€ o
2 E
2 5
»n s
= U
0—
-cﬂ.
c o
QO O
€ o
€ E
S E
@

Qo ©
e Q
'gI.IJ
® o
m‘l—
- Q@
N

> 5
mll-'
S 9
< &
s.:
s O
Q<

Gil Fernando Ferreira da Cunha

UMinho | 2021

Universidade do Minho
Escola de Engenharia

Gil Fernando Ferreira da Cunha

Data Analysis and Recommender
System Architecture for
E-Commerce platforms

January 2021

7\
\W

Il\

Universidade do Minho
Escola de Engenharia

Gil Fernando Ferreira da Cunha

Data Analysis and Recommender
System Architecture for
E-Commerce Platforms

January 2021

N\
_/

I'\

Universidade do Minho
Escola de Engenharia

Gil Fernando Ferreira da Cunha

Data Analysis and Recommender
System Architecture for
E-Commerce Platforms

Master's Dissertation
Integrated Master's in Informatics Engineering

Dissertation supervised by

Professor Dr. Hugo Daniel Abreu Peixoto
Professor Dr. José Manuel Ferreira Machado

January 2021

COPYRIGHTS AND CONDITIONS
OF USE BY THIRD PARTIES

This is an academic work that can be used by third parties as long as the internationally accepted
rules and good practices are respected, with regard to copyright and related rights.

Thus, this work can be used under the terms provided for in the license below.

If the user needs permission to be able to use the work under conditions not provided for in the
indicated license, he must contact the author, through the RepositdriUM of the University of Minho.

©05]

Attribution-NonCommercial

CC BY-NC

https://creativecommons.org/licenses/by-nc/4.0/

https://creativecommons.org/licenses/by-nc/4.0/

"Knowledge is power.”

- Francis Bacon (1597)

"Knowledge is power.

Information is power.

The secreting or hoarding of knowledge or information
may be an act of tyranny camouflaged as humility.”

- Robin Morgan

“Information is power only if you can take action with it.
Then, and only then, does it represent knowledge

y

and, consequently, power.

- Daniel Burrus

"Knowledge is power.
Information is liberating.
Education is the premise of progress,

i

in every society, in every family’

- Kofi Annan

Vil

ACKNOWLEDGEMENTS

First of all, | would like to thank my parents, Fernando and Elsa, for the tireless support that they
gave me not only on this journey, but also continue to give throughout my life; for believing in me
and making an effort to invest in my success, my gratitude. Following, | appreciate my brother
Rafael for his friendship and attention whenever | needed it and for his confidence in my progress. |
also thank my girlfriend Anabela, for her encouragement, her patience with me and for helping me
to overcome the most difficult moments.

| also want to appreciate my family and friends in general for being present when | needed to and
keeping my motivation in the project. | also acknowledge my advisors, Hugo and Francisco, for
guiding me on this project and to my colleague Vitor for having accompanied me throughout the

course.

Finally, | would like to thank Beevo and all the people who work there, my co-workers, for introducing
me into the business world, for the opportunity to develop this project and for all the support they
gave me on a personal and professional level.

To all these people, a big thank you and let this dissertation represent the outcome of all the support,
dedication and affection that you have given me during this journey.

viii

STATEMENT OF INTEGRITY

| hereby declare having conducted this academic work with integrity. | confirm that | have not used
plagiarism or any form of undue use of information or falsification of results along the process
leading to its elaboration.

| further declare that | have fully acknowledged the Code of Ethical Conduct of the University of
Minho.

Gil Fernando Ferreira da Cunha

ABSTRACT

Data Analysis and Recommender System Architecture
for E-Commerce platforms

E-commerce is constantly expanding, leading to greater market competitiveness. The number of
online platforms offering products or services is increasing; so there is a growing need for companies
to stand out from the competition, which leads to the application of various marketing strategies.
However, not all are adequate and mismanagement, as well as a bad investment of these strategies,

may prejudice companies.

Hence the implementation of recommendation systems in e-commerce platforms, as a safe and
economical strategy. By investing in a good recommendation mechanism, one can provide better
user experience, taking his interests into account. As a result, more traffic on the platforms is
ensured, which may result in a higher sales rate and, consequently, a higher number of revenues.

However, to develop a recommendation system, the first step must consist in obtaining information
about the sales platform, where data about its users and products/services form the basis of recom-
mendations. But not all information is useful, which can influence the accuracy of the forecasting

models used by the system to produce results.

Following this perspective, a data analysis methodology is proposed, as well as an architecture of
a recommendation system, which allows to extract and treat relevant data, in order to integrate a

recommendation engine for most e-commerce platforms.

Keywords: recommender system, data analysis, software architecture, e-commerce, business

intelligence

RESUMO

Analise de Dados e Arquitetura de um Sistema de Recomendacao
para plataformas de Comércio Eletrdonico

0 comércio eletronico (e-commerce) esta em constante expansao, o que leva a uma maior competi-
tividade no mercado. Existem cada vez mais plataformas de venda online e, consequentemente, ha
uma crescente necessidade das empresas se destacarem da concorréncia, o que leva a aplicacao
das mais variadas estratégias de marketing. Porém, nem todas sao adequadas e uma ma gestao
e investimento destas estratégias pode causar prejuizo as empresas.

Dai surge a implementacao de sistemas de recomendacao nas plataformas de venda, como uma
estratégia segura e economica. Ao investir num bom mecanismo de recomendacao, é possivel
proporcionar uma melhor experiéncia para o utilizador, tendo em conta os seus interesses. Desta
forma, assegura-se um maior trafego nas plataformas, o que podera resultar numa maior taxa de
vendas e, consequentemente, num maior numero de receitas.

No entanto, para desenvolver um sistema de recomendacao é necessario, em primeiro lugar, obter
informacao sobre a plataforma de vendas, onde os dados sobre os seus utilizadores e produ-
tos/servicos constituem a base das recomendacdes. Mas nem toda a informacao é Uutil, o que
pode influenciar a acuracia do modelos de previsaos utilizado pelo sistema.

Seguindo esta perspetiva, propde-se uma metodologia de analise de dados, assim como uma ar-
quitetura de um sistema de recomendacao, que permitam extrair e tratar dados relevantes de modo

a integrar um motor de recomendacao para a generalidade das plataformas de e-commerce.

Palavras-chave: sistema de recomendacao, analise de dados, arquitetura de software, comércio
eletronico, business intelligence

Xi

TABLE OF CONTENTS

Acknowledgements viii
Abstract X
Resumo. e Xi
Listof Figures e Xiv
Listof Tables XVi
Listof Acronyms Xviii
1 Introduction 1
1.1 Contextand Problems 1

1.2 Motivation 2

1.3 Objectives 3

1.4 DocumentStructure 4

2 StateoftheArt 5
2.1 Background 5
211 Cloud Computing. 6

2.1.11 Software as a Service (SaaS) 7

2.1.1.2 Platform as a Service (PaaS) 7

2.1.2 Monolithic vs Microservices Architecture 8

2121 Monolithic Application 9

2.1.2.2 Microservices 9

2.1.3 Representational State Transfer (REST) 10

2.1.4 Recommendation methods, 13

2.1.5 Exploratory Data Analysis 14

2.1.6 BusinesslIntelligence 15

2.2 RelatedWork 15
221 Amazon 16

2211 Amazon Web Services (AWS) 16

222 Netflix 17

2.2.2.1 Architecture Overview 18

223 eBay.o 20

2.2.4 SaaS and PaaS Recommender Systems 21

2241 Yusp ... 21

2242 StrandsRetail oo 22

2.2.4.3 Commerce Cloud Einstein Product Recommendations 23
2.2.4.4 Amazon Personalize 23

Xii

3

2.3 SUMMAry e e 25

The Proposal e 27
3.1 General Overview 27
311 Challenges 27

3.1.2 Functionalities 29

3.2 System Requirements 30
3.3 Proposed Approach 32
3.3.1 Architecture Description 33
3.3.1.1 Architectural Approaches 33

3.3.1.2 Architectural Solution 34

3.3.1.3 Architecture Diagram 35

34 Summary e 36
Development e 37
41 TechnologyUsed 37
411 Infrastructure Requirements 39

4.2 Product Recommendations 41
4.2.1 Recommendation Types and Structure 41

4.2.2 Recommendation Storage L. 43

423 Filters 44

4.2.4 Online and Offline Computation 46

425 Offlinerecommendations 47

4.2.6 Online recommendations 48

4.2.7 Nearline recommendations, 49

4.3 System Communication Process o 50
4.4 Beevo's Business Intelligence Application 53
441 Application configurations 55

4.4.2 Database population process 57

443 Eventtriggers o 59

444 Storefrontwidgets 60

4.5 Security 63
46 Summary e e 66
Methods 67
5.1 DataExtractionStrategy 67
5.1.1 Logstash 67

5.1.2 Debezium (Change Data Capture) 68

5.2 Exploratory Data Analysis (EDA) 69
5.2.1 Variables Selection and Filtering 71

5.3 APIDocumentation 74

5.4 Summary e

6 Case Studies / Experiments

6.1 Experimentsetup

6.1.1 DataContract
6.1.2 KibanaDataAnalysis

6.2 Results

6.2.1 PerformanceTests
6.2.2 Business Intelligence Dashboards

6.3 Discussion

7 Conclusion,

References

Appendices L e

LIST OF FIGURES

2.1
2.2
2.3

2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1

41

4.2

43
4.4

Monolithic application architecture template
Microservices application architecture template
REST vs SOAP: Web search interest rate comparison between REST and SOAP, from

