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ABSTRACT

Data Analysis and Recommender System Architecture

for E-Commerce platforms

E-commerce is constantly expanding, leading to greater market competitiveness. The number of

online platforms offering products or services is increasing; so there is a growing need for companies

to stand out from the competition, which leads to the application of various marketing strategies.

However, not all are adequate and mismanagement, as well as a bad investment of these strategies,

may prejudice companies.

Hence the implementation of recommendation systems in e-commerce platforms, as a safe and

economical strategy. By investing in a good recommendation mechanism, one can provide better

user experience, taking his interests into account. As a result, more traffic on the platforms is

ensured, which may result in a higher sales rate and, consequently, a higher number of revenues.

However, to develop a recommendation system, the first step must consist in obtaining information

about the sales platform, where data about its users and products/services form the basis of recom-

mendations. But not all information is useful, which can influence the accuracy of the forecasting

models used by the system to produce results.

Following this perspective, a data analysis methodology is proposed, as well as an architecture of

a recommendation system, which allows to extract and treat relevant data, in order to integrate a

recommendation engine for most e-commerce platforms.

Keywords: recommender system, data analysis, software architecture, e-commerce, business

intelligence
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RESUMO

Análise de Dados e Arquitetura de um Sistema de Recomendação

para plataformas de Comércio Eletrônico

O comércio eletrónico (e-commerce) está em constante expansão, o que leva a uma maior competi-

tividade no mercado. Existem cada vez mais plataformas de venda online e, consequentemente, há

uma crescente necessidade das empresas se destacarem da concorrência, o que leva à aplicação

das mais variadas estratégias de marketing. Porém, nem todas são adequadas e uma má gestão

e investimento destas estratégias pode causar prejuízo às empresas.

Daí surge a implementação de sistemas de recomendação nas plataformas de venda, como uma

estratégia segura e económica. Ao investir num bom mecanismo de recomendação, é possível

proporcionar uma melhor experiência para o utilizador, tendo em conta os seus interesses. Desta

forma, assegura-se um maior tráfego nas plataformas, o que poderá resultar numa maior taxa de

vendas e, consequentemente, num maior número de receitas.

No entanto, para desenvolver um sistema de recomendação é necessário, em primeiro lugar, obter

informação sobre a plataforma de vendas, onde os dados sobre os seus utilizadores e produ-

tos/serviços constituem a base das recomendações. Mas nem toda a informação é útil, o que

pode influenciar a acurácia do modelos de previsãos utilizado pelo sistema.

Seguindo esta perspetiva, propõe-se uma metodologia de análise de dados, assim como uma ar-

quitetura de um sistema de recomendação, que permitam extrair e tratar dados relevantes de modo

a integrar um motor de recomendação para a generalidade das plataformas de e-commerce.

Palavras-chave: sistema de recomendação, análise de dados, arquitetura de software, comércio

eletrônico, businessintelligence
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1. INTRODUCTION

Informationispower. Nowadays, information is one of the most valuable assets that companies

can have to improve their business and stand out on the market. The power of knowing customers,

as well as their needs and behaviors, depending on the context or even their surroundings, and the

ability to correlate it with the products or services companies can offer, provides them great means

to exploit their full potential on the market.

This concept is most applied in e-commerceplatforms, which design their websites to draw cus-

tomers’ attention, by suggesting and recommending their products or services, depending on the

customers’ activity in the online store.

In this chapter, an introduction to the work developed under the context of this Master’s dissertation

is presented. First, it is introduced the Context and Problems where this project was framed, then

the Motivation is exposed, followed by the project’s Objectives, listed in a generic and simple way.

Lastly, the Document Structure is described.

1.1 Context and Problems

The concept of electroniccommerce(5), or e-commerce, can be defined as transactions of goods

or services via the Internet, by any electronic means, including transfers of money and data implied

in these processes. Thus, it is generally described as any kind of commercial transaction executed

through the Internet. However, in the context of this thesis, it will be referred to as the sale of physical

products by online stores.

There are several types of e-commerce of which we highlight the following two: BusinessToCon-
sumer(B2C) and BusinessToBusiness(B2B). These two concepts are the most commonly ex-

plored in online stores and other e-commerce areas.
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B2C is the process of selling products or services directly to consumers from a platform. In this type

of commerce, the consumer browses and buys products for personal use, providing some personal

information to checkout and pay, finishing the purchase. For this reason, the system aims to be

simple and attractive to the buyer, appealing the emotion to influence their decision on purchasing,

focusing on products’ characteristics to satisfy their needs.

On the other hand, B2B stands for the process of selling goods or services to other businesses,

where buyers purchase products on behalf of their companies. The format of orders and the value

of products can vary with the customer, which makes this type of system more complex than the

previous one. It is logic-driven, which means that focus on the product details and potential to benefit

buyers’ businesses. It also prioritizes saving time, money and resources, improving productivity and

those are the main features companies are looking for.

E-commerce is constantly expanding, leading to greater market competitiveness. There are more

and more online platforms offering products or services; so there is a growing need for companies

to stand out from the competition. However, many companies lack the necessary information about

their clients and products, and even their competitors, which can make a difference in the current

e-commerce environment. This data can help companies to increase clientele and, consequently,

profit. This may lead to the implementation of various marketing strategies, but not all are adequate

and mismanagement, as well as a bad investment of these strategies, can be harmful to businesses.

The project of this dissertation will be developed under the context proposed by the company Beevo

(6). Beevo provides e-commerce B2C, B2B and B2E (Business to Employee) solutions, for mid-

market and large companies, offering a digital platform for their e-business. The company builds

and maintains other companies’ e-commerce platforms, including online stores and respective busi-

ness logic (customers, products and orders management), marketing, support, CRM (Customer

Relationship Management) technologies and business analysis.

1.2 Motivation

For companies to have a competitive digital business, Beevo offers more than an online store; it

also provides a set of professional apps that allows fast and simple growth.

With the e-commerce competitiveness in mind, Beevo proposed the development of provisional mod-

els to grow their arsenal of professional apps and boost their Business Intelligence strand. These

provisional models were later translated to what is now the core of this project: a Recommender

System (RS) for e-commerce platforms of Beevo’s domain.

The need to make e-commerce platforms more appealing to its clients makes integrating a recom-

mender system a logical approach. Its function is to provide a pleasant user experience, trying to
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create a connection with the buyer, showing that the system understands them and is appreciated

as a customer by the store. This specialconnection to users increases their loyalty to the store and

keeps their interest in coming back for more. As a result, more traffic on the platforms is ensured,

which may increase the sales rate and, therefore, a higher number of revenues is expected.

However, in order to develop a recommender system, it is necessary to define which information

meets the requirements for obtaining trusted recommendations, as well as the data flow between

the system and platforms.

Several companies defend that most sold products or used services are recommendedto clients

by their platform. As evidence of that fact, we see quite popular platforms such as Netflix(2) and

Amazon(7), having advanced recommendation engines in their fields.

1.3 Objectives

In order to integrate a recommender system into e-commerce platforms, the first step must consist

in obtaining information from the selling platform, where data about its users and products/ser-

vices form the basis of recommendations. But not all information is useful, which may influence

the accuracy of the forecasting models used by the system to make recommendations. Further-

more, it is crucial to define a good workflow to collect the data and attend the platforms’ needs for

recommendations, so we can run a smooth communication between systems.

Following this perspective, the recommender system can be divided into two parts:

• Architecture: the recommender system architecture contemplates its infrastructure, respon-

sible to set and handle the communication between the system and the e-commerce platforms, as

well as the data management, essential to produce recommendations.

• Engine: the recommender system engine is the component responsible for consuming data,

preserved in the architectural process, and calculate recommendations based upon users, products

and services of the selling platforms.

This pair of architectureand recommendation engineform the system developed in the context of

this dissertation. Although there are several studies and papers exploring various recommenda-

tion algorithms and trying different combinations and techniques, to get the best recommendation

results, there’s a lack of investigation on the integration of recommender systems within online

platforms.

Ergo, this Master’s dissertation is focused on the recommender’s Architecturecomponent. With

this in mind, the main objectives are listed as followed:
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1. Understand the concepts of RecommenderSystem, BusinessIntelligence, CloudComputing
and other terms related to a system’s architecture;

2. Implement an architecture of a recommender system, which allows to extract, preserve and

analyze relevant data from Beevo’s e-commerce platforms, to integrate a recommendation

engine. This architecture will manage the data flow on the communication between platforms

and the recommender engine. Summarizing, it will be responsible for delivering data to the

engine and return the results to platforms;

3. Explore and define a data analysis methodology.

4. Understand the importance of selecting data and its impact on recommendations perfor-

mance and accuracy;

5. Explore the potential of the e-commerce data collected on business intelligence applications

to better understand and improve businesses.

1.4 Document Structure

This dissertation is structured in seven different chapters:

• Introduction: This chapter introduces the context of this dissertation project, its motives

and what it aims to achieve;

• State of the Art: In this chapter it is explored some terms and definitions related to this

dissertation theme, as well as exposed some work related to the context of the project.

• The Proposal: This third chapter describes the proposed solution to overcome some chal-

lenges in order to successfully achieve the defined objectives.

• Development: Here all development stages of the system architecture are described, in-

cluding the technologies used, the structure of recommendations, communication processes

and all the decisions taken along the course.

• Methods: This part of the document presents the various strategies for extracting and

analyzing data and making results available to e-commerce platforms.

• Case Studies / Experiments: In order to demonstrate the different functionalities that

the system has to offer, a test case is presented in one of the company’s online stores.

• Conclusion: In this final chapter, a global review is presented on the project developed, as

well as several improvements that can be done in the future.
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2. STATE OF THE ART

As mentioned in the previous chapter, this thesis focus mainly on the recommender system infras-

tructure, this is, its architectural component. It covers not only the establishment of communication

between the system and platforms but also data analysis strategies to process data before being

transferred on this communication.

The first part of this chapter sets the Background of this work: it defines the key concepts and

vocabulary for the rest of the Master thesis, such as Cloud Computing, Monolithic vs Microservices

Architecture, Representational State Transfer (REST), Exploratory Data Analysis and Business Intel-

ligence. In the second part, it is exposed some Related Work with the project theme and objectives.

Examples of famous companies like Amazon and Netflix are explored, giving some insights on how

existing recommender systems work in today’s market.

2.1 Background

Recommender systems, or recommendation systems, emerged as an independent field of research

in the mid-1990s and derived from different other areas, such as cognitive science, approximation

and forecasting theories, information retrieval and also have links to management science (8).

This area is widely explored because it constitutes a problem-rich research field and due to the

abundance of practical applications, which can help users to deal with information overload as well

as provide personalized recommendations, content, and services to them.

An e-commerce RS is a machinelearning(ML) mechanism that relies on a variety of data, related

to users, products or services, processes it and creates personalized suggestions for the intended

user. Its purpose is to assist the user in their purchasing decisions, recommending the products or

services that best suit their interests, but can be manipulated according to the company’s intentions.

Therefore, it acts as a forecasting model dedicated to calculate and making recommendations, such
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as predicting the likelihood of a product being bought by a certain user, taking into account their

preferences and other information.

2.1.1 Cloud Computing

CloudComputing(9) refers to the distribution of power, database space, applications, and other

resources using a service platform, via the Internet. It is regarded as on-demand delivery of IT

resources, where end-users subcontract and benefit from hosted services, without worrying about

storage space and power consumption.

Before the idea of cloud computing emerge, servers stored all the resources (software applications,

data, and services) for client/server computing. It was a centralized storage, hence for users to

access data, they needed to gain access to the server. As the concept of distributed computing was

introduced, resource sharing was made possible, contributing to the evolution of cloud computing.

Cloud Computing appeared in the 1950’s, when mainframe computers were accessed via dummy

terminals into a central computer, so users could gain access. Yet, mainframes’ production and

maintenance were too expensive, thus the urgent need of sharing resources to reduce costs.

Cloud services provide flexibilityfor businesses with developing or shifting bandwidth needs. The

service storage capacity can be easily modified to meet companies’ demands, being advantageous

to businesses over contenders. It also guarantees a more secure atmosphere and data centraliza-

tion.

Some examples of what can be performed via cloud are enlisted below (9):

• Creating new applications and services;

• Hosting website and blogs;

• Streaming live video and audio;

• Storage, back-up, and data recovery;

• Software delivery on demand;

• Data Analysis and predictions;
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2.1.1.1 Software as a Service (SaaS)

The term SoftwareasaService(10) refers to a distribution model for deployed software, by third-

party providers that host applications and makes them available to users, over the Internet. SaaS

is one of three main categories of Cloud Computing, alongside InfrastructureasaService(IaaS)
and PlatformasaService(PaaS)(10).

According to the HandbookofIndustry4.0andSMARTSystems(11):

”In the software on-demand SaaS model, the provider gives customers network-based access to a

single copy of an application that the provider created specifically for SaaS distribution. The

application’s source code is the same for all customers and when new features or functionalities

are rolled out, they are rolled out to all customers. Depending upon the Service Level Agreement

(SLA), the customer’s data for each model may be stored locally, in the cloud or both locally and in

the cloud. Organizations can integrate SaaS applications with other software using Application

Programming Interfaces (APIs).”

This means that the application runs on the SaaS provider’s servers, freeing the customers’ side

from several responsibilities, as they can focus on building their business and not worrying about

maintaining the subscribed application. It also means that it’s capable of exchanging data with

customers, interacting with their web services via APIs. An Application Programming Interface can

be described as a set of definitions and protocols that provide an interface between two systems.

It allows to build and integrate application software in existing systems, granting communication

between services, without knowing how they are implemented (12).

Most of SaaS providers, e.g. Salesforce1, Oracle2, Red Hat3, Microsoft4 and Amazon5 offer ap-

plications for fundamental business technologies, such as email, sales management, Customer

Relationship Management (CRM), financial management, Human Resource Management (HRM),

billing and collaboration (11).

2.1.1.2 Platform as a Service (PaaS)

With PlatformasaService(13), cloud service providers offer a platform to clients, enabling them to

concentrate on building and deploying their business applications, without the need to create and

maintain the infrastructure typically required by such software development processes.

1https://www.salesforce.com
2https://www.oracle.com
3https://www.redhat.com
4https://www.microsoft.com
5https://www.amazon.com/
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Clients have control over the software deployment while the cloud provider delivers all components

needed to host the applications, including servers, storage systems, networks, operating systems,

and databases. This differs from the Software as a Service model, as in SaaS most of the services

are managed by service providers and the amount of configuration in the client’s end is minimal.

Generally, SaaS target end-users while PaaS are addressed to software developers, providing the

tools and capabilities they need to build and deploy an application without having to concern about

the underlying infrastructure.

PaaS vendors tend to be the biggest technology companies, who can offer a broad range of capabil-

ities for their clients on a platform (14). Some examples include Google App Engine6, Oracle Cloud

Platform7 and the Salesforce-owned Heroku8.

A few common use cases for PaaS can be listed as followed (13):

• API development andmanagement: companies can use PaaS to develop, run, manage,

and secure APIs and microservices.

• Business intelligence and analytics: Tools provided as PaaS let companies analyze their

data to explore their business and discover patterns that can help to make better decisions

and more accurately anticipate future events such as market demand for products or trends.

• Data Management: A PaaS can manage essential business information of a company,

providing a single point of reference for data. Such data might be related to customer trans-

actions and analytical data to support decision making.

• Databases: A PaaS provider can deliver services such as setting up and maintaining an

organization’s database.

2.1.2 Monolithic vs Microservices Architecture

Microservices are an important and trending architectural approach used in the Information Tech-

nology (IT) sector, representing a crucial shift in how IT approaches software development. This

architecture has been successfully adopted by organizations like Netflix, Google, Amazon, and oth-

ers, but what are microservices’ advantages over a monolithic architecture? (15)

The right architectural approach depends on the application context and objectives.

6https://cloud.google.com/appengine/docs/
7https://www.oracle.com/cloud/
8https://www.heroku.com/
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2.1.2.1 Monolithic Application

Traditionally, applications were built as monolith (16), i.e., a single application was packaged and

deployed with all different logical components: presentation, business logic, database access and

application integration. This method makes it simple to develop, test and deploy, as well as to scale

horizontallyby running multiple instance copies of the application and using a loadbalancer.
However, this approach has a few limitations as to the application size and complexity. If the ap-

plication is too large, it can have problems with performance and scalability, as different modules

have conflicting resource requirements. The entire application must be redeployed on each update,

which makes continuous deployment difficult, and a minor bug in any module can impact heavily

the rest. So, it’s not a very flexible nor reliable architecture, if the application is of great complexity,

being hard to adopt new technologies and integrate new frameworks or languages since it affects

the entire operation and is expensive in both time and cost (16).

Monolithic	Application

Business	Logic

Data	Access

Presentation
HTTP

Figure 2.1: Monolithic application architecture template

Nonetheless, it is important to understand monolithic architectures since it is the basis for a mi-

croservices architecture, where each service by itself is implemented according to a monolithic

architecture.

2.1.2.2 Microservices

With the microservices approach, applications consist of a set of smaller, independent and in-

terconnected services, instead of a single monolithic application (16). This way, it’s possible to

build large applications with low complexity, breaking it into a set of manageable services that are

faster to develop and maintain, splitting the effort across different developing teams. Microservices

architecture enables each microserviceto be deployed and scale independently from others, which

makes easier to update the application and to integrate new services and functionalities.

But this approach also presents some drawbacks; thus the importance of weighing the benefits of

both architectural approaches and choose the one that best matches the context and implications of

9



Presentation
HTTP

Service	1 Service	4

Service	2

Service	3

Service	5

Microservices Application

devices

Figure 2.2: Microservices application architecture template

the problem considered. One needs to evaluate the purpose of the application and assess if it’s worth

adding the complexity that microservices architecture brings as a distributedsystem. Managing all

different services and communication between them may not compensate for the effort, time and

cost invested in developing a microservice architecture (16).

In a microservice architecture, when some service is changed, it’s essential to thoroughly plan

and coordinate the outcome of those changes to each of the other services, while in a monolithic

application it’s possible to simply change the corresponding modules and integrate the changes.

Deploying a microservice-based application is also more complex, in contrast to a monolithic, be-

cause each service will have multiple runtime instances. In turn, each instance needs to be con-

figured, deployed, scaled, and monitored. Additionally, it may be necessary to implement a service

discovery mechanism, thus requiring a high level of automation (16).

2.1.3 Representational State Transfer (REST)

State Transfer (17), or REST, is essentially a design concept for a web service architecture. It’s a

very popular architectural style due to its simplicity and the fact that it builds upon existing systems

and functionalities from the application layer protocol Hypertext Transfer Protocol (HTTP) in order

to achieve its objectives, instead of creating new standards, frameworks and technologies.

Over the years, more and more companies develop their web services based on REST, as op-

posed to the traditional web services with Simple Object Access Protocol (SOAP). This can be

demonstrated with a Google Trend Analysis, given REST and SOAP keywords, which shows an

increasing interest on REST compared with SOAP, as followed:
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Source: Google Trend Analysis (trends.google.com/trends)

Figure 2.3: REST vs SOAP: Web search interest rate comparison between REST and SOAP, from
2004 until 2019, worldwide

In systems that follow the REST paradigm, both client and server can be implemented indepen-

dently, keeping them separated and modular. They are also stateless, meaning that the server does

not need to acknowledge the client’s state and vice versa. Each time a client accesses a resource

through an endpoint, the API provides the same response. It does not remember the client’s last

request neither takes that into account when providing the new response. A client is supposed to

enter a REST service without any knowledge of the API, except for the entry point and the media

type. In SOAP, applications can be stateless, but usually they are stateful, meaning the client

needs previous knowledge on everything it will be using, or it won’t even begin the interaction.

Responses can also be cached in REST APIs to increase performance. If the browser’s cache

already contains the information asked for in the request, the browser can just return the information

from the cache instead of getting the resource from the server again (18). This does not happen in

SOAP APIs.

Every REST architecture must implement hypermedia and HATEOAS. Hypermedia is a general-

ization of hypertext for content, like HTML, XML, JSON, etc. Documents containing hypertext are

intended to be parsed by an automated client who will also follow links and actions like a human

would do with a browser. HATEOAS means the interaction of a client with a REST application

must be driven by hypermedia, i.e., the client should obtain all Uniform Resource Identifiers (URIs)

for every resource it needs by following links in the representation of resources themselves.

