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Abstract 

The tumor microenvironment (TME) is a dynamic and complex matter shaped by 

heterogenous cancer and cancer-associated cells present at the tumor site. Hyaluronan (HA) 

is a major TME component that plays pro-tumorigenic and carcinogenic functions. These 

functions are mediated by different hyaladherins expressed by cancer and tumor-associated 

cells triggering downstream signaling pathways that determine cell fate and contribute to 

TME progression towards a carcinogenic state. 

Here, we review the interaction of HA with several cell-surface hyaladherins - CD44, 

RHAMM, TLR2 and 4, LYVE-1, HARE and layilin. We discuss the signaling pathways 

activated by these interactions and the respective response of different cell populations within 

the TME, and the modulation of the TME. Potential cancer therapies via targeting these 

interactions are also briefly discussed. 
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List of abbreviations (alphabetical order): 

AKT  Serine/threonine-specific protein kinase also known as Protein kinase B (PKB) 

AURKA Aurora Kinase A 

CD44  Cluster differentiation 44  

Cdc  Cell division control  

c-Met  Receptor tyrosine kinase 

COX  Cyclooxygenase 

CSC  Cancer stem cells 

CSF  Colony stimulating factor 

CXCL  C-X-C motif chemokine ligand 

DAMP Damage-associated molecular patterns 

DOT1  Disruptor of telomeric silencing-1 

ECM  Extracellular matrix 

EGFR  Epidermal growth factor receptor 

EMT  Epithelial to mesenchymal transition 

ERα  Estrogen receptor-α 

ERM  Ezrin/Radixin/Moesin 

ERK-2 Extracellular-signal-regulated kinase 2 

F-actin Filamentous actin 

FAK  Focal adhesion kinase also known as protein tyrosine kinase 2 (PTK2) 

FGF  Fibroblast growth factor  

GAB1  GRB2-associated-binding protein 1 

GFR  Growth factor receptor 
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GRB2  Growth factor receptor-bound protein 2 

GSC  Glioblastoma stem cells 

GSK-3  Glycogen synthase kinase-3 

GTP  Guanosine triphosphate 

HA  Hyaluronan 

HARE  Hyaluronan receptor for endocytosis also known as Stabilin-2 (Stab-2) 

HAS  Hyaluronan synthases 

HER2  Human epidermal growth factor receptor 2 

HMW  High molecular weight 

HOXD10 Homeobox D10 

HYAL  Hyaluronidase 

IAP  Inhibitor of apoptosis 

IFN-   Interferon  

IGF1R Insulin-like growth factor 1 receptor 

IL-1   Interleukin 1 beta  

IL-8  Interleukin 8  

IP3  Inositol trisphosphate receptors 

iRHAMM intracellular RHAMM 

JNK-1,2 Jun N-terminal kinase 1,2 

LMW  Low molecular weight 

LYVE-1 Lymphatic vessel endothelial hyaluronan receptor-1 

MDR1  Multidrug-resistant protein 1 

MEK  Mitogen-activated protein kinase kinase 
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MIP  Major intrinsic protein 

MMP  Metalloproteinase 

MTA3  Metastasis-associated 1 family member 3 

MyD88 Myeloid differentiation primary response  

NF- B  Nuclear factor kappa B  

NFE2L2 Nuclear factor erythroid 2-like 2 

NHE1  Na+-H+ exchanger-1 

p21  Cyclin-dependent kinase inhibitor 1 or CDK-interacting protein 1 

PAI-1  Plasminogen activator inhibitor-1 

PAK1  Serine/threonine-protein kinase 

PAMP  Patterns expressed by a wide variety of pathogens 

PAR1b Partitioning-defective 1b also known as microtubule affinity-regulating kinase 

2 (MARK2)  

PARP Poly(ADP-ribose)polymerase 

PDCD4 Program cell death protein 4  

PDGF  Platelet-derived growth factor 

PDGFR Platelet-derived growth factor receptor 

PI3K  Phosphoinositide 3-kinases 

PKCε  Protein kinase Cε  

PKC   Protein kinase C  

Rac1  Ras-related C3 botulinum toxin substrate 1 

RHAMM Receptor for hyaluronan-mediated motility also known as intracellular 

hyaluronan receptor (IHABP), hyaluronan-mediated motility receptor 

(HMMR), and the cluster of differentiation 168 (CD168) 
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ROK  Rho-associated protein kinase 

RON  Recepteur d’origine nantais 

ROS/RNS Reactive oxygen/nitrogen species 

RTK  Protein kinase receptors 

Snail  Zinc finger protein SNAI1 

Src  Tyrosine-protein kinase 

TGF- 1 Transforming growth factor beta 1 

TLR  Toll-like receptor 

TME  Tumor microenvironment 

TNF-  Tumor necrosis factor alpha 

TRAF6 TNF receptor associated factor 6  

uPa  Urokinase plasminogen 

Vav2  Guanine nucleotide exchange factor Vav2 

VEGF  Vascular endothelial growth factor C  

XIAP  X-linked inhibitor of apoptosis protein 

YAP  Yes-associated protein 

ZEB1  Zinc finger E-box-binding homeobox 1 
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1. Introduction 

The tumor microenvironment (TME) is a complex and dynamic setting where tumorigenesis 

occurs. TME comprises multiple heterogeneous cellular populations, including cancer stem 

cells (CSC); tumor-infiltrating immune and inflammatory cells – T and B lymphocytes, 

tumor-associated macrophages, dendritic cells, natural killer cells, neutrophils, and myeloid-

derived suppressor cells; stromal cells – cancer-associated fibroblasts, pericytes, 

mesenchymal stromal cells; blood and lymphatic vessels; and tissue-specific cell types (Fig. 

1). These cells participate in autocrine and paracrine signaling that modify the surrounding 

extracellular matrix (ECM) through the secretion and deposition of bioactive molecules. The 

introduced changes modulate the cell-cell and cell-ECM interactions, contributing to tumor 

cells proliferation, invasion, metastasis, and determining the therapeutic response, as 

explained in detail by several excellent recent reviews.[1-6]  

 

 

Figure 1. Schematic presentation of the tumor microenvironment complexity arising 

from the heterogeneous cellular populations that constantly remodel the surrounding 
extracellular matrix (ECM). 
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Among different signaling molecules in TME, hyaluronan (HA) is a well-known multimodal 

player: it can regulate cell proliferation, apoptosis, multidrug resistance, and survival; induce 

cell invasion and metastases formation, and contribute to evading the immune response. HA 

homeostasis is altered since the early stages of tumorigenesis, and this alteration contributes 

to cancer initiation and progression (Fig. 2).[7-11] HA is synthesized at the cell membrane by 

three hyaluronan synthases (HAS1-3) through the alternate conjugation of D-glucuronic acid 

(GlcA) and N-acetyl-D-glucosamine (GlcNAc) (Fig. 2A).[12] The synthesized linear 

polymer with a size of 3 to 4 MDa is secreted into the ECM, where it is degraded by 

hyaluronidases (HYAL) and reactive oxygen/nitrogen species (ROS/RNS) to shorter HA 

fragments and oligomers.[13] Both synthesis and degradation of HA are upregulated in most 

cancers, resulting in an accelerated turnover and accumulation of HA with different sizes in 

extra- and pericellular space (Fig. 2B). Such HA accumulation is a hallmark of several 

cancers, e.g., pancreatic carcinomas, lung, breast, prostate, and colorectal cancers, and head 

to neck tumors, and a marker of poor prognosis.[5, 14, 15]  

 

 

Figure 2. Hyaluronan synthesis and degradation. (A) In healthy tissues, HA is 

synthesized at the cell membrane by HAS1-3 into a high molecular weight polymer. HA 
is secreted and deposited into the pericellular and extracellular matrix, where it 

interacts with cell receptors and other ECM components, including proteoglycans and 
hyaladherins. (B) In the tumor microenvironment, the increased expression and activity 

of HAS and HYAL, together with high redox potential and increased reactive 
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oxygen/nitrogen species (ROS/RNS), lead to accelerated HA turnover and accumulation 
of HA fragments and oligomers. 

