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R E S U M O

Nos últimos anos, a população tem vindo a adquirir mais consciência sobre a sua
saúde, mudando os seus hábitos alimentares, e procurando alimentos capazes de prevenir
problemas associados a doenças. Por isso, a utilização de microorganismos probióticos em
alimentos e em suplementos alimentares tem vindo a ganhar a atenção da indústria ali-
mentar. A indústria dos laticı́nios usa frequentemente organismos probióticos em produtos
fermentados, especialmente espécies pertencentes ao grupo das bactérias lácticas.

Lactobacillus acidophilus é uma bactéria láctica probiótica, frequentemente utilizada
em alimentos e suplementos alimentares. Algumas estirpes, por exemplo La-14, têm demon-
strado efeitos benéficos para a saúde, contribuindo para a vitalidade do trato gastroin-
testinal, modulando o sistema imunitário e prevenindo problemas renais. Portanto, a bi-
ologia de sistemas, nomeadamente modelos metabólicos à escala genómica, irá permitir
uma utilização mais eficiente desta espécie na industria alimentar, aprofundando o conhec-
imento sobre o metabolismo deste organismo e contribuindo também para o desenvolvi-
mento de estirpes desta espécie para fins industriais.

Este trabalho teve como objetivo a obtenção de um modelo metabólico à escala
genómica para a bactéria L. acidophilus La-14, utilizando as ferramentas merlin e COBRApy
e a plataforma OptFlux.

A rede obtida em trabalho anterior foi curada manualmente, a composição da biomassa
foi determinada com base em informação disponı́vel na literatura, e o modelo foi validado
por comparação de simulações com dados experimentais. O modelo metabólico contém 527

genes, 952 reações, e 608 metabolitos, sendo capaz de prever o comportamento da bactéria
em diferentes condições ambientais.

A reconstrução do modelo metabólico confirmou as necessidades de L. acidophilus
por aminoácidos, ácidos gordos e vitaminas. Esta espécie apresenta um metabolismo de
carbono simples baseado na glicólise, com ácido láctico como produto final. Este tra-
balho apresenta ainda uma análise ao metabolismo de L. acidophilus, incluindo as vias
para o catabolismo de açúcares, incorporação de ácidos gordos, e sı́ntese de nucleótidos
e aminoácidos. O potencial para produzir compostos com interesse industrial, como ac-
etaldeı́do e exopolissacáridos, foi também identificado e analizado.
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A B S T R A C T

In recent years, people have been acquiring more awareness about their health,
changing their nutritional habits, and searching for food able to prevent health disorders.
Hence, the addition of probiotic microorganisms to food and their utilization as nutritional
supplements has been receiving attention from food industry. Dairy products industry fre-
quently uses probiotic organisms in its fermented products, especially species and strains
belonging to the lactic acid bacteria group.

Lactobacillus acidophilus is a probiotic lactic acid bacterium, used in food and di-
etary supplements for many years. Some strains, such as La-14, had demonstrated health-
promoting effects, contributing to the wellness of the gastrointestinal tract, modulating the
immune response, and preventing kidney disorders. Therefore, systems biology, specifi-
cally genome-scale metabolic models, will allow more efficient utilization of this species by
food industry, enhancing the knowledge of the metabolic capabilities of this organism, and
contributing to the strain development for industrial purposes.

This work aimed at obtaining a genome-scale metabolic model for the L. acidophilus
La-14 strain, using merlin, together with COBRApy and OptFlux.

The draft network assembled in previous work was manually curated, the biomass
composition was determined based on available information, and the model was validated
by comparing in silico simulations with experimental data. The GSM model contains 527

genes, 952 reactions, and 608 unique metabolites, and is able to predict the phenotype of
the bacterium under different environmental conditions.

The reconstruction of the metabolic model has confirmed the fastidious requirements
of L. acidophilus for amino acids, fatty acids, and vitamins. This species presents a simple
carbon metabolism based on the EMB pathway, with lactic acid as the final product. This
work presents an overview of the metabolism of L. acidophilus, including the pathways
for carbohydrate catabolism, incorporation of fatty acids, and nucleotide and amino acid
biosynthesis. Moreover, the potential to produce relevant compounds for the industry, such
as acetaldehyde and exopolysaccharides, was also identified and analyzed.

Keywords: Genome-scale metabolic model, Lactic acid bacteria, Lactobacillus aci-
dophilus La-14, merlin, Optflux, Systems biology
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I N T R O D U C T I O N

1.1 context and motivation

Each year, products fermented by Lactic Acid Bacteria (LAB) generate an economic
value exceeding 100 billion e[1]. This market is constantly expanding, as new biotechno-
logical techniques are improving the different properties of dairy products, as well as the
way of manufacturing them [2].

Lactobacillus acidophilus is a gram-positive lactic acid bacterium used by the food in-
dustry in products like yogurt, sweet acidophilus milk, and cheese. Some L. acidophilus
strains are known for their health-promoting effects, particularly decreasing upset stomach
period, and have been related with the recolonization of the intestinal microbiota. Moreover,
members of this species are able to produce natural antimicrobial agents, like bacteriocins,
allowing to extend the food conservation period. In addition, they contribute to the fla-
vor, taste, and texture of fermented food products. These properties provide a significant
industrial and economic advantage to L. acidophilus in the food industry [3].

In 2013 the complete genome sequence of the L. acidophilus La-14 strain was pub-
lished by Stahl and Barrangou [4]. Several health-promoting properties have been found
using in vivo and in vitro studies, including oxalate-degradation capability (preventing
nephrolithiasis) [5], and beneficial contribution to the immune system [6], in addition to
the ordinary cooperation to prevent and treat gastrointestinal disorders. Therefore, improv-
ing the knowledge at the metabolic level on this strain, can help optimizing its beneficial
properties.

Genome-Scale Metabolic (GSM) models and constraint-based modeling are increas-
ingly important tools in systems biology. These models contain all known metabolites,
reactions, and pathways of a target organism, allowing to look at the cell from a global per-
spective. Hence, the metabolic mechanisms that lead to the final phenotype can be better
understood, accelerating the industrial development of biological processes and decreasing
not only the costs but also the time required for this kind of exploration [7].

The reconstruction of GSM models involves a large number of steps, including
genome annotation, metabolic network assembly and curation, conversion into a stoichio-
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1.2. Goals 2

metric model, and model validation [8]. The first step for building a GSM for L. acidophilus,
i.e. functional genome annotation, was already performed in previous studies. Hence,
this work will continue such process and proceed with the next steps. Due to the com-
plexity and time required for this process, it is highly recommended the utilization of
a user-friendly tool designed for this purpose, like Metabolic Models Reconstruction Using
Genome-Scale Information (merlin) [9, 10]. Besides this tool, it is also necessary to obtain and
analyze information available in literature and online databases.

1.2 goals

This work aims at obtaining a genome-scale metabolic model of the probiotic bac-
terium L. acidophilus. To achieve this goal, the mid-term goals are as follows:

1. Perform manual curation and refinement of the automatically generated draft metabolic
network and functional annotation using information from literature and experimen-
tal data on the metabolism and physiology of the organism;

2. Assemble a biomass equation for this organism using available data;

3. Convert the metabolic network into a stoichiometric model;

4. Validate the model using data available in literature/wet-lab experiments.

1.3 document organization

This document is organized as follows:

1. Chapter 2: State of the art

a) A brief contextualization on systems biology;

b) Overview of the theoretical concepts, tasks, methodologies, and tools for GSM
models reconstruction;

c) Description of lactic acid bacteria, with focus on L. acidophilus, including its taxo-
nomic, genomic, morphological and metabolic peculiarities, as well as its indus-
trial and medical applications.

2. Chapter 3: Materials and Methods

a) Description of the methods used for the manual curation of the network;

b) Formulation of the biomass and energy requirements;

c) Description of the available tools and developed approaches to identify and cor-
rect gaps;
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d) Enumeration and explanation of the tools used to validate the model

3. Chapter 4: Results and Discussion

a) Results regarding genome annotation;

b) Changes in the network through the manual curation;

c) Biomass and energy requirements formulation;

d) Comparison of in silico simulations with experimental data;

e) Overview of the main pathways included in the model;

f) Summary of the metabolic model.

4. Chapter 5: Conclusion and Applications

a) Summary of the developed work;

b) Possible applications of the model;

c) Future perspectives.



2

S TAT E O F T H E A RT

2.1 systems biology

In 1915, Walter Cannon described the human body as a control system, making the
first association between system and biology [11]. In 1948, Norbert Weiner used the word
cybernetic for the first time, introducing the system-level understanding as a relevant theme
in biological sciences [12]. Two years later, Ludwig von Bertalanffy stated the general sys-
tem theory [13], suggesting a new approach that accounts for all components as well as
the interactions between them, to predict biological behavior. At that moment, molecu-
lar biology was still an emerging field, limiting the development of systems biology [14].
Hence, the methodologies used for strain development were based on random mutagenesis,
and screening/selection of a desired phenotype[7]. In mid-1990’s, a new opportunity for
systems biology emerged when automated genome sequencing and high-throughput mea-
surements become available, allowing more complex analysis of comprehensive datasets.
Moreover, the Internet evolution, the development of biological databases and bioinformat-
ics tools started the postgenomic era [7, 14]. From this moment, it became possible to see
cells not only as a set of biomolecules but also quantify and analyze the interactions be-
tween them, thought mathematical models. These models must be able to simulate cell
behavior, as well as predict such behavior in different environmental conditions, and must
be subject to validation, comparing simulations with experimental data [7].

Hence, systems biology aims at understanding biological systems at systems-level
through four key properties [14]:

1. Systems structure: gene regulation, biochemical networks, and physiological struc-
tures;

2. Systems dynamics: how a system changes over time under different conditions;

3. The control method: mechanisms related with the systematic control of the cell;

4. The design method: strategies to modify and construct biological systems having
desired properties.

4



2.2. Genome-Scale Metabolic Models 5

Metabolic models provided by systems biology usually follow two different ap-
proaches: stoichiometric modeling and dynamic (kinetic) modeling [15].

Stoichiometric models require less information, representing only the system struc-
ture: reactions, compounds, stoichiometry, and reversibility. It uses algebraic methods and
constraint based modelling, with the assumption of a (pseudo) steady-state: for all intra-
cellular metabolites, the fluxes leading to production of a given metabolite are balanced
with fluxes leading to his consumption, resulting in no net accumulation of metabolites.
This makes stoichiometric models and their analysis linear, parameter-free, applicable to
metabolic networks of any species with sequenced genome, and easier to simulate [16].
All these advantages allow using stoichiometric models at the genome-scale, originating
genome-scale metabolic models [15].

Dynamic models take into account not only structural details, but also concentrations
of metabolites over time, reaction fluxes and details of different types of inhibition, and
respective parameters. Since it uses differential equations and the number of parameters is
usually high, it is hard to perform simulations. So, these models are frequently targeted to
a small number of metabolic pathways [15].

Both stoichiometric and dynamic models, together with bioinformatics tools, allow
identifying high probability genetic targets, accelerating the industrial development of bio-
logical processes [7].

2.2 genome-scale metabolic models

2.2.1 Background

Metabolic network reconstructions existed long before annotated genome sequences
were available. Data retrieved from primary literature and biochemical characterization of
enzymes were the main sources of information for the reconstruction process for well stud-
ied organisms, such as Clostridium acetobutylicum [17], Bacillus subtilis [18] and Escherichia
coli [19].

Currently, the availability of whole-genome sequences and biochemical data in bio-
logical databases allows reconstructing metabolic networks at genome-scale, even for less
characterized organisms. A genome-scale metabolic network can be defined as the set of
biochemical reactions inferred from enzymes encoded in the target organism’s genome.
For each enzymatic reaction in the network, it is necessary to know which substrates and
products are involved, its stoichiometry, and the reversibility and location of the reaction
[20]. This information allows the description of the set of biochemical reactions and the
relation between them. Although GSM networks allow inferring some physiological and
biochemical properties, only GSM models can be used to predict full capabilities of the
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metabolic system. As kinetic and regulatory information is only available for a few set of
well-studied organisms, these models only add biomass composition and energy require-
ments to the network [21].

GSM model’s reconstruction involves a large number of steps, that have been well
described by several authors [21, 8]. This process (summarized in Figure 1) is usually di-
vided into four main stages: genome annotation; metabolic network assembly; conversion
of the metabolic network into a stoichiometric model; model validation [7]. However, each
one of these stages can include several steps, which can be repeated, as this is an iterative
process. In recent years, several tools have been developed specifically to support and ac-
celerate this process. Nevertheless, is still necessary to retrieve information from biological
databases and primary literature. Once the process is over, the GSM model can be used for
different purposes in fields like biotechnology, industry, and biomedicine [22].

Literature /
Online Databases

Genome Annotation Draft Model

•Localization
•Biomass formation
•Stoichiometry
•Revision

Stoichiometric Model

Model Validation
•Results comparisonOK?

Experimental Data
Application

Yes

No

Figure 1.: Schematic representation of the GSM model reconstruction process. After obtaining the
genome annotation, literature and online databases are used to assemble the metabolic network,
who must be refined. Then, the network is converted into a stoichiometric model, that is subject to
validation, through comparison of results obtained from simulations and experimental data. If the
model is not correct, it must be reviewed. Otherwise, the model is ready to be applied. Adapted
from Russel et al [7].
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2.2.2 Online resources

Through all stages, the GSM model reconstruction process is supported by infor-
mation available in different online databases. These resources provide information about
genome sequences, proteins, transporters, and metabolic pathways. The most important
online resources for GSM model’s reconstruction are listed in Table 1.

Table 1.: Useful online bioinformatics resources for GSM model’s reconstruction and respective data
output.

Online databases and bioinformatics tools

Resource name Data type Web address Reference

NCBIa Genomic, metabolic http://ncbi.nlm.nih.gov/ [23]

GOLDb Genomic https://gold.jgi.doe.gov/ [24]

KEGGc Genomic, metabolic http://www.kegg.jp/ [25]

BioCyc Genomic, metabolic https:// biocyc.org/ [26]

ExPASyd Genomic, proteomic, https:// www.expasy.org/ [27]
metabolic

UniProtKBe Genomic, metabolic http:// www.uniprot.org/ [28]

BRENDA f Metabolic http://www.brenda-enzymes.org/ [29]

BiGGg Metabolic http://bigg.ucsd.edu/ [30]

TCDBh Metabolic http://www.tcdb.org/ [31]

TransportDB 2.0 Metabolic http://www.membranetransport.org/ [32]

ChEBIi Chemical http://https://www.ebi.ac.uk/chebi/ [33]

PSORTb 3.0 Protein Location http://www.psort.org/psortb/ [34]

LocTree3 Protein Location https://rostlab.org/services/loctree3/ [35]

TargetP 1.1 Protein Location http://www.cbs.dtu.dk/services/TargetP/ [36]

aNCBI: National Center for Biotechnology Information, bGOLD: Genomes OnLine Database,
cKEGG: Kyoto Encyclopedia of Genes and Genomes, dExPASy: Expert Protein Analysis Sys-
tem, eUniProtKB: Universal Protein Resource Knowledgebase, f BRENDA: Braunschweig Enzyme
Database, gBiGG: Biochemical, Genetic and Genomic Models, hTCDB: Transporter Classification
Database, iChEBI: Chemical Entities of Biological Interest.
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Most resources presented in Table 1 provide more than just one type of data. These
resources can be used for GSM model’s reconstruction, and a brief description of them is
performed next.

The National Center for Biotechnology Information (NCBI) is one of the most important
repositories of biological databases, presenting several resources that provide analysis and
visualization for biomedical, genomic, taxonomic and other biological data. The Assem-
bly database [23] is a resource integrated in the NCBI repository that provides assembled
genomes, which can be used for GSM model’s reconstructions.

The Genomes Online Database (GOLD) is an online database that provides information
related to genome and metagenome sequencing projects, as well as their associated meta-
data. GOLD is organized into four distinct levels: Study, Biosample/Organism, Sequencing
Project and Analysis Project [24].

Kyoto Encyclopedia of Genes and Genomes (KEGG) is a collection of databases compris-
ing information of the biological system, including the cell, the organism, and the ecosys-
tem. It provides genomic and metabolic information, including genome sequences, reac-
tions, pathways and chemical compounds relevant to cellular processes [25].

BioCyc is a collection of 13075 Pathway/Genome Databases. Each database provides
information and tools to explore the genome and metabolic pathways of a single organism.
It presents curated data from thousands of publications, as well as data retrieved from
other databases (regulatory networks, gene essentially, protein features, and Gene Ontology
annotations). BioCyc also provides computationally predicted metabolic pathways and
operons [26].

Expert Protein Analysis System (ExPASy) is an extensible and integrative portal launched
by the Swiss Institute of Bioinformatics (SIB) [37], that provides databases and software tools
regarding different domains of life sciences, including genomics, proteomics, transcrip-
tomics, and phylogenetics [27].

The Universal Protein Resource Knowledgebase (UniProtKB) results from the collabora-
tion between the SIB [37], the European Bioinformatics Institute [38], and the Protein Infor-
mation Resource [39]. According to the revision state of the data provided, this database can
be divided into two distinct components: the Swiss-Prot, containing manually annotated
records; and the UniProtKB/TrEMBL, whose automatically analyzed records are waiting
for full manual annotation [28].

Braunschweig Enzyme Database (BRENDA) is the main repository of enzyme func-
tional data available. It provides functional and molecular information of enzymes, such as
kinetics, substrates/products, inhibitors/activators, and cofactors, using the Enzyme Com-
mission (EC) system [40]. Each dataset on a classified enzyme is manually checked, which
allows using BRENDA as a primary source of enzymatic information [29].
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Biochemical, Genetic and Genomic (BiGG) Models is a biochemical, genetic and genomic
knowledge database, containing more than 85 high-quality manually-curated GSM models.
This resource allows users to browse, search and visualize models connected to genome
annotations and external databases [30].

The Transporter Classification Database (TCDB) incorporates both functional and phylo-
genetic information of membrane transport proteins to provide the Transporter Classification
(TC) [41], an extensive approved classification method for transporter proteins (analogous
to the EC system for classification of enzymes) [31].

TransportDB 2.0 is a relational database describing automatically predicted cytoplas-
mic membrane transport proteins, which are classified into protein families according to
the TC classification system. Functional and substrate predictions are also provided by this
resource for any organism whose genome was already sequenced [32].

Chemical Entities of Biological Interest (ChEBI) is a database of molecular entities fo-
cused on ”small” chemical compounds. The molecular entities in question are either nat-
ural or synthetic products present in biological processes of living organisms. ChEBI con-
tains structure and nomenclature information along with hyperlinks to many well-regarded
databases. This database uses a carefully developed ontological classification, whereby the
relationships between molecular entities or classes of entities and their parents and/or chil-
dren are precisely specified [33].

PSORTb 3.0 is a high-precision protein location prediction tool that belongs to the
PSORT family. PSORTb 3.0 has remained the most precise bacterial protein subcellular
location predictor since it was first made available in 2003, and handles with Gram-positive,
Gram-negative and archaea sequences [34].

LocTree3 and TargetP are other tools designed for the same purpose of PSORTb 3.0.
LocTree3 can be used to assign subcellular protein localization, both for eukaryotes and
prokaryotes, through homology and machine learning based inference. [35].

TargetP is a neural network-based tool designed for large-scale subcellular location
prediction of newly identified proteins. Using N-terminal sequence information only, it dis-
criminates between proteins destined for the mitochondrion, the chloroplast, the secretory
pathway, and ”other” subcellular locations, predicting also protein cleavage sites [36].

2.2.3 Genome annotation

The first step of any GSM model’s reconstruction is obtaining the genome annota-
tion, which can be found in organism-specific databases or in databases with collections of
genome annotations, like GOLD, KEGG or NCBI. However, if such annotation is not avail-
able, it can be performed using specific tools [42]. This step can be divided into two main
steps: structural annotation and functional annotation. Structural annotation involves the
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search and identification of all features present in the genome, such as protein encoding
sequences, promoters, and different types of RNA. This step is usually performed using
bioinformatics tools, due to the high cost and time consuming of experimental verification.
Genome functional annotation involves assign functions to genes in an unambiguous way
through EC and TC numbers. Although only enzyme and transporter encoding genes are
included in the model, regulatory and signaling genes can also be integrated in further
stages [21].

As mentioned before, enzymes annotation involves the assignment of EC numbers
to enzyme encoding genes. EC numbers are a sequence of numbers that allow classifying
an enzyme according to the reaction catalyzed. The first number goes for the class of the
enzyme; the second goes for the subclass, specifying the type of reaction; the third indicates
the sub-subclass, determining the metabolites involved in the reaction; the fourth goes for
the serial number of the enzyme in the sub-subclass [40]. Transporters annotation uses TC
numbers, in a similar way of EC numbers for enzymes, including also phylogenetic infor-
mation. TC numbers are composed by five components, corresponding to the transporter
class (number), subclass (letter), family (number), subfamily (number), and transported
substrate(s) (number) [41].

Different bioinformatics methods have been developed to perform genome annota-
tion, including gene-finding algorithms, such as GLIMMER [43], GlimmerM [44], and GEN-
SCAN [45]. For functional annotation, homology searches are usually performed, using the
Basic Local Alignment Search Tool (BLAST) [46] or HMMER [47]. Moreover, non-homology-
based algorithms like gene neighbor [48], gene cluster [49] and phylogenetic profiles [50]
are used to assign function to genes, according to patterns across genomes [51].

EC and TC numbers can be assigned, according to the results provided by the
method used for annotation. Bioinformatics tools, such as merlin [9, 10] and SuBliMinaL
Toolbox [52], allow performing this task semi-automatically. However, this annotation must
be manually curated, classifying each assignment with a confidence level, which can be
useful to decide the inclusion or exclusion of reactions in the model [21]. The genome
functional annotation is a critical step for the GSM model reconstruction, as it is usually
performed only once and is the basis of all process reconstruction [7].

2.2.4 Metabolic network assembly

As soon as the genome annotation is available, the metabolic network can be as-
sembled: EC and TC numbers assigned in the previous stage are converted into enzymat-
ic/transport reactions, which can be performed using databases like KEGG, BRENDA or
ExPASy. Spontaneous and non-enzymatic reactions must be included in the model using
the same databases. Then, the network must be curated, correcting its stoichiometry, re-
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versibility, and subcellular localization of proteins. Moreover, a biomass equation must be
assembled and the energetic requirements must be determined. At the end of this stage,
the network must be refined, aiming at identifying and correcting gaps [21].

2.2.4.1 Genes, Proteins, and Reactions

All annotated metabolic genes must be associated with proteins and reactions through
the so-called Gene-Protein-Reaction (GPR) associations. These associations provide a mech-
anistic link between the genotype and phenotype of an organism. The simplest genetic
mechanism is one gene encoding one protein that is involved in one reaction: one gene-
one protein-one reaction. However, at the genome-scale the presence of enzyme complexes
(multiple genes-one protein), isoenzymes (multiple proteins-one reaction), and promiscu-
ous enzymes (one protein-multiple reactions) is very common. These cases must be veri-
fied, using the genome annotation and appropriate literature [8]. GPR associations usually
implement Boolean rules to link genes, proteins, and reactions in a less complex way. Once
again, biological databases can be used to perform these associations, using identifiers for
genes, proteins, and reactions [53].