In spite of representing different concepts to approach a system architecture implementation, a

resuming comparison between REST and SOAP characteristics is presented below, enlisting the

advantages and disadvantages of each (19):

• Design: SOAP is a standardized protocol with pre-defined rules to follow, while REST is

an architectural style;

• Approach: SOAP is function-driven - transfers structured information - and REST is

data-driven - accesses resources for data;
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• Caching: In REST, API calls can be cached, but not in SOAP;

• Security: SOAP supports WS-Security with SSL and has built-in ACID compliance. In the

other hand, REST lacks ACID compliance and supports HTTPS and SSL;

• Performance: SOAP requires more bandwidth and computing power, whileREST needs

fewer resources, being lightweight;

• Message format: REST permits many data formats, including plain text, HTML, XML,

JSON and others. SOAP only supports XML;

• Advantages: SOAP is standardized and has high security and extensibility, while REST
has better performance, scalability and flexibility;

• Disadvantages: SOAP is more complex and has poorer performance and flexibility. How-

ever, REST may be less suitable and secure for distributed environments.

Overall, REST offers several advantages over SOAP, for building communication channels be-

tween systems, by being simple, flexible and scalable, allowing a greater variety of data formats and

performance.

When using REST over HTTP, it’s possible to resort to standard HTTP security and authenti-

cation. By combining it with JSONWebTokens(JWT) for authentication and authorization of user’s

to validate their requests, an efficient way of secure the communication can be achieved.

REST	API
(Javascript)

Request	URI	(HTTP)
Response	(HTTP)

URI:	http://recommender.com/api/v1/product?id=3
Method:	GET

	{
			"id":	3,
			"name":	"shirt",
			"size":	"M",
			"color":	"white",
			"price":	19.99
	}

Request

Response	(JSON)

Web	Application
(PHP)

Figure 2.4: REST API Model example diagram
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According to the example displayed in the diagram above, there’s a request and a response between

a client and the server’s API. The client and server can be based in any language but it doesn’t matter

because the message request and response are made through a common HTTP web protocol.

This request-and-responsepattern is fundamentally how REST APIs work.

2.1.4 Recommendation methods

There are several approaches that can be used to create a recommendation model, the most popular

being Content-based Filtering (20) and Collaborative Filtering (21).

The premise of the CollaborativeFilteringapproach is to search for similarities between clients, ac-

cording to their actions and preferences. User-based(22) recommendations take into account the

similarity between the clients’ profile, i.e., items purchased by a certain client will be recommended

to another client who has similar tastes and behaviors. On the other hand, item-based(23) recom-

mendations are supported in products’ characteristics. For example, user A has a similar buying

pattern as the user B. Consequently, items with similar attributes to those that user A has purchased

in the past, may be suggested to user B.

In Content-basedFiltering, the user’s shopping history is important. The characteristics of items

from previous purchases made by the client are analyzed and compared with the remaining candi-

date items, available in the store. Items that have more in common with those that the user has

purchased are recommended. For example, in a certain online book store, a user bought some

books in the Sci-Fi category. According to the user’s shopping history, the system may recommend

other similar books, i.e. of the same category (Sci-Fi), to that user in the next visit to the online

store.

A B A

similar

buy

Collaborative	Filtering Content-based	Filtering

Sci-Fi	vol.	1

Sci-Fi	vol.	2

similar

recommended

buy

buybuy

buy

buy

recommended

Book	1 Book	1

Book	2 Book	2

Book	3

Figure 2.5: Collaborative and Content-based Filtering examples
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Each different recommendation technique has its benefits and drawbacks in terms of efficiency

and results accuracy, depending on the context in which they are applied. In order to fill the gaps

that each approach presents and to make the system more robust, a Hybrid Approach is usually

adopted by several techniques, in this case, collaborative and content-based filtering. Following the

previous example, with a hybrid approach, the system would recommend not only other Sci-Fi books

to the client (content-based filtering), but would also take into account the book’s rating given by the

other users (collaborative filtering).

Another strategy widely used in e-commerce is CustomerSegmentation(24). By using clustering

algorithms, such as k-means, it is possible to trace the profiles of several clients and group them

according to the similarity between their characteristics (gender, age, etc). Obtaining an ideal num-

ber of clusters can be extremely useful since different clients belonging to the same cluster can be

treated as a single entity, thus saving a lot of resources in the production of recommendations and

targeted marketing.

Since each of these approaches consumes different types of information, it is essential to select

the most significant data, corresponding not only to the type of the selling platform, but also to the

approach itself. Hence the importance of the quality of the data set used to train the model, as it

will influence the accuracy of recommendations.

2.1.5 Exploratory Data Analysis

To select the most relevant data, data analysis techniques are usually applied, according to a certain

approach previously defined. ExploratoryDataAnalysis(EDA) (25) refers to the initial investigation

of a data set, to understand it, so as to extract patterns, detect anomalies, filter outliers, evaluate

hypothesis and to verify assumptions with the support of summary statistics and graphical repre-

sentations.

This is an important step in the data analysis process, to help data analysts to comprehend the big

picture, in this case, the main characteristics of each different e-commerce platform, setting up the

context before any machine learning operation. This way, one can create a model that fits the given

context and increase the system efficiency.

By examining and treating data, conforming that context, one can develop visual panels as an

information management tool to visually track, analyze and display keyperformanceindicators(26),

metrics and other key data points to monitor the status and performance of a business. These panels

are called dashboardsand prove that the considered data allows going beyond recommendations,

and explore the vast area of BusinessIntelligence.
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2.1.6 Business Intelligence

In 1865, BusinessIntelligence(BI) was used to describe how the banker Sir Henry Furnese took

advantage of existing information by collecting and acting on it before his competitors, in the Cy-
clopædiaofCommercialandBusinessAnecdotes, by Richard Millar Devens. Years later, in 1958,

IBM computer scientist Hans Peter Luhn wrote an article describing the potential of Business In-

telligence through the use of technology and this field has evolved since then. The number of BI

vendors grew in the 1980’s, as business people discovered the value of Business Intelligence and,

consequently, an assortment of tools were developed during this time, with the goal of accessing

and organizing data in simpler ways (27).

Nowadays, we can define BusinessIntelligence(28) as a set of concepts, methods, processes and

technologies that gather and store rawdata, and transform it into relevant and useful knowledge for

business purposes. BI can handle large amounts of information to help companies identify and de-

velop new opportunities, as well as planning and making decisions. Thus, studying BI solutions can

provide a competitive market advantage and long-term stability, helping to make the right decision.

From this, we may conclude that data is a very powerful resource, when well manipulated, giving

companies the necessary knowledge to overcome obstacles and competition. However, this brings

up some security concerns, where companies can be targeted by rivals, stealing their information.

Hence, it is very important to build secure communication channels, where data can flow inside the

company’s systems, protecting private business information.

2.2 Related Work

As mentioned in the previous chapter, nowadays most popular online platforms have recommender

systems, each one adapted to the platform’s background. For example, Youtube(29) is a video-

sharing and streaming platform, featuring video recommendations to its users, depending on what

they previously watched. Along this line, Spotify(30) is an audio streaming platform and rec-

ommends songs and playlists to users, matching genres they use to listen. On the other hand,

Facebook(31) is an online social network service, which recommends other users’ contacts, so

one can be ”friends” based on their current connections.

In this section, we highlightAmazon(7), Netflix(2) and eBay(32) systems, as well as other different

architectural approaches, in order to achieve a general perspective of how recommender systems

work in today’s market.
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2.2.1 Amazon

In light of the theme of this dissertation, Amazon(7) is the best example to consider. Amazon

is the world’s largest online retailer, which sells a wide variety of products to customers, like the

e-commerce platforms that this project intents to target.

Amazon started as an online book store and one of its main advantages, compared to physical

stores, was the infiniteshelf-spacecapacity as a platform over the Internet. This allowed it to make

a great number of sales from books beyond the inventories of physical stores. But due to the mas-

sive quantity of different books stored, customers might have missed some good opportunities to

discover new relevant books that they might have bought. Hence, the emergence of the recom-

mender system as a great tool to suggest new books - and other products later on - to customers,

from this infinitebookshelf, and consequently increase sales.

By the year of 2012, JP Mangalindan claims in a Fortune’s article (33) that:

“Judging by Amazon’s success, the recommendation system works. The company reported a 29%

sales increase to $12.83 billion during its second fiscal quarter, up from $9.9 billion during the

same time last year. A lot of that growth arguably has to do with the way Amazon has integrated

recommendations into nearly every part of the purchasing process…” - JP Mangalindan (33)

Currently, Amazon uses a combination of user-based and item-based collaborative filtering in their

recommendation algorithms, to suggest products to customers along the purchase process, via

e-mails, browse pages, product details pages and even at the end of an order.

Additionally, according to Ian MacKenzie (34), 35% of Amazon.com’s revenue is generated by its

recommendation engine. That is why companies are increasingly investing in RS to deploy in their

online platforms.

2.2.1.1 Amazon Web Services (AWS)

It is also worth to mention that, as one of the biggest cloud computing service providers in today’s

market, Amazon holds the company AmazonWebServices(AWS)which provides on-demand cloud

computing APIs and platforms. The clients that may be interested on develop complex and efficient

applications, with great flexibility and reliability, can use AWS products for cloud ecosystems - a mix

of IaaS, PaaS and SaaS.

Some of the features that AWS presents and appeal to clients the most are the following:

• Security: AWS is one of the safest cloud platforms on the market;
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• Experience: Users can get a hands-on experience of AWS free of charge;

• Hosting: AWS can host static websites also for free;

• Scalability: AWS has a great scaling capacity.

Products can be combined to create a scalable cloud application without having to concern about

problems related to infrastructure maintenance (compute, storage, and network) and management

(10).

Amazon Web Services offers products in the areas illustrated below:

Amazon	Web
Services

Networking	&
Content	Delivery

Analytics

Quantum
Technologies

Management	&
Governance

Machine
Learning

Security,	Identity	&
Compliance

ComputeStorage

Figure 2.6: Applications covered by Amazon Web Services (1) products.

2.2.2 Netflix

Netflix(2) is a streaming service that allows members to watch a wide variety of TV shows, movies,

documentaries, etc. Recommendation algorithms have been the core of the Netflix product from very

early on. Because of its importance, the company continually seeks to improve recommendations

results by advancing the state-of-the-art in the field.

Netflix’s RS combines collaborative and content-based filtering through similar habits of users and

higher rates of shared movie characteristics. The company, Netflix Inc., released a contest in 2006 -

The Netflix Prize -, offering a reward of one million US dollars to enhance the recommender system.

The team who could succeed to decrease the value of root-mean-squareerror(RMSE) for a data

set by 10 percent, would win the prize. Bellkor’s Pragmatic Chaos team succeed in achieving an

RMSE of 0.8554 with a 10.06% improvement over the Netflix system. This challenge grew up the

attention on recommender systems beyond Computer Science.
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In an interview with MobileSyrup(35), Todd Yellin said:

“We found the typical Netflix member on average will only look at 40 or 50 titles before deciding

what they want to watch, even though there are thousands of titles available. So it’s important we

present the right content to the right member at the right time.” - Todd Yellin, Netflix’s

vice-president of product innovation

Netflix uses recommender systems so extensively that, in 2015 Chief Product Officer, Neil Hunt,

indicated that more than 80percentof movies watched on Netflix came through recommendations

(36) and placed the value of Netflix recommendations at more than US$1billionperyear. This

proves the power and importance of recommender systems in a e-business.

2.2.2.1 Architecture Overview

In Netflix Tech Blog9, an article published by Amatriain and Basilico (37) explains how Netflix tackles

some of the challenges of maintaining a software architecture capable of handling large volumes of

data, responsive to user interactions and flexible to new recommendation approaches.

An overall RS architecture is described, where the whole infrastructure runs across the public Ama-
zonWebServicescloud. The system’s diagram (38) is presented in figure 2.7.

The system’s architecture can be divided into three parts: Online, Offline and Nearline com-

putation. These distinguish the types of processes and recommendations that the recommender

system computes.

9https://medium.com/netflix-techblog
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Machine
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Algorithm
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Figure 2.7: Netflix recommender system overview - based on Netflix Tech Blog post (2)

• Online computing must have fast responses to events and use the most recent data to

fulfill the availability and response time required by the client-side. This constrains the imple-

mentation of complex and computationally costly algorithms, limits the amount of data that

can be processed and, consequently, recommendations’ accuracy. Moreover, using solely

online computation may fail to meet some of the requirements, hence the importance to

have a offlinecomputationmechanismas a fallback solution to fit those requirements.

• Offline computing is less limited in terms of data processing, computational costs, and

complexity, having more flexibility on the implementation requirements and a wider range of

algorithms to choose from. However, because of heavy processing in this approach, offline

computing does not have a fast response to changes from new events or data. Eventually,
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this can lead to staleness that may degrade the user experience. It also requires having

infrastructure for storing, computing, and accessing large sets of pre-computed results.

• Nearline computation can be seen as a compromise between the two previous approaches.

In this approach, computation is performed exactly like in the online case, yet results are pos-

teriorly stored, allowing it to be asynchronous as in offline mode. Hence, the requirement of

short response time is excluded, allowing to explore the potential of more complex process-

ing, while still enabling the system to be responsive to user events. After receiving a request,

the system computes the results and may store them in an intermediate caching or storage

back-end.

Model training is commonly applied in offline mode, consisting of generating predictive models

based on existing data, that will later be used to create suggestions and other personalized results.

Another part of the architecture describes how the different elements communicate with each other,

handling events (user interactions and activities) - EventandDataDistributionSystem. This near-

real-time event flow is managed through an internal framework called Manhattan. A related issue is

the data flow in the process of obtaining Recommendation Results, across the offline, nearline,

and online regimes. This is managed by Hermes, a publish-subscribe mechanism, which allows

data to be delivered to subscribers in near real-time.

Such a complex system shows the importance of planning the software architecture in which the

recommender will be deployed. It’s a flexible and sophisticated architecture, capable of handle

great amounts of data and manage complex machine learning algorithms, while always having

recommendations ready for quick responses. Finding the right balance is not trivial: ” It requires a

thoughtful analysis of requirements, careful selection of technologies, and a strategic decomposition

of recommendation algorithms to achieve the best outcomes” (37).

2.2.3 eBay

eBay(32), as an online auction and shopping platform, presents a scalable RS architecture for rec-

ommending items with a short life span (e.g.: auctions), controlling the trade-off between relevance

and quality (39). The architecture can be divided into two layers: OfflineModelGenerationand Real-
timePerformanceSystem. The offline layer creates models using clustering ML algorithms, while

the online layer combines those models with dynamic characteristics obtained from users informa-

tion and activities in e-commerce. In the paper (39), the authors emphasize two main approach

scenarios: pre-purchaserecommendationand after-purchaserecommendation. In the pre-purchase
scenario, the RS recommends alternative products which are similar to the ones recently viewed by

the user. In the post-purchasescenario, the RS recommends complementary products related to

the one that the user has recently purchased.
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Both layers use the same data store, providing two versions of similar services. Data stored may

be related not only to basic information such as users, items, and user actions (navigation, access

to auctions, etc.), but also to clustering results, such as which group a set of similar items belong.

The real-timelayerhas two components: SimilarItemRecommender(SIR) and RelatedItemRec-
ommender(RIR). Both receive an item as input and return a set of similar or related items in return,

respectively. As the response must occur in real time, all the computational complexity is in the

offlinelayer, consisting of ApacheHadooprunning mapreducejobs(40), queries and K-means

algorithm.

2.2.4 SaaS and PaaS Recommender Systems

The tendency of e-commerce stores to search for recommender systems, in order to increase their

sales volume and revenue, is growing over the years. However, developing a good RS can be

expensive and time-consuming. This leads companies to reach for SaaSandPaaSRecommender
Systems(41). Instead of having a large upfront investment, companies can pay as they use a

SaaS model of a recommender system. The integration is usually straightforward and there are

continuous cycles of improvement (42).

In this dissertation, we emphasize Yusp, StrandsRetail, CommerceCloudEinsteinand Amazon
Personalizeas examples for using different approaches in their architectures and recommendation

techniques.

2.2.4.1 Yusp

Yusp(43) is a personalization engine, developed by Gravity R&D company, the same team that

tied for first place at Netflix Prize (44) - improving the Netflix algorithm by more than 10%. This

service offers customization features for e-commerce platforms, having several case studies from

large companies in which their revenues have increased significantly thanks to these solutions. To

produce recommendations, the engine consumes data from online activities and habits of both

known and first-time customers, the properties of products - such as name, price, category and

other attributes - and contextual information of the customer browsing like the location or the time

of the day. Due to the importance of this data, Yusp has security measures to protect the privacy of

their clients.

It provides control dashboards where the client can customize and adapt the recommendation

engine to the needs of their platform and their customers. It is also possible to obtain detailed

analysis reports, thus giving several insights about the business to help make better decisions for

the future.
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2.2.4.2 Strands Retail

StrandsRetail(45) is a SaaS that provides a plug-and-playrecommender system focused in product

and e-commerce activities. The system allows real-time recommendations, multiple personalization

strategies and other options that enable users to customize recommendation results. In brief, it

provides global personalization and recommendation solutions that empower online retailers, in

order to achieve superior customer experience within their digital channels.

The system works by including tracking scripts on the e-commerce platform and recommendations

widgets, using Strands Recommender javascript library10. This library is intended to facilitate the

integration of the recommender by automatically handling important concepts like the user man-

agement and by offering a broad set of functions to interact with the recommendations API. Since

the code runs in customers’ browser it adds no delay to the normal rendering of the page.

1.	User	visits	platform

2.	Platform	sends	user	data	to	
recommender	engine

5.	Website	shows	recommendations	to	user,
through	Strands	widgetsUser

E-commerce	platform,
with	Strands	Recommender

widgets	embedded,
based	on	the	Javascript

library

4.	Recommender	returns
product	recommendations

3.	Recommender	monitors	user	behavior,	product	trends
and	calculates	recommendations

Strands	Recommender	Engine

Figure 2.8: Strands Retail product recommendation system workflow overview

The more visible widgets are, the stronger their impact will be in helping customers find what they

are looking for and the more likely to reach new potential clients. Most common and effective

placements are the platform’s home, item, category, shopping cart and order confirmation web

pages.

10http://retail.strands.com/resources/javascript-library/
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2.2.4.3 Commerce Cloud Einstein Product Recommendations

Commerce Cloud Einstein 11, developed by Salesforce (46), is an artificial intelligence (AI) tool

embedded right in e-commerce platforms that run on Salesforce B2C Commerce12. Salesforce

clients can easily have access to predictive intelligence and personalization without having to hire a

data scientist or use a costly third-party recommendation provider.

EinsteinProductRecommendations(47) provides personalized product recommendations based on

a shopper’s onsite behaviour and preferences, but also recommends current popular products by

tracking general shopping trends. To achieve this, the client must simply create and assign a rec-

ommender to his platform; then whenever a customer visits the platform, Commerce Cloud Engine

is called. Commerce Cloud Einstein learns about products, attributes, prices and inventory (Product
data), discovers relationships between products and users (Orderdata) and collects session informa-

tion (i.e. customers behavior and actions while shopping - Clickstreamdata). After ”digesting” this

data, it uses machine learning algorithms (e.g. collaborative filtering, unsupervised and supervised

learning and deep learning) to process it. When this process is finished, it returns the recommended

product IDs to the platform where storefront pages display the received product recommendations.

1.	Create	and	assign
recommender

2.	Customer	visits	platform	(website)
and	Commerce	Cloud	Engine

is	called

3494 1207
502

3.	Engine	returns	product
IDs

4.	Storefront	page	displays
product	recommendations

Figure 2.9: Commerce Cloud Einstein product recommendations process

2.2.4.4 Amazon Personalize

AmazonPersonalize13 is a machine learning service that gives developers the capacity to integrate

and personalize their own recommender system in online platforms. It creates real-time individu-

alized recommendations for clients using their applications and allows them to personalize search

and notifications for a better marketing communication. This product is available at Amazon Web

Services (1) and is based on the same technology used at Amazon.com platform.