2004 until 2019, worldwide
REST APl Model example diagram
Collaborative and Content-based Filtering examples
Applications covered by Amazon Web Services (1) products.
Netflix recommender system overview - based on Netflix Tech Blog post (2)
Strands Retail product recommendation system workflow overview
Commerce Cloud Einstein product recommendations process
Amazon Personalize "How it works” diagram

Amazon Personalize high level architecture
Recommender System Architecture diagram

Node.js Application Modular Structure Design, according to Separation of Concerns

(B) . e
Recommender System Entities
MongoDB recommendation documents structure

User Interaction Activity Diagram

Xiv

17

4.5
4.6
4.7
4.8
49
4.10

411

412

413

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15

Recommender System Activity Diagram
Communication process between Recommender’s APl an Engine -option1
Communication process between Recommender’s APl an Engine - option2
Communication process between Bl App and Recommender System
Beevos’ Business Intelligence Application File Structure
Homepage recommendations vitrine generic template. In this example, four rec-
ommended products are displayed to the user: two from 'Clothes’ category (shirt
and pants) and two from 'Drinks’ category (iced tea and smoothie). Products are
ordered by score, with the product on the left having the highest score, i.e., is more
likely to be bought bytheuser.
Product details page recommendations vitrine generic template. In this example,
the user selected a shirt, thus be presented products similar to it in the recommen-
dation vitrine, where the product on the left is the most similar to the selected shirt
(ordered by score). e
Side cart recommendations vitrine generic template. In this example, the user
added a shirt and pants to the shopping cart, so the recommendation vitrine dis-
plays some products which are commonly bought together with the cart’s current
content. . . . L e
Product listing page recommendations vitrine generic template. In this example,
the user browses for products within the "Drinks” category and orders them with
the "Recommended’ option. Ergo, products related to "Drinks” are listed, ordered
by recommendation score, i.e., the products that would appeal the most according
to the user’s profile are shown first. L.

Deeply Back-Office - RS user associationtotenant
Deeply Back-Office - Recommender engine configurations
Deeply Back-Office - Attribute selection and Recommender Population
Deeply MongoDB recommendation documents examples
Deeply Homepage - Popularity recommendations example
Deeply Product Details - Similar-products recommendations example
Deeply Side-Cart - Complementary-products suggestions example
Deeply Product Listing - Hybrid recommendations example
Execution of load tests: Workload, System Under Test (SUT) and Metrics.
Locust load test structure.
Number of Usersovertime
Rate of total requests per secod overtime
Response time value overtime
Total Orders by Country-Map
Total Orders by Country-Barsgraph

XV

6.16 Average spend by Country 94
6.17 Average quantity and spend perorder 95
6.18 Clientgenders 95
6.19 Promotion Tracking 96
A.l NodelJS Application Structure 110
A.2 APl Documentation with Swagger-part1 111
A.3 APl Documentation with Swagger-part2 112
A.4 User login page of the Recommender System 113
A.5 User registration page of the Recommender System 113
A.6 Beevo Business Intelligence Data Contract-part1 114
A.7 Beevo Business Intelligence Data Contract-part2 115
A.8 Kibana's data analysis on Clientsdata-part1 116
A9 Kibana's data analysis on Clientsdata-part2 117
A.10 Kibana's data analysis on Products data-part1 118
A.11 Kibana's data analysis on Productsdata-part2 119
A.12 Kibana's data analysis on Order-itemsdata-part 1. 120
A.13 Kibana's data analysis on Order-items data-part2. 121
A.14 Kibana's Business Intelligence Dashboards -part1 122
A.15 Kibana's Business Intelligence Dashboards-part2 123
LIST OF TABLES
4.1 Version table of docker images used in RS architecture 40
4.2 Server host machine hardware specifications. Note that the server is hosted in a

virtual machine, emulated using QEMU (4). QEMU allows to run operating systems

for any machine, on any supported architecture, with near native performance. . . . 40
4.3 Beevo's business intelligence application configurations 56
4.4 RS Access Control List: existing roles, resources and permissions. As it can be

observed, Tenant Users are not allowed to access Users and ACL resources. On

the other hand, Tenant Admins are not allowed to edit system users information nor

create or remove ACL elements (roles, resources and permissions). The System

Admins are able to see the roles and permissions of all users. They have full access

to the ACL, which allows them to manage all system’s policies. 64
5.1 Fields selection for Cliententity 71

XVi

5.2
5.3

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Fields selection for Productentity 72
Fields selection for Orderitementity 72
Deeply clients’ gender distribution oL 83
Deeplytop bcountryvalues 83
Top 5 values of colors, sizes and categories of Deeply products 84
Top 5 values of colors, sizes and categories of ordered products 85
Simulated usersintheloadtests 87
System’s server load test performanceresults 87
Locust table that translates the values of metrics collected during the load test,

discriminated by each of the routes/endpoints provided by the Recommender APl . . 90

XVii

LIST OF ACRONYMS

API Artificial Intelligence laa$ Infrastructure as a Service
API Application Programming Interface IT Information Technology
AWS Amazon Web Services

JWT JSON Web Tokens
B2B Business to Business
B2C Business to Client

Bl Business Intelligence
ML Machine Learning

CDC Change Data Capture
Paa$ Platform as a Service

DB Database
RS Recommender System

EDA Exploratory Data Analysis
Saa$ Software as a Service

SLA Service Level Agreement
SOAP Simple Object Access Protocol

Xviii

Information is power. Nowadays, information is one of the most valuable assets that companies
can have to improve their business and stand out on the market. The power of knowing customers,
as well as their needs and behaviors, depending on the context or even their surroundings, and the
ability to correlate it with the products or services companies can offer, provides them great means
to exploit their full potential on the market.

This concept is most applied in e-commerce platforms, which design their websites to draw cus-
tomers’ attention, by suggesting and recommending their products or services, depending on the
customers’ activity in the online store.

In this chapter, an introduction to the work developed under the context of this Master's dissertation
is presented. First, it is introduced the Context and Problems where this project was framed, then
the Motivation is exposed, followed by the project’s Objectives, listed in a generic and simple way.
Lastly, the Document Structure is described.

1.1 Context and Problems

The concept of electronic commerce (b), or e-commerce, can be defined as transactions of goods
or services via the Internet, by any electronic means, including transfers of money and data implied
in these processes. Thus, it is generally described as any kind of commercial transaction executed
through the Internet. However, in the context of this thesis, it will be referred to as the sale of physical
products by online stores.

There are several types of e-commerce of which we highlight the following two: Business To Con-
sumer (B2C) and Business To Business (B2B). These two concepts are the most commonly ex-

plored in online stores and other e-commerce areas.

B2C is the process of selling products or services directly to consumers from a platform. In this type
of commerce, the consumer browses and buys products for personal use, providing some personal
information to checkout and pay, finishing the purchase. For this reason, the system aims to be
simple and attractive to the buyer, appealing the emotion to influence their decision on purchasing,
focusing on products’ characteristics to satisfy their needs.

On the other hand, B2B stands for the process of selling goods or services to other businesses,
where buyers purchase products on behalf of their companies. The format of orders and the value
of products can vary with the customer, which makes this type of system more complex than the
previous one. ltis logic-driven, which means that focus on the product details and potential to benefit
buyers’ businesses. It also prioritizes saving time, money and resources, improving productivity and
those are the main features companies are looking for.

E-commerce is constantly expanding, leading to greater market competitiveness. There are more
and more online platforms offering products or services; so there is a growing need for companies
to stand out from the competition. However, many companies lack the necessary information about
their clients and products, and even their competitors, which can make a difference in the current
e-commerce environment. This data can help companies to increase clientele and, consequently,
profit. This may lead to the implementation of various marketing strategies, but not all are adequate
and mismanagement, as well as a bad investment of these strategies, can be harmful to businesses.

The project of this dissertation will be developed under the context proposed by the company Beevo
(6). Beevo provides e-commerce B2C, B2B and B2E (Business to Employee) solutions, for mid-
market and large companies, offering a digital platform for their e-business. The company builds
and maintains other companies’ e-commerce platforms, including online stores and respective busi-
ness logic (customers, products and orders management), marketing, support, CRM (Customer
Relationship Management) technologies and business analysis.

