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Abstract

One of the main obstacles to the successful treatment of cancer is the phenomenon of
drug resistance. A common strategy to overcome resistance is the use of combination
therapies. However, the space of possibilities is huge and efficient search strategies are
required. Machine Learning (ML) can be a useful tool for the discovery of novel,
clinically relevant anti-cancer drug combinations. In particular, deep learning (DL) has
become a popular choice for modeling drug combination effects. Here, we set out to
examine the impact of different methodological choices on the performance of
multimodal DL-based drug synergy prediction methods, including the use of different
input data types, preprocessing steps and model architectures. Focusing on the NCI
ALMANAC dataset, we found that feature selection based on prior biological knowledge
has a positive impact on performance. Drug features appeared to be more predictive of
drug response. Molecular fingerprint-based drug representations performed slightly
better than learned representations, and gene expression data of cancer or drug
response-specific genes also improved performance. In general, fully connected
feature-encoding subnetworks outperformed other architectures, with DL outperforming
other ML methods. Using a state-of-the-art interpretability method, we showed that DL
models can learn to associate drug and cell line features with drug response in a
biologically meaningful way. The strategies explored in this study will help to improve
the development of computational methods for the rational design of effective drug
combinations for cancer therapy.

Author summary

Cancer therapies often fail because tumor cells become resistant to treatment. One way
to overcome resistance is by treating patients with a combination of two or more drugs.
Some combinations may be more effective than when considering individual drug effects,
a phenomenon called drug synergy. Computational drug synergy prediction methods
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can help to identify new, clinically relevant drug combinations. In this study, we
developed several deep learning models for drug synergy prediction. We examined the
effect of using different types of deep learning architectures, and different ways of
representing drugs and cancer cell lines. We explored the use of biological prior
knowledge to select relevant cell line features, and also tested data-driven feature
reduction methods. We tested both precomputed drug features and deep learning
methods that can directly learn features from raw representations of molecules. We also
evaluated whether including genomic features, in addition to gene expression data,
improves the predictive performance of the models. Through these experiments, we
were able to identify strategies that will help guide the development of new deep
learning models for drug synergy prediction in the future.

Introduction 1

The phenomenon of drug resistance is one of the greatest challenges in the fight against 2

cancer. Although many tumors initially respond well to a given treatment, the efficacy 3

of single-drug anti-cancer therapies is often diminished due to the existence of tumor 4

drug resistance mechanisms. Resistance-conferring characteristics may already be 5

present in the tumor cells prior to therapy, or they may arise as an adaptive response of 6

the tumor to the treatment itself [1]. One of the main drivers of resistance is 7

intratumoral heterogeneity. Genomic instability in cancer leads to the emergence of 8

subpopulations of cells within a tumor with distinct characteristics and different 9

sensitivity to drugs. Treatment may exert selective pressure on the cells and select 10

subpopulations possessing characteristics that favor drug resistance, leading to future 11

relapse [2]. 12

Combining multiple treatments instead of administering a single drug can help to 13

reduce drug resistance [3]. Drug combinations may circumvent pre-existing resistance 14

mechanisms more easily and prevent the development of acquired resistance 15

mechanisms [4]. In addition, certain combinations may be more effective than would be 16

expected when taking into account the effects of each of the constituent compounds on 17

their own, a phenomenon called drug synergy. Drug synergy increases treatment efficacy 18

without requiring an increase in drug dosage, potentially avoiding an increase in toxicity 19

as well [5]. Therefore, optimal drug combinations will be those that produce synergistic 20

effects. 21

Novel effective anti-cancer drug combinations can be discovered using 22

high-throughput cell viability assays. In these assays, a large number of candidate drug 23

combinations are screened at different concentrations across a panel of cancer cell lines 24

and the cellular response to the drug is measured. In recent years, several datasets from 25

large-scale drug screening initiatives have been made publicly available [6–8]. The 26

largest of these is the National Cancer Institute (NCI) A Large Matrix of 27

Anti-Neoplastic Agent Combinations (ALMANAC) project [7], which screened a total of 28

5,232 pairs of FDA-approved drugs against National Cancer Institute 60 Human Cancer 29

Cell Line Screen (NCI-60), a panel of 60 tumor cell lines that have been extensively 30

characterized at the molecular level [9]. The project uncovered several synergistic drug 31

pairs, including two clinically novel combinations that are currently being evaluated in 32

phase I clinical trials [7]. 33

Despite the existence of these high-throughput technologies, screening all conceivable 34

drug combinations is still infeasible, for both practical and financial reasons [8, 10]. 35

Computational methods could greatly reduce the search space, thus minimizing the 36

experimental effort required to find truly effective anti-cancer drug combinations. ML, 37

for example, can be used to learn functional mappings between very high-dimensional 38

input data and a score that reflects drug combination effects. This makes it a powerful 39
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approach to develop models that are able to predict drug synergy based on drug 40

combination screening experiments and other relevant data. Several ML models for 41

drug synergy prediction have been described in the literature [8, 11–15]. Many of these 42

studies used tree-based ML methods, such as random forests (RFs) [11,12,14] or 43

gradient boosting [12,13,15]. 44

One particular subset of ML that has attracted great interest from researchers in 45

this field is deep learning (DL). These are models composed of multiple processing 46

layers [16], giving them the ability to learn complex, non-linear functions. Furthermore, 47

unlike most traditional ML methods, DL approaches typically do not require extensive 48

feature selection before training, since they have the ability to learn higher-order 49

representations directly from raw input data [17]. Since DL models can handle large 50

amounts of high-dimensional and noisy data, they are good candidates for the 51

development of drug synergy prediction models. 52

Preuer et al. [18] presented DeepSynergy, a feedforward, fully-connected deep neural 53

network that uses chemical features and gene expression data to predict drug synergy. 54