 

The bioactivity of HA depends on its molecular weight: high molecular weight (HMW, 

molecular mass above 1 MDa) and low molecular weight HA (LMW, molecular mass up to 

700 kDa) usually induce different and often opposite cell behavior (reviewed [16, 17]). This 

divergent cell response is due to the different interactions between the available extra- and 

pericellular HA and the specific cell receptors, namely cluster differentiation 44 (CD44), the 

receptor for hyaluronan-mediated motility (RHAMM), toll-like receptor 2 (TLR-2), TLR4, 

lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), hyaluronan receptor for 

endocytosis (HARE), and layilin, which regulate the TME interactome and thus, the cancer 

aggressiveness and metastatic potential (Table 1).  

In this review, we discuss the interactions of HA with these receptors and the respective 

downstream signaling pathways leading to tumorigenic behavior of different cell populations 

within TME. We also tackle the potential of targeting HA/receptors interactions as a 

therapeutic approach. 

 

Table 1. Cell response induced by HA interactions with its receptors in different cancer 

models. Data from the last 5 years. 

Receptor Cell response Model Ref 

CD44 Proliferation Cholangiocarcinoma cell lines; Non-small 

cell lung cancer; Breast carcinoma cells; 

Colon cancer cells; Breast cancer stem 

cell-like cells; Ovarian cancer cells; 

Pancreatic cancer. 

[18-24] 

Anti-apoptosis/Survival Non-small cell lung cancer; Breast cancer 

cells; Colon cancer cells; Cancer stem 

cells of head and neck squamous cell 

carcinoma. 

[19-21, 

25, 26] 
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Motility and Invasion Cholangiocarcinoma cell lines; Breast 

carcinoma cells; Head and neck squamous 

cell carcinomas and its cancer stem cells; 

Ovarian cancer cells. 

[18, 23, 

26-28] 

Epithelial to 

mesenchymal transition 

Head and neck squamous cell carcinomas; 

Breast cancer cells; Liver cancer cells. 

[28-30] 

Stemness Head and neck squamous cell carcinomas; 

Breast cancer stem cell-like cells; Liver 

cancer cells. 

[22, 28, 

30] 

Radio/Chemotherapy 

resistance 

Head and neck squamous cell carcinomas; 

Colorectal cancer; Breast cancer stem 

cell-like cells. 

[21, 22, 

26, 28] 

Metastasis Head and neck squamous cell carcinomas; 

Pancreatic cancer. 

[24, 28] 

RHAMM Proliferation Lung adenocarcinoma cells; Ovarian 

cancer cells; Prostate cancer cells; Breast 

carcinoma cells; Adenocarcinoma of the 

breast duct; Non-small cell lung cancer; 

Fibrosarcoma cells. 

[19, 31-

33] 

Survival Ovarian cancer cells; Prostate cancer 

cells; Breast carcinoma cells; 

Adenocarcinoma of the breast duct; Non-

small cell lung cancer. 

[19, 32] 

Motility Lung adenocarcinoma cells; 

choriocarcinoma cells. 

[31, 34] 

Epithelial to 

mesenchymal 

transition; 

Chemotherapy 

Gastric cancer cells. [35] 
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resistance and stemness 

TLR2,4 

 

Inflammation Melanocytes. [36] 

Proliferation Colorectal cancer; Colorectal cancer cells; 

Glioblastoma stem-like cells. 

[21, 37] 

Anti-apoptosis/Survival Colorectal cancer; Colorectal cancer cells. [21] 

Radiotherapy resistance Colorectal cancer. [21] 

LYVE-1 (Lymph node) 

Metastasis 

Breast cancer cells; Oral squamous cell 

carcinoma; Melanoma cells. 

[38-40] 

Proliferation Lymphatic endothelial cells. [41] 

Motility Breast cancer cells; Lymphatic 

endothelial cells. 

[38] 

Adhesion/Docking and 

migration (to TME) 

Dendritic cells. [42] 

Lymphangiogenesis Lymphatic endothelial cells. [38, 41] 

Tight junctions 

disruption 

Lymphatic vessels endothelium. [40] 

Soluble 

LYVE-1 

Inhibits cell 

proliferation 

Melanoma cells. [43] 

Inhibits 

lymphangiogenesis 

Corneal lymphangiogenic models in mice. [44] 

HARE Proliferation, motility, 

and inflammation 

Lymphatic endothelial cells. [45] 

Layilin Immunomodulator Immuno infiltrates in gastric and colon 

cancers; Infiltrating T cells in liver 

cancer; 

[46, 47] 
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Invasion Glioma cells; [48] 

 

2. Cluster of Differentiation 44 (CD44) 

CD44 is the most studied HA receptor. It is involved in the normal homeostasis of different 

tissues and ubiquitously expressed on the surface of the cells of these tissues. It is 

overexpressed in several cancers and is a compelling marker of CSC.[28] CD44 is a non-

kinase transmembrane glycoprotein (P-glycoprotein 1) that interacts with HA through two 

conserved HA-binding regions (BX7B motifs - Link domain) at the N-terminal region of the 

extracellular portion (Fig. 3).[49] CD44 mediates HA signaling and HA internalization and 

degradation, thus contributing to HA local turnover.[50] CD44 is coded by a single gene but 

has different variants (CD44v) due to alternative splicing and post-translational 

modifications, e.g., glycosylation, which are often deregulated in cancer. Alternative splicing 

of CD44 gene results in CD44 isoforms with variable exons - variant 2 to 10 (Fig. 3), which 

provide new conformations and binding sites and have different/additional functions than 

standard CD44 (CD44s, 85-95 kDa), affecting tumor-initiating and metastatic potential 

(reviewed [51]). Altered N- or O- glycosylation of CD44 also affects HA-CD44 interactions 

and the metastatic potential of cancer cells.[52, 53] As an example, truncated O-glycosylation 

enhances the affinity of HA to CD44, thus, enhancing the tumorigenic signaling.[52] 

 

 

Figure 3. CD44 structural diversity is due to variable exons (v) that are inserted in the 
extracellular region next to the cell membrane. Some of the cancer-associated variants 

are also shown.   

2.1. CD44 as a signaling hub 
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In TME, CD44 acts as a signaling hub because it can trigger different signaling cascades in a 

function of the environment, thus, eliciting various cellular responses. The high expression of 

CD44 alone is not an indicator of its (pro)tumorogenic behavior, as the activation state of 

CD44 can be different.[54] CD44 is usually activated upon HA binding, which elicits protein 

conformational changes. The adopted conformations favor the formation of multimolecular 

complexes by additional binding of adaptor molecules, such as molecular switchers (e.g., Rho 

GTPase proteins RhoA, RhoC, Rac, and Cdc42) or cytoskeletal anchor proteins that trigger 

different downstream signaling.  