1.2 Motivation

For companies to have a competitive digital business, Beevo offers more than an online store; it
also provides a set of professional apps that allows fast and simple growth.

With the e-commerce competitiveness in mind, Beevo proposed the development of provisional mod-
els to grow their arsenal of professional apps and boost their Business Intelligence strand. These
provisional models were later translated to what is now the core of this project: a Recommender
System (RS) for e-commerce platforms of Beevo's domain.

The need to make e-commerce platforms more appealing to its clients makes integrating a recom-
mender system a logical approach. lIts function is to provide a pleasant user experience, trying to

create a connection with the buyer, showing that the system understands them and is appreciated
as a customer by the store. This special connection to users increases their loyalty to the store and
keeps their interest in coming back for more. As a result, more traffic on the platforms is ensured,
which may increase the sales rate and, therefore, a higher number of revenues is expected.

However, in order to develop a recommender system, it is necessary to define which information
meets the requirements for obtaining trusted recommendations, as well as the data flow between
the system and platforms.

Several companies defend that most sold products or used services are recommended to clients
by their platform. As evidence of that fact, we see quite popular platforms such as Netflix (2) and

Amazon (7), having advanced recommendation engines in their fields.

1.3 Objectives

In order to integrate a recommender system into e-commerce platforms, the first step must consist
in obtaining information from the selling platform, where data about its users and products/ser-
vices form the basis of recommendations. But not all information is useful, which may influence
the accuracy of the forecasting models used by the system to make recommendations. Further-
more, it is crucial to define a good workflow to collect the data and attend the platforms’ needs for

recommendations, so we can run a smooth communication between systems.
Following this perspective, the recommender system can be divided into two parts:

o Architecture: the recommender system architecture contemplates its infrastructure, respon-
sible to set and handle the communication between the system and the e-commerce platforms, as
well as the data management, essential to produce recommendations.

e Engine: the recommender system engine is the component responsible for consuming data,
preserved in the architectural process, and calculate recommendations based upon users, products
and services of the selling platforms.

This pair of architecture and recommendation engine form the system developed in the context of
this dissertation. Although there are several studies and papers exploring various recommenda-
tion algorithms and trying different combinations and techniques, to get the best recommendation
results, there's a lack of investigation on the integration of recommender systems within online
platforms.

Ergo, this Master’s dissertation is focused on the recommender’s Architecture component. With
this in mind, the main objectives are listed as followed:

1. Understand the concepts of Recommender System, Business Intelligence, Cloud Computing

and other terms related to a system’s architecture;

2. Implement an architecture of a recommender system, which allows to extract, preserve and
analyze relevant data from Beevo's e-commerce platforms, to integrate a recommendation
engine. This architecture will manage the data flow on the communication between platforms
and the recommender engine. Summarizing, it will be responsible for delivering data to the
engine and return the results to platforms;

3. Explore and define a data analysis methodology.

4. Understand the importance of selecting data and its impact on recommendations perfor-

mance and accuracy;

5. Explore the potential of the e-commerce data collected on business intelligence applications
to better understand and improve businesses.

1.4 Document Structure

This dissertation is structured in seven different chapters:

¢ Introduction: This chapter introduces the context of this dissertation project, its motives

and what it aims to achieve;

¢ State of the Art: In this chapter it is explored some terms and definitions related to this

dissertation theme, as well as exposed some work related to the context of the project.

¢ The Proposal: This third chapter describes the proposed solution to overcome some chal-
lenges in order to successfully achieve the defined objectives.

¢ Development: Here all development stages of the system architecture are described, in-
cluding the technologies used, the structure of recommendations, communication processes

and all the decisions taken along the course.

¢ Methods: This part of the document presents the various strategies for extracting and

analyzing data and making results available to e-commerce platforms.

¢ Case Studies / Experiments: In order to demonstrate the different functionalities that

the system has to offer, a test case is presented in one of the company’s online stores.

¢ Conclusion: In this final chapter, a global review is presented on the project developed, as

well as several improvements that can be done in the future.

As mentioned in the previous chapter, this thesis focus mainly on the recommender system infras-
tructure, this is, its architectural component. It covers not only the establishment of communication
between the system and platforms but also data analysis strategies to process data before being

transferred on this communication.

The first part of this chapter sets the Background of this work: it defines the key concepts and
vocabulary for the rest of the Master thesis, such as Cloud Computing, Monolithic vs Microservices
Architecture, Representational State Transfer (REST), Exploratory Data Analysis and Business Intel-
ligence. In the second part, it is exposed some Related Work with the project theme and objectives.
Examples of famous companies like Amazon and Netflix are explored, giving some insights on how

existing recommender systems work in today's market.

2.1 Background

Recommender systems, or recommendation systems, emerged as an independent field of research
in the mid-1990s and derived from different other areas, such as cognitive science, approximation
and forecasting theories, information retrieval and also have links to management science (8).

This area is widely explored because it constitutes a problem-rich research field and due to the
abundance of practical applications, which can help users to deal with information overload as well
as provide personalized recommendations, content, and services to them.

An e-commerce RS is a machine learning (ML) mechanism that relies on a variety of data, related
to users, products or services, processes it and creates personalized suggestions for the intended
user. Its purpose is to assist the user in their purchasing decisions, recommending the products or
services that best suit their interests, but can be manipulated according to the company’s intentions.
Therefore, it acts as a forecasting model dedicated to calculate and making recommendations, such

as predicting the likelihood of a product being bought by a certain user, taking into account their

preferences and other information.

2.1.1 Cloud Computing

Cloud Computing (9) refers to the distribution of power, database space, applications, and other
resources using a service platform, via the Internet. It is regarded as on-demand delivery of IT
resources, where end-users subcontract and benefit from hosted services, without worrying about

storage space and power consumption.

Before the idea of cloud computing emerge, servers stored all the resources (software applications,
data, and services) for client/server computing. It was a centralized storage, hence for users to
access data, they needed to gain access to the server. As the concept of distributed computing was
introduced, resource sharing was made possible, contributing to the evolution of cloud computing.
Cloud Computing appeared in the 1950’s, when mainframe computers were accessed via dummy
terminals into a central computer, so users could gain access. Yet, mainframes’ production and

maintenance were too expensive, thus the urgent need of sharing resources to reduce costs.

Cloud services provide flexibility for businesses with developing or shifting bandwidth needs. The
service storage capacity can be easily modified to meet companies’ demands, being advantageous
to businesses over contenders. It also guarantees a more secure atmosphere and data centraliza-

tion.

Some examples of what can be performed via cloud are enlisted below (9):

¢ (reating new applications and services;
¢ Hosting website and blogs;

¢ Streaming live video and audio;

¢ Storage, back-up, and data recovery;

¢ Software delivery on demand;

¢ Data Analysis and predictions;

2.1.1.1 Software as a Service (Saa$)

The term Software as a Service (10) refers to a distribution model for deployed software, by third-
party providers that host applications and makes them available to users, over the Internet. Saa$
is one of three main categories of Cloud Computing, alongside Infrastructure as a Service (laaS)
and Platform as a Service (PaaS) (10).

According to the Handbook of Industry 4.0 and SMART Systems (11):

"In the software on-demand SaaS model, the provider gives customers network-based access to a
single copy of an application that the provider created specifically for SaaS distribution. The
application’s source code is the same for all customers and when new features or functionalities
are rolled out, they are rolled out to all customers. Depending upon the Service Level Agreement
(SLA), the customer’s data for each model may be stored locally, in the cloud or both locally and in
the cloud. Organizations can integrate SaaS applications with other software using Application
Programming Interfaces (APIs).”

This means that the application runs on the SaaS provider's servers, freeing the customers’ side
from several responsibilities, as they can focus on building their business and not worrying about
maintaining the subscribed application. It also means that it's capable of exchanging data with
customers, interacting with their web services via APls. An Application Programming Interface can
be described as a set of definitions and protocols that provide an interface between two systems.
It allows to build and integrate application software in existing systems, granting communication
between services, without knowing how they are implemented (12).

Most of SaaS providers, e.g. Salesforce!, Oracle?, Red Hat®, Microsoft* and Amazon® offer ap-
plications for fundamental business technologies, such as email, sales management, Customer
Relationship Management (CRM), financial management, Human Resource Management (HRM),
billing and collaboration (11).

2.1.1.2 Platform as a Service (PaaS)

With Platform as a Service (13), cloud service providers offer a platform to clients, enabling them to
concentrate on building and deploying their business applications, without the need to create and
maintain the infrastructure typically required by such software development processes.

