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Sistema de Deteção de Intrusões Inteligente

para Redes Veiculares Ad hoc

Intelligent Transportation Systems (ITS) é um conjunto de aplicações e serviços que têm como objetivo

tornar a conduçãomais fácil e segura semmenosprezar a segurança de dados ou a privacidade. Estas utilizam

comunicações para, de forma cooperativa, melhorar ou introduzir novas funcionalidades. As Vehicular Ad

hoc Networks (VANETs) oferecem um meio para comunicação entre os diversos nós. No entanto, estas têm

características desafiadoras, principalmente no que toca a segurança.

Assim, a segurança em VANETs é tema de diversos trabalhos de investigação, a maioria baseados em

criptografia e que têm como objetivo prevenir e/ou mitigar ataques. No entanto, alguns dos ataques, como os

realizados por entidades fidedignas ou que têm como alvo as vulnerabilidades das ferramentas criptográficas,

não são facilmente preveníveis.

Os Intrusion Detection Systems (IDSs) utilizam uma estratégia diferente. O seu objetivo não é prevenir

ataques mas detetá-los de forma a despoletar uma resposta de forma minimizar os efeitos causados no

sistema alvo. Este trabalho de Doutoramento tem como objetivo o desenho e a validação de um IDS capaz

de detetar ataques numa VANET. O IDS está estruturado numa hierarquia com diversos clusters em cada

nível, divididos de acordo com a as necessidades e características de cada nó. Esta divisão habilita o uso de

ferramentas de Machine Learning (ML) e a sua adaptação às características e capacidades dos nós de cada

cluster. A comunicação entre nós deverá utilizar mecanismos de segurança fortes com o âmbito de proteger

os dados trocados.

Os resultados obtidos indicam que a arquitetura proposta é capaz de detetar múltiplos ataques com

sucesso, e permite aos diversos clusters utilizar o algoritmo de ML quemelhor responda às suas necessidades.

Os nós de níveis mais altos do IDS utilizam algoritmos mais complexos e que permitem melhores deteções

à custa de necessidade de mais Central Processing Unit (CPU) e tempos de decisão mais longos. Por outro

lado, os nós em níveis mais baixo da hierarquia utilizam algoritmos mais leves, permitindo decisões rápidas

com menor uso de CPU, mas com taxas de deteção mais baixas.

Palavras Chave: VANETs, Segurança, Sistemas de Detecção de Intrusão, Machine Learning
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Intelligent Intrusion Detection System for

Vehicular Ad hoc Networks

Intelligent Transportation Systems (ITS) are a set of applications and services that aims to make driving

easier and safer, without neglecting security or user privacy. These applications take advantage of communi-

cations to, cooperatively, improve their capabilities or provide new functionalities. Vehicular Ad hoc Networks

(VANETs) provide a communication medium to allow the multiple nodes to communicate. Nevertheless, these

possess specific characteristics that make them quite challenging, particularly regarding security.

Thus, VANET security is a subject of research, resulting in multiple published research works. Most of

them use the cryptographic approach that aims to prevent and/or mitigate attacks. However, some attacks,

such as those performed by authentic entities or targeting the vulnerabilities of the cryptographic tools, cannot

be easily prevented.

Intrusion Detection Systems (IDSs) use a different strategy. Their goal is not to prevent attacks but

detect them and trigger a response to minimize the effects on the targeted system. This Ph.D. work aims

to design and validate an Intelligent IDS to detect attacks in VANETs. The IDS is structured into a hierarchy

with multiple clusters by level, according to the characteristics and needs of each node. Thus, enabling the

usage of Machine Learning (ML) algorithms and adapting their characteristics and capabilities to the cluster’s

nodes. The communication between the nodes should use strong security mechanisms to protect the data

exchanged.

The results indicate that the proposed architecture is able to detect multiple attacks accurately, and

enables each cluster to use the ML algorithms that better respond to its needs. The higher levels of the IDS

use more complex algorithms that allow better detections at the cost of more Central Processing Unit (CPU)

and longer detection times. On the other hand, the lower levels use light algorithms that allow quick and CPU

light operations but have lower detection rates.

Keywords: VANETs, Security, Intrusion Detection Systems, Machine Learning
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Chapter 1

Introduction

Vehicular Ad hoc Networks (VANETs) are the core of Intelligent Transportation Systems (ITS), allowing

vehicles to communicate among themselves and with the infrastructural network. They enable the implemen-

tation of multiple types of applications with the primary goal of improving road safety by reducing accidents

and traffic congestion. Nevertheless, these are complex networks with volatile architectures and ever-changing

members with an inherently insecure communication medium (the air), making them particularly attractive to

attackers, where even small attacks may cause severe damage.

On security concerns, VANETs involve multiple entities that pose important security challenges. These

are the vehicles, their On-Board Units (OBUs), the drivers and the infrastructural Road Side Units (RSUs), and

third-party service suppliers (connectivity or content). Hence, the implementation of security measures being

of significant importance.

Several studies have been done on preventing VANET attacks, generally by using cryptographic tools

[1, 2, 3, 4, 5, 6, 7], which aim to prevent and/or mitigate existing attacks. However, these methods cannot

detect or prevent all attacks. Some examples of attacks that traditional methods cannot prevent are [7] Denial

of Service (DoS), Black Hole, Grey Hole, and Sybil attack. The usage of cryptography can even increase the

possibility of DoS[8]. If the messages are signed, checking for the signatures on fake ones can overload an

entity.

One possible solution for this problem is the usage of an Intrusion Detection System (IDS). These can

detect attacks and trigger a response, minimizing the effects on the targeted system [9]. Traditional IDSs

assume that the behavior of an intruder will be noticeable from normal network operation. Signature detection

systems compare the behaviors of the attackers with known attacks, assuming no new attacks will happen.

Anomaly detection systems focus on detecting significant deviations from normal behavior. However, the

definition of these criteria is difficult to attain[10]. The usage of intelligent algorithms enables the IDS to learn

previous attacks and discover new ones.
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This research proposal is on the identification, classification, and characterization of the most critical

security threats in VANET. It should combine highly dynamic contextual vehicular information with central

knowledge built from previously collected data (either from previous security analysis, derived from collected

data, or threats to services or identities). This information should enable the design and validation of a

new type of IDS by using distributed and intelligent algorithms structured in a hierarchical architecture with

multiple clusters, attributing different roles and detection types to each level, according to its characteristics,

capabilities, and needs. This new type of IDS should enable each network node to identify the attacks

mentioned above and, thus, protect the VANET and its vehicles without compromising vehicles or associated

services.

This thesis proposal is aligned with the project Easy Ride: Experience is Everything - 039334, an R&D

project on VANETs, resulting from the University of Minho and Bosch Car Multimedia’s collaboration, in which

the Computer Communication Group participates. Within this project framework, it is expected to identify

scenarios, use cases, and datasets useful for the thesis work.

1.1 Objectives

This work focus on the definition, evaluation, and test of a new IDS targeted at the context of VANETs.

It should take advantage of intelligent and distributed algorithms to improve the IDS dynamic adaptation,

performance, and detection capacity. Moreover, the IDS design follows a hierarchical architecture composed

of multiple levels, grouping nodes of similar characteristics, capabilities, and needs. Thus, each level may use

a specific detection type that is better suited for its requirements. The goals of this research are the following:

Survey VANET characteristics, attacks, and attackers - VANETs are the underlying communication

framework used by the entities composing the architecture to be designed. Thus, information on VANET

characteristics, security requirements, attacks and attackers, and secure communications models should be

collected. The survey should provide a strong enough basis for the rest of the work.

Survey IDSs in the VANET context - IDSs have diverse designs and characteristics which can be better

suited for different scenarios. These can also be deployed in different network locations and entities. Thus a

survey gauging the suitability of this type of solution in this context is needed. The survey should also gather

information on the more common approaches, simulation frameworks, and datasets.

Research and implement a secure communication framework - Because the proposed IDS design is

divided into multiple clusters, their entities need a channel enabling the secure exchange of information. Thus,
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existing security frameworks for VANETs should be evaluated. If they do not satisfy the security requirements, a

new one should be designed. The chosen security model should be implemented and tested. It will serve as a

basis for the IDS entities to communicate securely. Also, due to the needs of the IDS and the intrinsic nature of

VANET communications, the security framework should consider the demand for broadcast communications.

Collection of VANET datasets with attacks - Machine Learning (ML)-based IDSs need large sets of data

to be trained and tested. So VANET datasets should be surveyed. If none is found, these should be collected

by following a well-specified methodology containing both normal and attack messages. Thus VANET attacks,

with particular attention to the ones unpreventable by cryptographic tools, should be identified and reproduced.

Attacks and normal messages should be collected in a significant number and relevance to train and test the

prototype.

Evaluation of ML algorithms for attack detection in the VANET context - The IDS proposed in this

work is aided by intelligent algorithms, aiming to enhance its detection capabilities. These types of algorithms

provide flexibility and good anomaly detection capabilities. So, it is also a goal to research intelligent algorithms,

mainly in the context of attack detection. The ML algorithms should be trained and tested, simulating their

location in different network locations. Thus, the ML algorithm at each level should only have access to the

limited data collected by its nodes, providing insight on the best combination of algorithms for each network

level.

Design the IDS architecture - The knowledge obtained from the previous goals should enable the design

of the IDS. It follows a hierarchical model, grouping entities with similar characteristics in different network

levels. Thus, enabling the implementation of different functionalities and detection types according to each

level’s entities’ capabilities and needs. Then, the architecture as a whole can be designed. This design should

contain the methodology used to maintain secure communications between entities, the ML algorithms used

at each level, and the roles for each node.

Develop a prototype implementation - A prototype implementation of the IDS should be done as a

proof of concept. It should be independent of any specific system for its easy adaptation at each VANET

node. The IDS should be validated, deployed, and tested in a simulation tool and, if possible, making a real-

world deployment. Therefore, a survey of simulation tools should be done to find the better suited for this

implementation.

Test the new methodology - The final goal is to derive, validate, and test the new methodology and

classify the implemented IDS regarding its characteristics, such as false negatives, false positives, precision
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and accuracy in attack detection. Also, evaluating possible delays and overhead introduced by the underlying

security model, and the IDS detection time should be considered.

1.2 Methodology of the Research

This Section presents the detailed methodology followed to fulfill the previously established objectives.

This thesis should culminate in the proposal, test, and evaluation of a security architecture composed of

multiple IDS (one by each VANET node) organized into a hierarchy that is able to identify attacks correctly. The

nodes should be able to communicate securely, sharing attack information to enable a quicker and cooperative

attack detection. The lower nodes should also send the information received to a higher level IDS for further

analysis. It will foster a wider knowledge of the network and enable a more profound analysis of the network

(slower), enabling it to detect other attacks undetected by the remaining nodes. The IDSs can be divided into

clusters of, for example, different brands or commercial fleets to detect more particular attacks.

Survey VANET characteristics, attacks, and attackers - The first step is to thoroughly research

the VANET related literature to survey their characteristics, security requirements, and most known attacks.

The study should emphasize in attacks unpreventable through the usage of traditional security measures

(cryptography-based).

Survey IDSs in the VANET context - The survey should have an accent on IDSs for VANETs supported

by Intelligent Algorithms. This survey is supported by a Systematic Literature Review (SLR), one of the best

ways to systematically cover the existing literature [11]. Additionally, the review should provide insight into

the types and sources of the datasets used in other works. One of the requirements of using ML is the need

for a large set of data to train and test the algorithms. If none publicly available are found, these should be

synthesized, including multiple attacks and normal messages. The IDS designs found in the literature should

be evaluated to find the best suited for this scenario. This step also consists of the research and identification

of the simulation framework to be used.

Research and implement a secure communication framework - During the curricular MAP-i plan,

the unit ”free option” involves research work that can be done in the thesis’s scope. The work done in this

curricular unit was the evaluation, definition, and implementation of a security model for VANETs. Firstly, the

existing models were studied, surveying their features and drawbacks. The implemented security model uses

a Public Key Infrastructure (PKI) base improved with Attribute-Based Encryption (ABE) and an Identity Manager

(IdM) to provide privacy protection. This work has resulted in a scientific paper and has been published in an
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international conference.

Collection of VANET datasets with attacks - Carefully research the literature on IDS for VANET, focus-

ing on ML-based research work. The research should provide insight on the data source used for the datasets

used by others or, if these are not available, the methodology used to generate the needed data. If no publicly

available data source is found, the datasets are to be synthesized using simulation to generate the attacks and

normal messages, which will be collected to create datasets.

Evaluation of ML algorithms for attack detection in the VANET context - There are multiple types

of ML algorithms with different characteristics. These should be studied in the context of the hierarchical IDS

aimed at VANETs. Thus, each level has nodes with different requirements that may need algorithms with

specific characteristics. The algorithms should be trained and tested using the previously collected messages.

These algorithms should be evaluated to find the best-suited that can balance detection rate, false positives,

and false negatives, in conjunction with detection speed and complexity according to the needs of each each.

Design the IDS architecture - The main goal of this work is the research of a new hierarchical IDS. The

IDS should be divided into multiple levels, grouping entities with the same characteristics and needs. Thus,

the most Central Processing Unit (CPU)-powerful entities can perform the more complex operations, such as,

creating ML models and analyzing all the data, while the entities with less CPU power can use the rules and

models created to perform detection. Moreover, the architecture should include the algorithms each node

should use to be more efficient, the underlying security model to create a secure channel for all the entities to

communicate and their interactions.

Develop a prototype implementation - The developed prototype should include tools that enable se-

cure communication between the entities. So, in addition to implementing the ML algorithms, the security

model and all the architecture components should be implemented, enabling the evaluation of the proposed

methodology at all levels.

Test the newmethodology - The real-world implementation should be done in the context of the research

project, where this work is being developed. It is a partnership between the University of Minho and an external

enterprise that may enable real-world application testing.
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1.3 Scientific Contributions

The research work performed during this Ph.D. thesis resulted in multiple scientific publications. More-

over, this thesis work was aligned with CAR2X, an R&D project on VANETs, resulting from the collaboration of

the Unversity of Minho and Bosch Car Multimedia, which enabled the deployment of a platooning application

in real-world vehicles in a laboratory environment.

Simulation and Testing of a PlatooningManagement Protocol Implementation [12] Bruno Ribeiro,

Fábio Gonçalves, Alexandre Santos, Maria João Nicolau, Bruno Dias, Joaquim Macedo and António Costa,

15th IFIP WG 6.2 International Conference on Wired/Wireless Internet Communications (WWIC 2017), St.

Petersburg, Russia, June 21-23, 2017.

A New Approach on Communications Architectures for Intelligent Transportation Systems [13]

Susana Sousa, Alexandre Santos, António Costa, Bruno Dias, Bruno Ribeiro, Fábio Gonçalves, Joaquim

Macedo, Maria João Nicolau and Oscar Gama, 12th International Conference on Future Networks and Com-

munication (FNC-2017), Leuven, Belgium, July 24-26, 2017.

Hybrid Model for Secure Communications and Identity Management in Vehicular Ad Hoc Net-

works [14] Fábio Gonçalves, Alexandre Santos, António Costa, Bruno Dias, B. Ribeiro, J. Macedo, M. J.

Nicolau, S. Sousa, O. Gama, S. Barros, V. Hapanchak, 9th International Congress on Ultra Modern Telecom-

munications and Control Systems (ICUMT’2017), Munich, Germany, November 6-9, 2017.

PlaSA - Platooning Service Architecture [15] Bruno Ribeiro, F. Gonçalves, V. Hapanchak, O. Gama,

S. Barros, P. Araujo, António Costa, M. João Nicolau, , Bruno Dias, Joaquim Macedo, Alexandre Santos,

8th ACM International Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications

(MSWIM’2018), Montreal, Canada, October 28 - November 2, 2018.

Secure Management of Autonomous Vehicle Platooning [16] Fábio Gonçalves, B. Ribeiro, V. Ha-

panchak, S. Barros, O. Gama, P. Araujo, M. João Nicolau, Bruno Dias, JoaquimMacedo, António Costa, Alexan-

dre Santos, 14th ACM Symposium on QoS and Security for Wireless and Mobile Networks (MSWIM’2018),

Montreal, Canada, October 28 - November 2, 2018.

Agnostic and Modular Architecture for the Development of Cooperative ITS Applications [17]

Bruno Dias, Alexandre Santos, António Costa, B. Ribeiro, F. Gonçalves, Joaquim Macedo, M. João Nicolau, O.
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Gama, S. Sousa, Journal of Communication Software and Systems, September, 2018.

Simulation and Testing of a Platooning Cooperative Longitudinal Controller [18] Vadym Ha-

panchak, António Costa, Joaquim Macedo, Bruno Dias, M. João Nicolau, Alexandre Santos, B. Ribeiro, F.

Gonçalves, O. Gama, P. Araujo, Guimarães, Lecture Notes of the Institute for Computer sciences, Social-

Informatics, and Telecommunications Engineering (LNICST), Portugal, November 21-23, 2018.

ASystematic Review on Intelligent IntrusionDetection systems for VANETs [19] Fábio Gonçalves,

B. Ribeiro, O. Gama, Bruno Dias, Joaquim Macedo, M. João Nicolau, António Costa, Alexandre Santos, 11th In-

ternational Congress on Ultra Modern Telecommunications and Control Systems andWorkshops (ICUMT’2019),

Dublin Ireland, October 28-30, 2019

Synthesizing Datasetswith Security Threats for Vehicular Ad-HocNetworks [20] Fábio Gonçalves,

B. Ribeiro, O. Gama, J. Santos, António Costa, Bruno Dias, M. João Nicolau, Joaquim Macedo and Alexandre

Santos, 2020 IEEE Global Communications Conference (GLOBECOM’2020), Taipei, Taiwan, December 7-11,

2020

Evaluation of VANET Datasets in context of an Intrusion Detection System [21] Fábio Gonçalves,

Joaquim Macedo, Alexandre Santos, 29th International Conference on Software, Telecommunications and

Computer Networks (SoftCOM 2021), Hvar, Croatia, September 23-25, 2021

Intelligent Hierarchical Intrusion Detection System for VANETs [22] Fábio Gonçalves, Joaquim

Macedo, Alexandre Santos, 13th International Congress on Ultra Modern Communications and Control Sys-

tems (ICUMT), Online, October 25-27, 2021

An Intelligent Hierachical Security Famework for VANETs [23] Fábio Gonçalves, Joaquim Macedo,

Alexandre Santos, Information 12, 2021

1.4 Organization of the Document

The present document starts with the introduction (Section 1), which describes the problem tackled in

this Ph.D. and the proposed solution. Then in Section 1.1 are presented the research goals of this work and

in Section 1.2 the methodology that will be followed to achieve them successfully. The research work done

7



Chapter 1

resulted in multiple published scientific papers, which are described in Section 1.3. This Chapter ends with

this Section, which describes the organization of this document.

Chapter 2 presents the technologies related to this Ph.D. thesis work. Firstly, the security commu-

nication basics are introduced, including the fundamentals of cryptography, PKIs, Certificate Revocation

Lists (CRLs), ABE, and IdM. Then, are presented the VANETs and their characteristics, primary standards,

and most common architectures. This research focuses on security, so Sections 2.3, 2.4, 2.5 focus on this

VANET area, presenting the security requirements, main attacks and their security solutions, and the existing

security models for VANETs. Section 2.6 gives an overview of IDSs, presenting the different detection types,

the metrics used for their evaluation, and the different types of architectures existing. This work aims to use

ML algorithms in conjunction with IDSs, which are described in Section 2.7. This Section describes the types

of machine learning and some of the existing algorithms. Finally, and due to its relevance to the rest of the

work, the Platooning application is described in Section 2.8, which includes both an overview of the functioning

of the Platooning and its security requirements.

In Chapter 3 is presented the related work. It serves as a basis for this Ph.D. work, enabling the

evaluation of the implementability and feasibility of an Intelligent IDS for VANETs. The related work was

surveyed through a thorough SLR that was performed following a well-defined methodology. Thus, enabling

the identification of relevant research work while decreasing the probability of biased results. This review

provided insight into the most common approaches in this area, such as IDS architectures, ML algorithms,

simulators, and used datasets.

The architecture has multiple entities that need to communicate securely over the insecure environment,

that is the VANET, to cooperate with each other. Chapter 4 presents the security model designed with that

purpose called Vehicular Ad hoc Network Public Key Infrastructure and Attribute-Based Encryption with Identity

Manager Hybrid (VPKIbrID), including its different encryption modes and messages, and the interactions

between the entities within the VPKIbrID model. Then, in Section 4.4, it is described how the VPKIbrID model

can be applied to a specific situation, in this case, the platooning application.

The IDS proposed takes advantage of the capabilities provided by ML algorithms to improve its detection.

These types of algorithms need large sets of data for their training and testing. However, as indicated in Chapter

3, no publicly datasets were found in the SLR, as most research works do not publish their datasets. So, in

Chapter 5, it is presented the methodology used to create the datasets in this work. Firstly in Section 5.1,

are presented the scenarios used for the message collection and indicated the type of application used for

the traffic generation. Then in Section 5.2, the geographical maps, their characteristics, and Simulation of

Urban Mobility (SUMO) counterparts are shown. Multiple datasets were used to introduce randomness in the

data collected, enabling the detection of different attacks in different situations. Section 5.3 describes how

the simulation was performed and which types of attacks were used. Lastly, it is described how the data was

collected and its format in Section 5.4.
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Then, Chapter 6 presents the designed Intelligente Hierarchical IDS. First, in Section 6.1, the design

of the architecture is presented. It shows the functional division of the architecture that joins entities with

similar characteristics and functionalities into clusters at the same level. And, furthermore, their interactions,

message exchange, and underlying security framework. In Section 6.2, the complete security interactions

are described. At this level, the security is represented through a secure channel that enables all entities to

communicate securely over an insecure channel. Section 6.3 describes the detection at each level, including

the ML algorithm used and the functionality of each cluster.

As a proof of concept and to provide results for evaluating the proposed technologies, these were

implemented as described in Chapter 7. Section 7.1 shows the Intelligent Hierarchical IDS applied to a specific

use case. In this case, it describes an implementation that groups the vehicles into platoonings, using the

already established cluster mechanisms and communications. Section 7.2 presents the implementation of

the security model VPKIbrID. This model comprises multiple entities responsible for the generation of different

cryptographic material needed for secure interactions. A simple implementation of those entities was made,

including an easy-to-use library that provides a simple way to add VPKIbrID to any application. In Section

7.3, the VPKIbrID security model is used to secure communications in a Platooning. The implementation

of the agnostic architecture used to provide seamless access to the vehicle internals and communication

modules is presented in Section 7.4. Section 7.5 describes the implementation of the application used to

generate the messages collected to build the datasets indicated in Chapter 5, including the simulation tools

and the methodology used to create the multiple simulated attacks. In Section 7.6 is described the different

implementations of the ML algorithms used. Finally, in Section 7.7 is described a real-world implementation in

a controlled environment of a Platooning application using real vehicles and physical communication devices.

The results obtained from the applications implemented in Chapter 7 are then presented in Chapter

8. The results allow the evaluation of the technologies presented and their comparison with existing work.

Section 8.1 presents the results obtained for the VPKIbrID model implementation, evaluating the multiple

encryption modes and providing insight into the impact of the cryptography schemes used. The secure

platooning implementation did not produce any results due to the characteristics of the simulator, as it does

not consider the time taken during the cryptographic operations. Section 8.2 describes a test made through

a simple application that generates messages with a constant frequency. The goal of this application was to

test the influence of having a biased dataset, demonstrating its impact on the results. Then, in Section 8.3,

two different results are presented; in Section 8.3.1, the contents of the collected datasets are presented and

how each parameter varies in the normal messages and attacks; in Section 8.3.2, are presented the results

obtained from the evaluation done by feeding the produced datasets to an ML algorithm. The goal of the

evaluation is to gauge the impact of having datasets from multiple sources and using datasets from the point

of view of different network locations. Section 8.4 presents the evaluation of multiple ML algorithms, optimizing

the detection of attacks using the datasets collected. Furthermore, these results enable the selection of the

best-suited algorithm for each level of the cluster.
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Finally, the conclusions are presented in Chapter 9, describing the major results and solutions of the

work performed. This Chapter terminates with the limitations presented by the proposed work, which can, in

some way, introduce some bias in the obtained results and the further research work that can complement

this thesis, such as real-world implementation, testing, and deeper analysis that could not be completed.
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Background

This Chapter describes the current state of the tools and technologies related to this work and makes

an overview of the more general and fundamental security mechanisms.

Firstly, Section 2.1 starts by introducing the main cryptographic mechanisms and, due to their relation-

ship with this work, IdM, PKI, ABE, and CRL. Section 2.2 makes a general description of VANETs, indicating

their standards, main features, and characteristics. The security requirements for VANETs are presented in

Section 2.3, providing insight on the security measures needed for their entities to communicate. The most

common types of VANET attackers, their motivations, and most known attacks are presented in Section 2.4,

helping to understand the threats to the system and improve the architecture design. Additionally, it provides

information on how to build attacks to train the IDS. In Section 2.5, a summary of the security models for

VANETs found in the literature is made. These are to be used as an underlying framework to provide secure

communications between the architecture entities. Sections 2.6 and 2.7 are more directly related to the work,

presenting the existing IDSs related works and describing some of the most known ML algorithms.

2.1 Security

Security is one of the most fundamental components of any communication system. Secure commu-

nication can provide multiple assurances, from privacy and anonymity to authentication and non-repudiation.

Without these properties, no entities can communicate with any certainty about the parties involved, message

origin, or alterations suffered by the information exchanged. Furthermore, it is not possible to have a secret

exchange of information or maintain privacy. Security technologies are also the basis of identity managers

such as Google or Facebook, providing secure authentication in multiple websites while providing privacy.

This Section presents a brief overview of some more general security technologies related to this work.
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It starts with a short description of the most basic cryptographic tools (Section 2.1.1). Furthermore, due to

their relationship with this research, PKI, CRL, ABE and, IdM are also described.

2.1.1 Cryptography

Cryptography is the science of secret writing. It is traditionally used to enable secret communications

through an insecure channel. To do so, the sender obfuscates the message and sends it to the receiver. The

message is obfuscated by a method called cipher which, transforms a plaintext message into ciphertext. The

inverse process is called decipher. These are both controlled by one or several cryptographic keys [24].

The basic communication model (Figure 2.1), used to demonstrate cryptographic applications, consists

of three entities: Alice, Bob, and Eve. Alice and Bob represent two entities trying to communicate securely

over an insecure channel. Eve is an attacker trying to eavesdrop on the communication. It is assumed that

Eve has great processing power, can see all exchanged data, and inject and modify data. Moreover, Eve knows

all communication protocols and ciphers[24].

Figure 2.1: Cryptography Basic Communication Model

Securing communications over an insecure channel is the main cryptography goal. Using ciphers to

obfuscate plaintexts is not enough to assure security in the communication between entities. So, a set of

fundamental security objectives was defined. These should be fulfilled to provide a secure system. Although

these may not apply to every situation, they are a good starting point. The fundamental security objectives are

as follows:

• Confidentiality: Ensures that the information is kept secret to everyone except for the destination

entity. Any message exchanged between Alice and Bob should not be understandable by Eve;
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• Integrity: If any part of the message is altered in its path, it should be noticeable, assuring that the

data is not tempered. Bob should be able to verify if the message sent by Alice did not suffer any

alteration since its origin;

• Origin Authentication: Provides data authenticity verification. Bob should be able to verify the

authenticity of the data received. Moreover, he should be able to verify that the data sent by Alice was

really sent by Alice;

• Entity Authentication: The identity of an entity should be verifiable. Bob should be able to verify the

identity of Alice;

• Non-repudiation: Prevents any entity from denying previous action or commitments. Suppose Bob

receives a message from Alice, besides being able to verify that it originated from Alice, he will be able

to convince third parties that it has originated from Alice. Moreover, it prevents Alice from denying

sending the message.

The main security mechanisms that provide cryptographic properties essential to secure a communica-

tion channel and fulfill the fundamental objectives are the following: ciphers, hash functions, digital signatures,

and digital certificates. Each provides its own specific attributes and characteristics and is typically used to

provide a secure channel. These are presented next.

Ciphers

Ciphers allow entities to obfuscate the information, preventing unallowed entities from accessing their

content, thus keeping the information confidential. Depending on the types of used keys, ciphers can be

categorized into symmetric and asymmetric. Symmetric ciphers (Figure 2.2) use the same key for ciphering

and deciphering. So, entities using symmetric ciphers need to pre-exchange them using a secure channel.

Symmetric systems only assure confidentiality. Asymmetric keys (Figure 2.3), on the other hand, use different

keys for the cipher and decipher process. The cipher and decipher keys constitute a key pair usually denomi-

nated as ”public” and ”private” keys, respectively. Asymmetric systems do not need key pre-exchange, as the

public key used to cipher can be distributed freely. It assures that messages ciphered with this key will only

be readable by the correspondent private key owner.
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Figure 2.2: Symmetric Cipher

Figure 2.3: Asymmetric Cipher

Hash Functions

Hash functions are cryptographic functions that allow the creation of a special summary from a mes-

sage. A single bit changed in the original data results in a completely different hash. They are somewhat

similar to checksum but purposely designed to detect deliberate changes. Moreover, they need to consider

that an attacker may know the hash function calculation algorithm and will try to explore its vulnerabilities.

They allow entities to easily verify if a message suffered any alteration in its path, assuring integrity [24].

Digital Signatures

Digital signatures are a mathematical function used to sign messages. These must fulfill a set of

requirements: if B receives a message (M) signed by A, B must be able to validate the signature of A in M; no

entity should be able to forge A signature; A should not be able to deny signing a message (if so, it should be

possible for a third party to verify it). These can be made by using symmetric or asymmetric cryptography.
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Digital Certificates

Digital certificates are digital documents that connect a public key to an entity, preventing impsersonation

by using, for example, a fake public key. In their simpler form, they contain a name and a public key. Digital

certificates should also include the expiration date and the Certification Authority (CA) name that has emitted

it. They are issued by a CA that may be any trusted central administration entity. Any third-party entity should

be able to verify the identity of the certificates and the links with the issued certificate keys.

2.1.2 Public Key Infraestructure

PKI is a framework constituted by a group of people, processes, policies, hardware, and software [25].

It has been one of the most widely used security technologies to secure communications over the internet.

The PKI provides tools to generate, manage, store, deploy and revoke public key certificates. Its goal is to

create a reliable way to link an identity to a public key [25]. Thus, one of its central entities is the CA. It is an

entity trusted by all entities in the system that can attest to the veracity of the certificate. To do so, it signs all

the certificates it generates [25, 26].

It offers confidentiality, integrity, authenticity, and non-repudiation by recurring to the previously men-

tioned cryptographic tools, such as Digital Certificates and Public Key Cryptography.

2.1.3 Certificate Revokation Lists

The basis of PKI are certificates, which link an identity to a public key. These usually have an expiration

date, indicating the date from which the certificates become invalid. During this time, as a trusted authority

signs certificates, the certificates are valid and trustworthy. So, if any entity that has been issued one becomes

compromised, a mechanism is needed to revoke the certificate. The revocation is usually done by distributing

CRLs, which indicate the certificates that are not yet expired and digitally signed by a CA but have become

invalid.

Using CRLs has, however, some drawbacks, including scalability, time constraints, and connectivity.

Scalability issues are due to the sheer size of the list and the nodes it has to reach. The time constraints refer

to the strenuous task needed to update the CRL constantly. Finally, the connectivity is relevant mainly to a

VANET, where some nodes may not always be connected. For example, in a rural environment, the vehicle

may be days without connecting with other vehicles or infrastructural networks to download the CRL.