Xia et al. developed a multimodal DL model to predict the growth inhibition of cell 55

lines from the NCI ALMANAC project [19]. This model includes separate 56

feature-encoding subnetworks for each input data type (drug descriptors, gene 57

expression, microRNA and proteomics data) and a cell line growth prediction network. 58

Several other DL-based drug synergy prediction models have since been reported in the 59

literature. Similar to the model proposed in 2018 by Xia et al., many of these more 60

recent models adopt a multimodal architecture [20–23]. 61

Beyond fully connected models [18, 19, 21, 22, 24], other innovative architectures have 62

been proposed. Zhang et al. [25] developed a sparsely-connected deep belief network 63

constrained by biological prior knowledge. The recent architecture of the TranSynergy 64

model [26] includes a transformer [27] component, as well as fully connected layers. A 65

method called REpresentation of Features as Images with NEighborhood Dependencies 66

(REFINED) was developed to transform drug descriptors into images, so that 67

convolutional neural networks (CNNs) could be used to model drug synergy instead of 68

the typical fully connected networks [28]. Another study used graph neural networks 69

(GNNs) for drug-specific subnetworks to learn drug representations directly from the 70

compound structures in an end-to-end manner [23]. Several recent studies have used 71

GNNs trained on graphs containing information on interactions between the drugs in a 72

combination, between drugs and their targets, and/or interactions between genes or 73

proteins in the cell lines [29–32]. 74

Most drug synergy prediction models use drug features or gene expression features or 75

a combination of both. Other models include additional cell line information, such as 76

genetic data (somatic mutations and/or copy number variations (CNVs)) [20,25] or 77

proteomics data [19,24]. Drug target-specific features have also been included [22,25,26]. 78

Since adding more features increases the complexity of the models, assessing which 79

types of input data are more informative and predictive of drug synergy is essential. 80

Precomputed molecular descriptors or fingerprints are used as chemical features to 81

represent the drugs, as an alternative to the use of end-to-end DL methods to learn the 82

relevant compound features directly from the compound structures. Given that the 83

screening datasets that are currently available only contain a very limited number of 84

compounds, it is still unclear whether there is any benefit in using learned 85

representations instead of traditional fingerprints and descriptors. A recent study 86

benchmarked several compound representations on a large drug synergy dataset and 87

found that DL-based representations were able to outperform traditional 88

fingerprints [15]. However, the authors also noted that the difference between the top 89

performing DL-based methods and the best fingerprints was not substantial and that 90

other concerns, such as interpretability, may be more important. 91
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Feature reduction is often applied to the cell line omics data, either by using specific 92

gene lists [23,25,26], or by employing unsupervised data dimensionality reduction 93

techniques, such as principal component analysis (PCA) [24, 33] or autoencoders [20, 24]. 94

Using predefined gene lists to select features provides greater control over the selection 95

process and might make the models easier to interpret biologically. However, certain 96

approaches, such as limiting the gene features to known drug targets present in the 97

training set, may limit the generalization of the models. Data-driven approaches avoid 98

this problem. 99

Another advantage of data-driven dimensionality reduction techniques is the 100

capacity to be trained using much larger datasets with data from more cell lines than 101

those used in the screening datasets [24], or even patient data [20]. Nevertheless, a 102

limitation of this approach is the difficulty in interpreting the results.Therefore, 103

evaluating which feature reduction methods are capable of achieving satisfactory 104

performance, as well as simultaneously facilitating model interpretability, is an essential 105

step when designing drug synergy prediction models. 106

The impact of different methodological aspects on the drug synergy prediction 107

models is still unclear and a systematic evaluation is missing. In this work, we set out 108

to investigate the impact of different methodological variables on the performance of 109

drug synergy prediction DL methods, using the ALMANAC drug combination screening 110

dataset. Namely, we evaluated the impact of different preprocessing steps, types of input 111

data, and DL architectures on the final performance of the methods. Prior biological 112

knowledge was used to select cell line features and to facilitate model interpretation. 113

Interpretability is an important requirement of biomedical predictive systems. We 114

further explored recent methodologies to determine the importance of features and the 115

interpretability of the prediction mechanisms. 116

We were able to identify the types of input data that are more predictive of drug 117

response, as well as the feature selection and data representation methods that produce 118

the best results. We also found that combining different models improves performance. 119

Additionally, we demonstrate that the decisions made by the DL models are driven by 120

biologically meaningful features. 121

Results 122

Testing the impact of different methodological variables 123

We developed several multimodal DL models (Fig 1) to predict drug combination effects 124

summarized as ComboScores, using the ALMANAC dataset [7]. The ComboScore for a 125

given < cell line− drugA− drugB > triplet is the sum of the differences between the 126

expected and observed cell line growth calculated for each dose combination tested in 127

the screen, with expected effects being determined using a modified version of the Bliss 128

independence reference model [34]. 129

Fig 1. A representation of the general architecture of the multimodal DL models
developed in this study. A model is defined as a combination of the learning algorithm
itself and the data preparation steps required beforehand.

First, we built several baseline models: a random baseline model that always 130

predicts the average ComboScore value of the training set, and baseline models where 131

one-hot encoded identifiers were used instead of cell line features and/or drug features. 132

We then built models trained on two different combinations of input data types: 133

1. expr + drugA + drugB models - use of RNA-Seq gene expression data (expr) and 134

drug features for both drugs in a combination (drugA, drugB); 135
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2. expr + mut + cnv + drugA + drugB - use of expression data (expr), mutation 136

data (mut), copy number variation features (cnv) and drug features (drugA, 137

drugB). 138

We began with type 1 models and tested the impact of the format of the 139

transcriptomics data. We evaluated the influence of the type of architecture used to 140

process the gene expression values (fully connected, 1D CNNs and 2D CNNs) and the 141

influence of the arrangement and order of the genes (chromosome order vs. clustering 142

order). 143

We then tested the extension of the gene sets, by using more comprehensive or more 144

selective lists of genes. We also tested if using directly normalized expression values or 145

compact representations that capture the variability and correlation showed any 146

differences in performance. The following feature selection/dimensionality reduction 147

methods were evaluated in this study: 148

• exprprotein coding: the original dataset was filtered so that only protein coding 149

genes were kept, leaving a total of 18,779 genes; 150

• exprlandmark: a list of “landmark genes” as defined by the L1000 project was used 151

to reduce the gene expression dataset to 978 genes that are considered to be 152

representative of the transcriptome as a whole [35]; 153

• exprDGI: Drug-gene interaction (DGI) claims were obtained from The Drug-gene 154