Lhitps://www.salesforce.com
Zhttps:/ /www.oracle.com
3https:/ /www.redhat.com
“https:/ /www.microsoft.com
Shitps://www.amazon.com/

https://www.salesforce.com
https://www.oracle.com
https://www.redhat.com
https://www.microsoft.com
https://www.amazon.com/

Clients have control over the software deployment while the cloud provider delivers all components
needed to host the applications, including servers, storage systems, networks, operating systems,
and databases. This differs from the Software as a Service model, as in SaaS most of the services
are managed by service providers and the amount of configuration in the client’s end is minimal.

Generally, SaaS target end-users while PaaS are addressed to software developers, providing the
tools and capabilities they need to build and deploy an application without having to concern about
the underlying infrastructure.

PaaS vendors tend to be the biggest technology companies, who can offer a broad range of capabil-
ities for their clients on a platform (14). Some examples include Google App Engine®, Oracle Cloud
Platform’ and the Salesforce-owned Heroku®.

A few common use cases for PaaS can be listed as followed (13):

¢ API development and management: companies can use PaaS to develop, run, manage,
and secure APIs and microservices.

¢ Business intelligence and analytics: Tools provided as PaaS let companies analyze their
data to explore their business and discover patterns that can help to make better decisions

and more accurately anticipate future events such as market demand for products or trends.

* Data Management: A PaaS can manage essential business information of a company,
providing a single point of reference for data. Such data might be related to customer trans-
actions and analytical data to support decision making.

* Databases: A PaaS provider can deliver services such as setting up and maintaining an
organization's database.

2.1.2 Monolithic vs Microservices Architecture

Microservices are an important and trending architectural approach used in the Information Tech-
nology (IT) sector, representing a crucial shift in how IT approaches software development. This
architecture has been successfully adopted by organizations like Netflix, Google, Amazon, and oth-
ers, but what are microservices' advantages over a monolithic architecture? (15)

The right architectural approach depends on the application context and objectives.

Shttps://cloud.google.com/appengine/docs/
"https://www.oracle.com/cloud/
8https://www.heroku.com/

https://cloud.google.com/appengine/docs/
https://www.oracle.com/cloud/
https://www.heroku.com/

2.1.2.1 Monolithic Application

Traditionally, applications were built as monelith (16), i.e., a single application was packaged and
deployed with all different logical components: presentation, business logic, database access and
application integration. This method makes it simple to develop, test and deploy, as well as to scale
horizontally by running multiple instance copies of the application and using a load balancer.

However, this approach has a few limitations as to the application size and complexity. If the ap-
plication is too large, it can have problems with performance and scalability, as different modules
have conflicting resource requirements. The entire application must be redeployed on each update,
which makes continuous deployment difficult, and a minor bug in any module can impact heavily
the rest. So, it's not a very flexible nor reliable architecture, if the application is of great complexity,
being hard to adopt new technologies and integrate new frameworks or languages since it affects
the entire operation and is expensive in both time and cost (16).

/ Monolithic Application

Presentation
HTTP

Business Logic

Data Access

B

Figure 2.1: Monolithic application architecture template

Nonetheless, it is important to understand monolithic architectures since it is the basis for a mi-
croservices architecture, where each service by itself is implemented according to a monolithic
architecture.

2.1.2.2 Microservices

With the microservices approach, applications consist of a set of smaller, independent and in-
terconnected services, instead of a single monolithic application (16). This way, it's possible to
build large applications with low complexity, breaking it into a set of manageable services that are
faster to develop and maintain, splitting the effort across different developing teams. Microservices
architecture enables each microservice to be deployed and scale independently from others, which
makes easier to update the application and to integrate new services and functionalities.

But this approach also presents some drawbacks; thus the importance of weighing the benefits of
both architectural approaches and choose the one that best matches the context and implications of

/ Microservices Application \

" || HTTP
Presentation | €<———>»

D aa——
E@
—

AU /

Figure 2.2: Microservices application architecture template

the problem considered. One needs to evaluate the purpose of the application and assess if it's worth
adding the complexity that microservices architecture brings as a distributed system. Managing all
different services and communication between them may not compensate for the effort, time and
cost invested in developing a microservice architecture (16).

In a microservice architecture, when some service is changed, it's essential to thoroughly plan
and coordinate the outcome of those changes to each of the other services, while in a monolithic

application it's possible to simply change the corresponding modules and integrate the changes.

Deploying a microservice-based application is also more complex, in contrast to a monolithic, be-
cause each service will have multiple runtime instances. In turn, each instance needs to be con-
figured, deployed, scaled, and monitored. Additionally, it may be necessary to implement a service
discovery mechanism, thus requiring a high level of automation (16).

2.1.3 Representational State Transfer (REST)

State Transfer (17), or REST, is essentially a design concept for a web service architecture. It's a
very popular architectural style due to its simplicity and the fact that it builds upon existing systems
and functionalities from the application layer protocol Hypertext Transfer Protocol (HT'TP) in order
to achieve its objectives, instead of creating new standards, frameworks and technologies.

Over the years, more and more companies develop their web services based on REST, as op-
posed to the traditional web services with Simple Object Access Protocol (SOAP). This can be
demonstrated with a Google Trend Analysis, given REST and SOAP keywords, which shows an
increasing interest on REST compared with SOAP, as followed:

10

Source: Google Trend Analysis (trends.google.com/trends)

Figure 2.3: REST vs SOAP: Web search interest rate comparison between REST and SOAP, from
2004 until 2019, worldwide

In systems that follow the REST paradigm, both client and server can be implemented indepen-
dently, keeping them separated and modular. They are also stateless, meaning that the server does
not need to acknowledge the client’s state and vice versa. Each time a client accesses a resource
through an endpoint, the API provides the same response. It does not remember the client’s last
request neither takes that into account when providing the new response. A client is supposed to
enter a REST service without any knowledge of the API, except for the entry point and the media
type. In SOAP, applications can be stateless, but usually they are stateful, meaning the client

needs previous knowledge on everything it will be using, or it won't even begin the interaction.

Responses can also be cached in REST APIs to increase performance. If the browser’s cache
already contains the information asked for in the request, the browser can just return the information
from the cache instead of getting the resource from the server again (18). This does not happen in
SOAP APIs.

Every REST architecture must implement hypermedia and HATEOAS. Hypermedia is a general-
ization of hypertext for content, like HTML, XML, JSON, etc. Documents containing hypertext are
intended to be parsed by an automated client who will also follow links and actions like a human
would do with a browser. HATEOAS means the interaction of a client with a REST application
must be driven by hypermedia, i.e., the client should obtain all Uniform Resource Identifiers (URIs)
for every resource it needs by following links in the representation of resources themselves.

In spite of representing different concepts to approach a system architecture implementation, a
resuming comparison between REST and SOAP characteristics is presented below, enlisting the
advantages and disadvantages of each (19):

* Design: SOAP is a standardized protocol with pre-defined rules to follow, while REST is
an architectural style;

* Approach: SOAP is function-driven - transfers structured information - and REST is
data-driven - accesses resources for data;

11

trends.google.com/trends

e Caching: In REST, API calls can be cached, but not in SOAP;

¢ Security: SOAP supports WS-Security with SSL and has built-in ACID compliance. In the
other hand, REST lacks ACID compliance and supports HTTPS and SSL;

¢ Performance: SOAP requires more bandwidth and computing power, while REST needs
fewer resources, being lightweight;

¢ Message format: REST permits many data formats, including plain text, HTML, XML,
JSON and others. SOAP only supports XML;

¢ Advantages: SOAP is standardized and has high security and extensibility, while REST
has better performance, scalability and flexibility;

¢ Disadvantages: SOAP is more complex and has poorer performance and flexibility. How-
ever, REST may be less suitable and secure for distributed environments.

Overall, REST offers several advantages over SOAP, for building communication channels be-
tween systems, by being simple, flexible and scalable, allowing a greater variety of data formats and

performance.

When using REST over HTTP, it's possible to resort to standard HT'TP security and authenti-
cation. By combining it with JSON Web Tokens (JWT) for authentication and authorization of user’s

to validate their requests, an efficient way of secure the communication can be achieved.

Request

REST API

(J ot URI: http://recommender.com/api/v1/product?id=3
avascrip

Method: GET

1z
Response (JSON) 7}@ N A
s ~
~
~ o0
{ L X}
"id": 3,

"name"; "shirt",
"size": "M",
"color": "white", I I
"price": 19.99
} Web Application
(PHP)

Figure 2.4. REST API Model example diagram

12

According to the example displayed in the diagram above, there’s a request and a response between
a client and the server’s API. The client and server can be based in any language but it doesn't matter
because the message request and response are made through a common HTTP web protocol.
This request-and-response pattern is fundamentally how REST APIs work.

2.1.4 Recommendation methods

There are several approaches that can be used to create a recommendation model, the most popular
being Content-based Filtering (20) and Collaborative Filtering (21).