Nonetheless, there are multiple research works in the literature that tackles the CRL distribution in the

literature. Authors in Papadimitratos et al. [27] propose a scheme that relies on RSUs to distribute large

CRLs across wide areas within minutes needing a low quantity of data to be exchanged. Using an epidemic
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distribution of the CRL, a different strategy is proposed by authors in Laberteaux et al. [28] and Haas et

al. [29]. Nowatkowski et al [30], builds on top of the epidemic strategy by using the Most Pieces Broadcast

approach. It elects a single node with the most CRL pieces to broadcast, so the throughput will be the highest

possible within the constraints of the channel.

2.1.4 Attribute Based Encryption

ABE [31] is a cryptographic method that uses attributes to cipher the data. It does not need the usage

of certificates or key exchange [31]. Unlike PKI schemes, it allows data to be ciphered for multiple targets. For

example, data can be ciphered to be only readable by all users who are administrators of the IT department at

the University of Minho. The usage of attributes instead of public keys or identities can be very advantageous.

The message can even be ciphered before having a concrete target. Moreover, the possibility of ciphering data

with attributes means that the encryption process provides access control intrinsically.

It makes use of a central Trusted Authority (TA), which is the only one capable of generating private

keys. This entity is also responsible for generating public parameters that are used to create encryption keys

from attributes.

The main drawbacks are related to the TA and the cipher efficiency. The TA presents a single point of

failure, which attackers can more easily target and, if offline, disable the communications capabilities of the

affected entities. However, it may not represent a significant problem because entities only need to contact

the TA to renew decryption keys. Therefore, not needing the constant support of the TA.

ABE schemes are less common and, as such, are less implemented, which may difficult their adoption.

Their ciphers are usually less efficient than traditional PKI, being much slower for the same security level.

2.1.5 Identity Manager

IdM is a concept usually more associated with internet and web-based services [32]. It was born due to

the need to grant authenticated and authorized users access to protected services and resources. It does so

while implementing privacy protection mechanisms. IdMs consist of technologies and policies that represent

entities and their digital identities, facilitating their management. Ferdous et al. [32] describe the entities

constituting an IdM system as the Service Provider (SP) and the Identity Provider (IdP). SP is an entity that

provides resources, or services, which the authenticated user wants to access. The IdP provides the digital

identities of the clients, enabling the SP to provide the service.

The most used and widely accepted IdM systems are [32]: Oauth [33], OpenID Connect [34] and

Security Assertion Markup Language (SAML) [34].
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SAML is an Extensible Markup Language (XML) based language that defines the syntax and processing

semantics of a system entity’s assertions about a subject. It is used for exchanging authentication and

authorization information between parties. SAML uses XML namespaces and is embedded in other structures

such as HyperText Transfer Protocol (HTTP) POST or Simple Object Access Protocol (SOAP) messages. A

request/response protocol is used to allow an SP to request identification of a particular user from the IdP.

The last responds with the information using an assertion [32].

Oauth is an authorization framework that enables third-party applications to access a service (typically

HTTP). It is based on token exchange to enable access right delegation. This token is opaque and has, usually,

an expiration date [33].

OpenID Connect is built on top of Oauth, using the same type of interactions. In this case, instead of

using an opaque token, it uses a JSON Web Token (JWT) [35]. It is an URL-safe way to represent claims to

be transferred between entities. The JWT can be used to generate a JSON Web Signature (JWS) to provide

authentication, and then it can be ciphered, creating a JSON Web Encryption (JWE).

2.2 Vehicular Ad hoc Networks

The increase of driving people leads to more traffic congestion in cities which, in turn, leads to more

accidents. ITS is a set of applications and services that aims to facilitate transportation and make roads safer.

VANETs (see Figure 2.4) allow the several ITS nodes of the network to communicate. They are a

specific type of Mobile Ad hoc Network (MANET) that provides communications between vehicles and roadside

equipment. VANETs, are used by smart vehicles to communicate with each other, enabling new functionalities

to be provided. Their main objective is to provide a safer road by avoiding accidents and traffic congestions

while protecting the privacy of the drivers.

It is a network with a difficult control and organization, where vehicles can belong to a self-organizing

network without prior screening or knowledge of each other presence [36]. There are two types of nodes: the

OBU and the RSU. RSUs are located alongside the road and constitute the network infrastructure. The OBUs

are installed in mobile nodes, such as vehicles [36].

Communication in VANET can be classified into three big groups: communication between vehicles -

Vehicle to Vehicle (V2V); communication between the vehicles and the infrastructure - Vehicle to Infrastructure

(V2I); and communication between the infrastructure and the vehicles - Infrastructure to Vehicle (I2V).
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Figure 2.4: VANET Architecture (From [36])

2.2.1 Characteristics

Due to their nature and communication medium (the air), VANETs have some characteristics that make

them especially attractive to attackers. The majority of its nodes have great mobility as they are located

in vehicles. They can have different speeds and directions, making the connection between them very

intermittent. According to Mejri et al. [7], the main VANET characteristics are the following: high mobility,

dynamic topology, frequent disconnections, availability of the transmission medium, the anonymity of the

transmission support, limited bandwidth, attenuation, limited transmission power. Moreover, these networks

also have near limitless energy, storage, and computing capacity.

The availability of the transmission medium and the anonymity of the transmission support are charac-

teristics directly related to the communication medium. In terms of availability, the air is universally available.

So, any entity with a transceiver operating in the same bandwidth can both listen and transmit openly,

facilitating eavesdrop and anonymous transmission.

VANETs networks scale is increasingly big, being one of the largest ad hoc networks in the world [36].

Thus, creating standardized security policies around the world is a challenging process. As such, finding an

entity responsible for managing identification and key exchange worldwide is challenging. These characteristics

complicate the usage of traditional cryptography tools. For example, the constant disconnections prevent

secure channel creation or the exchange of certificates and CRL.
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On the positive side, unlike most mobile networks, VANETs do not suffer from problems such as lack

of energy or computing power or storage failure, which allows the implementation of some cryptographic

primitives that are more CPU demanding. On the other hand, most of the information must be handled in

real-time, which is a big challenge regardless of computing power.

2.2.2 VANET Architectures

VANETs are a very heterogeneous type of network and, in the future, vehicles may use multiple types of

wireless communications [17]. Thus, considering the diversity in this environment, implementing applications

and technologies at the application level should be independent of the underlying medium-access commu-

nication framework, allowing their rapid and incremental growth. If possible, the same concept should also

be applied to the transport and network levels. This objective can be targeted by applying a concept known

as an agnostic middleware communication layer, which can provide independent information management

for multiple data sources, allowing the communication over heterogeneous interfaces to be transparently

supported over different communication stacks.

Some middleware agnostic are already included in existing standard architectures. These architecture

are the following: Wireless Access in Vehicular Environment (WAVE), Communications Access for Land Mobiles

(CALM), and European Telecommunications Standards Institute (ETSI) ITS-G5. The mentioned architectures

are presented next.

WAVE

The WAVE IEEE 1609 family defines an architecture and a complementary set of standardized protocols,

services, and interfaces that allows WAVE to operate in a VANET environment [36]. It allows the establishment

of communications between V2V and V2I. This architecture, shown in Figure 2.5, also defines the security of

exchanged messages. WAVE standards form together the basis for implementing of a comprehensive set of

applications in the transportation domain [36]. The WAVE IEEE 1609 standards family is composed as follows

[36]: IEEE P1609.0, IEEE P1609.1, IEEE Std 1609.2, IEEE Std 1609.3 IEEE Std 1609.4, Draft IEE P1609.5,

Draft IEEE P1609.6 IEEE Std 1609.11, IEEE Std 1609.12.

The problems indicated in Section 2.4 are addressed by WAVE stack, more precisely IEEE Std 1609.2.

It defines message formats and processing methods that must be used in order to secure messages. Also, it

defines functions necessary to support message security, anonymity, and the privacy of the entities.

This standard [37] defines the message signing as being done using asymmetric cryptography. All the

implementation must support Elliptic Curve Cryptography (ECC) and Elliptic Curve Digital Signature (ECDSA)

signatures over the two National Institute of Standards Technology (NIST) [38] curves p244 and p256. The
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Figure 2.5: WAVE Architecture (From [7])

signing algorithms must be chosen from the following set: ecdsa_nistp225 or ecdsa_nistp256_with_sha256.

To encrypt a message, the sender uses a freshly generated symmetric key. This key is encrypted with the

public key of the receiver and added to the message. The only asymmetric encryption algorithm supported

is the Elliptic Curve Integrated Encryption Scheme (ECIES) over the NIST curve p256. The symmetric key

algorithm supported is Advanced Encryption Standard (AES) in Cipher Block Message Authentication Code

(CBC-MAC) with Counter with CBC-MAC (CCM) mode.

If an entity needs to communicate with a remote server with other interoperability requirements, it should

use existing protocols as S/MIME’s Cryptographic Message Syntax (CMS). If the applications support User

Datagram Protocol (UDP), they can also use some application layer security protocol as Datagram Transport

Layer Security (DTLS) or an internet layer protocol such as Internet Protocol Security Protocol (IPSec).

The IEEE Std 1609.2 standard also defines the format of certificates and CRL to be exchanged in the

network, specifying how each of them must be constructed and signed. Each CA certificate has a scope

indicated for which application types it can issue certificates for. It also defines how an entity must proceed

in order to obtain a new certificate from the CA.

Communications Access for Land Mobiles

CALM is a communications architecture defined by the International Organization for Standardization

(ISO) Technical Committee 204 - Working Group 16 (TC204 WG16). Its goal is to allow interoperability between

Cooperative Intelligent Transportation Systems (C-ITS) stations by abstracting applications and services from

the communication layers [39]. The CALM architecture, shown in Figure 2.6, defines a set of standard specifi-
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cations [17], including ITS Station Management, Communications Security, Facilities, Station Networking and

Transport layer protocols, Communication Interfaces and Services, Interfacing Technologies into ITS Station,

Distributed Implementations of ITS Stations, Interfacing ITS Stations to existing communication networks.

Although CALM should theoretically enable vehicles to use any communication media with seamless

media handover, supporting the integration of different technologies for Vehicle to Anything (V2X) communica-

tions does not present detailed solutions for their simultaneous use by multiple applications in the same ITS

station [17]. It is, however, implied to be overcome by implementing network switching inside the OBU.

Figure 2.6: CALM Architecture (From [39])

ETSI-ITS-G5

ETSI ITS-G5 [40] (Figure 2.7) is defined by the standard ISO 21217:2014, which describes the ITS

station reference architecture. It consists of six parts: Applications, Management, Facilities, Networking and

Transport, Access and Security. However, the standard does not specify whether a particular element should

be implemented. It depends on the specific communications requirements.

The Facilities Layer is particularly relevant, providing mechanisms for the agnosticism of the architecture.

However, the implementation of such facilities would be very complex, complicating the process of software

development and demanding the application development to take into account many technological details of

lower layers.
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Figure 2.7: ETSI ITS-G5 Architecture (From [40])

2.2.3 Medium Access Standards

Standards facilitate the intercommunication and interoperability between components. The availability

of standards reduces the cost and time to market. Standardization enables new technologies to be more easily

and rapidly implemented. The VANET context affects virtually all the different layers of the Open Systems

Interconnection (OSI) model [7]. Currently, the main standards for VANETs communications at the physical

layer are Dedicated Short-Range Communications (DSRC) and IEEE 802.11p. These define everything from

the medium access and message format to the certificates and their distribution. In the following Sections,

these standards are briefly described.
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Dedicated Short Range Communications

DSRC is a lightweight communication stack that consists of three layers [41] (see Figure 2.8): physical

layers, data link layer, and application layer.

Figure 2.8: DSRC Protocol Stack (Adapted from [41])

The physical layer was designed to support different media types, allowing it to be 5.8 GHz microwave

transmission, 850 nm infrared, or others [41].

Data Link Layer is divided into two sublayers, the Logical Link Control (LLC) and the medium access

control layer. The LLC provides service primitives for a (un)acknowledged, connectionless data transfer, while

the medium access control coordinates the access to the physical medium [41].

Finally, the application layer consists of three kernels elements: the initialization, the transmission of

broadcast messages, and the transfer of protocol data units [41].

In the U.S., the band attributed to the DSRC is between 5860 and 5892 GHz. It is divided into seven

channels (Figure 2.9) of 10 MHz, respectively numbered 172, 174, 176, 178, 180, 182, and 184. The U.S.

standard uses channel 178 as the Control Chanel (CCH), and the others are Service Channel (SCH). Channels

172 and 184 are reserved for High Availability and Low Latency (HALL) [7].

In Europe, the band is regulated by the ETSI, and only channels 180 of CCH and 172, 174, 176, 178 of

the SCH are used [7], as shown in Figure 2.10.

Figure 2.9: DSRC Channels in USA (From [7])
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Figure 2.10: DSRC Channels in Europe (From [7])

IEEE 802.11p

IEEE 802.11p is an extension of the IEEE 802.11 protocols created to support vehicular communication

in accordance with the DSRC band. It is the hearth of WAVE specification that was adopted by the Society

of Automotive Engineers (SAE) for DSRC family of standards and by the ETSI ITS-G5. The medium access

and physical definitions are specified in the standard IEEE 802.11p-2010. The IEEE 802.11p is based on the

Orthogonal Frequency Division Multiplexing (OFDM) with flow rates of 3, 4, 5, 6, 9, 12, 18, 24, and 27 Mbps

and a channel of 10 MHz [7].

2.3 VANET Security Requirements

VANETs characteristics make them inherently very challenging. The frequent disconnections in as-

sociation with the limitations offered by the communication medium complicate communication between

vehicles and with the infrastructure. It makes them particularly demanding in terms of security. Secure

communications through a HyperText Transfer Protocol Secure (HTTPS) like mechanism is very challenging. In

WAVE, for example, instead of establishing a secure channel, the data is encrypted with a randomly generated

symmetric key that, in turn, is encrypted with the receiver public key.

According to ETSI TC ITS [42], security requirements that need to be considered in vehicular cooperative

systems are the following: authentication, integrity, non-repudiation, privacy, confidentiality, authorization, real-

time constraints, and availability.

Authentication Involves origin and entity authentication. Every entity within a VANET should be able to

verify the authenticity of a message or entity. Messages without a signature should be automatically discarded,

preventing attackers from impersonating authentic entities and, for example, influence traffic in its favor.

Integrity It should be possible for any entity in the network to verify if a received message is not tampered

with. It assures that the final receiver will notice if a message sufered in alterations during its path.
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Non-repudiation Serves mainly to discouraging entities frommisbehaving. If it is assured, no entity should

be able to deny performing an action.

Privacy Every entity in a VANET should keep its identity private or, at least, only accessible by authorized

entities, which is particularly difficult, mainly using traditional authentication methods. The usage of the

traditional certificates, for example, allows them to be tracked in the network.

Confidentiality Protects data from unauthorized access. When sending a message, only the target desti-

nation entity/entities should understand it. It is commonly provided by data ciphering.

Authorization It should be possible to define which entities can access a resource or a service. In a

platooning application, for example, only some vehicles can join a specific Platooning.

Availability Safety applications, for example, need to be constantly available. They need to be able to

inform and be informed about possible road problem warnings.

2.4 VANET Attacks

VANETs, as previously mentioned, have some very specific characteristics, which make them especially

appetizing for attackers. The attacks to a VANET can be performed by a plethora of individuals or organizations

that can differ depending on their motivations. Authors in [5] classify attackers into six categories: individuals,

loosely coordinated groups, insiders, adversary organizations, foreign governments, and government agencies.

The mentioned attackers can be motivated by different interests, which can be classified into [5] monetary

gain, revenge, ideology, belief, intellectual challenge and cyber warfare.

2.4.1 Types of Attacks

VANET environment is intrinsically vulnerable, presenting a large diversity in known attacks. So, Mejri

et al. [7] proposed classifying them into categories to better clarify and simplify the attacks. The proposed

classification (Table 2.1) is divided into attacks on availability, authenticity and identification, confidentiality,

integrity and data trust, and non-repudiation/accountability.
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Attack Classification

Availability

Black hole attack
Broadcast Tampering
Denial of service
Greedy Behavior
Jamming
Malware
Spamming
...

Authenticity and Identification

GPS Spoofing
Illusion Attacks
Key/Cert Replication
Masquerading
Message Tampering
Message Suppression
Message Fabrication
Position Faking
Replay Attack
Sybil Attack
Tunneling
...

Confidentiality

Eavesdropping
Information gathering
Traffic analysis
...

Integrity and data trust

Masquerade
Message Suppression
Message Fabrication
Message Alteration
Replay
...

Non-repudiation/Accountability
Loss of event traceability
...

Table 2.1: VANET Attacks Classification (From [7])
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Attacks on availability aim to disrupt an entity’s ability to receive information. Attackers may try to

accomplish so in multiple ways, usually by targeting the communication medium. The most common ways to

do so include DoS, jamming, greedy behavior, broadcast tampering, spamming and black-hole.

Attacks on authenticity consist of entities trying to identify as someone else to gain control of some part

of the network or simply disrupt the normal functioning. Some of the most known attacks include Sybil attack,

replay attack, Global Positioning System (GPS) spoofing, and illusion attack.

Attacks on confidentiality are performed by ill-intended entities to access information that they should

not have access to. The following can be identified as examples: eavesdropping, information gathering, and

traffic analysis.

Integrity and data trust attacks try to alter or create messages so that the receiver will not differentiate

them from authentic ones. Replay attack, masquerade, message suppression/fabrication/alteration are some

of the most known attacks.

Attacks on non-repudiation/accountability try to erase pieces of evidence that an action was taken.

The attacker may, for example, delete evidence of an attack. The most common example is loss of event

traceability.

Although not having so much impact on the user or the networks, some other attacks should, nonethe-

less, be considered. Some of the non-mentioned most common attacks include timing attacks, brute force,

and man in the middle.

2.4.2 Cryptographic Solutions

Despite the plethora of existing attacks, security for VANETs is a large area of research, providing

techniques and frameworks to secure the communications. Thus, most of the attacks mentioned in Section

2.4.1 can be prevented by implementing cryptography or changes in the transmitting devices. Table 2.2 links

some of the attacks for VANETs with the technique to preventing them. These are not an overall solution, but

only for each individual problem it tackles.

27



Chapter 2

Attack Solution

Jamming Switch the transmission channel and use frequency hopping technique
FHSS [43]. This requires a modification to the current standard which
only allows OFDM

Denial of Service (DoS) Use bit commitment and signature based authentication mechanisms.
Message tampering/ suppression/-
fabrication/alteration

Use vehicular PKI or zero-knowledge techniques [44] for authentication
and signing. Establish group communications causing that intruder
cannot communicate with the group.

Timing attack Use time-stamp techniques. It may be hard to accomplish due to
synchronism, mainly in a VANET context.

Eavesdropping Encrypt data
Traffic analysis Encrypt data. Use algorithms such as VIPER [45] for V2I
Brute Force Use strog encryption keys and key generation algorithms which, are

unbreakable in a reasonable time.
Key and / or Certificate replication Use certified and disposable keys. Check the validity of digital certificates

in real time via CRL. Use cross certification between the different CAs
involved.

Sybil attack Deploy a central Validation Authority (VA), which validates entities in real
time.

Illusion attack Protect hardware and software to be only accessible by authorized
people. Every reading or update operation received from sensors must
be authenticated and verified. Values and protocols should be stored in
piratically protected hardware.

GPS spoofing or position faking Bit commitment and signatures should be used, positioning systems
should only accept authentic data.

Replay Packets that may be replayed should be timestamped. There may be the
problem of synchronization between entities.

Man in the middle Use strong authentication methods, for example, digital certificates or
zero-knowledge

Node impersonation V2V and V2I communications should be made using variable MAC ad-
dresses and IP. Authentication through digital certificates. Use distance
bounding protocols based on bit commitment and zero-knowledge [46]

Greedy, blackhole, grayhole, sink-
hole, wormhole, malware, mas-
querading, spamming, tunneling

There isn’t a real cryptographic solution for these attacks but, the usage
of digital signatures can reduce the attack effects. Using piratically
protected hardware can help prevent them.

Broadcast tampering This can be made by a legitimate node. So, cryptographic tools may not
be of any help. Non-repudiation mechanisms may discourage it.

Loss of event traceability Same as the solution proposed for the illusion attack
Tracking, Social engineering Use variable MAC and IP addresses. Their allocation must be done by a

robust algorithm

Table 2.2: Solution for VANET Attacks (From [7])

Most of the presented solutions make use of mechanisms such as digital certificates, ciphers, times-
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tamping, and variable MAC and Internet Protocol (IP) addresses. Also, modifications to the transmission

channel are proposed for the jamming attack. The Sybil attack is challenging to solve as legitimate entities

can perform it. The proposed solution is the deployment of a VA. However, these need a connection to the

infrastructure. The VA may become the target of attacks due to its privileged role.

2.5 Security Models for VANETS

VANETs are a very challenging and diverse type of network. The heterogony of entities and their

constraining characteristics complicates the implementation of an overall security model. Nonetheless, the

research on this subject is extensive, providing multiple solutions. ETSI [40], for example, has proposed a

high-level security framework [1]. However, this approach is too focused on message-level security for Context

Awareness Message (CAM) and Decentralized Environmental Notification Message (DENM). So, it does not

consider the integration of secure transport and network services, like IPSec services [47].

Furthermore, the security models proposed by Institute of Electrical and Electronics Engineers (IEEE)

WAVE and ETSI TC ITS have not considered session-based security associations, and messages are protected

individually using a PKI. However, this provides a security scheme only valid for broadcast scenarios and cases

with low V2V and V2I traffic volumes, which does not cover all vehicular applications and services.

However, due to the VANET characteristics and its plethora of attacks and attackers, the consensus for

the ideal security model is far from being achieved. Also, the existing solutions have their own advantages and

shortcomings, each better suited for different situations, difficulting the decision. Bariah et al. [5] summarize

the most common approaches: PKI-based, ID-based cryptography and situational modeling-based. Table 2.3

summarizes the main challenges in each of the solutions.

VANET Security Mechanism Challenges
PKI Comm resources by CRL, location privacy
ID-Based ID privacy
Situation Modeling Complexity of various situations

Table 2.3: VANET Security Mechanisms Challenges (From [5])

2.5.1 Based on Public Key Infrastructure

The more traditional PKI-based models [2] [3] [48] [49] [50] [4] already provide authentication, key

exchanging mechanisms, and certificate management tools (signing, issuing, check, maintenance, audit,
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renewal, cancellation, etc). PKIs, bind certificates to public keys and the identification of the owner providing,

a way to sign and distribute keys.

PKI may be very useful as its certificates have all the needed parameters for secure communications.

Any entity can verify if they were issued by the correct CA and check if they are valid. They also contain the

public key of the sender, which allows for signature verification. Moreover, the certificate public key can be

used to cipher the response to be sent back. However, the key also poses a challenge. Without knowing it, the

establishment of secure communication cannot be done. Needing for the key of every receiver to be known

beforehand can be extremely complicated in a VANET scenario.

VANETs communications may be sparse, which can create obstacles for a PKI implementation. Mainly

due to key and CRL distribution. Some solutions aim to solve that problem by implementing a dynamic key

distribution [3] or region-based certificate distribution[48].

Also, PKI leaks information about the identities of the users. Attackers can use the certificates to track

users in the network. Some research works propose solutions to tackle the privacy limitations in PKI. One

of the most common solutions is the distribution of Pseudonym Certificates (PCs) to provide anonymity and

privacy protection [51, 52]. Which, in turn, also has its limitations. The introduced Pseudonym CA (PCA)

will be able to track entities identification. Moreover, its encryption mechanism does not have the needed

capabilities to enable broadcast or multicast scenarios easily. PKIs use the public key of the receiver entity to

encrypt the data which means that only one entity will be able to decipher the data. Multicast scenarios will

need group key exchange to be done previously.

2.5.2 Identity-Based Encryption

ID-based cryptography [53] enables entities to cipher data and verify signatures, enabling the creation

of a secure communication channel without needing previous key exchange. Moreover, any entity can decipher

the information, regardless of the source, provided it is its destination.

This scheme is similar to public key cryptosystems [53] but, instead of generating a public/private key

pair, the public key is based on identity. This can be anything from a username to a social security number or

an email. The private key is generated by a central TA. The usage of a TA is needed due to the properties of

the public key. There is nothing secret about an entity id so, if everyone had the power to create secret keys

for itself, it would have the power to create any key [53]. Also, the TA generates a set of public parameters

used to generate the real public key from the ID. These parameters can be distributed freely to everyone.

The TA is a key element of this scheme, making it a potential target for attacks. Compromising it may

compromise every entity in the system.

ID-based cryptography has the advantage of using entity identification (email, network address, etc.)
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to verify and sign messages [5]. The ID-based mechanism can be a good replacement for a VANET context

since it does not require certificate fetching and verification. It outperforms PKI in some aspects, such as

communication bandwidth and storage, as it does not need CRL and certificates distribution. Bariah et al.

describe the main drawbacks of this method as being: guaranteeing user privacy [5] and having a single point

of failure, the TA.

2.5.3 Based on Situation-modeling

Mechanisms based on situation modeling analyze routines of driving trends and try to generate the

most adequate security model for that specific situation and, thus, increase security by managing its nodes

[5]. It assumes that vehicle driving tends to be fixed on some routes, as, for example, commuting to work and

shopping habits. The major concern with these solutions is the uncertainty of everyday vehicle movement,

causing it to create many models.

Huang et al. [6] propose Situation-Aware Trust (SAT) model to address trust issues in VANETs. It is

a combination of attribute-based policies, a proactive trust model, and an email-based social network. The

attribute-based policies are used in an ABE scheme, using its properties to provide data access control. Data

can be ciphered to only be accessible by elements of a certain company.

SAT provides proactive trust by establishing it before entities meet. To do so, it distributes certificates

to vehicles before the any communication takes place. It also provides a framework that helps reduce unnec-

essary trust establishment actions between entities, which requires that each vehicle predicts the potential

vehicles it will encounter by distributing its trajectory [6].

Additionally, it adopts a social network trust to provide a rapid establishment of trust, particularly an

email-based social network trust. Which already have some properties that make them advantageous to other

social networks; for example, they already provide an intrinsic layer of security. E-mail IDs are unique, and

they can potentially provide a very large trust database, etc.

2.6 Intrusion Detection Systems

Attacks, such as those performed by authenticated entities, cannot be prevented using traditional

security mechanisms [54]. IDSs while not being able to stop attacks, can provide an extra layer of security by

detect unpreventable attacks and trigger a response minimizing the nefarious effects on the targeted system

[9]. Intrusion detection is made in three phases [9]: data collection (logging system calls, recording traffic

received, etc.) [54], analysis phase (pattern matching, statistical analysis, data mining, etc.) [54], and the

response. Depending on the detection technique used, IDSs [54] can be classified into signature-based,
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anomaly detection systems, specification-based systems, and reputation management.

In signature-based intrusion detection, the IDS tries to match the collected data with known attack

patterns. It has a low False Positive Rate (FPR) but only detects already known attacks. This type of detection

also needs a large storage capacity due to the large amount of data of known attacks needed. It is most

effective when used in Wireless Local Area Networks (WLANs) [54].

Anomaly detection systems work from the collected data history (unlabeled) or a set of training data

(labeled). These two types are called unsupervised and semi-unsupervised, respectively. An anomaly is any

behavior different from the usual and preestablished. These detection types are most effective when used for

mobile telephony base stations. They have well-established and predictable behaviors, which are favorable to

anomaly detections systems [54].

Reputation management is most useful to detect selfish behavior. A reputation manager is needed

for this detection system, as nodes can collude to improve their rating. They are most effective in ad hoc

networks. The design of ad hoc networks difficult the implementation of anomaly-based systems and, due to

its maintenance obstacles, reduces signature-based systems effectiveness [54].

Specification-based intrusion detection systems detect anomalies at the system level, unlike the anomaly

detection systems that analyze user profiles and data flows. It has a low false-negative rate, which is a

major advantage, and the system is immediately effective because they do not need a previous training

phase. However, they only detect known bad behavior, and massive efforts are needed to generate a formal

specification. They are most effective for Wireless Sensor Networks (WSNs) and unattended Cyber-Physical

Systems (CPSs) due to their predictability and limited resources [54].

The IDS performance is usually measured using three metrics [54]: FPR, False Negative Rate (FNR),

and Detection Rate (DR). The FPR measures the number of times the detection system identified a normal

behavior as being an intrusion. The FNR measures the number of anomalies that were not identified. Finally,

the DR (also known as true-positive rate) measures the correctly identified threats.

According to Erritali et al. [9], IDS architectures can be classified into three different types: standalone,

cooperative and distributed, and hierarchical. Standalone architectures do not need to exchange data, as

each node only relies on itself. The cooperative and distributed architectures nodes exchange information

between themselves cooperating to detect intrusions. The messages exchanged can increase network traffic,

degrading network performance. The hierarchical architecture divides the network into clusters. Each cluster

has a cluster Head (determined by a clustering algorithm), reducing the number of communications needed.

Traditional IDSs assume that the behavior of an intruder will be noticeable from the normal network

functioning. Signature detection systems compare the behavior with known attacks, assuming that there will

not be new attacks. Anomaly detection systems focus on detecting significant deviations from normal behavior.

However, the definition of the criteria to decide what constitutes misbehavior is difficult to attain [10]. The usage
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of intelligent algorithms enables the IDSs to learn from previous attacks and detect new attacks. Recently, IDSs

have been used in VANETs to mitigate some attacks that cannot be prevented by using cryptographic tools.

2.7 Machine Learning

ML, use data mining techniques to infer knowledge from collected data. These techniques are used to

find patterns in already gathered data, even if it is not particularly new. For example, data collection of user

preferences can be mined to find behavioral patterns and find the likelihood of a client buying a product or a

service [55].

The ML technique can be classified into[56] supervised, unsupervised and semi-supervised based on

the learning methods. The supervised and unsupervised classification methods are described in Section 2.7.1

and Section 2.7.2, respectively. The semi-supervised methods are a hybrid of the two, where the data can be

of either type.

2.7.1 Supervised Learning

Supervised learning assumes that each instance has a correspondent label. This classification model

needs a set of labeled training data, which can be used as an example. Gathering labeled data can be time-

consuming and hard to obtain [57]. The following are examples of supervised learning algorithms: Decision

trees, Artificial Neural Networks (ANN), Support Vector Machine (SVM), fuzzy logic, genetic algorithms.

Decision Trees use a combination of nodes and branches. Each node represents an instance to be

classified, and the nodes represent the values they can have. Decision trees classify the instances by starting

at the root node and sort them by their values [58]. There has been extensive research in this area, mainly

related to the construction of optimal binary decision trees.

The trees construction is started by finding the feature that best divides the data, the root node. The

same process is repeated until one of the following conditions is met [59]: all the set instances belong to

a single class, the maximum tree depth is reached, or the best splitting criteria is less than a pre-defined

criterion.

Artificial Neural Networks are computational networks created to simulate human beings or animal

biological neural behavior [60]. They are designed to learn in a similar way to the human brain. These acquire

knowledge through a learning process, storing it in the connections between several cells.
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The main advantages of ANNs are their capacity to model complex relationships that are implicitly in

the data, robustness against wrong and missing data, and the possibility to obtain results, as long there is

data but without the need to necessarily have any previous assumptions about the problem [60].

There are several types of ANNs, including the Multi-Layer Perceptrons, successful since the 80s, after

introducing the famous Backpropagation algorithm. These depend on three fundamental aspects [58]: input

and activation function, network architecture, and each the weight of each input connection. The training of

the networks is made by comparing the output of the ANN with the desired value and adjust the weights.

