and assume that A is unit regular with inverse W−1 =

(
µ1 µ2
µ3 µ4

)
. Then

bµ3 = 1, and b = µ3 = ±1. Then A is also unit-regular with unit-inverse V−1 =

(
0 −b
µ3 0

)
, and V =



X. Mary, P. Patrı́cio / Filomat 34:14 (2020), 4847–4860 4859(
0 b
−µ3 0

)
. Pose F = AV−1. Then F =

(
1 0
0 0

)
and the matrix form is precisely the Peirce decomposition

associated to F. By Theorem 2.1, A is special clean if and only if the equation ϕ(x, y) = yb − µ3x ∈ Z−1

is solvable. Since b = µ3 = ±1 this equation as for set of solutions {(x, x ± 1), x ∈ Z}.

Case 2: a = 2. Let A =

(
2 b
0 0

)
∈ M2(Z) and assume that A is unit regular with inverse W−1 =

(
µ1 µ2
µ3 µ4

)
. Then

2µ1+bµ3 = 1, and b = 2p+1 is odd. Then A is also unit-regular with unit-inverse V−1 =

(
−p −(2p + 1)
1 2

)
,

and V =

(
2 2p + 1
−1 −p

)
, F = AV−1 =

(
1 0
0 0

)
. By Theorem 2.1, A is special clean if and only if the

equation ϕ(x, y) = 2yx + y(2p + 1) − x − p ∈ Z−1 is solvable. This equation has exactly 6 solutions:
{(−p + 1,−1); (−p,−1); (−p, 1); (−p − 1, 0); (−p − 1, 2); (−p − 2, 1)} (for b = 1 a.k.a. p = 0 we recover the 6
solutions of Corollary 7.1).

Case 3: a < {0, 2}. As 1 + a is not a unit, by Lemma 7.2, there exist µ1, µ3 ∈ K such that aµ1 + bµ3 = 1

and µ1 + µ3Z contains a unit of Z. Then A is unit-regular with unit-inverse V−1 =

(
µ1 −b
µ3 a

)
, and

V =

(
a b
−µ3 µ1

)
, F = AV−1. Then F =

(
1 0
0 0

)
. By Theorem 2.1, A is special clean if and only if the

equation ϕ(x, y) = yax + yb − µ3x + µ1 ∈ Z−1 is solvable. But µ1 + µ3Z contains a unit, and we can
choose x ∈ Z such that −µ3x + µ1 is a unit, so that ϕ(x, 0) = −µ3x + µ1 ∈ Z−1.

Note that by Corollary 2.3 in [20], if a = 2 then A =

(
2 2
0 0

)
∈ M2(Z) is clean but not unit-regular. The

unit-regularity assumption can thus not be removed.
On the other hand, a straightforward application of Corollary 3.1 (or Corollary 3.2) gives that a diagonal

matrix A =

(
a 0
0 0

)
∈ M2(R) is special clean iff a is regular in R for any ring R.

Lemma 7.4. Let R be a ring and a ∈ R. Then A =

(
a 0
0 0

)
∈ M2(R) is special clean iff a is regular in R.

Proof. Consider such a matrix A, and pose B =

(
b c
d e

)
∈ M2(R). Then ABA =

(
aba 0
0 0

)
∈ M2(R) and A is

regular iff a is regular. Then assume that aba = a and pose V =

(
1 1

b − 1 b

)
∈ M2(R). Then V is invertible with

inverse V−1 =

(
b −1

1 − b 1

)
∈ M2(R), and AV−1A = A. It follows that for any y ∈ R, yv2 +v4 = µ1−µ2y = y+b

and choosing y = 1 − b gives a unit in R. We conclude by either Corollary 3.1 or Corollary 3.2.

We finally produce an example of a unit-regular and clean element that is not special clean. Consider

the ring R =

(
Z 7Z
Z Z

)
, and A =

(
2 7
0 0

)
∈ R. Then A = A

(
18 −7
−5 2

)
A =

(
1 0
0 1

)
+

(
1 7
0 −1

)
is both unit-regular

and clean in R. Let V =

(
2 7
5 18

)
be the inverse of V−1 =

(
18 −7
−5 2

)
. Then by Theorem 2.1 A is special clean

if and only if the equation ϕ(7k, y) = 14yk + 7y + 5× 7k + 18 = ±1 is solvable. But 17 and 19 are prime twins
so that the equation −7(2yk + y + 5k) = 18 ± 1 has no solution in Z2. Thus A is unit-regular, clean but not

special clean in R =

(
Z 7Z
Z Z

)
.
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.
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(
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.
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