2.2.4.2 Stoichiometry and Reversibility

Usually, reactions retrieved from online databases do not present the correct sto-
ichiometry. The commonest errors are missing water molecules and protons, polymer-
ization reactions (monomer + polymer → polymer), and missing or wrong metabolites
formula. The stoichiometry of these reactions must be corrected, using data available in
online databases, like BRENDA, BioCyc or ChEBI. Reactions that cannot be corrected must
be removed from the model [21].

Directionality of reactions must be determined at this stage, using the standard
Gibb’s free energy associated with the reaction, and leading to the definition of appro-
priated thermodynamic model constraints [54].

2.2.4.3 Substrate and cofactor usage

In databases like KEGG, each enzyme is associated with all identified reactions for
that enzyme in any organism. Cases whose enzymes are associated with multiple reac-
tions, with different substrates and cofactors, must be manually verified. Organism specific
databases and primary literature can be used as a source of information to determine the
substrate and cofactor specificity of each enzyme. Reactions with generic compounds, such
as ”nucleotide” or ”primary alcohol”, can be refined specifying the respective metabolites,
if such information is available. It is important to avoid false inclusions since it can dramat-
ically change the in silico behavior [8].
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2.2.4.4 Compartments and localization

The cellular localization of proteins and reactions is an important step in a GSM
model reconstruction since it determines the organelles in which the reaction occurs [7].
This step allows to distinguish similar reactions that occur in different compartments and
respective metabolites. These reactions and metabolites must be considered different reac-
tions/metabolites, and therefore, they must be replicated in each compartment [21].

In prokaryotic organisms, cellular compartments are usually limited to the cytosol,
periplasmic space, and extracellular space. On the other hand, in eukaryotes several or-
ganelles can be accounted, including the Golgi apparatus, lysosome, mitochondrion, or
chloroplast (in plants) [21]. Information about compartmentalization can often be found in
online databases and literature. However, there are bioinformatics tools, like PSORTb 3.0
and TargetP 1.1 (Table 1), which are able to predict the subcellular location of proteins based
on amino acid sequence and physiological properties of the organism. If such information
cannot be determined, the reaction should be assigned to the cytosol [21].

2.2.4.5 Biomass formation and energy requirements

The next step in GSM model’s reconstruction is to add a set of reactions describing
the biomass formation. The biomass reaction includes all known macromolecules as well as
their fractional contribution to the overall cellular biomass. These components usually com-
prises DNA, Ribonucleic Acid (RNA), proteins, lipids, and carbohydrates. However, other
cellular constituents like cell wall components must be included in the biomass reactions,
depending on the organism’s physiology. For each component, a reaction describing its
formation form the respective precursors must be included. Thus, the biomass formation
can be expressed as:

p

∑
k=1

ckXk −→ Biomass,

where ck are the coefficients of the metabolite or macromolecule Xk. The flux of
this reaction represents the growth rate of the organism. The biomass composition of the
target organism must be experimentally determined for cells in logarithmic phase [55]. If
such assays cannot be performed, bioinformatics methods and primary literature can be
used. According to some authors [56], the biomass equation of a closely related organism
can be used, without introducing significant errors in simulations. DNA, RNA and protein
contents can be estimated from the genome of the target organism, using the codon usage
bias [57], which provides better results than using the biomass equation from a related
species [58].

Macromolecules whose content cannot be inferred from the genome, like lipids and
carbohydrates, require experimental data. The lipid composition is more difficult to deter-
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mine, as each lipid has fatty acids whose chains can differ in length and saturation degree.
In this case, the model will not present all possible combinations, but only a compound rep-
resenting the average composition that is consistent with experimental data [8]. Although
cofactors represent a small portion of the biomass composition, they are crucial for cell
growth. Hence, they must be included in the biomass equation [59].

Besides the already mentioned macromolecules, the biomass formulation must in-
clude Growth associated maintenance (GAM) requirements in terms of Adenosine triphosphate
(ATP) molecules needed per gram of biomass synthesized. These requirements are associ-
ated with the energy required to replicate the cell (e.g. DNA, RNA, and protein synthesis).
Non-Growth associated maintenance (NGAM) requirements should also be included in GSM
models. These requirements account for the energy necessary to maintain cell conditions,
like turgor pressure and membrane potential, and are included in the model in a simple hy-
drolysis of ATP into Adenosine diphosphate (ADP) and inorganic phosphate [60]. Both GAM
and NGAM can be determined in chemostat experiments, plotting the ATP production rate
vs biomass growth rate, in which the y-intercept and slope represent the NGAM and GAM,
respectively. Alternately, these requirements can be estimated by determining the energy
required for macromolecular synthesis or obtained from an organism related data [8, 61].
For aerobic organisms, the amount of ATP formed per oxygen atom (P/O ratio) must be
determined, to obtain the ATP stoichiometry of oxidative phosphorylation [54]. Before pro-
ceed with the network refinement, growth medium requirements must be collected, and a
detailed growth medium must be defined, accounting a carbon, phosphorus, nitrogen and
sulfur sources, auxotrophies, and other environmental requirements of the target organism.

2.2.4.6 Network refinement

Despite all the benefits of automatic methods for GSM model reconstruction, a man-
ual refinement of the metabolic network must be performed. At this stage, missing and
unconnected reactions must be identified, as well as inconsistencies of proteins and func-
tion identifiers, and incomplete EC numbers. Reactions known to be present in the target
organism, but are absent in the network must also be included. The charge of each metabo-
lite must be determined, according to the pH of the organelle [7].

2.2.5 Conversion into a stoichiometric model

The third stage of the reconstruction process is to convert the metabolic network into
a constraint-based mathematical format, through a stoichiometric matrix. Here, pseudo-
steady state is assumed, with the metabolites concentrations remaining constant, and the
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consumption rates equal production rates for each metabolite, as shown in the following
equation:

S · v = 0 (1)

where S is the stoichiometric matrix (columns represent reactions and rows repre-
sent metabolites), and v is the flux vector. Usually, the number of fluxes distributions is
much greater than the number of mass balance constraints. Hence, metabolic networks are
undetermined systems, with an infinite number of solutions, the so-called null space of S.
An infinite number of solutions blocks the computation of a single solution, restraining the
information that can be retrieved from the model [7]. To reduce the null space of S, con-
straints must be added to the model. There are four different types of constraints that must
be considered: physicochemical, topological, regulatory and environmental conditions con-
straints. GSM models usually rely on physiochemical and environmental constraints (flux
and energy balances, enzyme and transporter capacity, and thermodynamics) [61]. These
constraints can be established by setting boundaries to reactions and transport fluxes. Reac-
tions boundaries determine their reversibility: a reversible reaction is constrained between
minus infinity and plus infinity, while the minimum or maximum of irreversible reactions
must be fixed to zero. Transport fluxes follow a similar approach: the maximum uptake of
nutrients must be limited to a specific uptake rate. Other usual constraints are related with
the oxygen availability, metabolites unavailable in the medium and excreted metabolites,
depending on the target organism and growth medium [7]. Constraints can be introduced
in the network as inequalities, as shown in equation 2.

αj ≤ vj ≤ β j, j = 1, ..., N (2)

As mentioned before, these constraints reduce the number of solutions, providing a
set of feasible flux distributions. However, additional constraints related with gene regu-
lation and kinetic limitations can also be considered. Figure 2 presents a simple example
of a metabolic network with hypothetical compounds and fluxes. Here, the key aspects of
converting a GSM network into a stoichiometric model are summarized.
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(1) (2)

(3) (4)

Figure 2.: Illustration of a metabolic network with four metabolites (A to D) and six fluxes (V1 to
V6). The stoichiometry of all metabolites is defined as 1 and -1. Section (1) represents the reaction
scheme. V1 and V6 are the exchange fluxes of the metabolites A and D, respectively. Double arrows
are for reversible reactions and irreversible reactions are indicated with forward arrow. Section (2)
shows the steady-state mass balances, and section (3) represents the boundaries of flux values (a is
the specific uptake rate for the metabolite A). Section (4) shows the mass balance in matrix format
(S matrix and flux vector). Adapted from Rocha I., Frster J. and Nielsen [21].

At the end of this stage, the stoichiometric model is saved in a Systems Biology Markup
Language (SBML) file [62], a simple format, readable by the most of specialized tools de-
signed for simulation, such as OptFlux [63] or Constraint-Based Reconstruction and Analysis
(COBRA) [64].

2.2.6 Validation of the Metabolic Model

The final stage of the GSM model reconstruction consists on the verification, evalua-
tion, and validation of the model. The metabolic model created must be tested for its ability
to produce biomass precursors. Usually, this analysis leads to the identification of missing
metabolic functions, which are added by repeating part of the second and third stages. It
is expected that the network presents a significant number of gaps. Therefore, dead-end
metabolites and missing reactions and functions must be identified first. Then, a deep lit-
erature search is required, using biochemical textbooks, KEGG maps, or other biochemical
maps, to identify the metabolic context of the dead-end metabolite. This allows identifying
the enzyme(s) involved in the production of the dead-end metabolite, providing a starting
point for literature search, and if necessary, the revision of the genome annotation [7]. Fill-
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ing a gap requires caution, as it may generate new gaps or enable the model to carry out
a function that the target organism is not able to do. However, in some cases, gap-filling
is needed to ensure the model’s feasibility, like guarantying the biomass precursors biosyn-
thesis. As a rule, if a gap reaction does not present information that sustains its existence,
it should not be added to the model, unless it is mandatory for the model’s usefulness [7].

Different methodologies can be followed to perform model simulation and flux dis-
tributions prediction. If measurements of external exchange fluxes are available, total flux
distributions can be calculated using Metabolic Flux Analysis (MFA) [65]. However, MFA is
fallible in two situations:

1. when the number of measured fluxes is not enough;

2. when a single solution does not exist due to the presence of different pathways with
the same overall stoichiometry (parallel and cyclic pathways) [54].

Nevertheless, several algorithms have been developed to explore GSM models in
metabolic engineering. These algorithms can be divided into: linear programming; quadratic
programming; mixed integer linear programming; and evolutionary programming [61].

Flux Balance Analysis (FBA) [56, 66] is the most frequently used approach for analysis
of biochemical networks [67]. This method is based on linear programming to calculate
optimal flux distribution, using a linear objective function and constraints. Therefore, an
FBA problem can be formulated as:

Maximize Z
subject to S · v = 0

αj ≤ vj ≤ β j, j = 1, ..., N

(3)

In metabolic engineering, the objective function Z can be related to different objec-
tives: maximize the cell growth rate (biomass formation); maximize/minimize the ATP
or Nicotinamide adenine dinucleotide (NADH) production; and maximize the production of
target metabolites [61]. FBA provides a single solution for flux distribution, which is not
necessarily unique since other optimal flux distributions can exist. Figure 3 illustrates
the conceptual basis of constraint-based modeling and FBA, showing the solution space
through the process.
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Figure 3.: Illustration of the conceptual basis of FBA. Without constraints, the flux distribution of
a biological network may lie at any point in a solution space. When mass balance constraints (1)
and capacity constraints (2) are applied to the network, an allowable solution space is defined. The
network may acquire any flux distribution within this space. Through optimization of an objective
function, FBA can identify a single optimal flux distribution that lies on the edge of the allowable
solution space. Adapted from Orth et al [67]

However, FBA has its limitations. Once it does not use kinetic parameters, it can
not predict metabolites concentrations, being only suitable for determining fluxes at steady-
state. FBA does not account for enzyme regulation by protein kinases or regulation of gene
expression, which can mislead predictions [67].

Besides FBA there are available several other algorithms and approaches for GSM
model’s analysis. Flux Variability Analysis (FVA) [68] is an approach for evaluating the pos-
sible range of each reaction flux satisfying the constraints. The Minimization of Metabolic Ad-
justment (MOMA) [69] is based on the assumption that the metabolism of knockout strains
is close to metabolism operating in wild-type strains. MOMA employs quadratic program-
ming without the assumption of optimal growth, and has been displaying better results
than FBA [69, 61]. Regulatory On/Off Minimization of Metabolic Fluxes (ROOM) [70] is an
algorithm similar to MOMA, but it uses mixed integer linear programming. OptGene [71]
is an evolutionary algorithm developed to find deletion targets in microorganisms, using
Simulated Annealing [72, 73] and Set-based Evolutionary Algorithms [72].

The analysis of strategic fluxes, like specific growth rate or by-product formation,
for different growth conditions is another usual approach for model’s evaluation. These
fluxes can be determined by implementing environmental conditions reported in literature
as model constraints. The comparison of the generated results can be used for model vali-
dation or to calibrate the model, adjusting, for example, the GAM and NGAM parameters.
Finally, simulations with deletion mutants must be performed, providing perceptions of
the prediction capability of the model. Regardless of the approach used for validation, if
the model does not satisfy the expectations, it must be verified and corrected, usually from
the second stage [7].
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2.2.7 Computational tools

The large number of steps required for reconstructing GSM models, lead to the
development of bioinformatics tools that perform these steps (semi-)automatically. The
increasing number of available tools provides several features that make the reconstruction
process faster and simpler (Table 2).

Table 2.: List of relevant available metabolic modeling tools used for GSM model’s reconstruction,
and respective features. Adapted from Dias et al [9]

Automatic metabolic modeling tools

Software MEMOsys 2.0 CoReCo Pathway

Tools

Model

SEED

SuBliMinaL

Toolbox

RAVEN merlin

Enzymes annotation
Transporters annotation
Compartments prediction a
Biomass equation b b b
Export to SBML
Runs locally
Graphical interface for
manual curation
Pathways visualization
GPR rules
Highlight metabolic dead-ends
Reactions stoichiometry c c c
validation
Prokaryotic models
Eukaryotic models

a Allow to manual assign compartments to reactions
b Biomass inserted manually

c Model SEED and Pathway tools use their own metabolite database

Tools like MEMOsys 2.0 [74] and CoReCo [75] are specialized in particular stages of
the reconstruction procedure, offering a few features to assist this process. Pathway tools
presents more features, through not allowing to export the model in the SBML format.
Model SEED [76] can only be used for prokaryotics. Other tools, such as the SuBliMinal
Toolbox, provide a great number of features but do not offer a graphical interface, which
can be an obstacle for less advanced users. RAVEN [77] requires a commercial license
for its utilization. merlin offers a panoply of features for all stages of the GSM model
reconstruction for both eukaryotic and prokaryotic beings. This open-source tool presents
a graphical interface, allowing also export the model in the SMBL format.
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2.2.7.1 merlin

The reconstruction process using merlin starts by downloading the GenBank file con-
taining the genome of the target organism, which can be performed automatically, inserting
the taxonomic ID. Then, two modules are provided. The first one allows performing the
genome annotation (enzymes and transporters annotation and compartmentalization). The
second module allows the model’s assembly and curation. Usually, the genome annotation
starts with the enzymes annotation. merlin allows to use both BLAST (against several re-
mote databases) and HMMER for similarity searches. For every possible annotation of each
gene, a score comprising two factors is calculated, according to equation 4.

Score = α · Scorefrequency + (1− α) · Scoretaxonomy (4)

The score can range between 0 and 1, and is used as a confidence level of the function
automatic assignment for each gene. The Scorefrequency is associated with the frequency each
EC number is found within the homologous gene record annotation. The Scoretaxonomy is re-
lated with the taxonomy of the organisms to which these records belong. After the manual
annotation of a small sample of genes, merlin automatically determines the α value, as well
as an upper threshold and a lower threshold using the embedded tool SamPler. EC number
assignments above and below these thresholds are automatically accepted and rejected, re-
spectively. The remaining ones must be manually annotated. The Transport Systems Tracker
(TranSyT) [78] is a tool implemented in merlin able to identify transport systems, and gener-
ate the corresponding transport reactions. The information present in TranSyT database is
automatically extracted from TCDB, and annotated using BioSynth with TC numbers. The
assignment of compartments to reactions can be achieved using protein localization predic-
tion tools, such as LocTree or Psortb. The obtained file can be loaded into merlin, and the
compartmentalization is then integrated into the model, assigning a compartment to each
reaction.

The second module allows performing the next steps in GSM model reconstruction.
The genome annotation can be integrated and combined with KEGG metabolic data, to
assembly a draft network. merlin allows determining the reversibility of reactions auto-
matically, using the MODEL SEED or Zeng[79] databases. Unbalanced and unconnected
reactions can be highlighted, and must be corrected manually. A reaction describing the
biomass formation (named ”e-biomass”) can be added to the model, together with reactions
discriminating the assembly of DNA, RNA, and proteins. These reactions (”e-DNA”,”e-
RNA”, and ”e-Protein”) describe the components of each one of these building blocks, as
well as the respective coefficients, determined by the codon usage bias. Lipids, carbohy-
drates, and other macromolecules must be added manually, as well as their coefficients
and mass fraction. Another important feature provided by merlin is the determination of
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the GPR rules, using KEGG. This task is automatic, but manual curation can be done yet.
Drains (exchange reactions) can also be added for external metabolites, setting a lower
boundary to 0 and an upper boundary to 999999. Then, drains of metabolites that compose
the growth media must be identified and changed if necessary.

merlin does not allow performing simulations and validation. However, the model
can be exported in the SBML format with the desired information (metabolites formulae,
biomass reaction name, level, and version of SMBL file). The SBML file can be validated
online if necessary. This file can be used for model validation, using appropriate tools for
this purpose [9].

2.2.7.2 Simulation and Validation tools

The SBML file containing the GSM model can be imported into several tools like
OptFlux and COBRA to perform simulations and validate the model.

Over the past decade, COBRA methods have been largely used to simulate, analyze
and predict a variety of metabolic phenotypes using GSM models. COBRA toolbox [80], a
MATLAB package for implementing COBRA methods, is currently running with version
3.0. This version presents some useful features, such as: network gap filling, 13C analy-
sis, and omics-guided analysis and visualization. COBRA toolbox 3.0 allows performing
common approaches for GSM model simulation, such as FBA, FVA, MOMA, OptGene, and
OptKnock. It allows visualization and map manipulation of metabolic models, using Cell
Designer [81, 82]. Another package implementing the COBRA methods is COBRApy [83].
This Python package is designed in an object-oriented way, simplifying the representation
of the complex biological processes, such as metabolism and gene expression. COBRApy
allows to perform FBA, FVA, and strain design (accessible through the COBRA Toolbox).

OptFlux in an open-source and modular software, with a graphical user interface,
designed for in silico metabolic engineering tasks. It was the first tool to use Evolutionary
Algorithms/Simulated Annealing metaheuristics or the OptKnock [84] algorithm for strain
optimization, and presents several methods for model simplification, pre-processing, and
visualization (compatible with the layout information of Cell Designer). It also allows the
utilization of stoichiometric metabolic models for:

1. phenotype simulation of both wild-type and mutant organisms, using the methods of
FBA, MOMA or ROOM;

2. Metabolic Flux Analysis, using a given set of measured fluxes to compute the admis-
sible flux space;

3. pathway analysis through the calculation of Elementary Flux Modes;

This software is compatible with the SBML format, allowing also importing and
exporting models to several flat file formats. [63].
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2.2.8 Current State and Applications of GSM models

For more than 15 years, GSM models have been applied in different fields, such as
food biotechnology, biomedicine, biofuels industry, and biological discovery. The utiliza-
tion of these models is based on their comprehensive description of genotype-phenotype
associations and simple mathematical formulation [22], which allows using GSM models
in different ways: in silico simulation of the phenotypic behaviour of the microorganisms
under different environmental and genetic conditions; metabolic engineering design; as-
signment of functions to unknown genes; and identification of drug targets [85, 86, 87, 88].

Until 2016, almost 200 GSM models for organims belonging to different domains
(Bacteria, Eukarya, and Archea) were released. However, the number of GSM models released
per year has been decreasing since 2014, which can be attributed to two reasons [87]:

1. the most important, scientifically interesting, and better-studied microorganisms have
already been reconstructed;

2. the reconstruction process has become a routine job, so the work is no longer pub-
lished.

Food biotechnology has been applying different mathematical approaches, especially
for design and optimization of interesting strains [89, 90, 91]. However, the full potential of
constraint-based modeling applied together with GSM models remains largely unexplored
in this field [92]. These methods provide opportunities for strain and culture development,
and optimization of bioprocesses for production of microbial food cultures. Lactic acid
bacteria has been an important group of organisms for this field.

Genome-scale metabolic models are already available for several LAB, including Lac-
tococcus lactis [93, 94], Lactobacillus plantarum [89], Streptococcus thermophilus [95], Lactobacil-
lus casei [96, 97], Oenococcus oeni [98], and Leuconostoc mesenteroides [99]. These models
have been providing relevant information for food industry, including knowledge about
carbohydrate utilization, amino acid auxotrophies, nutritional requirements, and metabolic
secretions [92].

GSM models can also be used for in silico strain design. The food industry has been
searching for strains with improved functional, technological, and safety properties [92], as
well as the ability to produce functional food ingredients (low-calorie sweeteners, vitamins,
amino acids and bioactive peptides [100, 101, 102]). Once GSM models present a view of
the target organism as a whole, the process of identifying targets for gene deletion, for
example, is easier and sometimes allows identifying unexpected targets [103]. An overview
of the contributions of GSM models of LAB is presented in Table 3.
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Table 3.: Main contributions of available GSM models for lactic acid bacteria.

GSM models of Lactic Acid Bacteria

Specie Contribution Reference

L. lactis IL1403 •Basis for other GSM model reconstructions
•Design of enhanced metabolic engineering

strategies

[94]

L. lactis MG1363 •Identification of reactions directly or indirectly
involved in flavor formation

[93]

L. plantarum WCFS1 •Comparison between the traditional view of ATP
production from lactate and acetate, and based on

experimental constraints.
•Identification of catabolic reactions for ATP

production

[89]

S. thermophilus LMG18311 •Identification of a unique pathway for
acetaldehyde production and the absence of a

complete pentose phosphate pathway

[95]

L. casei 12A, ATCC334 •Understanding of glutamate requirements for this
species

•Confirm the hypothesis of gene decay during
adaption to nutrient rich environments

[96]

L. casei LC2W •Analysis of the oxygen effect on flavor compound
biosynthesis.

[97]

O. oeni PSU-1 •Relation between consumption rates of fructose,
amino acids, oxygen, and malic acid and production

rates of erythritol, lactate, and acetate

[98]

L. mesenteroides iLME620 •Reported new hypothesis on the malolactic
fermentation mechanism

[99]

Usually, food cultures are based in microbial communities, instead of a single strain.
Therefore, interactions between strains must be evaluated, extending the constraint-based
modeling approach used for single organisms for microbial communities [92]. Different
frameworks, like mixed-bag modeling, species compartmentalization or multi-species dy-
namic modeling [104, 105, 106], can be used to build and analyze community metabolic
models [92].

Although GSM models present a huge potential in different fields, there are some
limitations for its reconstruction and application. First, for less studied organisms, lack
of knowledge and experimental data presents an obstacle in the reconstruction process
[87]. Second, this process is still slow and requires a substantial amount of knowledge and
effort, despite the recent tools that automated part of the process. Finally, the negative
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perception of the general public on genetically modified organisms, together with the tight
regulamentation imposed by many European countries [107] are a major barrier, especially
for food biotechnology [92].