Interaction Database (DGIdb) [36] (version 4.2.0) and then used to build a list of 155

994 DGI genes for the compounds screened in the ALMANAC project. 976 of 156

these genes were present in the gene expression dataset; 157

• exprCOSMIC: A list of 723 cancer driver genes was obtained from the Catalogue of 158

Somatic Mutations in Cancer (COSMIC) [37] (version 94) Cancer Gene 159

Census [38]. After filtering, the gene expression dataset contained 713 genes; 160

• exprNCG: A different cancer-specific gene list containing 2,372 genes was obtained 161

from the Network of Cancer Genes (NCG) (version 6.0) [39]. It includes genes 162

identified in the COSMIC Cancer Gene Census, as well as other genes that have 163

been implicated in cancer. After filtering, 2,362 genes remained in the expression 164

dataset; 165

• Combined gene lists: exprDGI + landmark (1,815 features) and exprDGI + NCG 166

(3,037 features); 167

• exprUMAP: Uniform Manifold Approximation and Projection (UMAP) [40] was 168

used to capture the non-linear structure in the high-dimensional gene expression 169

data, projecting it into a low-dimensional representation (50 components); 170

• exprWGCNA: Weighted Gene Co-expression Network Analysis (WGCNA) [41] was 171

used to find network modules that capture the correlated expression of a set of 172

genes. Module eigengenes summarize the expression of genes in each module and 173

can be used to reduce the dimensionality of the gene expression data. The 174

reduced expressed dataset had a total of 136 module eigengenes. 175

Next, we kept the expression-encoding subnetwork fixed and modified the 176

drug-encoding subnetworks to assess the impact of different drug representations: 177

• drugsECFP4: 1024-bit Morgan fingerprints with a radius of 2 (equivalent to 178

extended connectivity fingerprint (ECFP)4 fingerprints [42]) fed into fully 179

connected drug subnetworks; 180
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• drugsLayeredFP: 1024-bit layered fingerprints fed into fully connected drug 181

subnetworks; 182

• drugsTextCNN: Simplified Molecular-Input Line-Entry System (SMILES) strings 183

were tokenized and one-hot encoded, and then fed into TextCNN [43,44] 184

subnetworks; 185

• drugsGCN: using graph convolutional networks (GCNs) [45] for the drug 186

subnetworks; 187

• drugsGAT: using graph attention networks (GATs) [46] for the drug subnetworks; 188

• drugsMTE: 512-dimensional Molecular Transformer Embeddings (MTEs) [47], fed 189

into fully connected drug subnetworks. 190

Afterwards, we examined if additional data on mutations and CNVs would lead to 191

improved predictive performance (type 2 models). We tested two different models: one 192

trained on mutation data summarized at the gene level and CNVs, filtered to only 193

include DGI genes (exprDGI + mutDGI, gene-level + cnvDGI + drugsECFP4 model); a 194

second model trained using mutations summarized at the pathway level and CNVs 195

(exprDGI + mutpathway-level + cnvDGI + drugsECFP4 model). 196

We also compared our DL models against several ML algorithms (elastic net, 197

support vector regression (SVR), RF, extreme gradient boosting (XGBoost) and light 198

gradient boosting machine (LGBM)). In total, we developed 24 different DL models and 199

6 ML models, which are summarized in S1 Fig. The results of these tests will be 200

described in the following subsections. 201

Baseline models 202

The baseline models that were built served as references for subsequent models. All of 203

the models developed in this study performed better than a random baseline model, 204

that always predicts the average ComboScore value of the training set (S1 Table). 205

To assess the importance of including a certain input data type, we analysed the 206

performance of models trained on one-hot encoded identifiers instead of actual cell line 207

or drug features: 208

• cell lineone hot + drugsone hot - a model trained exclusively with one-hot encoded 209

cell line and drug identifiers, which was used to determine if omics and chemical 210

features include information that is relevant for the prediction of drug synergy, 211

beyond the information contained in drug or cell line identifiers; 212

• cell lineone hot + drugsECFP4 - to determine the impact of removing cell line omics 213

features on the performance of the model; 214

• exprDGI + drugsone hot - to determine the impact of removing drug features; 215

Nearly all of the models performed better than the cell lineone hot + drugsone hot 216

model (Fig 2). Using one-hot encoded cell line names instead of omics features (cell 217

lineone hot + drugsECFP4 model) decreased model performance (Fig 2A). Nevertheless, 218

the scores are comparable to those of some of the models that had been trained on 219

actual gene expression data. When using one-hot encoded drug identifiers instead of 220

chemical features as input (exprDGI + drugsone hot model), model performance dropped 221

even more (Fig 2B). Both the (cell lineone hot + drugsECFP4 model and the exprDGI + 222

drugsone hot model performed better than the cell lineone hot + drugsone hot model. 223

These results seem to indicate that both drug and gene expression features contribute to 224

the predictive capacity of the model, and that drug features appear to be more 225

predictive of drug synergy than omics features. 226
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Fig 2. Performance scores (Spearman correlation - left - and R2 - right) of the different
models tested in this study. (A) Performance scores of models with different gene
expression feature-encoding subnetworks. (B) Performance scores of models with
different drug encoding subnetworks. (C) Performance scores of models trained with
and without mutation (mut) and copy number variation (cnv) data in addition to gene
expression and drug features. (D) Performance scores of non-DL models compared with
one of the best DL models developed in this study.