The following diagram illustrates how the Amazon Personalize service works:

11https://www.salesforce.com/products/commerce-cloud/commerce-cloud-einstein/
12https://www.salesforce.com/products/commerce-cloud/b2b-ecommerce/
13https://aws.amazon.com/personalize
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Source: Amazon Personalize, AWS (48)

Figure 2.10: Amazon Personalize ”How it works” diagram

The application streams user activities to the service, through the Amazon Personalize API. It also

stores demographic data in Amazon S3. The service then receives and processes this data, creating

a model that best fits the context of the application. Once the service is ready, the application may

request recommendations through a customized personalization API, available to communicate with

the service.

After a model and artifacts are defined and trained, Amazon Personalize allows developers to deploy

a campaign- a solution version consisting of an engine inference for the model and the trained

artifacts - as a PaaS, because it’s possible to customize its API. The campaign allows Amazon

Personalize to make recommendations for users, returning a REST API that developers can use

to get recommendations (49). Amazon Personalize also allows to use a JavaScript library.

To sum up, according to Amazon Personalize documentation (DeveloperGuide(50)), the Amazon

Personalize workflow for training, deploying, and getting recommendations from a campaign is as

followed:

1. Create related data sets and a data set group;

2. Get training data;

3. Import historical data to the data set group;

4. Record user events to the data set group;

5. Create a solution version (trained model) using a recipe;
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6. Evaluate the solution version using metrics;

7. Create a campaign (deploy the solution version);

8. Provide recommendations for users.

User

Event	Tracker Real-time	Events

Campaign

Model	hosting
and	inference

Solution
(Recipes)

Model	selection,
training,	tuning
and	verification

Users Items

User-Items

Data	Sets

Amazone	
Personalize

Source: Based on Basford’s article (49), Inawisdom (51)

Figure 2.11: Amazon Personalize high level architecture

2.3 Summary

Summarizing the concepts and definitions covered in this section: an e-commerce recommender

system is a ML mechanism that produces recommendations based on data related to clients, prod-

ucts and services of a certain e-commerce store. There are two major approaches to build a RS

model: Content-based Filtering and Collaborative Filtering. The model consumes data, processes

it trying to match products’ attributes to the clients’ profile - content-based filtering - or taking into

account clients’ purchase history and find similar items/users - collaborative-filtering - generating

recommendations.

Recommendations’ accuracy depends on how suitable the selected data is to the e-commerce

platform background. Data can be processed first, in order to find relevant information, by extracting

patterns, detecting anomalies and other statistics - Exploratory Data Analysis. The output can be

useful not only to be consumed by the RS, but also to be applied using other different methods and

techniques of Business Intelligence, that companies might want to explore.

Since this dissertation will focus on the architecturalaspect of recommender systems, it must be

discussed how it will interact with e-commerce platforms. Two widely spoken concepts of com-

munication architectures are REST and SOAP, despite being different paradigms. SOAP is a
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communication protocol whereas REST is a design concept for a web service architecture and

more popular nowadays, being a good option to implement.

To build a RS that matches the objectives of this project, it is important to understand the definition

of Platform as a Service, as well as the difference between monolithic and microservice applications.

PaaS are service platforms hosted by cloud service providers and can be centralized (monolith) or

distributed (microservices) systems.

Recommender systems have been successfully adopted by many organizations, such as Netflix and

Amazon, which became popular and affluent due to the efficiency of their product recommenda-

tions. Moreover, many companies invest in developing recommender systems as PaaS or hire as

SaaS, which proves the great potential of RS in the e-business area.
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3. THE PROPOSAL

This project consists of the design, development and implementation of an architecture for a rec-

ommender system, combined with a methodology of data analysis and processing, that will feed a

certain recommendation engine and make it available to most e-commerce platforms.

The results produced by the recommendation engine are expected to target some use cases, such

as marketing campaigns, product recommendations (e.g. discovering relationships between clients

and/or products), search and browsing experience personalization.

In this chapter, a General Overview of the recommender system to consider is presented, followed

by the Proposed Approach and the Architecture Description.

3.1 General Overview

The architecture of a recommendation system for an e-commerce platform addresses not only the

communication between both entities, but also the communication between the elements of the

RS itself. Therefore, it is important to develop an organized and efficient structure to manage and

handle the great amount of data that will be generated by this communication, promoting a good

data flow on the system.

3.1.1 Challenges

A common practice in big e-commerce companies is the construction of its own RS focused on their

own business (39). However, this project presents a generic architecture in order to cover most

e-commerce online platforms.

Although each of these companies’ RS has its individual architecture with distinct implementations,

all architectures share similar issues:
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• Personalized data sets: Collect and preserve various types of data from different e-

commerce entities. This data will be consumed by the recommender engine to produce

recommendations;

• Data Analysis: The data analysis tools used must be versatile and capable of processing

variables of various types, from the referred custom data sets, to create informative and

useful dashboards;

• Cold Start problem: When entities (users or items) are recently registered in the platform,

the recommender system has limited information about them to be able to produce accurate

recommendations. Nevertheless, new customers should get relevant recommendations and

new products should be included in recommendations;

• Recommendations availability and up-to-date: Recommendation results must always

be up-to-date, according to the latest platform activities and available at platforms’ demand;

• Scalability: As mentioned in the previous chapter, RS tends to increase the number of

visitors on the platforms. Recommendations should scale across hundreds of clients and

products. Thus, the recommender system must handle a great number of items and active

users, simultaneously, keeping a short response time and good performance;

• Multi-tenancy: The multi-tenancy problem (52) refers to a software architecture in which

one application instance is hosted on a server and serves multiple tenants. A tenant can be

a set of one or multiple users who share common access to the software instance. With a

multi-tenant architecture, an application is designed to provide each tenant with a dedicated

share of the instance. The multi-tenancy definition opposes to multi-instance architecture

definition, where separate software instances serve different tenants individually.

In this sense, we need to consider the following scenarios:

1. Deployaninstance(copy)oftheRSstackforeache-commerceplatform(tenant):

Pros:Simple to develop and higher performance individually. It allows delivering more

personalized service to each platform, being easier to manage business logic inside

each platform scope.

Cons:Global system management more complex and it consumes many resources.

It is necessary to configure an additional instance each time a new tenant is considered.
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2. CreateaninstanceoftheRStohandlemultiplee-commerceplatforms:

Pros:Allows the system to be generic and flexible. Only a type of architecture must be

developed and maintained for the whole system to handle multiple tenants. Consumes

less resources.

Cons:More complex to develop, but easier to configure to communicate with several

platforms, at the final stage. It is expected to be difficult to separate and manage the

business logic of the different platforms.

• Security: Data used to produce recommendations must be secured, because it is based

in sensitive information such as clients’ personal information, products details and orders

history. Hence, privacy must be protected.

To get the most of the architecture’s potential, it must be generic, flexible and capable of being

deployed and tailored to most e-commerce platforms dedicated to product or service transactions.

Furthermore, data analysis methods and techniques must be able to handle different types of entities

and attributes.

3.1.2 Functionalities

The recommender system architecture comprehends not only the communication between the rec-
ommendationengineand e-commerce platforms but also between the elements within the system.

Thus, it is necessary to organize a structure capable of managing large volumes of data to be

transmitted in its communication flux.

This communication process can be divided into the following steps:

1. Extract data from e-commerce platforms, necessary to train recommendation models at

the engine. This data is related to clients’ profiles (gender, age, addresses, ...), shopping

activities (page views, browsing, client’s shopping history, orders, ...) and item inventory

(product characteristics, hits, ...).

2. Store the collected data in a database capable of adapting to different contexts of distinct e-

commerce platforms. The system should present tools capable of processing and analyzing

the collected data, in order to provide various Business Intelligence features to the company,

such as future perspectives on its business and support in decision making.

3. After recommendations being generated by the engine, the system must store and make

them available at platforms’ demand, whenever necessary.
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Throughout the communication flow, the architecture must take security measures to protect data

against potential threats and reduce vulnerabilities in the system with authentication and authoriza-

tion mechanisms.

3.2 System Requirements

E-commerce platforms have strict requirements that must be met in order to increase and maintain

quality and offer a good experience to their clients. An important aspect to take into account is the

response time, as it will influence the loading time of web pages. Online shopping should deliver

a smooth and clear experience to their users, where results are presented as quickly as possible

since 40% of shoppers will abandon a website that takes more than three seconds to load, according

to a study conducted by ForresterConsultingonbehalfofAkamai (53). Furthermore, a short page

loading time is a key factor in a consumer’s loyalty to an e-commerce site. The study reveals that

79% of users who have not had a good experience are less prone to return to that platform while 27%

are less likely to buy from the platform’s physical store, suggesting that a poor online experience

may have a great impact in store sales.

Therefore, the recommender system must fulfill some requirements as well, so as not to impair the

normal functioning of the e-commerce platforms and the ServiceLevelAgreement(SLA)continues

to be complied with. In conclusion, the impact of generating and obtaining recommendation results

should be minimal on the loading time of a web page.

Taking into consideration the challenges raised in the previous section (3.1.1), the requirements

defined for the system follow as below:

Functional requirements

1. The recommender system must return a list of IDs related to hotproducts. These are the

most popular products at the moment and with the highest likelihood of being purchased by

clients.

2. Given a client ID, the RS must return the list of product IDs recommended to that specific

client, sorted by purchasingprobability.
3. Given a certain product ID, the RS must return a list of product IDs that are similar to that

specific product, sorted by similarityscore.
4. The RS must be able to do complementaryproductsuggestions. It should return a list of

product IDs that best suit a purchase, according to the products currently selected by the

client.
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5. The RS must be flexible and capable of delivering recommendations according to the context

that is required by the platform. With this in mind, the system must be capable of filtering

recommendations by category, returning only products which belong to that filter. For ex-

ample, when a user searches for women products, only products of that category should be

included in the recommendation.

6. The RS must be able to return recommendations up to the maximum limit established by the

tenant. If this limit is not specified, the default quantity of recommended products to retrieve

in the server response is 100 items.

Non-functional requirements

1. The RS must provide a tool capable of analyzing data stored in the system’s database, by

allowing developers to create dashboards and calculated statistics, to develop new prospects

about the future of their business and market.

2. The RS must always collect recent data from the platforms’ database. Whenever a certain

event occurs, the RS database must be updated, to maintain its consistency and be in sync

with the platform’s. Such events can be described as the registration of new clients or

products, modifying their information, creation of new shopping orders and changes in order

status.

3. The server must respond in JSON format.

4. The system must be functional 99% of the time in a year (361 in 365 days).

5. As for the response time, the RS must return a result in less than 100 milliseconds to 95%

of the requests. No answer should take more than 150 milliseconds.

6. The RS must implement data security techniques, mainly authentication and authorization

mechanisms, to protect the company’s business information and its clients’ privacy.

7. The RS must not only handle large amounts of data related to clients, products, orders and

other shopping activities, but also be able of serving multiple platforms at the same time,

scaling as necessary to keep a good performance and a short response time.

8. The RS must allow its users to configure and manipulate the training of recommendation
enginemodels.

31



3.3 Proposed Approach

The proposed approach to build this architecture was to assemble a set of components, all inter-

connected by a core JavaScriptAPI, supported on the concepts of PaaS, RESTand the State of the

Art explored in the previous chapter.

The idea resided on creating a service, having the recommendersystemhosted on a server held by

Beevo, where e-commerce platforms of the company’s domain can request for recommendations

produced by it. This way, the RS works as a PlatformasaService, delivering all the infrastructure,

components and logic needed to obtain recommendations. It does all the computational effort, while

tenants (e-commerce platforms) only need to communicate with the RS and integrate the results in

their applications. Another advantage is that the RS is developed and updated independently, not

compromising the platforms’ functioning.

The interaction between the RS and the platforms is possible through an application programming

interface (API), which manages and describes the communication process. This communication

dwells on the exchange of data, in JSON format and via HTTP requests, between platforms and

the RS endpoints delimited by its API. The e-commerce platform sends business information about

its clientss, products and orders history to the recommender, which preserves this data for later

analysis and processing.

The architecture of the recommender system stores the data, replicating part of the platform’s

database, forming data sets useful for two main operations: dataanalysisand recommendations
results.
Exploratorydataanalysisis performed on data stored by the RS with the objective to discover and

extract useful information that may help to understand the market, consumers and adopt better

strategies. This data will optimize the company efficiency in decision making and business predic-

tions, opening the door to BusinessIntelligencefunctionalities.

Then, the recommender engine ingeststhat data, transforming and using it to train predictive mod-

els, which create recommendations for the platform’s clients. Those recommendation results are

stored in a database of the system’s architecture component, which later displays them on plat-

form’s demand. Although recommendations are saved in different formats, according to their type,

they present the same format when they reach the platforms. Whenever a platform makes a request

to the RS server, it responds with the according result, but always in the same format, regardless of

the type and context of the recommendation. This format, in turn, consists of a listofproductIDs
that platforms receive and use to display the recommended products to users.

This API was developed based on REST principles, due to its advantages and increasing usage,

although it’s not RESTful. In order for the RS to be deployed on e-commerce platforms, an effort

32



from both sides is required. Company developers must know how to conceive the communication

between platforms and the recommender. To accomplish this, they expect to have knowledge about

the API’s functionalities, in spite of the API’s documentationcontradicting some of the fundamental

rules of REST.

Citing Giessler’s ”BestPracticesfortheDesignofRESTfulWebServices”article (17):

”AdocumentationforWebAPIsisadebatabletopicinthecontextofRESTfulwebservicessinceit
representsanout-of-bandinformation,whichshouldbepreventedaccordingtoFielding(54):Any
effortspentdescribingwhatmethodtouseonwhatURIsofinterestshouldbeentirelydefined

withinthescopeoftheprocessingrulesforamediatype”

Usually, as mentioned in section 2.1.3, tenants should not have knowledge about servers’ REST API.

Describing a server REST API, using a description language to make it machine or human-readable,

disregards two of the constraints of REST: self-describing messages and HATEOAS (hypermedia as

the engine of application state).

Nevertheless, in this case, tenants are not normal users, but company developers and since they

need to integrate the RS withing the platforms, the most common approach is to document all

URIs, HTTP methods supported, and structures of representations (e.g. as JSON) so that tenant-

application developers can rely on such documentation to program (55).

3.3.1 Architecture Description

Before developing the architecture to execute the functionalities mentioned in section 3.1.2, the

first step relied on planning the approach to follow and the implications it brings to the system’s

performance.

3.3.1.1 Architectural Approaches

In this dissertation, two main architectural approaches we considered - Monolithic vs Microservices

Architecture. In light of these definitions, the following options were elaborated:

• Monolithic architecture: With this approach, the recommender system would consist of

a single application instance, which handled and managed all the functions mentioned previ-

ously (communication, data storage and analysis, authentication, etc). This could represent

an issue due to the great number of requests to be exchanged between platforms and RS’s

architecture components. As an example, a scenario to consider could be BlackFriday,
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where thousands of users’ activities would generate a huge amount of traffic on the commu-

nication network. To fight this problem, application redundancy can be applied, i.e., create

multiple copies of the same application instance and then a load balancer would manage

the resources, keeping the flow consistent and avoid bottleneckproblems. This would also

depend on the infrastructure that hosts the system software. Any additions or changes to the

software can be of great complexity as the various components can depend on each other.

Modifying one part of the software could imply changing other parts that interact with the

first, as well.

• Microservices architecture: This option, although more complex to implement than the

first, and perhaps less practical, is more robust in terms of processing and congestion control

of data and requests. As initially stated, this approach consists of dividing the architecture

component into several small and independent services (microservices), each dedicated to

a function: one for communication, another for data storage, other for authentication, and

so on. It is expected to be slightly slower than the first option, when the traffic flux does

not exceed a regular day, because each request has to be filtered, validated and processed

by each microservice. However, as declared before, the monolithic option can be slower on

special days, with promotions like Black Friday, where there is more activity on the platforms

and the data flux increases considerably.

3.3.1.2 Architectural Solution

By evaluating the requirements of this project, considering the need of response to the challenges

in section 3.1.1, and by assessing the several situations and risks, as well as the characteristics of

Beevo’s e-commerce platforms, it was made the following decision:

A microservicesarchitecture was adopted, rather than a monolithic approach, because a modular

system enables the RS to be very flexible, easily implemented and extended depending on the e-

commerce platforms different needs (56). This modular approach allows the usage of different

technologies and methods on each component, thus facilitating the best implementation to solve a

problem and fit to the companies necessities.

As stated before, a monolithic architecture may present data congestion problems (bottleneck)
when faced with a scenario where platforms are visited by numerous users and, consequently,

many events, generating a great amount of traffic in the network. With the microservice approach,

a single architectural service will serve multiple clients - multi-tenancy-, instead of creating a copy

of the service for each e-commerce platform considered as each platform is served by one instance

- single-tenancy.
With the scaling and multi-tenancy problems solved, we focused on how to perform data analysis
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on custom data sets. To make this possible, it’s important to decide which database types should

the RS hold. Two types of databases were contemplated: relationalandnon-relationalDBs. A non-

relational database revealed to be the best choice, since the objective is to build a generic and flexible

architecture, capable of adapting to any type of data from different online platforms. Non-relational

databases confer flexible storage to the system, accepting various variables with distinct types. On

the other hand, relational databases must be planned and structured beforehand, defining what

entities and respective fields is the system going to work with.

As for security concerns, it were implemented authentication and authorization mechanisms with

JWT (JSON Web Tokens - RFC 7519 standard (57)) in the API.

3.3.1.3 Architecture Diagram

This section presents a detailed explanation of the system’s workflow. The diagram in figure 3.1 illus-

trates the sequence of interactions between online platforms and components of the recommender

system, data flow and other mechanisms that occur in the process.

Plataform	1

Plataform	2

Plataform	N

.	.	.

Auth

.	.	.

POST

GET

Elasticsearch	

Kibana		

MongoDB	

Recommender
EngineEndpoint	2

Endpoint	1

Endpoint	3

Endpoint	4

Recommender
API

BI	App

BI	App

BI	App

Source: Improving Performance of Recommendation System Architecture (Appendix I - Publications)

Figure 3.1: Recommender System Architecture diagram

As it can be observed, several online e-commerce platforms connect to the recommender system

through its API. In turn, this API contains multiple endpoints, each one related to a certain type

of entity (client, product or event) corresponding to a given RS action. It was also recognized the

existence of a recommendationengine, assuming that it was able to connect to the databases used

in the architecture - Elasticsearch(58) and MongoDB(59). The recommender engine is capable
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of storing data in these databases in the format that the architecture requires to communicate with

platforms, according to a Data Contract previously determined.

For security concerns, each request is filtered by an authenticationand authorizationmechanism,

before reaching an endpoint. This security measures validate and ensure that the author of the

request has the right permissions to make use of the API, protecting it from potential threats. It was

implemented authentication, with JWT (JSONWebTokens(57)), and authorization mechanisms

with an AccessControlList(ACL), further explained at section 4.5.

3.4 Summary

Before the conception of the proposed architecture, several potential problems were addressed, that

may arise during the development of the system, such as personalized data sets, data analysis, cold

start problem, availability, scalability, multi-tenancy and security.

It was also gathered the requirements that the recommendation system must satisfy before it can

be employed as a service by e-commerce platforms.

It was assumed, therefore, the development of an architecture based on a microservices approach,

supported by non-relational databases, thus giving great flexibility to the system. An API was defined

to serve as a bridge between the e-commerce platforms and the recommendation engine, to manage

the communication between tenants and the service and ensure the privacy of the data involved.
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4. DEVELOPMENT

This chapter reflects the stages of development and implementation of this project. At first, the

Technology Used in the architecture is identified, described and complemented with the list of

infrastructure requirements for the host machine. Posteriorly, Product Recommendations are ex-

plored, more specifically the concept and structure of each type developed for this system. In order

to complete this section, onlineand offlinecomputing modes are also compared. Afterwards, the

System Communication Process is explained, i.e., the interaction between service and tenants,

ending up focusing the e-commerce platforms side through the Beevo’s Business Intelligence Ap-

plication. To conclude this chapter, Security mechanisms applied by the recommendation system

in the preservation and management of data are specified in detail.

4.1 Technology Used

In this section is presented a description of all components of the recommender system architec-

ture, illustrated in figure 3.1, and their role in the process of obtaining recommendations for an

e-commerce platform.