2.3 lactic acid bacteria

2.3.1 Background

The term ”lactic acid bacteria” was used for the first time at the beginning of the
20th century to describe ”milk souring organisms” [108]. The criteria used back then (cel-
lular morphology, mode of glucose fermentation, temperature ranges of growth, and sugar
utilization patterns) served as the basis for the current classification of LAB. Modern taxo-
nomic tools, especially molecular biology methods, allowed also tracking the origin of this
group, as well as refine its taxonomy [109].

Apparently, LAB represent an adaptation of ancient Bacillus-like soil and plant organ-
isms to the gut of herbivorous animals. The adaptation process induced the loss of many
metabolic activities, that are compensated by efficient fermentation systems, energy recy-
cling, transport mechanisms, adhesion to intestinal cells, and acid production and tolerance.
These adaptive advantages provide to LAB the means to compete with other microorgan-
isms in their environment [109, 110].

LAB belong to the phylum Firmicutes, class Bacilli, and order Lactobacillales. Currently,
LAB comprises seven genera: Lactococcus, Lactobacillus, Enterococcus, Pediococcus, Streptococ-
cus, Leuconostoc and Oenococcus [111, 112]. A phylogenetic tree of LAB and some related
species is shown in Figure 4.
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Figure 4.: Phylogenetic tree of different species belonging to the LAB group. The tree was cre-
ated by applying a neighbor-joining method to an alignment of 16S rRNA gene sequences ob-
tained from NCBI, using the following GenBank accession numbers: M58802 (Lactobacillus aci-
dophilus), NR 115534 (Lactobacillus casei), NR 119069 (Lactobacillus reuteri), M58827 (Lactobacillus
plantarum), M58834 (Pediococcus pentosaceus), NR 036924 (Weissella cibaria), NR 040810 (Oenococcus
oeni), NR 041727 (Leuconostoc citreum), M23035 (Leuconostoc mesenteroides), NR 112116 (Bacillus sub-
tilis), NR 040789 (Enterococcus faecalis), NR 040954 (Lactococcus lactis), NR 042778 (Streptococcus ther-
mophilus), NR 145535 (Bifidobacterium longum), NR 040867 (Bifidobacterium animalis), M58729 (Bifi-
dobacterium adolescentis).

From the physiological and metabolic perspective, LAB are gram-positive, nonsporu-
lating, and nonrespiring (but aerotolerant) rod or cocci bacteria, which produce lactic acid
as the major final product of fermentation processes. There are two basic fermentative path-
ways for sugars in LAB: the homofermentative pathway (glycolysis or Embden–Meyerhof–
Parnas (EMB) pathway), which produces only lactic acid; and the heterofermentative path-
way (6-phosphogluconate pathway), which produces CO2, ethanol, and acetic acid, besides
lactic acid. Pentoses can only be fermented by heterofementative LAB, entering in the
respective pathway as ribulose-5-phosphate or xylulose-5-phosphate [109].

LAB are generally considered beneficial and probiotic microorganisms, contributing
also to the biopreservation of fermented products, due to the production of bacteriocins.
Additionally, acetaldehyde and diacetyl produced by LAB provide an appealing flavor to
these products [110]. Therefore, some species are used by food industry in fermented
foods and beverages, such as cheese, yogurt, and other fermented milk; sourdough and
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other breads; alcoholic beverages, such as wine, cider and beer [113]. However, some
genera (Streptococcus, Lactococcus, Enterococcus, Carnobacterium) present species or strains
recognized as pathogens [109].

2.3.2 L. acidophilus

2.3.2.1 Taxonomy

L. acidophilus belongs to the Lactobacilli genus, the largest and the most diverse genus
of LAB, comprising more than 200 species and subspecies [114]. This species belongs to a
heterogeneous group of Lactobacilli called L. acidophilus complex, comprising six different
species: L. acidophilus, Lactobacillus crispatus, Lactobacillus johnsonii, Lactobacillus gallinarum,
Lactobacillus amylovorus, and Lactobacillus gasseri. The recognition of this group was per-
formed in 1980 by DNA hybridization studies [115, 116]. The phylogenetic relationship of
the L. acidophilus complex, as well as other relevant close related species, are presented in
Figure 5.

Figure 5.: Phylogenetic tree showing the relationship between members of the L. acidophilus complex
(marked with ”*”), other Lactobacilli, and Lactococcus lactis. The tree was created by applying a
neighbor-joining method to an alignment of 16S rRNA gene sequences obtained from NCBI, using
the following GenBank accession numbers: AM088020 (L. lactis),M58805(Lb. amylovorus),Y17362 (Lb.
crispatus),X61138 (Lb. acidophilus),X61141 (Lb. helveticus), AJ242968 (Lb. gallinarum),AJ002515 (Lb.
johnsonii),X52654 (Lb. delbrueckii), M58820 (Lb. gasseri), X52653 (Lactobacillus plantarum).

L. acidophilus is most closely related to Lactobacillus helveticus (a milk-fermenting Lac-
tobacillus), L. crispatus, and L. amylovorus. Surprisingly, L. acidophilus is more phylogeneti-
cally distant of some species of the L. acidophilus complex, like L. gasseri, than other milk-
fermenting Lactobacilli, such as L. helveticus. The genetic relationship between members of
the L. acidophilus complex, and other Lactobacilli (especially L. helveticus and L. delbrueckii),
has been elucidated by genome sequencing of these species, and consequent comparative
genomics. These methods allowed to find relevant disparities between species belonging to
the L. acidophilus complex that were not found previously [117].
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2.3.2.2 Genomic features

Currently, 16 L. acidophilus strains have been sequenced, with 6 genomes available
[4, 118, 119, 120, 121]. The genome of the La-14 strain was published in 2013 by Stahl and Bar-
rangou [4], presenting a 1, 991, 830-bp length, in agreement with other L. acidophilus strains.
Genomes of this species have a relatively small size (1.25-2.05 Mbp) [111], which represents
an outcome of the evolutionary adaption to nutrient-rich niches, like the mammalian in-
testinal tract. These strains lack amino acid biosynthetic pathways, which is compensated
with the expression of several proteases and oligopeptide transporters. Moreover, genomes
of L. acidophilus strains encode multiple saccharide transporters, allowing the catabolism of
different carbohydrates present in the gastrointestinal tract. In total, about 13-18% of these
genomes encode amino acid and sugar transport proteins [117].

Despite biochemical and physiological analysis show some diversity between L. aci-
dophilus strains, genotypic analysis indicates less disparity within the genomes of this
species [4, 111]. The alignment of genomes of the La-14 and NCFM strains showed high
similarity (98%) [4]. The relative amount of GC is 34.7% for both strains, and a deletion in
an ABC transporter ATP binding protein was found in the La-14 strain. In total, 16 single-
base-pair indels, and 95 single-nucleotide-polymorphisms were found, affecting 52 genes
[4].

2.3.2.3 Morphology and Growth conditions

Like other LAB, L. acidophilus is a gram-positive microorganism. This species is a
homofermentative anaerobic bacterium, presenting a rod shape that ranges in size from 2
to 10 µm. It grows at a temperature of 30-45 °C, and a pH of 4-5 [3], requiring not only
carbohydrates, but also nucleotides, amino acids, vitamins, calcium pantothenate, folic acid,
niacin, and riboflavin. Pyridoxal, thiamine, thymidine, and vitamin B12 are not essential
[122].

Alanine, lysine, asparagine, glutamine, and glycine are the only non-essential amino
acids in L. acidophilus. However, this species is able to synthesize some amino acids if
specific precursors are available on the growth medium: Leucine (α-ketoisovalerate or
α-ketoisocaproate); Serine (3-phosphoserine); tyrosine (hydroxyphenylpyruvate); cysteine
(sulfide); and phenylalanine (chorismate or phenylpyruvate) [123].

L. acidophilus presents resistance to several antibiotics: kanamycin, chloramphenicol,
erythromycin, tetracycline, penicillin, and vanomycin [124, 125, 126]. However, some drugs
were recognized as inhibitors of L. acidophilus growth, such as amoxicillin, amiodarone, and
paracetamol [127].

The cell wall of L. acidophilus is composed by four major components: peptidoglycan,
Teichoic acid (TA) (wall teichoic acids and lipoteichoic acids), S-layer, and polysaccharides
(Figure 6) [128].
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Figure 6.: Cell wall structure of L. acidophilus. The plasma membrane is covered by peptidoglycan,
decorated with teichoic acids and neutral polysaccharides, surrounded by S-layer proteins. Adapted
from Delcour et al [128]. Created with BioRender.com.

Peptidoglycan is a polymer composed by sugars, N-acetylglucosamine(GlucNAC)
and N-acetylmuramic acid (MurNAC) cross-linked to a peptide, forming a three-dimensional
mesh-like layer. The amino acid portion of the peptidoglycan of lactic acid bacteria is com-
posed by a pentapeptide. The amino acid linked to the MurNAC is usually L-alanine, fol-
lowed by D-glutamate. The other three positions can differ, depending on the species [128].
In L. acidophilus, the pentapeptide is composed by L-alanine/D-glutamate/L-lysine/D-alanine/D-
alanine, cross-linked by D-aspartate [129, 122]. Peptidoglycan major function is to maintain
cell integrity, but also gives support to proteins and teichoic acids, and defines the cell
shape. Additionally, it can be a target for recognition by the eukaryotic innate immune
system [130].

Teichoic acids can comprise more than 50% of the weight of the cell wall [130]. In
L. acidophilus, two types of teichoic acids are present: Wall teichoic acid (WTA), and Lipotei-
choic acid (LTA). The structures and abundance of these macromolecules are quite diverse,
depending on the strain, stage of growth, pH of the medium, carbon source, etc. WTA
consists of a polymer (usually composed by glycerol), linked to peptidoglycan by a link-
age unit (a disaccharide). The glycerol units can have hydroxyl groups (OH) substituted
with glucose or D-alanine. Wall teichoic acids are involved in protection of the bacteria
from lysozyme [131] and antibiotics like vanomicyn [132], and play important roles in cell
division [133]. In L. acidophilus, LTA is a polyglycerophosphate chain (with D-alanine sub-
stitutions), anchored to the membrane by a glycolipid. LTAs are related with scavenging of
cations required for enzyme functions (especially Mg2+) [134], adhesion to epithelial cells
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[130], and interaction with bacteriophages [135]. The structures of both WTA and LTA are
presented in Figure 7 [135].

Figure 7.: General structure of TA. A: LTA with a poly-glycerol-phosphate chain and a glycolipid
anchor to plasmatic membrane. B: WTA with a poly-glycerol-phosphate chain, and a dissacharide
anchor to peptidoglycan; R indicate potential substitute groups of polyols chains (e.g., D-Ala, Glc,
Gal, GlcNAc). Adapted from Chapot-Chartier et al [135]

L. acidophilus strains are reported to present an S-layer [136]. S-layers are two dimen-
sional arrays of proteins and glycoproteins, which form a symmetric, porous, and lattice-
like structure. Their major functions are related with protection from environmental hostile
conditions, adhesion to mucus and epithelial cells, and scaffolding extracellular proteins,
such as enzymes [137].

The term Exopolysaccharide (EPS) refers to bacterial polysaccharides found outside
of the cell wall [138], either associated with the cell surface or secreted to the extracellular
space. EPS can have different chemical compositions, molecular weight, and charge, accord-
ing to the environmental conditions at their biosynthesis, and the microorganism. EPS are
thought to protect the cell against desiccation, phagocytosis, antibiotics, toxic compounds,
osmotic stress, and biofilm formation [139].

2.3.2.4 Metabolic features

Free sugars can be imported from the extracellular space through two ways: perme-
ase systems, and specific Phosphotransferase system (PTS). L. acidophilus can only use glycol-
ysis to ferment hexoses, making of this species a homofermentative LAB. Different carbo-
hydrates can be used by this organism to obtain lactic acid (D and L isomers), including
fructose, galactose, lactose, cellobiose, amygdalin, maltose, glucose, and stachyose.
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Lactic acid is an anti-microbial compound secreted by L. acidophilus. Additionally,
hydrogen peroxide and different bacteriocins are also produced by this species. Bacteri-
ocins are cationic proteins produced at ribosomes, with a molecular weight ranging from
2.5 to 10 kDa, with the ability to inhibit and kill other bacteria living in the same ecological
niche [140], without any repercussion to the parent strain. L. acidophilus bacteriocins were al-
ready studied by Todorov et al [127]. The spectrum of this anti-bacterial compound includes
activity against different bacteria, such as Listeria monocytogenes, and Listeria innocua, two
pathogenic species. Activity against cephalosporin resistant Escherichia coli was also iden-
tified [140]. However, no activity was detected against Staphylococcus aureus, Lactobacillus
sakei and Bacillus cereus [127].

2.3.2.5 Probiotic Properties and Industrial Applications

Several LAB species, mainly from the genera Lactobacillus and Bifidobacterium are
considered to be probiotic. The probiotic effects on human health of L. acidophilus have been
well described, and are a consequence of its morphology (especially cell wall components),
and production of anti-microbial drugs, such as bacteriocins. These effects include anti-
inflammatory activity [141], treatment of constipation and diarrhea [142], anti-Helicobacter
pylori infection (responsible for gastritis, peptic ulcers, and gastric cancer) [143], immune-
enhancing and anticarcinogenic [144, 145], antidiabetic and antioxidant [146], cholesterol-
lowering [144], antifungal and antibacterial activity [147, 148, 149], and prevention and
treatment of hyperoxaluria [150].

L. acidophilus strains have been used for the production of several fermented dairy
products. The most common are sweet acidophilus milk (mostly consumed by individuals
with lactose intolerance) and yogurt. This species is also used in several types of cheese,
usually together with other probiotics (L. casei, Lactobacillus paracaisei or Bifidobacterium spp.).
Moreover, L. acidophilus is also used in non-dairy products, such as soymilk, and fermented
tomato, carrot, cabbage and beet juice [122]. Besides the mentioned products, L. acidophilus
can be obtained from nutritional supplements, usually available as freeze-dried powders,
granules, and capsules [3].
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M AT E R I A L S A N D M E T H O D S

The L. acidophilus La-14 genome sequence was retrieved from the GenBank reposi-
tory, with the accession number CP005926 (assembly ID ASM38967v2). A draft metabolic
network for this strain was obtained in previous work. Based on the assembled network,
the reconstruction process has continued until a validated GSM model was obtained. Mer-
lin was used for the genome annotation, manual refinement of the network, and conversion
of the network into a stoichiometric model. In the model validation stage, COBRApy and
Optflux were used for gap identification, in silico simulations, and analysis of the GSM
model. Online resources (described in subsection 2.2.2) and primary literature were used
as a source of information.

3.1 previous work

Enzymes annotation was performed in previous work, using SamPler [151], a tool
included in merlin that allows obtaining a semi-automatic annotation. This process was
based on two BLAST searches performed in March 2018, against Swiss-Prot and UniProtKB,
setting an e-value threshold of 10−30. Genes requiring manual annotation (according to the
scoring system described in subsubsection 2.2.7.1) were annotated based on the workflow
available in support material (figure S1).

A draft network was assembled by integrating the enzymes annotation and loading
KEGG’s metabolic data (including spontaneous reactions).

Unbalanced reactions were identified using the tool ”Unbalanced reactions” avail-
able in merlin. The stoichiometry of these reactions was corrected, using BRENDA, BioCyc,
and ChEBI to retrieve information on metabolites formula and reaction stoichiometry. Re-
actions whose stoichiometry was not possible to correct were removed from the model.
Metabolites with variable formula but necessary to keep the model functionality, such as
”Fatty acid” or ”Acyl-carrier-protein”, were maintained in the network. Approaches used
to correct unbalanced reactions are presented in Table 4.

30
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Table 4.: Approach used to correct the stoichiometry of unbalanced reactions.

Problem Correction

Missing water molecules or protons Add water molecules/protonsa, in merlin’s
”Reactions” panel

Metabolites with missing/wrong
formula

Add/correct the formulaa, in merlin’s
”Metabolites” panel

Polymerization reactions (polymer +
monomer → polymer)

Remove the polymer from the reactants,
assuring that the stoichiometry is correct

(monomer → polymer)b

Generic reactions Remove the reaction

a These alterations were performed after checking information available in BRENDA, BioCyc or
ChEBI.
b Depolymerization reactions were corrected similarly, by removing the polymer from the products.

The sub-cellular protein location was obtained using PSORTb 3.0, and the results
were then loaded into merlin. Proteins with ”Unknown” location were automatically as-
signed as ”CYTOPLASMATIC”. The integration of the predicted protein locations has
doubled reactions and metabolites present in different cellular compartments.

3.2 manual curation of the network

3.2.1 Reversibility and Directionality

Since all reactions loaded from KEGG are reversible by default, it is necessary to re-
fine the respective reversibility and direction. This step was performed automatically using
the tool available in merlin for this purpose, setting the Ma H. and Zeng A. [79] database as
the data source.

Through the reconstruction process, the reversibility and direction of some reactions
were manually corrected, which was performed according to the following workflow:

1. BRENDA: Information for the reaction associated with L. acidophilus at BRENDA was
consulted, if available.

2. L. acidophilus La-14 database at BioCyC: Information retrieved from here was used if
the reversibility and direction of the reaction are manually curated.

3. BiGG: Information from reactions present in GSM models of closely related organisms
was preferred.
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However, if no information was found in these databases, the e-quilibrator tool
(www.equilibrator.weizmann.ac.il) was used. This tool determines the free Gibbs energy
(∆G0) for a given reaction, allowing to infer its reversibility and direction. Cases in which
the ∆G0 could not be determined by this tool, such as reactions with metabolites with
non-specific formula, the reaction was considered to be reversible, except for reactions in-
volving ATP hydrolysis, and reactions associated with enzymes that can use both NAD+

and NADP+ as cofactor.

3.2.2 Transport Reactions

Transport reactions were automatically obtained using TranSyT. This tool retrieves
information from TCDB and performs the annotation using BioSynth through TC numbers.
An internal database is then created with the originated transport reactions. The automatic
annotation is obtained through a BLAST of the organism’s genome, and the originated
reactions are included in a pathway labeled as ”Transporters Pathway”. Nevertheless, ad-
ditional transport reactions were added in the following cases:

1. A metabolite is present in the growth medium, but does not have any uptake reaction
associated;

2. It is expected the production of a given metabolite, but there are no excretion reactions
associated;

3. A transport mechanism is described in the literature, but was not automatically in-
cluded by TranSyT;

4. A metabolite is known to cross the membrane through simple diffusion.

In these cases, the TCDB, BiGG, and TransportDB 2.0 databases were used to retrieve
information for substrates, mechanisms, and genes associated with each transport reaction.
If no information was found, the transport reaction was added without a gene association
to assure the model functionality.

3.2.3 Substrate and cofactor usage

Enzymes associated with more than one reaction required manual refinement to
determine the substrate and cofactor specificity of these enzymes. Special attention was
taken to oxidoreductases and enzymes whose reactions include carbohydrates.

Oxidoreductases often use NAD+ and/or NADP+ as an acceptor. The specificity of
these enzymes was determined using the BRENDA, BioCyc, and UniProt databases, and
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GSM models of closely related species (B. subtilis 168 [152], L. Lactis ssp. lactis IL1403 [94],
and L. plantarum WCFS1 [89]).

Reactions including monosaccharides (glucose, fructose, galactose) and its derivates
were analyzed to select the correct conformation (α and/or β) used by the corresponding
enzyme. If an enzyme can catalyze a reaction using both conformations, the respective
reaction was duplicated. This step was performed retrieving information from BRENDA,
BioCyc, and literature.

3.2.4 Pathway-by-pathway analysis

Pathways loaded from KEGG were globally analyzed. Generic pathways were re-
moved from the model, since their visualization on KEGG maps is not straightforward, and
the large majority of the associated reactions are included in other pathways. Redundant
pathways (those which all reactions are associated with other pathways), and pathways
with less than three associated reactions were also removed. This step allowed to decrease
the number of pathways, simplifying the next stages of the reconstruction process. When
a pathway is removed, the associated reactions are kept in the model, not associated with
any pathway.

The remaining pathways were analyzed according to the following workflow:

1. Comparison of the pathway in the model with the respective pathway on KEGG maps
for L. acidophilus La-14;

2. If differences were identified, the genome annotation was reviewed and compared
with information present in the BioCyc database for L. acidophilus La-14;

3. In case of doubt, primary literature was consulted.

3.2.5 GPR associations

The GPR associations were obtained using merlin, which retrieves information from
KEGG BRITE. For every EC number present in the model, merlin searches for the respective
subunits and stoichiometry of the protein complex. This information is then processed,
allowing to identify the GPR rules for each protein. If errors in the GPR rules were identified
through the model validation stage, the KEGG, BioCyc, and BiGG databases were used.
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3.3 conversion into a stoichiometric model

3.3.1 Biomass and Energy Requirements

As mentioned before, the biomass equation represents the biomass formation from
complex macromolecules. The complex macromolecules included in the biomass equation
were inferred from the L. plantarum WCFS1 model [89]: DNA, RNA, protein, lipids, ex-
opolysaccharides, peptidoglycan, lipoteichoic acids, teichoic acids, and cofactors/vitamins.

Merlin presents the tool e-BiomassX [153] that generates a template for the biomass
formulation. In a pathway labeled as ”Biomass Pathway”, this tool creates reactions for
the assembly of DNA, RNA, protein, and cofactors, as well as a reaction representing the
biomass equation. The biomass equation was formulated as:

p

∑
k=1

ckXk −→ e-biomass,

where ck are the coefficients (in g/gDW) of the macromolecule Xk, and ”e-biomass” rep-
resents the biomass of the organism. The content of each macromolecule and respective
precursors was determined using three different sources: experimental data, GSM models
of closely related organisms, and merlin.

The mass fraction (g/g DW) of each macromolecule was determined using informa-
tion retrieved from the L. plantarum WCFS1 GSM model, except for exopolysaccharides,
lipoteichoic acids, and cofactors. The exopolysaccharide content was inferred from LAB
GSM models (L. plantarum WCFS1, L. casei LCW2, and L. lactis ssp. lactis IL1403), as well as
experimental data for L. helveticus and L. rhamnosus. The content of lipoteichoic acids and
cofactors was inferred from the L. lactis ssp. lactis IL1403 model.

The DNA, RNA and protein precursors and respective content were automatically
determined by the e-BiomassX tool, using the codon usage bias. The DNA assembly reaction
from deoxyribonucleotides (dXTPk) was formulated as:

∑ cidXTPk −→ e-DNA + Orthophosphate,

where ci represent the stoichiometry of dATP, dCTP, dTTP, and dGTP. The RNA assembly
reaction from ribonucleotides (XTPk) was formulated as:

∑ ciXTPk −→ e-RNA + Orthophosphate,

where ci represent the stoichiometry of ATP, CTP, UTP, and GTP. The protein assembly
reaction was formulated as:
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∑ ci AA− trnai −→ e-Protein + citrnai + H2O,

where ci represent the stoichiometry of each aminoacyl-trna (AA-trnai). The amino acid
composition in the protein fraction was corrected for amino acids present in peptidoglycan,
LTA, and WTA.