Different gene expression subnetworks 227

For the most part, models with fully connected gene expression subnetworks trained 228

using the original gene expression values (tabular format) outperformed 1D and 2D 229

convolutional gene expression subnetworks (Fig 2A). The 1D CNN subnetworks were 230

able to achieve performance scores that were similar to some of the lower ranked fully 231

connected gene expression subnetworks, but the 2D CNN subnetworks performed worse. 232

This was independent of the order of genes obtained by clustering or by chromosome 233

position. In light of these results, we only used fully connected layers for the omics 234

subnetworks in subsequent tests. 235

The best gene expression subnetworks were fully connected subnetworks trained on 236

the log-transformed and min-max scaled Fragments Per Kilobase of transcript per 237

Million mapped reads (FPKM) values, with genes being selected according to 238

predefined gene lists (Fig 2A). The top three models were trained on expression data 239

limited to landmark genes, COSMIC cancer genes or genes with known or potential 240

interactions with drugs screened in the ALMANAC project (exprDGI). Working with 241

the full set of over 18,000 protein coding genes present in this dataset was not shown to 242

be particularly advantageous. Most of the feature selection methods that used smaller 243

gene lists produced models with similar or higher performance scores. 244

Using dimensionality reduction led to worse performance (Fig 2A). UMAP 245

embeddings were able to perform similarly to some of the gene list selection methods, 246

while using WGCNA as a dimensionality reduction method resulted in poorer 247

performance, worse than the baseline models trained on one-hot encoded cell line names. 248

In the following sections, we will only focus on models using exprDGI as the 249

feature-encoding subnetwork for gene expression data. This gene selection method 250

ranked second in terms of scoring metrics (coefficient of determination (R2) and 251

Spearman correlation), and might also provide better interpretability. 252

Drug encoding networks 253

The model trained on ECFP4 fingerprints outperformed all of the other subnetworks in 254

terms of all scoring metrics (Fig 2B). Another fingerprint-based drug encoding scheme, 255

RDKit layered fingerprints (LayeredFP), achieved the second-best R2 score, while the 256

GCN subnetwork achieved the second-best Spearman correlation score. In general, most 257

of the drug subnetworks achieved similar performance scores, minus a few exceptions 258

(such as the GAT subnetwork). 259

Additional cell line features 260

Including mutation and CNV data slightly decreased model performance (Fig 2C). The 261

model trained on pathway-level mutation features performed slightly better than the 262

model trained using gene-level mutation data. This may be due to the fact that more 263

genes were taken into consideration when summarizing the mutation data at the 264

pathway level, which would be an indication that relevant genetic information is being 265
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lost when only DGI genes are considered. The mutation dataset summarized at the 266

pathway-level is also less sparse (i.e. a lower percentage of entries are zero) than the 267

gene-level dataset. 268

Comparison with other machine learning models 269

To determine if there is any advantage in using DL instead of other ML algorithms to 270

model drug combination effects, we compared our DL model trained on gene expression 271

features of DGI genes and ECFP4 fingerprints (exprDGI + drugsECFP4 model) against 5 272

different ML models trained on the same features (Fig 2D). We tested elastic net, linear 273

SVR and linear SVR preceded by a radial basis function (RBF) kernel approximation 274

method, RF, XGBoost and LGBM models. The DL model outperformed all of the ML 275

models. The best non-DL models were LGBM (in terms of R2) and RF (in terms of 276

Spearman correlation). The performance of all of the tree-based models (RF, XGBoost 277

and LGBM) is on par with some of the lower ranking DL models described in previous 278

sections. The elastic net and SVR models did not perform well, with worse performance 279

than the baseline DL model trained on one-hot encoded identifiers. 280

Heterogeneous ensemble 281

We also created a simple heterogeneous ensemble, to determine if combining different 282

DL approaches, as well as other ML models, could lead to better results. The ensemble 283

included the top 10 DL models developed in this study and the RF, XGBoost and 284

LGBM models. To obtain the ensemble prediction, the predictions from each of the 285

individual models were simply averaged. 286

The heterogeneous ensemble outperformed the best individual DL models for both 287

scoring metrics (R2=0.584 and Spearman correlation=0.672 vs. R2=0.549 and 288

Spearman correlation=0.645 for the expr DGI + drugsECFP4 model, for example). These 289

results show that combining different DL architectures and different learning algorithms 290

can improve the generalizability of drug synergy prediction models. 291

Feature importance 292

One of the main disadvantages of using DL models to predict drug response is that they 293

are difficult to interpret. The SHapley Additive exPlanations (SHAP) [48] 294

interpretability framework was used to determine which features were the most 295

important for the exprDGI + drugsECFP4 model. SHAP values reflect the contribution 296

of each feature to a prediction. 297

Fig 3 shows the top 20 most important features. Important features are those that 298

have greater absolute SHAP values. Each point in the figure represents an instance in 299

the test set. The points are distributed along the X-axis according to the SHAP values. 300

The colors represent the feature values. This reveals how the value of a feature 301

influences the model output for a given sample. For example, when ECFP4 bit 250 is 302

“ON” (value=1), the impact on the model output is usually positive, pushing the 303

predicted ComboScore higher. 304

Fig 3. Top 20 most important features, ranked by mean absolute SHAP values.