The premise of the Collaborative Filtering approach is to search for similarities between clients, ac-
cording to their actions and preferences. User-based (22) recommendations take into account the
similarity between the clients’ profile, i.e., items purchased by a certain client will be recommended
to another client who has similar tastes and behaviors. On the other hand, item-based (23) recom-
mendations are supported in products’ characteristics. For example, user A has a similar buying
pattern as the user B. Consequently, items with similar attributes to those that user A has purchased

in the past, may be suggested to user B.

In Content-based Filtering, the user's shopping history is important. The characteristics of items
from previous purchases made by the client are analyzed and compared with the remaining candi-
date items, available in the store. Items that have more in common with those that the user has
purchased are recommended. For example, in a certain online book store, a user bought some
books in the Sci-Fi category. According to the user’s shopping history, the system may recommend
other similar books, i.e. of the same category (Sci-Fi), to that user in the next visit to the online

store.
Collaborative Filtering Content-based Filtering
O 0) O _w [
_—
I buy similar buy I
D — <> — Sci-Fi vol. 1
Book 1 Book 1

by L
% similar
A B II A
Book 2 Book 2
buy l I recommended Il
I recommended
Sci-Fi vol. 2

Book 3

Figure 2.5: Collaborative and Content-based Filtering examples

13

Each different recommendation technique has its benefits and drawbacks in terms of efficiency
and results accuracy, depending on the context in which they are applied. In order to fill the gaps
that each approach presents and to make the system more robust, a Hybrid Approach is usually
adopted by several techniques, in this case, collaborative and content-based filtering. Following the
previous example, with a hybrid approach, the system would recommend not only other Sci-Fi books
to the client (content-based filtering), but would also take into account the book’s rating given by the

other users (collaborative filtering).

Another strategy widely used in e-commerce is Customer Segmentation (24). By using clustering
algorithms, such as k-means, it is possible to trace the profiles of several clients and group them
according to the similarity between their characteristics (gender, age, etc). Obtaining an ideal num-
ber of clusters can be extremely useful since different clients belonging to the same cluster can be
treated as a single entity, thus saving a lot of resources in the production of recommendations and

targeted marketing.

Since each of these approaches consumes different types of information, it is essential to select
the most significant data, corresponding not only to the type of the selling platform, but also to the
approach itself. Hence the importance of the quality of the data set used to train the model, as it
will influence the accuracy of recommendations.

2.1.5 Exploratory Data Analysis

To select the most relevant data, data analysis techniques are usually applied, according to a certain
approach previously defined. Exploratory Data Analysis (EDA) (25) refers to the initial investigation
of a data set, to understand it, so as to extract patterns, detect anomalies, filter outliers, evaluate
hypothesis and to verify assumptions with the support of summary statistics and graphical repre-

sentations.

This is an important step in the data analysis process, to help data analysts to comprehend the big
picture, in this case, the main characteristics of each different e-commerce platform, setting up the
context before any machine learning operation. This way, one can create a model that fits the given
context and increase the system efficiency.

By examining and treating data, conforming that context, one can develop visual panels as an
information management tool to visually track, analyze and display key performance indicators (26),
metrics and other key data points to monitor the status and performance of a business. These panels
are called dashboards and prove that the considered data allows going beyond recommendations,
and explore the vast area of Business Intelligence.

14

2.1.6 Business Intelligence

In 1865, Business Intelligence (Bl) was used to describe how the banker Sir Henry Furnese took
advantage of existing information by collecting and acting on it before his competitors, in the Cy-
clopaedia of Commercial and Business Anecdotes, by Richard Millar Devens. Years later, in 1958,
IBM computer scientist Hans Peter Luhn wrote an article describing the potential of Business In-
telligence through the use of technology and this field has evolved since then. The number of Bl
vendors grew in the 1980’s, as business people discovered the value of Business Intelligence and,
consequently, an assortment of tools were developed during this time, with the goal of accessing

and organizing data in simpler ways (27).

Nowadays, we can define Business Intelligence (28) as a set of concepts, methods, processes and
technologies that gather and store raw data, and transform it into relevant and useful knowledge for
business purposes. Bl can handle large amounts of information to help companies identify and de-
velop new opportunities, as well as planning and making decisions. Thus, studying Bl solutions can
provide a competitive market advantage and long-term stability, helping to make the right decision.

From this, we may conclude that data is a very powerful resource, when well manipulated, giving
companies the necessary knowledge to overcome obstacles and competition. However, this brings
up some security concerns, where companies can be targeted by rivals, stealing their information.
Hence, it is very important to build secure communication channels, where data can flow inside the

company'’s systems, protecting private business information.

2.2 Related Work

As mentioned in the previous chapter, nowadays most popular online platforms have recommender
systems, each one adapted to the platform’s background. For example, Youtube (29) is a video-
sharing and streaming platform, featuring video recommendations to its users, depending on what
they previously watched. Along this line, Spotify (30) is an audio streaming platform and rec-
ommends songs and playlists to users, matching genres they use to listen. On the other hand,
Facebook (31) is an online social network service, which recommends other users’ contacts, so

one can be "friends” based on their current connections.

In this section, we highlight Amazon (7), Netflix (2) and eBay (32) systems, as well as other different
architectural approaches, in order to achieve a general perspective of how recommender systems
work in today's market.

15

2.2.1 Amazon

In light of the theme of this dissertation, Amazon (7) is the best example to consider. Amazon
is the world’s largest online retailer, which sells a wide variety of products to customers, like the
e-commerce platforms that this project intents to target.

Amazon started as an online book store and one of its main advantages, compared to physical
stores, was the infinite shelf-space capacity as a platform over the Internet. This allowed it to make
a great number of sales from books beyond the inventories of physical stores. But due to the mas-
sive quantity of different books stored, customers might have missed some good opportunities to
discover new relevant books that they might have bought. Hence, the emergence of the recom-
mender system as a great tool to suggest new books - and other products later on - to customers,
from this infinite book shelf, and consequently increase sales.

By the year of 2012, JP Mangalindan claims in a Fortune's article (33) that:

“Judging by Amazon’s success, the recommendation system works. The company reported a 29%
sales increase to $12.83 billion during its second fiscal quarter, up from $9.9 billion during the
same time last year. A lot of that growth arguably has to do with the way Amazon has integrated

recommendations into nearly every part of the purchasing process...” - JP Mangalindan (33)

Currently, Amazon uses a combination of user-based and item-based collaborative filtering in their
recommendation algorithms, to suggest products to customers along the purchase process, via
e-mails, browse pages, product details pages and even at the end of an order.

Additionally, according to lan MacKenzie (34), 35% of Amazon.com’s revenue is generated by its
recommendation engine. That is why companies are increasingly investing in RS to deploy in their
online platforms.

2.2.1.1 Amazon Web Services (AWS)

It is also worth to mention that, as one of the biggest cloud computing service providers in today’s
market, Amazon holds the company Amazon Web Services (AVS) which provides on-demand cloud
computing APIs and platforms. The clients that may be interested on develop complex and efficient
applications, with great flexibility and reliability, can use AWS products for cloud ecosystems - a mix
of laaS, PaaS and SaaS.

Some of the features that AWS presents and appeal to clients the most are the following:

o Security: AWS is one of the safest cloud platforms on the market;

16

» Experience: Users can get a hands-on experience of AWS free of charge;

* Hosting: AWS can host static websites also for free;

 Scalability: AWS has a great scaling capacity.

Products can be combined to create a scalable cloud application without having to concern about
problems related to infrastructure maintenance (compute, storage, and network) and management
(10).

Amazon Web Services offers products in the areas illustrated below:

m
Governance
Networking &
Content Delivery

Figure 2.6: Applications covered by Amazon Web Services (1) products.

Learning

Security, Identity &

Amazon Web
Services

Compliance

Quantum
Technologies

2.2.2 Netflix

Netflix (2) is a streaming service that allows members to watch a wide variety of TV shows, movies,
documentaries, etc. Recommendation algorithms have been the core of the Netflix product from very
early on. Because of its importance, the company continually seeks to improve recommendations
results by advancing the state-of-the-art in the field.

Netflix's RS combines collaborative and content-based filtering through similar habits of users and
higher rates of shared movie characteristics. The company, Netflix Inc., released a contest in 2006 -
The Netflix Prize -, offering a reward of one million US dollars to enhance the recommender system.
The team who could succeed to decrease the value of root-mean-square error (RMSE) for a data
set by 10 percent, would win the prize. Bellkor's Pragmatic Chaos team succeed in achieving an
RMSE of 0.8554 with a 10.06% improvement over the Netflix system. This challenge grew up the
attention on recommender systems beyond Computer Science.