The recommender API acts as an intermediary between e-commerce platforms and the recom-

mender engine. It’s a communication channel between both elements, handling platforms’ requests

and delivering recommendation results, produced by the engine. It can be designated as the RS

manager. To build this component, Node.js (60) was used as the server engine with great per-

formance, scalability and lightweight, supporting the API with the Express framework (61), which

has a great potencial to assemble a microservices architecture. The server’s application modular

structure - appendix A.1 - was developed based on the PrincipleofSeparationofConcerns(62),

having been created three layers: ControllersLayer,ServiceLayerandDataAccessLayer.
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Controllers	Layer

Data	Access	Layer

Service	Layer

Defines	Express	route	controllers
to	handle	requests	from	all	the
	endpoints	of	the	application

and	manages	the	server	responses

This	layer	is	the	access	point	to	the
application's	database	and	contains
Models	which	structure	the	data

The	application	business	logic	resides	in	this
layer,	consisting	in	a	collection	of	classes	with
clear	purposes,	following	the	SOLID	principles

Figure 4.1: Node.js Application Modular Structure Design, according to Separation of Concerns (3)

The API allows any external entity to access the service, as long it is properly authenticated. In

this case, as it can be observed on diagram 3.1, each e-commerce platform communicates with

the RS through a Beevo’s application, designated as Business Intelligence Application. The BI
Appwas specifically developed to operate as a communication point for the platforms, connecting

them to the RS through its API. Thus, both these components (BI App and Recommender API) form

the communication channel between online stores and the service, handling platforms’ requests

and delivering recommendation results, produced by the recommenderengine. Recommended

products are then displayed in vitrines placed throughout the stores’ web pages. The BI application

usesRabbitMQ forasynchronouscommunicationand loadbalancingpurposes, as well asRedis for

caching results. Another alternative for RabbitMQ would be ApacheKafka(63), as both technologies

stand out as a distributed messaging system based on the publish-subscribe model capable of

playing as an event distributor. However, it was decided to use the RabbitMQ and Redis components

that were already developed and implemented by the company. These software functionalities will

be explored further in section 4.4.

Elasticsearch (58) is a full-text search engine, based on Lucene1 library, built to handle large

volumes of data. Among the many existing database types, Elasticsearch was chosen because its

1https://lucene.apache.org/
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characteristics match with the database defined in the Architectural Solution section, to handle the

unstructured data expected in the recommendation process, the need for a generic architecture and

a highly scalable and flexible database.

Elasticsearch is a non-relational database that operates with schema-free JSON documents and

scales very efficiently. It allows to index documents and search them in near-real-time. Using flexible,

JSON-like documents, means that fields can vary from document to document and data structure

can be changed over time. Therefore, it has advantages both in storage structure, performance

and flexibility, being capable of handling entities with distinct attributes, e.g., different products may

have different characteristics. It also provides a REST API, which means it can be deployed on any

system regardless of the platform. Besides, this API is useful to access and perform analysis on

data stored in Elasticsearch, opening up many opportunities to explore in the BI area.

In order to complement Elasticsearch, a Kibana (64) component was considered in the architecture

as it is a powerful data analytics and visualization tool, that works along with this database. It enables

users to create bar, line and scatter plots, or pie charts and maps, on top of the content stored

on Elasticsearch, thus increasing its great potential to explore e-commerce BusinessIntelligence
opportunities. This will answer the need for data analysis, addressing the Challenges list in the

previous section.

On the other hand, MongoDB (59) is a NoSQL and document-oriented database. It stores data in

the form of JSON style documents, which keeps the consistency with data format used in HTTP
requests and Elasticsearch. MongoDB has highly query performance and is easy to scale, making

it a good choice to preserve recommendation results. This data must be always ready on platform

demand, being possible with MongoDB’s replication, high availability and fast access to data.

Finally, the recommender Engine is a set of Python scripts responsible to produce recommen-

dations from various types, based on platform e-commerce data. Although we won’t focus on the

Machine Learning techniques, algorithms and models used by the engine, it is important to have

into consideration the data necessary to ”feed” this component. The architecture must be prepared

to handle any type of data required by the engine. Moreover, it is known that this engine is capable

of interacting with the databases used in the architecture (Elasticsearch and MongoDB) and pro-

duces different recommendation models specifically to each platform. A more detailed explanation

of the recommender engine workflow can be found in the article IntegratingaDataMiningEngine
intoRecommenderSystems(65), where this component is exhaustively described.

4.1.1 Infrastructure Requirements

To simplify the process of building, running, managing and distributing the service application, all

architecture components were deployed using Docker(66) stack. Docker is a collection of PaaS
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products that make use of OS-level virtualization to distribute software in packages calledcontainers.
Each component was built inside its own container, independently from others, to keep them sep-

arate and avoid potential conflicts. This allows the service to always run in the same environment

(local or cloud server) and easy to share with all its dependencies.

By locking the versions’ number of the software used we are promoting a more stable development,

preventing problems from occurring due to updates of the third-party tools used. This project’s

architecture was assembled with the following software and hardware specifications:

Table 4.1: Version table of docker images used in RS architecture

Software
Docker Hub

(image:version)
Elasticsearch elasticsearch:7.4.2
Kibana kibana:7.4.2
Node.js node:10
MongoDB mongo:4.2.5
Recommender Engine python:3.8.2
RabbitMQ rabbitmq:3.7-management
Redis redis:5.0-stretch

Table 4.2: Server host machine hardware specifications. Note that the server is hosted in a virtual
machine, emulated using QEMU(4). QEMU allows to run operating systems for any machine, on
any supported architecture, with near native performance.

Host machine Specifications
Operating System CentOS Linux release 7.7.1908
CPU 8 cores × 2100MHz
Memory (RAM) 8 GB
Swap 3.2 GB
Disk storage SSD 34 GB
Network 100 GbE
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4.2 Product Recommendations

4.2.1 Recommendation Types and Structure

Since there are several different scenarios within the business of an e-commerce platform, there was

a need of having a flexible recommendation structure to present different types of recommendations,

depending on which fits better on the context of the current web page being displayed to the client.

Recommendations are based on data extracted from the platforms, which is related to the three

unique Entitiesconsidered by the recommendation system:

– Client: represents customers of e-commerce platforms. These can be regular users (B2C) or

companies (B2B) that make purchases on the online stores.

– Product: represents the products available, all inventory and stock of items in the online stores.

– Order-item: represents the relation between a client and a product. An orderis a set of one

or more order-items, where each order-item corresponds to the link between the order and each

different product (item) from that order. For example, if a client purchases three different products

in a single order, then that order will originate three order-items. This entity was considered, instead

of the entire order, as it is possible to represent information in more detail, facilitating the training

of recommendation models by the system’s engine and, consequently, increase the accuracy of

recommendation results.

ProductOrder-itemClient

Figure 4.2: Recommender System Entities

E-commerce platforms send business information about clients, products and orders’ history to the

RS, which preserves this data for later analysis and processing by the recommendation engine. In

turn, the engine produces and stores recommendations of different types and formats. However,

results are sent in the same format to all platforms: a listofrecommendedproductIDs, regardless

of the type and context of the recommendation.

Distinct web pages of an online store may present different scenarios, hence fourtypesofrecom-
mendationhave been developed to cover various perspectives and functionalities:
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Popularity: In this type of recommendation, a list of IDs related to ”hot products” is returned.

These are the most popular products at the moment and with the highest likelihood of being pur-

chased by clients. The list of IDs is ordered by a score, which varies from 0 to 1 (0% -100%), and

represents the probability of a product being purchased by a client. This metric is calculated by ap-

plying a formula to several attributes of the entities mentioned, such has how many times a certain

product was searched and bought, its average quantity in clients’ orders and the respective order

status (shipped, canceled, etc).

Hybrid: These recommendations are oriented to each client of the e-commerce platform. Given the

client ID, the RS returns a list of recommended product IDs computed specifically for that client. As

one may conclude by the type’s name, these recommendations result from a combination of ML al-

gorithms, following Customer Segmentation, Collaborative and Content-based filtering approaches.

In the case of the Collaborative-filtering method, the Singular Value Decomposition (SVD) (67) al-

gorithm is used. On the other hand, Content-based filtering uses the Term Frequency - Inverse

Document Frequency (TD-IDF) (68) technique. Customer Segmentation uses K-means algorithm

to group clients with similar profiles in clusters. An hybrid model is composed by these different

sub-models, which in turn can be configured and balanced in order to complement each other’s

flaws and obtain more robust recommendations.

Similar Products: Recommendations are oriented to each product of the platform. Given a certain

product ID, the RS returns a list of product IDs that are similar to that specific product, sorted by

similarity score. In this type of recommendation, the TD-IDF algorithm is also applied to look for

similarities between the textual descriptions/characteristics of each product.

Complementary Products: These recommendations serve as suggestions for completing clients’

current shopping cart. Given the IDs of product selected by a client, the RS returns a list of product

IDs that are usually sold together with the selected items, trying to complement a client’s current

purchase. Each suggestion produced by the recommendation engine is stored with a supportvalue

associated, that corresponds to the probability of certain products being purchased together. This

support is a metric related to Association Rules with Apriori algorithm (69), which is used to calcu-

late these results and it is very popular to solve this type of problems.
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4.2.2 Recommendation Storage

When the service receives data from platforms, duly identified with the type of entity to which

they correspond, these are stored in the Elasticsearch database. Subsequently, the Elasticsearch

indices are organized by the three entities of the system, per platform,: ${platform}_clients,
${platform}_products and ${platform}_order-items.

${platform} is the name of the platform which is used as prefix, to distinguish data from different

platforms (e.g. deeply_clients, deeply_products, deeply_order-items, where the online

store is named Deeply).

An index is created for each platform-entity combination, instead of storing all data into a single

index, as searching against smaller data sets is faster and it is less limited in mapping structure. If

there is a need to change an index for new data, it can keep old data without reindexing and just

put a new mapping for the new index.

The platform name is also used as prefix in Mongo collections. Recommendations are stored in a

collection identified by the type and the platform: deeply_popularity, deeply_hybrid,

deeply_similar_products and deeply_complementary_products.

• Popularitycollections contain just one document as these recommendations are only in-

tended for one type of clients (anonymous clients, i.e., not logged in in the website). Further-

more, each recommended product has associated a listofcategoriesto which it belongs.

This list of categories will be used by the RS to filter recommendations, depending on the

context for which they were requested (section 4.2.3).

• Hybridcollections hold several documents and, despite documents following a format similar

to the previously described, each document is related to a client, containing the respective

recommended products.

• Similarproductscollections contain several documents, one document related to each prod-

uct of the platform, containing a list of products which are similar to it.

• Finally,Complementaryproductscollections store documents which translate the association

rules generated by the recommender engine. Each document is identified by a product ID

and contains a list of product IDs that are commonly present in clients’ orders with the first.

In turn, each of these suggested products have their supportvalue associated, as previously

mentioned.
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${platform}_complementary_products${platform}_similar_products

${platform}_hybrid${platform}_popularity

{
				product_id:	'XXXX-XXXX-XXXX',
				items:	[
								{
												product_id:	'XXXX-XXXX-XXXX',
												support:	0.XX
								},
								{
												product_id:	'XXXX-XXXX-XXXX',
												support:	0.XX
								}
				]
}

{
				product_id:	'XXXX-XXXX-XXXX',
				items:	[

								'XXXX-XXXX-XXXX',

								'XXXX-XXXX-XXXX',

								'XXXX-XXXX-XXXX'
				]
}

{
				id:	0,
				items:	[
								{
												product_id:	'XXXX-XXXX-XXXX',
												categories:	[
																'XXXX',
																'XXXX',
																'XXXX'
												]
								},
								{	...	},
				...	]
}

{
				client_id:	'XXXX-XXXX-XXXX',
				items:	[
								{
												product_id:	'XXXX-XXXX-XXXX',
												categories:	[
																'XXXX',
																'XXXX',
																'XXXX'
												]
								},
								{	...	},
				...	]
}

Figure 4.3: MongoDB recommendation documents structure

The process of saving a recommendation, in MongoDB, is instant and consists in replacing the exist-

ing recommendation for a recent result, thus not increasing exponentially storage space. Addition-

ally, every document is saved separately so there’s no downtime in recommendations’ availability.

This means that while the recommender engine is updating recommendations, platforms are still

able to get results from the RS, because MongoDB database persists the previous results during

this process.

4.2.3 Filters

It is evident that the number of recommendations generated is proportional to the number of prod-

ucts available on the online stores. The recommender’s API allows a tenant to specify the maximum

number of recommended products it expects to receive, as well as the category or set of categories

to which those items should belong. If the limit of recommendations is not specified, the default

maximum quantity of recommended products to retrieve in the server response is 100 items. This

acts as a security measure, if for any reason there is a large number of recommendations for a

certain kind of request, preventing the transmission of unnecessary amount of data, since usually

when a client performs a search, it doesn’t inspect more than 100 results.

On the other hand, when a tenant makes a request indicating the categories to which it expects the

recommendations to be related, the system must ensure that all recommended products respect the
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filtering rule. As previously mentioned, the filtering process is only possible for recommendations

of the type popularityor hybridand it is executed according to the following steps:

1. Find the client’s recommendation document stored at MongoDB database;

2. Obtain all recommended products which belong to categories from the request’s query filter;

3. Order recommendations by score, in descending order;

4. Apply limit of recommended items quantity;

If this filtering process did not occur, it was possible that recommended products with a higher

scorewould be sent in the response, even if they don’t belong to the indicated categories, and

may not correspond to the context that the tenant desired. An example of this is the product listing

scenario: when a client selects a category on the website, only products within that category should

be displayed.

When the tenant sends a request to the recommender, the categories found in the query are in-

dividually tested against the list of recommended products. Later, the recommender selects each

product that includes the indicated categories. This process is done by MongoDB, which acts as

a very powerful and effective search engine, and therefore a good filtering tool. In addition, it is

possible to create search indices to increase the performance of MongoDB search.

For complementaryproductsrecommendations, the filtering process is as followed:

1. Fetch complementary product suggestions, for each product selected by the tenant;

2. Remove products that are already selected from the suggestions;

3. Sort product suggestions by support value, in descending order;

4. Get complementary product suggestions IDs and remove duplicates, since different products

may be complemented with the same product;

5. Limit the result’s length with given limit value;

6. Return complementary product suggestions.

In this type of recommendation, as well as in Similarproducts, there is no option to filter by cate-

gories, since the contexts in which they are applied do not require filtering by this parameter.
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4.2.4 Online and Offline Computation

As mentioned in the Netflix’s Architecture Overview section, algorithmic results can be computed

either in onlineor offlinemode.

In online computation, recommendations are created in real-time, responding better to recent

events and user interactions, whereas in offline computation results are calculated and stored in

batch mode for later use upon platform’s request (offlinejobs). Nearline computation suggests

the combination of both approaches, in which it’s performed fast and simple computation (online

mode), but it’s not required to serve in real-time. Instead, results are stored making it asynchronous

(offline mode).

Decisions regarding the method and frequency of calculating recommendations were reflected in

these concepts. In the end, these decisions can be summarized in two considered options:

1. Training recommendation models in periodic cycles (e.g., every day at 3:00 am, since there

is less activity on the e-commerce platforms) for all clients and store recommendations in

the database. Thus, when a platform requests recommended products for a given user, the

response is immediate, due to the pre-computation performed. Nevertheless, this approach

can present several problems, such as the great computational effort on the engine during

the period of generating recommendations and after a given moment these are no longer

up-to-date, since they are not produced in real-time.

2. Training recommendation models each time a platform requests the list of recommended

products for a user. This approach has the advantage of producing recommendations al-

ways taking into account the latest data from the platforms. However, if the models are

too complex, the training and recommendation process can influence the response time, by

increasing it and making it unacceptable. Additionally, the computational effort is propor-

tional to the number of requests the RS receives, presenting a possible bottleneck when the

number of requests increases.

Ultimately, to achieve a flexible and efficient system, all approaches should be considered and

combined. The general idea is to pre-compute part of a result with an offline process, and using

it as a backup, leaving the less costly or more context-sensitive parts of the algorithms for online

computation.
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Figure 4.4: User Interaction Activity Diagram
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Figure 4.5: Recommender System Activity Diagram

4.2.5 Offline recommendations

Much of the computation of recommendation ML algorithms can be done offline. Offlineorschedule
jobscan be defined as tasks executed in background, on the machine, by a jobscheduler(70).

This program monitors and manages batch jobs automatically, allowing users to define and control

a schedule to execute those jobs. With this in mind, jobs can be scheduled to run these algorithms

periodically and their execution does not need to be synchronous with the request or presentation

of recommendation results.
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In this project, Cronwas used as a job scheduler, which is compatible with the operating system

of the host machine, to execute cronjobsthat are applied to model training and recommendations

production on the recommender engine. A crontabwas created to list and configure several jobs;

each job runs periodically and executes a python script of the engine, to train models and generate

recommendations for each different e-commerce platform. For example, 00 03 * * * python
recommend.py deeply configures a job to run recommend.py everyday at 03:00 am, when

there’s less activity on the website. The recommend.py script makes the engine to perform an ETL

(Extraction, Transformation & Load (71)) process, extracting data from Elasticsearch, analysing and

transforming it into relevant information (EDA), and loading it into data sets to apply ML algorithms,

training models and updating recommendation results of Deeply e-commmerce platform.

This way, it is possible to use more powerful and complex recommendation techniques, by exe-

cuting them in the background allowing to produce more accurate results, asynchronously within

the system. When the process ends, results are stored in the MongoDB database, being available

anytime the platform demands for recommendations.

4.2.6 Online recommendations

Although offline recommendations may provide quite accurate results, the updating rate of these

results can be very low. For example, consider the following scenario:

1. A client buys several different shoes;

2. When the recommender engine generates recommendations, it will take this into account

and recommend other shoes;

3. Moments later, the client buys various t-shirts;

4. Recommendations remain only for shoes during the period in which the engine stays idle. If

the engine runs in cycles of one day, only the next day will the recommendations be updated.

In other words, the engine will train the models again taking into account the client’s latest

purchases, in this case the t-shirts, only on the following cycle.

Summarizing, if a client buys a certain type of product, than only on the next cycle will there be

recommendations for him that include products of that type, as models are re-trained and results

updated.

A possible solution for this scenario is to make the recommender engine stay put, permanently

listening for requests related to online recommendations. The recommender API will receive and

handle these requests from platforms and redirect them to the engine, which in turn simply starts the
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necessary processes to obtain the demanded recommendations. In offline mode, the engine just

takes into account the data loaded at the beginning of the training. If a client has purchased other

products in the meantime, the engine will not take these orders into account as this information

will only be loaded in the next training session. To obtain recommendations in real-time, a lighter

and faster model would have to be developed, even if it is not highly accurate, so as not to increase

the response time significantly and to be used only for situations in which it is necessary to have

real-time recommendations: results are only produced when requested by the platform, not being

needed to store them in the MongoDB database. This model would always take into account the

client’s latest orders.

However, this solution will depend on the scalability of the system, since it will generate a large

number of requests to process, derived from the multiple interactions of users in the platforms.

Besides, it is necessary to consider the time for training and formulate new recommendations, as

it will influence the response time. In fact, if the recommender is triggered every time a user pur-

chases, to recalculate the recommendations for that user taking into account this new information,

a large flow of information will be generated in the system, compromising its capacity to process

data, recommend and, consequently, increasing the response time.

4.2.7 Nearline recommendations

In order to keep the performance of the system stable, it was decided to exclude the solution of

online recommendations and adopt an intermediate approach: nearlinerecommendations. This

method consists of a faster and simpler recommendation model from the ones used in offline

mode, which trains in smaller cycles (every 20 minutes, for instance) to produce nearreal-time
recommendations, e.g.: when a client buys t-shirts, 20 minutes later he is presented with t-shirts

recommendations.

Nearline and online modes provide adaptability to the system, updating recommendations according

to the client’s recent interactions with the platform. For the nearline mode, it was necessary to

create a lighter hybrid model that uses variables more focused on this context, that is, a model

that has a reduced execution time to achieve a balance between short updating cycles and a sense

of adaptation from the client’s perspective. Nevertheless, the disadvantage of a more simplistic

recommendation model is reflected in less accurate results. The engine trains this model and

generates results more regularly in nearline mode than in offline mode, but the recommendation

process is similar on both, saving the results in the MongoDB database at the end, in different

collections.