All of the top 20 features for this DL model are drug features. A similar result is 305

obtained for the RF model (S2 Table), suggesting that, for the ALMANAC dataset, 306

drug features are the most relevant for drug response prediction. 307

SHAP can also be used to provide explanations for specific examples. We analyzed a 308

specific example (11835) that involved the SR cell line, derived from an anaplastic large 309
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cell lymphoma [49]. The drugs screened in this experiment were Topotecan 310

hydrochloride, which interacts with the topoisomerase I-DNA complex at the site where 311

the DNA cleavage occurs [50], and Gefitinib, which inhibits the epidermal growth factor 312

receptor (EGFR) tyrosine kinase domain [51]. This experiment was selected for further 313

analysis since this combination was found to have greater-than-additive effects in the SR 314

cell line in the ALMANAC screen (ComboScore=108.00), and because the ComboScore 315

predicted by our model (ComboScore=108.06) was close to the true value. Fig 4A 316

displays the explanation of the prediction for this case. Each row shows the contribution 317

of each feature to improve the prediction score. For this specific example, all of the top 318

20 features were, once again, ECFP4 fingerprint bits from drugA and drugB. 319

Fig 4. Most important features (ranked by absolute SHAP values) for test set example
11835, shown as waterfall plots. The plot starts at a base value of -22.754, which is the
expected model output (determined based on a background dataset). Each row shows
how each feature positively or negatively contributes to move the value from the
expected output to the predicted value for this sample. (A) Top 20 features (from all
features). (B) Top 20 drugA features. (C) Top 20 drugB features. (D) Top 20 gene
expression features.

The SHAP values for each of the different input types were also analyzed separately. 320

Fig 4B and Fig 4C show the 20 most important ECFP4 bits for drugA (Topotecan 321

hydrochloride) and drugB (Gefitinib), respectively, along with the corresponding SHAP 322

values. The 2D structures of 15 of the most important “ON” bits (value=1) that 323

contributed positively are shown in S2 Fig for Topotecan and S3 Fig for Gefitinib. 324

As shown in S2 Fig, bits 249 and 658 capture parts of the lactone ring in Topotecan 325

which establishes an important interaction with Topoisomerase I via hydrogen 326

bonding [50]. Many of the remaining bits capture parts of the planar ring system that 327

allows the drug to intercalate between two DNA base pairs and establish pi stacking 328

interactions with the neighboring DNA bases [50]. These results reveal that our model 329

was able to correctly identify which substructures are most important for the bioactivity 330

of Topotecan. 331

The DL model was also able to identify features in Gefitinib that are more predictive 332

of drug response and are consistent with the literature (S3 Fig). Bits 795, 490 and 203 333

capture parts of the quinazoline core that are involved in an important drug-protein 334

interaction, with bit 203 focusing on the nitrogen atom that interacts with the 335

adenosine triphosphate (ATP) binding site of EGFR via a hydrogen bond [52]. The 336

majority of the bits in S3 Fig, however, correspond to the morpholine substituent or the 337

3-chloro-4-fluoro aniline substituent, which are not directly involved in drug-protein 338

interactions [52]. The DL model may have identified these features as more important 339

because they might be structures that distinguish Gefitinib from other compounds in 340

the ALMANAC dataset, instead of being important for the drug activity per se. 341

The top 20 gene expression features are shown in Fig 4D. None of the genes that 342

encode the primary targets of Topotecan and Gefitinib are found among the top 20 gene 343

expression features. TOP1, which encodes DNA Topoisomerase I, was not present in the 344

list of drug-gene interactions for Topotecan hydrochloride in DGIdb. The gene encoding 345

DNA Topoisomerase I Mitochondrial (TOP1MT ) was present in the list of drug-gene 346

interactions, but it was only the 246th most important gene expression feature. EGFR 347

ranked higher, being the 46th most important gene expression feature in this experiment. 348

Additionally, none of the genes involved in the drug-gene interactions with Topotecan 349

hydrochloride listed in DGIdb are among the top 20 most important gene expression 350

features. Four of the top 20 genes (BLK, MET, ERBB3 and CRKL) are involved in 351

drug-gene interactions with Gefitinib, however. Gefitinib has been experimentally 352

shown to be capable of binding to BLK [53], although with a much lower affinity than 353
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for EGFR. Since the expression of BLK is high in the SR cell line, the high SHAP value 354

of BLK might be an indication that this interaction may be important for the response 355

of the cells to Gefitinib. Amplification of MET [54] or CRKL [55] has been linked to 356

acquired resistance to EGFR inhibitors, and ERBB3 has also been implicated in 357

resistance to EGFR tyrosine kinase inhibitors [54]. Since these genes are less expressed 358

in the SR cell line, the higher SHAP values may be an indication that lower expression 359

of these genes is essential for the cell line to be responsive to treatment with Gefitinib. 360

Interestingly, several of the most important genes have some kind of connection to 361

the immune system. CXCL10 and CXCL12 are both chemokines involved in the 362

recruitment of lymphocytes [56,57]. ADORA2A plays a role in the regulation of the 363

immune system [58], TLR7 is involved in immune response [59], and ALCAM also plays 364

a role in immunity [60]. It is possible that the DL identified these features as being 365

essential for the prediction of drug synergy because the expression of these genes 366

uniquely identifies the cell line in some way, and not necessarily due to the relevance of 367

these genes for drug response. 368

A pre-ranked gene set enrichment analysis (GSEA) [61] was performed for test set 369

example 11835 to determine if there is an enrichment of specific gene ontology (GO) 370

terms among the most important genes. Genes were ranked based on their SHAP 371

values. In total, the analysis identified 28 enriched gene sets, most of which refer to cell 372

motility, cell death, and the regulation of kinase or transferase activity (S3 Table). We 373

found that the gene sets with the highest normalized enrichment score (NES) values are 374

leukocyte/lymphocyte-specific GO terms (S3 Table). We also observed that several of 375

the enriched gene sets include the EGFR gene, which encodes the protein targeted by 376

Gefitinib (S3 Table). 377

Discussion 378

The results of this study suggest that drug features are more predictive of drug 379

combination effects than cell line features, at least for the ALMANAC dataset, in line 380

with previous results [19]. Inclusion of other cell line features besides gene expression 381

data was not beneficial. Similar results were obtained in other drug response prediction 382

studies [62,63]. 383

Several of the compound representation methods tested in this work produced 384

models with similar performance. This finding is in agreement with a recent study by 385

our group that compared the performance of different compound representations across 386

different drug response prediction tasks and concluded that most representations 387

perform similarly [68]. Since different drug representations may capture different 388

characteristics of the compounds that may be equally predictive of drug response, the 389

combined use of different types of drug representations might lead to an improvement in 390

model performance and could be an interesting strategy to explore in the future. 391