There are also other mechanisms by which CD44 can affect the cell behavior in TME. One of 

these mechanisms implies the formation of clusters by multivalent interactions of HA with 

HAS and other receptors (e.g., Erbb2, Erbb3, EGFR, IGF1R-b, PDGFR, c-MET) within lipid 

rafts.[55-63] Another mechanism involves sequential cleavage of the CD44 that is frequently 

observed in human tumors and associated with increased metastatic potential.[55, 64-66] In 

this process, the ectodomain of CD44 is first cleaved by membrane-type 1 matrix 

metalloproteinases (MT1-MMP) and then presenilin-1/ -secretase act to release the CD44 

intracellular domain. CD44 intracellular domain translocates to the nucleus where is involved 

in the regulation of the transcription of genes related to survival, inflammation, glycolysis, 

and tumor invasion 

2.2. HA/CD44 mediates enhanced cell growth and survival via RhoA/ROK activation 

HA binding to CD44 can activate transforming protein RhoA/ Rho-associated protein kinase 

(RhoA/ROK) downstream signaling via phosphorylation of proto-oncogene tyrosine-protein 

kinase (Src) (Fig. 4A).[67, 68] The activation of this signaling cascade is associated with 

enhanced cell growth, survival, and invasion in different cancers, including head and neck, 

pancreatic, colon, ovarian, and breast.[19, 23, 24, 59, 65, 69, 70]  
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Figure 4. HA/CD44-mediated RhoGTPase signaling pathways via (A) RhoA/ROK, (B) 

Cdc42, and (C) Rac1 modulate cell proliferation, motility, and invasion. 

The increased growth, survival and invasiveness of cancer cells result from the GRB2-

associated-binding protein 1, phosphoinositide 3-kinases and Protein kinase B pathway 

(Gab1-PI3K/AKT, Fig. 4A1)[67, 68, 71] that triggers activation of the transcriptor factor 

mammalian target of rapamycin (mTOR), downregulation of tumor suppressor proteins such 

as Homeobox D10 (HOXD10) and cyclin-dependent kinase inhibitor 1 (p21), upregulation of 

survival proteins Baculoviral IAP repeat-containing protein3 (cIAP-2) and X-linked inhibitor 

of apoptosis protein (XIAP), i.e., different factors that contribute to a (pro)tumorogenic 

profile.[18, 26, 71-74] As an example, in human metastatic breast tumor cells, RhoA/ROK 

activates the adaptor protein Gab-1 linked to PI3K/AKT signaling, mediating cytokine 

macrophage-colony stimulating factor (CSF-1) production and enhancing cell growth, 

survival, and invasion.[71] In addition, the activation of AKT signaling can lead to HAS2 

overexpression and induce a feedback loop: an enhanced HA synthesis leads to CD44 

overexpression and sustain PI3K/AKT signaling.[25] 

The HA/CD44-mediated RhoA/ROK activation also affects the cytoskeletal function and cell 

motility of metastatic breast tumor cells and colon carcinoma cells (Fig. 4A2-4).[75-77] 

RhoA/ROK activates Na+-H+ exchanger-1 (NHE1) (Fig. 4A2), resulting in ECM acidification 

and activation of ECM-degrading enzymes thus facilitating cell motility and invasion (Fig. 

4A2).[77] Another pathway involves RhoA/ROK triggered phosphorylation of inositol 

trisphosphate (IP3) receptors that induces internal Ca2+ release and activation of Ca2+-
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dependent signaling (Fig. 4A3) such as phosphorylation of filamin which activates the 

cytoskeleton and enhances cell motility.[76] In addition, RhoA/ROK activates myosin 

phosphatase that is a direct regulator of cytoskeletal contraction (Fig. 4A4).[68, 75] 

2.3. CD44 is involved in the cytoskeleton remodeling and enhances cell motility 

CD44 is involved in the formation and remodeling of the cell cytoskeleton via different 

signaling pathways. On one hand, structural and fundamental studies shows that CD44 can 

interact directly with cytoskeleton proteins, such as Ezrin/Radixin/Moesin (ERM), to 

facilitate microtubules and filamentous actin (F-actin) binding.[78-82] On the other hand, 

HA/CD44 binding can also trigger different signaling pathways that affect the cytoskeleton 

formation and the related cellular motility. The RhoA/ROK pathway mentioned above is one 

example but other members of the RhoGTPase family (Ras, Rac1, and Cdc42) can also be 

phosphorylated upon HA/CD44 interaction and evoke cytoskeleton remodeling and increased 

cell migration of ovarian and breast tumor cells, lymphomas, neuroblastomas, melanomas 

and carcinomas.[83-87] HA/CD44-dependent cell division control protein 42 (Cdc42) 

phosphorylation can activate the MAPK/ERK-1,2 signaling pathway (Fig. 4B2), which is 

involved in actin remodeling and cytoskeletal organization.[83] In ovarian cancer cells, the 

phosphorylated Cdc42 forms complex with the cytoskeletal adaptor protein IQGAP1 that 

regulates the cytoskeletal function via F-actin (Fig. 4B1a). Cdc42/IQGAP1 complex can be 

involved in the regulation of cell motility by association with extracellular-signal-regulated 

kinase 2 (ERK-2), leading to ETS domain-containing protein Elk-1 (ELK-1) and estrogen 

receptor-α (ERα) mediated transcriptional up-regulation and expression of proto-oncogenes 

and ECM-degrading enzymes (Fig. 4B1b).[84]  

HA/CD44-dependent C3 botulinum toxin substrate 1 (Rac1) activation provides a fast 

response to changes in the TME. In breast tumor cells and invasive lymphoma cells, signaling 

through Rac1 activates P21-Activated Kinase 1 (PAK1), IQGAP1, and filamin (Fig. 4C), 

leading to actin assembly at membrane ruffling and pseudopod structures, mediating cell 

morphology alterations, adhesion, and motility.[85-87] 

 

2.4. HA/CD44 induces epithelial to mesenchymal transition and stem-like phenotype 

HA/CD44 interaction induces epithelial to mesenchymal transition (EMT), which together 

with the HA-induced cell motility, supports tumor cell invasion and facilitates primary tumor 
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extravasation.[88] In breast cancer, HA/CD44 interaction was associated with increased 

expression and activity of the EMT marker zinc finger E-box-binding homeobox 1 

(ZEB1).[29] ZEB1 is involved in a feedback signaling cascade resulting in overexpression of 

HAS2 and CD44.[29] This autocrine signaling mechanism supports EMT and promotes the 

formation of metastasis. In CD44-positive head and neck squamous cell carcinomas, the 

CD44-mediated activation of Mitogen Activated Protein Kinases (MAPK)/ERK-

1,2/Homeobox protein NANOG (Nanog) induces stem-like cells phenotypes (e.g., increased 

phosphorylation of ERK-1,2 and Jun N-terminal kinase 1,2 (JNK-1,2) and ability to colony 

and form spheroids).[28] These cells show increased growth, migration, and invasion, 

associated with EMT-characteristic markers and resistance to radiotherapy, which were 

reversed through Nanog knockdown.[28] CD44 also acts as a co-receptor mediating HA-

dependent EMT (Table 2). In liver cancer cells, HA interaction with CD44 associated with 

transforming growth factor beta 1 (TGF- 1) signaling plays a central role in EMT.[30] SNU-

368 hepatocarcinoma cells (CD44+ and TGF- 1+) express EMT markers (increased N-

cadherin and decreased E-cadherin) regulated by AKT/Glycogen synthase kinase-3 (GSK-

3 )/ -catenin pathway. The activation of this signaling pathway is dependent on both CD44 

and TGF- 1 and results in enhanced cell migration and ability to form spheres. 