The precursors of lipids and peptidoglycan were determined using L. acidophilus ex-
perimental data. The EPS composition was inferred from experimental data of L. acidophilus
and L. helveticus. The precursors of teichoic acids were included according to the B. subtillis
168 model [152]. For lipoteichoic acids, experimental data of L. helveticus was used. The co-
factors and vitamins included in the model were obtained from merlin (universal cofactors),
L. plantarum WCFS1 model, and primary literature.

Although fatty acids are not directly included in the biomass reaction, they are com-
ponents of lipids and lipoteichoic acids. Hence, a metabolite representing the average
fatty acid composition (”Fatty acid”) was created and included in a reaction named as
”R-Fatty acid”. The molecular weight of this metabolite allows determining the molecular
weight of both lipids and lipoteichoic acids.

The GAM energy requirement was determined using information retrieved from the
GSM model of L. plantarum WCFS1, and was added to the ”R e-biomass” reaction. The
NGAM energy requirement initial flux was obtained from the same metabolic model and
was then adjusted to experimental data. The adjustment was performed by plotting the
growth rate vs ATP maintenance value. The NGAM was included in the model in a simple
ATP hydrolysis reaction, constraining the lower and upper bounds according to the defined
value.

3.3.2 Growth medium and exchange reactions

A literature search for experimental data of L. acidophilus was performed, allow-
ing to determine a Chemically Defined Medium (CDM) for this species. A minimal growth
medium was defined [123], containing all the compounds needed to allow the growth of L.
acidophilus: carbon, nitrogen, sulfur, and phosphorus sources, and all the auxotrophies of
this species. This medium was used for the model troubleshooting stage, where the model
was tested to produce all the biomass precursors. Experimental procedures usually apply a
rich medium, containing growth-promoting metabolites, such as non-essential amino acids,
nucleotides and vitamins. This medium was defined [123] and used to access the growth
rate by comparison with experimental data. The minimal and rich CDM are available in
support material (Table S3).

Exchange reactions represent the growth medium in a metabolic model, including
both consumed and produced metabolites. Merlin allows creating these reactions automat-
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ically based on the transport reactions present in the model. The lower bound of exchange
reactions for metabolites present in the CDM was changed from 0 to -999999, and the up-
per bound was maintained as 999999. The carbon source (glucose or other carbohydrates)
was selected as the growth-limiting factor, so the corresponding lower bound was settled
according to experimental data. In silico simulations in anaerobiosis were performed by con-
straining the lower bound of the oxygen exchange reaction to zero. Aerobiosis was defined
by unconstraining the oxygen uptake.

3.3.3 Model troubleshooting

A tool available in merlin (BioISO) was used to identify and solve gaps blocking the
synthesis of biomass precursors. This tool uses the COBRApy toolbox to retrieve information
regarding metabolites and reactions, allowing also the creation of exchange, transport, sink
and demand reactions. Whenever a biomass precursor was not being produced (or available
in the medium), a traceback was performed to identify gaps, namely missing enzymatic and
transport reactions, errors in the genome annotation, and reactions with wrong reversibility
or direction. After the identification of the gap, online databases (KEGG, BRENDA, BioCyc,
and BiGG) and primary literature were consulted to solve it. This iterative process was
repeated until a positive flux through the biomass reaction was achieved.

3.4 gap filling

Dead-end metabolites and blocked reactions were automatically identified by the
”Blocked reactions” tool, available in merlin. The respective pathway was analyzed using
the ”Draw in Browser” button, which allows highlighting both metabolites and enzymes
on KEGG maps. Figure 8 shows an example of a view on KEGG maps for the ”Glycine,
serine and threonine metabolism” pathway.
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Figure 8.: Example of a KEGG metabolic map (”Glycine, serine and threonine metabolism”) colored
by merlin.

The color scheme represented above has the following key:

1. Green: The enzyme and reaction are present in the model, and the reaction is not
blocked;

2. Dark Blue: The reaction is present in the pathway, but the correspondent enzyme is
missing; however, another enzyme present in another pathway might be associated
with the reaction;

3. Cyan Blue: The enzyme is present in the model, but the reaction is connected to a
dead-end;
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4. Red: The enzyme is present in the network, but the reaction is a blocked and associ-
ated with a dead-end metabolite;

5. Colorless (Black): The enzyme is not present in the network.

Each blocked reaction and dead-end metabolite was analyzed, using information
present on BioCyc, BiGG, BRENDA, and primary literature. Blocked reactions for which
no information was found were maintained in the model.

3.5 model validation

The model validation stage was performed using Optflux v3.4.0 for simulation and
analysis of the metabolic model, followed by comparison with experimental data and liter-
ature. This process allowed to identify and correct inconsistencies between the model and
available information on the metabolism of L. acidophilus. Moreover, the validation of the re-
constructed metabolic model was compared with the semi-automatic AGORA model for L.
acidophilus NCFM (available at www.vmh.life/#microbe/Lactobacillus acidophilus NCFM)
[154]. The same environmental conditions were applied to both models if possible.

Optflux presents several tools for simulation and analysis of GSM models. Using
an available plug-in, the model was automatically loaded from merlin to Optflux without
generating an SBML file, simplifying and accelerating the process.

Different environmental conditions were settled by manipulating the lower and up-
per bound of reactions, including not only drains but also transport and enzymatic re-
actions. This allows changing the growth medium characteristics, remove or change the
reversibility of reactions, directly in Optflux without introducing alterations in the original
model.

In silico simulations were performed using pFBA maximizing the biomass produc-
tion, by setting the biomass reaction as the objective function. The originated panel presents
several relevant information, like the flux of all reactions, and consumed and produced
metabolites. Additionally, Optflux also allows simulating knockout, and over and under-
expression of genes and reactions. Knockout simulations were performed using LMOMA
as simulation method. The determination of critical genes and reactions was also performed
with Optflux, which uses FBA to perform this task.

Various tests were applied to validate the metabolic model, including:

1. Spontaneous growth;

2. Auxotrophies;

3. Growth rate assessment;
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4. Secreted products;

5. Alternative element sources;

6. Gene essentiality.

Spontaneous growth was tested by setting the lower bound of all drains to zero.
Auxotrophies were verified by the single omission of amino acids, pyrimidines,

purines, and cofactors from the CDM. The requirement for these metabolites was verified
and compared with information described in literature.

To assess the growth rate, the rich medium was used for comparison and adjustment
to experimental data, in anaerobic conditions. In silico simulations in aerobic conditions were
also performed for qualitative comparison with experimental data.

Literature was consulted to collect information about expected secreted compounds
by L. acidophilus, namely fermentation end-products. The production of the expected metabo-
lites was tested in silico, using different environmental conditions.

The growth with different carbon sources and the amino acid requirements were
tested and compared qualitatively with available data. The performance measure calcula-
tions used to evaluate the ability of the model to present growth using different carbohy-
drates were determined as follows:

1. Sensitivity: TPR = TP / (TP + FN);

2. Specificity: SPC = TN / (FP + TN);

3. Negative Predictive Value (NPV): NPV = TN / (TN + FN);

4. Accuracy: ACC = (TP + TN) / (TP + TN + FN + FP).

, where TP represents true positive, FN false negative, TN true negative, and FP false
positive.

Critical genes and critical reactions were identified using the tool present in Optflux
for that purpose, under different environmental conditions: minimal and rich medium, and
aerobiosis/anaerobiosis.

The main metabolic pathways (carbohydrate and pyruvate metabolism, biosynthetic
capabilities) were analyzed according to in silico simulations and information available in
literature.
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R E S U LT S A N D D I S C U S S I O N

4.1 genome annotation

4.1.1 Enzymes annotation

The enzymes annotation provided 716 genes accepted as enzyme encoding genes, re-
sulting in 433 different EC numbers. Throughout the manual curation and model validation
stages, the annotation was updated to correct the model, according to experimental data
and available information. These changes, together with the removal of generic reactions,
resulted in a reduction of the number of genes and enzymes present in the model.

Thus, the model presents 315 different EC numbers, four of which are incomplete:
Fatty acid kinase (EC 2.7.-.-); Major cardiolipin synthase ClsA (EC 2.7.8.-); Glycosyltrans-
ferases (EC 2.4.-.-/2.4.1.-). The fatty acid kinase, described in different Lactobacillales [155],
has been associated with the phosphorylation of exogenous fatty acids. However, a com-
plete EC number was not found for this enzyme. The Major cardiolipin synthase CLsA
catalyzes the synthesis of cardiolipin from phosphatidylglycerol and has just a preliminary
EC number assigned at BRENDA. The glycosyltransferases with the EC numbers 2.4.-.-
and 2.4.1.-, belonging to the eps gene cluster, were included in the biomass reaction for ex-
opolysaccharides. Table 5 shows the final distribution of EC number classes in the model.

Table 5.: Enzymes distribution in the model according to the EC number classification system.

EC class Percentage of EC numbers (%)

EC 1: Oxidoreductases 14.3
EC 2: Transferases 37.8
EC 3: Hydrolases 17.1
EC 4: Lyases 9.5
EC 5: Isomerases 6.4
EC 6: Ligases 14.6
EC 7: Translocases 0.3

40



4.1. Genome annotation 41

Oxidoreductases represent 14.3% of the enzymes included in the model. These
enzymes are associated with the reduction and oxidation of numerous substrates, using
mainly NAD+ and NADP+ as a coenzyme. Lactate dehydrogenase, an important enzyme
of the L. acidophilus metabolism, belongs to this class. Genes encoding both L and D-lactate
dehydrogenases were identified in the genome, in agreement with the production of both
isomers of lactic acid by L. acidophilus reported in the literature [114].

Transferases are the most representative class in the model, comprising 37.8% of total
enzymes. From these, 50% are phosphate transferring enzymes (EC 2.7), mainly involved
in nucleotide metabolism and carbohydrate phosphorylation.

Hydrolases included in the model (17.1%) are predominantly associated with hydrol-
ysis reactions acting on ester (EC 3.1), sugar (EC 3.2), and carbon-nitrogen (EC 3.5) bonds.
These enzymes allow the catabolism of lipids, carbohydrates, and amino acids.

Most of lyases included in the model are decarboxylases (EC 4.1.1), including the
oxalyl-CoA carboxy-lyase. This enzyme plays a role in the catabolism of oxalate and has
been extensively studied in L. acidophilus La-14, due to the oxalate-degrading capability of
this strain [156, 157, 158, 159].

Isomerases represent just 6.4% of the enzymes, including racemases, epimerases,
and mutases. Racemases participate in the conversion of L-amino acids to the respective
D isomer. D-alanine and D-Aspartate are especially important since these amino acids are
included in the structure of biomass components, like peptidoglycan and teichoic acids.

The model contains only two ligases subclasses: ligases forming carbon-oxygen
bonds (EC 6.1), and ligases forming carbon-nitrogen bonds (EC 6.3). The first subclass in-
cludes only amino acid-tRNA ligases, present in the ”Aminoacyl-tRNA biosynthesis” path-
way. Ligases forming carbon-nitrogen bonds are mainly associated with anabolic pathways
to produce macromolecules containing peptide bonds, like the peptidoglycan.

The Translocases class (EC 7) is a new class representing a group of enzymes that
catalyze the movement of ions or molecules across membranes. These enzymes were pre-
viously classified as ATPases (EC 3.6.3.-), although the hydrolytic reaction is not the major
function of these enzymes. L. acidophilus presents the F-type H+-transporting ATPase (EC
7.1.2.2), which has been reported to play an important role in maintaining the pH gradient
across the membrane, by exporting protons to the extracellular space, with ATP hydrolysis.
This translocase activity enhances the survival ability of this species in low pH environ-
ments [160].

4.1.2 Compartmentalization

Four different compartments were identified using the PSORTb 3.0 tool: cytoplasm
(865 proteins), cytoplasmic membrane (551 proteins), cell wall (49 proteins) and extracel-



4.1. Genome annotation 42

lular space (54 proteins). The localization of 355 proteins was not possible to determine,
so these were assumed as cytoplasmatic. Nevertheless, reactions and metabolites present
in the model are only located in the cytoplasm (enzymatic and spontaneous reactions),
cytoplasmatic membrane (transport reactions) and extracellular space (exchange reactions).

4.1.3 Transport Reactions

The metabolic model comprises 213 transport reactions, 172 of which were automat-
ically created and included in the model by the TranSyt tool. Despite these, 41 transport
reactions were manually added, including 18 simple diffusion reactions, 20 transport reac-
tions associated with genes, and 3 reactions not associated with any gene. Table 6 shows a
sample of the most relevant transport reactions manually added to the model.

Table 6.: Sample of manually added transport reactions.

Reaction name Transport reaction Gene(s)
associated

Source/
Reference

T PEP Sucrose Sucrose (EXTR) + Phosphoenolpyruvate
(CYTOP) => Sucrose 6-phosphate
(CYTOP) + Pyruvate (CYTOP)

LA14 0397,
LA14 1706

[161] /
KEGG

T alpha-D-
Galactose

α-D-Galactose (EXTR) + H+ (EXTR)
<=> α-D-Galactose (CYTOP) + H+

(CYTOP)

LA14 1374,
LA14 1115

[161]

T aminobutanoate
glutamate antiport

L-Glutamate (EXTR) + 4-Aminobutanoate
(CYTOP) <=> L-Glutamate (CYTOP) +
4-Aminobutanoate (EXTR)

LA14 0057 [162, 163]

T aspartate
alanine antiport

L-Aspartate (EXTR) + L-Alanine (CYTOP)
=> L-Aspartate (CYTOP) + L-Alanine
(EXTR)

LA14 1697 TransportDB
2.0 / [164]

T Oxalate Oxalate (CYTOP) <=> Oxalate (EXTR) — [157]
T Thymine Thymine (EXTR) + H+ (EXTR) =>

Thymine (CYTOP) + H+ (CYTOP)
— BiGG

The sucrose uptake through the PTS by L. acidophilus is described in the litera-
ture [161]. Transport reactions through this mechanism for cellobiose, maltose, N-acetyl-
glucosamine, and N-acetylmuramate were also manually added, based on information re-
trieved from KEGG, TransportDB 2.0, and literature.

Like the F-ATPase, the aminobutanoate-glutamate and aspartate-alanine antiporters
have been reported to contribute to the proton gradient across the membrane, enhancing the
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ability of L. acidophilus to survive in low pH environments [162, 163, 164]. These reactions
were created based on literature and information in the TransportDB 2.0 database.

In Oxalobacter ormigenes, the first oxalate-degrading obligate anaerobe to be described
in humans, the oxalate transport is associated with an oxalate-formate antiporter [165].
However, the gene associated with this transport protein was not found in the L. acidophilus
genome. Azcarate et al [157] proposed that oxalate crosses the membrane through diffusion,
so a simple diffusion transport reaction for this compound was created.

No transport protein was found for thymine. However, this pyrimidine is present
in the CDM, thus a transport reaction was created. The mechanism of the reaction (sym-
port with H+) was inferred from the GSM models for L. lactis MG1363 and B. subtilis 168,
available at the BiGG database.

LAB usually present four different transport mechanisms, according to the TC num-
ber classification system: class 1, channels; class 2, secondary carrier-type facilitators (uni-
port, symport, and antiport); class 3, primary active transporters (namely the ABC-binding
cassette system); class 4, group translocators (PTS). Since LAB do not present transmem-
brane electron carriers, class 5 of transport mechanisms is usually absent in these bacteria.
Figure 7 shows the distribution of each one of these mechanisms in the model.

Table 7.: Distribution of transport mechanisms in the model.

TC class Percentage of transport
mechanism (%)

TC 1: Channels 7.7
TC 2: Secondary transporters 37.4
TC 3: ABC-binding cassette 49.7
TC 4: Group translocators (PTS) 5.2
TC 5: Electron carriers 0

Transport through channels represents just 7.7% of the transport reactions included
in the model. The Large-conductance mechanosensitive channel (LA14 0418) is responsible
for the transport of several intracellular inorganic compounds, such as orthophosphate or
bicarbonate, to the extracellular space in response to osmotic pressure. Although ammonia
can cross the membrane via diffusion, L. acidophilus presents a channel responsible for its
transport.

The second transport mechanism represents 37.4% of the transport reactions. This
mechanism can be divided into symport (49 reactions), antiport (8 reactions), and uniport
(16 reactions). Antiport and symport reactions use mainly protons as co-substrate, high-
lighting the relevance of the proton gradient across the membrane for the successful growth
and survival of this species.
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About half of the transport reactions included in the model (49.7%) use the ABC-
binding cassette mechanism. Amino acids, sugars, nucleotides, and several other metabo-
lites can be transported through this system with ATP consumption.

The transport of free sugars can occur through the PTS using phosphoenolpyruvate
as a phosphate donor. The resulting sugar is converted to glucose 6-phosphate, following
the EMB pathway. Although the percentage of reactions through the PTS (5.2%) is lower
than the remaining ones, this transport system is essential for Lactobacilli, since it is the
main transport mechanism for the uptake of carbohydrates.

4.2 manual curation of the network

4.2.1 Substrate and cofactor usage

Reactions using NADH or NADPH were analyzed to determine the cofactor speci-
ficity of the respective enzyme. Three enzymes were wrongly associated to reactions us-
ing NADH: glutathione reductase (EC 1.8.1.7), UDP-N-acetylmuramate dehydrogenase (EC
1.3.1.98), and dihydrofolate reductase (EC 1.5.1.3). These enzymes use NADPH with high
affinity, presenting an insignificant/inexistent activity with NADH [166, 167]. Hence, reac-
tions associated with these enzymes using NADH were removed (R03191, R00094, R00936,
R00937, R02235).

The specificity of enzymes for the glucose, fructose, and galactose conformations
was determined. Hence, only α and β-monosaccharides are present in the model. Table 8

shows a sample of the alterations performed in this step.
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Table 8.: Alterations performed to refine the specificity of enzymes for glucose, galactose, and fruc-
tose conformations.

Reaction EC number Enzyme Alteration

R00028 3.2.1.20 α-glucosidase D-Glucose→ α-D-Glucose
R00765 3.5.99.6 glucosamine-6-phosphate

deaminase
D-Fructose 6-Pi→
β-D-Fructose 6-Pi

R00768 2.6.1.16 glucosamine 6-phosphate
synthase

D-Fructose 6-Pi→
β-D-Fructose 6-Pi

R00803 2.4.1.7 sucrose phosphorylase D-Fructose→ β-D-Fructose
R00837 3.2.1.93 phosphotrehalase D-Glucose→ α-D-Glucose
R00838 3.2.1.122 phospho-α-glucosidase D-Glucose→ α-D-Glucose
R00839 3.2.1.86 phospho-β-glucosidase D-Glucose→ β-D-Glucose
R01555 2.4.1.8 maltose phosphorylase Reaction duplicated
R01718 3.2.1.10 oligo-1,6-glucosidase D-Glucose→ α-D-Glucose
R01791 3.2.1.10 oligo-1,6-glucosidase D-Glucose→ α-D-Glucose
R02410 3.2.1.26 β-fructofuranosidase D-Fructose→ β-D-Fructose
R03635 3.2.1.26 β-fructofuranosidase D-Fructose→ β-D-Fructose
R03921 3.2.1.26 β-fructofuranosidase D-Fructose→ β-D-Fructose
R01101 3.2.1.22 α− galactosidase D-Galactose→ α-D-Galactose
R01103 3.2.1.22 α− galactosidase D-Galactose→ α-D-Galactose

Both α and β-conformations of glucose and galactose are present in the model.
On the other hand, only the β-conformation of fructose (and fructose 6-phosphate) was
included, mainly in the EMB pathway. Reaction R01555 is catalyzed by maltose phos-
phorylase (EC 2.4.1.8), which transfers phosphate to maltose, originating β-D-glucose 1-
phosphate, and α or β-D-Glucose. Hence, this reaction was duplicated, to account for both
glucose conformations.

4.2.2 Pathway-by-pathway analysis

Before proceeding to a pathway-by-pathway analysis, generic and redundant path-
ways were removed. From the 108 pathways initially loaded from KEGG, 58 were removed
(support material S1). When a pathway is removed, the associated reactions are kept in the
model, in the remaining pathways or not associated with any pathway. Table 9 presents the
pathways present in the model and the respective number of associated reactions.
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Table 9.: Pathways available in the model and respective number of reactions.

Pathway Number of reactions
Alanine, aspartate and glutamate metabolism 15
Amino sugar and nucleotide sugar metabolism 23
Aminoacyl-tRNA biosynthesis 24
Arginine and proline metabolism 08
Arginine biosynthesis 04
Biomass Pathway 12
Butanoate metabolism 05
Carbon fixation pathways in prokaryotes 10
Chloroalkane and chloroalkene degradation 03
Citrate cycle (TCA cycle) 03
Cyanoamino acid metabolism 03
Cysteine and methionine metabolism 27
D-Glutamine and D-glutamate metabolism 05
Drains pathway 164
Drug metabolism - other enzymes 12
Fatty acid biosynthesis 16
Folate biosynthesis 07
Fructose and mannose metabolism 06
Galactose metabolism 27
Glutathione metabolism 09
Glycerolipid metabolism 14
Glycerophospholipid metabolism 15
Glycine, serine and threonine metabolism 14
Glycolysis / Gluconeogenesis 21
Glyoxylate and dicarboxylate metabolism 07
Isoquinoline alkaloid biosynthesis 03
Limonene and pinene degradation 04
Lysine biosynthesis 13
Methane metabolism 08
Monobactam biosynthesis 06
Nicotinate and nicotinamide metabolism 11
One carbon pool by folate 13
Pantothenate and CoA biosynthesis 09
Pentose phosphate pathway 19
Peptidoglycan biosynthesis 12

Continued on next page
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Table 9 – continued from previous page
Pathway Number of reactions
Porphyrin and chlorophyll metabolism 04
Propanoate metabolism 05
Purine metabolism 69
Pyrimidine metabolism 58
Pyruvate metabolism 16
Riboflavin metabolism 06
Selenocompound metabolism 07
Spontaneous 19
Starch and sucrose metabolism 19
Sulfur metabolism 04
Terpenoid backbone biosynthesis 12
Thiamine metabolism 06
Transporters pathway 213
Valine, leucine and isoleucine biosynthesis 03
Valine, leucine and isoleucine degradation 06
Vitamin B6 metabolism 08
Non-Associated to Pathway 70

Several pathways regarding the metabolism of carbohydrates, such as ”Galactose
metabolism” or ”Starch and sucrose metabolism”, were included. The EMB pathway is
complete, and several reactions of the pentose phosphate pathway are also available. Only
three reactions of the citrate cycle are present (R00341, R01082, R02164).

Pathways related to the metabolism of amino acids have a low number of reactions
associated, reflecting the high requirements of L. acidophilus for amino acids. Neverthe-
less, the ”Cysteine and methionine metabolism” is an exception, presenting 27 associated
reactions.