Recently, since the 2010s, there was a growing interest in more complex ANNs with several intermediate

layers designated for Deep Learning [60]. In fact, Deep Learning is currently considered the best automatic

learning model. It has obtained the best results in computer vision or speech recognition competitions.

However, Deep Learning demands high volumes of data, Big Data, and computational power.

Support Vector Machines tries to find a hyperplane that divides the data into two classes. The division

tries to maximize the margin on either side of the hyperplane, creating the largest possible distance between

the hyperplane and instances on either side [60].

The model training involves using large matrix operations and time-consuming numerical computations

as it is done by solving the Nth dimensional Quadratic Programming (QP) problem, being N the number of

samples. A Sequential Minimal Optimization (SMO) algorithm can be used in order to improve performance.

It solves the QP problem without adding any matrix storage by decomposing the problem into QP smaller

sub-problems [60].

The SVM algorithm ends when a global minimum is found, avoiding local minimums (Unlike other

algorithms such as neural networks) [60].

2.7.2 Unsupervised Learning

Unsupervised machine learning has datasets containing only unlabeled data. These classification

methods can find patterns in unstructured data. For example, clustering and dimensionality reduction can

be mentioned [61]. K-means, self-organizing maps, k-medoids, and Bayesian clustering are examples of

unsupervised learning techniques[59].

K-Means divides a set of n d-dimensional points into K clusters [62]. It calculates the squared between the

mean of a cluster and its points and tries to minimize it. It can only converge to a local minimum due to its

characteristics. The minimizing function is an NP-hard problem, which makes it a greedy algorithm. As it is

described by Jain et al.[62], the main steps of a K-means algorithm are:
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• Select an initial partition with K clusters. While cluster membership is no stabilized, repeat steps 2 and

3;

• Assign patterns to its closest cluster center generating new partitions;

• Compute new cluster centers.

Self-organizing maps are a type of ANN where neighbor cells compete by means of lateral interaction,

which allows them to develop into specific detectors of different patterns [63]. These ANN cells become tuned

to various input signal patterns through an unsupervised learning process.

If self-organizing maps are used as a pattern recognition ANN, they can be fine-tuned using supervised

learning. When used in classification problems, their decision accuracy can be increased using LVQ fine tuning

[63].

K-medoids clustering chooses k members from the data set. These members are called medoids and are

defined as the cluster object in which the average dissimilarity to all cluster objects is minimized. The clusters

should structure the data in such a way that similar objects are in the same cluster, and different objects

should be in different clusters [64].

2.8 Platooning

Platooning is a concept that consists of several vehicles traveling very close to each other in groups

with constant speed and gaps between them. It enables the enhancement of safety, traffic flow, and highway

capacity while also providing drivers with a more convenient and comfortable driving experience. Furthermore,

it helps to save energy and fuel, reducing emissions. An example of platooning is presented in Figure 2.11 by

the trucks between the red brackets.

Figure 2.11: Platooning of Vehicles (Trucks Between Red Brackets)

A Platoon of vehicles may be composed of several types of vehicles, from trucks and buses to passenger

vehicles [65]. A vehicle belonging to a Platoon can perform one of two roles - Leader or Follower. The Leader is

the one that controls all the maneuvers of a Platoon. It can adjust multiple parameters of the Platoon, including

speed and headway distance. The remaining vehicles are the Followers, these, as the name indicates, follow

the Leader, and thus, their drivers will be able to undertake other tasks such as using a mobile phone.
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The simplest way of implementing a platooning is through V2V communications, where the vehicles

only share information with their predecessor. More complex and advanced implementations allow vehicles to

share information with members not in the line of sight, providing the driver with situation awareness feedback.

The shared group information may allow the Followers to better predict Platoon behavior, helping stabilize the

Platoon.

For security reasons, the size of the Platoon is limited. It can be defined as the distance between the

first and last vehicle of the Platoon, but it is usually the maximum number of vehicles. The maximum size

of the Platoon was first defined as 20 [66], but some more recent studies advise it to be no bigger than 15

vehicles.

From a communication standpoint, platooning requires an efficient Platoon Management Protocol (PMP)

[12] that specifies all the required maneuvers and proper communication behaviors.

2.8.1 Platooning Maneuvers

As described in [12], there are five possible maneuvers are: Create, Join, Leave, Dissolve and Merge.

The first, Create, is a process with which a vehicle can create a new Platoon. Only the Leader

can perform this maneuver, and the process is the following: The Leader creates the Platoon and starts

broadcasting its existence.

The Join maneuver is initiated by a Follower wanting to join an existing Platoon. This maneuver can

happen in two different ways, in the rear or any place in the middle of the Platoon (more complex) chosen

by the Leader. This process is started by sending a Join Request to the Leader. If the maneuver is possible,

the Leader responds with a Join Acknowledgment. Otherwise, the Leader sends a Join Reject indicating the

reason for the rejection. The Joiner changes to the correct lane and position and informs the Leader with

a Distance Achieved if all goes well. The Leader then opens a space big enough for the new vehicle to join,

sending an Adjust Gap message. When the Followers achieve the desired gap adjustment, they send an Adjust

Gap Acknowledgment. The Leader can then send a Start Maneuver message informing the Follower that the

maneuver can be performed. The Follower enters the Platoon and informs the Leader sending a Maneuver

Completed message. Finally, the Leader sends an Update message to the Follower with the new Platoon

information.

The Leave maneuver is invoked by any Follower that desires to exit the Platoon. This maneuver can

only be performed by one vehicle at a time and only if it is authorized by the Leader (Except exceptional

cases, vehicle failure, emergency exit, etc.). To do so, the Leader starts by informing the Leader by sending

a Leave Request. The Leader adjusts the gaps between the Followers in order for the vehicle leaving to

be able to do so safely by sending an Adjust Gap message. The Followers respond with an Adjust Gap
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Acknowledgment message. When all the vehicles have successfully adjusted their gaps, the Leader can send

a Start Maneuver for the leaving vehicle. After leaving the Platoon, the leaving vehicle informs the Leader

with a Maneuver Completed message. The maneuver is terminated with a Platoon Update message to all the

Followers, updating the Platoon parameters.

The Dissolve Maneuver is performed by the Leader when it decides to disassemble the Platoon. The

Leader informs all the Followers about its decision with a Dissolve Request and only dissolves the Platoon

when it receives the Dissolve Acknowledge from all the Followers.

The Merge Maneuver is performed between two Platoons that want to join. The only actors in this

maneuver are the Leaders of the two joining Platoons. To better explain the process, the front Platoon will be

called A and the rear B. Both Leaders send Merge Request messages every 10 seconds. If Leader A receives

this message, it will respond with a Merge Acknowledgment. The Leaders exchange Platoon Info messages

with information about their respective Platoons. Leader A sends an Adjust Gap message to Leader B. Leader

B moves closer to the rear of Platoon A. The Leader from Platoon B sends an Adjust Gap Acknowledgment to

Leader A and a New Leader to its Followers. Leader B becomes a Follower.

2.8.2 Platooning Security Requirements

Platooning applications have very specific security requirements due to their underlining environment,

VANETs, and the complex nature of the application itself. The best way to characterize the security require-

ments is to divide them into three layers: Communication, Application, and System [67].

Communication Channel Security Requirements

The Platoon members need a channel that implements a basic set of secure properties to communicate

securely with each other. The security channel can be implemented by the lower layers or, if not possible, by

the application itself. This channel can be similar to HTTPS/Transport Layer Security (TLS) on the internet.

It should provide availability, integrity, authentication, and non-repudiation. Additionally to the indicated

mandatory requirements, the channel should also provide privacy and confidentiality. Although the last two

are not required as the application can still function without them, the members of a Platoon should be able

to keep their privacy intact. Also, the messages exchange should be kept confidential, at least in some cases.

The Platoon may be implemented as a private service allowing only entities belonging to that Platoon to keep

track of their actions.

Integrity is a crucial security requirement. All entities should be able to verify if the sent message is

the same as the one received. Moreover, without integrity, it is not possible to guarantee some of the other

requirements as it is the case for authenticity or non-repudiation.

37



Chapter 2

At this level, authenticity only refers to exchanged messages. Meaning, it should be possible for all

entities to verify if the message was sent by an authentic entity.

In this type of applications non-repudiation, can be used to track attacks or responsible entities. Any

message or action should be impossible to deny and verifiable by any entity.

With regards to privacy, although it is not a requirement, it should be provided. All entities should be

able to keep their information private, at least inside a specific Platoon. If it is possible for an attacker to track

messages, it may be possible to track entities in the network and discover more valuable information.

Similarly, confidentiality should also be provided. Although it may be needed to maintain privacy, some

entities may desire to create a Platoon as a private service and keep the information exchange in a Platoon

secret. Also, it may be easier for attackers to disturb the Platoon if they know all the parameters and messages

exchanged inside a Platoon.

System Layer Security Requirements

In [67] are described system layer attacks. These can tamper with the vehicle hardware or software

and be carried by a malicious insider. These can be prevented by implementing tamper-proof sensors in the

vehicle, tamper evidence, and detection mechanisms. These are out of the scope of this thesis.

Application Layer Security Requirements

A different set of security requirements are identified at the application layer, authentication, non-

repudiation, and membership management.

At this level, authentication refers to the drivers. The driver must prove his identity to the vehicle and

to the Platoon itself. Depending on the platooning implementation, only a specific driver in a specific vehicle

may join a Platoon.

Asplund et al. [68] describe six different scenarios that may happen if tight membership management

is not maintained:

• Scenario 1: Vehicle B joins a Platoon created by vehicle A. B then creates a new Platoon joined by C

without A’s knowledge. It will make A only see the Platoon as being composed of himself, and B and C

will see the Platoon as C and B, which are inconsistent.

• Scenario 2: Vehicle A and B form a Platoon. Vehicle C creates a new Platoon and claims to be in B’s

position. If a new vehicle (D) joins, it will be in a two-car Platoon formed by C and D, when in reality, it

is in a three-car Platoon made by A, B, and D.
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• Scenario 3: Vehicle A is a non Platooning vehicle. Vehicle B creates a Platoon and announces to be

in A’s position. If some vehicles C and D join the Platoon, they will think they are being led by vehicle

B when in reality, the front vehicle is vehicle A.

• Scenario 4: Vehicle B impersonates two different vehicles and sends requests to A in their names.

Vehicle A will think that the Platoon has 4 vehicles when only himself and vehicle B are part of it.

• Scenario 5: Similar to the previous scenario but, in this case, the Platoon is joined by a vehicle C that

does not have platooning capabilities.

• Scenario 6: Similar to scenario 1 but, in this case, nodes B, C, and D are colluding. B pretends to

be the tail, C is silent, and D pretends to be the Leader. So, node A thinks it is a two-vehicle Platoon.

Of the indicated scenarios, the most problematic are 1,2 and 6. In these, vehicles will not have

the full knowledge of the complete Platoon size. These can be mitigated by keeping tight membership

management. Vehicles should be able to verify the identity of their neighbors (or at least to physically identify

the Platoon members). Also, they should exchange messages between all the members of a Platoon to verify

the consistency and construct a Platoon model. It should be possible for vehicles to detect nodes trying to

impersonate multiple nodes to prevent Sybil attacks.
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Related Work

The usage of IDSs in VANETs is a relatively new field of work, having only a few studies in the literature

from 2010. Thus, a survey enabling the identification of the most common approaches, used algorithms,

tools, and datasets is needed. One of the most accepted ways to conduct an extensive review of the existing

literature is using an SLR[11].

SLR is a means of evaluating and interpreting all available research work relevant to a research question

or area. This type of research follows a well-defined methodology with a predefined strategy allowing the

identification of works relevant to the study being carried out, decreasing the probability of biased results

(although not protecting against publication bias in the primary studies) [69].

The purpose of this review is to perform a thorough and well documented collection of the research

works existing in the literature. These evaluate the feasibility of implementing an IDS for VANETs, focusing

on the ones taking advantage of intelligent algorithms. Moreover, this study should help the identification of

which types of IDSs, ML algorithms and datasets are most commonly used. Additionally, these works should

provide insight into test and evaluation methodologies.

3.1 Systematic Literature Review Methodology

An SLR follows a strict methodology with a predefined search strategy providing an efficient and exact

way to gather and evaluate existing works, thus being easily replicated and peer-reviewed. The SLR presented

in this work follows the methodology proposed by [69] and is shown in Figure 3.1.

The methodology is comprised of 6 main steps: define the Research Questions (RQs), specify the

literature sources and search string, select relevant studies, assessing the quality of the studies collected,

extract the data from the studies and, finally, synthesize the collected data.
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Figure 3.1: SLR Methodology (Adapted from [11])

3.1.1 Research Questions

This review aims to identify the state of the art of IDSs for VANETs, mainly the ones that use ML. The

RQs defined intend to survey the main characteristics of those IDS including, the IDS design and location, the

attacks it targets, the simulators used, the datasets, and the evaluation metrics. The RQs are the following:

• RQ1: How can an attacker target VANETs? This question aims to find which types of attackers exist in

a VANET environment and how they can target their nodes.

• RQ2: Can IDSs detect attacks targeting VANETs? Mainly the ones with no cryptographic solutions.

Some IDSs can detect attacks in more traditional networks but, VANETs have a different structure and

communication types. This question aims to find if IDSs can be used in these types of networks, with

a special interest in attacks not preventable by other tools.

• RQ3: Which kind of IDS can be used in VANETs? This question aims to find which type of IDS is best

suited for this environment.

• RQ4: Can ML algorithms improve IDSs to detect attacks, and which types of ML are the most suited?

VANETs have characteristics that can facilitate several vulnerabilities. Thus, there can be a plethora of

different types of attacks and attackers. This question aims to find if the usage of ML algorithms can

help to detect attacks.

• RQ5: How can an IDS be tested and evaluated?
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• RQ6: Which metrics can be used to evaluate the IDS performance? Question 5 and 6’s main goal is

to find how an IDS can be tested and evaluated and which metrics can be used.

3.1.2 Literature Sources and Search String

Using the previously defined RQs, a search string was created using the following method [69][11]. First,

the main search terms are derived from the RQs. Then, using documents already analyzed, more search terms

are collected. The next step is to find synonyms and alternative spelling for the major terms already found.

Finally, the string is built by joining the terms found. Boolean ORs are used to join alternative spellings and

synonyms and ANDs to join major search terms. These can be found in Table 3.1.

Table 3.1: Search Terms, Alternatives and Synonyms Used in the SLR

Search Terms Synonyms and Alternatives
VANET VANETs; Vehicular ad-hoc network;
IDS Intrusion Detection System; Anomaly Detection
Machine Learning Intelligent Algorithms
Attack Attackers; Intrusions; Intruders

The search terms found were used to build a Search Query (SQ) and perform a preliminary search using

some of the major databases, namely, IEEE, Science Direct, and ACM. The obtained documents were filtered,

keeping only those mentioning VANET and IDS. The studies resulting from this research were:

• IEEE - 6 Papers

• Science Direct - 6 Papers

• ACM - 2 Papers

Due to the small volume of results obtained, it was decided to increase the number of databases. And

thus, the research for new databases was started.

However, two issues were encountered: the query language is not the same across all platforms; the

number of studies resulting from some surveys was too large to be manually analyzed. During this process,

an aggregator platform was found, Crossref [70]. This is a non-profit organization that provides a free-to-use

platform. It contains studies from the most well-known databases. Crossref provides an easy-to-use REST

API that allows to search documents based on their titles and metadata. Moreover, there are some well-

documented libraries available implemented in several languages.

42



Chapter 3

The main issue with this platform is the lack of support of Boolean AND, performing an OR operation

with all terms. Thus, any study that contains any of the search terms is returned. Therefore, some of the

previously defined terms may not make sense in this paradigm. For example, using the acronym for Intelligent

Transportation System, ITS, would return all documents containing ”its” in their metadata.

To accommodate this new perspective, a new SQ was built, ”vanets vanet vehicular ad hoc net-

works network intrusion detection system systems anomaly anomalies intelligent”. Although

simple, this search string includes all the terms that should be present in all the resulting studies.

3.1.3 Studies selection

As Crossref only performs Boolean OR, using the SQ 6,239,042 studies were returned. In this search,

no filters were used, and all the supported databases were searched. As the volume of the returned studies

was too large to be manually analyzed, an automatic tool was built. A Python application was built using the

”habanero” library [71], a well-documented library that allows easy Crossref access.

This automated tool receives an SQ and uses it to execute multiple requests to the Crossref platform

until all the results are returned. A filter was implemented to reduce the volume of returned studies. Its

purpose was to provide a boolean AND that Crossref does not have. So, two sets of terms were built. These

were used to perform boolean OR inside each group and boolean AND with the terms of the other group. Both

groups of terms are shown in Table 3.2.

Table 3.2: Groups of the Search Terms Used in the SLR Automated Tool

1st Group 2nd Group
vanet ids
vanets idss
vehicular ad hoc network Learning intrusion detection system
vehicular ad hoc networks intrusion detection systems
vehicular ad-hoc network intrusion detection
vehicular ad-hoc networks intrusions detection
intelligent transportation system anomaly detection
intelligent transportation systems anomalies detection

intelligent detection

After filtering the obtained studies using the described terms terms, 41 papers remained. All the

returned results were stored in a Mongo database to provide easy access and manipulation of the results.

43



Chapter 3

3.1.4 Inclusion/Exclusion Criteria

Using as an example the parameter defined by the authors in [11], the following inclusion criteria were

defined:

• If a study has a journal and a conference version available, only the journal version is kept;

• If a study has several versions published, only the most recent is kept;

• If a study exists in more than one source, only one copy is included;

In addition to inclusion criteria, excluding criteria is also defined to exclude ineligible studies. The defined

exclusion criteria are the following:

• Only papers available to download are kept. Some papers have restricted access and so will not be

included;

• Only studies from conferences or journals that are indexed in Scopus are included. This criterion is

meant to only use studies from reliable sources;

• Studies that do not consider VANETs;

• Studies that do not consider MLs.

The inclusion and exclusion criteria were applied to the 41 studies. 12 of the documents filled the

criteria and were kept. Two of the documents found were reviews on IDSs, ”A Survey on Intrusion Detection

Systems and Honeypot based proactive security mechanisms in VANETs and VANET Cloud” [46] and ”A review

and classification of various VANET Intrusion Detection Systems” [72]. Of these two papers, only the first was

considered. In this study, an in-depth SLR of IDSs for VANETs is made. Therefore, its relevant studies were

collected and used to enrich the SLR. Since the second document does not apply any methodology to the

review it makes, it was discarded.

After using the same criteria on the survey papers and removing the repeated papers, 22 papers

remained in total. Figure 3.2 shows how the papers are distributed by year. It is noticeable an increase

in studies from 2013 with a drop in 2017.
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Figure 3.2: Number of Studies on Intelligent IDS Published Per Year

3.1.5 Data Extraction

At this stage, the objective was to extract specific information about the gathered studies. A table with

parameters to be collected from the studies was distributed to other reviewers to eliminate possible bias and

increase the precision in the data collection. These parameters are network simulator, traffic simulator, type

of IDS, detection type, ML algorithm, which attack types were targeted, which datasets were used and where

the IDSs were located.

In Figure 3.3, the used network simulators are presented. The most commonly used network simulator

is Network Simulator 2 (ns-2), followed by Network Simulator 3 (ns-3). These are two of the most popular

network simulators. They provide the majority of the network implementations, including WAVE and ITS-G5,

which are open-source and highly customizable. Some studies use Matlab or their own simulator, and others

just use the data directly from the datasets (usually from datasets publicly accessible). Unfortunately, some

of the papers do not specify which simulator was used.

Figure 3.3: Types of Network Simulators Used in Intelligent IDSs Related Works

The most used traffic simulator was SUMO, which in some studies is used in combination with MObility

VEhicles (MOVE), as shown in Figure 3.4. From the information collected, only one more traffic simulator was
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used, VANET Mobisim. The remaining studies used data from a dataset or did not specify which one was

used.

Figure 3.4: Types of Traffic Simulators Used in Intelligent IDSs Related Works

One of the key aspects of this research was to find which datasets were used in each study. These are

shown in Figure 3.5. Most of the studies collected their datasets from the simulation. Some were obtained

from the trace file generated by the network simulator (ns-2 and ns-3) and others from values extracted during

the simulation. Some studies used the existing datasets, the Kyoto dataset [73] and NSL-KDD [74].

Figure 3.5: Origin of the Datasets Used in Intelligent IDSs Related Works

Figure 3.6 shows which ML algorithms were used in the studies. The most common was Neural

Networks (NN), followed by SVM. Some of the studies also combine more than one ML algorithm.
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Figure 3.6: Types of Machine Learning Algorithms Used in Intelligent IDSs Related Works

3.2 Synthesis of Collected Data in the SLR

This section presents the summary of the collected works using the SLR methodology. It describes the

major contributions, used tools, and strategies in the works found, providing more clear insight into the path

followed in other research works.

Misra et al. [75]: In this work, the authors propose a Learning Automata (LA) based solution for

IDSs in VANETs. The proposed model is privacy conscious, assigning a dynamic ID to each vehicle, making it

untraceable.

In the proposed solution, a VANET management system is built. Each route has a base station, and all

vehicles are equipped with transmitting devices required to communicate with the base stations. Each attacker
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will create malicious packets to divert traffic.

Both the attackers and the system have a budget-based system. The bigger the budget for the attacker,

the more packets it will be able to generate. For the IDS, the budget increases the sampling rate of VANET

packets.

The attackers are detected using only their dynamically attributed IDs. If only un-allocated IDs are

attributed and if more than one vehicle possesses the same ID, one of them is malicious. The learning

automata is used to attribute the budget for under attack grids and re-calculating the sampling rate.

The model evaluation is performed by simulation, using their own simulator. Several simulations are

done varying the number of attackers and the attacker and the IDS budget. The results vary from 40 to almost

100% of malicious packets caught depending on the system budget, the number of attackers, and the number

of vehicles. In the proposed solution, the IDS is in each of the base stations and seems to have full visibility

of the network.

Tian et al. [76]: Presents an IDS for VANETs based on the BUSNet. It is a virtual mobile backbone

infrastructure constructed using public buses. In this solution, the buses act as cluster-heads, gathering the

data packets transmitted by all vehicles and transmitting them to the access points along the roadsides. Then,

this information is classified using a NN based algorithm and used to detect DoS attacks.

The presented solution is tested through simulation using the ns-2 network simulator. The authors do

not indicate how the traffic is modeled or which traffic simulator is used. In the simulation, 50 vehicles transmit

data with a Constant Bit Rate (CBR) and a packet size of 512 bytes. The sending period is of 4 seconds. The

attacks are performed by two of the vehicles that transmit data with smaller time intervals, 0.01 seconds, at

4 distinct time points during 10 seconds each attack. The authors define a threshold value from which they

consider an attack. This value is varied from 0.05 to 0.7, making the results vary. The optimal value for the

threshold is 0.2.

Kumar et al. [77]: This work proposes an IDS based on trust-aware collaborative learning automata.

Each vehicle has a data collection, detection, and alert generation module operated by automatons. These

modules are used in conjunction to collect information from the data sent between vehicles, according to their

position and movement. Then, it is processed to detect attacks and generate alerts.

The solution is tested through simulation using Vanet MobiSim, with a total number of 500 vehicles

with speeds between 20 and 50 km/h. Unfortunately, the authors do not indicate which network simulator

is used. The authors then vary the number and speed of the nodes to evaluate their solution. The detection

rate varies from 82% to 95%, depending on the number of nodes and their speed. The results have a more

accentuated descent with the speed increase. Finally, the solution is compared with similar works.

Liu et al. [78]: The authors propose applying data mining methodology to detect known attacks

and discover other unknown attacks in VANETs. The presented solution has three main contributions: a
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decentralized vehicle network with scalable communication and data available about the network, using two

data mining models to show feasibility for an IDS in VANETs and finding new patterns of unknown intrusions.

In the proposed system, the network is divided into a cell grid. Each cell has a transmission tower

that enables communication with other cells and the Internet. Each one will run its own data mining models

and rules, detecting new attacks. Thus, this allows the IDS to create new rules to be transmitted for each

subnetwork. The data exchanged in the network is collected by both vehicles and the tower cell. The authors

apply Naive Bayes and Logistic Regression classifiers to the collected data.

The authors first test the network performance of their method using simulation. First, SUMO is used

to generate a mobility trace file. The trace file is fed into ns-2 to simulate the wireless network. This scenario

comprises 150 vehicles that make random turning decisions at intersections, follow the speed limits (from 5

to 20 m/s), and randomly placed traffic lights.

The IDS was tested by loading 5 vehicles with Linux running several network applications. Then,

TCPdump was used for 9 months to build the dataset. 4 attack categories with 39 attack types were recorded.

These are then classified using WEKA. The evaluation of the models was made using the metrics recall,

F-measure, and Matthews Correlation Coefficient (MCC).

Mejri et al.[79]: The proposed solution in comprises a detection algorithm based on a statistical

method, linear regression, and watchdog to, in a passive way, be able to detect greedy behavior in the MAC

layer. The proposed solution uses a watchdog to monitor the correlation of access times of active nodes. The

algorithm considers the network to be under attack if the correlation coefficient is not close to 1, or if the

correlation coefficient is close to 1, and the slope of the linear regression is not close to 1. The implemented

software monitors the following metrics: duration between two successive transmissions, transmission time,

and connection attempts of a node.

The performance evaluation of the solutions is made using the trace file generated by SUMO directly in

ns-3. The scenario used in SUMO is based on a real city map with signs and traffic lights. Firstly the network

is simulated with normal behaved nodes to confirm the application of the linear regression method. Then,

there are injected greedy nodes, one by one, until a total of four.

The solution can detect the greedy behavior in 1.3, 1.9, 3.1, and 7.9 seconds for 1, 2, 3, and 4 nodes,

respectively.

Alheeti et al. [80]: The solution proposed by these authors is an ANN-based misuse and anomaly

IDS to detect DoS attacks.

To design the solution, firstly, the authors generated a mobility scenario using SUMO. The files gen-

erated by SUMO were converted using MOVE to be recognizable by ns-2. Finally, ns-2 was used to simulate

communications between the vehicles. The authors used the Manhattan urban mobility to create the mobility

and traffic scenario.
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The simulation scenario is comprised of 30 vehicles and 6 RSUs and runs for 250 seconds. The vehicles

run a CBR application that sends UDP packets. Only one of the vehicles is malicious. It will drop the packets

instead of forwarding them.

The designed solution was able to classify normal and abnormal behaviors with 85.02% and 98.45%

accuracy, respectively.

Alheeti et al. [81]: Authors propose the use of a Proportional Overlapping Scores (POS) method

to reduce the number of features that are extracted from the trace file. These are used to train an ANN for

classification.

The first step of the solution, the generation of the mobility scenario and trace file, is similar to the one

presented in [80].

The generated ns-2 trace files were then used in their POS algorithms to extract the more relevant

features. Finally, the data from the dataset is then fuzzified to avoid classification problems.

The IDS designed in this solution uses Feed-Forward Neural Network (FFNN) to classify the dataset.

60000 dataset records were used, divided into training (50%), testing (25%), and validation(25%). This dataset

contains both normal and malicious behavior. The malicious behavior crafted was a Black Hole attack, in

which the malicious vehicle will drop all the received packets instead of forwarding them.

Finally, the IDS was tested using both anomaly and misuse detection. For anomaly detection, the normal

and abnormal behavior results were 99.87% and 99.72%, respectively. In misuse detection, it obtained a

classification of 99.89% for the normal behavior and 99.80% for the abnormal.

Sedjelmaci et al. [82]: Authors propose a cluster-based IDS that aims to protect the network against

selective forwarding, black hole, wormhole, packet duplication, resource exhaustion, and Sybil attack. The

proposed approach applies several detection agents that run at three levels - Cluster member, cluster-head,

and RSU.

The vehicles are grouped in clusters according to their velocities. The parameters used to select the

cluster heads are cluster connectivity and assuring security. Connectivity within a cluster is improved by

introducing a social behavior.

The IDS architecture is composed of two main detection systems and a decision system. The detection

systems are the Local IDS and Global IDS, which run at cluster members and cluster heads. The decision

system is called Global Decision System and runs at the RSUs, which allows the system to detect attacks

at different levels and monitor the multiple entities. Also, each level can execute different algorithms and

detection techniques, evaluating different features. The Global Decision System will receive the aggregate

reputation of each vehicle forwarded by the cluster head and computes their trust level.

The solution was evaluated using ns-3 as the network simulator and SUMO to simulate the mobility of
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the vehicles. The IDS evaluation was made in terms of DR, FPR, and detection time. The several attacks were

tested with a different number of vehicles. The number of attackers is fixed at 45% of the total vehicles. The

results presented vary from 92% to 100%, depending on the number of vehicles and the attack tested.

Alheeti et al. [83]: A hierarchical intelligent IDS to secure communication for self-driving and semi

self-driving cars is proposed. The authors use the Kyoto dataset and apply the POS algorithm to decrease the

number of features. Then, this data is classified using Back Propagation Neural Network (BPNN).

The designed solution has five phases: preprocessing, feature selection, fuzzification, and training and

testing.

The IDS is tested using a dataset of 60000 records extracted from the Kyoto dataset. This, is divided

into three subsets: test (25%), validation(25%) and training(50%). The results obtained are 99.23% accuracy

for normal behavior and 99.05% for abnormal.

Alheeti et al. [84]: In this work, an FFNN and SVM-based IDS is proposed. Also, a systematic

response is proposed to protect vehicles when malicious behavior is detected.

The IDS is trained using a dataset built from SUMO and ns-2, using the features from the trace file.

These features are reduced from 21 to 15 using the POS algorithm.

The dataset contains 30000 records that define normal and malicious behavior. This dataset is fuzzified

before being used for classification. The authors subdivide the dataset into validation, test, and training.

Grey hole attacks are generated by selecting malicious vehicles that will drop packets at random times.

For the rushing attack, the Ad hoc On-Demand Distance Vector (AODV) protocol needed to be adapted.

The accuracy of the results obtained in the simulation were 99.93% for normal behavior and 99.64% for

abnormal behavior using SVM. Using FFNN, the results were 99.82% and 98.86% accuracy for normal and

abnormal behavior, respectively.

Wahab et al. [85]: In this work, an intelligent IDS is proposed. It includes a cooperative monitor, able

to collect messages exchanged by vehicles, and uses SVM in an online and incremental fashion to classify

the vehicles. The protocol overhead is reduced by decreasing the training dataset. The decrease is done

by restricting the data collection storage and analysis to only a set of specialized nodes and migrating a few

tuples from one detection iteration to another. Also, a propagation algorithm is proposed that enables the

dissemination of only the final decisions among clusters.

The data is collected by all cluster members that are designated as watchdogs. These will continuously

monitor and analyze the MultiPoint Relay (MPR) vehicles that are serving them, detecting packet drops. Then,

all the watchdogs in each cluster share their collected evidence. Afterward, each watchdog classifies the

collected data. To do so, they use their own collected data as the test dataset and the observations of the

other watchdogs as the training dataset.
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The proposed solution was tested by simulation. Matlab Gilat has been used to implement the network-

related algorithms and VanetMobiSim to simulate the road traffic. The simulations are made with several

vehicles varying from a total of 100 to 500. The number of malicious vehicles varies from 10% to 50%. The

solution has a detection rate of 98.1%.

Alheeti et al. [86]: Authors propose an intelligent IDS to protect against attacks, mainly DoS and

Black Hole attacks, using Linear and Quadratic Discriminant Analysis.

Firstly, malicious behaviors are simulated. To generate the DoS attack, the authors modify the AODV

protocol. In this case, the DoS attacks cause dropped router packets.