 

2.5. HA/CD44 dependent chemoresistance and survival 

HA/CD44 enhances cell survival by avoiding apoptosis and chemoresistance in several types 

of cancer. These events are regulated through CD44-mediated signaling with diverse 

downstream effectors. One of the reported mechanisms is via protein kinase Cε (PKCε) 

activation. In breast and ovarian tumor cells, PKCε phosphorylates the transcription factor 

Nanog that at nuclear level enhances the expression of anti-apoptotic proteins (IAPs) and 

multidrug-resistant protein 1 (MDR1) and decreases tumor suppressor proteins, e.g., program 

cell death 4 (PDCD4) (Fig. 5).[89-91] Nanog can also form complexes with STAT3 that have 

a similar effect. 
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16 

 

Figure 5. HA/CD44 binding activates different signaling pathways that promote 

chemoresistance and inhibit the apoptosis of tumor cells. 

In head and neck CSC, HA/CD44 enhances cell survival and chemoresistance via DOT1-like 

histone H3K79 methyltransferase (DOT1L)/miR-10b-dependent activation of RhoGTPase 

pathway that leads to the expression of survival proteins, e.g., cIAP-2 and XIAP.[26] 

HA/CD44 binding can also indirectly regulate cell survival and chemoresistance. In CSCs, 

HA/CD44 activates the nuclear factor erythroid 2-like 2 (NFE2L2), a regulator of antioxidant 

genes, through p62 overexpression. As a result, CSC are protected from ROS-rich 

microenvironment, and the tumor aggressiveness, growth, and chemoresistance are 

enhanced.[22] Recently, the role of HA/CD44 as a regulator of the Hippo signaling pathway 

(modulates cell proliferation and apoptosis) was reported.[20] CD44 clusters sequester the 

Hippo signaling-inhibitor complex partitioning-defective 1b-Macrophage Stimulating 

(PAR1b-MST). Upon declustering, this pathway is inhibited through yes-associated protein 

(YAP) nuclear translocation and the expression of pro-oncogenic and anti-apoptotic 

genes.[20, 92] 

 

2.6. Co-association of CD44 with other receptors 

As mentioned above, CD44 can act as a co-receptor in signaling cascades, increasing pro-

tumorigenic behavior (Table 2). In colon and breast carcinoma cells, the formation of 

HA/CD44/ErbB2 (receptor tyrosine-protein kinase) complex activates PI3K/AKT signaling 
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pathway, increasing -catenin transcription factor activity and, consequently, the 

transcription of proliferative (cyclooxygenase-2 (COX-2)) and multidrug resistance (MDR1) 

genes, leading to cancer cell growth, survival and chemoresistance (Fig. 6A).[93, 94] In head 

and neck cancer cells, the HA/CD44/EGFR (epidermal growth factor receptor) complex 

increases cell growth, drug resistance, and motility through downstream MAPK/ERK-1,2 

signaling.[62] HA/CD44/RHAMM (receptor for hyaluronan-mediated motility) forms a 

signaling complex with ERK-1,2 to sustain rapid basal motility of invasive breast cancer cell 

lines.[27, 95] In ovarian tumors, the association of HA/CD44 with growth factor receptor-

bound protein 2, human epidermal growth factor receptor 2 (Grb2-HER2) and Guanine 

nucleotide exchange factor Vav2 (Vav2) protein activates Rac1 and Ras pathways, increasing 

cell growth and migration (Fig. 6B).[69] HA/CD44 is also associated with the IP3 receptor in 

lipid rafts, promoting HA-mediated Ca2+ signaling leading to nitric oxide generation and 

proliferation.[96] 

 

 

Figure 6. Co-association of HA/CD44 signaling with (A) Erb2 and (B) HER2, 
supporting tumor cell survival and migration. 

The supplementation of breast cancer cells with HA induces the association of CD44 and 

α5β1-integrin via talin.[88] This signaling complex activates Proto-oncogene tyrosine-protein 

kinase Src (Src) and focal adhesion kinase (FAK), inducing phosphorylation of cortactin and 

paxillin that promote cell motility during cancer cell extravasation from TME and cell 

adhesion to endothelial cells and fibronectin-rich matrix of the metastatic environment.[88] 

Simultaneously, tumor cell motility and TME extravasation are facilitated through the 

upregulation and proteolytic activity of urokinase plasminogen activator (uPa), serin protease, 
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collagen-degrading enzymes, metalloproteinases (MMP), and cathepsin mediated by 

HA/CD44 interaction.[97-100] 

The complex of HA, CD44 and toll-like receptors (TLRs) modulate cytokine/chemokine 

production in breast tumor cells (Table 2).[101] Interaction of LMW HA with CD44 and 

TLR-2,4 recruits actin filament-associated protein (AFAP-110) and Myeloid differentiation 

primary response 88 (MyD88) into signaling complexes (Fig. 9B). Active AFAP-110 binds to 

F-actin and activates the cytoskeleton, while MyD88 binds to nuclear factor kappa light chain 

enhancer of activated B cells (NF- B) at the nuclear level and induces interleukin 1 beta (IL-

1 ) and interleukin 8 (IL-8) expression. These signaling events lead to the stimulation of cell 

invasion and production of cytokine/chemokine in breast tumor cells.[101] 

 

3. Receptor for hyaluronan mediated motility (RHAMM) 

RHAMM, also known as intracellular hyaluronan receptor (IHABP), hyaluronan-mediated 

motility receptor (HMMR), and the cluster of differentiation 168 (CD168) is not expressed in 

normal tissues. It is found transiently expressed during tissue repair[102, 103] and 

constitutively present in many carcinomas, e.g., breast, prostate, gastrointestinal tract, and the 

aggressive forms of multiple myeloma, leukemias, and lymphomas.[104-106] The secondary 

structure of RHAMM is largely helical (Fig. 7A). It contains an HA-binding domains at the 

C-terminus that are rich in basic amino acids (Fig. 7B) but structurally different from the 

BX7B motif of the CD44 HA-binding domain.[11, 107] Like CD44, RHAMM is coded by a 

single gene, HMMR, and different isoforms of RHAMM result from alternatively spliced 

transcript variants, alternate start codon, and post-translational processes (Fig. 7C).[108]  
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Figure 7. (A) RHAMM exists as a helical protein containing short unstructured regions. 

(B) It has several binding domains: at the N-terminus a sequence that mediates binding 
to micritubules (in grey) and at the C-terminus a leucine zipper (in green) which binds 

TPX2 and clusters of basic aminoacids (in red) that bind HA. (C) Different isoforms of 
RHAMM in human. The figure is adapted from CC-BY open access publication [109] 

(CC-BY 4.0 license). 