At this stage, 105 generic and glycan-associated reactions were removed (Table S2).
Generic reactions include metabolites such as ”Protein” or ”acceptor”, and are general
representations of biochemical processes. Reactions including KEGG Glycans were also re-
moved since these reactions are just duplicates of reactions containing KEGG Compounds.
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4.3 conversion of the network into a stoichiometric model

4.3.1 Biomass composition and Energy Requirements

The biomass equation includes nine different entities, labelled as ”e-Metabolites”,
representing the complex macromolecules found in L. acidophilus. The protein, DNA, RNA,
lipid, and teichoic acid contents were obtained from the L. plantarum WCFS1 model. Since
the LTA’s and cofactors contents were not experimentally determined in that study, the
stoichiometry of these two entities was inferred from the L. lactis ssp. lactis IL1403 GSM
model. The exopolysaccharide content and composition present high variability between
species and strains. Therefore, the content of EPS was determined using GSM models
of different LAB (L. plantarum WCFS1, L. lactis ssp. lactis IL1403, L. casei LC2W), and
experimental data available for L. delbrueckii [168] and L. rhamnosus [169]. The stoichiometry
(g/g DW) of the biomass macromolecules in L. acidophilus, L. lactis, and L. plantarum are
presented in Table 10.

Table 10.: Biomass composition of L. acidophilus La-14, L. plantarum WCFS1, and L. lactis ssp. lactis
IL1403. The stoichiometry is represented in grams of macromolecule per gram of biomass (g/gDW).

e-Metabolite L. plantarum
WCFS1

L. lactis ssp.
lactis IL1403

L. acidophilus
La-14

Reference

e-Protein 0.261a 0.460 0.288a [89]/merlin
e-DNA 0.019 0.023 0.019 [89]/merlin
e-RNA 0.090 0.107 0.090 [89]/merlin
e-Lipid 0.063 0.034 0.063 [89]/[170]/[171]
e-Peptidoglycan 0.145 0.118 0.145 [89]/[129]
e-Exopolysaccharide 0.099 0.120 0.119 [89]/[94]/[97]/

[168]/ [169]
e-Teichoic acid 0.138 — 0.138 [89]/[152]
e-Lipoteichoic acid 0.041 0.080 0.080 [94]/[172]
e-Cofactor — 0.058 0.058 [94]/[173]/merlin

a the original protein content is 29.9 g/gDw. These values account for the content of amino
acids in other macromolecules.

Lactobacilli present a low protein content (around 30% of the biomass) when compar-
ing to other gram-positive bacteria [89, 97, 152]. The 28.8% inferred from the L. plantarum
model is in agreement with this characteristic.

The EPS content can be very different among different LAB species and even strains.
In L. casei this value was reported as 8.1% [97], but L. delbrueckii presents almost twice EPS
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content (15.5%) [168]. The 11.9% determined for L. acidophilus is between these two values
and is similar to the 12% of L. lactis.

Wall teichoic acids and lipoteichoic acids account for 46% of the total cell wall weight,
which is close to the approximately 50% described in the literature for gram-positive bacte-
ria [128].

The amino acid contents (Table 11) were automatically obtained by merlin using the
e-BiomassX tool.

Table 11.: Protein composition of L. acidophilus.

Precursor Formula Stoichiometry
(g/g)

L-Alanyl-tRNA C13H22NO11PR2(C5H8O6PR)n 0.031
L-Arginyl-tRNA(Arg) C21H33N9O11PR(C5H8O6PR)n 0.052
L-Asparaginyl-tRNA(Asn) C14H23N2O12PR2(C5H8O6PR)n 0.083
L-Aspartyl-tRNA(Asp) C14H22NO13PR2(C5H8O6PR)n 0.056
L-Cysteinyl-tRNA(Cys) C18H26N6O11PSR(C5H8O6PR)n 0.005
L-Glutamyl-tRNA(Glu) C20H28N6O13PR(C5H8O6PR)n 0.058
Glutaminyl-tRNA C20H29N7O12PR(C5H8O6PR)n 0.044
Glycyl-tRNA(Gly) C12H20NO11PR2(C5H8O6PR)n 0.033
L-Histidyl-tRNA(His) C16H24N3O11PR2(C5H8O6PR)n 0.025
L-Isoleucyl-tRNA(Ile) C21H32N6O11PR(C5H8O6PR)n 0.080
L-Leucyl-tRNA C21H32N6O11PR(C5H8O6PR)n 0.093
L-Lysyl-tRNA C16H29N2O11PR2(C5H8O6PR)n 0.085
L-Methionyl-tRNA C20H30N6O11PSR(C5H8O6PR)n 0.032
L-Phenylalanyl-tRNA C19H26NO11PR2(C5H8O6PR)n 0.057
L-Prolyl-tRNA C15H24NO11PR2(C5H8O6PR)n 0.031
L-Seryl-tRNA C13H22NO12PR2(C5H8O6PR)n 0.046
L-Threonyl-tRNA C14H24NO12PR2(C5H8O6PR)n 0.053
L-Tryptophanyl-tRNA C26H31N7O11PR(C5H8O6PR)n 0.018
L-Tyrosyl-tRNA C24H30N6O12PR(C5H8O6PR)n 0.058
L-Valyl-tRNA C20H30N6O11PR(C5H8O6PR)n 0.061

Total: 1

Alanine, glutamate, aspartate, and lysine were included in other biomass macro-
molecules (peptidoglycan, WTA, and LTA). Thus, the amounts of those amino acids in
these biomass components were accounted for the protein content.
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The ribonucleotide and deoxyribonucleotide composition, represented in the triphos-
phate form, was determined automatically by merlin. The DNA and RNA structural units
and respective stoichiometry are presented in Table 12.

Table 12.: DNA and RNA composition of L. acidophilus.

Macromolecule Precursor Formula Stoichiometry (g/g)

DNA dTTP C10H17N2O14P3 0.323
dGTP C10H16N5O13P3 0.184
dATP C10H16N5O12P3 0.330
dCTP C9H16N3O13P3 0.163

Total: 1

RNA ATP C10H16N5O13P3 0.260
GTP C10H16N5O14P3 0.309
CTP C9H16N3O14P3 0.215
UTP C9H15N2O15P3 0.216

Total: 1

Although fatty acids are not directly represented in the biomass equation, they are
present in the lipids and lipoteichoic acids composition. The fatty acid content of L. aci-
dophilus was determined experimentally by Veerkamp et al [170]. Hence, a compound rep-
resenting the average fatty acid composition, named as ”Fatty acid”, was created and in-
cluded in the model.

Table 13.: Fatty acid composition of L. acidophilus according to Veerkamp et al [170].

Precursor Formula Stoichiometry (g/g)

Tetradecanoic acid C14H28O2 0.021
Hexadecanoic acid C16H32O2 0.368
Hexadecenoic acid C16H30O2 0.082
Octadecanoic acid C18H36O2 0.032
Octadecenoic acid C18H34O2 0.378
Lactobacillic acid C19H36O2 0.119

Total: 1

Hexadecanoic and octadecenoic acids are the fatty acids presenting higher amounts
in L. acidophilus. Lactobacillic acid (11R,12S-Methylene-octadecanoic acid) is a cyclopropane
fatty acid, produced from octadecenoic acid and S-adenosylmethionine. This fatty acid,
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identified in several Lactobacilli, has been associated with the stabilization of the membrane
and resistance to acid shock, by decreasing the permeability of the membrane to protons
[174].

Table 14 shows the lipid composition of L. acidophilus based on available experimen-
tal data [171]. The Fatty acid compound described above was used to determinate the
molecular weight of each phospholipid.

Table 14.: Lipid composition of L. acidophilus.

Precursor Formula Stoichiometry (g/g)

Phosphatidylglycerol C8H13O10PR2 0.888
3-O-L-Lysyl-1-O-phosphatidylglycerol C14H25N2O11PR2 0.036
Cardiolipin C13H18O17P2R4 0.077

Total: 1

Lipids included in the model are essentially phospholipids. Part of the lipoteichoic
acid structure has lipidic nature, but it was included in the ”R e-lipoteichoic acid” reaction.
Phosphatidylglycerol is the most abundant phospholipid in L. acidophilus, comprising al-
most 90% of the lipid composition. 3-O-L-Lysyl-1-O-phosphatidylglycerol and cardiolipin
present low percentages and are obtained from phosphatidylglycerol, through a lysyltrans-
ferase (EC 2.3.2.3), and cardiolipin synthase (EC 2.7.8.-), respectively.

The peptidoglycan composition (Table 15) was determined according to its reported
structure [129].

Table 15.: Peptidoglycan composition of L. acidophilus.

Precursor Formula Stoichiometry (g/g)

L-Alanine C3H7NO2 0.067
D-Glutamate C5H9NO4 0.121
UDP-N-acetyl-α-D-glucosamine C17H27N3O17P2 0.191
L-Lysine C6H14N2O2 0.121
D-Alanine C3H7NO2 0.134
D-Aspartate C4H7NO4 0.107
UDP-N-acetylmuramate C20H31N3O19P2 0.259

Total: 1

Similarly to L. lactis, the peptidoglycan of L. acidophilus presents L-lysine, instead
of meso-2,6-Diaminopimelate. The difference between these two structures is based on
the presence of UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-L-lysine ligase (EC 6.3.2.7)
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or UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-2,6-diaminopimelate ligase (EC 6.3.2.13).
The EC 6.3.2.13 was assigned to the gene murE (LA14 1809) in the genome annotation stage.
Hence, this annotation was reviewed and corrected, by assigning the EC number 6.3.2.7 to
this gene.

The EPS composition can be very different depending on the species, strain, and
growth conditions. Thus, experimental data for both L. acidophilus [175, 176] and L. helveticus
[177, 178, 179, 180, 181, 182] was accounted, resulting in the EPS composition presented in
Table 16.

Table 16.: Exopolysaccharide composition of L. acidophilus.

Precursor Formula Stoichiometry (g/g)

UDP-glucose C15H24N2O17P2 0.554
UDP-N-acetyl-α-D-glucosamine C17H27N3O17P2 0.050
UDP-α-D-galactose C15H24N2O17P2 0.396

Total: 1

Unlike more phylogenetically distant Lactobacilli, like L. rhamnosus and L. paracasei,
L. acidophilus and L. helveticus do not seem to present rhamnose in the composition of EPS.
Instead, two L. acidophilus strains were reported to include N-acetyl-glucosamine, in lower
amounts than glucose and galactose [175, 176]. The gene cluster for the synthesis of EPS was
associated with the ”R e-Exopolysaccharide” reaction. This cluster is composed of 14 genes,
including epsA-epsF, epsI, epsJ, and five variable proteins, including glycosyltransferases and
polysaccharide polymerases [118]. The gene epsH, responsible for the inclusion of rhamnose
in the EPS of L. lactis [183], was not identified in the L. acidophilus La-14 genome, explaining
the absence of rhamnose in the EPS produced by this species.

L. plantarum and L. acidophilus present different wall teichoic acids structures: the
polymer of the first species has a ribitol-phosphate chain, while L. acidophilus presents
glycerol-phosphate. Hence, the structure and chain length of WTA were inferred from
the B. subtillis 168 GSM model (Table 17).
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Table 17.: Teichoic composition of L. acidophilus.

Precursor Formula Stoichiometry (g/g)

UDP-glucose C15H24N2O17P2 0.226
UDP-N-acetyl-α-D-glucosamine C17H27N3O17P2 0.015
Glycerol 3-phosphate C3H9O6P 0.645
D-Alanine C3H7NO2 0.099
UDP-N-acetyl-D-mannosamine C17H27N3O17P2 0.015

Total: 1

The WTA structure presents an anchor composed of N-acetyl-glucosamine and N-
acetyl-mannosamine, and a glycerol-phosphate chain with 44 units of glycerol-phosphate,
coupled to glucose and D-alanine.

The LTA of L. acidophilus consists of a poly-glycerol phosphate chain linked to pepti-
doglycan by a glycolipid. Information regarding the structure and composition of LTA’s of
L. helveticus was used since data for L. acidophilus was not found.

Table 18.: Lipoteichoic composition of L. acidophilus.

Precursor Formula Stoichiometry (g/g)

sn-Glycerol 3-phosphate C3H9O6P 0.628
D-Alanine C3H7NO2 0.165
Glycolipid C23H36O20R2 0.153

Total: 1

In LAB like L. lactis, LTA are composed of a disaccharide liked to two fatty acids
and a poly-glycerol phosphate chain. However, it was reported in several Lactobacilli the
presence of a trisaccharide in the LTA structure [184]. In L. helveticus the glycolipid anchor is
composed of glucose-galactose-glucose-diacylglycerol. The poly-glycerol phosphate chain
consists of 24 glycerol-phosphate monomers, coupled to D-alanine, but not to glucose like
in the WTAs [172]. The ”Glycolipid” compound (D-Glc-(1 → 6)-α-D-Gal-(1 → 2)-α-D-Glc-
(1→ 3)-1,2-diacylglycerol) was manually created since it was not found in KEGG, although
it is present in ChEBI (CHEBI:63785). The final step of its synthesis is also absent in KEGG,
so a reaction representing the transfer of D-glucose from UDP-glucose to α-D-Gal-(1 → 2)-
α-D-Glc-(1→ 3)-1,2-diacylglycerol was created (R Glycolipid).

Merlin includes automatically universal cofactors in the model, through the ”R e-
Cofactor” reaction. A literature review was performed to confirm the inclusion of these
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compounds and identify additional cofactors and vitamins, specific for L. acidophilus. Each
cofactor was considered to be present in the same g/g DW amounts (Table 19).

Table 19.: Cofactor composition of L. acidophilus, formula, stoichiometry (g/gDW), and respective
source/reference.

Precursor Source/
Reference

Formula Stoichiometry
(g/g)

CoA merlin C21H36N7O16P3S 0.071
FMN merlin C17H21N4O9P 0.071
Riboflavin merlin C17H20N4O6 0.071
NADP+ merlin C21H29N7O17P3 0.071
NAD+ merlin C21H28N7O14P2 0.071
Pyridoxal phosphate merlin C8H10NO6P 0.071
S-Adenosyl-L-methionine merlin C15H22N6O5S 0.071
FAD merlin C27H33N9O15P2 0.071
Tetrahydrofolate merlin C19H23N7O6 0.071
Pantothenate merlin C9H17NO5 0.071
Undecaprenyl diphosphate [89] C9H17NO5 0.071
Spermidine [185] C7H19N3 0.071
Putrescine [185] C4H12N2 0.071

Total: 1

Cofactors included by merlin are universal organic compounds essential for prokary-
otic organisms. These compounds are usually included in GSM models but still require
manual confirmation. Undecaprenyl diphosphate is necessary for the biosynthesis of pep-
tidoglycan and its inclusion was inferred from the L. plantarum WFCS1 model. Spermidine
and putrescine are polyamines whose presence was identified in L. acidophilus [185]. The
presence of ornithine decarboxylase allows the production of putrescine from ornithine,
while spermidine is available in the growth medium. Genes encoding lysine decarboxy-
lase and arginine decarboxylase were not found [162], so cadaverine and agmatine are not
produced and were not included in the biomass cofactors.

Other cofactors and vitamins were considered, but not included. Based on the en-
zymes annotation, the genome of L. acidophilus appears to not encode thiamine-phosphate
synthase, which catalyzes the last reaction of the thiamine synthesis pathway. The absence
of this enzyme was also verified in the work of Altermann et al [118]. Hence, Thiamine
diphosphate (TPP) cannot be produced, is not required for growth of this species [186, 187],
and is not present in the defined growth medium. Consequently, TPP was not included in
the biomass cofactors. Ubiquinone (coenzyme Q10) is associated with respiration processes,
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and is not present in L. acidophilus. Heme is associated with aerobic organisms, which is not
the case of L. acidophilus. Glutathione is a protective agent against reactive oxygen species.
Although this metabolite is present in the model, the genes associated with its production
were not found, and the growth medium does not contain glutathione. Biotin participates
in several reactions involving the transfer of carbon dioxide. It is not necessary for the
growth of L. acidophilus and is not present in growth media. After consulting BRENDA,
there was not found any reaction in the model requiring biotin as a cofactor. The same
result was obtained for cobalamin, menaquinone, ascorbic acid, and tetrahydrobiopterin.

Information regarding the energetic requirements of L. acidophilus was not found.
Hence, a comparison of the GAM and NGAM energy requirements among different LAB
was performed (Table 20).

Table 20.: GAM and NGAM energy requirements in GSM models of LAB and B. subtillis.

Organism GAM
(mmol gDW−1)

NGAM
(mmol h−1 gDW−1)

Reference

L. plantarum WCFS1 27.40 0.36 [89]
L. lactis MG1363 39.40 0.92 [93]
L. lactis ssp. lactis IL1403 18.15 1.00 [93]
L. casei LC2W 41.15 1.52 [97]
L. acidophilus La-14 27.40 1.48 —

The growth-associated maintenance energy requirement was inferred from data avail-
able for L. plantarum WCFS1 (27.4 mmol gDW−1), due to its phylogenetic proximity to L.
acidophilus (comparing to L. lactis and L. casei), allowing also an in silico growth rate closer
to the experimental value.

The NGAM energy requirement was determined by adjusting this parameter to the
in silico growth rate (Figure 9). The determined value (1.48 mmol h−1 gDW−1) is relatively
close to the NGAM energy requirements found in other LAB.
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Figure 9.: In silico growth rate (µ) vs flux of the ATP maintenance reaction (x). The equation pre-
sented in the plot was used to determine the NGAM requirements, using µ = 0.81 h−1.

4.3.2 Model troubleshooting

Once the biomass equation was formulated and included in the network, the model
was evaluated to assure the production of all the considered biomass precursors. Hence, a
minimal medium, containing just the necessary compounds for growth, was defined. The
complete medium composition is available in support material Table S3. The lower bounds
of the exchange reactions of metabolites included in the medium were settled to -999999.

A plugin developed for merlin (BioISO) was used to identify and correct errors block-
ing the production of biomass precursors. Three main iterations were performed until a
positive biomass production was achieved.
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Table 21.: Alterations performed through the first iteration of the model troubleshooting stage.

Macromolecule Missing metabolites

DNA All
RNA All
Protein Aminoacyl-tRNAs
Lipid All
Peptidoglycan All, except D-Aspartate
EPS All
WTA All
LTA All
Cofactors CoA, S-adenosyl-L-methionine, FAD, Tetrahydrofolate, NAD+,

NADP+, Undecaprenyl-diphosphate

Type of modification Gene/Reaction/Metabolite

Annotation alterations LA14 0880, LA14 0955: 2.6.1.-→ 2.6.1.83; LA14 0690: 1.1.1.-→
1.1.1.100; LA14 1120: 1.8.1.4→ 1.8.1.7

Added reactions R00260; R04467; R07613; R00115; R04533, R04953, R04536,
R04534, R04964, R04566, R04543, R07763

Reversibility alterations R03192; R00177; R00430; R01858; R01138

At the beginning of this stage, most of the biomass precursors were not being pro-
duced. The model was unable to produce nucleotides in its triphosphate form, inhibiting
the majority of biosynthetic pathways. Lipids and LTAs were not being produced since the
pathway for the lactobacillic acid biosynthesis was blocked.

Two complete EC numbers were identified at this point: LL-diaminopimelate amino-
transferase (2.6.1.83), which participates in the ”Lysine biosynthesis” pathway; and 3-oxoacyl-
[acyl-carrier-protein] reductase (EC 1.1.1.100), one of the two enzymes associated with the
synthesis of fatty acids identified in L. acidophilus La-14. The EC 1.8.1.4 was assigned to
the gene with the locus tag LA14 1120 at the genome annotation stage. After revising the
annotation, the EC number of this gene was modified to 1.8.1.7 (glutathione-disulfide re-
ductase).
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Table 22.: Alterations performed during the second iteration of the model troubleshooting stage.

Macromolecule Missing metabolites

DNA dATP, dCTP, dTTP
RNA UTP, GTP, CTP
Protein Aminoacyl-tRNAs
Lipid All
Peptidoglycan L-lysine, UDP-N-acetylmuramate,

UDP-N-acetyl-α-D-glucosamine
EPS All
WTA UDP-glucose, UDP-N-acetyl-glucosamine,

UDP-N-acetyl-mannosamine
LTA Glycolipid
Cofactors CoA, NAD+, NADP+, Undecaprenyl diphosphate,

S-adenosyl-methionine, tetrahydrofolate

Type of modification Gene/Reaction/Metabolite

Annotation alterations LA14 1420: 3.5.1.-→ 3.5.1.19
Added reactions R01268, R00156, R00330, R00570, R00722, R02093
Reversibility alterations R00940, R00937, R01072, R02291, R04467, R03905

The changes performed in the first iteration allowed the model to obtain ATP. How-
ever, the synthesis of several precursors containing UDP, like UDP-N-Acetylglucosamine,
require UTP. Similarly to what was found in L. lactis [188], the genome of L. acidophilus
La-14 does not encode nucleoside-diphosphate kinase, an enzyme that transfers phosphate
to nucleosides-diphosphate, originating nucleosides triphosphate. In L. lactis and a mutant
E. coli, it was reported that adenylate kinase and pyruvate kinase are responsible for the
synthesis of nucleosides triphosphate [188, 189]. Hence, reactions catalyzed by nucleoside-
diphosphate kinase were included but associated with the adenylate kinase and pyruvate
kinase enzymes. The completion of the EC number 3.5.1.- to 3.5.1.19, associated with nicoti-
namidase, allowed the synthesis of NAD+. Reactions included here, together with the
changes in the reversibility of six reactions, allowed the model to produce most of the
biomass precursors (Table 23).
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Table 23.: Alterations performed during the third iteration of the troubleshooting stage.

Macromolecule Missing metabolites

DNA —
RNA —
Protein Aminoacyl-tRNAs
Lipid All
Peptidoglycan —
EPS —
WTA —
LTA Glycolipid
Cofactors —

Type of modification Gene/Reaction/Metabolite

Annotation alterations LA14 0344: 6.1.1.17→ 6.1.1.24; LA14 0559: 6.3.5.-→ 6.3.5.6;
LA14 0887: 3.2.2.-→ 3.2.2.1

Added reactions R03411, R autoinducer2, T autoinducer2, R03651; R01290,
R01245, R012273, R01677, R01770, R02143, R02341

Reversibility changes R00190

Two EC numbers were updated in this iteration: aspartyl-tRNA synthase (EC 6.3.5.6),
and purine nucleosidase (EC 3.2.2.1). The EC number 6.1.1.17, associated with the gene with
the locus tag LA14 0344, was replaced by 6.1.1.24. The specificity of the enzyme associated
with 6.1.1.17 is restricted to tRNA(Glu). On the other hand, the low stereospecificity of the
glutamate-tRNA ligase (EC 6.1.1.24) allows the formation of both glutamyl-tRNA(Glu) and
glutamyl-tRNA(Gln). In B. subtilis, the gene gltX (locus tag BSU00920) was reported to act
on both tRNA(Glu) and tRNA(Gln) [190]. This gene is available in the BLAST results of
the LA14 0344 gene (with an e-value of 0.0). This alteration was essential since glutamyl-
tRNA(Gln) is not produced by any other reaction in the ”Aminoacyl-tRNA biosynthesis”
pathway.

As mentioned before, L. acidophilus can obtain lactobacillic acid from octadecenoic
acid (R03411). This reaction requires S-adenosylmethionine as a methyl donor and has
S-adenosylhomocysteine as a by-product. The Autoinducer (AI)-2 is produced at the end
of this pathway (figure 10). AI-2 is a quorum-sensing signaling molecule produced by
several gram-positive and gram-negative bacteria [191]. The production of this molecule
was observed in L. acidophilus and was reported to play a role in the adherence of this
species to the intestinal epithelium [192]. The non-enzymatic reaction representing the
conversion of 4,5-dihydroxy-2,3-pentanedione to AI-2 (R Autoinducer2), and the transport
reaction for this compound (T Autoinducer2) were added in this stage. These reactions
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were created manually, according to available literature [192]. The transport reaction was
associated with the specific transporter with the TC number 2.A.86.