Using prior biological knowledge for feature selection proved to be beneficial. Besides 392

the cancer-specific and DGI gene lists that were utilized in this study, other 393

cancer-specific gene lists and combinations of lists might provide even better results. 394

Pathway propagation methods have been employed in other drug response prediction 395

studies to simulate response to treatment [69] and to extend the selection of genes 396

beyond known drug targets [26]. This strategy was not explored in the current study, 397

but it might also be a way to improve the predictive capacity of the models. It is 398

important to note that using drug targets or DGIs to select genes may limit the 399

generalizability of the model, as new compounds may have DGIs that are different from 400

the ones that were considered relevant for the training set. 401

Another approach that was not explored in this study is directly including biological 402

knowledge in the neural network by representing the experiments as heterogeneous 403
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graphs and modeling drug response using GNNs. Since the number of unique 404

compounds and cell lines in the ALMANAC dataset is relatively small, it is unclear if 405

the models would benefit from the added complexity of this approach. 406

Despite training the models on a relatively large screening dataset, comprising over 407

200,000 screening experiments, there are only 59 cell lines and 104 drugs in ALMANAC. 408

The number of unique compounds screened in the ALMANAC project is relatively 409

small, a fact that might explain why fingerprint-based models performed slightly better 410

than learned representations in this case, as learned representations are known to 411

struggle when faced with smaller compound sets [64]. Considering the small number of 412

unique cell lines and drugs, pre-training the feature encoding subnetworks using larger 413

sets of compounds and larger omics datasets obtained from other sources could help 414

improve model performance. Training models on larger and more diverse drug 415

combination datasets from databases such as DrugCombDB [65] or DrugComb [66], 416

which integrate data from several high-throughput screening experiments, could be 417

another strategy to obtain models with better generalization capacity. However, it is 418

important to note that different screening protocols might make it difficult to compare 419

the synergy scores calculated for different screening datasets and to use them jointly to 420

train models. Furthermore, integrating omics datasets from different studies requires the 421

selection of adequate batch correction methods, which might not be straightforward [67]. 422

We found that creating simple heterogeneous ensembles comprising both DL and ML 423

models can improve performance. Preto et al. had previously observed that 424

heterogeneous ensembles produced better classifiers than individual models when using 425

the ALMANAC dataset [24], and other synergy prediction studies using different 426

datasets also found that combining multiple models is beneficial [8, 10]. 427

Although SHAP has allowed us to gain more insight into the model and to try to 428

interpret its predictions in a biologically meaningful way, it is still difficult to explain 429

how all of the most important features interact in a particular screening experiment and 430

give rise to drug synergy. Interpretability methods allow us to explain how a DL model 431

works, but they do not necessarily explain the underlying biology/chemistry. It is, 432

therefore, unlikely that the methodology used in our study will be able to uncover the 433

mechanisms underlying drug synergy for particular < cell line− drugA− drugB > 434

triplets, but our findings do confirm that DL models are able to learn to associate 435

important structural features of the compounds and tissue-specific gene expression 436

patterns with drug response. 437

One important aspect to be considered is the validation scheme that is chosen. In 438

our study, the data were randomly split into training, validation and test sets. Using a 439

different validation scheme, such as a leave-drug-combinations-out approach (i.e. drug 440

combinations that appear in one set are not included in the other sets), or even a 441

leave-drugs-out or leave-cell-lines out validation scheme would likely result in lower 442

performance scores. In addition, the models were validated with data from within the 443

same drug combination screening study. Although this is a common model evaluation 444

strategy, cross-validation within a single study has been shown to overestimate model 445

generalizability [73]. In the future it would be interesting to assess different DL 446

modeling strategies by performing a cross-study evaluation of the models as well [73]. 447

Materials and methods 448

Datasets and data preprocessing 449

ALMANAC drug response data in the form of ComboScores for 450

< cell line, drugA, drugB > triplets were downloaded from CellMiner Cross Database 451

(CellMinerCDB) [74] (version 1.2). 452
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Since ComboScore predictions should be independent of the order of the drugs in a 453

given combination, we considered reverse drug order < cell line, drugB, drugA > 454

triplets to be duplicates and the ComboScores for experiments involving the same cell 455

line and same drug combination were averaged. The MDA-MB-468 cell line that is 456

present in the original ALMANAC dataset was not considered in our analysis as it does 457

not appear in the omics datasets we used in this study. The MDA-N cell line present in 458

the omics datasets from CellMinerCDB was removed as it was not included in the 459

ALMANAC project. 460

National Service Center (NSC) compound identifiers were used to map compounds 461

to their respective SMILES strings using a compound structure-data file (SDF) file 462

provided by NCI Developmental Therapeutics Program (DTP) for the ALMANAC 463

dataset. For the compounds that were not successfully mapped using the previously 464

described method, PubChemPy (version 1.0.4) was used to obtain canonical SMILES 465

strings from PubChem [75] based on drug names. The SMILES strings were then 466

preprocessed using the ChEMBL Structure Pipeline (version 1.0.0) [76], which removed 467

salts and standardized the molecules according to ChEMBL-defined rules. The 468

preprocessed SMILES were then used to compute different compound representations, 469

depending on the type of architecture that was chosen for the drug subnetwork. 470

RNA-Seq gene expression data (log2(FPKM+1)) for the NCI-60 cell lines were also 471

downloaded from CellMinerCDB [74]. Genes with constant expression values across all 472

cell lines were removed. The expression dataset was then filtered using specific gene 473

lists, as detailed in the Results section. 474

Besides the use of specific gene sets to reduce the number of features in the gene 475

expression dataset, several other dimensionality reduction methods were also tested. 476