RHAMM does not contain a membrane-spanning domain – it is soluble and, thus, can be 

localized in different cell compartments, including cytoplasm, nucleus, cell membrane, and/or 

in the ECM usually as a complex with two or more biomolecules.[110, 111] The different 

localizations of RHAMM contribute to the intra-/ extracellular exchange of information – a 

phenomenon called dynamic reciprocity.[104, 112] Initially, intracellular RHAMM was 

identified (85 kDa in humans and 95 kDa in murine) and designated as RHAMMv5. It was 

associated with cell locomotion as indicated by its name. Currently, RHAMM is known as a 

multifunctional protein involved in different signaling processes at the cell surface and 

intracellularly. RHAMM variants have different functions in cancer. For example, 

B
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overexpression of RHAMM isoform lacking N-terminal microtubule-binding domain[113] 

promotes pancreatic cancer in mouse and xenograft models. However, a recent study shows 

that RHAMM plays different roles in different cancer subtypes. While in malignant breast 

cancer, RHAMM overexpression correlates with aggressiveness and motility, overexpression 

of RHAMM on the luminal A subtype breast cancer inhibits cell migration via the 

AKT/GSK3β/Snail pathway.[114] 

3.1. Cell surface RHAMM 

Cell surface RHAMM/HA complexes usually include other proteins, e.g., protein kinase 

receptors (RTKs) and non-RTKs, such as CD44[19, 27, 95, 115, 116], platelet-derived 

growth factor (PDGF)[117], TGF [35, 116] or Recepteur d’origine nantais (RON)[118]. The 

composition of these different complexes modulates the downstream signaling by activating 

alternative molecular switchers, e.g., Src[119] and Ras[117, 119-122]. 

3.1.1. Cytoskeleton dynamics and cell motility 

The main cellular events arising from HA/RHAMM interaction are enhanced cell motility 

and invasion, which are regulated by different and complementary signaling pathways. 

HA/RHAMM interaction directly activates protein kinase C  (PKC ) and FAK, recruiting 

cortactin and paxillin to focal adhesions (Fig. 8A1).[123] Alternative signaling involves the 

association of HA/RHAMM either with CD44 or growth factor receptors (GFR) to transiently 

activate Src in cell lamellae, where it recruits and activates FAKs and cortactin, coordinating 

cell motility (Fig 8A2, Table 2).[119] In c-H-ras oncogene transformed fibroblasts, the 

activation of Ras signaling pathway promotes a rapid assembly and disassembly (turnover) of 

focal adhesions at cell lamellae, promoting high random cell motility (Fig. 8A2).[120, 121] In 

breast cancer cells, HA recognition by RHAMM activates Ras/MAPK pathway and requires 

both cell surface and intracellular RHAMM.[117] Cell surface RHAMM/HA complex, 

associated with CD44 and/or GFRs, activates Ras/MAPK, forming complexes between the 

intracellular RHAMM, Mitogen-activated protein kinase kinase (MEK), and ERK-1,2 (Fig. 

8A2). This complex binds to microtubules and promotes cytoskeleton dynamics required for 

cell motility and cell cycle progression.[95, 115, 117, 124] RHAMM/MEK/ERK-1,2 

complex displays different functions at nuclear level, where it promotes the expression of 

plasminogen activator inhibitor-1 (PAI-1) and MMP-9 that are involved in cell invasion and 

inflammation (Fig. 8A3).[106] In choriocarcinoma cells (CD44-/RHAMM+ phenotype), 

HA/RHAMM/GFR-induced motility results from MEK/ERK-1,2 activation mediated by 
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PI3K and evidence a crosstalk between PI3K/AKT and Ras/MAPK signaling pathways (Fig. 

8B, Table 2).[34]  

 

Figure 8. The HA/RHAMM interactions at the cell surface activate different 

downstream signaling in cancer that can lead to (A) enhanced cell motility, (B) 
proliferation, and (C) epithelial to mesenchymal transition (EMT). 

3.1.2. Cell proliferation 

Recently, cell proliferation has also been associated with HA/RHAMM interaction. [31, 35, 

125] HT1080 fibrosarcoma cells treated with LMW HA showed RHAMM-dependent growth 

induced via Ras/MAPK interaction with the -catenin pathway (Fig. 8B).[125] This leads to 

-catenin overexpression and complexation with ERK-1,2. The translocation of this complex 

to the nucleus upregulates c-Myc transcription and alters cell proliferation.[33, 126, 127] 

HA/RHAMM interaction promotes the association of TPX2 Microtubule Nucleation Factor 

(TPX2) with RHAMM at the nucleus and the activation of Aurora Kinase A (AURKA), 

which directly regulates transcription of HAS1, HAS2 and HAS3, HYAL1 and HYAL2, 

cyclins and motility effectors, increasing cell proliferation, cell motility and enhancing 

tumorigenic HA signaling.[105, 128, 129] Other RHAMM-dependent pathways might be 

involved in enhancing cell proliferation as HMMR silencing decreases both mRNA and 

protein expression of Cdc2 and CyclinB1 related to cell cycle progression.[31] Blocking 

HA/RHAMM interactions, either by abolishing HA synthesis or RHAMM expression, 

decreases cancer cell proliferation and survival. Silencing of HAS2 and HAS3 in lung cancer 
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cells has such effect. Blocking of HA synthesis downregulates CD44, RHAMM, EGFR, 

AKT, and ERK-1,2, and induces cleavage of caspase-3 and poly(ADP-ribose)polymerase 

(PARP), i.e., an apoptotic effect, which is reversed upon supplementation with HA.[19] 

RHAMM blockage with specifically designed peptides also inhibits proliferation and 

compromises cell viability, as demonstrated for ovarian cancer, prostate cancer, breast 

carcinoma, and adenocarcinoma of the breast duct cells, but not in non-tumor fibroblasts and 

fibroblasts RHAMM(-/-).[32]  

3.1.3. Epithelial to mesenchymal transition and multidrug resistance 

Multidrug resistance, EMT, and stem cell-like properties depend on RHAMM and Smad2 

expression and activity (Fig. 8C, Table 2).[35] As an example fluorouracil (5-FU) resistant 

gastric cancer cells upregulate HMMR and its knocking down recovers the drug sensitivity. 

On the other hand, ectopic expression of RHAMM in parental SGC7901 and BGC823 gastric 

cancer cell lines resulted in 5-FU resistance.[35] This effect was observed together with EMT 

confirmed by a reduced E-cadherin expression and increased expression of vimentin, N-

cadherin, fibronectin, and pluripotency-associated markers, including SOX2, NANOG, OCT4, 

and BMI, - a pattern that was reversed with HMMR silencing.[35] 

3.2. Intracellular RHAMM 

Intracellularly, RHAMM is found in the cytoskeleton and nucleus. Because RHAMM 

interacts with several kinases, it has been suggested that the primary function of intracellular 

RHAMM (iRHAMM) is to connect the cytoskeleton to signaling complexes, similar to what 

happens at the cell membrane. Indeed, RHAMM can bind to different microstructures, like 

actin filaments, podosomes, centrosomes, microtubules, and mitotic spindle thus, affecting 

cell motility and proliferation.[110, 130, 131] 

iRHAMM can transduce extracellular signaling activated upon interactions of cell surface 

RHAMM. Fundamental studies using fibroblast models show that iRHAMM binds and forms 

complexes with MEK1 and ERK-1,2 in the cytoskeleton or nucleus.[115, 132] These 

complexes regulate the cell’s random motility, mitotic spindle integrity, cell cycle 

progression, and gene expression in breast cancer cells and fibroma cells. iRHAMM/ERK-1,2 

complexes are required for microtubule nucleation and link to centrosomal proteins, e.g., 