This is, therefore, another very useful recommendation mode, which can be applied in several

scenarios, complementing the offline mode, e.g .: a showcase on the platform’s Homepage where

the first 3 products would be nearline results and the others offline, presenting the most recently
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updated recommendations first and giving the feeling of an adaptive system. Yet, offline mode is

the most frequently used, since it is more accurate and is always available, allowing an immediate

response time and also serving as a backup for the other modes.

4.3 System Communication Process

As previously mentioned, the core of the recommender system’s communication focuses on its

API. It acts as an intermediary between the platforms and the recommendation engine, making it

possible to divide this communication process into two operations: the communication between API

and Engine and the communication between RS and e-commerce platforms.

When developing this recommendation system, the interaction between API and Engine was

first considered, where two options were contemplated to achieve this process:

1. Develop the API independentlyof the recommendation engine. The engine would be consid-

ered a black-box, ignoring its mode of operation, software and algorithms used. The com-

munication between these two elements would be made through HTTP requests based on

REST, that is, the engine would also have to have several endpoints in order to exchange

requests with the system’s API. The engine’s development would be solely focused on the

formation of recommendations, disregarding the origin of data or the destination of recom-

mendations. Thus, the API would manage the entire process of storing data and delivering

results to platforms. So, whenever the engine needs to train the models and update recom-

mendations, it would reach the recommender API, which in turn would fetch the necessary

data from the data lake (Elasticsearch) and return it to the engine. After training and gener-

ating the recommendations, the engine sent the results to the API, which would save them

in MongoDB, for later platform demands.
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Figure 4.6: Communication process between Recommender’s API an Engine - option 1

2. Recognize the functioning of the recommender engine, assuming that it not only has the

capacity to access Elasticsearch directly to retrieve the necessary data for model training,

but also direct access to the MongoDB database to store the results.

Recommender
 APIOnline store

1.1. Send store's 
e-commerce data

Elasticsearch

MongoDB

3. Save
 recommendation

 results

4.2. Fetch 
recommendation

results

1.2. Save data 2. Fetch data for
recommendations

4.1. Request for
recommendations

Recommender
 Engine

Figure 4.7: Communication process between Recommender’s API an Engine - option 2

The first option aimed to produce more generic elements, making the system more flexible. In other

words, when implementing a REST communication between the API and the engine, it allows collect-

ing recommendations from several distinct engines, thus having a more robust base of outcomes

to be provided to platforms. It would also make it possible to test and replace different engines,
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giving the possibility to choose the one most suited to the tenants’ goals. However, the complexity

of data management in this communication approach does not make the process very efficient,

hence adopting the second option. Since the context of this project was properly defined, as well

as its objectives, the second approach offers greater performance and effectiveness in the system.

So, we assumed the development of a recommendation engine (65) that can connect directly to the

databases, with no need to implement REST in the engine for communication by HTTP requests,

consequently taking the weight off the system’s API of managing too much resources. It is assumed

that the engine produces and stores the results in the format that the system architecture requires

to communicate with the e-commerce platforms.

The communication between RS and e-commerce platforms is made via HTTP requests,

through the API based on a REST architecture. This allows the system to be used not only by Beevo,

but also by other external entities, i.e., recommendations generated by the recommender can be

requested by several different tenants, that may not be related to the company, providing they are

duly authenticated in the service. The communication with the RS must be properly authenticated

and authorized, as well as validated according to a Data Contract. Any entity can communicate

with the RS and obtain recommendations if they follow the data contract and this is what offers the

system such flexibility to cover all e-commerce platforms.

In the context of the project, the recommendation system was assessed through the interaction

with Beevo’s platforms, which communicated with RS through the Beevo’sBusinessIntelligence
Application.
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4.4 Beevo’s Business Intelligence Application

As stated in the previous section, any entity can communicate with the recommendation service

through HTTP requests, as long as it complies with the requirements established in the data

contract, regarding formatting and mandatory data that must be included in those requests.

In order to complement the communication process at the company’s side, an application called

BusinessIntelligenceApplicationor BIAppwas developed, allowing platforms to communicate with

this service, transmitting all the information necessary to form data sets, perform EDA, Model Train-

ing and obtaining product recommendations. The reason why it was called BusinessIntelligence
Appis because in the future this application will hold more features, directly linked to the BI area,

in addition to this first feature developed - productrecommendations. The same is reflected in the

recommendater server, which will later host other types of services related to the BI area, hence

adopting a generic and flexible development.

E-commerce	platform

Redis

RabbitMQ

AppsPlugins

Core

Resources

BI	App

Recommender	System

API Engine

Elasticsearch

MongoDB

HTTP	Requests

Response
(list	of	recommendations)

Fetch	data

Cache
recommendation

results

Synchronous	
communication

Occurrence	of	events	and
messages	are	sent	to	the	message

broker

Queues	are	processed	and
respective	requests	sent	to	RSAsynchronous	

communication

MySQL

Figure 4.8: Communication process between BI App and Recommender System

Each platform is capable of integrating the BIApp, earning the ability to interact with the recom-

mendation service and, consequently, obtain product recommendations.

This application was developed in PHP (72), a language specially suited to web development,

which is the context where this project is inserted. The following diagram shows the general file

structure of the BI App developed. Note that some nuances may not correspond to reality to protect

the company’s property and privacy:
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/Users

afterUserRegister()
afterEditUserInfo()

/Products

afterCreateProduct()
afterUpdateProduct()

/Orders

	afterCreateOrder()
afterUpdateOrder()

BI App

/Facades
BIFacade.php

loginBIUser()
saveConfigurations()
initialPopulate()
sendUpdate()
getRecommendations()

Populator.php

triggers fired when an entity is created or updated

Product.php OrderItem.phpClient.php

Entity.php

BI Plugins

<< extends >>

/Libraries/Entities

Recommender.php

Requests.php

/Libraries/Middlewares

RS API

Tenant.php

Figure 4.9: Beevos’ Business Intelligence Application File Structure

The main directories of the application can be described as:

• Facades: The BIApppresents a facade (BIFacade.php) with all available methods that

enable Beevo to interact with the Recommender System. It allows each tenant (e-commerce

platform) to authenticate itself in the recommendation service, edit settings of the engine’s

recommendation models, send the necessary data to generate recommendations and, fi-

nally, obtain product recommendations.

• Entities: It holds the three types of entities considered by the system: Clients, Prod-
ucts and Order-items. The class Entity is an abstract PHP class model representation

of the three entities, which is then extended to the respective classes. Each of these has

specific methods to extract, process and manipulate data from the respective entities, stored
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in Beevo’s database. Each class also defines a set of default fields, which are used as the

foundation for the formation and training of recommendation models. These standard fields

are specified in VariablesSelectionandFilteringsection.

• Middlewares: Here we have two main classes: Populator.php andRecommender.php.

Populator.phpis responsible for sending information from Beevo to the RS and populate its

database, using the existing methods in entities’ classes. It handles events that occur in the

platform, extracts, filters and sends entities’ data to the RS API, which in turn receives and

stores it in Elasticsearch to feed the engine. It also sends requests containing the settings

that should be used by the engine to generate recommendation models for the respective

platform. On the other hand, Recommender.phphas the role of getting the appropriate rec-

ommendation results by requesting it to the RS, depending on the context in the platform.

Both of these classes can send requests to the RS, through the Request.php class, which

acts as the HTTPclient of the BIApp, by implementing a cURLclient (73), and handles

request’s authentication and management. The Tenant.php class represents the identity

of a RSUser, who can access and interact with the recommender. This class will, therefore,

be used to authenticate and validate requests sent by Requests.phpclass. The tenant’s

authenticity is given by their login credentials (email, password and associated platform) and

it is through it that the BI App gains legitimate access to the recommender system.

• Plugins: BIPluginshave the duty of dealing with events that occur on the platform, firing

triggers whenever there is a change in the entities’ information, useful for model training

and generating recommendations. These triggers send messages, whose content is the

information of the entity that has been changed at that instant, to RabbitMQ. In turn, this

message broker will process the messages and send the respective updated information to

the RS. The objective of this process is to keep the RS database updated and consistent with

the platform’s. In section 4.4.3, the operation of these triggers will be explained in more

depth.

4.4.1 Application configurations

To integrate theBIAppon a platform it is required to set some configurations, necessary to establish

a connection to the recommendation service and obtain the appropriate engine results. These

settings are described in the following table:
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Table 4.3: Beevo’s business intelligence application configurations

Recommender API
url Recommender System API base url (server domain).
Tenant

platform
Name of the online store to be associated with the tenant.
Used to name indices/collections on databases.

email Email credential to login in the RS.
password Encrypted password credential to login in the RS.
Entity
Client Client entity.
OrderItem Product entity.
Product OrderItem entity.
Fields
Addresses List of fields to be selected, related to clients’ addresses.
Client List of fields to be selected from the client model.
OrderItem List of fields to be selected from the order-item model.
Product List of fields to be selected from the product model.
Attributes
Product Set of product attributes to be extracted from the database.
Model

last_months_orders
Number of months to be considered in order’s history when
producing recommendations.

min_score Minimum score of recommendations to save in database.

min_support
Minimum support of complementary product suggestions to save
in database.

n_clusters Number of clusters to use in Customer Segmentation (k-means clustering).
cb_weight Content-based model weight on Hybrid recommendations.
cf_weight Collaborative-filtering model weight on Hybrid recommendations.
cl_weight Clustering model weight on Hybrid recommendations.

bought_products
Include (or not) products already bought by a client,
in their recommendations.

evaluate
Configuration to indicate if metrics should be calculated to evaluate
models accuracy, whenever they are trained.

These configurations include the domain address of the server where the recommendation service

is hosted as well as the tenant credentials necessary to authenticate within the system and send

requests. Settings related to the Entityparameter consist of booleanvalues that indicate whether

the respective entity should be considered in RS database initial population process, or not. InFields
parameter, lists of optional fields can be configured, which will be added in the Model Training phase,

combining with the standard fields defined in the model class of each entity.

The parameter Attributesis only related to the Productentity. If no attributes are defined, the

attributes used in the selection and filtering of product listing on the online store will be selected,

by default.
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The remaining parameters are associated with the specific recommendation Modelof the platform,

produced by the Engine. Since these parameters are related to the RS and not the BI App, any

external entity, in addition to the BI App, can send a request with these settings to customize

the recommendation results they want to obtain. These configurations are stored in the recom-
mender_configscollection at MongoDB database so that the engine accesses it to determine how

to develop the recommendation models.

The min_scorevalue defaults to 0.4 (40%) and only recommendations with a higher score than the

minimum score are persisted in the RS database. On the other hand, the min_supportvalues de-

faults to 0.1 (10%) and only complementary products with higher support than the minimum support

are saved in the RS database. These default values were established to avoid storing disposable

results, whose precision makes the recommendation irrelevant. Thus, there is better management

of the storage space of the databases and greater efficiency in the search and obtaining recommen-

dations.

All these configurations allow greater flexibility and customization of the recommendation engine

models, by changing their behaviour, adapting them to the context of each platform and, therefore,

obtaining better recommendations.

4.4.2 Database population process

As previously mentioned, the class Populator.php is responsible for sending data to the RS API

which will populate the Elasticsearch database. The process is executed according to the following

steps:

1. The first step is to make sure that the tenant is able to send valid requests, so it is necessary

to verify if they are authenticated in the recommendation service;

2. Subsequently, the entities whose records must be sent to populate the RS are obtained using

the parameter Entityof the BI App settings;

3. Next, each of these entities is populated. For that, a set of ids of all the respective entity’s

records is collected.

4. Finally, this set is divided into 4 different chunks. The reason for dividing this set is to in-

crease the performance and speed of the population process: each chunk will be processed

individually in background, at the same time, thus making the population process concur-
rently. This is possible to achieve through the message broker RabbitMQ. Messages are sent

to it, responsible for carrying out the processes of populating the records that correspond to

the ids of each chunk, hence being sent 4 messages in total, by each entity. The messages
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are subsequently processed in queues, in parallel, increasing the rate of requests sent and

consequently making the population process faster.

5. The method populateAll() will send HTTP POST requests to RS, with each request

corresponding to an entity’s entry record. The various types of requests accepted by the API

can be explored in the API Documentation section. According to the activated RS endpoint,

data from requests is stored in the Elasticsearch database.

The pseudocode of the population method, present in Populator.php, is displayed below:

<?php

/**
* Populator c l a s s
*/

// Check i f tenant i s logged in
i f ( ! $tenant ->isAuthent icated ( ) ){

return f a l s e ;
}

// Get ac t ive e n t i t i e s
$ e n t i t i e s = $this ->ge tEnt i t i e s ( ) ;

// Populate RS database with records o f each ent i ty
foreach ( $ e n t i t i e s as $ent i ty ) {

// Get a l l entry id s o f en t i ty
$ ids = ent i ty ->getAl l Id s ( ) ;

// Divide the se t o f id s into 4 smal l e r chunks .
// This way , a message w i l l be sent to RabbitMQ to process each
// chunk , improving the populat ion process performance
$ids_chunks = array_chunk ( $ids , count ( $ ids ) / 4 ) ;

// Process each chunk
foreach ( $ids_chunks as $chunk ) {

// Run populat ion process in the background
$this ->c l o su r e (

funct ion ( ) use ( $ent ity , $chunk ) {
// Send data to recommender API , v ia HTTP POST reques t s
BIFacade : : populateAl l ( $ent ity , $chunk ) ;

}
) ;

}
}

?>
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At a first stage, the application must do an initial population of the RS’s database, by fetching current

data related to the entities mentioned, filtering it by selecting only the relevant fields for recommen-

dations and send it to the RS’s server API, which in turn will handle and store this information.

Since there are thousands of records of each entity stored in the company’s database, the popu-

lation process will take a long time, hence being transformed into multiple smaller tasks that run

concurrently in the background, to make a better experience for the tenant. This is crucial to create

the initial data sets, so that the engine has the required data to form recommendations.

4.4.3 Event triggers

An e-commerce platform is subject to a lot of activity since the intense interaction with users leads

to a large number of events, such as the registration of new clients, order placements, browsing,

shopping, promotions, database updates, etc. Collecting this constant change and exchange of in-

formation is essential to make more accurate recommendations. Hence, the recommender system

must be able to listen these events so that its database remains consistent with the platform’s, and

recommendation results are always up-to-date.

Events’ generated by consequent activities in Beevo platforms, such as the creation or update of

entities will be communicated to the recommender, so it can be continually up-to-date. This is

possible, due to triggers fired whenever one of these events occur. These triggers were implemented

in BIAppplugins which listen for events such as:

• Clients(/Users): A client registers, or edits their profile information, such as gender, birth

date, country, etc.

• Products(/Products): A product is created or its attributes changed.

• Order-Items(/Orders): A client places an order or the order’s status is changed.

Whenever such events occur, the BI App sends updated information about the respective entity to RS,

through HTTP requests to its API. This way, it is possible to combat the coldstartproblem, always

keeping the RS database consistent and synchronized according with the platform. It guarantees

that all entities registered on the platforms are inserted in recommendations, ensuring that there

are no gaps of information to provide recommendations to recent clients and include new products

in results.

Once again, the BI App uses RabbitMQmessage broker to enable asynchronouscommunicationof

information sent by the mentioned triggers. This way, bottleneckproblems are less prone to occur

when there’s intense activity on platforms, while loading time is not affected. RabbitMQreceives
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messages from triggers and distributes them across several queues, balancing the load. In turn,

these queues process messages asynchronously and sends the information almost in real-time to

the RS server - diagram 4.8.

This technique gives RS the possibility to implement onlinecomputationin the future to create rec-

ommendations in real-time. Besides, by keeping the Elasticsearch database always up-to-date, it

allows to perform real-time business analysis in Kibana’s dashboards.

4.4.4 Storefront widgets

Specific widgets were created to display recommendations to users through vitrines on the platform,

communicating with the RS, by using the BI App methods and identifying the client for which it is

requesting recommendations, the number of recommended products and the categories to which

they should belong, in case these filters are applicable.

These recommendation widgets request recommendations according to the type that they were

configured, displaying the recommended products that were received through vitrines in the web

page. In this project, fourdifferent features were developed, which use different types of recom-

mendations, and were implemented in several widgets strategically placed through the platform.

In the Homepage, ”RecommendedProducts”vitrine presents a set of recommended products spe-

cific for the user currently on the page, based on hybridor popularityrecommendations. Popularity

recommendations are used everytime the user is anonymous, i.e. not logged in. Otherwise hybrid

recommendations are requested. However, if there are no hybrid recommendations for the client,

popularity recommendations are used as default as they represent a generic result to use in these

situations. This way, the cold start problem can be solved, in the sense that new or recent clients

get recommendations, even though the system has no information about them.

Homepage

		Recommended	Products

Homepage

Figure 4.10: Homepage recommendations vitrine generic template. In this example, four recom-
mended products are displayed to the user: two from ’Clothes’category (shirt and pants) and two
from ’Drinks’category (iced tea and smoothie). Products are ordered by score, with the product on
the left having the highest score, i.e., is more likely to be bought by the user.
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Product Details page also presents a recommended products vitrine, visually similar to the one

used in Homepage. However, recommendations are from similar-productstype, meaning that prod-

ucts that are recommended have similarities to the selected product of the page.

Homepage

Shirt

Product	details

		Recommended	Products

Price: €€

Figure 4.11: Product details page recommendations vitrine generic template. In this example, the
user selected a shirt, thus be presented products similar to it in the recommendation vitrine, where
the product on the left is the most similar to the selected shirt (ordered by score).

As for suggestions to complete the shopping cart, these are available on a Side Cart, accessible at

any point during the purchase process on the store. Whenever a client adds or removes a product

to their cart, the widget reloads and the respective vitrine is updated displaying the appropriate sug-

gestions according to the current cart content. The platform informs the RS of the current products

in the cart, which in turn returns the complementaryproductssuggestionsrequired by the widget.

Furthermore, whenever a client has no products added in their shopping cart, popularity/hybrid

recommendations are used instead of complementary products recommendations, due to being

impossible to make cart suggestions with an empty cart.

Homepage

Side	cart

		Recommended	Products

Total: €€

Figure 4.12: Side cart recommendations vitrine generic template. In this example, the user added a
shirt and pants to the shopping cart, so the recommendation vitrine displays some products which
are commonly bought together with the cart’s current content.
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Lastly, a new ordering option was added to Product Listing on the websites: ”OrderbyRecom-
mended”. With this option, products from product listing are ordered according to recommendations

given by the RS. Here, once again, recommendations are from types hybridor popularity. In this

case, two scenarios had to be considered: agenericproduct listing, when the store page is displayed

showing all available products, and a specificlisting, when the user filters the product by category.

In this last situation, it was necessary to ensure that all recommended products belonged to the cat-

egory selected by the client. Since each recommended product of hybrid and popularity types has

its category associated, and taking advantage of MongoDB’s capacity to be a very efficient search

engine, it was possible to filter the recommendations and send only those related to the category

of the page.

Homepage

Product	Listing

Products	category:	Drinks Order	by:	Recommended

Figure 4.13: Product listing page recommendations vitrine generic template. In this example, the
user browses for products within the ”Drinks”category and orders them with the ”Recommended”
option. Ergo, products related to ”Drinks” are listed, ordered by recommendation score, i.e., the
products that would appeal the most according to the user’s profile are shown first.

Recommendation widgets use theRediscomponent to cache results received from the RS. By saving

recommendations, for a certain time, the application no longer needs to send repeated requests

demanding the same recommendations, therefore reducing the number of calls to the server and,

consequently, the load on the communication flow, increasing overall system performance. A user’s

session on a Beevo platform typically takes half an hour, with the possibility of the user returning

within the next hour after that visit. Thus, when a widget obtains recommendations from the RS, it

saves those results in cache. When the user accesses a page whose context requires recommen-

dations that have been previously loaded, the widgets will fetch the results from cache, allowing the

page to load faster and improving the user experience.