Then, the mobility and traffic scenarios were created. SUMO and MOVE were used to generate a realistic

environment of malicious and normal behaviors. Additionally, ns-2 was used to simulate communications. The

dataset is extracted from the ns-2 trace file, and all the 21 features are maintained. Before being used for the

test and train, the data is fuzzified.

The obtained detection rate results are 86.44% for the Linear Discriminant Analysis and 85.67% for the

Quadratic Discriminant Analysis.

Sharma et al. [87]: The Authors propose a new method for the selection of a stable Cluster Head,

using Hybrid Fuzzy Multi-criteria. Then, a ML-based IDS using SVM is used to detect malicious behavior. The

SVM-based IDS detection capabilities are improved by using a Dolphin Swarm Algorithm. This algorithm uses

the dolphin swarm behavior of hunting and preying to detect and isolate malicious nodes in the network.

The proposed scheme is tested using simulation. NetSim and Matlab are used as the network simulators

and SUMO for the traffic. In the simulation, several node densities are tested from 50 to 300, and a maximum

of 45% of the vehicles are attackers.

The detection rate of the proposed IDS varies depending on the number of vehicles and is more than

98% for packet drop and selective forwarding, and wormhole attack.

Nie et al. [88]: In [88], an anomaly detection algorithm is proposed using the network traffic

estimation made using the Spatio-temporal feature of the network traffic. The convolutional NN is used to

extract features of the traffic matrix.

To detect the anomalies, first, the traffic is estimated based on the convolutional network. The anomaly

detection is done based on a threshold identification approach.

There were 3000 tests carried out, and the results indicate a high True Positive Rate (TPR) mainly

compared with previous works.

Tan et al. [8]: The main goal of this work is to propose a certificateless authentication scheme with

Chinese remainder theory for efficient group key distribution. However, as several anomaly messages need to

be authenticated during a relatively short period, there is the possibility of DoS attacks. So, an unsupervised
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anomaly detection scheme is proposed, which applies time warping for distancemeasurement. In this scheme,

vehicles need to maintain communication with the RSUs as they perform part of the work.

The built IDS is a multilevel hierarchy in which the clusters at one level are joined as clusters at the next

level.

The proposed scheme is tested experimentally using Python and the pypbc library. The authors do not

indicate any network or traffic simulator.

Zhang et al. [89]: Authors propose a privacy-preserving ML-based collaborative IDS. With that goal, a

collaborative IDS architecture is proposed, enabling information and knowledge sharing. Then, an alternating

direction method of multipliers algorithm is used to capture the distributed nature of the network and construct

a collaborative learning algorithm over a VANET on a regularized empirical risk minimization algorithm. The

privacy of collaborative learning is achieved by using the dual variable perturbation before minimizing the

augmented Lagrange function. The goal of the classifier is to detect if the network is under attack using

logistic regression.

The proposal is tested using the well-known NSL-KDD dataset evaluating the impact of the VANET size

and topology.

Ayoob et al. [90]: In this work, authors propose using an IDS with a Hierarchical Growing Gas

Network (HGNG) based classifier. Also, a semi-cooperative feature extraction method is used to collect the

current location information, the location features, and the historical information.

The IDS is trained in a non-attack situation so the IDS can detect anomalies in the VANET. Each vehicle

calculates measurements such as average traffic and location information.

Simulation is used to test the designed IDS. SUMO is used as the traffic simulator and ns-2 as the

network simulator. The evaluation is done by inserting 50% of malicious vehicles and verify the network

changes.

Liang et al. [91]: The authors propose a feature extraction algorithm and a classifier based on

an Improved Growing Hierarchical Self-Organized Map (I-GHSOM). The proposed algorithm extracts two key

features: the differences in traffic flow and position.

The proposed IDS consists of three modules: feature extraction, classifier, and response. The feature

extraction module quickly translates the measurements in the messages to features. The traffic flow extracted

is the difference in flows between two adjacent vehicles. The difference in position is the difference between

the claimed and detected position.

The classifier module has been trained and can check if there are any deviations in the messages

according to the features extracted. Finally, the response module takes action to assure the security of the

network.
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The performance of the scheme is evaluated using simulation. ns-2 is used to simulate network

communications and SUMO to simulate the mobility of the vehicles. The rate of rogue vehicles is varied

from 10% to 40%. The IDS has a better performance with a lower number of vehicles. The FPR increases with

the increment in rogue vehicle rate, and the TPR decreases. The values for the TPR vary from a little over

86.5% to 98%. The FPR is between 0.4% and less than 1.2%.

The data obtained from the SLR works is summarized in Table 3.3. The information in the table presents

the following characteristics of each solution: network simulator, traffic simulator, attack targeted, IDS type,

detection type, machine learning algorithm, source of the dataset, and the placement of the IDS in the network.
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Table 3.3: Data Extracted from Studies found in the SLR

Paper Net
Sim

Traffic
Sim

Attacks IDS Type Detection
Type

ML Dataset Placement

[75] Own Own Malicious packets Hierarchical Anomaly Learning
Automata

From Simula-
tion

Base Station

[76] NS2 N.A. DoS Hierarchical Anomaly Neural Networks NS2 Trace file Access
Points

[77] N.A. VANET
Mo-
bisim

Abnormal behaviors Colaborative Anomaly Learning
Automata

From Simula-
tion

Vehicles

[78] NS3 SUMO DoS, R2L, U2R, Prob-
ing

Hierarchical Anomaly Naive Bayes
and Logistic
Regression

TCPdump Each cell and
vehicle

[79] NS3 SUMO Greedy Behavior N.A. Watchdog Linear Regression From simula-
tion

N.A.

[80] NS2 SUMO
and
MOVE

DoS N.A. Anomaly
and
Misuse

Neural Network NS2 Trace file Any Node

[81] NS2 SUMO Black Hole N.A. Anomaly
and
Misuse

Neural Network NS2 Trace file
and Animator

N.A.

[82] NS3 SUMO Selective Forwarding,
Black Hole, Packet
duplication, Resource
Exhaustion and Sybil
attack

Hierarchical Rule
Based and
Anomaly

SVM NS3 Trace file Vehicles and
RSUs

[83] — — DoS Hierarchical Misuse
and
Anomaly

Neural Networks Kyoto Dataset N.A.

[92] N.A. N.A. Malicious behavior N.A. Watchdog Bayesian Filter N.A. Every Node
[84] NS2 SUMO

and
MOVE

Grey Hole and Rushing N.A. Anomaly Neural Networks
and SVM

NS2 Trace file N.A.

[85] Matlab VANET
Mo-
bisim

packet dropping Hierarchical Watchdog
and
Anomaly

SVML From Simula-
tion

Vehicles

[86] NS2 SUMO
and
MOVE

DoS and Black Hole Standalone Anomaly Linear and
Quadratic
Discriminant
Analysis

NS2 Trace file Vehicles

[87] NetSim
and
Mat-
lab

SUMO Wormhole, Selective
Forwarding, Packet
Drop

Hierarchical Anomaly SVM NS2 Trace file Vehicles

[88] N.A. N.A. Traffic Anomalies N.A. Anomaly Neural Networks N.A. N.A.
[8] N.A. N.A. DoS Hierarchical N.A. N.A. N.A. N.A.
[89] - - Network Anomalies Hierarchical Anomaly Logistic

Regression
NSL-KDD Vehicles

[90] NS2 SUMO Network Anomalies Hierarchical N.A. HGNG From Simula-
tion

Vehicles

[91] NS2 SUMO Network Anomalies N.A. Anomaly I-GHSOM From Simula-
tion

Vehicles

N.A.: Not Available
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3.3 Evolution of the ML-Based Research Work

The SLR only covered the literature until 2019. Nonetheless, the literature has been constantly accom-

panied, following the evolution of the new research work. So, the works found in the literature after 2019

are also added to the works described in this section. These, however, were not obtained using the SLR

methodology because the goal was to follow the trends and path of new research on the literature, not needing

such systematic and deep research as previously done in the SLR.

Ghaleb et al. [93]: Authors in propose a misbehavior-aware on-demand collaborative IDS based

on the concept of distributed ensemble learning. So, each individual vehicle uses an Random Forest (RF)

algorithm to train a local IDS. These are then shared on-demand with the vehicles in their vicinity to reduce

the communication overhead. The vehicles that received the trained classifiers test them using a local test

dataset. The results of the testing the classification is used as a trustworthiness factor to rank the received

classifiers. The classifiers that deviate too much are excluded from the set of collaborators. The classifiers

received from the multiple neighbors are aggregated using a weighted voting scheme. The mobility of the

vehicles is simulated using SUMO, using five traffic scenarios with different vehicle densities, random vehicle

types, speed, and behavior. The authors used the known NSL-KDD dataset to represent the vehicle network

traffic and used three ML algorithms to evaluate the data, RF, XGBoost, and SVM. The IDS performed quite

well, mainly using the RF algorithm, with F1 scores ranging from 98% to 99% depending on the number of

misbehaving vehicles.

Kosmanos et al. [94]: The ML-based IDS that is proposed targets spoofing attacks using a proba-

bilistic cross-layer approach in a VANET comprised of Electric Vehicles. If an attack is detected, the attackers

are excluded from the Dynamic Wireless Charging mechanism. One of the contributions of the papers is

the introduction of a novel metric used to separate features for the ML algorithms, which is named Position

Verification using Relative Speed. It is based on the relative speed that is estimated through the interchanged

signals in the PHY layers. The introduction of the new metric increased the performance of the probabilistic

IDS by 6%. The authors designed their simulations and attacks using SUMO and OMNET++/VEINS simulators.

The data created was evaluated using k-Nearest Neighbor and RF. The performance of both algorithms using

the new metric for both was very similar with 91.3% accuracy.

Gad et al. [95]: propose an ML-based IDS for VANETs based on the ToN-IoT [96]. This dataset

is an updated version of the NSL-KDD dataset, containing the most updated attacks. The authors use the

SMOTE technique to fix the class unbalance and then compare the performance of the following algorithms in

attack detection: Logistic Regression, Naive Bayes, Decision Tree, SVM, k-Nearest Neighbor, RF, and XGBoost.

The dataset is divided using 70% for the training and validation of the algorithm and the rest for testing its

performance. The results show that XGBoost has the best performance either in binary class and multi-class

classification problems.
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Alsarhan et al.[97]: the authors present a SVM-based IDS for VANETs, using an enhanced penalty

function for reinforcing the regularization of the classifier and comparing three different ML algorithms for

optimization. The test and training are made using the NSL-KDD dataset by dividing it into ten groups. One is

used for the test, and the remaining 9 are used for training. The results show that SVM performs better when

optimized using the Genetic Algorithm.

Raja et al. [98]: SP-CIDS is a Secure, and Private-Collaborative IDS proposed to detect network attacks

and mitigate security concerns. It uses a distributed ML model based on the Alternating Direction Method of

Multipliers. This algorithm leverages the potential of vehicle-to-vehicle collaboration in the learning process to

improve the storage efficiency and accuracy, and scalability of the IDS. Nonetheless, the methodology used

creates privacy concerns as the CIDS may act as a malicious system with access to the learning process’s

intermediate stages. So, the authors use a differential privacy technique to address the data privacy risk.

The authors evaluate multiple ML algorithms in the IDS, including logistic regression, Naive Bayes, and

ensemble classifiers. The authors implement the proposed SP-CIDS in simulation using ns-2. The classifier

and differential privacy techniques are implemented in python and tested using the NSL-KDD dataset. The

results show that the proposed IDS is very efficient in detecting attacks, mainly when using the ensemble

learning technique. However, the results presented show only the total accuracy and not the accuracy per

type of attack thus, not being clear of how the methodology behaves for each attack.T

The data obtained from the studies collected during the follow-up on the literature evolution is summa-

rized in Table 3.4.
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Table 3.4: Data Extracted from Studies Follow-Up Research

Paper Net
Sim

Traffic
Sim

Attacks IDS Type Detection
Type

ML Dataset Placement

[93] N.A SUMO Malicious behavior Colaborative Anomaly Random Forrest,
XGBboost and
SVM

NSL-KDD Vehicles

[94] VEINS SUMO Spoofing Standalone Anomaly Random Forrest,
and k-Nearest
Neighbor

From Simula-
tion

Mobile
Energy Dis-
seminators
and Static
Charging
Stations

[95] N.A. N.A. Network Anomalies N.A. Anomaly Logistic
Regression,
Naive Bayes,
Decision Tree,
SVM, k-Nearest
Neighbor,
Random Forest
and XGBoost

ToN-IoT N.A.

[97] N.A N.A. Network Anomalies N.A. Anomaly SVM NSL-KDD N.A.
[98] NS2 N.A. Network Anomalies Colaborative Anomaly Logistic

Regression, Naive
Bayes, Ensemble
Classifiers

NSL-KDD Every Node

N.A.: Not Available

3.4 Analysis of Experimental Results

The most common approach for an IDS for VANETs uses the tools shown in Table 3.5. That solution

comprises of a hybrid detection that performs misuse and anomaly detection. The simulation is performed

using ns-2 as the network simulator and SUMO to simulate the vehicle’s mobility. In most of the solutions, the

dataset is obtained directly from the network simulator trace file.

Table 3.5: Most Common Tools Used in Intelligent IDS Solutions Found in the SLR

Network Simulator NS-2
Traffic Simulator SUMO
Dataset Net Simulator Trace file
ML algorithm NN
IDS Type Hierarchical

Unfortunately, a significant number of studies did not specify which network and traffic simulator were

used. The same happened for the dataset used to train and test the IDS.

Most of the collected studies use their own datasets, either from collected events from the simulation or
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directly from the network simulator trace file. The ones that use more reliable datasets choose the well-known

NSL-KDD [99] and Kyoto [73] datasets.

Both mentioned datasets are obtained from real network traffic. NSL-KDD is an evolution of the KDD

CUP 99 Dataset [100], which is based on a dataset composed of about 4 gigabytes of compressed raw

TCPDump data consisting of 7 weeks of network traffic. The original KDD dataset contains 41 features and is

labeled as normal or attack messages. The collected messages can be categorized into the following groups:

DoS, User to Root Attack, Remote to Local Attack, and Probing Attack.

The Kyoto dataset has more than three years of real traffic data collected from honeypots located in 5

different networks inside the Kyoto University. It consists of 14 statistical features derived from the KDD CUP

99 dataset with additional features for further evaluation and analysis of IDSs.

These are publicly available datasets with a high reputation and are used by many works. However,

they are not obtained from VANET networks and thus may produce biased results.

The studies that use their own datasets do not make them publicly available, compromising the validity of

their results. The unavailability of the datasets, combined with the lack of explanation on how the datasets are

constructed and the clear description the process of building the attacks (ratio between normal and abnormal

messages, etc.), complicates the verification of the results. Moreover, the great majority of the presented results

indicate a very high value of the detection rate, which may indicate the overfitting of the model. Furthermore,

most of the studies do not present the configuration parameters used in the algorithms.

The more recent work (2019-2021) seems to increasingly use publicly available datasets. These,

however, choose the already mentioned NSL-KDD or a new dataset called ToN-IoT. Unfortunately, the latter

still is not obtained from VANETs but from Internet of Things (IoT) networks, compromising the results of the

works presented.
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Securing Communications

VANETs have a specific set of characteristics that makes them inherently vulnerable, creating opportu-

nities for a wide range of attackers. Moreover, their need for secure but low latency communications requires

a set of particular security requirements. Thus a security framework able to protect the communications of all

the diverse entities that constitute the network is needed.

VANET security is a key area with multiple research works that propose different techniques, from the

most traditional PKI to some more new and complex ID or situation-based. However, the solutions found

in the literature present some disadvantages and do not address the intrinsic broadcast needs of VANET

communications. So, it was decided to design a secure model that could overcome some of these drawbacks

by incorporating multiple technologies into a hybrid security model.

Vehicular Ad hoc Network Public Key Infrastructure and Attribute-Based Encryption with Identity Manager

Hybrid (VPKIbrID) [14] is an application layer security model that provides a framework enabling VANET entities

to exchange messages securely while maintaining their privacy. This security model uses a hybrid of a PKI

with PCs and ABE encryption. It can guarantee that VANET communications can be made securely. The

ABE cryptography enables broadcast scenarios in which an entity can encrypt a message to multiple targets

without needing exchange keys.

The entities and interactions of the VPKIbrID security model are presented in Figure 4.1. It is built on top

of the PKI model with PCs, with two new additional entities, TA and IdM. The TA enables the usage of ABE. It

is responsible for generating ABE Public Parameters needed to encrypt data and the decryption keys based

on the attributes of the entities. The IdM can be used as an authorization server that generates Oauth/OpenID

connect like tokens. These can be used to access services or resources while protecting privacy. The token is

signed by the IdM to prove its authenticity. It can be used, for example, to obtain PCs from the PCA. The PCA

will be able to verify the token authenticity but not the identity of the owner. OpenId Connect is an established

Internet standard and is used as a basis for the token.
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VPKIbrID security model enables encryption to one or multiple targets. If the message destination is

a single entity, VPKIbrid Public Key Infrastructure (VPKIbrID-PKI), more lightweight, may be used. If the goal

is to disseminate a message to a group of entities that shares the same attributes, VPKIbrid Attribute Base

Encryption (VPKIbrID-ABE) is the more indicated. The message construction is similar in both modes and

similar to the one used by WAVE.

The following Sections describe the multiple communication modes, message formats, and the several

protocols needed to communicate securely.

Figure 4.1: VPKIbrID Security Model Interactions (From [14])

4.1 VPKIbrID Message Format

VPKIbrID defines two different messages: the VPKIbrid Plain Message (VPKIbrID-PM) and the VPKIbrid

Encrypted Message (VPKIbrID-EM). The first is the message in plain text that will be encrypted; the latter is

the encrypted message that will be sent. Both are defined using the widely accepted format Abstract Syntax

Notation One (ASN.1).

The VPKIbrID-PM definition is presented in Figure 4.2. It is composed of 7 fields: plain data (data),

sender certificate (certificate), message creation UNIX timestamp (timestamp), IdM token (token), the algo-

rithm used to sign the data (signatureAlgorithm), the key used to sign the data (signingKey) and, finally, the

signature (signature). The sender certificate is also encrypted to protect anonymity.

The VPKIbrID-EM, presented in Figure 4.3, is composed of 6 fields: encrypted key (encKey), encrypted

data (encData), data encryption algorithm (encAlgorithm), key encryption algorithm (encKeyAlgorithm), UNIX

timestamp (timestamp), and message hash (hash).
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V P K I b r I D−PM : = SEQUENCE {
d a t a OCTET STRING ,
c e r t i f i c a t e OCTET STRING ,
t i m e s t am p INTEGER ,
s i g n a t u r e A l g o r i t h m P r i n t a b l e S t r i n g ,
s i g n i n g K e y OCTET STRING ,
s i g n a t u r e OCTET STR ING

}

Figure 4.2: VPKIbrID-PM format in ASN.1

The field encData, refers to the encrypted data and encAlgorithm to the algorithm used for its encryption.

The same happens for enc_key and encKeyAlgorithm. The encKey, was used to create the encData from the

VPKIbrID-PM. And then, it was encrypted using the receiver public key. The hash field contains a hash obtained

from the message. Its goal is to prevent simple modifications of the message.

V P K I b r I D−EM : = SEQUENCE {
e n cK e y OCTET STRING ,
e n c K e y A l g o r i t h m OCTET STRING ,
e n c D a t a P r i n t a b l e S t r i n g ,
e n c D a t a OCTET STRING ,
e n c A l g o r i t h m P r i n t a b l e S t r i n g ,
t i m e s t am p INTEGER ,
ha sh OCTET STR ING

}

Figure 4.3: VPKIbrID-EM format in ASN.1

4.2 VPKIbrID Cipher Modes

VANETs are a very diverse environment where the entities may need to communicate in different modes.

Furthermore, these may need to send messages to several targets (broadcast/multicast) or only one (unicast).

Therefore, one goal of the designed VPKIbrID model was to enable the possibility to encrypt data depending on

the communication type needed. VPKIbrID-PKI provides unicast communication using the capabilities of PKI,

and it can take advantage of ABE to provide an easy way to encrypt data for multiple targets simultaneously.

Figure 4.4 presents the block diagram for the encryption process of both modes VPKIbrID-PKI and

VPKIbrID-ABE. The encryption process is very similar in both methods, with the difference being in the

”Receiver Pub Or ABE Key” block. This block may use a public key if the sender needs to perform a unicast
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communication using VPKIbrID-PKI or use an ABE key for a broadcast communication using VPKIbrID-ABE.

Both methods are described in detail in the following Sections.

Figure 4.4: VPKIbrID-PKI and VPKIbrID-ABE Block Diagram

4.2.1 VPKIbrID Public Key Infrastructure

VPKIbrID-PKI is the encryption mode more indicated to be used in unicast communications, that is,

any communication that only has one target, and the targets are known previously to the communication. It

is based on the well-known, and more traditional, PKI, a certificate-based cryptographic scheme. So, for the

entities to be able to communicate securely, they need a pre-exchange of certificates. Therefore, all entities

need to pre-load a CA-generated certificate with its respective private and public keys.

Figure 4.5 presents the interactions between the sender and receiver needed to secure communications

using VPKIbrID-PKI. (1) the sender generates a random symmetric key that will be used to encrypt the

VPKIbrID-PM; (2) then, the sender signs the data and builds the VPKIbrID-PM, the signature can be done

using a PKI or any symmetric algorithm such as a Message Authentication Code (MAC); (3) it encrypts the

data and signature with the symmetric key, this key is faster and lighter than any PKI being optimal for this

step; (4) then, the sender can encrypt the symmetric key using the public key of the receiver, using the slower

encryption to encrypt only part of the data thus, increasing the efficiency; (5) the sender can now fill all the

VPKIbrID-EM fields and send the message over the unsecured network securely.

The receiver can decrypt the message using the inverse process, also presented in Figure 4.5. So, it

first (6) verifies the authenticity and expiration date of the certificate in the VPKIbrID-EM. If valid, the receiver
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can now (7) decrypt the symmetric key using its private key; (8) then it can decrypt the VPKIbrID-EM and

obtain the VPKIbrID-PM; And, finally, (9) it can verify the signature in the message. If correct, it means that

the message was successfully transmitted.

Figure 4.5: VPKIbrID-PKI Encryption and Decryption Sequence Diagram

4.2.2 VPKIbrID Attribute-Based Encryption

VPKIbrID-ABE mode uses the more complex ABE. This mode has some drawbacks, including the CPU

demand and the increased time in the encryption and decryption process. Also, it has only a few available

implementations, is usually made by individuals, is less used and, thus, less efficient. However, it presents

some advantages, the main and already mentioned is the cability of performing encryption in such a way that

enables multiple targets to decrypt the message as long as they share the same attributes. It is optimal for use

in broadcast/multicast scenarios where an entity needs to broadcast information to a restricted group without

knowing their public keys.

Furthermore, as it uses attributes for its public key, it can encrypt messages for targets that do not

already exist. For example, if a cloud-based service is used, the sender can encrypt a message for users with

the role ”Admin,” even if no user has that role. That role can afterward be added to the system, and that

user will immediately have access to the data. So, it provides an access control mechanism embedded in the

encryption. Another possibility is also to define an expiration date in the attributes, from which no one will be

able to decrypt the data.

The entities need to be pre-loaded with the Public Parameters to cipher and decipher the data. These
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are generated by the TA and are needed for the cipher and decipher process. The Public Parameters can

be sent through an insecure channel (only need to be signed) as all entities know them.

The encryption process, presented in Figure 4.6, is similar to the VPKIbrID-PKI mode. The only

difference in the encryption of the symmetric key. Instead of being encrypted by the receiver public key,

it will be encrypted with an ABE key. An example of attributes that can be used is ”UMINHO DI 2of2”. It

indicates that only entities that belong to the group UMINHO and are from DI can decipher the message.

The ”2of2” part of the rule means that the two attributes need to be fulfilled.

Figure 4.6: VPKIbrID-ABE Encryption and Decryption Sequence Diagram

4.3 VPKIbrID Interactions

The VPKIbrID security model comprises multiple entities with different roles, including the TA, Root CA,

PCA, Long-Term CA, and IdM. To be able to communicate securely, any sender/receiver needs to obtain

cryptographic material from them. However, the vehicle is assumed to be pre-loaded with the following

material: Long-Term Certificates (LTC), Public Parameters generated by the TA and, the TA and IdM

certificates. All the indicated security material has a long expiration date and thus can be pre-loaded during,

for example, the yearly mandatory vehicle revision. Next are presented the interactions needed for the VANET

entities to obtain the security material needed to create a secure communication channel.
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4.3.1 Obtaining Identity Manager Token

The token is one of the fundamental parts of the VPKIbrID. It can be used to access services or

resources without leaking private information. The VPKIbrID token is very similar to Oauth, providing access

control management (not actually authentication). Despite the VPKIbrID security model having the LTC for

entities to prove their identity to each other, it leaks the true identity. So, this certificate should only be used

to authenticate with trustworthy entities such as the IdM or the CAs.

The token is a JWT, similar to the one used by OpenID connect. It describes the resource it gives access

to, has an expiration date, and is signed by the IdM. Thus, any entity that receives it can automatically verify

its validity without the need for any extra communication. However, it does not indicate the entity it has been

generated for, protecting its privacy.

Any entity that wants to obtain a token can do so by requesting it from the IdM. The request should

include the LTC of the requester and what resources it wants to access(obtain the ABE keys, join a platooning,

etc.). As the request is made through a unicast communication, in which only the IdM should access the data,

it should be made using VPKIbrID-PKI. The request should be encrypted using the IdM certificate pre-loaded

along with the rest of the secure material.

So, to obtain the token, the requesting entity first (1) encrypts the request and its LTC certificate using

the PKI mode. (2) Then, it sends the request to the IdM. The IdM receives the token and proceeds to: (3)

decrypt the request using its private key; (4) generate the token according to the specific permissions of each

entity. It should clearly indicate which services the entity has access to and, if needed, which are its attributes;

(5) then it signs the token with its public key, thus being easily verifiable by any other entity in the system, (6)

encrypts the token with the requester public key and (7) sends it over the network. Upon receiving the token,

the requester can (8) decrypt the token using its private key. The whole process can be seen in Figure 4.7.

The token should be kept securely and only be transmitted over a secure channel to trustable entities.

It is impossible for the entity who receives the token to identify the sender, only the validity of the token and

the resources it gives access to. So, if an attacker can intercept the token, it can access valuable resources.

One possible way to try to mitigate this is to define low expiration dates.
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Figure 4.7: Request VPKIbrID Token From the IdM

4.3.2 Obtaining Pseudonym Certificates

Certificates are one of the fundamental components of a PKI. These are a widely accepted form

for entities to identify securely and link a public key to identification. However, certificates have multiple

parameters that allow the identification of their owner in cleartext. In, reality even the public key can allow

the identification of an entity across the network. So, to prevent this from happening, the entities can use

PCs. These are very similar to the LTCs but hide the real identities of their owner, protecting their privacy.

Nevertheless, as an authentic and well-known entity signs these, it is possible to confirm their authenticity.

Each entity can have multiple PCs that can be interchanged, preventing tracking any entity in the network.

An entity that wants to request a PC from the PCA must first obtain the IdM token, as described in

Section 4.3.1. The token needs to indicate that the entity may access the PCs and which attributes it must

contain. It also needs to have the PCA certificate and its LTC pre-loaded. Then the requester entity (1) encrypts

the token and the request using VPKIbrID-PKI with the PCA public key, and (2) sends it to the PCA. Upon

receiving the request, the PCA can (3) decrypt it with its private key and (4) verify the validity of the token. If

valid, it (5) generates the PCs that will be (6) encrypted using the requester public key and (7) sends them

over the network. The requester can then use VPKIbrID-PKI to (8) decrypt the symmetric key and (9) with it

the encrypted certificates. The process is described in detail in Figure 4.8.

As previously mentioned, the VPKIbrID-PKI supports message signing using PKI or symmetric algo-

rithms. In this case, both the token in the request and the PCs are signed; the entities may choose to use

symmetric keys to sign message. It may be especially useful for entities with less computing power, helping

to increase their performance.
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Figure 4.8: Request VPKIbrID PCs From the PCA

4.3.3 Obtaining Attribute Base Encryption Keys

Unlike the more traditional methods, ABE is a type of cryptography that uses attributes to encrypt the

data. Still, this type of cryptography is less used and has little representation in the market. Nevertheless, ABE

keys present some advantages when compared with the more traditional techniques. These allow an entity

to encrypt data that multiple targets can decrypt. Additionally, ABE keys have an embedded access control

mechanism that is very useful to secure messages sent to groups of entities that share the same attributes

and can even be used to encrypt data that will only be decrypted in the future.

In this scheme, the sender can directly generate the encryption key using the intended attributes, only

needing the Public Parameters generated by the TA. However, the decryption keys can only be generated

by the TA, a trusted authority in the system that is considered secure. Then, the keys can be requested using

a token from the IdM that proves the attributes of the requesting entity.

First, to request the ABE keys, the requester needs to obtain the IdM token from the IdM, as indicated

in Section 4.3.1 and represented by steps 1-8 in Figure 4.9. Then, the (9) requester encrypts the token

and a PCA using the VPKIbrID-PKI mode with the TA certificate and (10) sends it over the network. The IdM

can then (11) decrypt the token and verify its authenticity, (12) get the attributes from the token, and (13)

generate the decryption keys based on the attributes in the token. The TA can then (14) encrypt the token

using VPKIbrID-PKI with the public key indicated in the PCA and (15) send it back to the requester. Finally,

(16) the requester can decrypt the ABE key using its PCA. The complete process can be seen in Figure 4.9.
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Figure 4.9: Request VPKIbrID ABE Keys From the TA

4.3.4 User Authentication

VANET security is needed at multiple levels. Depending on the application, different permissions can

be given to the driver depending on its identity. In some more security constrained applications, such as

platooning, where the driver of a vehicle can directly impact the behavior of numerous others, the driver needs

to be identified, or, at least, be able to prove his permissions. The user authentication is mainly essential if the

vehicle belongs to a Leader. The Leader is responsible for controlling all the maneuvers within a platooning,

and it should have special permission given to a user that has the training to do so.

VPKIbrID provides tools to do so by using a combination of the LTC and the token. So, the driver can be

given a secure storage device, such as a smartcard containing his LTC and corresponding keys. The LTC can

then be used to easily obtain the user token from the IdM, which indicates the permissions that the user has.

The user token should only give permissions for access to the vehicle or the needed application; these should

not give access to fetch PCs or ABE keys. The IdM token can also be stored in the user smartcard for later use

if the expiration date is enough. The token can be obtained offline, using the resource website, for example,

and storing the token in the card. Alternatively, in the vehicle using a process similar to the one described in

Section 4.3.1. The only difference is that the LTC used is the user instead of the one belonging to the vehicle.

Figure 4.10 shows how the user token can be obtained. (1) the user inserts the smart in the vehicle.

The (2) vehicle requests the user credentials, which were used to secure the LTC. (3) the user inserts his

credentials to allow access to his information. The device can then (4) verify the credentials and (5) asks
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which service the token is intended for. The user (6) inserts the service identification, and the device can

encrypt the request (7) and send it to the IdM (8). The IdM can then (9) decrypt the certificate, verify its

authenticity and validity (10) and generate and encrypt the token using the PKI mode (11). The IdM sends

it to the device, which (12) stores it securely in the smart card (13). The user can finally remove the smart

card (14) with its token inside.

Figure 4.10: VPKIbrID User Authentication

The user token can be used to access the vehicle. Entering or driving a vehicle can be authorized

through the token. When buying a vehicle, the owner should be given a token that authorizes him to do so.