TPX2 and AURKA, thus, playing a fundamental role in centrosome function, including 

dynamic turnover of interphase microtubules and mitotic spindles.[133-136] Additionally, 
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iRHAMM interacts with the cortical proteins, such as supervillin, to coordinate myosin II 

contraction and activate ERK-1,2, required for cell migration and proliferation.[137-139] 

 

Table 2. Hyaladherins as co-receptors in TME signaling: activated pathways and cell 

response 

Hyaladherin Co-receptor Model Pathway Cell response Ref 

CD44 ErbB2 Colon 

carcinoma 

cells 

PI3K/AKT Cell growth and 

survival 

[93, 

94] 

EGFR Head and 

neck cancer 

cells 

MAPK/ERK-1,2 Cell growth, 

multidrug 

resistance, and cell 

motility 

[62] 

Grb2-

HER2/Vav2 

Ovarian 

tumor cells 

Ras/Rac Cell growth and 

migration 

[69] 

1-integrin Breast cancer 

cells 

Src/FAK – 

cortactin and 

paxillin 

phosphorylation 

Cell motility [88] 

TGF  Liver cancer 

cells 

AKT/GSK-

3 / -catenin 

EMT, stemness and 

cell migration 

[30]   

TLR-2,4 Breast tumor 

cells 

AFAP-110; 

MyD88/NF- B 

Cell invasion and 

cytokine/ 

chemokine 

production 

[101

] 

RHAMM CD44 and/or 

GFR 

Breast cancer 

cells 

Ras/MAPK→ 

MEK/ERK-

1,2/RHAMM 

Rapid basal 

motility and 

invasion, cell cycle 

[27, 

95, 

117, 
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 complex progression and 

inflammation 

124] 

GFR Choriocarcin

oma cells 

PI3K/MEK1/Erl

-1,2 

Cell motility [34] 

TGF  Gastric 

cancer 
TGF /Smad-2 EMT, stemness and 

multifrug 

resistance 

[35] 

LYVE-1 VEGF-C and 

FGF-2 

Lymphatic 

endothelial 

cells 

 Cell proliferation 

and 

lymphangiogenesis 

[41] 

 

4. Toll-like receptors (TLR) 2 and 4 

TLR are type I transmembrane receptors (700-1100 amino acids) expressed by immune cells 

as macrophages and dendritic cells (Fig. 9A). They have a crucial role in innate immunity 

and the induction of adaptive immune responses. TLR contain extracellular leucine-rich 

sequences and a cytoplasmic domain (Fig. 9A) that are responsible for the recognition of 

molecular patterns expressed by a wide variety of pathogens (PAMP) and damage-associated 

molecular patterns (DAMP), as HA fragments, causing inflammatory responses.[140]  
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Figure 9. (A) TLR structure and (B, C) signaling pathways activated upon (B) co-
association of TLR4 with HA/CD44 and (C) homodimerization of TLR towards 

inflammation and cell survival in cancer. 

TLR act as dimers that can be either homodimers or heterodimers (either with other members 

of the TLR family or with different proteins), thus increasing the ligand diversity. In humans, 

ten TLR have been identified (TLR1-10) and classified into two groups: cell-surface TLR 

(TLR1, TLR2, TLR4, TLR5, and TLR6) that recognize bacterial cell-surface components, 

and endosomal TLR (TLR3, TLR7, TLR8, and TLR9), which recognize microbial or viral 

nucleic acids. Among these TLR, TLR2 and TLR4 can recognize and bind HA.[141] A 

minimal size of 4 monosaccharide units (4-mer) of HA is required to interact with TLR2 or 

TLR4[142] but only longer HA fragments (6-mer) can engage heterodimer association of 

TLR4 and CD44, thus, enhancing intracellular signaling.[143]  

TLR are expressed in different cancers, including hepatocellular carcinoma, melanoma, 

neuroblastoma, lung, colon, breast, ovarian, cervical, and prostate cancers.[144] In advanced 

stages of carcinogenesis, HA/TLR2,4 downstream signaling contributes to tumor cell 

invasion and expression of cytokines and chemokines, which are closely related to cancer 

progression. The specific effect of HA/TLR2,4 depends on the cell and tumor environment. 

4.1. Effect of HA molecular weight on TLR signaling 

TLR/HA interactions and binding depend on HA molecular weight. The TLR complexes 

involving HMW HA and the respective downstream signaling in cancer are not well studied, 

and the reports on HMW HA/TLR2,4 involvement in inflammatory disorders are 

controversial. There is limited evidence that TLR2 and TLR4 binding to HMW HA 

attenuates inflammatory processes. [145-148] Recently, the interactions between HMW HA 

and TLR were associated with the formation of a physical barrier that limits access to the 

receptors instead of direct binding.[149] This is, however, not a common mechanism, as TLR 

activation/signaling in cancer is complex and depends on the pericellular coat dynamics.  

In breast cancer cells, HA oligomers (3-5 kDa) form a triple complex with CD44 and TLR2 

or TLR4 that promotes the invasiveness and synthesis of IL-1 .[101] The formation of the 

triple complex LMW HA/TLR2,4/CD44 activates two downstream signaling pathways: 

AFAP-110 that binds to F-actin is recruited and regulates cytoskeleton activation (Fig. 9B1), 

increasing cell invasion; and downstream signaling via MyD88 (Fig. 9B2) that promotes NF-
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B activation and nuclear translocation leading to transcription and release of pro-

inflammatory cytokines, including Tumor necrosis factor alpha (TNF- ), major intrinsic 

protein (MIP), IL-1 , IL-6, IL-8, and IL-12, essential for cell recruitment and inflammatory 

state of the tumor microenvironment.[101, 150-153] In human melanoma cells, the LMW 

HA/TLR4 also activates NF- B that triggers the overexpression of MMP2 and IL-8, 

contributing to melanoma progression (Fig. 9C1).[154] In UVB-exposed melanocytes, in situ 

degradation of endogenous hyaluronan, by HYAL treatment, induces expression of the 

inflammatory cytokines IL-6, IL-8, C-X-C motif ligand 1 (CXCL1), and C-X-C motif 

chemokine ligand 10 (CXCL10) and activation of AKT pathway via TLR4 binding (Fig. 

9C2) that lead to increased cell proliferation and survival.[36] 

Several in vivo studies using specific animal models have shown that HA/TLR4 binding 

drives tumor growth and suppresses apoptosis. As an example, significant inhibition of tumor 

growth was found in TLR4 deficient in vivo models.[21] The inhibition of tumor growth was 

more pronounced than observed for the respective CD44 deficiency models. Moreover, the 

systemic administration of a specifically designed peptide, PEP1, which binds to endogenous 

HA and blocks HA/TLR4 interaction, reduced the number of adenocarcinomas and inhibited 

tumor growth.[21] Signaling through TLR4 was confirmed using the MyD88 deficient 

model, which had a similar effect as PEP1 treatment. HA/TLR4 binding also supports 

proliferation and prevents apoptosis of colon carcinoma CT26 tumor isografts in mice 

models. Molecular analysis showed that HA/TLR4 activates -catenin through PI3K/AKT 

pathway leading to expression of proliferative proteins (Leucine Rich Repeat Containing G 

Protein-Coupled (Lgr5), Cyclin D1, -catenin, R-spondin) that increase the risk of 

carcinogenesis (Fig. 9C3).[155] In addition, tumor survival was enhanced due to arrest to 

spontaneous apoptosis resulted from NF- B activation.[156, 157]  

4.2. TLR expression as a function of TME 

During tumor development, the expression of TLR varies because of their different regulation 

by the cancer cell populations existing at each development stage. In glioblastoma stem cells 

(GSC), the low expression of TLR4 receptors allow them to survive regardless of 

inflammatory signals in the tumor microenvironment.[158] During GSC differentiation into 

cancer cells, TLR4 is upregulated through endogenous HA synthesis and autocrine 

signaling.[37] TLR4 activation induces proliferation and inflammation via the NF- B 
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pathway while avoiding terminal differentiation and senescence, supporting tumor growth 

and recurrence.[37]  

The macrophages population in tumors is also tuned by the “cancerization” state of TME. 