The format of recommendation requests is specified in section 5.3.
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4.5 Security

In order to assemble the security mechanisms of the system, potential threats were raised first

according to the STRIDE (74) methodology: Spoofing, Tampering, Repudiation, Informationdisclo-
sure, Denialofserviceand Elevationofprivilege. Consequently, it was ensured that the system has

properties such as authenticity, integrity, non-repudiability, confidentiality, availability and authoriza-

tion.

Thus, it was decided to develop an AccessControlList(ACL), which dictates a hierarchy of user

roles, and their respective permissions. The ACL establishes the various policiesof the system,

indicating which resources exist, which operations can be done in each of them and who can execute

them, thus constituting the RS authorization mechanism.

There are three types of users, i.e. roles, with access to the recommender system:

• System Admin: The user is an administrator of the system. The administrator has global

access to the recommendation system and is allowed to create different types of users for

each platform (Tenant Admin and Tenant User). It also can access and operate on any

platform and respective resources.

Each platform is referred as a tenant and has its own Tenant Admins and Tenant Users.

• Tenant Admin: The user is associated to a platform and acts as an administrator for the re-

sources of that platform. They cannot make CRUD operations on other platforms’ resources,

just manage the ones of their own. Tenant Admin users are allowed to create common users

(Tenant Users), which are consequently associated with the respective platform.

• Tenant User: These are common users that can only make GETrequests to the resources

of the platform with which they are associated. They cannot make CRUD operations in ACL

nor access the other platforms.

System users and the ACL are stored and managed in the MongoDB database, supported on the

npm ACL package 2 - NodeACL-AccessControlListsforNode. This module offers a minimalist

ACL implementation, providing methods that help to create roles and permissions. The following

table describes the system policies:

2https://www.npmjs.com/package/acl
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Table 4.4: RS Access Control List: existing roles, resources and permissions. As it can be observed,
Tenant Users are not allowed to access Users and ACL resources. On the other hand, Tenant Admins
are not allowed to edit system users information nor create or remove ACL elements (roles, resources
and permissions). The System Admins are able to see the roles and permissions of all users. They
have full access to the ACL, which allows them to manage all system’s policies.

Resources/Roles System Admin Tenant Admin Tenant User

/recommender *
GET/POST

PUT/DELETE
-

/users *
GET/POST

DELETE
-

/acl *
GET
PUT

-

/clients *
GET/POST

PUT/DELETE
GET

/products *
GET/POST

PUT/DELETE
GET

/order-items *
GET/POST

PUT/DELETE
GET

/hybrid *
GET/POST

PUT/DELETE
GET

/popularity *
GET/POST

PUT/DELETE
GET

/similar-products *
GET/POST

PUT/DELETE
GET

/complementary-products *
GET/POST

PUT/DELETE
GET

SystemAdminoperates at the /api/resource level, where the platform is not specified and the de-

fault is assumed. TenantAdminand TenantUseroperate with endpoints in the /api/${platform}
/resource format, where it is necessary to specify the platform to which they are trying to access,

having only access to the one they are associated with. The existing resources are listed in the API

Documentation section. Note that only System and Tenant administrators are allowed to access

platform engine recommendations configurations (/recommender), as Tenant Users are not.

In practice, this table is translated into JSON documents and later stored in the MongoDB collec-

tions, thus dictating which operations are allowed for each role to perform on each system resource

- policies. All system users are stored in a single collection, with a compositeprimarykeyformed by

the user’s email and platform. Thus, a user can associate their email on more than one platform

with different roles.
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Taking into account the user hierarchy, we can draw the following process for the creation of users:

1. SystemAdminis registered directly in the database;

2. SystemAdminlogs in to the service and registers another user with one of the remaining

roles;

3. TenantAdminlogs in and has the possibility to register a TenantUser.

To develop the login feature, an authentication mechanism was created using JWT (JSONWeb
Tokens(57)) to transmit information in a secure way between entities as a JSON object, since it

can be verified and trusted because it is digitally signed. This was implemented through the npm

jsonwebtokens3 package to exchange information about users in requests between the system and

tenants.

Whenever a tenant logs in, and after verifying the login credentials (email and password), the system

creates an authentication token to return as the response. In the token’s payload, it is stored the

user’s identifier, their role and platform. At the end of this process, that token is signed with the

server’s secret key and encrypted. To increase security, the token is defined with a 2 hours expiration

time, preventing the abuse of its use indefinitely in case a third party can access a valid token. The

properties of authentication, integrity, non-repudiation and confidentiality are therefore maintained.

Both authentication and authorization mechanisms were incorporated into middlewares installed on

the system’s server to filter requests received from tenants. Access to platforms, according to roles,

is validated in the authentication phase, while access to the respective resources is verified in the

authorization phase.

The authentication middleware sets the system endpoints as private, so that only authenticated

users can reach them. It verifies if a user has access to an endpoint, by validating the token

received from requests. The middleware fetches the authorization token from request’s cookies or

authorization header, verifies and decodes it according to the server’s secret key and, after this

validation, it stores the user data from the token into a session, to pass it to the next middleware

(authorization).

In turn, the authorization middleware protects the resources of the system, by checking the user

role permissions; If the user has the SystemAdminrole, then they have access to all resources of

the system. Otherwise, they only have access to the resources of the platform they are associated

with. It takes the user identifier from the session and checks their permissions according to the

ACL, by taking into account the resource they are trying to access and the method of the request.

This way, authorization property is established.

3https://www.npmjs.com/package/jsonwebtoken
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As for the rest of the architecture’s components, they already have security tools integrated, thus

being sufficient creating users with secure login credentials for direct access to these elements:

Elasticsearch, Kibana and MongoDB. As for the availability property, this is also ensured by the

existing mechanisms of high availability of these databases.

Furthermore, as an extra security measure, alternative TCP ports were opened, instead of the default

ports, for the system’s docker containers on the host machine in order to make the resources

available through the Recommender API in a more secure way.

4.6 Summary

Having identified which technologies to use, which best fit the context of the project and require-

ments of the host machine, we proceeded to the planning and design of the types and structure

of product recommendations. Therefore, four types of recommendation were defined - Popularity,
Hybrid, Similar-productsand Complementary-products- with three entities being assumed through-

out the recommendation system: Client, Productand Order-item. These recommendations will be

produced in offlinemode, which means that the recommendation engine will generate results, in

the background and in cycles, always keeping recommendations relatively up-to-date and available

for online stores. To communicate with the recommendation service, Beevo online stores integrate

an application, called BIApp, which connects to the RS API and send the necessary information so

that the engine can produce recommendations, as well as receive these results to show products

to clients. During the project, four scenarios were contemplated to show recommendations on the

web pages: Homepagewith popular products, ProductListingwith a new ’Recommended’ ordering

option, ProductDetailspage showing products similar to the selected one and Sidecartsuggestions

that displays products suited to complete the customer’s purchase. The BIAppalso allows cus-

tomizing the recommendation models of the system’s engine, while all this communication process

is ensured by the authentication and authorization mechanisms of the service.
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5. METHODS

The process of recommending can be understood as a DataMining(75) process, in which correla-

tions between clients and products are discovered, supporting the recommendation of an item to a

user. Although this process is of recommendation engine’s responsibility, it is important to contem-

plate the first phase of Data Mining, which consists of DataAnalysisandPreprocessing: obtaining

data, processing it and forming data sets that will be the source of information for engine consump-

tion. As mentioned, obtaining the necessary data for recommendations is of most importance, thus

the architectural elements being crucial for the existence of communication. However, not all data

can be relevant, so there is a need for filtering to get only significant information, discarding those

considered outliers and that can negatively influence the results.

The flow of retrieving data from the platforms, filtering and subsequent storage in the databases

can be described based on the ETL (71) process (Extraction,TransformationandLoad).

5.1 Data Extraction Strategy

Before deciding that data would be received via API, the possibilities of adopting other approaches

were considered for the first step - Extraction- such as using Logstashor Debeziumfor CDC. In the

next sections, the conclusions drawn after exploring these alternatives are explained, as well as the

decisions that led to adopting an Application Programming Interface.

5.1.1 Logstash

Like Kibana, Logstash (76) is another tool from the vast arsenal developed by Elastic, which serves

to complement the use of the Elasticsearch database.

Logstash is a server-side, lightweight and open-source data processing pipeline that allows to collect
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data from different sources, transform it in real-time and insert it to any database, in the desired

format. Due to its close integration with Elasticsearch, powerful log processing features and multiple

plug-ins that can help an application to adapt to most data sources, we tried to use Logstash as a

channel for data linking e-commerce platforms to Elasticsearch, rather than using an API.

Logstash has a wide range of plugins, which allows an application to consume different types of

database, providing great versatility in adapting and extracting information. The streams used in

Logstash are better than conventional ETL processes, because they can extract data from multiple

different sources simultaneously, faster and efficiently. Instead of this process being divided into 3

phases (extraction, transformation and load), the tool’s streams and filters can execute everything

in one step and on-the-fly.

All of these features have great potential for the construction of generic architectures. However, to

be possible to extract data from Logstash, there must be at least one of the following two cases:

either e-commerce platforms grant access credentials to the system, specifically Logstash, to reach

its database or provide an API for Logstash to request data through HTTP requests. Furthermore,

plugins would have to be configured according to the different types of databases from inside and

outside Beevo’s domain and this strategy could lead to some security breaches. Since both sce-

narios imply dependencies and developments on the part of the platforms and do not present a

generic way of obtaining data, this technique was abandoned.

Besides, this tool was developed not to receive data, but to collect it within a certain time interval,

constantly monitoring the target databases in cycles. However, considering the event-driven side of

our architecture, it was declared that it would be more efficient to build a structure that listens to

requests, receiving and processing changes only when they occur (triggers). Additionally, in each

cycle Logstash always runs through all existing records rather than only new records, making the

process more costly and time-consuming. Hence the choice of using an API, in a more economical

perspective in terms of computational process and resources consumption.

5.1.2 Debezium (Change Data Capture)

While continuing to deepen the hypothesis of applying streams in the data extraction process, the

implementation of Debezium (77) tool was studied. This tool, sponsored by Red Hat (78), is a

distributed platform capable of transforming platforms’ databases into event streams, allowing the

recommender to immediately detect and respond to changes in each entry in the database tables.

Debezium is built on Apache Kafka (63) and provides Kafka Connect compatible connectors that

monitor database management systems. In addition, it records the history of data changes in the

Kafka logs, from where the application consumes them. This makes it possible for the RS to easily

consume all events correctly and completely. Even if there is a problem causing the system to crash,

when restarted it will begin to consume the events from where it left off, without losing any piece of

68



information.

Hence, Debezium is basically a modern, open-source ChangeDataCaptureplatform that will even-

tually support the monitoring of a variety of database systems. Change Data Capture, or CDC, is

an older term for a system that monitors and captures changes in data so that other software can

respond to those changes.

Through this tool, it would be possible to cover various types of data sources, as it can be imple-

mented for most e-commerce platforms. Yet, with the condition that a user needs to be created

with access to the database with certain privileges and that the database must be enabled for bin-
log. These limitations, coupled with the fact that this tool is still at an early stage of development,

determined that it was too risky to design an architecture based on it. With Debezium, e-commerce

platforms would have the responsibility to create specific tables with the necessary information for

RS consumption, which implies altering the infrastructure and schema of the existing database.

With this option, Debezium would be used for data extraction, but the communication and return of

recommendations to the tenants would still have to be done through the API. Thus, it was decided

to focus the entire communication process on a single element.

5.2 Exploratory Data Analysis (EDA)

As mentioned throughout this document, the quality of the data used will be reflected in the accuracy

of the recommendations produced, which reinforces the aphorism of this dissertation - information
ispower.
In order to obtain quality data of the entities considered (Clients, Products and Order-items), there

must be a refinement process, resulting from previous analysis and filtering. However, this process

must be delicate so that the filtering rules don’t compromise the amount of data extracted: clean-

ing data can cause the removal of data that appears useless and, consequently, losing potential

information. On the other hand, a large amount of data can lead to the existence of wide variations

due to unusual values   (outliers) and this can prejudice the final results. That is why it is important

to do exploration and analysis of the data, as the first step, to ensure a balance between quality and

quantity.

According to the creator of this process, John W. Tukey, he describes his perspective of EDA, in the

book ExploratoryDataAnalysis(EDA)launched in 1977, combining statistical reasoning with the

processes of data transformation and exploration:

”Exploratory data analysis can never be the whole story, but nothing else can serve as the

foundation stone.” - John W. Tukey (79)
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Lyle V. Jones summarizes the EDA process in three steps, in his work titled TheCollectedWorksof
JohnW.Tukey:PhilosophyandPrinciplesofDataAnalysis(1965-1986):

”Three of the main strategies of data analysis are:

1. graphical presentation.

2. provision of flexibility in viewpoint and in facilities

3. intensive search for parsimony and simplicity.”

- Jones, 1986, Vol. IV, p. 558 (80)

The recommendation service offers the possibility not only to developers but also to tenants them-

selves to carry out the Exploratory Data Analysis process through its Kibana component.

Kibana provides several tools to explore and learn about data stored in Elasticsearch indexes, the

construction of graphical representations and other forms of analysis.

One of these tools is DataVisualizer, which belongs to the ElasticMachineLearningarea and lets

users view data and gain an understanding of the metrics and fields associated with the respective

indices. With this tool, it is possible to take a sample of data (or even the entire data set) and build

basic views for all fields according to an index pattern. This area also features other tools such as the

AnomalyExplorerwhich by applying unsupervised machine learning helps to find patterns in the

received data, stored in the Elasticsearch database. By using time series modelling, it is possible

to detect anomalies in current data and predict trends based on historical data, allowing for quick

and effective corrections when an error occurs, keeping the database always valid. The Analytics
functionality enables users to build data analysis and outlier detection structures.

Additionally, Kibana’s Discoverinterface is the tool traditionally used for data exploration. This

interface also provides several ways to learn about data, sorting all documents of an index according

to a pre-defined timestamp. This facilitates the visualization and analysis of the structure and content

of each document, in a simple way, in addition to various filtering options or even the execution of

KQL (Kibana Query Language) or Lucene search queries.

Finally, another useful section of Kibana is the Visualizearea, which supports the development of

graphical representations of various types from the data in Elasticsearch, in order to obtain new

knowledge and to translate the raw data into relevant information, in a visual manner. Afterwards,

the graphics created can be grouped into dashboards, giving valuable Business Intelligence insights

to users.

It appears, therefore, that through Kiabana it is possible to fulfil all the steps mentioned by Jones,

in the previous quote. A practical example of applying this process through Kibana is described in

Kibana Data Analysis section.
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5.2.1 Variables Selection and Filtering

Following the concept of product recommendations and the context in which the system was devel-

oped, there was a need to consider the extraction of data that is suitable not only for the formation

of the said recommendations but also for other applications such as the Business Intelligence pro-

cesses mentioned: analyzes, dashboards, etc.

The selection of variables to be extracted was developed around the notion of e-commerce, in which

these are typically used in this type of commerce and, therefore, common among platforms of this

area. Thus, the base variables for the formation of recommendations in this system were defined,

since all e-commerce platforms are usually able to obtain and send them to the RS. Evidently,

different additional variables can be used depending on the platform, as is the case with product

attributes, e.g., a store that sells clothing will have different attributes from a store that sells food.

This is possible given the system’s generic and flexible structure and the dynamic mapping of the

databases, as already discussed.

Since each tenant is responsible for sending data to the system, the basic and obligatory variables

for the proper functioning of the service must be tangible to all and available on the platforms.

In order to define and filter the fields to be used by each Entity, a pre-selection took place, to choose

the variables that presented the minimum of potential to form recommendations but taking care not

to discard data that could offer unknown knowledge and important information.

The following mappings describe which variables are considered for each Entity and that must be

sent by default to the system, in order to be consumed by the engine and used by the recommen-

dation models:

Table 5.1: Fields selection for Client entity

Field Description
client_id Client identifier
gender Client gender
birth_date Client birthdate
created_at Record creation date
updated_at Last record update date
isNew Indicates if client is new to the online store
country Client country prefix (ISO 3166-1 alpha-2 code)
address_country Shipping address country prefix (ISO 3166-1 alpha-2 code)
address_1 Shipping address
address_2 Optional second shipping address
locality Shipping locality
city Shipping city
zip Shipping zip
district Shipping district

71



Table 5.2: Fields selection for Product entity

Field Description
product_id Product identifier
parent_id Product parent identifier
name Product name
sku Product sku code
aggregator_id Product aggregator identifier
stock Product stock amount
ordering Product ordering for sorting options
status Product status
buyable Indicates if the product can be bought
published Indicates if product should be available in the store
created_at Record creation date
updated_at Last record update date

hits Number of hits, i.e., number of visits to
its product detail page

manufacturer Product manufacturer
parent_published Product parent ’published’ status
categories List of product categories
has_discount Indicates if product price has discount

attributes Product attributes, with key-value format, as in
{ ”attribute_name” : ”attribute_value” , ... }

Table 5.3: Fields selection for Order-item entity

Field Description
order_item_id Order-item identifier
order_id Order identifier
product_id Order-item’s product identifier
product_name Product name
product_category Product category name
quantity Product quantity
product_total_with_tax Price per item, with tax
item_total_with_tax Sum of prices of total items in order, with tax
status Order status
created_at Record creation date
updated_at Last record update date
client_id Order’s client identifier
ip_address Order’s user ip address
ship_city Shipping city
ship_locality Shipping locality
ship_country Shipping country prefix (ISO 3166-1 alpha-2 code)
manufacturer Product manufacturer
hits_count Number of hits on that product by the client

product_attributes Product attributes, with key-value format, as in
{ ”attribute_name” : ”attribute_value” , ... }
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In the case of the project’s company, these fields are defined in the PHP classes of each of the

entities of the BIApp, thus being selected by default from Beevo platforms’ databases and sent to

the RS. It should be noted that it is possible to define extra fields, to be selected in addition to the

default ones, in the parameters of the application’s configurations, thus allowing to train the models

more specifically for the platform context and thus achieving better results. The rules for variables

selection are translated into datacontractsbetween the RS and tenants. A practical example is

described in section 6.1.1.

As it can be observed in the Clientfields table, the data relating to the personal area (name, email,

phone number, etc.) are not selected, as they are not necessary for the recommendation pro-

cess. Each client is identified by its client_id, promoting information security, as their privacy is

protected.

As for the Productfields, product_id and parent_id fields should be mentioned, where the first

refers to the id of the product itself and the last to the id of its parent product. These fields were

developed due to Beevo’s product logic where parent products represent the generic model of a

product that can later be extended into several child products, each varying in different attributes

such as color or size, but maintaining the general characteristics of the product. This logic is

later applied in the engine, training models using detailed information from childproductsand

recommending parentproductsin a more generic way. However, platforms that do not possess

the parent_id field may ignore it, since the engine will then adapt to each tenant’s conditions.

Moreover, note the statuses buyable and published in product extraction; there was the possibility

of accepting only those products that were available and buyable in the online store, since only

those were relevant to recommend. It wouldn’t make sense to recommend a product that is not

in these conditions. However, when discarding this data, one could be losing knowledge, which is

why it was decided to maintain a more profitable Data Mining process, discovering new information

and helping the recommendation algorithms to create connections and correlations between the

characteristics of various products, thus increasing the accuracy of results. Subsequently, it is the

engine’s responsibility to manage this logic and only recommend valid products.

The attributes field was design to create a generic structure in which each tenant could fill in their

data in a simple way: an object in a key-value format, e.g., {”Color”: ”Red”, ”Size”: ”XL”},

which can be satisfied with any type of attributes, regardless of the type of product considered.

The API is only responsible for receiving the necessary data for engine consumption, i.e., all data

received is used in the recommendation process, without ”waste” (excessive data). Null fields are

not saved, optimizing storage in Elasticsearch, but empty data is. It is up to the tenant to respect

the rules of the data contract, yet, not all of this data may come standardized (some may be empty

or in invalid formats) so, if necessary, the data transformation process can occur on the engine side

according to its needs and the context of the recommendation models. The engine has the ability to
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process data from Elasticsearch, transform it and make it valid for application in its ML algorithms.

One can say, therefore, that this phase resembles to the Transformationand Loadstages of the ETL

process.