L-methionine

S-adenosylmethionine

S-adenosylhomocysteine

S-ribosylhomocysteine

Octadecenoic acid

Lactobacillic acid

4,5-dihydroxy-2,3-pentanedione

Homocysteine

Autoinducer 2

2.5.1.6
2.1.1.79

3.2.2.9
4.4.1.21

Adenine

Figure 10.: Pathway for the production of Autoinducer-2 from methionine in L. acidophilus. The
EC numbers have the following correspondence: 2.5.1.6 (methionine adenosyltransferase), 2.1.1.79

(S-adenosylmethionine methyltransferase), 3.2.2.9 (adenosylhomocysteine nucleosidase), 4.4.1.21

(S-ribosylhomocysteine lyase). The circularization of 4,5-dihydroxy-2,3-pentanedione into AI-2 is
non-enzymatic. The AI-2 is secreted through the specific transporter with the TC number 2.A.86.

4.3.3 Gap filling

After obtaining a model able to produce all biomass precursors, the model was
gap-filled. At this stage, blocked reactions and dead-end metabolites were identified and
blocked reactions corrected. The reversibility/direction of 27 reactions was changed, and 21
reactions were manually added (Table 24). The gap-filling process allowed to decrease the
number of blocked reactions to 185 and the number of dead-ends to 177 metabolites. The
”Fatty acid biosynthesis” pathway includes several reactions associated with the fabG and
fabT genes. Since all other genes regarding the synthesis of fatty acids are missing in the
genome of this strain, almost all reactions associated with this pathway are unconnected. A
similar situation can be found in the ”Drug metabolism - other enzymes” pathway. Addi-
tionally, the synthesis of peptidoglycan is accounted for in the ”Biomass pathway”. Hence,
the KEGG’s ”Peptidoglycan biosynthesis” pathway does not have an end product, turning
reactions associated with this pathway directly or indirectly unconnected.
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Table 24.: Alterations performed during the gap-filling stage.

Reaction ID Alteration EC
number

Gene

R02142, R01665, R00137,
R03601, R04859

To reversible — —

R01130, R01231, R10147,
R04198, R04199, R03192,
R00416, R01248, R01251,
R03291, R03293, R01773,
R01775, R00842, R00844,
R03591, R03592, R04198,
R04199, R01520, R01521

To irreversible — —

R03104 Backward direction — —
R00704 Manually added 1.1.1.28 LA14 0055
R00207 Manually added 1.2.3.3 LA14 1962
R01876 Manually added 2.4.2.3 LA14 1080,

LA14 1078,
LA14 1081

R01978 Manually added 2.3.3.10 LA14 0657
R01663 Manually added 3.5.4.12 LA14 0206
R05627 Manually added 3.6.1.27 LA14 1019
R01658 Manually added 2.5.1.1 LA14 1328
R02061 Manually added 2.5.1.29 LA14 1328
R06447 Manually added 2.5.1.31 LA14 1269
R03122 Manually added 3.2.1.54 LA14 1956

R01600, R01786 Manually added 2.7.1.2 LA14 0908
R00751 Manually added 4.1.2.5 LA14 0254

R03314, R04861 Manually added non-
enzymatic

—

R02806 Substrate specification 2.4.2.6 LA14 0146,
LA14 1629

R07171 Manually added 1.6.3.3 LA14 1416,
LA14 1419

D-Lactate dehydrogenase was not included during the genome annotation. Since L.
acidophilus produces both L and D-lactate, the annotation was reviewed and the EC number
1.1.1.28 was assigned to the gene with the locus tag LA14 0055.
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The presence of pyruvate oxidase has been described in Lactobacilli [193, 194, 195].
The EC number 2.2.1.6 (acetolactate synthase) was first assigned to the gene with the locus
tag LA14 1962. Despite the activity of this enzyme is reported in several LAB, it seems to
be absent in L. acidophilus [196]. After an annotation review, this gene was reannotated as
encoding pyruvate oxidase, whose presence in L. acidophilus was confirmed in literature
[193].

Glucokinase (EC 2.7.1.2) was not included through the genome annotation stage. Its
absence implies that intracellular glucose cannot be phosphorylated, and therefore cannot
enter glycolysis. After checking KEGG, this enzyme was included in the model, associated
with the gene with the locus tag LA14 0908.

The activity of a threonine aldolase was demonstrated in L. acidophilus [197]. The
enzyme associated with this activity appears to have both threonine aldolase (EC 4.1.2.5)
and glycine hydroxymethyltransferase (EC 2.1.2.1) activities, as reported in S. thermophilus
[198] and L. lactis [93]. Hence, after revising the annotation, the gene with the locus tag
LA14 0254, was associated with both activities.

The enzyme nucleoside deoxyribosyltransferase (EC 2.4.2.6) is associated with the
generic reaction R02806, catalyzing the transfer of the deoxyribosyl group from one purine
or pyrimidine to another. The substrate specificity of this enzyme was reported to be
very low, presenting activity with most of purine and pyrimidine bases in L. lactis [199].
Nevertheless, Soska et al [200] have reported that the in vivo activity of this enzyme in L.
acidophilus is associated with the conversion of deoxyadenosine to adenine:

Deoxyadenosine + Thymine ⇀↽ Adenine + Thymidine

Generic metabolites ”Deoxynucleoside” and ”Base” included in the reaction R02806
were replaced by deoxyadenosine and adenine, respectively.

The presence of an NADH oxidase was not detected through the genome annotation
stage. Nevertheless, the presence of this enzyme was reported in L. acidophilus, with hydro-
gen peroxide production [201, 202, 203, 204]. Altermann et al [118], and Pridmore et al [205]
associated NADH oxidase with two genes in L. acidophilus NCFM and L. johnsonii NCC
533. The homologous genes available in L. acidophilus La-14 were identified (LA14 1416 and
LA14 1419) through BLAST searches against the genome of this strain, and were associated
with the NADH oxidase enzyme (H2O2 forming).

4.4 model validation

Various tests were applied to validate the metabolic model: spontaneous growth,
growth rate assessment, auxotrophies, alternative elements in the medium, and determi-
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nation of critical genes. The phenotype simulation method used was pFBA, except when
otherwise indicated.

4.4.1 Growth rate assessment and in silico simulations

First of all, the lower bound of all drains was set to zero to test spontaneous growth.
As expected, no growth was observed.

The growth rate was accessed according to the study of Lv et al [206], which used the
L. acidophilus KLDS strain. The glucose consumption was measured in this work (16.4
mmol h−1 gDW−1), allowing to define this value as the in silico uptake rate for carbon
sources. As mentioned before, the in silico growth rate was adjusted to the experimen-
tal value (0.81 h−1) by amending the NGAM energy requirements. Soska et al [200] obtained
an identical growth rate (0.83 h−1), using a similar CDM (with the addition of L-asparagine),
though not measuring, the glucose consumption rate. In L. lactis, a growth rate of 0.79 h−1

was measured anaerobically with a glucose consumption rate of 13.7 mmol h−1 gDW−1 [94].
The consumption rate of metabolites included in the minimal CDM for in silico

growth of L. acidophilus La-14 is indicated in Table 25. A growth rate of 0.72 h−1 was
determined using this medium.

Table 25.: In silico consumption rates of metabolites present in the minimal medium. The simulation
was performed using pFBA in anaerobic conditions.

Metabolite Consumption rate
(mmol h−1 gDW−1)

Metabolite Consumption rate
(mmol h−1 gDW−1)

α-D-Glucose 16.4 L-Proline 0.067
L-Aspartate 1.861 Hexadecanoic acid 0.055
Orthophosphate 1.559 L-Histidine 0.038
L-Serine 1.409 Spermidine 0.022
Acetate 0.404 Riboflavin 0.020
L-Glutamate 0.264 L-Tryptophan 0.020
L-Leucine 0.170 Pantothenate 0.019
L-Isoleucine 0.147 Pyridoxal 0.013
L-Valine 0.127 Hexadecenoic acid 0.012
L-Arginine 0.106 Nicotinamide 0.009
L-Phenylalanine 0.081 H+ 0.009
L-Methionine 0.074 Folate 0.007
L-Tyrosine 0.073 Octadecanoic acid 0.004
Octadecenoic acid 0.067 Tetradecanoic acid 0.004
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Acetate is required for both in silico and in vivo [200] growth of L. acidophilus. This
requirement will be discussed in Section 4.6.2.

The requirements of this species for amino acids, fatty acids, and vitamins are
demonstrated in the in silico minimal CDM: six vitamins, 13 amino acids, and fatty acids
were identified as essential. On the other hand, in silico growth could be achieved without
pyrimidine and purine nucleotides.

Compounds produced in minimal and rich media and respective production rates
are shown in Table 26.

Table 26.: In silico secreted compounds, and respective production rates in minimal and rich media.
The simulation was performed using pFBA in anaerobic conditions.

Metabolite Production rate (mmol h−1 gDW−1)

Minimal media Rich media

L/D-Lactic acid 30.340 29.862
H2O 9.794 9.016
CO2 2.265 0.737
Succinate 0.112 0.000
Urea 0.037 0.041
H2S 0.015 0.017
Hydroxybutanoic acid 0.001 0.017
Autoinducer-2 0.015 0.017
HCO3

− 0.000 0.002
Malate 0.001 0.000

L. acidophilus can produce both L and D-lactic acid, usually in similar amounts [187].
Since pFBA minimizes the enzyme-associated flux, only one of the isomers is produced.
The ratio between the lactic acid production and glucose consumption is in agreement with
literature (1.8 mollactate/molglucose) [207].

The CO2 production is associated with the activity of phosphogluconate dehydro-
genase, which converts 6-phospho-gluconate to ribose 5-phosphate, releasing CO2 in the
presence of NADP+. Diphosphomevalonate decarboxylase, L-ornithine carboxy-lyase, and
phosphopantothenoylcysteine decarboxylase are also responsible for the production of CO2,
although in lower amounts.

Urea is produced together with ornithine from the hydrolysis of arginine. Since there
are no reactions using urea as a reactant, this compound is secreted into the extracellular
space.

The degradation of L-homocysteine by cystathionine-γ-Lyase originates hydrogen
sulfide (which is secreted), ammonia, and 2-oxobutanoate (which is reduced to hydrox-
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ybutanoic acid). Hydrogen sulfide can also be obtained from L-cysteine, in a reaction
catalyzed by the same enzyme. The production of this sulfurous compound was reported
in L. lactis [208], playing an important role in the flavor of cheddar cheese [209]. The work
of Sreekumar et al [210] has demonstrated that L. acidophilus NCFM produces methanethiol
(MeSH) but not H2S. The production of MeSH is usually attributed to L-methionine-γ-lyase,
which was not found in the genome of the La-14 and NCFM strains. Cystathionine-β-lyase
can also convert methionine to MeSH, although less efficiently [211, 212]. This activity of
cystathionine-β-lyase is available in the metabolic model.

The production of poly-β-hydroxybutyrate (polymer of hydroxybutanoic acid) was
already reported in several LAB, including L. acidophilus [213, 214]. However, the accumu-
lation of this compound is usually achieved when the carbon availability is excessive, and
the growth is limited by the availability of nitrogen and phosphorus sources [214].

In minimal media, the production of succinate and malate was detected as a result
of the purine and pyrimidine metabolism.

L. acidophilus achieves optimal growth in anaerobic and microaerophilic conditions,
even though most strains are aerotolerant. The lower growth rate in aerobic conditions has
been associated with the damage caused by reactive oxygen species to biomolecules like
proteins and lipids [215]. Some LAB, such as L. plantarum and L. casei, produce acetate in
aerobic conditions through the pyruvate oxidase pathway:

Pyruvate + O2 + H3PO4 → Acetylphosphate + H2O2 + CO2

Acetylphosphate + ADP ⇀↽ Acetate + ATP

The rerouting of pyruvate through this pathway allows the production of additional
ATP, while NAD+ is regenerated either by NADH oxidase and NADH peroxidase. In
silico simulations in aerobic conditions predict the production of acetate through the POX
pathway and a higher growth rate. Nevertheless, L. acidophilus is obligatory homofermen-
tative and does not produce acetate, even if oxygen is available [203, 216]. To access the in
silico requirement for acetate production, FVAs were performed in anaerobic and aerobic
conditions (Table 27), constraining the maximum growth rate to 0.81 h−1.
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Table 27.: Minimum and maximum fluxes of acetate, lactate, and ethanol, determined through FVA
simulations in aerobic (oxygen uptake unconstrained) and anaerobic conditions. In both conditions,
the growth rate was limited to 0.81 h−1.

Anaerobic conditions Aerobic conditions

Compound Minimum flux Maximum flux Minimum flux Maximum flux

Acetate -0.27 -0.26 0 47.68
Lactate 29.88 29.89 0 29.69
Ethanol 0 0.001 0 4.98

In anaerobic conditions, acetate is consumed while lactate production is required,
which is in good agreement with available information. In these conditions, lactate (origi-
nated from pyruvate) is the only by-product, and the lactate dehydrogenase activity assures
the regeneration of NAD+. Ethanol can also be produced from acetaldehyde in residual
amounts, as a result of the threonine aldolase and alcohol dehydrogenase activities.

In aerobic conditions, the production of lactate, acetate or ethanol is not required to
achieve the defined growth rate. No information was found explaining why L. acidophilus
does not produce acetate in these conditions. In L. johnsonii, the flux through pyruvate
oxidase is limited but sufficient to eliminate the requirement for acetate, without producing
this compound [194]. Hence, POX may be used by L. acidophilus and L. johnsonii just to
provide acetyl-CoA, and not for acetate production (Figure 11).

Figure 11.: Pyruvate metabolism in anaerobic (left) and aerobic (right) conditions. In anaerobic
conditions pyruvate is converted to lactic acid by lactate dehydrogenase (ldh), while acetate forms
acetyl phosphate by acetate kinase (ackA). Acetyl phosphate is then converted to acetyl-CoA by
phosphate acetyltransferase (pta). In aerobic environment, pyruvate can be used as a source of
acetyl phosphate due to the activity of pyruvate oxidase (pox).

Nevertheless, this hypothesis requires experimental confirmation in L. acidophilus. In
fact, more quantitative experimental data for this species, preferably for the La-14 strain, in
anaerobic and aerobic conditions, would be useful to increase the reliability of the metabolic
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model. Experimental procedures available in literature often use complex media instead
of CDM, without measuring the consumption and production rate of substrates and by-
products, respectively.

4.4.2 Fermentation pattern

L. acidophilus can grow using hexoses and disaccharides as carbon source. The fer-
mentation pattern of L. acidophilus with different carbohydrates [217, 218] was compared
with in silico simulations using the model developed in this work, and the AGORA model
for L. acidophilus NCFM. The genomes of the La-14 and NCFM strains are very similar (as
shown in subsubsection 2.3.2.2), thus no major differences in the metabolism of these two
strains are expected. Table 28 presents a confusion matrix evaluating the performance of
the two metabolic models. A more detailed analysis is available in Supplementary Table
S4.

Table 28.: Confusion matrix and respective performance measure calculations of the model in pre-
senting growth with different carbohydrates.

This work AGORA model

Exp. positive Exp. negative Exp. positive Exp. negative

Predicted Positive 14 1 12 1

Predicted Negative 1 5 3 5

Measure Value Value
Sensitivity 0.93 0.80

Specificity 0.83 0.83

Precision 0.93 0.92

NPV 0.83 0.63

Accuracy 0.91 0.81

Growth with a given carbohydrate as carbon source was considered as positive. Expected outcomes were
defined according to experimental data. Predicted (P.) outcomes were determined with pFBA.

This metabolic model presents a good performance predicting growth with different
carbohydrates. In general, the values of the performance measures are higher than the
respective ones in the AGORA model.

L. acidophilus grows with the most frequently used carbohydrates (glucose, galac-
tose, sucrose, lactose, and fructose). In silico growth matching experimental data was also
observed with cellobiose, N-acetyl-glucosamine, mannose, and salicin. Although growth
with stachyose was not determined in the considered studies, in silico growth was observed,
which is in agreement with the work of Stern et al [219]. Growth with melibiose, trehalose,
maltose and, raffinose depends on the strain in question. In silico simulations allow the
growth using these sugars, due to the lack of knowledge regarding the specificity of glu-
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cosidases and galactosidases of the L. acidophilus La-14 strain. In opposition to experimental
data, no growth was observed using amygdalin (a cyanogenic glycoside), since this metabo-
lite is not even present in the metabolic model.

Srinivas et al [220] have defined a growth order for L. acidophilus according to the
carbon source: glucose > f ructose > sucrose > lactose > galactose. This result was con-
firmed by other studies [219, 221, 222]. The comparison of this information with in silico
simulations can only be performed qualitatively, as complex media were used in these ex-
periments and information regarding the carbohydrate uptake is missing. Figure 12 shows
the in silico growth rate, using the mentioned sugars.
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Figure 12.: In silico growth rate, using different carbon sources. The lower bound of each carbohy-
drate exchange reaction was accounted for the number of carbon atoms: glucose, fructose, galactose
(16.4 mmol h−1 gDW−1), lactose, sucrose (8.2 mmol h−1 gDW−1).

As expected, the utilization of glucose allows a higher growth rate compared with
the other carbohydrates. Growth using fructose and lactose is slightly lower, and galactose
originated the lowest growth rate. These differences are related to the transport system
associated with the uptake of each sugar, and the pathway followed for its degradation.
Moreover, in vivo differences are associated with factors not accounted for in the metabolic
model, namely gene expression and quantitative enzymatic activity. For example, genes
associated with the uptake of glucose and fructose through the PTS are consistently ex-
pressed, regardless of the carbohydrate source, explaining the preference of L. acidophilus
for these sugars [161]. On the other hand, genes associated with the metabolism of lactose
and galactose need to be induced by the presence of these carbohydrates [161].
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4.4.3 Amino acid requirements

Growth media for L. acidophilus usually contain non-essential amino acids to stimu-
late growth. Table 29 presents the comparison between available information and in silico
simulations regarding the amino acid requirements of L. acidophilus.

Table 29.: Amino acid requirements of L. acidophilus according to Morishita et al [123] (using L.
acidophilus ATCC11506) and in silico simulations.

Amino acid Morishita et al [123] L. acidophilus La-14

(This work)
L. acidophilus NCFM

(AGORA model)

Alanine NE NE E
Arginine E E E
Asparagine NE NE NE
Aspartate E E NE
Cysteine E NE E
Glutamate E E E
Glutamine NE NE NE
Glycine NE NE NE
Histidine E E E
Isoleucine E E E
Leucine E E E
Lysine NE NE NE
Methionine E E E
Phenylalanine E E E
Proline E E E
Serine E E E
Threonine E NE NE
Tryptophan E E E
Tyrosine E E E
Valine E E E

The model requirements for amino acids match the available information, except for
cysteine and threonine. L-cysteine can be obtained from cystathionine by cystathionine-γ-
lyase. In silico analysis of the L. acidophilus NCFM genome has also indicated the potential
to produce L-cysteine [118].

The reversible activity of threonine aldolase allows the production of threonine from
glycine and acetaldehyde in both metabolic models. Alternatively, threonine can be pro-
duced from phospho-L-homoserine by threonine synthase. The potential to produce thre-
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onine was also reported in L. acidophilus NCFM [118], thus the differences between ex-
perimental data and in silico simulations might be related with the utilization of different
strains.

4.4.4 Gene essentiality and single gene deletion

Critical genes were determined using Optflux, under different environmental con-
ditions (aerobiosis/anaerobiosis; minimal/rich medium). No information regarding gene
essentiality of L. acidophilus was found. Table 30 presents the number of critical genes and
critical reactions identified in the model.

Table 30.: Number of critical genes and critical reactions identified in the metabolic model, under
different environmental conditions.

Environmental Conditions Critical genes Critical reactions

Anaerobic
Minimal medium 133 155
Rich Medium 104 123

Aerobic
Minimal medium 133 156
Rich Medium 104 122

The number of critical genes and reactions in aerobic and anaerobic conditions is
similar. In the presence of oxygen, LA14 1398 (NADH peroxidase) becomes essential to
regenerate NAD+ and eliminate H2O2. On the other hand, lactate permease is not essential
in aerobic conditions since POX provides an alternative fate for pyruvate. L. acidophilus
presents both ldhL and ldhD, thus the knockout of one of these genes will not affect in silico
growth. Nevertheless, the lactate permease and lactate dehydrogenase may be essential for
in vivo growth of L. acidophilus since lactic acid is the fermentation final product in both
anaerobic and aerobic conditions.

In rich media, critical genes are mainly associated with the synthesis of peptidogly-
can precursors (”Amino sugar and nucleotide sugar metabolism” pathway), phospholipids
(”Glycerolipid metabolism” and ”Glycerophospholipid metabolism” pathways), and cofac-
tors (”Nicotinate and nicotinamide metabolism”, ”Pantothenate and CoA biosynthesis”,
”Terpenoid backbone biosynthesis”, and ”Riboflavin metabolism” pathways). Six genes
associated with glycolysis were identified as critical, as well as 19 genes responsible for
the aminoacyl-tRNA biosynthesis (gln-tRNA ligase is associated with the synthesis of both
glutamyl-tRNA(Glu) and glutamyl-tRNA(Gln). The eps gene cluster and genes associated
with the assembly of WTA and LTA ware also identified as necessary. Furthermore, the
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genes with the locus tag LA14 0942 and LA14 0315 were also identified as critical, and are
associated with the transport of several cofactors, namely riboflavin, folate, and pyridoxal.

In minimal media under both aerobic and anaerobic conditions, 29 additional genes
were identified as critical. These genes are associated with the synthesis of non-essential
amino acids, such as lysine and alanine, and the de novo synthesis of purine and pyrimidine
nucleotides.

Additionally, the number of critical reactions is always higher than the number of
critical genes due to the existence of reactions not associated with genes. The availability of
datasets containing information on gene essentiality of this species would be useful to test
the phenotypic prediction capability of the metabolic model.

A search for experimental data regarding single gene deletions in L. acidophilus was
performed and compared with simulations. The information available in literature relies
mainly on knockouts associated with the carbohydrate uptake and metabolism of L. aci-
dophilus NCFM. Table 31 shows a comparison between the expected phenotype (according
to available information) and in silico simulations results.

Table 31.: Comparison between the expected phenotype (according to available information) and re-
sults of in silico simulations. All knockouts were performed using LMOMA. The deleted genes
have the following locus tag correspondence: ∆lacS, (LA14 1458); ∆galA, (LA14 1437), ∆msmE,
(LA14 1441);∆frc, (LA14 0391); ∆treB, (LA14 1026); ∆treC, (LA14 1028).