17

In an interview with MobileSyrup (35), Todd Yellin said:

“We found the typical Netflix member on average will only look at 40 or 50 titles before deciding
what they want to watch, even though there are thousands of titles available. So it's important we
present the right content to the right member at the right time.” - Todd Yellin, Netflix's

vice-president of product innovation

Netflix uses recommender systems so extensively that, in 2015 Chief Product Officer, Neil Hunt,
indicated that more than 80 percent of movies watched on Netflix came through recommendations
(36) and placed the value of Netflix recommendations at more than US$1 billion per year. This

proves the power and importance of recommender systems in a e-business.

2.2.2.1 Architecture Overview

In Netflix Tech Blog®, an article published by Amatriain and Basilico (37) explains how Netflix tackles
some of the challenges of maintaining a software architecture capable of handling large volumes of
data, responsive to user interactions and flexible to new recommendation approaches.

An overall RS architecture is described, where the whole infrastructure runs across the public Ama-

zon Web Services cloud. The system’s diagram (38) is presented in figure 2.7.

The system'’s architecture can be divided into three parts: Online, Offline and Nearline com-
putation. These distinguish the types of processes and recommendations that the recommender

system computes.

%https://medium.com/netflix-techblog

18

https://medium.com/netflix-techblog

Offline Computing Model training

Machine
Learning
Algorithm

Machine
Learning
Algorithm

(—> Netflix. Hermes ~N

Oftline Jobs

Netflix. Manhattan

Nearline

Nearnline Computation

Machine
Learning
Algorithm

Online
~
Event and Data . .
o Online Computation e
Distribution —
Machine
Learning
Algorithm
Browse, buy, rate ...
- UI Client
Recommendations
Results
User

Figure 2.7: Netflix recommender system overview - based on Netflix Tech Blog post (2)

* Online computing must have fast responses to events and use the most recent data to
fulfill the availability and response time required by the client-side. This constrains the imple-
mentation of complex and computationally costly algorithms, limits the amount of data that
can be processed and, consequently, recommendations’ accuracy. Moreover, using solely
online computation may fail to meet some of the requirements, hence the importance to
have a offline computation mechanism as a fallback solution to fit those requirements.

» Offline computing is less limited in terms of data processing, computational costs, and
complexity, having more flexibility on the implementation requirements and a wider range of
algorithms to choose from. However, because of heavy processing in this approach, offline
computing does not have a fast response to changes from new events or data. Eventually,

19

this can lead to staleness that may degrade the user experience. It also requires having

infrastructure for storing, computing, and accessing large sets of pre-computed results.

¢ Nearline computation can be seen as a compromise between the two previous approaches.
In this approach, computation is performed exactly like in the online case, yet results are pos-
teriorly stored, allowing it to be asynchronous as in offline mode. Hence, the requirement of
short response time is excluded, allowing to explore the potential of more complex process-
ing, while still enabling the system to be responsive to user events. After receiving a request,
the system computes the results and may store them in an intermediate caching or storage
back-end.

Model training is commonly applied in offline mode, consisting of generating predictive models
based on existing data, that will later be used to create suggestions and other personalized results.
Another part of the architecture describes how the different elements communicate with each other,
handling events (user interactions and activities) - Event and Data Distribution System. This near-
real-time event flow is managed through an internal framework called Manhattan. A related issue is
the data flow in the process of obtaining Recommendation Results, across the offline, nearline,
and online regimes. This is managed by Hermes, a publish-subscribe mechanism, which allows
data to be delivered to subscribers in near real-time.

Such a complex system shows the importance of planning the software architecture in which the
recommender will be deployed. It's a flexible and sophisticated architecture, capable of handle
great amounts of data and manage complex machine learning algorithms, while always having
recommendations ready for quick responses. Finding the right balance is not trivial: ” It requires a
thoughtful analysis of requirements, careful selection of technologies, and a strategic decomposition

of recommendation algorithms to achieve the best outcomes” (37).

2.2.3 eBay

eBay (32), as an online auction and shopping platform, presents a scalable RS architecture for rec-
ommending items with a short life span (e.g.: auctions), controlling the trade-off between relevance
and quality (39). The architecture can be divided into two layers: Offline Model Generation and Real-
time Performance System. The offline layer creates models using clustering ML algorithms, while
the online layer combines those models with dynamic characteristics obtained from users informa-
tion and activities in e-commerce. In the paper (39), the authors emphasize two main approach
scenarios: pre-purchase recommendation and after-purchase recommendation. In the pre-purchase
scenario, the RS recommends alternative products which are similar to the ones recently viewed by
the user. In the post-purchase scenario, the RS recommends complementary products related to
the one that the user has recently purchased.

20

Both layers use the same data store, providing two versions of similar services. Data stored may
be related not only to basic information such as users, items, and user actions (navigation, access
to auctions, etc.), but also to clustering results, such as which group a set of similar items belong.
The real-time layer has two components: Similar Item Recommender (SIR) and Related Item Rec-
ommender (RIR). Both receive an item as input and return a set of similar or related items in return,
respectively. As the response must occur in real time, all the computational complexity is in the
offline layer, consisting of Apache Hadoop running map reduce jobs (40), queries and K-means
algorithm.

2.2.4 SaaS and PaaS Recommender Systems

The tendency of e-commerce stores to search for recommender systems, in order to increase their
sales volume and revenue, is growing over the years. However, developing a good RS can be
expensive and time-consuming. This leads companies to reach for SaaS and PaaS Recommender
Systems (41). Instead of having a large upfront investment, companies can pay as they use a
SaaS model of a recommender system. The integration is usually straightforward and there are
continuous cycles of improvement (42).

In this dissertation, we emphasize Yusp, Strands Retail, Commerce Cloud Einstein and Amazon
Personalize as examples for using different approaches in their architectures and recommendation

techniques.

2.2.4.1 Yusp

Yusp (43) is a personalization engine, developed by Gravity R&D company, the same team that
tied for first place at Netflix Prize (44) - improving the Netflix algorithm by more than 10%. This
service offers customization features for e-commerce platforms, having several case studies from
large companies in which their revenues have increased significantly thanks to these solutions. To
produce recommendations, the engine consumes data from online activities and habits of both
known and first-time customers, the properties of products - such as name, price, category and
other attributes - and contextual information of the customer browsing like the location or the time
of the day. Due to the importance of this data, Yusp has security measures to protect the privacy of
their clients.

It provides control dashboards where the client can customize and adapt the recommendation
engine to the needs of their platform and their customers. It is also possible to obtain detailed
analysis reports, thus giving several insights about the business to help make better decisions for
the future.

21

2.2.4.2 Strands Retail

Strands Retail (45) is a SaaS that provides a plug-and-play recommender system focused in product
and e-commerce activities. The system allows real-time recommendations, multiple personalization
strategies and other options that enable users to customize recommendation results. In brief, it
provides global personalization and recommendation solutions that empower online retailers, in
order to achieve superior customer experience within their digital channels.

The system works by including tracking scripts on the e-commerce platform and recommendations
widgets, using Strands Recommender javascript library'®. This library is intended to facilitate the
integration of the recommender by automatically handling important concepts like the user man-
agement and by offering a broad set of functions to interact with the recommendations API. Since
the code runs in customers’ browser it adds no delay to the normal rendering of the page.

E-commerce platform,
with Strands Recommender
{/> widgets embedded,

5. Website shows recommendations to user, (o) based on the Javascript
through Strands widgets library

1. User visits platform X
A A
Y >

User

4. Recommender returns
product recommendations

2. Platform sends user data to
recommender engine

3. Recommender monitors user behavior, product trends
and calculates recommendations

Strands Recommender Engine

Figure 2.8: Strands Retail product recommendation system workflow overview

The more visible widgets are, the stronger their impact will be in helping customers find what they
are looking for and the more likely to reach new potential clients. Most common and effective
placements are the platform’s home, item, category, shopping cart and order confirmation web

pages.

Ohttp:/ /retail.strands.com/resources/javascript-library/

22

http://retail.strands.com/resources/javascript-library/

2.2.4.3 Commerce Cloud Einstein Product Recommendations

Commerce Cloud Einstein 1!, developed by Salesforce (46), is an artificial intelligence (Al) tool
embedded right in e-commerce platforms that run on Salesforce B2C Commerce'?. Salesforce
clients can easily have access to predictive intelligence and personalization without having to hire a
data scientist or use a costly third-party recommendation provider.

Einstein Product Recommendations (47) provides personalized product recommendations based on
a shopper’s onsite behaviour and preferences, but also recommends current popular products by
tracking general shopping trends. To achieve this, the client must simply create and assign a rec-
ommender to his platform; then whenever a customer visits the platform, Commerce Cloud Engine
is called. Commerce Cloud Einstein learns about products, attributes, prices and inventory (Product
data), discovers relationships between products and users (Order data) and collects session informa-
tion (i.e. customers behavior and actions while shopping - Clickstream data). After "digesting” this
data, it uses machine learning algorithms (e.g. collaborative filtering, unsupervised and supervised
learning and deep learning) to process it. When this process is finished, it returns the recommended
product IDs to the platform where storefront pages display the received product recommendations.