This token can be long-lived as it is not exchanged in the network. Also, it is only supplied to the vehicle after

the authorized by the owner.

The user will have to enter his smartcard in the vehicle, which, in turn, will prompt for his credentials.

After validation, the vehicle will have access to the token. It is signed by the IdM, allowing its verification. The

complete process is presented in Figure 4.11.
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Figure 4.11: Using the VPKIbrID User Token to Access the Vehicle

4.4 Secure Platooning

Platooning is an ITS application that aims to improve traffic flow and highway capacity while increasing

safety. It allows multiple vehicles to travel close together with constant speeds and gaps in a convoy manner.

A Platoon may be composed of a diversity of vehicles, from trucks to normal automobiles. The vehicles that

compose a Platoon may perform one of two roles, Follower or Leader. The Leaders usually are the vehicle

in the front of the Platoon and control all the maneuvers and movements of the Platoon. The Followers are

the rest of the vehicles and comply with the orders of the Leader.

It has complex security requirements, most related to its underlying network, the VANET, and the nature

of the application itself. Due to their complexity, some authors even suggest dividing the requirements into three

layers, as indicated in Section 2.8.2: Communication Channel Security Requirements, System Layer Security

Requirements, and Application Layer Security Requirements. Additionally, the intricacy of the application and

its maneuvers facilitates attackers to influence the behavior the vehicle, compromise privacy of the drivers or

cause attacks. Thus the importance of a secure channel with strong authentication to support the message

exchange within the Platoon.

Communications between Platoon vehicles can happen in different ways. The vehicles may need to

use broadcast/multicast communications when transmitting a beacon to make themselves known or unicast

communication during most of the maneuvers, where most of the communications are between the followers

and the leader.

VPKIbrID [14] is an application layer security model that provides mechanisms to facilitate broadcast/-

multicast and unicast communications while creating a secure channel with strong authentication andmaintain

user privacy, as described in Section 4. In conjunction with its User Authentication Capabilities (Section 4.3.4),
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the secure channel created by VPKIbrID can fulfill the platooning security requirements as described in Section

2.8.2.

The next Sections describe the multiple interactions between the Platooning entities to perform the

maneuvers presented in Section 2.8 securely [16]. For the vehicles to perform the following maneuvers

securely, these are assumed to be preloaded with the following secure material:

• A certificate with its identity obtained from the CA;

• PCs issued by the PCA;

4.4.1 Platoon Creation

The Platoon creation was modified from the original PMP, described in Section 2.8. From a security

standpoint, the Create maneuver is more complex, with multiple parameters needing to be set up beforehand.

At this level, it is an administrative operation performed by a new and external entity, the Administrator, in

which all the Platoon parameters are defined. The VPKIbrID interactions, including the new entity, are shown

in Figure 4.12. The Platoon parameters include the maximum Platoon size, the type of vehicles allowed,

Platoon name, and which vehicles are allowed to join. Additionally to the normal parameters, at this point,

the Leader needs to associate the public key and certificate that it is going to use. Thus, it can sign all the

messages, including the beacons, allowing all future followers to easily recognize and verify the messages.

The administrator also needs to indicate which vehicles will be allowed to decrypt the beacons and

messages encrypted using VPKIbrID-ABE, by giving them permissions in the IdM. Additionally, the IdM and

the token can be used to attribute the different roles to the entities. In this case, the Platoon created will be

called PLATOON_1. The followers will have the attribute FOLLOWER, and the leader the attribute LEADER.
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Figure 4.12: VPKIbrID Security Model Interactions with Administrator (From [16])

4.4.2 Initialization

Before joining a platoon, the future follower needs to obtain some cryptographic material that will allow

him to do so and be able to decipher the messages exchanged by the other elements. As the administrator

already added the needed attributes for the follower to join the platoon, the vehicle can fetch the needed data.

First, the followers will obtain the ABE keys from the TA as indicated in Section 4.3.3. These will

allow deciphering all the messages from the Platoon that are intended for the follower as, for example, the

advertisements.

Afterward, it needs to fetch a token to be sent to the leader in order to prove its authorization to belong

to that platoon. This will be requested from the IdM as indicated in Section 4.3.1.

4.4.3 Disseminate Platooning Advertisements

The Platoon leader may broadcast advertisements at regular intervals so other vehicles driving on the

same road can be aware of its presence. Depending on the privacy requirements of the platoon, the leader

may choose to only advertise the Platoon to authorized vehicles.

To do so, the leader can use VPKIbrID-ABE [14]. The ABE mode allows the leader to send messages
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ciphered to all the vehicles that share the same attributes. In this case, the leader can cipher a message using

the attributes PLATOON_1 DRIV ERS 2of2, meaning that only vehicles possessing both attributes

will be able to decipher the advertisements. The 2of2 part of the rule indicates that two attributes are needed,

and both must be fulfilled to access the encrypted data. Thus, it is assured that only members of this specific

Platoon (or future members) will know about its existence.

The advertisements should be signed to be verifiable by the receivers. The public key used to sign the

message can be given to the follower in the initialization phase.

4.4.4 Joining Platoon

A platooning-enabled vehicle that wants to join an existing Platoon needs to request permission to do

so by sending a Join Request to the leader of the Platoon.

Using VPKIbrID-ABE, the follower can do so in such a way that only the leader of that specific Platoon will

be able to decipher the request. As stated before, the Platoon has the name PLATOON_1, and the leader has

the attribute LEADER. So, the follower can use the attributes PLATOON_1 LEADER 2of2, meaning

that only the leader of PLATOON_1 will be able to read the request.

The follower needs to prove in some way that he is allowed to join the platoon. To do this, the follower

includes in the request the token obtained from the IdM indicating that it is allowed to join the platoon. The

privacy of the follower can be maintained with the IdM token because it does not explicitly indicate its identity.

It merely needs to indicate that it has access to that Platoon. The token needs to be signed by the IdM to

be verifiable by the leader. Although an infrastructural connection is needed for the token obtention, it is not

necessary for its verification.

4.4.5 Secure Message Exchange

Vehicles belonging to a Platoon can communicate in two basic ways: broadcast/multicast or unicast.

They can commute between the two modes depending on the type of communication. If the goal is to

communicate with all the members of the Platoon, the broadcast is advised. If the message is directed

to one specific member, unicast is used.

As it is stated in [14], VPKIbrID provides a way to communicate in both ways. Furthermore, it concludes

that VPKIbrID-ABE is best suited for broadcast/multicast communications, while VPKIbrID-PKI fits better for

unicast.

So, Platoon members can use VPKIbrID-ABE when multicast communications are used, for example,

during the dissemination of Platoon beacons and maneuvers involving more than one element (e.g., Dissolve).
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Maneuvers such as leave or the parameter adjustment of a specific Platoon member can be ciphered

using VPKIbrID-PKI.
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Datasets Synthesis with Security Threats

The main goal of this research work is to build an IDS able to detect VANET attacks aided by ML

algorithms. The latter analyzes the data provided, needing a significant amount of knowledge of network

protocols and vehicle behavior patterns in order to derive a conclusion. Thus, the ML engine needs huge

amounts of data, which allow them to learn normal and abnormal behavioral patterns.

However, as indicated in the SLR performed (Chapter 3), it was found that there are little to no publicly

available VANET datasets. Most of the research works found in the literature use their own datasets and do not

make them, nor the methodology used to obtain them, available. The availability of the dataset used to test

and train the IDS is of significant importance. Without having access to the datasets, it is very hard to verify

the validity of the studies published in the literature. Thus, creating publicly available datasets is essential, as

they can provide a good basis for future research works.

This Chapter presents the methodology used to create multiple VANET datasets containing security

threats and attacks. These synthesized datasets have been used within this work, enabling others to verify

current findings. They were also made publicly available, enabling the training and validation of future research

works [20].

This work tries to follow the widely known and utilized datasets Kyoto [73] and NSL-KDD [99], a set

of very complete datasets that originate from the real-world traffic, but not from VANETs and, therefore, not

suited for this research. The data is produced using simulation scenarios instead of real data from physical

communications due to the difficulty of setting up laboratorial scenarios which are big enough to obtain all

the required data. Real-world data is difficult to obtain because there is still a low volume of radio-equipped

vehicles, and there is still a lack of vehicle makers willing to make them publicly available.

In the following Sections the methodology used to produced the datasets is described. Firstly, in Section

5.1, the scenarios were defined, choosing a well suited VANET application and which type of communication

would be used. The selection of the geographical maps where the vehicles running the applications will be
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deployed is described in Section 5.2 noticing that these directly impact the communications. For example,

bigger maps with a more scarce vehicle distribution will not have problems with saturating the communication

medium, but some vehicles may not receive all messages; however, smaller maps with greater vehicle

density may cause too many interferences and facilitate some attacks. Section 5.3 describes the simulation,

including the network and traffic simulators, the manipulation of the downloaded maps, the types of attacks

implemented, and the used parameters. Finally, in Section 5.4, the data collection process and the content

of the datasets are described.

5.1 Scenarios for Message Generation

Three different scenarios were defined: In Scenario A, the normal vehicles generate traffic at constant

time intervals (usually referred to as CBR); In Scenario B, an application that generates specific application

messages, such as streaming service or platooning, is used; Finally, in Scenario C, the vehicles disseminate

generic CAMs.

Scenario A is one of the most common choices found in the literature (Chapter 3), probably due

to its simplicity and easy implementation. In this type of scenario, an application generates a beacon at

constant time intervals, usuall refered to as CBR traffic [76, 80], during the simulation duration. Generally,

the application does not take into account any specific vehicle parameters or the scenario, generating the

messages with the same content and frequency. However, the message generation is too static so, any

minor fluctuation in the generation period can be easily detectable. Consequently, attacks such as DoS are

unrealistically easy to detect. The same happens with the fabrication attacks; if the message content remains

the same during the simulation, any fabrication attack can be easily detected.

Scenario B uses proprietary applications such as platooning or a streaming service. This scenario is

the opposite of the previous one, as it is too unpredictable and difficult to detect anomalies. In the case of

platooning, multiple possible maneuvers can happen at random times. A very large set of data containing

maneuvers and platooning beacons would be necessary to detect attacks in this type of scenario. However,

this is a complex application, and implementing the application for the simulation would probably turn the

data biased as the maneuvers would happen dependently on the application. In the case of the streaming

service, the data is also too random. It can be composed of images, video, or sound and, its content can be

of multiple formats. The bit rate can also have a huge variety.

In Scenario C, a more generic approach is used - the generation of CAMs. This scenario is more

dynamic and realistic than Scenario A, as the CAM generation rate depends not only on the passage of time

but also on the vehicle movement. However, it is not as random as Scenario B because the message

generation follows a set of well-established rules, but random parameters, such as speed, heading, and
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acceleration, can affect them. Moreover, the usage of CAM simulates a scenario easily implemented in the

real world. It is a generic standard used by all vehicles that have communications-enabled devices. Thus, it

seems to be the most suited application to use in the message collection.

5.2 Geographical Maps for Message Collection

The selected scenario considers vehicles generating CAMs. The CAM generation depends on the vehicle

movement, which directly depends on its geographical map. So, another critical aspect for the message

collection is the geographical map chosen to run the simulation.

The goal was to collect multiple datasets with enough diverse data to have a robust detection. So, instead

of having only one map and collecting various datasets from it, maps from 7 different geographic locations were

used for data collection. Having data from maps with different traffic types, sizes, and complexity, enables the

simulation of different environments and, therefore, introduces randomness to the vehicle movement and the

collected messages.

The maps were collected from Open Street Maps (OSM), an online platform that provides an easy-to-use

interface to download maps in OSM format from any desired location. OSM is a proprietary format but is easily

translated into formats understood by most popular simulation tools.

The 7 maps were numbered from Map 1 to Map 7 (nomenclature used from now on) and are shown in

Table 5.1. The maps shown in the column ”Map” were the ones collected directly from OSM, the ones in the

column ”SUMO Map” were collected from SUMO. These can differ, depending on the number of nodes that

the OSM includes of the nearby roads. Most of the collected Maps result in a bigger map than the OSM origin,

with bigger roads and more secondary roads than expected. In the case of Map 4, the contrary happens.

Although the selected area had a highway, it has too few nodes for it to be correctly translated into a SUMO

map.

The values for the area and total road length of each of the collected OSM maps are also shown in

Table 5.1. The road length of the maps varies from 2,618 to 37,248 meters, and the map area from 70,000

to 1,470,000 square meters.
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Table 5.1: Road Length, Area and Maps Used for Message Collection

Map Length (m) Area (m2) Map SUMO Map
1 11,249 140,000

2 3,467 110,000

3 2,618 70,000

4 37,248 250,000

5 7,985 440,000

6 10,581 1,470,000

7 15,083 130,000
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5.3 Simulation Setup

VANET simulations use traffic and a network simulator to simulate vehicle movement and communica-

tions, as the name indicates. SUMO and ns-3 are two of the most popular and used simulators in this area,

as shown in the performed SLR (Chapter 3). These can be used individually by first running the simulation in

SUMO and then feeding the output to ns-3 or coupled together using a third-party platform. V2X Simulation

Runtime Infrastructure (VSimRTI) [101] is a Java-based platform developed by Daimler Center for Automotive

IT Innovations (DCAITI) able to seemingly couple traffic and network simulators, in this case, SUMO and ns-3.

Recently, VSimRTI has been replaced by a new version called Eclipse MOSAIC [102]. It is an updated

and open source version of the used software. However, it was only launched in late 2020, after most of the

experimental work of this thesis had already been accomplished. So, all the experimental results presented

in this thesis have been collected using the previous VSimRTI version.

The map files downloaded are in the OSM format, which must be converted to a SUMO readable format.

VSimRTI provides scenario-convert, a useful tool that enables the generation of SUMO files. The indication of

the vehicle route, its origin and starting time is done through a VSimRTI file called mapping, which accepts

those configurations, among others.

As previously mentioned, one of the goals was to have different maps with different characteristics

introducing plenty of randomness into the process. Multiple parameters can influence the behavior and

communications of the vehicles, such as road type, road length, total map area, and vehicle density. The

collection of maps from multiple geographic locations allowed to vary these parameters. Is it possible to see,

from Table 5.1, that Map 1 and 6 have more open roads fewer crosses than the others. Map 7 being an

example of a urban area within a city with more complex types of traffic.

Another parameter that can influence vehicle behavior is vehicle density. Depending on this value, the

communication between vehicles and movement may be affected. In this work, the density was not calculated

in the traditional way, as the total sum of vehicles divided by the corresponding area (vehicles/area), but

rather by counting how many vehicles were in the range of radio communications per second. So, when

receiving CAMs, the receiver vehicle counts how many different sourced CAMs were received in a second. Even

a map with fewer vehicles can have a larger vehicle density if all of them are concentrated in a particular part

of the map. Table 5.2 presents the values for the average and peak density in each map. The average density

varies from 5.83 to 35.05, and the peak density ranges from 14 to 95 in Maps 1 and 7, respectively. It allowed

to simulate a more rural scenario in Map 1, with large stretches of road without crosses or roundabouts and

most vehicles scattered, and a urban area wihtin a city with a lot of traffic and road types, as in Map 7. Vehicle

density directly depends on the radio configuration of the vehicle. The parameters used in the simulations are

indicated in Table 5.3.

So, as shown in Table 5.2, the maps have different combinations of average and maximum densities,
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increasing the randomness. If there are more vehicles on a particular stretch of road, the vehicles will behave

differently, having lower speeds, more breaking, etc. The vehicle behavior also affects the frequency of CAM

generation (Table 5.4).

Each vehicle being simulated has an application running that can disseminate CAMs. All vehicles

generate these automatically by following a set of parameters, defined in the EN 302 637-2 standard [103]

and are presented in Table 5.4.

Table 5.2: Vehicle Density in each Geographical Map Used for Message Collection

Map Avg Density Peak Density
1 5.83 14
2 18.21 28
3 14.09 19
4 12.31 31
5 7.06 16
6 7.49 21
7 35.05 95

Table 5.3: Radio Configuration of the Vehicles Used in Message Collection

Parameter Value (dbm)
Energy detection threshold -99
Tx gain 10
Rx gain -10

Table 5.4: CAM Parameters Used in the Message Generation Application

Field Value
Max Interval > 1000 ms
Min Interval < 100 ms
Position Change > 4 meters
Heading Change > 4.0 degress
Velocity Change > 0.5 m/s

According to the parameters in Table 5.4, a CAM is only generated if there is a position change of at least

4 meters, a change in heading bigger 4.0 degrees, or a speed change of more than 0.5 m/s. Nevertheless,

the interval between CAMs must be at least 100 ms. If none of the parameters varies enough, a CAM must

be generated each 1000 ms.

Each vehicle in the simulation has radio equipment and an application capable of sending and receiving

CAMs. The normal vehicles will behave according to the rules presented in Table 5.4. The attackers can
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perform differently depending on the attack selected: in DoS mode, they will break the rules from Table 5.4;

in Fabrication attack, they will comply with the rules but send fake information.

5.4 Data Collection

As previously mentioned, the data collection will be driven by multiple simulations. The vehicles will be

deployed into 7 different maps. All of them will have a communications-enabled device and will be generating

CAMs. In each simulation, there will be normal and rogue vehicles. The normal vehicles will behave as

expected, generating CAMs with true information and following the rules specified. The attackers will perform

attacks at random times that will endure for random intervals. In each simulation, the attackers will all perform

the same attack: DoS or Fabrication attack.

There are a great diversity of existing attacks (Table 2.1), which is continuously growing due to the

discovery of new vulnerabilities or new types of strategies for the attacks. However, for this work, a subset

needed to be selected. In this case, the choice has fallen on DoS and Fabrication. These are two simple

attacks but are very common. So, they seem a good starting point. The application produced can then be

modified to produce new attacks, enriching the datasets and update the IDS with new detection capabilities.

The datasets will be built by collecting and storing all the data exchanged by the vehicles in each

simulation, originating an individual dataset per simulation. All vehicles will store both sent and received

messages. The CAMs, the type of message chosen, do not have any extra field to indicate an attack. So, only

the sender can know if the sent message is an attack. Thus, when storing the sent messages, the sender

needs to mark those corresponding to an attack. However, only the received messages are needed for the

training of the IDS, so, after each simulation, the sent messages are used to classify the received as an attack

or not.

The sent messages contain the following information: vehicle - unique vehicle identification for each

simulation with the format veh_XX, with XX being the sequential number of the vehicle as attributed by the

simulator; time - simulation time in nanoseconds at which the vehicle has sent the message; isAttack - field

that indicates the attack type. The possible values are (Table 5.5): 0 (no attack); 1 (DoS), 2 (fabrication attack

speed), 3 (fabrication attack acceleration) and 4 (fabrication attack fake heading);

The receiver vehicle will store more complete information, either directly retrieved from received CAMs

or computed. The format of the stored information is: senderId - Identification of the vehicle that sent the

message; receiverId - Identification of the vehicle that received the message; receiverTime - Simulation

time in nanoseconds at which the vehicle has received the message; diffTime - Time difference between two

consecutive received messages from a vehicle with the same ID; heading - Heading of the sender vehicle

in degrees; speed - Speed of the sender vehicle in m/s; longAcceleration - Longitudinal acceleration of
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the sender vehicle in m/s²; generationTime - Time at which the message was generated in nanoseconds;

elevation - Elevation of the vehicle in meters; latitude - Latitude of the sender vehicle in degrees; longitude

- Longitude of the sender vehicle in degrees; bitLen - Bit length of the receiced message; diffPos - Distance

between the position of two consecutive receveid messages from the same vehicle; diffSpeed - Difference

between the speed received in two consecutive messages from the same vehicle; diffHeading - Difference

between the heading received in two consecutive messages from the same vehicle; diffElevation - Difference

between the elevation received in two consecutive messages from the same vehicle; diffAcc - Diference

between the acceleration received in two consecutive messages from the same vehicle. These parameters

stored in the dataset are summarized in Table 5.6.

Most of the collected data parameters are directly taken from the vehicle simulated, such as the speed,

acceleration, and heading. However, the parameters diffTime, diffSpeed, diffHeading, diffElevation,

and diffAcc, are calculated based on each parameter from two consecutive messages received from the

same vehicle. The goal was to have some variables that could produce more insight than only the value of

each parameter, allowing the characterization of the vehicle’s movement. For example, in a fabrication attack,

the difference between the values in two consecutive messages may not be congruent. The same may happen

in DoS; the value of diffTime will probably be less than the one from vehicles behaving normally.

The data will be collected by performing simulations in each of the 7 different maps. Each attack will

be performed independently, resulting in a different dataset for each different configuration. For each attack

configuration, a dataset for each map was obtained, resulting in 7 datasets for configuration and a grand total

of 42 datasets. The obtained datasets were the following:

• Denial of Service (DoS)

– 7 Datasets with periods ranging from 1 to 10% of the normal CAMs;

– 7 Datasets with periods ranging from 10 to 20% of the normal CAMs;

– 7 Datasets with periods ranging from 20 to 30% of the normal CAMs;

• Fabrication

Table 5.5: Codes of the Different Message Types Collected

Message Type Value
Normal 0
DoS 1
Fabrication Speed 2
Fabrication Acceleration 3
Fabrication Heading 4
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Table 5.6: Parameters of the Collected Messages

Message Type Units
sender ID veh_xx
receiverID veh_xx
receiverTime nanoseconds
diffTime nanoseconds
heading degrees
speed m/s
longAcceleration m/s2

generationTime nanoseconds
elevation meters
latitude degrees
longitude degrees
bitLen bits
diffPos meters
diffSpeed m/s
diffHeading degrees
diffHelevation meteres
diffAcc m/s2

– 7 Datasets with random speed data;

– 7 Datasets with random acceleration data;

– 7 Datasets with random heading data;

The described methodology originated multiple datasets with different types of attacks. The datasets

are thoroughly analyzed in Section 8.3. Each dataset contains only one type of attack, making it simpler to test

IDS implementations using different strategies, for example, detecting only one attack (using only one type of

dataset) or multiple (merging multiple datasets). The datasets synthesized were submitted to a public online

platform and are available at https://zenodo.org/record/4304411 [104] (accessed 01/2022). The

code used for their fabrication is available at https://github.com/fabio-r-goncalves/dataset-
collection (accessed 01/2022). These datasets are the basis for the training and testing of the IDS

designed in this work.
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Intelligent Hierarchical IDS for VANET

Recalling, the main goal of the research work was the design, implementation, validation and testing of

an Intelligent Multi-layered Hierarchical Intrusion Detection System for VANETs. The IDS should detect attacks

using a cluster-based structure, allowing nodes with similar characteristics and needs to be grouped.

This Chapter first describes the architecture at an abstract level, indicating the main building blocks,

their roles, and cluster division. Then, in Section 6.2, the secure channel across the architecture is described

as well as the interactions between the diverse entities needed to exchange data. Finally, in Section 6.3,

the best-suited detection algorithms for each hierarchy level are described, as well as the roles they should

perform.

6.1 Arquitecture of the Intelligent Hierachical IDS

The architecture of the IDS is based on a hierarchy. Thus, it presents multiple levels, each composed

of several clusters of entities that share the same characteristics, functionalities, and needs. Therefore, the

architecture design must facilitate the detection at different levels, carefully evaluating the best functions and

detection types, according to their capabilities - processing power, storage capacity, etc. - and needs - detection

time, delay, accuracy - with better performance at each clustering level.

The solutions should also encompass a security framework to enable the secure exchange of information

between the cluster nodes, considering the needs and requirements of VANET applications. In addition, the

security frameworks should provide an underlying communication secure channel that should facilitate secure

broadcast communications, authentication at multiple levels (driver authentication, entity authentication),

privacy, and confidentiality, without disregarding the other requirements described in Section 2.3.

Figure 6.1 presents the architecture from the functional point of view. It includes the layer division and
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the secure channel across the layers. The goal of the design was to attribute more complex and CPU-heavy

functions to the upper layers, reserving quicker and lighter operations for the lower layers. Hence, taking

advantage of the characteristics of the nodes at each layer and provide quick responses at the lower layers.

The architecture is divided into the following levels:

• L0 Each vehicle: These are the smallest cluster composed of a single entity

• L1 A group of vehicles organized into a single cluster;

• L2 All the vehicle clusters within a geographical region;

• L3 Cluster of all geographic maps;

Figure 6.1: Hierarchical Intelligent IDS Security Framework Functional Architecture [23]

L0 is the lowest level in the hierarchy. It is a single vehicle that is the least powerful entity in the network,

containing less CPU power and storage capacity. However, these are the entities closer to all messages

interchange and ITS messages dissemination. They receive the messages directly and need to analyze them

as quickly as possible to allow a decision in usable time. If the detection at this level is too slow or heavy, it

may facilitate a DoS attack. Hence the functionality that was chosen for this entity. The L0 entities will receive

messages from the other entities and only apply Rule-based detection, one of the quickest types of detection.

At this level, quick decisions may be more important than the overall accuracy. However, the Rule-based

detection needs to have a very low rate of false positives when analyzing the normal messages; otherwise, it

will discard authentic messages.
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L1 is the first level composed of more than one entity. It is formed of multiple vehicles that compose a

cluster. The vehicles can be grouped, for example, according to their travel path and speeds. Facilitating

the sharing of information during bigger intervals of time, as they will be traveling in the same route in

communication range from each other. This level will not perform any special type of security threat detection.

The entities that compose it are the same type as the node before and, thus, do not present any advantage

of CPU power or storage capacity. The only difference is the time the detection takes to reach the entity that

needs the response. So, at this level, all the entities will send the messages to the cluster head (for instance,

the platooning leader), and this entity will relay the messages to the next level in the hierarchy.

L2 is a cluster with entirely different characteristics from the previous clusters. It is composed of

infrastructural nodes capable of much more complex and heavy operations. Additionally, it can have hardwired

communications with the above level, being able to communicate much more data. The RSUs will receive the

messages from the nodes lower in the hierarchy and simultaneously analyze and forwarding them to the next

hierarchy node. If an attack is found, it is communicated immediately to the sender. They can also trigger

a system-wide warning and warn the upper-level nodes so that the IDS may black-list the attacker. These

nodes will use more complex and powerful ML algorithms to detect the attacks and trade detection time with

better accuracy. The RSUs are not as close to the attacks and do not need to identify and detect any attack

immediately; it is rather more important to be able to accomplish better accuracy at this level.

L3 level is the highest level in the hierarchy. It comprises the most powerful entities that may carry much

more complex operations and store messages, models, and rules. In addition, these entities are generally

powerful backend servers with high-performance CPUs. Hence, L3 entities can collect the messages sent

from all the lower-level nodes and analyze them, creating ML models and rules to be used by the other levels.

These high-level entities are very far from the nodes needing detection; thus, the detection time is not an issue

here. They can also perform ”offline” detection, using the result to trigger a system-wide response, black-list

attackers, and, if needed, notify the authorities. So, at this level, the goal is to use the more complex detection;

this detection takes time, it is certainly slower but may detect attacks undetectable by other entities.

The resulting architecture is presented in Figure 6.2. The Figure is divided into two blocks, representing

the network level at which each node is located. The levelsL0 andL1 are in the VANET. The nodeL2 connects

the two types of network, and the node L3 is located on the Internet, with only cabled communications; the

right side depicts the communication of the CAM messages from the sending vehicle to node L3. Each time

the message has a yellow padlock, it means that it is encrypted.

As shown in the Figure, the multiple nodes also forward the messages and group them into bigger

blocks; the left side depicts the communication of the models and rules from the L3 nodes to the L0. The

rules are shown in orange and the models in green. Additionally, Figure 6.2 shows which function each cluster

has on top of forwarding messages. Nodes in L0 use the rules to analyze the collected data and, in L2, they

use the ML models.

87



Chapter 6

Figure 6.2: Hierarchical Intelligent IDS Architecture
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6.2 Interactions and Secure Message Exchange

The proposed IDS uses a hierarchical architecture to provide cooperative detection, as all nodes coop-

erate to detect the attacks. However, despite IDSs being able to detect attacks, they do not provide tools for

secure communication, which are crucial for the correct function of the overall architecture. Security is one

of the most crucial components in a system involving communications. Without it, the several architecture

entities would not be able to verify the veracity of the received messages and consequently may use fabricated

messages to train the IDS. Furthermore, the lower layers would not be able to verify the veracity of the received

modified models incapacitating them from correctly detecting attacks.

The security implementation in this architecture is represented in Figure 6.2 by the blue rectangle across

all the layers. It provides multiple communication types allowing entities to take advantage of the one best

suited for the situation.

Let us recall that VPKIbrID entails two different modes: one the of the VPKIbrID modes uses PKI,

more suited for unicast communications, with only one receiver for the sent message. The other uses ABE,

being useful in situations where there are several targets for secure message transfer. Using VPKIbrID-ABE, the

sending entity may encrypt the message for multiple entities, using their corresponding attributes. In this case,

the VPKIbrID-ABE seems to be the better suited, as most of the communications will have multiple targets, at

least when happening between clusters. However, this mode is slower and heavier than the PKI mode. Still,

the VPKIbrID provides the possibility to use key caching, significantly increasing its performance. For example,

when receiving CAMs, the vehicles can encrypt the received messages using the attributes ”L2 L3 1of2”;

thus, all the clusters L2 or L3 entities can read the messages. Field 1of2 means that only one attribute needs

to be fulfilled. It is even possible to use attributes like ”L2-company1 L3-company1 1of2,” specifying that

only the nodes from clusters L2 or L3 from any corporation (or institution) identified as ”company1” can

decrypt the message.

The multiple entities in the architecture need to communicate to exchange the information necessary

for the detection. The lower entities send the received messages for the upper nodes (Upstream communi-

cation, Section 6.2.1). Finally, the upper-level entities send the models or rules created for the lower entities

(Downstream communication, Section 6.2.2).

6.2.1 Upstream Communication

The upstream communication refers to messages sent from the nodes in level L0 to the upper nodes

in level L3. In this case, the vehicles receive the CAMs sent from other vehicles and, after analyzing them,

send them to the upper levels. The messages are going to be processed both in nodes L2 and L3. So, the

encryption mechanism needs to be able to encrypt the message so that entities in both nodes can decrypt
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it without needing multiple encryptions. Otherwise, the vehicles, an already low resource entity that needs

to be constantly analyzing the received messages, would also be in need to encrypt the messages multiple

times, would easily be overwhelmed. So, VPKIbrID-ABE seems to be a very good choice for this scenario,

mainly when taking advantage of the key caching mechanism. The entities exchanging messages have the

same attributes during longs periods, being the perfect scenario for key caching. Both L2 and L3 nodes can

detect attacks in the messages received and they can send the warnings encrypted using ABE. Thus, allowing

nodes on L0 and L1 to know about the attack.

Figure 6.3 shows the complete interaction from the vehicles (L0) to the high-level entity (L3) whose

description follows, identifying each interaction by the corresponding number in the Figure. Firstly, the L0

vehicle receives a CAM (1), and using the rules sent by the L3 entity, verifies if it is any attack (2). If so, the

message will not be processed by the vehicle (3); the message then is ciphered (4) and sent to the upper

level (5). The level L1 only acts as a relay. So it will do so for the level L2 (6). L2 will decipher the message

(7) and verify if it is an attack using the models built by the level L3 (8). If an attack is detected, the other

entities are warned about the attack. So, a message is sent ciphered using the attributes ”L0 L1 1of2”(9),

enabling all the lower entities to read the message. Regardless of being an attack, the message is relayed to

the upper level (10). The next level will then decipher the message (11), verify if it is an attack (12), and add

it to the dataset (13). If an attack is detected, a system-wide warning is triggered (14).
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Figure 6.3: Upstream Communication and Processing of the Received CAMs
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6.2.2 Downstream Communication

The downstream communication is exactly the opposite of the previous type. This communication

process happens when the higher-level nodes, L3, need to communicate the computed rules and ML models

to the lower-level nodes, in this case, to the L0 and L2 nodes, respectively. It is less complex than the

uppstrean communication because there is no warning going in the opposite direction. This communication

mode also takes advantage of the encryption to multiple targets provided by the ABE mode of the VPKIbrID

security framework. Downstream communications enables the higher-level entities to send the models and

rules for all the nodes in L2 and L0 nodes simultaneously using the attributes that describe the cluster where

they are located instead of the node itself. Otherwise, the L3 nodes would have to send messages individually

to each target, with the risk of saturating the communication channels.