5.3 API Documentation

The documentation of a RESTful API is a controversial subject among current software developers,

according to the article BestPracticesfortheDesignofRESTfulWebServices(17):

”A documentation for Web APIs is a debatable topic in the context of RESTful web services since it

represents an out-of-band information, which should be prevented according to Fielding: “Any

effort spent describing what method to use on what URIs of interest should be entirely defined

within the scope of the processing rules for a media type””

The description of a REST API violates two of the mentioned constraints of REST in section 2.1:

messages must be self-describing and hypermedia must be the engine of application state (55).

However, it is justified that although this API is not full-REST, it was created basedon the REST

principles, since it belongs to a service to be used by developers and not normal users, hence its

documentation being necessary.

Swagger(81) framework was used to compose the API documentation, for description, consumption

and visualization of the service. This tool allows the documentation to evolve at the same rate as

the implementation since it can be generated automatically based on annotations of the code.

Documentation is generated according to the standard, programming language-agnostic interface

description for REST APIs defined by the OpenAPISpecification(OAS) (82) which allows humans

and machines to understand the capabilities of a service without requiring access to source code,

additional documentation, or inspection of network traffic.

The API documentation describes, therefore, all the existing resources in the system, established

endpoints, possible methods of making requests for each corresponding route and which parame-

ters are necessary for these requests to be successful.

The documentation composition can be described by dividing it into the following schemas:

• Client, Products and Order-Items: These schemas describe the parameters needed to

insert a record of one of these entities, following the data contract established. To insert, ob-

tain, replace or delete a record, a request must be made using the HTTP methods POST,

GET, PUT and DELETE, respectively, making it possible to make CRUD operations un-

der the system database.
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• Recommender: This schema represents the recommendation engine configurations, de-

scribed in table 4.3, providing several endpoints to obtain and update these parameters in

order to customize the engine recommendations.

• User: Describes the endpoints and respective operations that can be performed under the

system’s User model, such as registration, login and various CRUD operations.

• Recommendation: It is an abstract schema, used for the different types of recommenda-

tions. Each type has a different endpoint associated, thus separating the multiple resources

related to each recommendation.

• ACL: Describes all endpoints that allow the configuration of the system’s Access Control List

and respective policies, managing the existing roles, their assignment to users and permis-

sions of each role.

This documentation was shared among all RS and platforms’ developers, so that teams were aware

of the system’s general functioning and how to communicate with it to develop certain features. In

appendix A.2 it is possible to visualize the appearance of the documentation made with Swagger. It

should be noted that the technical description of the system was also published in the company’s

documentation.

5.4 Summary

In this chapter, different options for data extraction were addressed, in order to populate the recom-

mendation system. This is an important phase since, without quality control of these data, it would

be improbable to form good recommendations by the engine. It was decided that the best approach

would be the API, instead of extracting data in cycles or using change data capture techniques, as it

would be the most efficient way of the service to react to platforms’ events and consequent changes

in the databases. Before developing the extraction process, a pre-selection took place to elect the

fields that would be used in the formation of recommendations. The standard fields to be extracted

were defined, as they are common to most e-commerce platforms, leaving space for additional fields

that can be used to personalize the recommendation models and obtain more accurate results, in

line with the needs of the online store. Finally, the API documentation was made available to all

developers, spreading the service’s functioning mode throughout the company.
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6. CASE STUDIES / EXPERIMENTS

In order to prove this project’s concept, the recommendation system was applied in practice on

Deeply’s online store, a platform developed by the company. The RS was implemented in a stag-
ingenvironment of the platform to carry out several tests and evaluations so its development and

deployment in productionenvironments can be justified, in the future.

In this chapter, a practical experience made onDeeply e-commerce platform is described, exploring

the extracted data from the store and multiple analysis techniques possible with Kibana, as well as

the widgets to display recommended products to clients.

Finally, the obtained results are explained and discussed, reflecting the overall performance of the

system according to the architectural component and highlighting the potential of this data in the

Business Intelligence area.

6.1 Experiment setup

Deeply is an online store that sells clothing collections and surf equipment. The steps to install

the recommendation system on an e-commerce platform can be summarized as follows:

1. Register the tenant in the recommendation service through the web pages directly provided

by the system. A login page is presented, which after authenticating, redirects the user to a

registration page - to create new users in the system. Only SystemAdminsandTenantAdmins
can authenticate themselves on the login page, as they are the only ones allowed to create

other users. Note that when a SystemAdmincreates a user, he can indicate the platform

and role (TenantAdminor TenantUser) that he wants to associate with the new user, while a

TenantAdmincan only create new TenantUsersassociated with its own platform, as defined

by the system’s policies - section 4.5. The appearance of these web pages are attached in
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appendix A.4.

2. After registration, the tenant will be able to get an authentication token, by sending a request

to the system’s login endpoint, as described in the API documentation, and insert it in the

header of its consequent requests, making them valid and accepted by the service.

{
”userId”: ”5e4bf76b5be7e4151aeb99ae”,
”userRole”: ”SystemAdmin”,
”userPlatform”: ”deeply”,
”iat”: 1582036952

}

Listing 1: Example of a JWT decoded JSON object

In the case of Beevo’s online stores, this is possible through the platform’s Back-Office(man-

agement area for store administrators), in a specific section for the interaction with the RS,

through the BIApp. This section presents a tab to enter the tenant’s credentials that will be

used to authenticate in the recommendation service.

Figure 6.1: Deeply Back-Office - RS user association to tenant

3. Afterwards, it is necessary to configure the recommendation engine, again through the BI
App, in the section entitled for that. Here, all modelparameters mentioned in section 4.3

can be changed and adapted with the desired behavior for the engine.
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Figure 6.2: Deeply Back-Office - Recommender engine configurations

4. Ultimately, it is necessary to perform an initial population of the Elasticsearch database of the

RS, extracting the data previously described from the entities Client, Productand Order-item,

so that the engine has the data sets it needs to produce recommendations. The population

can be general, cloning information from all entities, or selected ones. In this tab, it is also

possible to indicate the optional fields to be extracted from those entities, in addition to the

fields selected by default, or even additional attributes for the Productentity - section 5.2.1.

Figure 6.3: Deeply Back-Office - Attribute selection and Recommender Population
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5. At the time of execution defined by a cronjob, the engine will load, process and analyze

data from these data sets, train recommendation models according to previously defined

configurations and generate recommendations for Deeply’s clients, storing those results in

MongoDB at the end of the process. These results will then be available via API.

deeply_complementary_productsdeeply_similar_products

deeply_hybriddeeply_popularity

{
				_id:	'49503076-1f08-4696-b014-91963073f8f3',
				items:	[
								{
												product_id:	'60d8a266-d2ac-11e8-852b-bca7105b98e9',
												support:	0.50
								},
								{
												product_id:	'846hcn77-1631-4858-86a0-41eebfd5b636',
												support:	0.25
								}
				]
}

{
				_id:	'2210c94c-76bd-44df-8fdb-f0ab6b070b66',
				items:	[

								'9aacf2c7-0933-4254-991a-62e8974afb41',

								'35f8d8d2-d138-40d4-85a3-8e82e8b9a9d7',

								'c478gh6c-de32-443c-b909-b7781dd9936a',

								'f66afc3c-7a07-45f8-b549-d5b60781c758'
				]
}

{
				_id:	0,
				items:	[
								{
												product_id:	'f779e01a-be88-4be6-9704-0f9248eebf9b',
												categories:	[
																'MEN',
																'5/3	MM',
																'WETSUITS'
												]
								},
								{	...	},
				...	]
}

{
				_id:	'11e2278a-8351-459c-aa4b-b01fb966b74b',
				items:	[
								{
												product_id:	'3c3bb63c-2a74-4d6c-9047-44598b925857',
												categories:	[
																'WOMEN',
																'T-SHIRTS	&	TOPS',
																'PROMOTIONS'
												]
								},
								{	...	},
				...	]
}

Figure 6.4: Deeply MongoDB recommendation documents examples

Once the recommendation process has taken place, it is time to show the results to the store’s

clients, through the storefront web pages. As described in section 4.4.4, the recommended products

are displayed in vitrines, coordinated by widgets developed for this purpose, according to the type

of recommendation that is intended to be used on the web page. When a client visits the web page,

widgets request recommendations to the service, using the methods available in Facade.php of

the BIApp, and after receiving the list of recommended product ids, it fetches the information of

the those items in the store’s database and presents them to the client. These results are cached

for about 2 hours, so when the client visits the same page it is not necessary to request the same

results to the service again and avoid a great page loading time and resource usage. Below are

some examples of these vitrines:
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Figure 6.5: Deeply Homepage - Popularity recommendations example

Figure 6.6: Deeply Product Details - Similar-products recommendations example
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Figure 6.7: Deeply Side-Cart - Complementary-products suggestions example

Figure 6.8: Deeply Product Listing - Hybrid recommendations example
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6.1.1 Data Contract

To ensure the steady functioning of the system, it is necessary to ensure good communication be-

tween it and the platforms. This is achieved through a datacontract, where it is agreed between

tenants and the service which and in what format data should be exchanged between them, guar-

anteeing that the system receives the necessary information to produce recommendations and that

tenants can obtain and use these results. This is a way to ”oblige” both parties to maintain a

coherent and flawless communication.

The data restrained in the contract reflects the variables pre-selection made in section 5.2.1, con-

sidering that, when selecting and filtering data in the extraction process, all stringvariables are in

the same language, as this will affect recommendations made by the engine since some recom-

mendation algorithms are based on textual terms.

The data contract between the recommendation service and Deeply is available in appendix A.6.

6.1.2 Kibana Data Analysis

With the Elasticsearch database filled in, Kibana can be used to explore its content. Elasticsearch

has two core data types that can store string data: textand keyword. Textdata type is useful

when it comes to product descriptions: if a product description has ”t-shirt made of 100% cotton”

and the user searches for the string ”cotton”, that product will appear as a result. On the other

hand, the data type keywordis used for exact matches, where the results must precisely match

the search terms: in the case of a product being a ”blue t-shirt”, if the user searches only for the

”t-shirt”keyword it is likely that this product will not be returned as a result of that search. This is

what makes Elasticsearch an excellent full-text search engine, a feature that may complement this

recommendation system in the future.

Through the DataVisualizerarea we can obtain statistical information regarding data extracted from

Deeply. Deeply platform has a Portuguesedatabase, hence some data values can be presented

in that language has they do not have an English translation stored. Appendices A.8, A.10 and

A.12 show the information that Kibana offers from Client, Product and Order-item entities’s data,

respectively1. Each document corresponds to an entity record.

1The Deeply database used is deprecated and was only used for testing purposes, thus some data may have poor
values or even the lack of them. Nonetheless, the engine adapts the recommendation models according to the needs
of the online platform.
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Clients

Regarding the Cliententity, it was possible to verify that there are 23,889 documents stored in

Elasticsearch, which means that there was the same total of client records on the platform, at the

time. Only 5,265 documents (22.04% of clients) contain the gender field, while in other records

this field remains null. These values are in Portuguese, so it can be assumed that sr/drvalues

refer to the malegender and sra/drato the femalegender:

Table 6.1: Deeply clients’ gender distribution

Male sr 62.1% 65.4%
dr 3.3%

Female sra 23.2% 23.7%
dra 0.6%

Undefined (empty) 10.9% 10.9%

About 14.761 (61.79%) of clients have their country associated with their record, allowing to un-

derstand in which countries the store has more affluence:

Table 6.2: Deeply top 5 country values

Country
(ISO 3166)

Percentage

PT 55.6%
ES 34%
FR 5.7%
DE 1.5%
IT 0.9%

From the translated values in the tables, we can conclude that most of the store’s clients are Por-

tuguese and Spanish men.

Note also that several values are not normalized. For example, the locality field is filled in manually

by the client at the registration page, so different clients, even belonging to the same locality, can

type its designation differently.

Due to this type of flaws and inconsistencies, it is necessary that the engine executes a datatreat-
mentbefore model training and production of recommendations.
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Products

In Deeply platform there are 8,860 products in total, so far, but only 22.1% of them are available

(published) in the online store. When analyzing the data through Kibana, we can see the following

top of values of the categories field, color and size attributes:

Table 6.3: Top 5 values of colors, sizes and categories of Deeply products

Color Percentage Size Percentage Categories Percentage
526 30.5% L 16.9% PROMOTIONS 13.3%
504 10.5% S 15.5% MEN 12.8%
pink 7.2% M 15.3% CLOTHING 6.8%
508 6.7% XL 11.2% WOMEN 6.7%
510 5.6% XS 8.9% JUNIOR 4.3%

Exposing the data in this table, one can easily notice that the store produces mostly black products

(color 526) for men between sizes from S to L (agreeing with the previous data analysis), and many

of them were in promotions at the time this analysis was made.

Through this examination, it is also possible to check the different manufacturers associated with

the various products of the store, however in this experimental case there is only one: Deeply.

Finally, the parent_id field stands out, in which 29.8% has a value of 0, indicating the number of

parent products in the store, that is, the number of products available for recommendation - section

5.2.1.

Order-Item

As for order-items, there are a total of 37,148 records, but the number of orders placed is obviously

smaller, since several order-items can belong to the same order. Hence, it is necessary to have this

notion into consideration when analyzing order data. In this case, the use of the aggregation func-

tionality of Kibana was decisive to assist in the analysis of orders, exploited in Business Intelligence

Dashboards.

However, in the analysis of the individual order-item instances, one can realise that the median price

for each product in an order-item (product_total_with_tax) is about 98.75, which is similar to

the total price of the products in an order (item_total_with_tax), justified by the fact that the

quantity of products in an order-item record being 1, in about 98.7% of cases.

With this data, we can already obtain information on the color, size and category fields, that are

present in most of the ordered products:
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Table 6.4: Top 5 values of colors, sizes and categories of ordered products

Color Percentage Size Percentage Categories Percentage
526 47.8% M 25% PROMOTIONS 31.2%
grey 8.1% L 14.4% MEN 21.4%
504 7.2% S 14.3% WETSUITS 4%

dark grey 3.8% MT 8% 4/3 MM 3.8%
508 3.7% MS 7.3% ACCESSORIES 3.2%

Translating these values into a table for better visualization, it is easy to understand that most of the

products sold are products whose color is black (526 code) for men, with the size between S and

L, belonging to the promotions group. Thus, there is an evident correlation with the previous table,

being logical that the store invests more in the stock of products that are most sold. About 42.4%

of order-items belong to orders addressed to Portugal, 36% to Spain and 12.3% to France. In total,

61.2% were shipped and 28.6% cancelled (status).

As can be seen from the examples of the values that Kibana presents for the fields mentioned

above, these are not normalized (in the same format), meeting the issue highlighted throughout

this section: the recommendation engine is responsible for handling data in such a way that it

satisfies the requirements for the application of the ML algorithms and consequent production of

recommendations. Besides, as the engine recommends for textual terms, it does not matter whether

the fields’ values (such as colors or sizes) are represented by their number or name, as long as

consistency is maintained. It is this capacity for abstraction that makes the system so flexible.

Furthermore, the information presented in DataVisualizeris updated in real-time, as Elasticsearch

receives new data.

From a Business Intelligence perspective, the variables previously discussed are quite interesting to

analyze in order to obtain relevant information for TargetedMarketing, for example. This potential

is demonstrated in the Business Intelligence Dashboards section.

6.2 Results

After integration and configuration phases of the recommendation system on the e-commerce plat-

form, several tests were carried out to assess the overall performance of the architecture idealized

in this project. These tests were used to identify possible flaws that may exist either in the general

functioning of the service, or in its communication with tenants, to raise performance improvements

and, finally, to support the proof of concept so that it can advance to production environments. Thus,

in this section, the results of the evaluations regarding the interactions with the recommendation
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service are compared, justified and, subsequently, several graphs inherent to the Business Intel-

ligence area are exposed and grouped in dashboards, made with Kibana. Finally, all decisions

made throughout the project are reflected in a discussion section describing potential improve-

ments regarding both API and the machine of the recommendation system, its scalability and a

global perspective on the entire project.

6.2.1 Performance Tests

To assess the performance of the proposed architecture, loadtestswere developed collecting several

evaluation metrics from the server.

These tests were created using Locusttool (83), a distributed and scalable load testing framework,

which allows writing user test scenarios in Python to test any system.

The general flow for performing a load test consists of three concepts: Workload, SystemUnder
Test(SUT)and Metrics.

Staging	environment

Locust

(Tenants)

Recommender	System

System	Under	Test	(SUT)

Locust

Web-based	UI

(Results)

Workload Metrics

Figure 6.9: Execution of load tests: Workload, System Under Test (SUT) and Metrics.

Locust simulates the interaction of several tenants with the system, i.e., mimics the browsing be-

havior of multiple clients on the web pages of different e-commerce platforms, triggering events

and sending several requests to the recommendation system, pushing its performance to the limit.

According to the responses that the RS returns, Locust is able to collect various metrics and make

the results available through its web interface, showing the progress of the load tests in real-time.

The workload consisted of requests generated synthetically and randomly, either in time and pay-

load, intending to simulate real users and prevent the software used from caching data, after re-

ceiving the same requests in the same order for some time.

About 1500 users were simulated in total, at a rate of 2 users created per second, of which 375 (25%)

represent loggedusersand 1125 (75%) correspond to anonymoususers(who are not authenticated

on the store), since users of this last type are more frequent in online stores. Logged users sent

requests between 5 to 10 seconds, whereas anonymous users send at a rate of 7 to 14 seconds,

this last simulating limited knowledge about the store and a longer search for products.
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Table 6.5: Simulated users in the load tests

Total Users Authenticated Users Anonymous Users
1500 (100%) 375 (25%) 1125 (75%)

2 Users
created/second

Sends request every
5∼10 seconds

Sends request every
7∼14 seconds

Regarding NodeJS, it is known that this run environment is single-threadedby default, using a single

core of a machine while others remain idle. However, it is possible to implement aclusteringmodule,

using Process Manager 2 (PM2) (84), which enables an automatic usage of Node’sClusterAPI
(85) and a built-in load balancer, giving the application the capacity to run in multiple processes.

With this module, the parent process can be forked into several child processes, all sharing server

ports and handling a large volume of requests concurrently.

Two different scenarios were tested: the first was a simple environment test, without the installation

of PM2, while the second scenario implements this module, using all 8 CPUs of the host machine

simultaneously, each raising an instance of the application, allowing a better distribution in the

processing of requests.

An important note to take into account is that in these test scenarios, cache on the tenant-side was

not considered; in this case, caching results in Redis via BIApp.

The following table refers to the overall results of the system’s performance in the two mentioned

scenarios. It should be noted that each load test has a duration of 15 minutes and, in order to

collect metrics with reliable values, the server machine’s warm-up and cool-down were taken into

account.

Table 6.6: System’s server load test performance results

Throughput
(requests/second)

Reliability
(failures/second)

Median response
time
(ms)

Average response
time
(ms)

95 percentile
response time2

(ms)
Single-core 205.8 5.8 90 230 280
Multi-core
(8×CPU)

239.4 6.5 69 107 170

Examining the values in table 6.6, one can verify that the response time is shorter when clustering

is implemented.

The averageresponsetimeis influenced by momentary peaks due to some connection errors,

hence the most reliable value is the medianresponsetime, presenting a value below 100 ms, which

does not produce a significant impact on the loading time of web pages nor in the user experience

on the platform. In addition to some connection errors, failures include responses with HTTP
295% of the requests are served before this time
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404 code, regarding requests for recommendations that the system does not possess, due to the

recommender engine not having produced results for some products (e.g. some complementary

products may not be found for some items of the store).

Furthermore, a clustering approach increases the system capacity to scale, allowing it to serve a

greater number of requests while maintaining a reduced response time, making it more robust.

However, it is necessary to have a healthy management in the assignment of CPUs to the Node.js

component, since a large consumption of resources can affect the performance of the other docker

containers. Still, in this case, since Node.js is the most active element in the system, it is the one

that is entitled to more dedicated CPUs for its execution.