L]
3494 *
=) g B = 207 | e=» -
- 502 \ .
_
—

1. Create and assign 2. Customer visits platform (website) 3. Engine returns product 4. Storefront page displays
recommender and Commerce Cloud Engine IDs product recommendations

is called

Figure 2.9: Commerce Cloud Einstein product recommendations process

2.2.4.4 Amazon Personalize

Amazon Personalize® is a machine learning service that gives developers the capacity to integrate
and personalize their own recommender system in online platforms. It creates realtime individu-
alized recommendations for clients using their applications and allows them to personalize search
and notifications for a better marketing communication. This product is available at Amazon Web
Services (1) and is based on the same technology used at Amazon.com platform.

The following diagram illustrates how the Amazon Personalize service works:

WUhttps:/ /www.salesforce.com/products/commerce-cloud/commerce-cloud-einstein/
R2https:/ /www.salesforce.com/products/commerce-cloud/b2b-ecommerce/
BBhttps:/ /aws.amazon.com/personalize

23

https://www.salesforce.com/products/commerce-cloud/commerce-cloud-einstein/
https://www.salesforce.com/products/commerce-cloud/b2b-ecommerce/
https://aws.amazon.com/personalize

5 -

Amazon S3 — (“) Load data | Train models
Store your N L —
inventory and user 1
demographics data / (o P . {é}—
in Amazon S3 NV (=) Inspect data e Optimize models —
y J
Amazon Personalize ‘%H Identify features @ Build feature store Customized
P \ Automatically process and Ee“““allzat"’“ API .
< / > .\ examine the data, identify B i Provides Amazon Personalize
L% L meenngil et oy saecttgorittms | 53 ostmocels i an ity san o
N and train and optimize a - recommendations or request
Amazon Personalize APl personalization model that is tecommendations in bulk

Stream use activity from customized for your data

your application using
the Amazon Personalize
APl or JavaScript library

Select —— Create real-time
hyper-parameters —J caches

Source: Amazon Personalize, AWS (48)

Figure 2.10: Amazon Personalize "How it works” diagram

The application streams user activities to the service, through the Amazon Personalize API. It also
stores demographic data in Amazon S3. The service then receives and processes this data, creating
a model that best fits the context of the application. Once the service is ready, the application may
request recommendations through a customized personalization API, available to communicate with

the service.

After a model and artifacts are defined and trained, Amazon Personalize allows developers to deploy
a campaign - a solution version consisting of an engine inference for the model and the trained
artifacts - as a PaaS, because it's possible to customize its APl. The campaign allows Amazon
Personalize to make recommendations for users, returning a REST API that developers can use

to get recommendations (49). Amazon Personalize also allows to use a JavaScript library.

To sum up, according to Amazon Personalize documentation (Developer Guide (50)), the Amazon
Personalize workflow for training, deploying, and getting recommendations from a campaign is as
followed:

1. Create related data sets and a data set group;

2. Get training data;

3. Import historical data to the data set group;

4. Record user events to the data set group;

5. Create a solution version (trained model) using a recipe;

24

6. Evaluate the solution version using metrics;
7. Create a campaign (deploy the solution version);

8. Provide recommendations for users.

Amazone

/) Personalize
K (/ / Data Sets \

Event Tracker Real-time Events

Solution
Campaign (Recipes)

User

User-Items

Model selection,
training, tuning
and verification

Model hosting
and inference

\Users ItemsJ

Source: Based on Basford's article (49), Inawisdom (51)

Figure 2.11: Amazon Personalize high level architecture

2.3 Summary

Summarizing the concepts and definitions covered in this section: an e-commerce recommender
system is a ML mechanism that produces recommendations based on data related to clients, prod-
ucts and services of a certain e-commerce store. There are two major approaches to build a RS
model: Content-based Filtering and Collaborative Filtering. The model consumes data, processes
it trying to match products’ attributes to the clients’ profile - content-based filtering - or taking into
account clients’ purchase history and find similar items/users - collaborative-filtering - generating
recommendations.

Recommendations’ accuracy depends on how suitable the selected data is to the e-commerce
platform background. Data can be processed first, in order to find relevant information, by extracting
patterns, detecting anomalies and other statistics - Exploratory Data Analysis. The output can be
useful not only to be consumed by the RS, but also to be applied using other different methods and
techniques of Business Intelligence, that companies might want to explore.

Since this dissertation will focus on the architectural aspect of recommender systems, it must be
discussed how it will interact with e-<commerce platforms. Two widely spoken concepts of com-
munication architectures are REST and SOAP, despite being different paradigms. SOAP is a

25

communication protocol whereas REST is a design concept for a web service architecture and

more popular nowadays, being a good option to implement.

To build a RS that matches the objectives of this project, it is important to understand the definition
of Platform as a Service, as well as the difference between monolithic and microservice applications.
PaaS are service platforms hosted by cloud service providers and can be centralized (monolith) or

distributed (microservices) systems.

Recommender systems have been successfully adopted by many organizations, such as Netflix and
Amazon, which became popular and affluent due to the efficiency of their product recommenda-
tions. Moreover, many companies invest in developing recommender systems as PaaS or hire as

SaaS, which proves the great potential of RS in the e-business area.

26

This project consists of the design, development and implementation of an architecture for a rec-
ommender system, combined with a methodology of data analysis and processing, that will feed a
certain recommendation engine and make it available to most e-commerce platforms.

The results produced by the recommendation engine are expected to target some use cases, such
as marketing campaigns, product recommendations (e.g. discovering relationships between clients

and/or products), search and browsing experience personalization.

In this chapter, a General Overview of the recommender system to consider is presented, followed
by the Proposed Approach and the Architecture Description.

3.1 General Overview

The architecture of a recommendation system for an e-commerce platform addresses not only the
communication between both entities, but also the communication between the elements of the
RS itself. Therefore, it is important to develop an organized and efficient structure to manage and
handle the great amount of data that will be generated by this communication, promoting a good
data flow on the system.

3.1.1 Challenges

A common practice in big e-commerce companies is the construction of its own RS focused on their
own business (39). However, this project presents a generic architecture in order to cover most
e-commerce online platforms.

Although each of these companies’ RS has its individual architecture with distinct implementations,
all architectures share similar issues:

27

Personalized data sets: Collect and preserve various types of data from different e-
commerce entities. This data will be consumed by the recommender engine to produce

recommendations;

Data Analysis: The data analysis tools used must be versatile and capable of processing
variables of various types, from the referred custom data sets, to create informative and

useful dashboards;

Cold Start problem: When entities (users or items) are recently registered in the platform,
the recommender system has limited information about them to be able to produce accurate
recommendations. Nevertheless, new customers should get relevant recommendations and

new products should be included in recommendations;

Recommendations availability and up-to-date: Recommendation results must always
be up-to-date, according to the latest platform activities and available at platforms’ demand;

Scalability: As mentioned in the previous chapter, RS tends to increase the number of
visitors on the platforms. Recommendations should scale across hundreds of clients and
products. Thus, the recommender system must handle a great number of items and active

users, simultaneously, keeping a short response time and good performance;

Multi-tenancy: The multi-tenancy problem (52) refers to a software architecture in which
one application instance is hosted on a server and serves multiple tenants. A tenant can be
a set of one or multiple users who share common access to the software instance. With a
multi-tenant architecture, an application is designed to provide each tenant with a dedicated
share of the instance. The multi-tenancy definition opposes to multi-instance architecture
definition, where separate software instances serve different tenants individually.

In this sense, we need to consider the following scenarios:

1. Deploy an instance (copy) of the RS stack for each e-commerce platform (tenant):

Pros: Simple to develop and higher performance individually. It allows delivering more
personalized service to each platform, being easier to manage business logic inside

each platform scope.

Cons: Global system management more complex and it consumes many resources.

Itis necessary to configure an additional instance each time a new tenant is considered.

28

2. Create an instance of the RS to handle multiple e-commerce platforms:

Pros: Allows the system to be generic and flexible. Only a type of architecture must be
developed and maintained for the whole system to handle multiple tenants. Consumes

less resources.

Cons: More complex to develop, but easier to configure to communicate with several
platforms, at the final stage. It is expected to be difficult to separate and manage the
business logic of the different platforms.

* Security: Data used to produce recommendations must be secured, because it is based
in sensitive information such as clients’ personal information, products details and orders
history. Hence, privacy must be protected.

To get the most of the architecture’s potential, it must be generic, flexible and capable of being
deployed and tailored to most e-commerce platforms dedicated to product or service transactions.

Furthermore, data analysis methods and techniques must be able to handle different types of entities
and attributes.