UMAP was used to further reduce the dimensionality of the gene expression dataset 477

filtered by protein coding genes (exprprotein coding dataset). Embeddings with 50 478

components were generated using the UMAP Python package (version 0.5.1) [40]. The 479

algorithm was fit on the training data and then used to transform the training, 480

validation and test sets. The datasets were min-max scaled beforehand. A total of 20 481

neighbors were considered when learning the manifold structure of the data. Pearson 482

correlation was used as the distance metric, and the minimum distance between two 483

points in the embedding was kept at the default value of 0.1. 484

We also evaluated the use of WGCNA [41] as a dimensionality reduction technique 485

for gene expression data. The WGCNA R package (version 1.69) was used to find a 486

total of 136 gene co-expression modules. Module eigengenes, which summarize the 487

expression of genes in each module, were then used as input features instead of the 488

original gene expression values. 489

When preparing the gene expression (exprprotein coding) data to be fed into 1D or 2D 490

CNN, two different methods were used to rearrange the genes so that their locations 491

within the input tensors might be more biologically meaningful. The first method sorted 492

the genes according to their chromosome positions, an approach similar to the method 493

described in [77]. The second method employed hierarchical clustering to find a new 494

order for the genes. The clustering algorithm used Pearson correlation as the distance 495

metric and complete linkage. A dendrogram was created based on the clustering results, 496

and the positions of the leaves (genes) was used to reorder the gene expression features. 497

The gene expression data were then reshaped into the required formats for 1D and 2D 498

CNNs. 499

A mutation annotation format (MAF) file containing mutation data from 500

whole-exome sequencing for NCI-60 cell lines was downloaded from CBioPortal [78, 79]. 501

Silent mutations and mutations in non-coding regions were excluded. The remaining 502

data were then binarized and summarized at the gene level, with ‘1’ indicating that a 503

given cell line had at least one alteration in a particular gene and zero indicating the 504
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absence of mutations. To create the gene-level mutation dataset, the data were further 505

filtered using a list of drug-gene interactions from DGIdb, leaving a total of 636 genes. 506

To create the pathway-level dataset, a new binary event matrix was created, where a ‘1’ 507

indicates that a given cell line had at least one alteration in a given pathway. Genes 508

were mapped to pathways using Molecular Signatures Database (MSigDB) [80,81] 509

(version 7.2) gene sets derived from the Reactome [82] database, which have been 510

filtered to reduce the redundancy between gene sets. The pathway-level mutation 511

dataset had a total of 1,510 features. 512

Genomic Identification of Significant Targets in Cancer (GISTIC)2 putative CNVs 513

for the NCI-60 cell lines were also obtained from CBioPortal [78,79]. Only genes that 514

were present in the drug-gene interactions list obtained from DGIdb were kept, leaving 515

a total of 952 features. 516

The omics datasets were individually merged with the drug response dataset to 517

create the final omics datasets containing the corresponding cell line data for each 518

experiment. Afterwards, the data were split into three subsets - a training set 519

comprising around 80% of the data (239,943 examples), and validation and test sets 520

each corresponding to approximately 10% of the original data (30,007 and 30,001 521

examples, respectively). After splitting the expression dataset into 522

training/validation/test sets, the features were scaled to a range between zero and one 523

(min-max scaling), with the exception of the UMAP and WGCNA-transformed data, 524

which were not scaled after the dimensionality reduction step. 525

Models 526

The DL models were built using a multimodal approach, in which each data type has its 527

own corresponding feature-encoding subnetwork. The learned representations from each 528

subnetwork were then concatenated into a single tensor before being fed into a final 529

fully connected drug synergy prediction subnetwork. 530

Several different architectures were tested for each of the subnetworks. The gene 531

expression subnetworks were either fully connected networks, 1D CNNs, or 2D CNNs. 532

When included, the mutation and CNV subnetworks were always fully connected. For 533

the drug subnetworks, we tested fully connected networks (when using ECFP4 534

fingerprints, LayeredFP or MTEs as inputs), GCN [45] subnetworks, GAT [46] 535

subnetworks, and TextCNN [43] subnetworks (as implemented in DeepChem [44]). Each 536

drug in a combination had a separate feature-encoding subnetwork, with weights being 537

shared between the two drug subnetworks. The prediction subnetwork was always 538

entirely composed of fully connected layers, ending in a single output unit with a linear 539

activation function, given that the prediction task was approached as a regression 540

problem. 541

All of the models were implemented using the Keras subpackage in Tensorflow [83] 542

(version 2.2.0). The GCN and GAT subnetworks were built using graph layers 543

implemented in the Spektral package [84] (version 1.0.7). 544

Model hyperparameters and hyperparameter optimization 545

All models used the mean squared error (MSE) as the loss function, and the adaptive 546

moment estimation (Adam) algorithm as the optimization method. Models were trained 547

for a maximum of 500 epochs, using the EarlyStopping callback with a patience of 15 548

epochs to stop the learning process once the validation loss stopped improving. The 549

mini-batch size was 64. 550

A selection of model hyperparameters, including the learning rate, the hidden layer 551

activation function, the dropout rate and the L2 regularization penalty, as well as 552

subnetwork-specific hyperparameters, were optimized for each combination of input 553
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data types and subnetwork architectures that we evaluated in this work. 554

Hyperparameters were tuned using the validation set and the Bayesian Optimization 555

with HyperBand (BOHB) algorithm [85] as implemented in Ray Tune (version 1.0.1). 556

The hyperparameter search space was explored using Bayesian optimization [86] and the 557