The top-level entities can then use the attributes ”L2 1of1” and ”L0 1of1” to cipher the created model

and rule, respectively. This rule ensures that only the nodes in level L2 will receive this particular model, and

the vehicles in L0 will receive these rules (1of1 indicates that only one attribute is needed, but it must be

fulfilled to access the encrypted data). The process is shown in more detail in Figure 6.4. Before the process

is started, node L3 needs to receive multiple CAMs from the lower-level nodes (1). These will be used to build

a dataset (2), which will be analyzed to create rules and models (3) for the other levels. The models will be

ciphered with different rules for the different levels (4 and 5). After correctly secured, it will be sent for level

L2 (6). This level will decipher its model (7) and relay the rules for the lower level (8). The level L1 does not

perform any detection and thus does not need any rules or models, and forwards (9) the received rules for

the level L0. These nodes will be able the decipher the rules (L0)
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Figure 6.4: Downstream Communication of the Produced Rules and Models
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6.3 Detection Algorithms and Roles

The goal of dividing the architecture into multiple cluster levels was to attribute different roles and

capabilities to each entity, depending on its capabilities and needs, resulting in four different levels. The

capabilities and needs grow inversely from each other, as shown in Figure 6.5, higher levels have more

capabilities and fewer needs in terms of detection time. These entities are far from the entities receiving the

CAMs and are not able to respond timely (near real-time responses). The lower entities need to have a quick

decision but have fewer capabilities.

Figure 6.5: Cluster Level Needs vs. Characteristics

6.3.1 L0 Detection

The first level, with fewer capabilities but with higher speed demand, is the L0. These nodes are simply

vehicles on the road. Although new advancements in technology may provide better communication devices

with more computing power, these nodes are usually less powerful than those in the above nodes. And,

additionally, these receive many messages from the surrounding vehicles; being an easy target for DoS, any

more computation power or time in the message analysis may be enough to overwhelm them. So, this entity

should also not have the weight of building rules or ML models, and, at this level, the detection tool should be

as quick and light as possible.

The results presented in Section 8.4, indicating the performance of each algorithm, show RF with the

best overall performance. However, this algorithm is heavy, slow, and needs some computing power. So, a

lighter algorithm should be equated at this level. One of the algorithms also tested was Decision Stump (DS).
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It is an algorithm that generates rules that other nodes can easily use for detection. It is a one-level decision

tree, and it creates basic rules with only an ”if” statement.

DS presents a good a tradeoff between speed and accuracy. On the plus side, it detects DoS with an

accuracy of 0.94 and Fabrication with the tampered speed with 0.47 accuracy. This algorithm also classifies

almost all the normal messages with a very low FPR, not discarding authentic messages. It is a very light

and quick algorithm, and even without having the best accuracy, it seems a good choice to be used as a first

defense line. The nodes at level L0 will also send the received CAMs to the nodes above for further analysis.

6.3.2 L1 Detection

Level L1 is the next level on the hierarchy. It is a group of vehicles organized into a cluster. Hence, this

has very similar characteristics to the lower cluster as all its entities are still vehicles.

The clustering algorithm used is out of the scope of this work. However, the algorithm should try to group

vehicles that travel the same path with similar speeds, enabling the vehicles to be in communication range

as long as possible. Additionally, and perhaps more importantly, the clustering algorithms should consider

the communication capabilities of the vehicles and, if possible, group vehicles with fewer communication

capabilities with others with better equipment. Thus, the better-equipped vehicles may be transformed into

cluster-head to gather all the information and forward it to the upper nodes. Ge et al. [105], Shahwani et al.

[106] and Cheng et al. [107] are examples of suitable algorithms for the creation of clusters in VANETs based

on the location and mobility of the vehicles.

This level does not present more computing power or storage capacity than for the level L0. Thus, using

the same algorithm in two consequent levels does not seem useful, as the rules would probably detect the

exact same messages. So, the nodes on this level will only perform forwarding of the received messages to the

nodes above. Thus, the best seems to be; all nodes communicate the received messages to the cluster-head

(the platooning leader), then group them together and send them to a node in level L2.

6.3.3 L2 Detection

Level L2 is the first cluster with infrastructural entities. These entities may have much more CPU power

and storage capacity as they have few power limitations. However, these are still not the most powerful entities.

The RSUs are mainly communication entities and not exactly made for processing information.

The decision at this level does not need to be as fast as in the level L0. Although these entities are

close enough that they may be able to produce decisions in useful time, this will not be immediate because

of the time needed for the communications. So, L2 nodes can use more heavy ML algorithms focusing on
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detection accuracy instead of speed. Nevertheless, the L2 nodes will still forward all the received messages

to the above nodes for a deeper analysis and the creation of rules and models. Therefore, even with more

power available, these nodes are still not the best choice for creating models and rules. The main issue at

this level is the narrowed vision of the network. L2 nodes do not have as wide a view of the network as L3

and may create biased models that would tamper with the detection in the lower-levels, creating models with

low accuracy, as shown in Section 8.3.2.

This level may use a more complex algorithm that is more CPU-heavy. In Section 8.4 are the results

obtained with the multiple algorithms used. The one presenting the best accuracy is RF, with the best overall

performance with low false positives. It has an accuracy of 0.96 with an average TPR of 0.85 and only 0.01 in

FPR. This algorithm is particularly good at detecting DoS and fabrication attacks with the tampered heading.

In addition, the very low FPR is very good because it indicates that almost no normal message is wrongly

classified as an attack, decreasing the possibility of discarding normal messages.

6.3.4 L3 Detection

Level L3 is the highest level in the architecture and, thus, it has the most powerful entities with the

most storage capacity. Furthermore, the L3 entities are all infrastructural, with all the communications

made through high-capacity cabled connections. Hence, not having any problem with the size of data to

be transmitted. Moreover, these are backend servers designed for complex and heavy computations. So,

these can carry multiple operations.

First, these receive and analyze the data sent from the levels lower in the hierarchy, storing it to analyze

further or prove detected attacks. The data storage also allows ”offline” detection using more complex ML

algorithms. However, due to the sheer size of the data received at this level, the detection will also be slower.

Therefore, the L3 level has the perfect conditions to use ensemble detection. It is a more complex type

of ML that uses multiple algorithms to detect attacks. This case uses Multilayer Perceptron (MLP), RF, and

J48, combined using the custom stacking algorithm. It has a small increase in performance, with a higher

TPR and smaller FPR than the RF algorithm used in the lower level.

At this level, it does not make much sense to try and warn the vehicle that received the message because

it may not be possible to do so in a usable time. However, it can trigger a system-wide response, blacklisting

the attacking vehicle and, if needed, warn the authorities.

However, and perhaps the main job L3 level is to create rules and models to be used by the lower-level

nodes. As previously mentioned, the entities forming theL3 level are the more powerful in the architecture with

a wider view of the overall system. Thus, they can detect attacks much more accurately, as shown in Section

8.3.2, without compromising their performance. So, due to their more complete vision of the system, they are
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more suited to analyze the data and create models and rules as this is a more CPU expensive operation than

using the models or rules for the detection. These models can be constantly updated and sent to the nodes

lower in the hierarchy.

97



Chapter 7

Implementation of VANET applications and

security mechanisms

The proposed Hierarchical IDS Architecture comprises multiple parts, the security model, the vehicles,

the application that generates CAMs and attacks, and the ML algorithms. The tools and overall architectures

were assessed by implementing the needed components and analyzing the produced results. This Chapter

describes the implementation of each component and tools utilized in this work.

First, a use-case implementation of the Hierarchical Intelligent IDS architecture is presented using the

tools and algorithms analyzed in this thesis work and applying them to the abstract architecture designed in

Chapter 6. In Section 7.2 the implementation of the VPKIbrID security model is described. It provides a secure

channel that allows all the entities in the architecture to securely exchange the needed data, protecting the

transmission of ML rules or models, or messages received. Then, Section 7.3 describes the application of the

security model to a specific use case, through the implementation of a secure platooning . It also includes the

implelementation platooning itself. In Section 7.4 is described the implementation of the agnostic middleware

used to provide easy and seamless communications between third-party applications and OBUs, enabling

testing with multiple OBU brands. The collection of the multiple datasets was made through an application for

VANET able to produce CAMs and attacks to enrich the dataset and is described in Section 7.5. In Section 7.6,

it is described the implementation of the multiple ML algorithms used in this research work. Finally, Section

7.7 describes a real-world platooning implementation using real physical communication devices and vehicles

in a controlled test environment.
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7.1 Hierarchical Intelligent IDS Architecture an Application Use-

Case

In this Section, the components described and chosen in Chapter 6 are organized into a more refined

architecture. This includes the framework for secure communications across all the levels of the architecture,

the role for each entity, and the ML applied at each level. The goal was to design an easy to deploy architecture

that took advantage of the multiple layers to attribute roles well suited for the characteristics of each level’s

entities. Furthermore, the ML techniques that could balance accuracy with each entity’s capabilities are

carefully chosen, providing good accuracy without overwhelming the nodes at each level. Finally, the security

model was chosen based on the security features provided including, authentications of drivers and vehicles

and confidentiality and privacy. Also, the choice was impacted by the communication modes offered by the

security framework chosen, mainly the encryption capability for multiple targets. The architecture with all the

components, roles, and technologies is shown in Figure 7.1. It shows a real-world use case implementation,

using the platooning as the most basic cluster and, at the level L2, a cluster between multiple RSUs. The

latter may be multiple RSUs that constitute a specific geographical map working together to detect attacks and

gather messages. The higher entity is represented by the cloud in the infrastructural network.

Figure 7.1: Intelligent Hierarchical IDS Architecture - Use Case

The level L0 entities are the multiple vehicles on the road; these can be road vehicles, from truck

to passenger vehicle or motorcycle. Their functionality and detection type are indicated in the bottom blue

rectangle. These will perform message collection, collecting the CAMs sent by other vehicles. The L0’s nodes

will be the first line of defense, using DS, the lightest and quick detection type.
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Then, the green, red and blue rectangles represent multiple L0 clusters. These are Platoons of vehicles

that can be composed of different types of vehicles. For example, blue Platoon is formed exclusively of trucks,

while the other two can encompass multiple vehicle types. These will only act as message relays (orange

square on the right), forwarding information from lower to upper nodes and vice-versa.

The yellow rectangle cluster represents the L2, grouping multiple RSUs together. These will receive

messages from the lower-level nodes and use the RF algorithm to perform a more robust detection. These are

the first infrastructural entities in the architecture.

Finally, the higher level, L3, is represented by a cloud as this is usually composed of high-capacity

backend servers similar to a cloud. It is the level with the most powerful entities being able of more complex

operations. So, the entities will perform the most complex decision using an ensemble learning algorithm at

this level. Furthermore, they are responsible for generating models and rules for the lower-level nodes, taking

advantage of their more powerful CPUs.

The green rectangle, vertical on the right, across all levels represents the security framework. Although

the security model that was chosen, VPKIbrID, has more than one encryption mode, the VPKIbrID-ABE seems

more indicated to communicate between the layers as most of the messages sent over the network have

multiple targets. The model should be used with the key caching, which enables much faster and lighter

encryptions. However, the nodes can use the PKI mode to communicate between themselves, as described

in Section 4.4.

7.2 Implementation of VPKIbrID Security Model

VPKIbrID is the security model that serves as the basis for secure communications across multiple

entities in the architecture. It provides strong authentication while also providing privacy and confidentiality. It

is composed of multiple components used to provide different cryptographic materials needed to secure the

communications. Each entity was implemented independently and can run standalone.

The VPKIbrID-ABE and VPKIbrID-PKI were implemented as a Java library, easily imported into any

application. Java [108] is a platform-independent language that runs in most client-side devices. Moreover, it

is easily converted into android for mobile applications.

All the VPKIbrID components also use Maven [109] as a project management tool that manages the

used libraries in the applications, simplifying the development and distribution. The following Sections describe

the implementation of the multiple VPKIbrID entities.
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7.2.1 Certificate and Pseudonym Certificate Authority

The purpose of the CA and PCA is ultimately the same, generate certificates for the entities; the only

difference is the parameters included in the certificates generated. The CA generates an LTC that represents

the true identity of an entity by linking its private and public keys to the identification. The PCA generates PC;

these are linked to the LTC only by the PCA and use pseudo-identifications instead of the real identification.

These provide means for entities to authenticate themselves, protecting their privacy. They may possess

multiple PCs and use them interchangeably to prevent tracing across the network. Also, the CA uses a self-

signed certificate when authenticating itself to others, while the PCA uses a certificate signed by the CA. Thus,

their implementation is very similar and will be described in conjunction. These are command-line applications

that read a set of parameters from a text file used for certificate generation. An example of the file is shown in

Figure 7.2.

CN=CAR2X−CA
OU=CAR2X
O= U n i v e r s i d a d e do M inho
L= B r a g a
S= G u a l t a r
C=PT

V A L I D I T Y _CA =12
V A L I D I T Y =12
PUB_KEY_ALG=RSA
S IG_ALG = SHA256w i t hRSA
KEY_S I Z E =2048

CA_JKS = ca / ca . j k s

CERTS_F I LE = c a c e r t s . t x t

Figure 7.2: VPKIbrID CA Example Configuration File

In this case, the parameters of the certificate indicate: the Common Name (CN) of the owner is CAR2X-

CA, its Organizational Unit (OU) is the CAR2X, which belongs to the Universidade do Minho Organization,

Located in Braga in the Gualtar (S). The country (C) is Portugal. It has a validity of 12 months and uses an

RSA key with 2048 bits. The certificate is signed using SHA 256 and an RSA key. The last two parameters

indicate where the CA certificate is located, which will be used to sign the certificates, and the CERTS_FILE

is a file containing a list of multiple CNs used to generate the certificates.

The application will generate a set of certificates and their correspondent private keys. In the CA case,

the LTCs will be sent to the requesting entity through a secure offline connection, preferentially using different

101



Chapter 7

methods for the certificate and the private key. For the PCs, the communication method should be the one

described in Section 4.3. All the certificates generated from both PCA and CA, are stored in a Java Key

Store (JKS) secured with a password.

7.2.2 Identity Manager

The IdM is the entity responsible for the token generation. The token provides access control and

authorization while providing privacy. So, any entity can prove its right to access a resource without needing

to provide its identification. However, the resource owner can verify the authenticity of the token by verifying

the included signature.

The IdM implementation used JWT [35] for the token generation. These use JavaScript Object Notation

(JSON)[110] to describe the token’s information and provide mechanisms for the signature, providing easy

verification across the network. Moreover, the JWTs are widely used on the internet, being the basis of OpenID

connect. Thus, there are multiple implementations and libraries available for a multitude of programming

languages, making its implementation easier.

The IdM application is a standalone Java application that generates JWT tokens based on the attributes

read from a file. This application was made for testing only, and thus, the functionality is simplified; in a

real-world application, the IdM should contain a database with all the system entities. Then an administrator,

or any entity with permission to attribute roles or attributes to other entities, would do so. However, the IdM

has all the operations needed to generate and load all the tokens and cryptographic material.

So, firstly the IdM reads a file containing the configurations of the IdM, shown in Figure 7.3. It contains

the entity that is issuing the token (TOKEN_ISSUER), the expiration time of the token (TOKEN_EXP_MIN),

and the time inminutes needed for the token to be valid after its generation (NOT_VALID_BEFORE_MINUTES).

Additionally, it contains the JKS name where the IdM certificate (IDM_JKS) is stored and the alias used to

store the key in the JKS. The CA signed the IdM certificate for it to be verifiable by the other entities in the

architecture.

TOKEN_ISSUER =CAR2XIDM
TOKEN_EXP_MIN =43200
NOT_VAL ID_BEFORE_MINUTES =1
IDM_JKS = IdM . j k s
IDM_AL I AS = IdM

Figure 7.3: VPKIbrID IdM Example Configuration File

Then, the IdM reads the attributes corresponding to entities requesting the token and inserts them into

the token. The token is generated for a specific goal, which is also included in the token. So, when trying to
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access a resource, the resource can verify if the token was originated with that end.

Figure 7.4 presents one token generated by the IdM. In this case, it was a token generated for the

obtention of the TA decryption keys, indicating that the owner of the token has the attributes platoon_a and

driver. The fields of the token represent: what is the token intended for (aud), who required the token (sub),

the attributes of the requiring entity (attributes), the identity of the IdM that generated the token (iss), the

expiration date of the token (exp), the data at which it as been issued (iat), the data from which it can be

used (nbf) and finally a unique identifier of the token (jti). The token also has a header, which indicates the

algorithm used for the signature, a unique identifier for the key used. The token, including the header and the

signature, is encoded in Base64 to be safely transmitted over any communication channel.

{
” aud ” : ” TA ” ,
” sub ” : ” n u l l ” ,
” a t t r i b u t e ” : [

” p l a t o o n _ a ,
” d r i v e r ”

] ,
” i s s ” : ” CAR2XIDM ,
” e x p ” : 1499644744 ,
” i a t ” : 1497052744 ,
” n b f ” : 1497052684 ,
” j t i ” : ” C J l ywW1Ln cn4 fN l k X qm_Hg ”

}

Figure 7.4: VPKIbrID IdM Token Example

7.2.3 Trusted Authority

The TA is one of the critical components for ABE encryption. It has two main goals, generating the

public parameters and the decryption keys. The public parameters are used by any entity encrypting data.

These are used in conjunction with the data’s access control attributes to generate an encryption key. The TA

is the only entity that can generate the decryption keys. It uses the attributes sent by the entity wanting to

decrypt the data and generates a key that enables it to decrypt the data.

The TA was also implemented as a command-line application. Instead of receiving the tokens through

the network, it simulates them by reading them from a file. So, the TA first starts by loading the secret keys

needed to generate the decryption keys and then loads the JWT token. Using the IdM certificate, it can verify

the token validity and extract the attributes from the token. Finally, it outputs the decryption keys to a file.

The application should receive and send the requests over the network in a real application, secured using
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VPKIbrID.

ABE is a less known and used cryptographic scheme. Thus there are no widely used libraries be-

ing usually developed by single developers. In this implementation, the library is provided in https://
github.com/junwei-wang/cpabe. It is a realization of the Cipher-Policy Attribute-Based Encryption

(CP-ABE). The library is based on the Java Pairing-Based Cryptography (JPBC) library needed for the mathe-

matical and paring operations involved in the ABE cryptography.

7.2.4 VPKIbrID Message Encryption

VPKIbrID allows entities to exchange data with each other over an insecure network securely. It provides

two encryption mechanisms with different characteristics, enabling different strategies that better suit the

environment.

VPKIbrID is implemented as a Java library to provide a seamless way to use in any application. It reads

the configurations from a configuration file (Shown in Figure 7.5), indicating the location of the client certificate

(CA_JKS) and the CN used to store the certificate. Moreover, the application using this configuration file

will have the following configurations: SHA-256 as the hashing algorithm for the message to be signed

(CLIENT_HASHING_ALG), the public key algorithm for the encryption will be RSA (CLIENT_PUB_ENCRYPT_ALG),

an AES symmetric key (SYMMETRIC_KEY_ALG) with 128 bits (ABE_SYMMETRIC_KEY_SIZE) and us-

ing theAES/ECB/PKCS5Padding as the algorithm to encrypt the data in eachmessage (SYMMETRIC_ENC_ALG),

and using HmacSHA1 for the symmetric key algorithm (CLIENT_SYMM_SIGNATURE_ALG). In this

specific configuration, the use of key caching is disabled (CACHE_ABE_KEYS).

CA_JKS = c l i e n t / v eh_0 . j k s
CN= veh_0
CL IENT_HASHING_ALG =SHA−256
CLIENT_PUB_ENCRYPT_ALG =RSA
ABE_SYMMETR IC_KEY_S IZE =128
SYMMETRIC_ENC_ALG=AES /ECB/ PKCS5Padd i n g
SYMMETRIC_KEY_ALG=AES
CLIENT_SYMM_SIGNATURE_ALG =HmacSHA1
CACHE_ABE_KEYS= f a l s e

Figure 7.5: VPKIbrID Library Example Configuration File

The created library provides a set of tools to encrypt data. First, the data to be sent is signed using

the parameters read from the configuration file. The resulting signature is used in conjunction with the data,

the sender certificate (PC or LTC depending on the scenario), the receiver public key, and the signature and

signature algorithm to build the message that will be encrypted. In the case of ABE, instead of the receiver
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public key, the Attributes are used. This message will be one of the parameters of the method created to

encrypt the data. The encryption method will also receive a symmetric key and the encryption algorithm to

perform the encryption. The result will be a VPKIbrID-EM message specified in Section 4.3.

The decryption process is simpler, it only needs the certificate of the private key of the receiver, in the

case of the PKI. In the case of the ABE, it needs the public parameters and decryption key obtained from the

TA.

7.3 VPKIbrID Secured Platooning Implementation

Platooning is a complex application that needs a constant exchange of information with other vehicles

belonging to the same platoon. Thus, to function properly, it needs a secure way for its entities to communicate.

These need strong authentication, confidentiality, and privacy. So, VPKIbrID, the proposed secure model, was

applied in platooning to test its functionalities. In this Section first is described the implementation of the

platooning application and, then, the implementation of the VPKIbrID model in the platooning, assuring the

communications security.

7.3.1 Platooning

Platooning is an ITS application that allows vehicles to travel in a convoy manner with constant gaps

and speeds. The application has two types of entities: the Leader, who controls all the Platoon maneuvers,

and the Followers, who comply with the orders of the Leader. Next is described the implementation of the

platooning application in simulation (A real-world implementation was also made and it is described in Section

7.7).

Platooning is a communication dependent application as its members need to communicate with each

other to coordinate themselves. So, for its implementation in simulation, a traffic simulator and a network

simulator are needed. For this implementation, ns-3 and SUMO were chosen; these are two of the most

popular simulators available that are free to use and have a strong community updating them constantly.

However, using a framework able to couple both of them together can simplify and offer new func-

tionalities to the implementation. VSimRTI was chosen the framework chosen. It is a Java-based framework

that separates the development of applications from the configurations and network. It provides an easily

accessible and well-documented interface for communications and a simple way to access most of the vehicle

parameters available and to SUMO’s Traffic Control Interface (TRACI).

VSimRTI has multiple configuration files that define multiple parameters, from the radio and network to

the characteristics of the vehicle. One of these files is the ”mapping” file. It allows the definition of multiple
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parameters, including the type of the vehicle, the application that it will run, and the path it will take (based

on the SUMO files). One of the parameters indicated in this file is if the vehicle will belong to a platoon or not

and at which platoon (if multiple are defined).

The application is the same for the Follower and Leader, as any vehicle can become both, depending

on the configurations. Each vehicle starts in a neutral state, not running any specific application or protocol.

Then, it uses the parameter indicated in the mapping file to choose which configuration file it will read. This

parameter can be, for example, NON_PLATOON, PLATOON_VEHICLE_1, etc. If the NON_PLATOON

is attributed, it means that the vehicle would not be part of any platooning. The content of the configuration

file for the platooning vehicles is shown in Figure 7.6.

i s _ p l a t o o n =1

g r oup_name =GROUP_2
l e a d e r = veh_9

l e a v i n g _ v = veh_10 , v eh_11
l e f t _ c o l o r = YELLOW
l e a v i n g _ t i m e =230 ,450

d i s s o l v e =550

Figure 7.6: Platooning Example Configuration File

The most significant configuration file parameters indicate the following: the vehicle will belong to a

platooning (is_platoon), called GROUP_2 (group_name) with the Leader veh_9 (Leader), the vehicles

veh_10 and veh_11 will leave the platooning at the instants 230, and 450 and the platooning will dissolve at

the instant 550.

The implemented application works by going through different states depending on the maneuver that

is happening. The multiple states are shown in Figure 7.7.

The first decision is made after the initialization; the application may then become a Platooning vehicle

or a Non-Platoon. If it becomes a Non-Platoon, it will not interact with the platooning vehicles, running its

pre-determined path with the configurations given in the mapping file.

If the next state is being a platooning vehicle, then the vehicle can become either a Leader or a

Follower, depending on the indicated in the configuration file. To become a Follower, first, the vehicle

sends a join request to the Leader; if accepted, it will go to the Joining state, where the multiple maneuvers

and messages will be exchanged until the maneuver is terminated. Then, the vehicle becomes a Follower

and will maintain its state, following the Leader’s orders. The Follower can leave the Follower state by

leaving the platooning and becoming a Non-Platoon vehicle.
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Figure 7.7: Platooning Application State Transition

If the vehicle becomes the Leader, a more complex set of states is available. The first two, Join and

Leave, are triggered by requests sent by the Followers. The Merge is a maneuver performed between two

Leaders that allows joining two platoonings. The Leader can only perform one maneuver at each time. It

needs to change to a different state until the maneuver is terminated because of the complexity and number of

messages and operations needed. For example, in the case of the Join, the Leader needs to create enough

space in the existing platooning to accommodate the new element.

7.3.2 Secure Platooning Implementation

The implementation of secure platooning uses the platooning implementation, previously described, as

the basis. So, all the communications happen normally, but they are secured using VPKIbrID.

In the secure platooning implementation, the VPKIbrID is only used to secure the messages. The other

entities are used offline, and the vehicles are preloaded with the material they need to communicate securely.

The material includes the vehicle LTC and its PCs, the token, and the ABE keys for its attributes.

So, using the VPKIbrID library developed, the first step is to load the material needed for the vehicle.
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Then when receiving a message, the first thing the vehicle does is check if the message was directed to it. If

so, it uses the algorithms described in the message to select the decryption algorithm. If PKI is indicated it

uses its LTC. If encrypted using ABE if uses the corresponding ABE keys. The application can just pass all

the parameters to the VPKIbrID library, and it will automatically decrypt and verify the message integrity and

authentication.

Implementing the secure platooning in the simulation was not taken further because, after some testing,

it was noticed that the implementation of security measures did not affect the results taken from the simulation.

It means that the time taken for the cryptographic operations is not taken into account in the simulation. The

simulation simply stops until the operations are completed.

7.4 Agnostic Midleware for VANETs

Platooning is an application that can run in any vehicle entirely independently of the type of vehicle

and its components. However, it needs to access the vehicle internals and communication modules to obtain

the information needed for the platooning group (speed, position, etc.) and communicate with the rest of the

vehicles. As previously stated, there are multiple approaches to middleware agnosticism (Section 2.2.2); these

should give vehicular application developers the freedom to focus on optimizing its components of modules.

However, the standard architectures present their shortcomings, either by not presenting solutions for the

implementation of simultaneous use of multiple applications on the same ITS station (CALM) or needing

knowledge of the lower layers details (ETSI ITS-G5).

The Agnostic and Modular Architecture for the Development of Cooperative ITS Applications [17] is

an architecture adapted from the modern standards ETSI and ISO to be deployed on ITS to overcome the

presented limitations. It enables the usage of different communication technologies and network/transport

protocol stacks, facilitating the creation of ITS cooperative applications and services, allowing applications to

use the medium transparently. This architecture is implemented directly on the OBU, which should provide a

group of services for access to the vehicle’s internal data sources, V2X communication mechanisms, and lower-

level functions, identified as information services, communication services, and function services, respectively.

Access to the services is done through a common interface to all the services called ITS Local Communication

Interface (ITS-LCI). The architecture is shown in Figure 7.8.
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Figure 7.8: Agnostic and Modular Architecture for the Development of Cooperative ITS Applications (From [17])

The architecture was implemented in multiple OBUs from different brands, including Pangea and the

one produced by Bosch. It was coded in C++ and implemented the basic services needed by the platooning

application.

The communication services provided multiple operations, such as sending and receiving messages

from an application connected through the ITS-LCI. It was implemented using the UDP protocol, decreasing

the overhead. The communications between the application and the OBU were made through a reliable

communication medium, thus not needing the added functionalities provided by Transport Control Protocol

(TCP).

The implementation of the information services collected the vehicle data from the CAN and stored it in

a Management Information Bases (MIB). Then, the platooning application was able to retrieve the data using

the SNMP protocol. The vehicle data included the vehicle’s speed, location, and acceleration.

For the function service, no vehicle internals was accessed due to the complexity and legal implications.

However, the application allowed to change multiple radio parameters.

The access between the application and the OBU was made through an ethernet cable, providing low

latencies and high speeds.
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7.5 Implementation of CAM Generation Application for Message

Collection

The work presented in this Section aims to build large and synthetic datasets containing normal and

attacking messages. As presented in Table 2.1, there is a large number of different known attacks in VANETs.

This number is constantly growing, so it is necessary to select a subset to be simulated. DoS and fabrication

attacks were the selected ones. These were chosen by their simplicity in implementation, facilitating their

simulation.

DoS attack tries to disrupt the communications of other vehicles by either saturating the medium or

stop the radio equipment to be able to process them all. In the fabrication attack, the attacker vehicle will

send messages complying with the rules presented in Table 5.4. But, in this attack, one of the message fields

will be replaced by bogus information.

To increase the randomness, each vehicle entering the simulation will have a 10% chance of becoming

an attacker instead of having a fixed number of attackers. So, every time a vehicle enters the simulation, it will

generate a random number between 0 and 100. If this is smaller or equal to 10, it will become an attacker.

Otherwise, it is a normal vehicle. The process is more clearly indicated in Figure 7.9.

Figure 7.9: Attacker Selection Flow for Message Generation
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7.5.1 Denial of Service Attack

DoS is a type of attack on availability (Table 2.1). Its goal is to affect the availability of the targeted

entities, usually by sending messages at such a rate that the receiving device is occupied and cannot receive

authentic messages. In this case, the usage of cryptographic methods, such as signatures, is of little help and

can even worsen the problem [8]. Thus, an IDS could be especially helpful in this case, enabling the detection

of an attacker without the need to verify signatures.

The vehicles that were previously selected as attackers will attack at random intervals. The attacks will

have a random duration that can vary from 0 to 30 seconds. The selection of the attack time and duration is

presented in Figure 7.10. If the vehicle is not in attacking mode, it will select a random number from 0 to 100.

If this is smaller or equal to 1, it will start the attack, giving it a probability of 1% of starting an attack. Then, it

will generate a random number from 0 to 30, serving as the attack duration.

Figure 7.10: Selection of DoS Time Interval and Duration for Message Generation

111



Chapter 7

During the attack period, the attacker will send completely normal messages but at much higher rates.

The frequency of the messages sent is also random. It is not possible to directly define the frequency of

the messages sent in the simulator, only the time to the next event (the period). So, what is done is to

divide the minimum time step used to generate CAMs using the following formula: new_time_step =

((interval)/100) ∗ old_time_step. new_time_step refers to the new calculated time step, interval

is the interval of multiple values that can be used to calculate the new time step. This work uses the intervals

1 to 10, 10 to 20 and, 20 to 30. Finally, the old_time_step represents the predefined time step, usually

100 ms (the minimum for a CAM). So, for example, if the interval selected is the first (1 to 10), the new time

step is between 1ms and 10 ms.