After recruitment, monocytes differentiate to M2 immunosuppressive macrophages taking a 

pro-resolving role at the initial stages of cancer development.[159] At this point, the 

interaction of LMW HA, but not HMW, with CD44 and TLR4 inhibits the expression of pro-

inflammatory cytokines (TNF-  and IL-12) and induces secretion of anti-inflammatory 

molecules (IL-10).[160, 161] Similar pro-resolving behavior is also observed in dendritic 

cells in the TME. HA fragments, but not native HA, interact with TLR4 in dendritic 

cells.[142] This interaction results in the activation of p38/p42/44 MAPK signaling pathway, 

nuclear translocation of NF- B, and production of TNF-  that lead to dendritic cells 

maturation and immuno-mediated anti-tumor response (Fig. 9C2).[142] 

With tumor progression, M0 macrophages and M2 macrophages are polarized into M1 pro-

inflammatory macrophages and TLR signaling changes.[162] In human primary monocytes 

and murine macrophages, LMW HA engages TLR4 independently of other HA-receptors, 

through TLR4/MyD88/ERK-1,2/p38/JNK pathway resulting in the activation of cytosolic 

phospholipase 2 (cPLA2 ), responsible for the hydrolysis of arachidonic acid, which 

contributes to inflammation, proliferation, and metastasis.[162] Similar pro-inflammatory 

effects were observed as a consequence of the LMW HA/TLR2 interactions in macrophages. 

LMW HA/TLR2 activated NF- B via MyD88/IL-1 receptor-associated kinase 4 

(IRAK)/TNF Receptor Associated Factor 6 (TRAF6), and PKC-  pathway (Fig. 9C1), 

stimulating the synthesis of pro-inflammatory cytokines (IL-2 and interferon  (IFN- )). 

Supplementation of HMW HA inhibited this effect.[151]  

 

5. Lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) 

LYVE-1, also known as extracellular link domain containing 1 (XLKD1), is a CD44 

homolog encoded in humans by the LYVE1 gene. This receptor is mainly expressed (but not 

limited to) by lymph vessels, and it is overexpressed in several cancers where it is considered 

an unfavorable prognostic marker. [38-40, 163, 164] 
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LYVE-1 binds to HA through the prototypic HA-binding domain (Fig. 10A) conserved in the 

hyaladherins superfamily.[165] However, HA/LYVE-1 differs from HA/CD44 binding - 

while HA binding to CD44 is mediated by H-bonding and hydrophobic interaction, the 

HA/LYVE-1 interactions are mainly electrostatic and thus, sensitive to ionic strength (IC50 of 

150 mM NaCl as compared with IC50>2M NaCl for HA/CD44).[165] LYVE-1 binds either 

soluble LMW HA or HA immobilized within the pericellular coat.[42, 166] Mechanistically, 

LYVE-1 can act as a surface receptor,[42, 166] a signal transducer,[167] or a decoy for 

HA.[43] This receptor is also involved in HA uptake and degradation - it conveys HA for 

catabolism within lymphatic endothelial cells and also mediates HA transport into the lumen 

of afferent lymphatic vessels for subsequent re-uptake and degradation in lymph nodes. 

The HA/LYVE-1 interactions are favored at high LYVE-1 density (focal clustering, Fig. 10 

B, C) or in the presence of HMW HA that increases the binding avidity (Fig. 10D)[165, 166]. 

While the LYVE-1 binding domain is active as a monomer, its binding affinity to HA (Kd of 

35.6 M) is lower than the CD44 one (Kd of 65.7 M),[165] and usually, LYVE-1 dimers 

bind HA with intermediate to high molecular weight and mediate its internalization.[168-170] 

 

Figure 10. (A) Schematic presentation of the structure of LYVE-1 receptor and (B) its 
homodimerization that occurs by formation of disulfide bond between the cysteines at 
C201 from the two receptors. (C) The conformation of LYVE-1 homodimers alters 

upon binding of low molecular weight HA. (D) In the presence of high molecular weight 
HA, the dimers can form clusters. 

5.1. LYVE-1 role in lymph node metastasis 

The specific role of LYVE-1 in cancer development and progression is yet unclear, but some 

data suggest LYVE-1 involvement in lymphangiogenesis and lymph node metastasis 

formation. For example, LMW HA (generated in situ upon endogenous HA degradation) 

accumulates in interstitial tumor fluid (obtained from rat tumors and human colorectal 

tumors) and positively correlates with lymphatic invasion and lymph node metastasis.[164] 

A
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LMW HA/LYVE-1 interaction in lymph node endothelial cells stimulates proliferation, 

migration, and tube formation of lymphatic endothelial cells via tyrosine phosphorylation of 

protein kinase C / II (PKC / II) and ERK-1,2 (Fig. 11A).[167] The LMW HA/LYVE-1 

complexes can also engage Vascular endothelial growth factor C (VEGF-C) and Fibroblast 

growth factor 2 (FGF-2) to induce lymphatic endothelial cell proliferation and 

lymphangiogenesis (Table 2).[41] Blocking the HA/LYVE-1 interactions with antibodies 

inhibits cell proliferation and migration, reduces the number of lymphatic vessels and volume 

of primary tumors, and inhibits lymph node metastasis formation in breast cancer cells 

implanted in mice. [38, 167] The process by which LMW HA potentiates the formation of 

lymph node metastasis is likely related to the altered permeability of lymph vessels.[40] 

LMW HA affects the lymphatic lumen integrity due to alterations on VE-cadherin and -

catenin at membrane junctions upon interaction with LYVE-1 in human dermal lymphatic 

endothelial cells. 

 

Figure 11. (A) HA/LYVE-1-mediated intracellular signaling and (B) function as a decoy 
receptor.  