Gene deleted Expected phenotype In silico simulation Reference

∆lacS Non-growth on lactose Non-growth on lactose [223]

∆galA Non-growth on raffinose,
melibiose, stachyose

Non-growth on raffinose,
melibiose, stachyose

[224]

∆msmE Growth on galactose,
Non-growth on raffinose

Growth on galactose,
Non-growth on raffinose

[224]

∆treB Non-growth on trehalose Non-growth on trehalose [225]

∆treC Non-growth on trehalose Growth on trehalose [225]

∆frc Lost of oxalate degrading
capability

Lost of oxalate degrading
capability

[157]

The gene lacS, encoding a lactose/galactose permease, is essential for the growth on
lactose, since it is the only transport mechanism for this sugar found in L. acidophilus [223].
The inactivation of α-galactosidase through the knockout of the galA gene does not allow
the growth on different carbohydrates (raffinose, melibiose, and stachyose). The deletion
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of the msmE gene, associated with the raffinose uptake through the ABC-binding cassette
system, blocks the growth with this sugar.

Trehalose enters the cell through the PTS, so the knockout of treB is fatal for L. aci-
dophilus when using this sugar as a carbon source. The in silico knockout of treC, encoding
a trehalose 6-phosphate hydrolase, does not affect growth, contradicting the expected phe-
notype. Maltose 6-phosphate glucosidase hydrolyzes several 6-phospho-α-D-glucosides,
including trehalose 6-phosphate, becoming an alternative to trehalose 6-phosphate hydro-
lase. No information regarding the specificity of this enzyme in L. acidophilus was found,
although in B. subtilis trehalose 6-phosphate can be used as substrate [226].

L. acidophilus La-14 presents a high ability for the degradation of oxalate, a compound
associated with the prevalence of kidney stones [156]. This activity is possible due to the
presence of a formyl-CoA transferase and an oxalyl-CoA decarboxylase, encoded by the
frc and oxc genes, respectively. The knockout of the frc gene blocks the oxalate degrading
capability of L. acidophilus [157], as observed in in silico simulations.

Generally, results from simulations correspond to the expected phenotypes. How-
ever, the information found in literature is mainly associated with carbohydrate uptake
and metabolism, thus more experimental data regarding gene knockouts associated with
other pathways, such as nucleotide metabolism, should be useful to increase the phenotypic
prediction capability of the GSM model.

4.5 model summary

As mentioned in subsection 2.2.8, GSM models for six LAB species are available
at the moment, in which L. plantarum, L. casei, and L. lactis are the most closely related
species to L. acidophilus. An overview of the available metabolic models for these species is
presented in Table 32.
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Table 32.: Overview of the GSM models of four lactic acid bacteria.

L. acidophilus
La-14

L. acidophilus
NCFM

L. plantarum
WCFS1

L. lactis
MG1363

L. casei
LC2W

Genes 527 540 721 518 846
Gene coverage 28.1 % 29.0 % 23.5 % 19.9 % 27.7 %

Total Reactions 952 1460 762 754 969
Internal reactions 575 923 413 530 604
Transport reactions 213 132 118 119 227
Exchange reactions 164 405 113 105 139

Metabolites 802 1120 658 650 785
Internal 604 715 549 551 —*
External 164 405 113 105 —*
Unique metabolites 608 1009 554 552 604

Compartments (c,e) (c,e) (c,e) (c,e) (c,p,e)

* data not available.
c: cytoplasm; e: extracellular space; p: periplasm.

The GSM model contains 527 genes, which corresponds to 28.1% of the total genes
in the genome of L. acidophilus La-14. This percentage is similar to the one found in L. casei
and in the L. acidophilus NCFM AGORA model but is slightly higher than in L. plantarum
and L. lactis.

In general, the number of genes, reactions, and metabolites in the metabolic model
is higher than the respective ones in the L. plantarum and L. lactis models. This may be asso-
ciated with a more restrictive reconstruction approach in these metabolic models. Similar
results are found in the L. casei LC2W model. In this model, an additional compartment
(periplasm) was included, which is not usual in GSM models of gram-positive bacteria. The
number of internal and exchange reactions available in the AGORA model is surprisingly
high, which might be a result of the semi-automatic reconstruction and lack of manual
curation. In fact, this model includes the fatty acid biosynthetic pathway regardless of the
absence of the genes required for this pathway. Exchange reactions for several glycans and
mineral ions are also available in this model.
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4.6 metabolism overview

4.6.1 Carbohydrate metabolism

The pathways used by L. acidophilus for the degradation of carbohydrates (glucose,
fructose, galactose, lactose, and sucrose) were analyzed accounting in silico simulations and
available information. Figure 13 shows a reconstruction of these pathways.

Figure 13.: Pathway reconstruction of the metabolism of sucrose, fructose, glucose, lactose, and
galactose in L. acidophilus, based on the metabolic model and in silico simulations. The uptake
of sucrose, fructose, and glucose is made through the PTS (red). An ABC system for the uptake
of fructose is presented in yellow. Galactose and lactose enter the cell through a permease (blue).
The shown EC numbers have the following correspondence: 2.7.1.2 – glucokinase; 2.7.1.4 – fructok-
inase; 2.7.1.6 – galactokinase; 2.7.1.56 – 1-phosphofructokinase; 2.7.7.9 – UTP-glucose-1-phosphate
uridylyltransferase; 2.7.7.10 – UTP-hexose-1-phosphate uridylyltransferase; 2.7.7.12 – UTP-hexose-
1-phosphate uridylyltransferase; 3.2.1.23 – β-galactosidase; 3.2.1.26 – β-fructofuranosidase; 5.1.3.2 –
UDP-glucose 4-epimerase; 5.3.1.9 – glucose-6-phosphate isomerase; 5.4.2.2 – phosphoglucomutase.
Created with BioRender.com.

The glucose uptake through the PTS allows this sugar to enter the cell as glucose 6-
phosphate, which is mainly directed to glycolysis. However, a minor amount is converted
to UDP-glucose, required for the synthesis of EPS and WTA.

The sucrose uptake is also performed through the PTS. The β-fructofuranosidase ac-
tivity allows the degradation of sucrose 6-phosphate to glucose 6-phosphate and fructose.
Once again, most of the glucose 6-phosphate follows to glycolysis, and the remaining is con-
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verted to UDP-glucose. Fructose obtained from the sucrose hydrolysis is phosphorylated
to fructose 6-phosphate by fructokinase.

The PTS is the main transport system responsible for the uptake of exogenous fruc-
tose, forming fructose 1-phosphate, which is phosphorylated to fructose 1,6-bisphosphate.
In L. lactis, part of the fructose 1,6-bisphosphate is hydrolyzed to fructose 6-phosphate,
which is used for the formation of biomass precursors (UDP-glucose) [227]. However,
fructose-bisphosphatase appears to be absent in the genome of L. acidophilus. Moreover,
there was not found any enzyme able to convert fructose 1-phosphate to fructose 6-phosphate.
Hence, fructose required for biomass may enter the cell through a mechanism other than
the PTS. In in silico simulations, fructose required for biomass production enters the cell
through an ABC system and is then phosphorylated to fructose 6-phosphate, which is
converted to glucose 6-phosphate. Phosphoglucomutase converts glucose 6-phosphate to
glucose 1-phosphate. Then, an UTP-glucose-1-phosphate uridylyltransferase allows the for-
mation of UDP-glucose from glucose 1-phosphate and UTP.

The uptake of both lactose and galactose is made through symport with H+. Lac-
tose is degraded into glucose and galactose by a β-galactosidase. Glucose enters in the EMB
pathway, while galactose follows the Leloir pathway. In this pathway, galactose is phospho-
rylated to galactose 1-phosphate, which reacts with UDP-glucose forming UDP-galactose
and glucose 1-phosphate. UDP-galactose is then converted to UDP-glucose, and glucose 1-
phosphate follows to glycolysis. The tagatose pathway, found in other LAB [228], is absent
in L. acidophilus [161].

4.6.2 Pyruvate metabolism

As mentioned before, L. acidophilus ferments hexoses through the EMB pathway. Al-
though the main fate of pyruvate is the production of lactic acid, heterofermentative LAB
can also produce ethanol and acetate. In addition, several LAB can convert pyruvate to L-
alanine or acetolactate (two compounds associated with flavor), in the presence of alanine
dehydrogenase and acetolactate synthase [229], respectively. Figure 14 shows a representa-
tion of the pyruvate metabolism in L. acidophilus.
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Figure 14.: Pyruvate metabolism in L. acidophilus. Pyruvate can be converted to lactic acid by lactate
dehydrogenase (ldh), acetyl-phosphate by pyruvate oxidase (pox) or be used for the synthesis of ly-
sine. Phosphate acetyltransferase (pta) converts acetyl-phosphate to acetyl-CoA. Acetyl-phosphate
can also be converted to acetate by acetate kinase (ack).

If lysine is not available in the growth medium, pyruvate enters the ”Lysine biosyn-
thesis” pathway, in an intermediary reaction catalyzed by 4-hydroxy-tetrahydrodipicolinate
synthase (EC 4.3.3.7).

Genes encoding pyruvate dehydrogenase and pyruvate formate lyase are absent in
the genomes of species belonging to the L. acidophilus group [194]. Hence, these species
need an alternative pathway to obtain acetyl-CoA, essential for the production of biomass
precursors, such as N-acetyl-glucosamine.

In anaerobic conditions, L. acidophilus requires acetate for growth [200], which was
also observed in L. johnsonii and L. lactis [194, 230]. In these species, the activity of acetate
kinase allows the phosphorylation of acetate, generating acetyl-phosphate, which can be
converted to acetyl-CoA by phosphate acetyltransferase. In L. johnsonii, the requirement
for acetate can be replaced by oxygen, due to the activity of pyruvate oxidase. However,
in such conditions hydrogen peroxide is produced, arresting growth by causing oxidative
damage in the cell [194], which is not possible to simulate with GSM models.

4.6.3 Fatty acid and lipid metabolism

L. acidophilus La-14 does not have the necessary genes for the biosynthesis of fatty
acids, as only two of the 13 required genes are present in the genome of this strain, which is
in accordance with KEGG’s reference annotation for L. acidophilus NCFM. However, regard-
ing L. acidophilus 30SC and L. acidophilus FSI4, the genes required for the synthesis of fatty
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acids are present in the genomes of both strains, thus this auxotrophy might be strain depen-
dent. The requirement for fatty acids is described for Lactobacillus johnsonii [231, 232], which
uses an exogenous source of fatty acids, usually polysorbate 80 (also known as Tween 80).
This substance is predominantly composed of oleate (octadecenoic acid), although other
fatty acids are also present [233]. Tween 80 has been proven to be essential for the growth
of L. acidophilus, and cannot be replaced by free oleate [200]. The cleavage of esther bonds
present in Tween 80 by lipases, provides free fatty acids ready to be incorporated in the
cell [234]. Figure 15 represents the incorporation pathway of exogenous fatty acids by L.
acidophilus.

Figure 15.: Pathway for the incorporation of exogenous fatty acids, and phosphatidate synthesis.
FA: Fatty acid; Acyl-PO4: Acyl phosphate; G3P: glycerol-3-phosphate; LysoPA: Lysophosphatidate;
Acyl-ACP: acyl-acyl-carrier-protein; FakA/B: Fatty acid kinase (2.7.-.-); PlsX: acyl-ACP:phosphate
transacylase (EC 2.3.1.274); PlsY: glycerol-3-phosphate acyltransferase (EC 2.3.1.275); PlsC: 1-acyl-
sn-glycerol-3-phosphate acyltransferase (EC 2.3.1.51)

In gram-positive bacteria, fatty acids cross the membrane by diffusional flipping,
without requiring a transport protein [235, 236]. After entering the cell, fatty acids bound
to the fatty acid-binding protein, FakB, and are then phosphorylated by fatty acid kinase,
FakA, forming acyl phosphate. FakB delivers acyl phosphate to the membrane, where it
is used by glycerol-3-phosphate acyltransferase to acylate glycerol-3-phosphate, forming
lysophosphatidate. Additionally, acyl phosphate can be converted to acyl-ACP, by acyl-
ACP:phosphate transacylase. In the final step, acyl-glycerol-3-phosphate acyltransferase
converts lysophosphatidate and acyl-ACP to phosphatidate, which is then used in the phos-
pholipid biosynthesis (figure 16).



4.6. Metabolism overview 78

Figure 16.: Phospholipid metabolism in L. acidophilus. The present EC numbers have the fol-
lowing correspondence: 2.3.2.3 – lysyltransferase 2.7.7.41 – phosphatidate cytidylyltransferase;
2.7.8.- – Major cardiolipin synthase ClsA; 2.7.8.5 – CDP-diacylglycerol-glycerol-3-phosphate 1-
phosphatidyltransferase; 3.1.3.27 – phosphatidylglycerophosphatase.

Phosphatidate cytidylyltransferase converts phosphatidate to CDP-diacylglycerol, which
is used to obtain phosphatidyl glycerophosphate. The hydrolysis of this compound orig-
inates phosphatidylglycerol, which follows different pathways. It can be used to form
cardiolipin, by cardiolipin synthase ClsA, and L-Lysyl-1-O-phosphatidylglycerol, by a ly-
syltransferase. These two phospholipids, together with phosphatidylglycerol, are the pre-
cursors of the lipid biomass component. Additionally, phosphatidylglycerol is used in the
synthesis of the glycerol-phosphate polymer found in LTAs. In this polymerization reac-
tion, diacylglycerol is released, which can be used to obtain phosphatidate over again, by
diacylglycerol kinase.

4.6.4 Purine and pyrimidine metabolism

The requirements of L. acidophilus for nucleotides is not consensual: Lovtrup et al re-
ported a need for deoxyribonucleotides; Soska et al [200] and Morishita et al [123] suggested
that this species requires at least a purine (guanine or deoxyguanosine); Lv et al [206] veri-
fied that both purines and pyrimidines are necessary. These differences might be explained
by the utilization of different strains in each study. No information regarding the nucleotide
requirements was found for the La-14 strain.

The synthesis of both purine and pyrimidine nucleotides is dependent on the avail-
ability of HCO−3 . This compound is used to obtain the pyrimidine precursor carbamoyl
phosphate. In the ”Purine metabolism” pathway, the intermediary reaction R07404 requires
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HCO3 as substrate. In several bacteria, carbonic anhydrase is responsible for the fast conver-
sion of CO2 to HCO−3 . This enzyme is divided into five different families (α, β, γ, δ, and ζ)
that do not share sequence similarities, as a result of convergent evolution [237]. However,
no genomic evidence for the presence of any type of carbonic anhydrase in the L. acidophilus
La-14 genome was found. The absence of this enzyme was also reported in L. lactis [238]
and L. johnsonii [239]. Hence, these species are not capable of influencing the HCO−3 /CO2

equilibrium, depending on the non-enzymatic dissolution of CO2 on water.
The complete pathway for the de novo synthesis of purines from ribose-5-phosphate

and L-glutamine could be reconstructed based on genomic information. The presence of
all essential genes regarding this biosynthetic capability was also reported in L. acidophilus
NCFM [118].

However, guanine is often used as a source of purine bases in L. acidophilus. It
can be converted to GMP by three phosphoribosyltransferases (EC 5.4.2.7, 5.4.2.8, 5.4.2.22),
followed by phosphorylation to GDP by guanylate kinase. GTP can be formed from GDP
either by pyruvate kinase (with phosphoenolpyruvate as phosphor donor) or by adenylate
kinase (with ATP as phosphor donor). GTP is used for RNA synthesis, and to produce
dGTP by ribonucleoside-triphosphate reductase, using thioredoxin or formate. In addition,
deoxyguanosine and AMP (or other adenine nucleotide) are frequently included in CDM
for this species.

The pathway for pyrimidine synthesis from L-glutamine and carbamoyl phosphate
to UMP could be also completely reconstructed. After two phosphorylation reactions,
UMP can be converted to UTP. CTP synthase converts UTP to CTP, which is used by
ribonucleoside-triphosphate reductase to produce dCTP. Uridine phosphorylase can also
catalyze the formation of deoxyuridine from uracil. Deoxyuridine is phosphorylated to
dUMP, which is converted to dTMP. After two phosphorylation reactions catalyzed by
dTMP kinase and adenylate kinase, dTTP is produced and directed to the DNA synthe-
sis.

4.6.5 Amino acid metabolism

As mentioned before, L. acidophilus is auxotrophic for most amino acids, with the
exception of alanine, asparagine, glutamine, glycine, and lysine. The metabolic model is
able to produce threonine and cysteine, as demonstrated in figure 17.
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Figure 17.: Pathway for the synthesis of the non-essential amino acids alanine, asparagine, glycine,
glutamine, and lysine in L. acidophilus La-14, from aspartate, serine, threonine, and glutamate.
The shown EC numbers have the following correspondence: 1.1.1.3 – homoserine dehydrogenase;
1.2.1.11 – aspartate-semialdehyde dehydrogenase; 1.17.1.8 – 4-hydroxy-tetrahydrodipicolinate re-
ductase; 2.1.2.1 – glycine hydroxymethyltransferase; 2.3.1.30 – serine O-acetyltransferase; 2.5.1.47 –
cysteine synthase; 2.5.1.134 – cystathionine β-synthase; 2.6.1.83– LL-diaminopimelate aminotrans-
ferase; 2.7.1.39 – homoserine kinase; 2.7.2.4 – aspartate kinase; 4.4.1.1 – cystathionine γ-lyase;
4.1.1.12 – aspartate 4-decarboxylase; 4.1.1.20 – diaminopimelate decarboxylase; 4.1.2.5 – threonine
aldolase; 4.2.3.1 – threonine synthase; 4.3.3.7 – 4-hydroxy-tetrahydrodipicolinate synthase; 5.1.1.7
– diaminopimelate epimerase; 6.3.1.1 – aspartate-ammonia ligase; 6.3.1.2 – glutamine synthetase;
6.3.5.4 – asparagine synthase.
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Alanine can be produced directly from aspartate through a decarboxylation reaction
catalyzed by aspartate 4-decarboxylase. Aspartate can also be used for the production of
asparagine, either by asparagine synthase or aspartate-ammonia ligase. The phosphoryla-
tion of aspartate is the starting point for the lysine biosynthesis. This pathway includes
seven reactions, and requires pyruvate and glutamate, besides ATP and NADPH. The in-
termediate aspartate 4-semialdehyde can be rerouted for the threonine biosynthesis. The
bifunctional glycine hydroxymethyltransferase/threonine aldolase allows the interconver-
sion among threonine, glycine, and serine.

Serine is the precursor for the synthesis of cysteine. After the conversion of serine
to O-acetyl-serine by serine O-acetyltransferase, two routes can be followed: if hydrogen
sulfide is available, cysteine can be produced directly from O-acetyl-serine; alternatively, L-
homocysteine can be used as a sulfur source. This compound is produced from methionine,
as observed in subsection 4.3.2.

Glutamine is obtained from glutamate by glutamine synthetase, using ammonia as
a nitrogen source.

As expected, the metabolic model presents a limited amino acid biosynthesis capabil-
ity. Non-essential amino acids are mainly produced directly from other amino acids. This
limitation is a result of the adaptation of L. acidophilus to the gastrointestinal tract, where
amino acids (and other nutrients) are available in abundance [3].

4.6.6 Vitamin and cofactor metabolism

L. acidophilus is auxotrophic for several vitamins and cofactors: pantothenate, folate,
riboflavin, pyridoxal, and spermidine.

Pantothenate is present in the growth medium and is used in the e-Cofactor reac-
tion, and for CoA synthesis. Pantothenate kinase phosphorylates pantothenate, forming
4-phosphopantothenate, which is converted to 4-phosphopantothenoyl-L-cysteine. The de-
carboxylation of this compound by phosphopantothenoylcysteine decarboxylase allows the
obtention of 4-phosphopantetheine, followed by the conversion to dephospho-CoA. In the
final step, dephospho-CoA is converted to CoA.

The activity of riboflavin kinase allows the direct conversion of riboflavin to FMN,
which is used to produce FAD by FAD synthetase. These three cofactors are present in the
e-Cofactor reaction.

Nicotinamide is the precursor of NAD+ and NADP+. Nicotinamide is hydrolyzed,
forming nicotinate, which is directly converted to nicotinate D-ribonucleotide by nicoti-
nate phosphoribosyltransferase. Then, nicotinate-nucleotide adenylyltransferase transfers
an adenyl group from ATP, forming deamino-NAD+. NAD+ synthase catalyzes the final
step, producing NAD+, which can be also converted to NADP+ by NAD+ kinase.
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Pyridoxal phosphate can be obtained directly from pyridoxal. Alternatively, pyridox-
ine can be used in the growth medium but requires oxygen to be converted to pyridoxal.
S-adenosyl-L-methionine is directly obtained from L-methionine by methionine adenosyl-
transferase, with ATP consumption. Folate is the precursor of tetrahydrofolate, in a two-
step reduction reaction, involving the oxidation of two NADPH molecules.

4.6.7 Response to oxidative stress

LAB inhabiting the human gut lack efficient mechanisms for protection against re-
active oxygen species, such as catalase [204]. Although most L. acidophilus strains are aero-
tolerant, lower growth rates and biomass yields are achieved in aerobic conditions. The
oxygen availability allows the activity of a few oxygen-dependent enzymes: pyruvate ox-
idase, pyridoxal 5-phosphate synthase, glycolate oxidase, and NADH oxidase. All these
enzymes produce hydrogen peroxide, which can generate hydroxyl radicals, damaging the
cell and thus inhibiting growth. The metabolic model presents two mechanisms to con-
vert H2O2 to nontoxic compounds: NADH peroxidase, and tryparedoxin peroxidase. The
presence of these mechanisms has been reported in L. acidophilus [215, 203, 216, 240].

4.7 production of industrially relevant compounds

Lactic acid bacteria produce several flavor and texture contributing compounds, like
diacetyl, acetaldehyde, L-alanine, and EPS. Additionally, other compounds like lactic acid
can be used as a preservation contributing agent. Strategies for more efficient production
of these compounds have been focused on rerouting the pyruvate metabolism. However, as
seen in subsection 4.6.2, the pyruvate flux in L. acidophilus is forwarded to lactic acid and
acetyl-phosphate (in aerobic environments). Hence, redirecting the pyruvate metabolism
will probably have to be associated with the introduction of heterologous genes.

4.7.1 L-Lactic acid

L. acidophilus produces lactic acid through the glycolytic pathway, in a racemic mois-
ture of L and D-lactic acid. This fermentation product can be used as an acidifier (preserv-
ing food), flavor-enhancing agent by the food industry. In addition, it is employed by the
cosmetics and pharmaceutical industries [241], and as the starting material of the synthetic
biopolymer polylactic acid [242].

The margin for optimization of the production of lactic acid in homofermentative or-
ganisms is limited since this is the unique (or almost) fermentative product. In L. acidophilus,
90% of the glucose is converted to lactic acid. However, metabolic engineering approaches
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have been focused on the production of L-lactic acid, since the D-isomer is toxic to humans.
An obvious strategy is the inactivation of the ldhD gene, and the construction of strains
with an additional copy of the ldhL gene. This approach has been successfully used in
homofermentative LAB, such as L. lactis [243], L. helveticus [244, 245], and L. johnsonii [246].

The knockout of the ldhD gene was simulated, using LMOMA as simulation method,
producing only the L-isomer. The production of L-lactic acid remained in the proportion of
1.8 mollactate/molglucose.