7.5.2 Fabrication Attack

The Fabrication Attack is an attack on integrity and data trust. It may be carried in multiple ways, as, for

example, the attacker may try to create a false message or merely modify data on an authentic message. The

goal of these types of attacks may be to gain the trust of entities, create a false trail or simply affect the target

system. For example, in the case of VANETs, a rogue vehicle may try to create an accident by sending false

information about its speed or location. So, contrary to the DoS attack, the Fabrication Attack implemented in

this work will follow the rules presented in Table 5.4, but this time the data in the CAM will convey fake data.

The attacker will simulate a rogue application or faulty sensor that, at a random time, will produce fake data

produced by authentic vehicles.

The attackers and the attack interval will have the same selection process as in the DoS. From the

fields existing in the CAM, three were chosen to be faked: Speed, Heading, and Acceleration. The field to be

changed is selected previously in the simulation. At each time step, if in attack mode, the vehicle will generate

a random value and use it instead of the original vehicle. The fake values should be in the range of the normal

ones, hence being easily passable as normal ones. The range of the possible values is calculated by running

simulations without attackers. The range of the values for the vehicles are: speed varies from 0 to 14 m/s,

heading varies from 0 to 360º, and acceleration from -40 to 11 m/s².

7.6 Implementation of Machine Learning Algorithms

The IDS proposed in this research uses ML algorithms to enhance its detection capabilities. It uses the

generated datasets to analyze the data exchanged in the network and detect attacks. In this work, ML has

been used at two levels; the first was to evaluate the behavior of these algorithms depending on the data fed

and, simultaneously, the data itself. Then, use the data from multiple sources to train an ML algorithm to

detect attacks in another source at multiple network levels. Both approaches are described next.
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7.6.1 Implementation of ML Algorithms for Dataset Evaluation

The evaluation of the datasets using ML algorithms demanded a tool flexible enough to change the

algorithm parameters between tests. Also, it should provide mechanisms to load one or multiple datasets

either for testing and training. Thus, enabling testing the influence of the multiple datasets on the detection.

The first approach tried was to develop an ML tool that was able to receive one or multiple datasets to

be trained. This approach was taken due to the flexibility it provides. One of the most used languages in the

development of ML tools is Python. There is a significant quantity of documentation available and multiple

libraries with a vast community updating them.

The development of the ML tool used the widely available library Scikit-learn. It implements multiple

ML algorithms and provides easy development of applications. The development resulted in a web-based

platform that allowed the feeding of multiple datasets for training, facilitating the usage of datasets from

different sources. It implemented NN, Random Forrest, and SVM. The web GUI is divided into 2 parts. The

first represents the processing part, where the user can indicate the ML algorithms, their parameters, and the

datasets that will be used (Figure 7.11). The second part shows the results of the evaluation (Figure 7.12).
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Figure 7.11: Web-based GUI for ML Evaluation - Processing
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Figure 7.12: Web-based GUI for ML Evaluation - Results

115



Chapter 7

7.6.2 Hierarchical Intelligent IDS ML Algorithms Implementation

However, despite the advantages of the flexibility provided by the implementation of the Python tool,

the effort needed for the implementation of multiple ML algorithms limits the number of algorithms that were

possible to train. So, another solution was to use a platform with already implemented algorithms, in which a

few clicks were enough to change the algorithms used.

Weka is a standalone application with multiple ML algorithms, thus providing an easier way to test and

train multiple algorithms. It provides a command-line tool and a graphical interface. Weka has several tools

that allow multiple operations, such as filter data in the dataset, analyze the dataset’s parameters, and use

labeled and unlabeled learning. Moreover, Weka provides vast information on the loaded data, including the

average value, the standard deviation, and the number of samples.

Weka provides a great variety of ML learning algorithms, easily allowing multiple tests to be made quickly.

It accepts the datasets using a proprietary format called ”ARFF,” which is very similar to a ”CSV” file, but it

includes a header describing the data.

Additionally to the graphical interface, Weka also provides a Java library that can easily be added to code

development. So, it provides a good solution to test multiple types of algorithms using the graphical interface

and, after the selection of the best solution, use the library for its implementation in a real-world solution.

Loading Datasets As previously mentioned, Weka provides a well-documented library. It is made available

through Maven [109], facilitating its usage. The first step needed to classify the data and common to all the

algorithms is Loading the datasets, training, and testing. Figure 7.13 shows the process to do so.

D a t a S o u r c e t r a i n D a t a s e t = new D a t a S o u r c e ( ” t r a i n . a r f f ” ) ;
D a t a S o u r c e t e s t D a t a s e t = new D a t a S o u r c e ( ” t e s t . a r f f ” ) ;

I n s t a n c e s t r a i n = t r a i n D a t a s e t . g e t D a t a S e t ( ) ;
I n s t a n c e s t e s t = t e s t D a t a s e t . g e t D a t a S e t ( ) ;

Figure 7.13: Loading Dataset Using Weka Java Library

Firstly the raw data is load from a file to a DataSource object, and then the instances are extracted.

However, the dataset needs to be treated for classification by indicating the index of the class attribute, shown

in Figure 7.14, and then removing the attributes in excess. The removal of the datasets is done by creating a

filter, as shown in Figure 7.15; the filter will then be applied during the classification.

t r a i n . s e t C l a s s I n d e x ( 1 7 ) ;

Figure 7.14: Setting Classifier Index Using Weka Java Library
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Remove rm = new Remove ( ) ;
rm . s e t A t t r i b u t e I n d i c e s ( ” 1 , 2 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 ” ) ;
F i l t e r e d C l a s s i f i e r c l a s s i f i e r = new F i l t e r e d C l a s s i f i e r ( ) ;
c l a s s i f i e r . s e t F i l t e r ( ) ;

Figure 7.15: Adding Filter to the Classifier Using Weka Java Library

Random Forrest Algorithm Implementation After loading the datasets and transforming them into

instances, the data can now be used to train the model. The algorithm used in this case is RF. First, the

RF object is created, and then the training instances and the filter are loaded, as shown in Figure 7.16. The

trained model can then be used to classify the instances in the test datasets, as shown in Figure 7.17.

R a n d omF o r e s t r f = new Random ( ) ;
c l a s s i f i e r . s e t C l a s s i f i e r ( r f ) ;
c l a s s f i e r . b u i l d C l a s s i f i e r ( t r a i n ) ;

Figure 7.16: Building Model With RF Using Weka Java Library

f o r ( i n t i = 0 ; i < t e s t . n um I n s t a n c e s ( ) ; i + + ) {
d o u b l e p r e d = c l a s s f i e r . c l a s s i f y I n s t a n c e ( t e s t . i n s t a n c e ( i ) ) ;

}

Figure 7.17: Classifying Test Instances Using Weka Java Library

Ensemble Learning Implementation The process of building the ensemble model is a little more com-

plex. It follows the same steps, but it needs to build the multiple models before building the ensemble as the

method addPreBuiltClassifers, only accepts classifiers that have already been built. The process is shown

in Figure 7.18. First, the multiple classifiers are individually built. Then, these are joined together into a ”Vote”

classifier. The latter will be used to classify the data.
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V o t e v o t e = new V o t e ( ) ;
R a n d omF o r e s t r a n d om F o r e s t = new R a n d omF o r e s t ( ) ;
r a n d om F o r e s t . b u i l d C l a s s i f i e r ( t r a i n ) ;

M u l t i l a y e r P e r c e p t r o n m u l t i l a y e r P e r c e p t r o n = new M u l t i l a y e r P e r c e p t r o n ( ) ;
m u l t i l a y e r P e r c e p t r o n . b u i l d C l a s s i f i e r ( t r a i n ) ;

J48 j 4 8 = new J48 ( ) ;
j 4 8 . b u i l d C l a s s i f i e r ( t r a i n ) ;

v o t e . a d d P r e B u i l t C l a s s i f e r ( r a n d om F o r e s t ) ;
v o t e . a d d P r e B u i l t C l a s s i f e r ( m u l t i l a y e r P e r c e p t r o n ) ;
v o t e . a d d P r e B u i l t C l a s s i f e r ( j 4 8 ) ;
v o t e . b u i l d C l a s s i f i e r ( t r a i n ) ;

Figure 7.18: Building Ensemble Voting Using Weka Java Library

Rule-Based Learning Implementation As for Rule-Based Learning, the method for creating and training

the model is the same as for the RF. However, this algorithm creates a one-step decision tree, meaning that

the rules can be written as an if/else clause, which is lighter and smaller to be transmitted over the network.

In this case, multiple rules were created, one for each attack, DoS, and the 3 different fabrication attacks.

The if clauses created are shown in Figure 7.19. So, when a vehicle receives a message, it will verify if the

parameter calculated as diff_x falls between the threshold. If not, the message is considered an attack.

i f ( d i f f _ t i m e < t h r e s h o l d ) {
a t t a c k = t r u e ;

}
i f ( t h r e s h o l d _ m i n < d i f f _ s p e e d < t h r e s h o l d _m a x ) {

a t t a c k = t r u e ;
}
i f ( t h r e s h o l d _ m i n < d i f f _ a c c < t h r e s h o l d _m a x ) {

a t t a c k = t r u e ;
}
i f ( t h r e s h o l d _ m i n < d i f f _ h e a d i n g < t h r e s h o l d _m a x ) {

a t t a c k = t r u e ;
}

Figure 7.19: Building Ensemble Voting Using Weka Java Library
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7.7 Real World Platooning Implementation

The platooning application and its underlying protocol were researched until it was ready for a real-world

application, with the implementation in the simulation environment being of key importance.

The real-world implementation of the platooning application takes advantage of the agnostic architecture

described in Section 7.4. It allows the separation of software development and vehicle internals by providing

an easy interface for communicating with others and accessing the necessary vehicle parameters. The

application, previously developed in Java, was ported to android. Android tablets are portable and easy to

use in the vehicle. The applications use the ITS-LCI provided by the agnostic architecture to access the

vehicle’s speed, acceleration, and GPS.

The tests were run on the campus of the University of Minho using two different vehicles. First,

the Leader starts its application, broadcasting its existence and position. Then, after receiving the beacon

announcing the platooning position, the Follower approaches and requests to Join. The Follower Joins the

platooning, follows the Leader, and finally requests to Leave. The complete path traveled by the vehicles

is presented in Figure 7.20. All the maneuvers and vehicle driving are made manually due to the vehicle’s

technology limitations and the embryonic state of the application.

Figure 7.20: Platooning Real-World Implementation Circuit

The setup is shown in Figure 7.21. The vehicle provides access to its data through its Controller Area

Network (CAN). The access is performed using an OBU connected to a wireless router. The application can

connect to the OBU and use the ITS-LCI to use the OBU communications and access the vehicle data.

Figure 7.22 shows the laboratorial demo performed. The top two screens are screenshots of the android
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Figure 7.21: Platooning Real-World Implementation Setup

platooning application. The left one is the application screen from the Leader’s standpoint. It shows the

multiple vehicles of the platooning, representing the Follower in red and the Leader in blue. It also shows

the multiple parameters of each vehicle, including their identification and speed. The right screen shows the

Follower application. It shows the speed of each vehicle and its position on the map. Furthermore, the Follower

has the option to Leave the platooning.
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Figure 7.22: Platooning Real-World Implementation Application Example and Scenario
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Test and Evaluation Procedures

This Chapter presents the outcomes resulting from the multiple new protocols and methodologies

proposed in this thesis work. These enable the evaluation of the presented work and comparison with other

future and existing works.

Firstly, it is presented the performance evaluation results for the VPKIbrID, comparing its multiple modes

and ciphers, providing insight on which are better suited for each situation. Then, detailed information about

the collected datasets is presented, including how each parameter collected varies in each simulation, the

number of normal and attacker vehicles. Next, the datasets are fed to an ML algorithm to evaluate the

possibility of detecting an attack on them, their similarity, and their quality. Finally, the datasets collected are

used to test and train multiple ML algorithms. The results should provide some insight into the better-suited

algorithms for each hierarchy level, balancing accuracy with CPU needs and detection time.

8.1 Evaluation of Secure Communications

VPKIbrID is an application layer security model that implements multiple technologies to respond to

the needs of VANET applications. It is based on two cryptographic technologies, namely, PKI and ABE.

However, cryptographic operations are computationally demanding, affecting the usual behavior of the system

by introducing delays, overhead, and computational power needs.

So, a Java implementation was made to evaluate the impact of the security model on the overall com-

munications using Java JDK 8. The pairing operations needed by the ABE were implemented using the JPBC.

For the ABE, an existing GitHub implementation was used (https://github.com/junwei-wang/cpabe). This

implementation was not ideal since it uses type 1 pairings (easier to implement but with worst performance).

The JPBC library allows the usage of a C wrapper that provides better performance. The application was run
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a total of 100 000 times for each configuration using a computer with an Intel Core i7 and 16 GigaBytes of

RAM.

VPKIbrID was tested using the three following configurations:

1. Public Key Infrastructure (PKI)

2. Attribute-Based Encryption (ABE) with Message Authentication Code (MAC) signatures.

3. Attribute-Based Encryption (ABE) with Public Key Infrastructure (PKI) signatures.

However, the library provides a C wrapper so, the three different configurations were also tested with

and without the wrapper. Moreover, ABE cryptography is inherently slow and CPU-heavy. So a mechanism

was implemented that allows the implemented VPKIbrID to cache the used keys. This mechanism bypasses

the generation of the ”Randomly generated key” (Figure 4.4) if multiple messages are encrypted using the

same attributes for the same targets. Using this mechanism, if multiple messages are being sent for the same

targets using the same attributes, VPKIbrID-ABE will only need to encrypt the information using the previously

generated symmetric key, increasing its performance.

Tables 8.1 and 8.2 present the results obtained for the encryption and decryption operations, respec-

tively. Each column represents a VPKIbrID operation. The last two columns refer to the total encryption (TE)

and total decryption (TD) times, respectively. Each line represents a different configuration. From the results

obtained, possible outliers were removed. Due to some factors external to the tests, sometimes processing time

is given to other processes, which influences the performance measures. This impact was most noticeable in

operations with smaller values in, for instance, the key generation.

Tables 8.1 and 8.2 are also divided into 3 sub-tables. The first one contains results obtained for the

operations without the C wrapper. The second, the ones using the wrapper and, the final part, the results

using the wrapper and key caching. VPKIbrID-PKI results are only in the first Table. The reason is that the

wrapper and key cache do not make any difference in this case.

As expected, in the results for the ”no C wrapper configuration”, VPKIbrID-PKI had a better performance

than the others. ABE encryption is computationally expensive. The slowest configurations use VPKIbrID-ABE

with public key signatures. The usage of a MAC algorithm improved the total encryption time by about 6

milliseconds, which is the time taken by signing a message with a public key.

The second part of the Table contains the results obtained with the C wrapper. The obtained results

were not very significant. The difference was less than a millisecond for the total encryption and decryption

times.

Finally, the results using ABE key caching are presented in the last part of the Table. These present a

great improvement over the other results. In type 2 configurations, the total encryption and decryption take less
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Table 8.1: Comparison Between VPKIbrID Modes - Encryption Performance

Without PBC wrapper

Type SK gen (ms) DE (ms) DS (ms) KE (ms) TE (ms)
1 < 0.02 < 0.11 5.88± 0.10 < 0.30 6.13± 0.11
2 < 0.01 < 0.08 < 0.01 106.84± 1.21 106.93± 1.21
3 < 0.03 < 0.08 5.79± 0.06 108.89± 1.15 112.79± 1.16

With PBC wrapper

Type SK gen (ms) DE (ms) DS (ms) KE (ms) TE (ms)
2 < 0.01 < 0.08 < 0.01 105.65± 1.19 105.74± 1.19
3 < 0.03 < 0.08 5.92± 0.08 105.95± 1.16 111.97± 1.17

With ABE cached keys

Type SK gen (ms) DE (ms) DS (ms) KE (ms) TE (ms)
2 < 0.01 < 0.06 < 0.01 < 0.01 < 0.08
3 < 0.01 < 0.12 5.81± 0.08 < 0.01 5.87± 0.89

SK gen - Symmetric Key generation; DE - Data Encryption; DS - Data Signing; KE - Key Encryption; TE - Total Encryption;

Table 8.2: Comparison Netween VPKIbrID Modes - Decryption Performance

Without PBC Wrapper

Type KD (ms) SV (ms) DD (ms) TD (ms)
1 5.73± 0.10 < 0.23 < 0.12 5.98± 0.11
2 36.22± 0.45 < 0.01 < 0.10 36.35± 0.45
3 36.20± 0.36 < 0.20 < 0.10 36.51± 0.36

With PBC Wrapper

Type KD (ms) SV (ms) DD (ms) TD (ms)
2 36.42± 0.55 < 0.02 < 0.10 36.55± 0.55
3 36.55± 0.40 < 0.21 < 0.11 36.86± 0.40

With ABE cached keys

Type KD (ms) SV (ms) DD (ms) TD (ms)
2 < 0.01 < 0.01 < 0.03 < 0.18
3 < 0.01 < 0.23 < 0.11 0.23± 0.03

KD - Key Decryption; SV - Signature Verification; DD - Data Decryption; TD - Total
Decryption;
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than a millisecond. In type 3, the elapsed time for the total encryption increases to less than 7 milliseconds

due to the public key signing process.

Due to the added cryptography, it is expected for overhead to be introduced, increasing message size.

Table 8.3 compares the overhead introduced by the 3 encryption modes PKI, ABE with MAC signatures, and

ABE with PKI signatures. This Table was constructed by encrypting messages with different sizes: 128, 256,

512, 1024, and 2048 bytes. The values indicated in each column are the following: Plain Message - the

size of the payload data; VPKIbrID-PM - the size of the total message after constructing the VPKIbrID-PM;

Encrypted Data: the size of the encrypted VPKIbrID-PM; Encrypted Key: the size of the encrypted key (key

used to encrypt the data); VPKIbrID-EM: the size of the VPKIbrID-EM; Total overhead: the overhead introduced

by the cryptographic material.

The obtained results are directly related to the algorithms and ciphers utilized. In this evaluation, the

following parameters were used: signatureAlgorithm - SHA256withRSA (PKI) and hmacSHA256 (symmetric);

encKeyAlgorithm - ABE or RSA 2048 for PKI; encAlgorithm - AES 128.

Table 8.3: Comparison Between VPKIbrID Modes - Message Size (Bytes)

Plain Message PKI ABE with MAC ABE with PKI signatures
PM ED EK EM TO PM ED EK EM TO PM ED EK EM TO

128 2672 2688 256 3052 2924 224 240 853 1205 1077 2672 2688 853 3654 3562
256 2801 2816 256 3180 2924 354 368 853 1334 1078 2801 2816 853 3782 3526
512 3057 3072 256 3436 2924 610 624 853 1590 1078 3057 3072 853 4038 3526
1024 3569 3584 256 3948 2924 1122 1136 853 2102 1078 3569 3584 853 4550 3526
2048 4593 4608 256 4972 2924 2146 2160 853 3126 1078 4593 4608 853 5574 3526

PM - VPKIbrID-PM; ED - Encrypted Data; EK - Encrypted Key; EM - VPKIbrID-EM; TO - Total Overhead;

It is possible to see that the total overhead introduced is constant and independent of the original

payload. The main factor in the increased message size is the need to send the sender certificate in the

modes with PKI signatures. Thus, being the reason for the ABE with MAC signatures to be the least affected

by the overhead (1062 bytes), although being the one with the biggest resulting encrypted key. The ABE mode

with PKI signatures is affected by the drawbacks of both methods, being the one with the biggest overhead

(3562 bytes).

Concluding, the ABE keys generation is extremely expensive (performance-wise). These are only useful

in scenarios where multiple target encryption or key caching can be taken advantage of. Also, it can be used

if the public key of the receiver is unknown or the message size is of importance. Otherwise, VPKIbrID-PKI is

more indicated. It is much less expensive, mainly when there is only one receiver. The main drawback is the

need to know the public key of the receiver and increased message size.
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8.2 Evaluating the Impact of Biased Datasets

One of the first steps of this thesis work was an SLR (Chapter 3). It provided insightful information

about other existing works in the literature in a methodic and systematic way. One of the results was the

source and method of creating the datasets in the found research work. Most researchers use datasets made

by themselves and do not provide the methodology used or the datasets. So, it is hard to verify and replicate

their results and compare obtained results.

So, before designing the methodology to create the datasets, it was decided to perform a test to assess

the influence or even the dependency that datasets put on the derived results. It does not try to show how

good the classifier is, but how it can produce biased results depending on the dataset.

Using SUMO, a scenario has been built that comprises a 4x4 grid where vehicles follow 10 specific

routes. The normal behavior vehicles will broadcast messages in 1-second intervals.

The attackers are selected by generating a random number between 0 and 100. If it is smaller than

10, the vehicle is selected as an attacker. If it is chosen as an attacker, it will randomly start to perform DoS

attacks. It will send the same messages as the normal vehicles, but with a smaller time interval, which will

be randomly chosen from 1 to 40% of the normal period. The attacks will be made at random times during a

random interval until a max of 60 seconds. The test and training of the ML algorithms were done using Weka.

All messages received by the vehicles were stored in the same dataset and are marked as attack or

normal. From the dataset, the top 200,000 messages were chosen to train a classifier. These were divided

into training (80%) and test (20%). This division is made randomly using Weka. MLP was used to classify the

collected training set using 10 fold cross-validation. The algorithm configuration is the default.

The results of training phase have 100% accuracy, which indicates possible overfitting. The trained

model is then used to classify the test dataset. The accuracy of the classifier for this dataset is 100%, with all

messages well classified.

Then, the same scenario has been run again to test how much the results may be biased, creating a

completely new dataset. As the chosen attacker will be random and the attack intervals too, this dataset will

have completely different attacker vehicles with different DoS attacks. The previously trained model is then

used to predict the results in the new datasets. The detection rate is much lower, decreasing to 67%. The

TPR for the abnormal messages is only 55%, meaning almost half of the attacks were considered normal

messages.

The presented results do not mean that the results of the found studies are biased, but it is impossible

to verify the results obtained without the datasets used to train and test the models.

126



Chapter 8

8.3 Evaluation of the Collected VANET Datasets

In Chapter 5, a methodology to collect messages was presented. It simulated vehicles in 7 different

geographical maps that used VANET communications to disseminate messages. The goal was to produce

datasets to train and test IDSs for VANETs. So, these datasets also include attacks, more precisely, DoS and

fabrication attacks. The latter has multiple variations; in each, the attacker can fabricate one of the parameters,

speed, acceleration, or heading.

The results of evaluating the datasets will be presented at two levels: First, the statistical analysis of

the contents of the datasets, including the number of vehicles in each simulation, the number of attackers,

the number of exchanged messages and attacks. Then, the datasets are fed to an ML learning algorithm to

gauge the possibility of detecting attacks on the datasets, the quality of the datasets and their similarity, the

advantage of having multiple datasets and the behavior of the IDS if located at different places of the network.

8.3.1 Evaluation of the Collected Datasets

This Section presents and analyses the content of the datasets, for example, the number of vehicles in

each simulation, the number of attackers, the number of exchanged messages and attacks.

Firstly are presented the results for the DoS attacks. These can be seen in Tables 8.4, 8.5, and 8.6.

Tables 8.7, 8.8 and 8.9, present the results for the random heading, speed, and acceleration, respectively.

The presented tables are composed of two main parts. The first presents the dataset composition,

the number of normal and attack messages, the size of the dataset, and the number of normal and attacker

vehicles. The second block is divided into two, normal (first part) and attack (second part) messages. These

present the average and standard deviation of the data contained in the received messages, including the

diffSpeed, diffAcceleration, diffHeading, and diffTime. All these values represent the difference between

the values received in two consecutive received messages from the same vehicle. For example, if V0 was

received in the instant T0 and V1 was received in the instant T1. T0 is the instant when a CAM was received

from vehicle 0, and T1 is the instant when the next message was received. The value in the Table is the

average of V0 and V1. More generically, these values are the average of the several Vt and V(t+1). The same

happens for the values of heading, acceleration, and time.

Each line of the column represents the values obtained for each map in Table 5.1. All the datasets

and code are available for evaluation and further use in github https://github.com/fabio-r-goncalves/dataset-

collection.

The values presented in Tables 8.4, 8.5, and 8.6 refer to the first scenario, where the attackers perform

DoS. The most noticeable difference between the normal and attack values is the diffTime. The average value
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of the elapsed time between two consecutively messages is much smaller in the attacks. This result was as

expected because the frequency of the attacks is much higher. Also, the number of received messages is

much higher for the attacks. Although there are much fewer attackers than normal vehicles, as they generate

messages much more quickly, there are more attack messages.

The number of attackers varies from 3 to 30%, and the number of attacking messages from 44 to 91%

of the total. The created datasets range from 8.2 to 1820 MB. The last map, represented as the number 7 in

all the tables, is bigger and has more vehicles running, originating a bigger dataset.

In the second scenario, only one parameter is changed at a time. According to the values presented

in Tables 8.7, 8.8, and 8.9, the attacked parameter has a much larger standard deviation than the normal

vehicles. This increase is due to the random values given to the selected parameter (speed, acceleration and

heading) and thus having a larger range than the normal messages. The frequency of the generated messages

is the same for normal and attacking vehicles. So the number of attack messages is much smaller than for the

DoS. In this scenario, the number of attackers varies from 4 to 20% and the number of attacking messages

from 2.37 to 14.01%. The file size of the created datasets is also smaller ranging from 4.7 to 511 MB.

Due to the characteristics of the attacks, the DoS attack produces much more messages. The non-

attack and DoS messages are more than 97% of the training and test datasets’ total data, as shown in Table

8.10.

Table 8.10: Contents of the test and training datasets per message type

Training Test
Parameter Value % of Total Value % of Total
Messages (Total) 2,491,271 100.00 17,237,722 100.00
Non-Attack 1,508,873 60.57 9,062,023 52.57
DoS 912,875 36.64 7,756,817 45.00
Fab. Speed 30,002 1.20 172,892 1.00
Fab. Acc 23,819 0.95 62,686 0.36
Fab. Heading 15,702 0.63 183,304 1.06

8.3.2 Datasets Evaluation in the Context of an Intrusion Detection System

The datasets created in Chapter 5 are composed of data collected from simulations performed in

multiple geographical maps. In this Section these are evaluated to gauge their usability for use in further

works. The evaluation is made in the context of an IDS and is divided into three: their usability, the advantage

of having multiple datasets, and the detection’s behavior depending on its network location.

The first evaluation is straightforward; the datasets are only being fed to an ML algorithm gauging the

possibility of detecting any anomaly. Then, the second evaluation will use the multiple datasets and compare
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the results of having one, two, three, four, or five datasets to train the IDS. Finally, the last evaluation will

assume a more realistic scenario where the IDS will not behave as an oracle but will only listen to messages

received by its nodes. In this case, the goal is to simulate a cluster-based IDS implementation, such as in

Chapter 6, where the IDS is divided into multiple clusters located in different network places.

All evaluations will use the same ML algorithm. The goal is only to vary the data fed to the algorithm

and thus to compare the datasets.

Most of the studies use the same datasets to train and test the ML algorithms by applying some division

on the dataset. However, if the data is not diverse enough, the train and test data will be very similar. It

overfits the model resulting in outstanding results in the test data but bad performance in any other datasets,

as shown in Section 8.2.

The tests were made using an application developed in Python, using the sklearn library [111]. The

algorithm used was NN configured with the parameters indicated in Table 8.11. It uses 3 layers, with 2, 4, and

2 perceptrons and a toll of 0.0001. This value indicates that if the loss or score is not improving by at least

0.0001 during 5 consecutive ”number iteration no change”, the learning rate decreases. The learning rate

controls how quickly or slowly the algorithm will converge. The algorithm will run for 20 epochs and use 32

(batch size) samples from the training set to calculate the error gradient. An epoch is a term that represents

the number of times the ML algorithm completely analyzes the entire training dataset.

Table 8.11: ML Algorithm Configuration Parameters for Evaluation in the Context of an IDS

Parameter Value
Algorithm Neural Networks
Layers 2 4 2
Tol 0.0001
Learning rate init 0.1
Number iteration no change 5
Epochs 20
Batch size 32

The evaluations will be made using 5 different metrics, accuracy, precision, positive precision, negative

precision, positive recall, and negative recall. Usually, only attack detection is used for the evaluation. However,

the datasets used in this work are unbalanced; as it can be seen in Table 8.12, the attack messages represent

most of the datasets. Thus, if all were correctly classified, the model would have a false good performance.

The data used consists of 7 different datasets that originated from 7 different geographical maps. These

are marked from 1 to 7. In all the tests, the dataset originating from the geographical Map 7 will be used as

the test dataset. It has a larger number of messages, vehicles, and more types of roads. The others will serve

to train the model.

131



Chapter 8

Table 8.12: Dataset Contents - Singular maps

Dataset Normal (%) Attack (%) Total
Map 1 23193 (35%) 42264 (65%) 65457
Map 2 100707 (44%) 127946 (56%) 228653
Map 3 55621 (24%) 178999 (74%) 234620
Map 4 305170 (27%) 815990 (73%) 1120160
Map 5 79893 (35%) 150593 (65%) 230432
Map 6 83000 (20%) 330231 (80%) 413231
Map 7 1555401 (17%) 7756817 (83%) 9312218

The tests are divided into 3 as follows:

Evaluating as an oracle with single-source datasets Test if it is possible to detect the attacks in the

dataset using the IDS as an oracle. This test will also allow verifying if the datasets are diverse enough. If all

the tests have excellent accuracy, it means that probably the datasets are very similar between them and with

the test dataset.

Evaluating as an oracle with multiple sources datasets Test if there is any advantage in having vari-

ous datasets from various sources. In this test, the various datasets that originate from different geographical

maps will be grouped together, enabling to gauge the advantage of having multiple sources.

Evaluating using from different cluster levels Evaluate how the ML behaves depending on the network

location, using the cluster-based architecture from Chapter 6 as a blueprint for the cluster locations. In this

case, the IDS will not act as an oracle but will only have access to the messages received by its nodes.

Evaluating as an Oracle With Single Source Datasets

This type of IDS is the most commonly found in the literature. It has the ability to listen to all the

messages in the network.

This evaluation aims to gauge how well the IDS would perform if it only had access to the data originating

from one geographical Map. The test is two-fold as it will also allow verifying the diversity in the data collected.

The contents of the datasets used in this test are shown in Table 8.12. This Table contains the number and

percentage of normal and attack messages and the total number of messages in the dataset.

Figure 8.1 shows the results obtained from the first test. In the chart, the X-Axis represents the Map

used to train the model and the Y-Axix, the accuracy (blue), negative and positive precision (orange and yellow),
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and positive and negative recall (gray and blue).

The recall across all the tests was fairly equal, but only the model trained using the datasets from Map

4 and 6 performed acceptably for all the other parameters. So, if datasets obtained from Map 4 or 6 were

used, the IDS would detect almost all the attacks. However, in any other situation, it would have a very low

accuracy rendering the IDS useless. But, as is confirmed by Figure 8.2, the dataset’s quality does not seem

to depend only on its size. In this Figure, there are two scales; the left one refers to the number of attackers,

normal vehicles, and total vehicles; the right one, in green, refers to the number of messages in the dataset.

So, it is possible to see, that for example, that the dataset originating from Map 2 has more messages than

the one obtained from Map 6 but has a much lower quality. The number of vehicles (attackers and normal) is

very similar for Maps 1, 2, 5, and 6. So, it does not seem to make any difference.