In this second scenario, a load test was set up in Locust, according to the following structure:

Locust	Test	File

clients.json products.json

configs.json

carts.json

categories.json

Users

AuthenticUser AnonymousUser

UserId:	getUserId()
Type:	Hybrid
Weight:	1
Wait_time:	between(5,10)

UserId:	(empty)
Type:Popularity
Weight:	3
Wait_time:	between(7,14)

UserBehavior

Recommendations

Homepage
Vitrine
Cart
Vitrine	&	cart

Product	Listing
Order	list
Order	list	w/
categories
filtering

Product	Details
Vitrine
Cart
Vitrine	&	cart

Popularity

Limit
Categories

/recommendations/popularity/?limit={limit}&{categories}

HybridLimit
Categories
UserId

/recommendations/hybrid/user_id}/?limit={limit}&
{categories}

Similar

Limit	=	8
ProductId

/recommendations/similar-products/{product_id}/?limit=8

ComplementaryLimit=6
Weight
ProductIds

/recommendations/complementary-products/?limit={limit}

Figure 6.10: Locustload test structure.
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Several JSON files were created, to load the test program with samples of client and product ids,

from Deeply’s database, and various configurations related to the recommender’s server.

Two different classes of users were created - authenticatedand non-authenticatedusers - each con-

figured according to the information referred in table 6.5. Each user class is supported by another

class, named UserBehavior, which defines the behavior of each type of user and simulates vari-

ous actions as if users were browsing the online store. This class requests recommendations from

the RS, choosing randomly several product and client ids in each execution cycle, according to

the configurations previously made. Only the scenarios in which users browse web pages covered

by the recommendation widgets were considered: Homepage, Product listing, Product Details and

Side-Cart.

As for recommendations, each type is specified in the class Recommendations, in which hybrid
and popularityrecommendations, specific for authenticated and non-authenticated users respec-

tively, receive as arguments the maximum number of recommended items that the service should

return, as well as the list of categories to use in filtering results. These arguments are placed in the

query parameters of the requests. As for complementaryproducts, it is worth mentioning that the

weight field represents the likelihood of a shopping cart being empty: most users, when browsing

an online store, explore a lot without adding a single product to their cart.

The following table presents detailed information of the load test that took place in this second

scenario. In addition, it is complemented with images of graphs referring to the total number of

users, the rate of requests per second and the response time value, over time:
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Table 6.7: Locust table that translates the values of metrics collected during the load test, discriminated by each of the routes/endpoints provided by the

Recommender API

Method Endpoint
Request

Count

Failure

Count

Median

Response

Time

(ms)

Average

Response

Time

(ms)

Min

Response

Time

(ms)

Max

Response

Time

(ms)

Average

Content

Size

(bytes)

Requests

per

second

Failures

per

second

POST /api/deeply/recommendations/complementary-products/ 9 9 19 38 4 87 0 0.01 0.01

POST /api/deeply/recommendations/complementary-products/?limit=6 25974 0 73 114 22 16571 220 28.86 0.00

GET /recommendations/hybrid/clientID/?limit=10 5265 45 60 105 5 16352 390 5.85 0.05

GET /recommendations/hybrid/clientID/?limit=100 1116 27 70 108 4 16343 3894 1.24 0.03

GET /recommendations/hybrid/clientID?categories=[categories]/?limit=100 3186 1935 75 119 6 16377 501 3.54 2.15

GET /recommendations/popularity//?limit=10 18477 0 50 93 21 16483 391 20.53 0.00

GET /recommendations/popularity//?limit=100 5679 0 70 98 22 16480 3901 6.31 0.00

GET /recommendations/popularity//?limit=6 71712 63 41 95 4 16529 234 79.68 0.07

GET /recommendations/popularity/?categories=[categories]/?limit=100 11970 3672 72 115 23 16381 521 13.3 4.08

GET /recommendations/similar-products/productID/?limit=8 64467 99 69 121 7 16590 252 71.63 0.11

None Aggregated 207855 5850 69 107 4 17081 429 230.45 6.5
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All routes made available by the API to obtain recommendations are listed in the table, each with

the respective metrics collected during the test.

When carrying out load tests it was noticed that most of the simulated requests addressed to pop-
ularityrecommendations. This can be justified by the fact that there are more non-authenticated

users and the Homepage has a greater number of hits. Thus, and since these recommendations

are the same for all users, it was proposed to cache them in the server, using Redis, in an attempt

to improve the performance of the system. However, when implementing the Redis component on

the server-side, there were no changes in response time. On the other hand, the load that was

submitted to MongoDB was reduced, allowing it to have more capacity to respond to the remaining

requests. This can be a solution, if there is a large number of requests that require multiple and dis-

tinct recommendations and compromise MongoDB’s performance. Otherwise, the implementation

of a Redis server-side component does not pay off.

As for the other routes, it should be mentioned that the different limits in the query parameters

represent distinct vitrines, on different pages and that the first complementary-productsroute refers

to an empty cart, hence all requests for this route to fail, as there are no products to recommend

(HTTP 404). However, the weight for this action to occur is quite low, so it can be ignored since

it is rare to request product suggestions for items that are not present in the cart.

It is also worth mentioning that the response time for the authentication route (login) is about 154

ms, on average, which can be considered quite slow. However, this is due to the authentication

password validation process, which uses the bcrypt3 library that was designed to be slow in order

to avoid brute-force attacks.

Source: Locust web-based UI

Figure 6.11: Number of Users over time

3https://www.npmjs.com/package/bcrypt
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Source: Locust web-based UI

Figure 6.12: Rate of total requests per secod over time

Source: Locust web-based UI

Figure 6.13: Response time value over time

Comparing the 3 graphs, we can identify that there are some peaks where the response time

is higher and, consequently, the number of requests handled is lower, as the number of users

increases. This allows to identify several points where bottleneck problems may occur, caused by

the immense load made by test users - the limit of connections to the server is sometimes exceeded.

This is visible in the table, where a maxresponsetimeof 17 seconds was recorded. In contrast, a

4 ms minresponsetimewas also recorded, which may have resulted from similar and consecutive

requests.

These failures are accounted for in the previous table, adding to the HTTP 404 - Not Found
server-side errors when recommendations are requested for which the recommender has no answer:

e.g., product listing with a certain combination of categories or complementary products for a certain

item.

Obviously, in practical cases, the tolerance to these bottleneck concerns is greater, since after

sending a request, the response is cached on the platform side, by the BIApp, so the number of

requests will be much lower, for the same number of users.
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6.2.2 Business Intelligence Dashboards

As it has been reinforced throughout this dissertation, it is important to take full advantage of the

collected data to obtain knowledge and, thus, allow the definition of strategies to give an economic

boost to companies. Hence, the data is not only used to produce recommendations but can also be

explored and give much more information about the online store’s general commerce. With Kibana,

this can be arranged in various visual representations (such as graphs, tables, etc) and grouped in

dashboards, to support business decisions.

In this case, a dashboard was created based on the Deeply platform with some of the following

graphs:

Total Orders by Country

From a Marketing perspective, it is interesting and useful to calculate the total number of orders by

country, since it is possible to identify and invest in various forms of marketing, such as advertising

strategies or promotions, appropriate to the context of each country, and consequently maintain or

even increase the number of sales.

Figure 6.14: Total Orders by Country - Map

Kibana allows to make various types of graphs, it is a matter of deciding which style best suits

the information one wants to know. Seeing countries on the map, for example, is more visually

appealing. However, a bars graph allows a more objective and effective analysis. As we can see,

these values correspond to the analysis made in section 6.1.2.
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Figure 6.15: Total Orders by Country - Bars graph

Average spend by Country

In turn, when calculating the average spend by country, we must have in mind that a country

that has higher revenue than another does not necessarily mean that the first has more orders.

Nevertheless, knowing how much is spent on average for each order by country can show a glance

on the buying behavior of clients in that country, and the company can adjust both prices and invest

more in product promotions that match the average price spent by each client, in an attempt to

increase the number of sales.

Figure 6.16: Average spend by Country
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Average quantity and spend per order

It is also important to have graphs that show a global perspective of the stores’s sales, such as the

average price or average quantity of items per order, giving feedback to users on how the online

store trade is going and if it corresponds to vendor’s expectations and the company’s objectives.

Figure 6.17: Average quantity and spend per order

Client Genders

The Client values previously analyzed in section 6.1.2 can be reflected in a pie chart for better

visualization. With this knowledge, companies can make certain decisions according to the gender

of their clients, applying this information to assume the right direction in their business and increase

profit, combining the BI sector with Targeted Marketing.

Figure 6.18: Client genders
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Promotion Tracking

Through the Time Series Data Visualizer (TSDV) feature, it is possible in Kibana to identify possible

moments with the potential to carry out promotions. As a hypothetical case, in this test scenario, an

alert was defined to notify the owner of the online store that there is a potential chance of making a

discount on clients’ purchases whenever the total price of the order (item_total_with_tax) is greater

than 400€ for each product of a different category. For example, whenever the store sells 400€ or

more of a certain product with X category (X ∈ {MEN, WETSUIT, SURF ACCESSORIES, CLOTHING}),

a promotion is applied. This chart indicates and maintains the history of when promotions would

be most efficient and in what context.

Figure 6.19: Promotion Tracking

The complete dashboard is attached in appendix A.14, with the remaining graphs and tables:

• Sales by Category;

• Sold products per Week;

• Total Revenue;

• Top Selling Products;

• Clients table;

• Products table;

• Order-items table;

Most of these visual representations are based on orders from the online store, even though this

does not correspond to any entity considered in this project. Nevertheless, it is possible to make

observations of orders through the Order-itementity by grouping them using the aggregation feature

provided by Kibana. Thus, the obtained results were produced by aggregating order-items forming

several ”buckets” in which each one was identified by the order_id of the order-item, thus consid-

ering orders as a whole. This brings great advantages since we can have generalized information

about the orders from the online store, keeping the detailed data of each order-item.
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Another feature that makes Kibana such a powerful tool is the ability to update in real-time, as

Elasticsearch receives and stores data. Since the Elasticsearch database is synchronized with the

database of the e-commerce platform, through the developed triggers, Kibana is able to update the

dashboard graphs in real-time.

The registration tables inserted at the end of the dashboard, obtained from Kibana’s Discoverarea,

operate as logs of the Elasticsearch database, indicating which data was received and when it was

received, thus maintaining a history and providing a preview of each stored document.

To obtain dashboards with more reliable results, the data must be as complete and normalized as

possible, being from tenants’ responsibility since they are the data providers.

6.3 Discussion

A microservice approach was adopted instead of a monolithic architecture, since a single application

can present data congestion problems (bottleneck) when faced with a scenario where e-commerce

platforms are hit by countless users, generating a large number of events/requests. A microser-

vice architecture allowed to build a robust and flexible system, due to the independence of each

component, capable of handling requests and managing resources efficiently. This way, the service

can serve multiple tenants - multi-tenancy - instead of assigning a monolith instance (copy) to serve

each platform - single-tenancy.

It should be noted that all requirements raised in section 3.2 are satisfied by the system:

1. The RS returns the results of recommendations in the form of a list of product IDs, in JSON
format, as required by Beevo’s e-commerce platforms;

2. It is possible to control the information that comes in recommendation results, indicating the

quantity and category of recommended products that should be included in the response of

the service. If no limit is imposed, the service returns a maximum of 100 recommended

items;

3. RS provides a Kibana component, thus offering several data analysis and business intelli-

gence features;

4. The company guarantees the maintenance of the server machine for at least 361 of the 365

days a year;

5. From the results of the load tests, we can verify that the system fulfils the requirement of

responding under 100 ms to most requests, never exceeding 150 ms, even in moments of

intense activity;
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6. The system has authentication and authorization mechanisms, supported by JWT and an

ACL, protecting all data involved in the recommendation process;

7. Supports multi-tenancy;

8. Allows the tenant to manipulate the recommendation models of the system’s recommenda-

tion engine.

All recommendations produced were based on three entities (client, product and order-item), forming

four types of recommendation (popularity, hybrid, similar and complementary products), having

considered four different scenarios on the web pages (homepage, product listing, product details and

side-cart) that meet the system requirements. These results were computed in offline mode, which

means that the recommendation system calculated recommendations in the background, saving

the results in MongoDB to be made available whenever required by the online stores. In turn, online

stores formed data sets in the system’s Elasticsearch, by sending data about the entities, from their

database to the service, through the BI App. With this application it was also possible for tenants to

manipulate the service, changing the configurations and data used by the recommendation engine.

It was decided that this would be the best way to extract data from e-commerce platforms, as an API

allows the recommendation system to receive only data suitable for recommendations and to react

to events only when necessary. Before the extraction process took place, there was an investigation

and pre-selection of which fields should be extracted from the stores’ databases, regarding the

entities considered.

The accuracy of recommendations depends on the quality of the collected data and there is a need

to adapt the models of the recommendation engine according to the available data. Better results

could be obtained if there were more suitable variables for producing recommendations, such as:

• Sales per Time (SPT): Ratio between the number of sales and the time the product is on sale

• Sales per View (SPV): Ratio between the number of times a product has been sold and the

number of times the product has been viewed by users on the product listing page

• Product Buy Path: Products visited by the user, until his next purchase, since the beginning

of a session;

• Ratings and Reviews: product ratings and reviews given by users;

• Weather conditions: weather conditions and temperature at the time of the purchase at the

user’s location

These and many other variables could exponentially increase the accuracy of the results or even give

a greater capacity of adaptation to the service, extending the scope to real-time recommendations.
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However, since Beevo’s e-commerce platforms have not yet developed the necessary mechanisms

to obtain these variables, it was not possible to apply them. One can also notice that product prices

are not considered as a default field. This is due to Beevo’s product pricing logic complexity, in

which price values   change according to the type of client that is being addressed. Nevertheless, it

is possible to add this value in the optional extraction fields in the BI App.

The architecture developed in this project, as well as the metrics and results obtained from its

performance, are exposed and analyzed in my paper ”ImprovingPerformanceofRecommendation
SystemArchitecture” (Appendix I - Publications).

There are several suggestions for improving the overall performance of the architecture, such as

converting the protocol used in requests from HTTP/1 to HTTP/2 (86): HTTP/2 is more

efficient and faster than the first due to multiplexing, header compression and binary formatting

capabilities. As for scalability, the company opted for horizontalscaling, from an economic point of

view, by adding more machines to the resource pool, instead of adding more power (CPU, RAM, ...)

to the existing machine (verticalscaling). This way, it is possible to better manage the resources

of each component and even open the possibility to implement a Nginx(87) element to serve as a

load balancer and security mechanism in the future.
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7. CONCLUSION

Conclusions

Given the growing number of online offers, recommendation systems appear as an effective strategy

to combat the multiple decisions and divergent options that users face in online stores. The project’s

RS works as a PaaS, containing all the necessary infrastructure and computation for the production

of product recommendations. The e-commerce platforms that use this service, on the other hand,

only need to worry about communicating with it to receive such recommendations, through their

respective applications.

Although the system does not include real-time recommendations, the trigger mechanisms imple-

mented support the use of onlinecomputingin the architecture, giving the recommendation engine

the possibility to generate recommendations in real-time, if it has the capacity to do so, and conse-

quently allow platforms to present results in real-time, in response to user activities or other events.

This means that the progress of both architectural and engine components are interconnected, with

the structure depending on the complexity of the engine. The more features the recommendation

engine has, more endpoints and management will be required by the architecture to support these

features.

On the other hand, it is possible to analyze and obtain statistics in real-time from the data collected,

through Kibana dashboards, allowing greater control over data management. Thus, data stored by

the system not only is used to produce recommendations, but also helps to form new perspectives

on the market and support in business decisions - BusinessIntelligence.
So we may conclude that all the objectives proposed for this project have been achieved. Although

the system is not yet a Beevo’s final product, many of its customers have already shown interest

in subscribing and incorporating the recommendation service in their online stores. The developed

architecture allowed the integration of a recommendation engine in online stores, obtaining and
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analysis of data from its clients and products, which will fulfil the company’s objective of collecting

more information for the application of various marketing strategies and expanding its Business

Intelligence sector. Therefore, there is an expectation of increasing the number of users on the

platforms, the number of sales and, consequently, obtaining a greater profit, leading the company

to stand out in its market.

The technological components used in the architecture allow to combat all the problems foreseen

in section 3.1.1, such as:

1. Personalized data sets: The Elasticsearch component allowed the storage of personalized

data sets that contain various types of data from different e-commerce entities, thanks to the

flexibility provided by the structure of the JSON documents used;

2. Data analysis: Complementing the previous component, Kibana allowed the analysis of the

personalized data sets, in order to extract important information either for the application of

marketing strategies or in the creation of dashboards to support business decisions;

3. Information up-to-date: Thanks to the triggers developed and implemented on the tenants’

side, it was possible to keep the data sets always up to date and synchronized with the

databases of the online stores;

4. Cold start problem: It was also possible, along with the algorithms used by the recommen-

dation engine based on Collaborative and Content-based filtering, to combat the cold start

problem by always including the most recent information in the recommendation process;

5. Availability and scalability: The MongoDB component guaranteed, to the system, a database

with high availability and scalability necessary to satisfy the requirements raised at the start

of the project, so that online stores could always have access to recommendation results;

6. Multi-tenancy and security: The approach of a microservices architecture gave the system

the capacity to serve multiple stores simultaneously (multi-tenancy), always maintaining the

communication flow protected by JSON Web Tokens and an Access Control List.

All the main points of this project are exposed and explained in the article ImprovingPerformance
ofRecommendationSystemArchitecture(Appendix I - Publications), where it emphasizes the devel-

opment of the communication process between the RS and e-commerce platforms, the structure of

recommendations and analysis the performance results.
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Future improvements

In a futuristic perspective, a Javascript library could be developed to accommodate all the logic of

communication with the recommendation system: this library would contain all the required meth-

ods for e-commerce platforms to communicate with the recommendation service. Online stores only

needed to import and implement this library on their side, integrating it in the code of their widgets

of the respective web pages, and the methods of recommendation would be responsible for commu-

nicating with the RS API to obtain results. Thus, facilitating the integration of the recommendation

service on any platform.

As for the management of the system’s host machine, a better alternative for the future would be to

host the service in a cloud (e.g. Google Cloud or Amazon Web Services), freeing the company from

the problems of resource management and scalability when the system evolves.

Finally, some ideas for future functionalities and types of recommendations were conceived, ac-

cording to the current technology of the architecture. One of them will be intelligentsearch, which

consists of search suggestions in the search bar of online stores. This would certainly be pow-

ered by the Elasticsearch full-text term search capabilities of the service, comparing the keywords

entered by the user with the terms of names, attributes and categories of products, for example.

Another improvement would be to make more direct recommendations, using child products instead

of parents, as these are more detailed, which would provide clients with an even more personal-

ized experience. However, Beevo does not yet support this feature. And lastly, in the Business

Intelligence area, other types of provisional mechanisms could be developed by Kibana’s Machine

Learning feature, to predict stock replenishment or detect anomalies in sales.

Information is going to continue growing over the next years, and more and larger sources of data

will appear. As personalization algorithms keep improving and data keep growing, recommendation

system architectures must improve together, with opportunities and lessons to be learned.
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Appendix II - NodeJS Application Structure

Figure A.1: NodeJS Application Structure
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Appendix III - API Documentation with Swagger

Figure A.2: API Documentation with Swagger - part 1
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Figure A.3: API Documentation with Swagger - part 2
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Appendix IV - User login page of the Recommender System

Figure A.4: User login page of the Recommender System

Figure A.5: User registration page of the Recommender System
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Appendix V - Beevo Business Intelligence Data Contract

Figure A.6: Beevo Business Intelligence Data Contract - part 1
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Figure A.7: Beevo Business Intelligence Data Contract - part 2
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Appendix VI - Kibana’s data analysis on Clients data

Figure A.8: Kibana’s data analysis on Clients data - part 1
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Figure A.9: Kibana’s data analysis on Clients data - part 2
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Appendix VII - Kibana’s data analysis on Products data

Figure A.10: Kibana’s data analysis on Products data - part 1
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Figure A.11: Kibana’s data analysis on Products data - part 2
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Appendix VIII - Kibana’s data analysis on Order-items data

Figure A.12: Kibana’s data analysis on Order-items data - part 1
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Figure A.13: Kibana’s data analysis on Order-items data - part 2
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Appendix IX - Kibana’s Business Intelligence Dashboards

Figure A.14: Kibana’s Business Intelligence Dashboards - part 1
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Figure A.15: Kibana’s Business Intelligence Dashboards - part 2
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