5.2. LYVE-1 as a decoy for HA 

Contrary to the integral receptor, the shedded ectodomain of LYVE-1 acts as a decoy 

receptor of LMW HA fragments, inhibiting cell proliferation, migration, and 

lymphangiogenesis (Fig. 11B).[43] Soluble LYVE-1 (sLYVE-1) can be generated in situ, 

upon the action of membrane-type 1-matrix metalloproteinase (MT1-MMP), and released 

into the tumor interstitium.[44] sLYVE-1 inhibits PI3K  signaling, as well NF- B activation 
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and synthesis of VEGF-C, and thus lymphangiogenesis (Fig. 11B). On the other hand, 

sLYVE-1 derived from M2-like tumor-associated macrophages (present at initial stages of 

cancer), has pro-resolving functions via scavenging LMW HA from the TME. The generated 

sLYVE-1/LMW HA complexes inhibit the cell proliferation of human and murine 

melanomas in the early tumor growth phase, but not in advanced stages.[43]  

 

6. Hyaluronan Receptor for Endocytosis (HARE) 

HARE, also known as Stabilin-2 (Stab-2), is coded by the STAB2 gene in humans (Fig. 12A) 

and is mainly found in endocytic and recycling compartments of cells in lymph vessels and 

nodes, liver, and spleen.[171] HARE acts as a scavenger receptor for glycosaminoglycans, 

low-density lipoprotein particles, phosphatidylserine, and other bioentities resulting from 

matrix degradation.[172] HARE receptor binds to HA through the Link domain, present in 

other hyaladherins, and it mediates HA internalization via clathrin-mediated endocytosis, 

allowing a fast clearance of HA from biological fluids (Fig. 12B).[173] HARE binding and 

endocytosis of HA with 40 to 400 kDa can activate MAPK, ERK-1,2 and NF- B-mediated 

gene expression (Fig. 12C).[174, 175] The exact downstream signaling(s) and its effect on 

cell behavior are yet unknown, but the sensitiveness to HA size might be related to ECM 

turnover.  
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Figure 12. (A) Human STAB2 domain organization and its involvement in tumor-
associated (B) HA/HARE clathrin-mediated endocytosis and (C) HA/HARE signaling. 

In cancer, inhibition or knockout of this receptor prevents HA uptake and metastasis 

formation.[173, 176] Two possible mechanisms that drive toward this response have been 

proposed: (i) the resulting increase in HA fragments block or prevent the interaction of 

circulating cancer cells with surrounding tissues;[176] or (ii) possible actuation of HARE as 

an endothelial receptor for metastatic tumor cells with HA-rich pericellular coats that 

promotes tissue penetration of tumor cells.[173] 

The involvement of HARE in the interactions between invasive breast cancer cells and 

lymphatic endothelial cells has been demonstrated in co-cultures.[45] Altered gene 

expression patterns in lymphatic endothelial cells were observed only when these cells were 

co-cultured with highly metastatic breast and prostate cancer cells. The expression pattern 

changes included upregulation of metastasis-related genes involved in the cell cycle (CDC6, 

CLSPN, kinases genes), cell adhesion, and motility (BST2, SELE, and HMMR), cytokines 

(CCL7, CXCL6, CXCL1, and CSF1), and factors of the complement system (C1R, C3, and 

CFB); which mediate lymphangiogenesis. Moreover, in these co-cultures, HARE was 

downregulated, which might prevent HA uptake from the tumor microenvironment (via the 

above described clathrin-mediated endocytosis), thus contributing to high levels of HA at 

TME.  

 

7. Layilin 

Layilin is a transmembrane homolog of C-type lectins coded by the LAYN gene, which 

recognizes LMW HA via the Link domain common to hyaladherins.[177-179] It participates 

in intracellular complexes with cytoskeletal-membrane linker proteins, including talin, 

merlin, and radixin (Fig. 13A).[177, 180]  
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Figure 13. HA/Layilin-mediated intracellular signaling towards motility and invasion. 

Although negative regulatory functions over the immune system and cancer cell motility have 

been identified, Layilin role in cancer is yet to be elucidated. Layilin is specifically and 

highly upregulated in tumor-infiltrating Treg and CD8+ lymphocytes in human lung, 

colorectal, and hepatocellular carcinomas.[47, 181] Layilin overexpression inhibits IFN-  

production, a key cytokine in anti-tumor immune responses.[47] As the Treg cells become 

suppressive, tumor-infiltrating compromised CD8+ T cells increase, contributing to tumor 

immune escape and poor prognosis. A correlation between high layilin expression and the 

presence of immune infiltrating cells in TME, including CD8+ T cells, CD4+ T cells, 

macrophages, neutrophils, and dendritic cells, has been identified in several types of cancer, 

and it is suggested as a prognostic biomarker for colon and gastric cancers.[46] 

Layilin ability to regulate cell motility was first observed in A549 human lung cancer cells. 

Knockdown of this HA receptor inhibited cell invasion and migration in vitro and lymphatic 

metastasis in vivo in the tumor-bearing mice model.[182] Recently, the role of layilin was 

investigated in highly invasive malignant glioma cells (Fig. 13B).[48] Knockdown 

experiments showed that layilin upregulates SNAI1 transcription activity by suppressing 

metastasis-associated 1 family member 3 (MTA3, which is SNAI1 transcription repressor). 

At the nuclear level, SNAI1 causes overexpression of MMP2, MMP9, and collagen type I 

alpha 1 chain (COL1A1), potentiating the invasive ability of malignant glioma cells.[48] 

Layilin might have other roles in cancer progression, including involvement in EMT. 

Previous studies have shown the importance of layilin in regulating intestinal epithelial tight 
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junctions in inflammatory models [183, 184] as well as its role TNF-  induced EMT  of renal 

tubular epithelial cells.[185] 

 

8. Conclusions 

In TME, HA homeostasis is altered by increased synthesis and degradation since the early 

stages of carcinogenesis. The HA receptors constitute a complex signaling hub that senses 

these changes and responds to them through clustering, formation of specific signaling 

complexes, and receptors cleavage. HA interaction with its receptors modulates several 

hallmarks of cancer, including proliferation (CD44, RHAMM, and TLR2,4), survival (CD44, 

RHAMM, and TLR2,4), invasion and metastasis (CD44, RHAMM, TLR2,4, LYVE-1, 

HARE, and Layilin), immune response (CD44, TLR2,4, and Layilin) and lymphangiogenesis 

(LYVE-1). In the TME, these interactions activate signaling cascades that affect different cell 

populations, including immune cells, fibroblasts, and vascular endothelial cells. HA and its 

receptors are also involved in the formation, protection, and sustained growth of stem cells 

niches and promote EMT of cancer cells, facilitating invasion and metastasis formation. HA 

receptors also participate in signaling cascades that lead to the upregulation and 

overexpression of several cytokines/chemokines and ECM-degrading enzymes, which 

modify the TME and enhance carcinogenesis. 

HA signaling is thus a potential target for cancer therapy. At the molecular level, targeting 

HA signaling can be achieved with different approaches: HA synthesis inhibition with 4-MU 

or HASs silencing; HA inactivation with binding peptides; receptors inhibition with 

antibodies or specific peptides; and receptors silencing, knockdown, or knockout. Another 

strategy includes the use of inhibitors specific to the most transversal HA-activated signaling 

pathways, as MAPK and PI3K/AKT pathways, blocking intracellular signaling. Nevertheless, 

given the role of HA and its signaling in normal tissue homeostasis, these strategies are not 

always applicable in a clinical scenario, and the development of specific systems for targeted 

and effective treatment remains a hot topic in the (bio)chemical, pharmaceutical, and medical 

sciences. 
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Hyaluronan is a major component of tumor microenvironment (TME) that plays pro-

tumorigenic and carcinogenic functions. These functions are mediated by different 

hyaladherins, namely CD44, RHAMM, TLR2 and 4, LYVE-1, HARE and layilin. We 

discuss the respective signaling pathways relevant to the modulation of the TME and 

potential cancer therapies via targeting the hyaladherins interactions.  
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