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Asphalt pavements are designed to resist weathering and road traffic while guarantee-
ing safe and comfortable driving conditions at low cost and with minimal environmental
impact [1]. When a material reacts to an external stimulus and presents additional abilities,
it is considered smart and multifunctional [1,2]. Functionalization consists of developing
a new material capability. Several capabilities have been applied to asphalt mixtures,
such as photocatalytic [3,4], superhydrophobic [5–7], self-healing [8–10], de-icing/anti-
icing [11,12], self-cleaning [13–15], thermochromic [16–18], and latent heat thermal energy
storage [19–21]. These abilities are developed mainly by employing nano/microparticles,
phase change materials (PCMs), fibers, and dyes [1]. Additionally, there is interest in
converting ambient energy into other useful forms of energy [22], which will offer new
functionalities. In addition to the new capabilities, the functionalization of asphalt mixtures
may improve the mechanical properties or aging resistance.

Photocatalytic capability has been one of the most investigated topics with regard to
the functionalization of asphalt pavements, as it is related to benefits regarding road safety
(by the photodegradation of organic compounds, such as oils and greases, adsorbed on
the surface), in addition to the environment and social benefits through the degradation
of air pollutants [13,23]. Among several pollutants, photocatalytic surfaces degrade NOx,
SO2, and volatile organic compounds [3,24,25]. During the functionalization process of
asphalt mixtures, the main application processes of the nano/micromaterials are spraying
or spreading the nanomaterials onto the surface as a coating, and their incorporation into
the whole layer via bulk incorporation during the asphalt mixing or inserting the particles
into the asphalt binder (asphalt binder modification) [26].

In winter, snow and ice formation on roads increase the number of accidents due to the
reduced friction between tires and pavement [5,27]. To mitigate this problem, it is recom-
mended to use deicing agents and conductive materials in the asphalt mixtures [27–29]. In
the first case, the ice and snow can melt due to a chemical process [30,31], while the second
requires a microwave machine [11]. Another way to mitigate the problem is by repelling
the water from the surface; thus, the ice/snow formation is avoided. Superhydrophobic
asphalt mixtures have this capability. This technique provides safer roads during rainy
periods and has an additional self-cleaning effect as the dirt particles over the surface are
removed [5,7,32,33].

The self-cleaning capability is achieved together with three surface capabilities: (i) su-
perhydrophobic: based on the effect of the lotus flower, water presents a form of a sphere,
rolling on the surface and carrying the deposited dust. (ii) superhydrophilic: water spreads
on the surface, which is washed in rainy periods, (iii) photocatalytic: related to the self-
cleaning effect, photocatalytic materials degrade organic compounds over their surface [1].
In all cases, removing particles and degrading adsorbed compounds increases road safety
by increasing friction.

Another type of asphalt capability that promotes safer roads and materials strength,
reduces aging, and mitigates the Urban Heat Island (UHI) is the thermochromic capabil-
ity [16–18,34]. The changing color of the surface can warn the drivers if there is ice, one of
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the worst road situations due to the low temperature. It can increase light reflection and
conversely reduce sunlight absorption, as the black color of asphalt materials increases the
surface temperature. With the reduction in the temperature, it is possible to improve the
mechanical performance and avoid the UHI.

With the development of latent thermal energy storage capability, it is also possible to
mitigate the UHI. Reducing the magnitude of temperature fluctuations also benefits the
mechanical properties of the asphalt mixtures, preventing rutting and avoiding thermal
cracks. For this purpose, Phase Change Materials (PCM) have been applied to asphalt
mixtures through bulk incorporation (a dry process) or asphalt binder modification (a wet
process) [19–21].

The cracks in the asphalt mixtures are among its most critical degradations. Us-
ing some materials from a different point of view makes it possible to develop the self-
healing capability to close microcracks. This capability is achieved by incorporating con-
ductive materials, microcapsules with high content of maltenes, nanoparticles, or even
ionomers [1,9,35–37]. This can provide a longer lifetime for the pavements, causing less
emission of CO2, consumption for paving, and road traffic disruption.

When energy harvesting knowledge is applied to asphalt mixtures, road pavements can
convert significant amounts of ambient energy into other useful forms of energy. Pavements
are continuously submitted to solar radiation and vehicle loads, from which it is possible to
convert energy into electrical energy. The solar radiation and the mechanical energy can be
harvested by photovoltaic cells and piezoelectric devices, respectively [22,38,39].
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