Figure 8.1: Evaluation of the Datasets Produced in each Geographical Map

Figure 8.2: Number of Attackers (Left-Hand Side) and Messages (Right-Hand Side) per Dataset

On the plus side, this evaluation seems to indicate that the datasets are different enough between

themselves and from the test dataset. Thus, the different results across them all.
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Evaluating as an Oracle with Multiple Sources Datasets

This is a more complex test that evaluates if having datasets originating from multiple sources is

advantageous. To do so, the datasets were grouped into multiple test datasets using different group sizes.

The datasets were joined into groups of 2, 4, 5, and 6, composing four different test datasets.

Ten groups of 2, 3 and 4 datasets were made to eliminate possible bias by combining them in multiple

random ways and calculating the standard deviation of the results. The groupings containing 5 datasets only

had 6 different permutations, and the one with 6 only 1 due to the number of existing datasets.

Figure 8.3 presents the results for the tests made with 2, 3, 4, and 5 datasets. To better understand

the obtained results, whisker box charts were used. These allow displaying the data distribution through their

quartiles. The X-axis indicates how many datasets that particular grouping has, and the Y-axis is the value for

the accuracy, precision, positive recall, negative recall, negative precision, and positive precision. In this case,

the name ”positive” refers to a message containing an attack and ”negative” for the normal messages.

Figure 8.3: Evaluation Using 2, 3, 4 and 5 Datasets Grouping - Random Grouping

As previously mentioned, there is an asymmetry in the number of attacks and normal messages (Table

8.2). So, the precision and positive precision results are very similar, which means that the classification of

the normal messages has little effect on the overall precision. Thus, the results for the total, negative and

positive precision have been separated to better understand the behavior of the IDS.

The primary outcome obtained from this test is the variance of the results obtained. So, each time the

number of datasets in the grouping is increased, the variance in the results decreases. This is indicated by

the increasingly smaller blue square in each one of the charts. The other outcome is the average value for

each parameter. As it is possible to see, it is closer to 1 with each added dataset. The only exception is the

negative recall that does not change much across all parameters. Thus, with more data sources, it is possible

to have better results.
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Table 8.13 presents the individual results for each of the tests done for the two datasets grouping to better

understand the results obtained. The first column indicates the datasets used to test the ML algorithm. The rest

of the columns indicate the results obtained in the prediction: accuracy, the precision of the negative prediction,

recall of the negative precision, precision of the positive precision, and recall of the positive precision.

Table 8.13: Dataset Evaluation - Two Dataset Grouping

Datasets Acc Neg Prec Neg recall Pos Prec Pos Recall
2,5 0.17 0.17 1.00 0.00 0.00
5,6 0.99 0.98 0.99 1.00 1.00
1,6 0.99 0.99 0.98 1.00 1.00
1,5 0.17 0.17 1.00 0.00 0.00
2,3 1.17 0.17 0.99 0.69 0.00
4,6 0.99 0.98 0.97 0.99 1.00
1,3 0.17 0.17 0.99 0.65 0.01
5,6 0.99 0.98 0.99 1.00 1.00
3,4 0.99 0.99 0.97 0.99 1.00
2,4 0.99 0.98 0.98 1.00 1.00

Table 8.13 indicates that the variation in the detection capabilities depends on the quality of the datasets

which were fed to the ML algorithm. As shown in Figure 8.1, the datasets that give better results are obtained

from maps 4 and 6. Thus, if the datasets fed to the ML algorithm contain one of these, the detection rate is

automatically improved, showing the importance of the diversity of the datasets.

Evaluating from Different Cluster Levels

Unlike the other tests, in this case, the IDS will not behave as an oracle and will only have access to

the messages collected by the nodes belonging to the IDS. The number of nodes of the IDS depends on its

network-level location. The clusters considered defined in Section 6.1 were used for this evaluation. So, each

network level will have increasingly more nodes collecting data for the IDS training. In the first level, L0, the

IDS, will only access the messages collected by that particular vehicle performing the detection. At level L1,

all the vehicles in the cluster. At the L2 level, the IDS will have access to all the messages collected by the

selected vehicles in that particular geographical Map. In the last test, L3, the IDS will have access to all the

messages collected from all the selected vehicles. It is to notice that not all the vehicles in the simulation will

be considered, at least for the training, only the ones composing the IDS.

The cluster definition needs to be made to divide the messages by nodes correctly. The base cluster in

this particular implementation is the platooning. The Platoons were built by running several simulations and

analyzing their output in conjunction with the configuration files. Then the vehicles that traveled the same

135



Chapter 8

path were grouped. The simulations were performed using SUMO and VSimRTI with the code published by

Gonçalves et al. [20] and available at https://github.com/fabio-r-goncalves/dataset-collection.

The clusters are shown in Table 8.14. The cluster-level decreases left to right, with the higher level on

the left and lower on the right. The leftmost column, ”L2,” identifies each of the geographical maps from

which the dataset was obtained, represented by ”Map x,” where the x indicates the map number. Next, the

column ”L1” identifies each Platoon convoy that moves within each map. So, ”Platoon x.y” identifies the

”y” Platoon in the geographical map x. Finally, the third column, L0, identifies the individual vehicles that

compose each Platoon. The identification of each vehicle was the one used by the simulator (by convenience,

it was shortened from ”veh_z” to ”v_z”). Thus, the ID of a vehicle may appear repeated in different Maps,

although they refer to different vehicles.

Table 8.14: Cluster Division Using the Entities from the Dataset

L2 L1 L0

Map 1
Platoon 1.1 v_0, v_1, v_2, v_3, v_4
Platoon 1.2 v_14, v_15, v_17, v_21
Platoon 1.3 v_16, v_18, v_20, v_23, v_26

Map 2

Platoon 2.1 v_0, v_6, v_12, v_18, v_24
Platoon 2.2 v_1, v_7, v_13, v_19, v_25, v_23, v_26
Platoon 2.3 v_32, v_35, v_37, v_40, v_43
Platoon 2.4 v_38, v_41, v_44, v_45, v_46, v_47, v_50
Platoon 2.5 v_49, v_52, v_54, v_56, v_59
Platoon 2.6 v_48, v_51, v_53, v_55

Map 3
Platoon 3.1 v_1, v_3, v_7, v_10, v_12
Platoon 3.2 v_13, v_15, v_17, v_18, v_19

Map 4

Platoon 4.1 v_4, v_5, v_7, v_10, v_11
Platoon 4.2 v_18, v_20, v_23, v_25
Platoon 4.3 v_32, v_25, v_27, v_40, v_43
Platoon 4.4 v_38, v_41, v_44, v_45, v_46, v_47, v_50
Platoon 4.5 v_49, v_52, v_54, v_56, v_59
Platoon 4.6 v_48, v_51, v_53, v_55

Map 5
Platoon 5.1 v_2, v_3, v_5, v_7
Platoon 5.2 v_10, v_12, v_14
Platoon 5.3 v_19, v_21, v_23, v_25, v_26

Map 6
Platoon 6.1 v_0, v_1, v_2, v_3, v_4, v_6, v_8
Platoon 6.2 v_14, v_15, v_17, v_19, v_21, v_24, v_27
Platoon 6.3 v_16, v_18, v_20, v_23

Following the methodology of the previous tests, the dataset collected from Map 7 is used as the test

dataset, and the ML algorithm is configured with the same parameters, as indicated in Table 8.11.

The datasets from each network location will be fed to the ML algorithm one by one. Then, the model
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created will be used to evaluate the dataset from Map 7. Next, the average and standard evaluation for the

accuracy, precision, negative recall, positive recall, negative precision, and positive precision for the several

tests for each location will be calculated. Figure 8.4 presents the results, where X-Axis represents the cluster

level that collected the data and Y the value obtained for each of the parameters.

Figure 8.4: Dataset Evaluation Result per Cluster Level

Similarly to the previous test, it can be seen that the values for the precision and positive precision are

very similar. This phenomenon happens due to the number of attack messages vs. the number of normal

messages in the datasets (Table 8.12). Thus, it is also presented the negative precision to provide a better

insight into the IDS behavior.

In this case, as there are fewer data available to train the IDS and the ML algorithm used is the same

with no type of optimization, the results present a huge variance. There is a small increase in the average

result for all parameters from vehicle level to RSU level, but it does not seem significant.

Due to the variance, the results presented in the charts are hard to read, so Table 8.15 presents the

outcome of the various evaluations in more detail. Table 8.15 also includes the evaluation done using the data

from all the RSUs. In this case, instead of using the 6 to build a training dataset, 5 were used, allowing to

make various permutations of the datasets to calculate the average and standard deviation. Otherwise, only

one evaluation would be possible, which would not be of much use because it would not be possible to know

if the result obtained was an outlier. If one of the datasets had a much better performance than the others, it

could possibly influence the results. Thus, using several permutations, it is possible to understand better the

behavior of having data from multiple RSUs.

In Table 8.15, it is possible to see the average and standard deviation for the following parameters:

accuracy, precision, the precision of the negative results, recall of the negative prediction, precision of the
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Table 8.15: Dataset Evaluation Result per Cluster Level

Data Acc. Prec. N. Prec N. Recall P. Prec P. Recall
Vehicle 0.38± 0.37 0.46± 0.42 0.37± 0.34 0.94± 0.20 0.46± 0.42 0.27± 0.43
Cluster 0.34± 0.31 0.54± 0.41 0.32± 0.31 0.94± 0.19 0.54± 0.41 0.22± 0.39
RSU 0.62± 0.39 0.88± 0.19 0.55± 0.35 0.99± 0.01 0.89± 0.19 0.55± 0.47
All 0.84± 0.30 0.98± 0.00 0.76± 0.30 1.00± 0.00 1.00± 0.00 0.81± 0.36

positive prediction, and recall of the positive prediction. In the Table, it can be seen more clearly the variance

of the results. However, although the results obtained for the first two levels (vehicle and cluster) these improve

for the RSU and all the RSUs. Thus the higher the node is located on the network, the more data it has more

data available (Table 8.16) and more diverse, providing datasets for training with more quality, resulting in

better detections.

Table 8.16: Number of Messages per Cluster Level

Level Min Max Average
Vehicle 788 38480 11095
Cluster 4165 157398 56149
RSU 56537 472849 215238
All - 1082138 -

8.4 Hierarchical IDS Results Evaluation

ML uses data mining techniques to infer knowledge from collected data [55] and can be used to

find patterns in already gathered data. ML algorithms can be classified into supervised, unsupervised, and

semi-supervised [56]. This work focus on supervised learning, which assumes that each instance has a

correspondent label, meaning that all trained data needs to be labeled. There is a vast variety of these types

of algorithms, for example, Decision Trees [58], NN [60], SVM [60], etc.

The ML algorithms are trained using the datasets indicated in Section 5. The contents of the training

and test datasets are presented in Table 8.10.

Due to the simplicity of testing, as it needs no coding to test several algorithms easily, Weka [112] was

used. Weka is a well-known tool in Java that has several ready-to-use algorithms. The test was performed by

first building a model using the training data; then, the model was used to classify the test datasets.
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8.4.1 Performance Evaluation

Table 8.17 presents the results obtained from the classification of the test datasets using multiple

algorithms. The first three columns represent the accuracy, Mean Absolute Error (MAE) and Root Mean

Square Error (RMSE) values. The individual TPR and FPR are then presented for each different attack. Finally,

the last two columns show the average TPR and FPR for each algorithm (the TPR and FPR for the normal

messages are not included in the calculated average).

Usually, the first three columns are representative of the model quality. However, this is not accurate

in this case due to the characteristics of the datasets. Table 8.10 shows an unbalance between the collected

datasets as the nonattack and DoS messages make 97% of the total messages. So, if the ML algorithm can

only detect both of these correctly, it will have an accuracy of 97%.

Thus, instead of looking at the accuracy, the individual TPR and FPR can help find a better solution.

The goal is to find an algorithm that maximizes the TPR while minimizing the FPR. The average TPR in the

results presented varies from 0.26 to 0.88, with both J48 and RF performing the best. For the average FPR,

all algorithms perform quite well, with very low values.

The results from Table 8.17 indicate that MLP can better detect the normal messages and DoS attacks,

with 1.00 TPR for both and only 0.05 FPR for the normal messages. Nonetheless, it cannot detect any

other attack accurately. RF can better detect Speed Fabrication attack and Heading Fabrication attack with a

correspondent 0.78 and 0.90 TPR and 0.01 and 0 FPR. The Acceleration Fabrication attack is better detected

using J48, which can do so with 0.78 TPR and 0.01 FPR. However, the best overall performance indicated by

the average TPR and FPR shows a tie between RF and J48 (0.88 average TPR) with a slight advantage for the

RF that presents a higher accuracy.

Table 8.17: Evaluation Results of the ML algorithms

Normal DoS Speed Acc Heading
Algorithm Accuracy MAE RMSE TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR Avg TPR Avg FPR
Random Forest 0.98 0.02 0.08 0.98 0.02 0.98 0.00 0.77 0.01 0.77 0.00 0.90 0.00 0.88 0.01
MLP 0.98 0.01 0.09 1.00 0.05 1.00 0.00 0.26 0.00 0.10 0.00 0.00 0.00 0.47 0.06
J48 0.97 0.01 0.11 0.97 0.02 0.98 0.00 0.77 0.01 0.78 0.01 0.89 0.01 0.88 0.01
REP Tree 0.97 0.01 0.10 0.97 0.02 0.99 0.00 0,71 0.01 0.62 0.01 0.87 0.00 0.83 0.01
LMT 0.97 0.01 0.10 0.98 0.03 0.98 0.00 0.76 0.00 0.76 0.00 0.89 0.00 0.87 0.01
Random Tree 0.97 0.01 0.11 0.97 0.03 0.98 0.01 0.69 0.01 0.61 0.01 0.86 0.00 0.82 0.01
Hoeffding Tree 0.96 0.05 0.12 0.98 0.06 0.97 0.00 0.64 0.00 0.28 0.00 0.62 0.00 0.70 0.01
Logistic 0.95 0.04 0.13 0.99 0.09 0.96 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.02
OneR 0.94 0.03 0.16 0.99 0.13 0.92 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.03
Decision Stump 0.94 0.04 0.16 0.99 0.13 0.92 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.02
SMO 0.92 0.24 0.32 0.91 0.05 1.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.02
PART 0.97 0.01 0.11 0.97 0,02 0.99 0.00 0.66 0.00 0.63 0.01 0.84 0.00 0.82 0.01
Naive Bayes 0.85 0.06 0.24 0.74 0.03 0.99 0.21 0.75 0.01 0.53 0.01 0.53 0.01 0.65 0.06
Decision Table 0.66 0.18 0.29 1.00 0.71 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.14

Table 8.18 presents the sizes of the models created by Weka for each algorithm and the times needed

for training and testing it. This table can help to decide which algorithm is better suited for each level, where
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the lower layers benefit from smaller models (less traffic) and quicker detection. The results presented show

that Logistic Model Tree (LMT) is clearly the slowest to train. However, RF is the slowest to evaluate all the

messages from the test dataset. DS, while not being the quickest to train it, is the quickest to detect the

attacks. Moreover, it is the lighter model needing only 3 KB to be transmitted. Additionally, the DS algorithm

can easily be translated into a few if statements, needing, in reality, only a few bytes. On the other side, RF is

the heavier algorithm needing 54,497 KBs.

Table 8.18: Comparison of the Size and Elapsed Time Taken During Training and Testing

Algorithm Train Time (s) Test Time (s) Size (KB)
LMT 21879 23 1225
Decision Table 4514 169 29684
PART 3128 281 4860
Random Forest 3014 476 54497
SMO 2688 23 10
MLP 1176 25 16
J48 335 31 1024
Logistic 139 30 9
REPTree 123 19 791
HoeffdingTree 10 77 512
Decision Stump 7 15 3
OneR 7 29 17
Naive Bayes 4 79 5

8.4.2 Ensemble based Evaluation

The results do not need to be applied individually. Using an ML technique called ensemble learning,

multiple algorithms can be used together to take advantage of each algorithm’s properties. This can be

especially useful in this case, as each algorithm performs well in one attack but poorly in others. Weka
supports two ensemble techniques that have been used in this work; stacking and voting. Both methods

combine multiple algorithms to achieve better results. Stacking calculates each model’s outputs and then

applies another ML algorithm (meta classifier) to the output. Voting may use different methods: the most voted

option, average of probabilities, minimum of probabilities, maximum probability, and product of probabilities.

Both ensemble techniques were used to evaluate the datasets using the following algorithms (the better

performing for each parameter in the previous evaluation): RF, J48, and MLP. The configurations of the

selected algorithms are presented in Table 8.19. The algorithm used as the meta classifier was RF. It was the

algorithm with the better overall performance, being the ideal candidate.

Additionally, a custom stacking technique was implemented. Instead of using the meta classifier, it
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Table 8.19: Configuration of the Algorithms for the Ensemble Learning

MLP RF J48

batchSize 100 batchSize 100 batchSize 100

numDecimalPlaces 2 numDecimalPlaces 2 numDecimalPlaces 2

hiddenLayers a bagSizePercent 100 confidenceFactor 0.25

learningRate 0.3 maxDepth 0 minNumObj 2

momentum 0.2 numExecutionSlots 1 numFolds 3

seed 0 numFeatures 0 seed 1

trainingTime 500 numIterations 100

validationSetSize 0 seed 1

validationThreshold 20

uses the algorithms in the order that can benefit each one’s properties. So, each instance of the dataset is

evaluated using the following algorithm: (1) Apply RF. If speed or heading fabrication attack is detected, the

algorithm stops; otherwise, it goes to the next step. RF can detect Speed and Heading fabrication with almost

no False-Positives, so if one of those attacks is detected, it has a high probability of being correct. (2) Apply

J48, if an acceleration fabrication attack is detected, the algorithm stops; otherwise, it goes to the next step.

The reasoning is similar to the previous step. (3) Apply MLP, this is the last step, and if no attack is detected

at this point, then the message is considered normal. MLP is the last algorithm to be applied as it is the one

with a higher FPR at detecting normal messages. Otherwise, it could classify the message as normal, even if

it was an attack. The algorithm is shown in Figure 8.5.

The results from the ensemble learning are presented in Table 8.20. These show that the detection

capabilities can be increased using an ensemble technique, mainly the custom one. It has a small increase

over the best performant single algorithm, RF, ranging from 0.01 to 0.02 across all the message types, with

the overall average TPR also increasing from 0.88 to 0.89.

141



Chapter 8

Figure 8.5: Custom Stacking Algorithm.

Table 8.20: Classification Results Using Ensemble Learning

Normal DoS Speed Acc Heading

Ensemble Accuracy TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR Avg TPR Avg FPR

Stacking Custom 0.98 0.98 0.01 0.99 0.00 0.79 0.00 0.79 0.01 0.90 0.00 0.89 0.00
Stacking 0.98 0.98 0.02 0.98 0.00 0.79 0.00 0.67 0.00 0.90 0.00 0.86 0.00
Vote Major 0.98 0.99 0.02 0.99 0.00 0.76 0.00 0.72 0.00 0.87 0.00 0.87 0.00
Vote Average 0.98 0.99 0.02 0.99 0.00 0.75 0.00 0.71 0.00 0.88 0.00 0.86 0.00
Vote Maximum 0.97 0.97 0.03 0.98 0.00 0.77 0.00 0.77 0.01 0.61 0.00 0.82 0.01
Vote Product 0.97 0.97 0.03 0.98 0.00 0.77 0.00 0.76 0.01 0.84 0.00 0.86 0.01
Vote Minimum 0.97 0.97 0.03 0.98 0.00 0.77 0.00 0.77 0.01 0.61 0.00 0.82 0.01
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8.4.3 Rule-based Evaluation

Despite the accuracy of the algorithms, the lower levels need to have quick and light detections. DS is a

one-level decision tree. It creates very basic rules, usually an if statement that can quickly perform decisions.

Additionally, it has a smaller size and can easily be sent through the network. So, a DS algorithm was fed

datasets containing only one type of attack at a time. As it is a one-level decision tree, it will only create a rule

for each time it is trained. Therefore, in reality, four different rules are being created. The test dataset used

was the same as in the other tests. The results obtained are indicated in Table 8.21. Each line corresponds to

a different attack. The columns represent the TPR and FPR for the detection of normal messages or attacks.

As the DS algorithm is a one-step decision tree, it will only create a rule for the attack fed. Thus, it will only

detect the attack it was created to detect. It can detect Normal messages and DoS quite well (0.99 TPR), but

it is quite poor in the other attacks. On the plus side, it has very low FPR when detecting any of the attacks.

Thus, it has a very low danger of discarding authentic messages.

In all the analyzed algorithms, detecting the fabrication attacks seems less accurate than detecting DoS.

The unbalance in detecting the fabrication attacks may be due to the number of messages for each attack

class. DoS has more messages, allowing the ML algorithm to be better fitted. The same happens for the DS.

As it is shown, the attack with more messages, DoS, has better detection performance.

Table 8.21: In-depth Evaluation of the Decision Stump Algorithm

Normal Attack
Attack Type TPR FPR TPR FPR
DoS 0.99 0.10 0.94 0.01
Speed 1.00 1.00 0.47 0.00
Acceleration 1.00 1.00 0.00 0.00
Heading 0.99 0.99 0.47 0.00
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Conclusions and Future Work

This final Chapter describes a brief and critical analysis of the obtained results and the conclusion taken

from the overall research work. Additionally, the limitations presented by the research are described, indicating

possible biased results and discussing other approaches. Finally, are presented the future steps, indicating

future research work that may complement the work presented in this thesis.

9.1 Conclusions

In this thesis, a new Intrusion Detection System (IDS) design targeted at vehicle networks was proposed.

It is based on a hierarchical architecture divided into four different levels that attribute different roles and

functionalities to each cluster’s nodes, allowing each node to perform the role and use the detection algorithm

that better suits it. The nodes located in the upper nodes of the architecture are usually more powerful

(infrastructural entities) that can use more complex detections. The lower nodes are the opposite. They have

much lower capabilities but need quick decisions.

The first step of this research work was a Systematic Literature Review (SLR), which is one of the most

widely accepted ways to survey the literature. The SLR defines a methodology to survey multiple databases

that must be carefully followed. Thus, providing results in a more systematic way that can be easily replicated

and verified. The goal of the SLR was to survey the existing solutions consisting of Machine Learning (ML)-

based IDSs for Vehicular Ad hoc Networks (VANETs), providing insight into frequently used ML algorithms,

simulation frameworks, tools, and datasets. The results showed that most works use one of the popular,

Network Simulator 2 (ns-2) or Network Simulator 3 (ns-3), network simulator versions, Simulation of Urban

Mobility (SUMO) as the traffic simulator and Neural Networks (NN) as ML algorithm. However, most works

failed to present detailed information about the used datasets nor made them available. Consequently, the

corresponding published results are very hard to verify.
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The architecture of the IDS implies multiple communications between the multiple entities, either

inter or intra-level. So, a security framework for VANETs was surveyed. This framework should fulfill the

VANET requirements and facilitate the multiple communication types needed by a heterogeneous network

like VANET. Due to the characteristics of this type of network, there is a considerable volume of research

work on this area. However, the found solutions present some drawbacks. So, it was decided to design

a security model. The designed model, Vehicular Ad hoc Network Public Key Infrastructure and Attribute-

Based Encryption with Identity Manager Hybrid (VPKIbrID), uses a multitude of technologies to provide a

hybrid solution that can tackle the individual drawbacks. It provides two encryption types, VPKIbrid Public

Key Infrastructure (VPKIbrID-PKI) and VPKIbrid Attribute Base Encryption (VPKIbrID-ABE), facilitating both

unicast and multicast/broadcast communications. The first encryption type, VPKIbrID-PKI, uses the most

common Public Key Infrastructure (PKI) encryption to provide a more lightweight encryption but only unicast

communications. The second, VPKIbrID-ABE, uses Attribute-Based Encryption (ABE). It is a less utilized

encryption mechanism but provides encryption for multiple targets, optimal for multicast/broadcast.

The designed IDS architecture is based on a hierarchy, grouping entities with similar capabilities and

characteristics, allowing the attribution of the optimal detection techniques and roles to each node. The

architecture is divided into 4 different levels, each having multiple clusters. The architecture’s levels are the

following: L0, a single-vehicle; L1, a cluster of vehicles; L2, a cluster of Road Side Units (RSUs); L3 backend

server with high Central Processing Unit (CPU) capacity.

Usually, to build the clusters, a clustering algorithm is needed. In this work, to facilitate the clustering

process, the cluster in level L1 was built using an already existing application that groups vehicles that travel

together in the same path at the same speeds, platooning. This application already provides all the tools

needed for the vehicles grouping and leader selection. For level L2, the RSUs were grouped using the natural

geographical division from the collected datasets. So, at this level, the IDS will have access to all the messages

from a particular geographical area. The levels L0 and L3 are already defined, being the first a vehicle on the

road, and latter is any specific - edge or cloud based - sink node where all the messages received by lower

hierarchy nodes are collected and subsequently processed.

So, to accomodate, validate and test this new paradigm, the security model designed was adapted for

the usage in the platooning, allowing the platooning vehicles to use this framework to communicate securely,

taking advantage of its properties.

Due to the lack of available datasets in the literature, as found in the performed SLR, a methodology

to produce VANET messages and collect datasets was designed. It allowed to generate multiple datasets

originating from 7 different geographical maps, increasing the randomness introduced and decreasing the

probability of creating biased detection. These synthesised datasets contain vehicular messages, both normal

and attacks. The attacks produced are Denial of Service (DoS) and multiple fabrication attacks. In the DoS,

the attacker vehicle produces messages similar to the other vehicles but at a much higher frequency. The
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fabrication attack simulates a faulty sensor or an attacker that tries to convey false information about the ego-

vehicle function parameters (such as velocity, acceleration) of the car. In this case, the following parameters are

targeted: speed, acceleration, and heading. As one dataset is generated for each attack in each geographical

map, a total of 42 different datasets were generated. These datasets were completely disclosed, published

and made available at a public data repository for third-party evaluation and to facilitate future research works.

The produced datasets have been evaluated in three different situations, each allowing a particular

conclusion. These were the following: evaluate the datasets as an oracle with single-source datasets, evaluate

the datasets as an oracle with multiple source datasets, and evaluate the datasets from different cluster

levels. The first evaluation allowed to conclude that it is possible to detect attacks from the collected datasets.

However, the datasets seem different enough as the detection accuracy varied depending on the source used.

The second test showed that the detection could benefit from having datasets from multiple different sources.

Moreover, using multiple datasets allow compensating data from poor datasets during the training phase,

with datasets with more quality, decreasing the probability of having overfitted models. The last test served to

understand which levels of the architecture would be able to detect attacks according to the data received from

their nodes. This test showed that the upper level can have a more accurate detection and would probably be

the best place to use the received data to train the ML models.

Initial tests were made without any optimization of the algorithms, as the goal was only to understand

the behavior of the IDS depending on the data received. So, to better understand which ML algorithm should

be used in each layer, multiple ML algorithms were used to analyze the datasets. The results showed that the

best overall performant algorithm is Random Forest (RF), closely followed by J48. However, for each parameter

individually, the best performant algorithms are Multilayer Perceptron (MLP) to detect normal and DoS attacks,

J48 to detect Acceleration Fabrication attacks, and RF to detect Speed and Heading Fabrication attacks.

Nonetheless, accuracy is not the only important metric. Depending on the level, the size and performance

can also be important. The slowest algorithm to train is Logistic Model Tree (LMT), RF is the slowest to analyze

the dataset and also produces the biggest model, Decision Stump (DS) is the quickest to perform decisions

and produces the smaller model. Additionally, due to DS construction, it can be quickly translated into a few

if statements.

Moreover, instead of using a single algorithm to perform detection, these can be grouped into an

ensemble algorithm, thus using the characteristics of the multiple algorithms to have a more accurate decision.

So, the best performant algorithms from the previous evaluation (MLP, J48, and RF) were used to build an

ensemble algorithm. The best performance was obtained using a custom ensemble algorithm, with better

results than each of the individual algorithms.

However, the algorithms with better accuracy may not be the best suited for all the levels. At the lowest

level, perhaps the best solution is to use an algorithm that can perform quick detections. So, using the lighter

algorithm, DS, more specific tests were made, concluding that it is useful in detecting DoS attacks although
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not as accurate as other more complex algorithms.

Using the security model designed and the results from the evaluation of the ML algorithms, the final

architecture design was made. It uses the VPKIbrID model to secure all the communications between the node.

Due to the nature of the interactions, the most used model is the VPKIbrID-ABE, which can be particularly

useful when taking advantage of its key caching mechanism. The L0 level uses DS, although only being able

to detect DoS accurately, it is a good first level of defense, performing very quick detections and being very

light, allowing an easy transmission to all the nodes. The level L1 is composed of the same node types as the

previous the detection at this level does not present any advantage. The nodes atL1 will only be responsible for

forwarding the received messages to the upper nodes. The level L2 uses RF to perform detection. These are

infrastructural entities with mode processing power, being able to use a more complex and slower algorithm.

Finally, to the level L3 are reserved the most complex and CPU-heavy operations. So, this level will perform

detection using the ensemble algorithm, the most complex algorithm. Additionally, as it has a wider view of

the network and access to more diverse data, it will use the received data to build rules and models to the

other levels.

If any level (except L0) detects any attack, a system-wide response should be triggered, warning the

other vehicles, putting the attacker on a blacklist, and, if needed, warning the authorities. As the first level

uses a less accurate algorithm, it should only discard the attack messages, letting the decision off triggering

a system-wide warning to the upper levels.

9.2 Limitation and Future Work

The presented work comprises of an ML-based IDS, which heavily relies on the usage of datasets —

these present one of the most prominent limitations at three different levels, data origin, attacks, and size.

The used datasets were self-produced and synthesized using simulation. However, this could introduce

bias in the results. The datasets should have been produced by third parties and, ideally, obtained from

the real world. On the plus side, the dataset synthesized were made available to the public, along with the

methodology to produce them, allowing third parties to evaluate them and enable the scrutiny of the results

obtained. Additionally, this thesis work is aligned with an R&D project with the collaboration with Boshc Car

Service, and it is expected to obtain real-world communication data in the near future.

As for the attacks, the used datasets contained only two different attacks, DoS and Fabrication. Although

useful to test the methodology designed, it limits the detection capabilities of the dataset. Moreover, some

attacks may be undetected by the IDS. Nonetheless, the implementation used to synthesize the datasets can

be easily extended to produce new attacks. Additionally, the application was published on a public platform

(Github), enabling the collaboration of other researchers in the implementation of new functionalities.
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Although the results obtained in this work are satisfactory, the evaluation of the datasets using different

clusters produced a variance higher than expected, difficulting the gauging of the exact behavior of the first

two levels. This behavior is possibly caused by the lack of more datasets from different geographical areas.

This limitation can be solved by following the same steps as for the number of attacks.

The designed architecture uses VPKIbrID as the security communications framework. The model

designed is built using well-established and robust security measures and cryptographic primitives. However,

despite of the individual strength of each methodology, the overall model may have vulnerabilities. So, it is a

goal to perform a formal verification of the security model. Moreover, most of the performance tests using the

VPKIbrID security model used simple applications that generate a low quantity of messages such as beacons

or sporadic messages such as the one from platooning. So, more complex tests are to be made using more

demanding applications, such as streaming applications.

The novel IDS design presented shows a hierarchy-based architecture. However, most of the clustering

is based on simple geographical division or applications that already group vehicles (platooning). The multiple

existing clustering algorithms in the literature should be evaluated, trying to gauge the best suited for these

environments.

Due to the division of the network, needing themultiple entities of the system to constantly communicate,

a huge quantity of data is generated. The communication bandwidth needed to transmit this quantity of data

can overload any entity and be especially complex in a volatile environment such as VANETs. So, a future

research point is to survey and evaluate multiple compression algorithms to decrease the size of the data

needed.
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