HyperBand [87] algorithm was used to stop underperforming trials early. A total of 50 558

configurations were evaluated for each model. The set of hyperparameters that 559

minimized the validation MSE was considered the best configuration. More details on 560

the hyperparameter search grids that were explored and the hyperparameter values that 561

were chosen for each model are provided in S1 File. 562

Model evaluation 563

After tuning the model hyperparameters, the models were evaluated on the independent 564

test set. Model performance was evaluated using several scoring metrics, including the 565

R2 and Spearman’s rank correlation coefficient. 566

In addition to comparing DL models with different omics and drug subnetworks, our 567

models were also compared against non-DL models. Elastic net linear regression [88], 568

SVR [89], and RF [90] models were implemented using the scikit-learn Python package 569

(version 0.22.1) [91]. Since kernelized SVR does not scale well to larger datasets, we 570

used the Nystroem method [92] to approximate the feature mappings of a RBF kernel 571

before training a linear SVR on these approximations. An XGBoost [93] model was 572

implemented using the xgboost Python package (version 1.4.0), and a LGBM [94] model 573

was implemented using the lightgbm package (version 3.2.1). The ML models were 574

trained on ECFP4 fingerprints and the gene expression values of DGI genes based on 575

information from DGIdb. The input features were concatenated into a single dataset 576

before training. Hyperparameters were optimized using Bayesian optimization. 577

The models were also compared against a baseline model that always predicts the 578

average ComboScore value of the training set, and against models where the cell line 579

and/or drug features were substituted with the corresponding one-hot encoded 580

identifiers (cell lineone hot + drugsone hot, cell lineone hot + drugsECFP4, and exprDGI + 581

drugsone hot). 582

Feature importance 583

The SHAP Python package (version 0.39.0) [48] was used to explain predictions made 584

by the best DL models developed in this work. More specifically, we used Deep SHAP, 585

which uses the Deep Learning Important FeaTures (DeepLIFT) [95] additive feature 586

attribution method to approximate SHAP values. Feature importance was then 587

determined based on these values. The most important fingerprint bits were visualized 588

using drawing functions available in RDKit (version 2020.09.1.0). 589

A pre-ranked GSEA [61] was performed for test set example 11835 using the 590

clusterProfiler R package (version 3.18.1) [96]. SHAP values were used to rank the genes 591

prior to the analysis. 592

Supporting information 593

S1 Fig. The different types of deep learning and machine learning models 594

developed in this study. 595

S1 Table. Performance scores for all of the models developed in this study. 596
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S2 Table. Top 20 features (ranked by Gini importance) for the random 597

forest model. 598

S2 Fig. 2D depiction of the top 15 most important ECFP4 “ON” bits with 599

a positive effect on the model output for drugA (Topotecan) in test set 600

example 11835. 601

S3 Fig. 2D depiction of the top 15 most important ECFP4 “ON” bits with 602

a positive effect on the model output for drugB (Gefitinib) in test set 603

example 11835. 604

S3 Table. Pre-ranked GSEA results. 605

S1 File. Hyperparameter search grids and selected hyperparameter values 606

for each model. 607
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Unveiling new disease, pathway, and gene associations via multi-scale neural
network. PLOS ONE. 2020;15(4):e0231059. doi:10.1371/journal.pone.0231059.

73. Xia F, Allen J, Balaprakash P, Brettin T, Garcia-Cardona C, Clyde A, et al. A
cross-study analysis of drug response prediction in cancer cell lines. Briefings in
Bioinformatics. 2022;23(1). doi:10.1093/bib/bbab356.

74. Rajapakse VN, Luna A, Yamade M, Loman L, Varma S, Sunshine M, et al.
CellMinerCDB for Integrative Cross-Database Genomics and Pharmacogenomics
Analyses of Cancer Cell Lines. iScience. 2018;10:247–264.
doi:10.1016/j.isci.2018.11.029.

75. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem in 2021: new
data content and improved web interfaces. Nucleic Acids Research.
2021;49(D1):D1388–D1395. doi:10.1093/nar/gkaa971.

May 13, 2022 20/22

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 16, 2022. ; https://doi.org/10.1101/2022.05.16.492054doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.16.492054
http://creativecommons.org/licenses/by/4.0/


76. Bento AP, Hersey A, Félix E, Landrum G, Gaulton A, Atkinson F, et al. An
open source chemical structure curation pipeline using RDKit. Journal of
Cheminformatics. 2020;12(1):51. doi:10.1186/s13321-020-00456-1.

77. Lyu B, Haque A. Deep Learning Based Tumor Type Classification Using Gene
Expression Data. In: Proceedings of the 2018 ACM International Conference on
Bioinformatics, Computational Biology, and Health Informatics. New York, NY,
USA: ACM; 2018. p. 89–96.

78. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio
Cancer Genomics Portal: An Open Platform for Exploring Multidimensional
Cancer Genomics Data Cancer Discovery. 2012;2(5):401–404.
doi:10.1158/2159-8290.CD-12-0095.

79. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al.
Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the
cBioPortal. Science Signaling. 2013;6(269):pl1–pl1. doi:10.1126/scisignal.2004088.

80. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
et al. Gene set enrichment analysis: A knowledge-based approach for interpreting
genome-wide expression profiles. Proceedings of the National Academy of
Sciences. 2005;102(43):15545–15550. doi:10.1073/pnas.0506580102.

81. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P,
Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics.
2011;27(12):1739–1740. doi:10.1093/bioinformatics/btr260.

82. Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, et al. The
reactome pathway knowledgebase. Nucleic Acids Research.
2019;doi:10.1093/nar/gkz1031.

83. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed Systems. Nature
Neuroscience. 2016;16(4):486–492.

84. Grattarola D, Alippi C. Graph Neural Networks in TensorFlow and Keras with
Spektral [Application Notes]. IEEE Computational Intelligence Magazine.
2021;16(1):99–106.

85. Falkner S, Klein A, Hutter F. BOHB: Robust and efficient hyperparameter
optimization at scale. In: International Conference on Machine Learning. PMLR;
2018. p. 1437–1446.
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