4.7.2 Acetaldehyde

Acetaldehyde is an important aroma compound present in dairy products. In the
metabolic model, acetaldehyde can be obtained from three precursors: acetyl-CoA (ac-
etaldehyde dehydrogenase); threonine (threonine aldolase); and deoxyribose 5-phosphate
(deoxyribose-phosphate aldolase).

The rerouting of pyruvate for acetaldehyde production is possible under aerobic
conditions due to the activity of pyruvate oxidase. The obtained acetyl phosphate can be
converted to acetyl-CoA, which then forms acetaldehyde by acetaldehyde dehydrogenase.
However, growth under aerobic conditions induce the production and accumulation of
H2O2, limiting growth. Another alternative is the expression of pyruvate decarboxylase,
which was already reported in L. lactis, using the pdc gene from Zygomonas mobilis [247].

The activity of threonine aldolase allows the production of glycine and acetaldehyde
from threonine. The overexpression of this enzyme in S. thermophillus allowed an 80− 90%
overproduction of acetaldehyde, compared with the wild-type strain [198].

Since L. acidophilus has two alcohol dehydrogenases, acetaldehyde can be converted
to ethanol, lowering the aroma contribution of this species. Hence, the inactivation of this
enzyme may increase the accumulation and secretion of acetaldehyde, as suggested by
Marshall et al [197].

4.7.3 L-Alanine

The production of L-alanine (used as a food sweetener) in L. lactis was achieved
through the introduction of the heterologous gene alaD, encoding alanine dehydrogenase
of Bacillus sphaericus. This enzyme allows the conversion of pyruvate to alanine in a single
enzymatic step. The introduction of alaD together with the knockout of ldh and alr (ala-
nine racemase) genes resulted in the total conversion of pyruvate to alanine, turning the
metabolism of L. lactis from homolactic to homoalanine [248].

In the GSM model, L-alanine can only be produced from L-aspartate, through as-
partate decarboxylase. Since L-aspartate is an essential amino acid for L. acidophilus, the
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rerouting of pyruvate to produce L-alanine must follow the same approach described for L.
lactis.

4.7.4 EPS

The modulation of the production of EPS by lactic acid bacteria is an attractive sub-
ject of metabolic engineering, since these compounds influence the mouthfeel and texture
of dairy products, presenting also prebiotic properties. Metabolic engineering approaches
have been mainly focused on the synthesis of its precursors, to modulate the composition
and structure of EPS [229]. As observed before, EPS precursors of L. acidophilus are UDP-
glucose, UDP-galactose, and UDP-N-acetylglucosamine. The control points of the EPS
synthesis are the conversion of glucose-6-phosphate to glucose-1-phosphate by phospho-
glucomutase, and the synthesis of UDP-glucose from glucose-1-phosphate, by UDP-glucose
phosphorylase. The overexpression of these two enzymes in S. thermophilus led to a 2-fold
increase in EPS production [249]. Nevertheless, the utilization of the metabolic model to
modulate the EPS production should involve alterations in the model, as EPS are biomass
precursors.
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C O N C L U S I O N A N D A P P L I C AT I O N S

A GSM model (iEC527) of L. acidophilus La-14 was developed in this work, containing
527 genes, 952 reactions, and 608 unique metabolites. The reconstruction of the metabolic
model was based on information retrieved from biological databases and available literature
and was accelerated by the utilization of automatic tools and plug-ins available in merlin
and Optflux. Nevertheless, manual curation was still mandatory to account for specific
characteristics of L. acidophilus.

The draft network was based on a previously obtained semi-automatic genome an-
notation. The high number of genes associated with transport proteins resulted in a high
number of transport reactions, confirming the robust transport system of L. acidophilus. In
fact, the metabolic model presents several auxotrophies regarding amino acids, pyrimidines
and purines, fatty acids, and vitamins, demonstrating the low biosynthetic capability of this
species.

The biomass composition was mainly inferred from data available in GSM models
of closely related species, namely of L. plantarum and L. lactis. Although not having a signif-
icant impact on the qualitative predicting ability of the metabolic model, the experimental
determination of the biomass composition of L. acidophilus La-14 would allow improving
the qualitative in silico predictions of the model.

The growth rate assessment involved adjusting the maintenance ATP requirements.
Lactic acid is the main compound produced from carbohydrate fermentation, confirming
the homofermentative metabolism of L. acidophilus. Although lactose is the main sugar
present in milk, higher growth rates are achieved using glucose as carbon source. The in
silico fermentation pattern and the amino acid requirements are generally in agreement
with available data. Slight differences were observed between critical genes identified in
aerobic and anaerobic conditions. Genes associated with the biosynthesis of nucleotides
and non-essential amino acids were additionally identified as critical in minimal media.
The availability of data regarding gene essentiality of this species would be valuable for a
deeper model validation. Moreover, transcriptomics and gene regulation data could also
be integrated into the model. The lack of applicable experimental data (a CDM instead
of rich/complex media, and quantification of consumed and produced metabolites) has
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limited the validation of the metabolic model. The availability of quantitative experimental
data would improve model curation, and consequently the phenotype predicting capability.

An overview of the main metabolic pathways in L. acidophilus was also performed
in this work. The pathway for the metabolism of most commonly used carbohydrates
was reconstructed according to in silico simulations, and compared with available informa-
tion. The pathways for fatty acid incorporation, amino acid, nucleotide biosynthesis, and
response to oxidative stress were also described.

The iEC527 model can be used in strain design approaches for optimization of the
production of commercially relevant compounds, such as acetaldehyde and EPS. The rerout-
ing of the pyruvate to the production of desirable compounds would probably involve the
introduction of heterologous genes due to the limited pyruvate metabolism of this species.

L. acidophilus is usually used with other probiotics in dairy products. It is used in
different types of cheese in addition to L. casei, L. paracasei or Bifidobacterium spp. The
combination of this metabolic model with similar ones for these species should be useful
to study and predict the phenotypic behavior of different LAB in the same environment.
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S U P P O RT M AT E R I A L

a.1 genome annotation workflow

Figure S1.: Enzymes annotation workflow. CL: confidence level classification. Each manual enzymes
annotation has a confidence level associated, from CL A (maximum confidence level) to CL E
(minimum confidence level).
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a.2 removed pathways

Table S1.: Pathways removed from the model before the pathway-by-pathway analysis.

Pathway Pathway
2-Oxocarboxylic acid metabolism Inositol phosphate metabolism
alpha-Linolenic acid metabolism Lysine degradation
Aminobenzoate degradation Metabolic pathways
Ascorbate and aldarate metabolism Metabolism of xenobiotics by

cytochrome P450

Benzoate degradation Microbial metabolism in diverse
environments

Betalain biosynthesis Monoterpenoid biosynthesis
Biosynthesis of amino acids Naphthalene degradation
Biosynthesis of ansamycins Nitrogen metabolism
Biosynthesis of antibiotics Nitrotoluene degradation
Biosynthesis of secondary metabolites Novobiocin biosynthesis
Biosynthesis of type II polyketide products Penicillin and cephalosporin

biosynthesis
Biosynthesis of unsaturated fatty acids Pentose and glucuronate

interconversions
Bisphenol degradation Phenazine biosynthesis
C5-Branched dibasic acid metabolism Phenylalanine metabolism
Caprolactam degradation Phenylalanine, tyrosine and tryptophan

biosynthesis
Carbon fixation in photosynthetic organisms Phenylpropanoid biosynthesis
Carbon metabolism Prodigiosin biosynthesis
Chlorocyclohexane and chlorobenzene
degradation

Retinol metabolism

D-Alanine metabolism Sphingolipid metabolism
Degradation of aromatic compounds Steroid degradation
Dioxin degradation Streptomycin biosynthesis
Drug metabolism - cytochrome P450 Synthesis and degradation of ketone

bodies
Fatty acid degradation Taurine and hypotaurine metabolism
Fatty acid elongation Tropane, piperidine and pyridine

alkaloid biosynthesis
Fatty acid metabolism Tryptophan metabolism

Continued on next page



A.3. Generic reactions 112

Table S1 – continued from previous page
Pathway Pathway
Glucosinolate biosynthesis Tyrosine metabolism
Glycosaminoglycan degradation Ubiquinone and other

terpenoid-quinone biosynthesis
Glycosphingolipid biosynthesis - ganglio
series

Xylene degradation

Glycosphingolipid biosynthesis - globo and
isoglobo series

Zeatin biosynthesis

Indole alkaloid biosynthesis

a.3 generic reactions

Table S2.: Generic and glycan-associated reactions removed from the model.

Reaction ID Reaction
R00135 Peptide + H2O→ L-Proline + Peptide
R00162 ATP + Protein→ ADP + Phosphoprotein
R00164 Phosphoprotein + H2O→ Protein + Orthophosphate
R00281 Acceptor + NADH + H+→ Reduced acceptor + NAD+
R00375 dATP + DNA→ Diphosphate + DNA
R00376 dGTP + DNA→ Diphosphate + DNA
R00377 dCTP + DNA→ Diphosphate + DNA
R00378 dTTP + DNA→ Diphosphate + DNA
R00379 Deoxynucleoside triphosphate + DNA(n)→ Diphosphate +

DNA(n+1)
R00382 NAD+ + DNA(n) + 5’-Phospho-DNA(m) ⇀↽ AMP + Nicotinamide

D-ribonucleotide + DNA(n+m)
R00435 ATP + RNA→ Diphosphate + RNA
R00437 RNA + Orthophosphate ⇀↽ RNA + ADP
R00441 GTP + RNA→ Diphosphate + RNA
R00442 CTP + RNA→ Diphosphate + RNA
R00443 UTP + RNA→ Diphosphate + RNA
R00444 Nucleoside triphosphate + RNA ⇀↽ Diphosphate + RNA
R00539 Acyl phosphate + H2O→ Carboxylate + Orthophosphate

Continued on next page
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Table S2 – continued from previous page
Reaction ID Reaction
R00600 S-Adenosyl-L-methionine + tRNA guanine ⇀↽

S-Adenosyl-L-homocysteine + tRNA containing N7-methylguanine
R00623 Primary alcohol + NAD+ ⇀↽ Aldehyde + NADH + H+
R00624 Secondary alcohol + NAD+ ⇀↽ Ketone + NADH + H+
R00804 Sugar phosphate + H2O→ Sugar + Orthophosphate
R00857 Glycerophosphodiester + H2O ⇀↽ Alcohol + sn-Glycerol 3-phosphate
R01122 Dimethylallyl diphosphate + tRNA ⇀↽ Diphosphate + tRNA

containing 6-isopentenyladenosine
R01341 (S)-2-Hydroxyacid + Oxygen ⇀↽ 2-Oxo acid + Hydrogen peroxide
R01369 Triacylglycerol + H2O→ Diacylglycerol + Carboxylate
R01516 2,3-Bisphospho-D-glycerate + Protein histidine→

3-Phospho-D-glycerate + Protein N(tau)-phospho-L-histidine
R02164 Quinone + Succinate ⇀↽ Hydroquinone + Fumarate
R02320 Nucleoside triphosphate + Pyruvate→ NDP + Phosphoenolpyruvate
R02584 ATP + Protein tyrosine→ ADP + Protein tyrosine phosphate
R02585 Protein tyrosine phosphate + H2O→ Protein tyrosine +

Orthophosphate
R02628 Phosphoenolpyruvate + Protein histidine→ Pyruvate + Protein

N(pi)-phospho-L-histidine
R02780 alpha,alpha-Trehalose + Protein N(pi)-phospho-L-histidine→

alpha,alpha’-Trehalose 6-phosphate + Protein histidine
R02806 Thymidine + Base ⇀↽ Deoxynucleoside + Thymine
R02961 S-Adenosyl-L-methionine + DNA adenine ⇀↽

S-Adenosyl-L-homocysteine + DNA 6-methylaminopurine
R03060 3’-Ribonucleotide + H2O ⇀↽ Ribonucleoside + Orthophosphate
R03232 Protein N(pi)-phospho-L-histidine + D-Fructose→ Protein histidine +

D-Fructose 1-phosphate
R03259 3’,5’-Cyclic nucleotide + H2O ⇀↽ Nucleoside 5’-phosphate
R03319 alpha-D-Hexose 1-phosphate ⇀↽ alpha-D-Hexose 6-phosphate
R03422 2’,3’-Cyclic nucleotide + H2O ⇀↽ Nucleoside 2’-phosphate
R03423 2’,3’-Cyclic nucleotide + H2O ⇀↽ Nucleoside 3’-phosphate
R03704 5,10-Methylenetetrahydrofolate + tRNA containing uridine at

position 54 + FADH2 ⇀↽ Tetrahydrofolate + tRNA containing
ribothymidine at position 54 + FAD

R03743 beta-Lactam + H2O ⇀↽ Substituted beta-amino acid
R03815 Dihydrolipoylprotein + NAD+ ⇀↽ Lipoylprotein + NADH + H+

Continued on next page
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Table S2 – continued from previous page
Reaction ID Reaction
R03910 Acetyl-CoA + Alkane-alpha,omega-diamine ⇀↽ CoA +

N-Acetyldiamine
R03923 L-Cysteine + ’Activated’ tRNA ⇀↽ L-Serine + tRNA containing a

thionucleotide
R04111 Protein N(pi)-phospho-L-histidine + Maltose→ Protein histidine +

Maltose 6’-phosphate
R04168 Deoxynucleoside + Base ⇀↽ Deoxynucleoside + Base
R04238 N-Substituted aminoacyl-tRNA + H2O ⇀↽ N-Substituted amino acid +

tRNA
R04268 N-Formyl-L-methionylaminoacyl-tRNA + H2O ⇀↽ Formate +

L-Methionylaminoacyl-tRNA
R04273 Peptidylproline (omega=180) ⇀↽ Peptidylproline (omega=0)
R04294 2’-Deoxyribonucleoside diphosphate + Thioredoxin disulfide + H2O

⇀↽ Ribonucleoside diphosphate + Thioredoxin
R04314 DNA containing 6-O-methylguanine + [Protein]-L-cysteine→ Protein

S-methyl-L-cysteine + DNA containing guanine
R04315 Deoxynucleoside triphosphate + Thioredoxin disulfide + H2O ⇀↽

Ribonucleoside triphosphate + Thioredoxin
R04511 Phosphatidylglycerol + Membrane-derived-oligosaccharide D-glucose

⇀↽ 1,2-Diacyl-sn-glycerol + Membrane-derived-oligosaccharide
6-(glycerophospho)-D-glucose

R05209 Diacylglycerol + H2O ⇀↽ 1-Acylglycerol + Carboxylate
R05994 GA1 + H2O ⇀↽ GA2 + D-Galactose
R06034 Sucrose + Orthophosphate ⇀↽ D-Fructose + D-Glucose 1-phosphate
R06040 Maltose + Orthophosphate ⇀↽ D-Glucose + beta-D-Glucose

1-phosphate
R06049 1,4-alpha-D-Glucan(n) + ADP-glucose ⇀↽ 1,4-alpha-D-Glucan(n+1) +

ADP
R06050 1,4-alpha-D-Glucan(n) + Orthophosphate ⇀↽ 1,4-alpha-D-Glucan(n-1)

+ D-Glucose 1-phosphate
R06070 Raffinose + H2O ⇀↽ D-Galactose + Sucrose
R06080 Isomaltose + H2O ⇀↽ alpha-D-Glucose + D-Glucose
R06084 Maltose + H2O ⇀↽ 2 alpha-D-Glucose
R06087 Sucrose + H2O ⇀↽ D-Fructose + D-Glucose
R06088 Sucrose + H2O ⇀↽ beta-D-Fructose + alpha-D-Glucose
R06091 Melibiose + H2O ⇀↽ D-Galactose + D-Glucose

Continued on next page
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Table S2 – continued from previous page
Reaction ID Reaction
R06093 Galactinol + H2O ⇀↽ myo-Inositol + D-Galactose
R06098 Lactose + H2O ⇀↽ alpha-D-Glucose + D-Galactose
R06100 Raffinose + H2O ⇀↽ Melibiose + D-Fructose
R06101 Stachyose + H2O ⇀↽ Manninotriose + D-Fructose
R06112 G10518 + H2O ⇀↽ D-Glucose + D-Glucose 6-phosphate
R06113 H2O + Trehalose 6-phosphate ⇀↽ D-Glucose + D-Glucose 6-phosphate
R06114 Lactose + H2O ⇀↽ D-Glucose + D-Galactose
R06115 H2O + Maltose 6’-phosphate ⇀↽ D-Glucose + D-Glucose 6-phosphate
R06131 alpha-Amino acid→ 2-Oxo acid + Ammonia
R06134 Amide + H2O ⇀↽ Carboxylate + Ammonia
R06142 Epimelibiose + H2O ⇀↽ D-Mannose + D-Galactose
R06152 Stachyose + H2O ⇀↽ Raffinose + D-Galactose
R06176 ATP + Cellobiose ⇀↽ ADP + G10518

R06185 Starch + Orthophosphate ⇀↽ 1,4-alpha-D-Glucan + D-Glucose
1-phosphate

R06186 1,4-alpha-D-Glucan ⇀↽ Starch
R06199 Starch(n+1) + H2O ⇀↽ alpha-D-Glucose + Starch(n)
R06202 G10534(n+1) + H2O ⇀↽ D-Galactose + G10534(n)
R06229 Trehalose + Protein N(pi)-phospho-L-histidine→ Trehalose

6-phosphate + Protein histidine
R06236 Protein N(pi)-phospho-L-histidine + Maltose→ Protein histidine +

Maltose 6’-phosphate
R07180 ROOH + 2 Thiol-containing reductant ⇀↽ Alcohol + H2O + Oxidized

thiol-containing reductant
R07297 5’-Ribonucleotide + H2O ⇀↽ Ribonucleoside + Orthophosphate
R07461 [Enzyme]-S-sulfanylcysteine + Adenylyl-[sulfur-carrier protein] +

Reduced acceptor ⇀↽ AMP + Thiocarboxy-[sulfur-carrier protein] +
[Enzyme]-cysteine + Acceptor

R07618 Enzyme N6-(dihydrolipoyl)lysine + NAD+ ⇀↽ Enzyme
N6-(lipoyl)lysine + NADH + H+

R07807 G01977 + H2O ⇀↽ G13073 + D-Galactose
R08363 2’-Deoxyribonucleoside diphosphate + Tryparedoxin disulfide + H2O

⇀↽ Ribonucleoside diphosphate + Tryparedoxin
R08364 2’-Deoxyribonucleoside diphosphate + Trypanothione disulfide +

H2O ⇀↽ Ribonucleoside diphosphate + Trypanothione
R08372 1-Hydroxyalkyl-sn-glycerol ⇀↽ Aldehyde + Glycerol

Continued on next page
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Table S2 – continued from previous page
Reaction ID Reaction
R08384 9-cis-Retinal + Oxygen + H2O ⇀↽ 9-cis-Retinoic acid + Hydrogen

peroxide
R08550 Protein N6-(dihydrolipoyl)lysine + NAD+ ⇀↽ Protein

N6-(lipoyl)lysine + NADH + H+
R08763 2 6-Iminocyclohexa-2,4-dienone + Acceptor ⇀↽

2-Aminophenoxazin-3-one + Reduced acceptor
R09382 tRNA precursor + 2 CTP + ATP ⇀↽ tRNA with a 3’ CCA end + 3

Diphosphate
R09383 tRNA precursor + CTP ⇀↽ tRNA with a 3’ cytidine + Diphosphate
R09384 tRNA with a 3’ cytidine + CTP ⇀↽ tRNA with a 3’ CC end +

Diphosphate
R09386 tRNA with a 3’ CC end + ATP ⇀↽ tRNA with a 3’ CCA end +

Diphosphate
R09597 [tRNA(Ile2)]-cytidine34 + L-Lysine + ATP ⇀↽ [tRNA(Ile2)]-lysidine34

+ AMP + Diphosphate + H2O
R09662 Reduced flavin + NAD+ ⇀↽ Flavin + NADH + H+
R10223 tRNA adenine + H2O ⇀↽ tRNA hypoxanthine + Ammonia
R10613 FAD + [Protein]-L-threonine ⇀↽ [Protein]-FMN-L-Threonine + AMP
R10648 L-Threonylcarbamoyladenylate + tRNA adenine ⇀↽ AMP +

N6-L-Threonylcarbamoyladenine in tRNA
R10803 Hydrogen sulfide + 3 Coenzyme F420 + 3 H2O ⇀↽ Sulfite + 3 Reduced

coenzyme F420

R10806 Protein glutamine + S-Adenosyl-L-methionine ⇀↽ Protein
N5-methyl-L-glutamine + S-Adenosyl-L-homocysteine

R11029 2’-Deoxy-5-hydroxymethylcytidine-5’-triphosphate ⇀↽ DNA
5-hydroxymethylcytosine

R11528 L-Cysteine + [Protein]-L-cysteine ⇀↽ L-Alanine +
[Protein]-S-sulfanyl-L-cysteine

R11529 [Enzyme]-S-sulfanylcysteine + [Protein]-L-cysteine ⇀↽

[Enzyme]-cysteine + [Protein]-S-sulfanyl-L-cysteine
R11592 Ribonucleoside triphosphate + Formate ⇀↽ Deoxynucleoside

triphosphate + CO2 + H2O
R11865 2-(Hydroxysulfanyl)hercynine + Reduced acceptor ⇀↽ Ergothioneine +

Acceptor + H2O
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a.4 chemically defined medium

Table S3.: In silico chemically defined medium for L. acidophilus, defined according to [123]. The
lower bound of the respective exchange reaction was left unconstrained, except for glucose, whose
lower bound was settled as 16.4 mmol h−1 gDW−1

Metabolite Metabolite Metabolite Metabolite

Glucose L-Isoleucine L-Valine Pantothenate
Acetate L-Leucine Guaninea Spermidine

Orthophosphate L-Lysinea Uracila Folate
D/L-Alaninea L-Methionine AMPa Tetradecanoic acid

L-Arginine L-Phenylalanine CMPa Hexadecanoic acid
L-Aspartate L-Proline Deoxyguanosinea Hexadecenoic acid
L-Cysteineb L-Serine Thyminea Octadecanoic acid
L-Glutamate L-Threonineb Riboflavin Octadecenoic acid

Glycinea L-Tryptophan Pyridoxal
L-Histidine L-Tyrosine Nicotinamide

a These metabolites are not essential, but are included in rich media to stimulate growth;
b Cysteine and threonine were considered essential according to [123], but are not essential
in in silico simulations.
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a.5 fermentation pattern

Table S4.: Comparison between experimental fermentation growth from different carbohydrates of
L. acidophilus and in silico simulations.

Carbohydrate Wheater et al
[217]

Axelsson et al
[218]

Model (This
work)

AGORA
model

Glucose + ND + +
Fructose + + + +
Galactose + +- + +
Lactose + + + +
Cellobiose + + + +
N-Acetyl-Glucosamine ND + + +
Amygdalin + + - -
Maltose +- ND + +
Stachyose ND ND + +
Mannose + + + +
Trehalose +- +- + +
Salicin + + + +
Sucrose + ND + +
Melibiose +- +- + -
Raffinose +- + + -
Melezitose - - - -
Mannitol - ND - -
Arabinose - - - -
Rhamnose - ND - -
Ribose ND - + +
Xylose ND - - -

+ Growth; - Non growth; +- Strain specific growth; ND, Not determined.
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