3.1.2 Functionalities

The recommender system architecture comprehends not only the communication between the rec-
ommendation engine and e-commerce platforms but also between the elements within the system.
Thus, it is necessary to organize a structure capable of managing large volumes of data to be
transmitted in its communication flux.

This communication process can be divided into the following steps:

1. Extract data from e-commerce platforms, necessary to train recommendation models at
the engine. This data is related to clients’ profiles (gender, age, addresses, ...), shopping
activities (page views, browsing, client’s shopping history, orders, ...) and item inventory
(product characteristics, hits, ...).

2. Store the collected data in a database capable of adapting to different contexts of distinct e-
commerce platforms. The system should present tools capable of processing and analyzing
the collected data, in order to provide various Business Intelligence features to the company,
such as future perspectives on its business and support in decision making.

3. After recommendations being generated by the engine, the system must store and make
them available at platforms’ demand, whenever necessary.

29

Throughout the communication flow, the architecture must take security measures to protect data
against potential threats and reduce vulnerabilities in the system with authentication and authoriza-
tion mechanisms.

3.2 System Requirements

E-commerce platforms have strict requirements that must be met in order to increase and maintain
quality and offer a good experience to their clients. An important aspect to take into account is the
response time, as it will influence the loading time of web pages. Online shopping should deliver
a smooth and clear experience to their users, where results are presented as quickly as possible
since 40% of shoppers will abandon a website that takes more than three seconds to load, according
to a study conducted by Forrester Consulting on behalf of Akamai (53). Furthermore, a short page
loading time is a key factor in a consumer’s loyalty to an e-commerce site. The study reveals that
79% of users who have not had a good experience are less prone to return to that platform while 27%
are less likely to buy from the platform’s physical store, suggesting that a poor online experience

may have a great impact in store sales.

Therefore, the recommender system must fulfill some requirements as well, so as not to impair the
normal functioning of the e-commerce platforms and the Service Level Agreement (SLA) continues
to be complied with. In conclusion, the impact of generating and obtaining recommendation results
should be minimal on the loading time of a web page.

Taking into consideration the challenges raised in the previous section (3.1.1), the requirements
defined for the system follow as below:

Functional requirements

1. The recommender system must return a list of IDs related to hot products. These are the
most popular products at the moment and with the highest likelihood of being purchased by
clients.

2. Given a client ID, the RS must return the list of product IDs recommended to that specific
client, sorted by purchasing probability.

3. Given a certain product ID, the RS must return a list of product IDs that are similar to that

specific product, sorted by similarity score.

4. The RS must be able to do complementary product suggestions. It should return a list of
product IDs that best suit a purchase, according to the products currently selected by the
client.

30

5. The RS must be flexible and capable of delivering recommendations according to the context
that is required by the platform. With this in mind, the system must be capable of filtering
recommendations by category, returning only products which belong to that filter. For ex-
ample, when a user searches for women products, only products of that category should be
included in the recommendation.

6. The RS must be able to return recommendations up to the maximum limit established by the
tenant. If this limit is not specified, the default quantity of recommended products to retrieve
in the server response is 100 items.

Non-functional requirements

1. The RS must provide a tool capable of analyzing data stored in the system’s database, by
allowing developers to create dashboards and calculated statistics, to develop new prospects
about the future of their business and market.

2. The RS must always collect recent data from the platforms’ database. Whenever a certain
event occurs, the RS database must be updated, to maintain its consistency and be in sync
with the platform’s. Such events can be described as the registration of new clients or
products, modifying their information, creation of new shopping orders and changes in order
status.

3. The server must respond in JSON format.

S

. The system must be functional 99% of the time in a year (361 in 365 days).

5. As for the response time, the RS must return a result in less than 100 milliseconds to 95%
of the requests. No answer should take more than 150 milliseconds.

6. The RS must implement data security techniques, mainly authentication and authorization

mechanisms, to protect the company’s business information and its clients’ privacy.

7. The RS must not only handle large amounts of data related to clients, products, orders and
other shopping activities, but also be able of serving multiple platforms at the same time,

scaling as necessary to keep a good performance and a short response time.

8. The RS must allow its users to configure and manipulate the training of recommendation
engine models.

31

3.3 Proposed Approach

The proposed approach to build this architecture was to assemble a set of components, all inter-
connected by a core JavaScript API, supported on the concepts of PaaS, REST and the State of the
Art explored in the previous chapter.

The idea resided on creating a service, having the recommender system hosted on a server held by
Beevo, where e-commerce platforms of the company’s domain can request for recommendations
produced by it. This way, the RS works as a Platform as a Service, delivering all the infrastructure,
components and logic needed to obtain recommendations. It does all the computational effort, while
tenants (e-commerce platforms) only need to communicate with the RS and integrate the results in
their applications. Another advantage is that the RS is developed and updated independently, not
compromising the platforms’ functioning.

The interaction between the RS and the platforms is possible through an application programming
interface (API), which manages and describes the communication process. This communication
dwells on the exchange of data, in JSON format and via HT'TP requests, between platforms and
the RS endpoints delimited by its API. The e-commerce platform sends business information about
its clientss, products and orders history to the recommender, which preserves this data for later

analysis and processing.

The architecture of the recommender system stores the data, replicating part of the platform’s
database, forming data sets useful for two main operations: data analysis and recommendations
results.

Exploratory data analysis is performed on data stored by the RS with the objective to discover and
extract useful information that may help to understand the market, consumers and adopt better
strategies. This data will optimize the company efficiency in decision making and business predic-
tions, opening the door to Business Intelligence functionalities.

Then, the recommender engine ingests that data, transforming and using it to train predictive mod-
els, which create recommendations for the platform’s clients. Those recommendation results are
stored in a database of the system’s architecture component, which later displays them on plat-
form’s demand. Although recommendations are saved in different formats, according to their type,
they present the same format when they reach the platforms. Whenever a platform makes a request
to the RS server, it responds with the according result, but always in the same format, regardless of
the type and context of the recommendation. This format, in turn, consists of a /ist of product IDs
that platforms receive and use to display the recommended products to users.

This APl was developed based on REST principles, due to its advantages and increasing usage,
although it's not RESTful. In order for the RS to be deployed on e-commerce platforms, an effort

32

from both sides is required. Company developers must know how to conceive the communication
between platforms and the recommender. To accomplish this, they expect to have knowledge about
the API’s functionalities, in spite of the API's documentation contradicting some of the fundamental
rules of REST.

Citing Giessler's "Best Practices for the Design of RESTful Web Services” article (17):

" A documentation for Web APIs is a debatable topic in the context of RE STful web services since it
represents an out-of-band information, which should be prevented according to Fieldng (54): Any
effort spent describing what method to use on what URIs of interest should be entirely defined
within the scope of the processing rules for a meda type”

Usually, as mentioned in section 2.1.3, tenants should not have knowledge about servers’ REST API.
Describing a server REST API, using a description language to make it machine or human-readable,
disregards two of the constraints of REST: self-describing messages and HATEOAS (hypermedia as
the engine of application state).

Nevertheless, in this case, tenants are not normal users, but company developers and since they
need to integrate the RS withing the platforms, the most common approach is to document all
URIs, HTTP methods supported, and structures of representations (e.g. as JSON) so that tenant-
application developers can rely on such documentation to program (55).

3.3.1 Architecture Description

Before developing the architecture to execute the functionalities mentioned in section 3.1.2, the
first step relied on planning the approach to follow and the implications it brings to the system’s

performance.

3.3.1.1 Architectural Approaches

In this dissertation, two main architectural approaches we considered - Monolithic vs Microservices
Architecture. In light of these definitions, the following options were elaborated:

* Monolithic architecture: With this approach, the recommender system would consist of
a single application instance, which handled and managed all the functions mentioned previ-
ously (communication, data storage and analysis, authentication, etc). This could represent
an issue due to the great number of requests to be exchanged between platforms and RS’s

architecture components. As an example, a scenario to consider could be Black Friday,

33

where thousands of users’ activities would generate a huge amount of traffic on the commu-
nication network. To fight this problem, application redundancy can be applied, i.e., create
multiple copies of the same application instance and then a load balancer would manage
the resources, keeping the flow consistent and avoid bottleneck problems. This would also
depend on the infrastructure that hosts the system software. Any additions or changes to the
software can be of great complexity as the various components can depend on each other.
Modifying one part of the software could imply changing other parts that interact with the
first, as well.

¢ Microservices architecture: This option, although more complex to implement than the
first, and perhaps less practical, is more robust in terms of processing and congestion control
of data and requests. As initially stated, this approach consists of dividing the architecture
component into several small and independent services (microservices), each dedicated to
a function: one for communication, another for data storage, other for authentication, and
so on. It is expected to be slightly slower than the first option, when the traffic flux does
not exceed a regular day, because each request has to be filtered, validated and processed
by each microservice. However, as declared before, the monolithic option can be slower on
special days, with promotions like Black Friday, where there is more activity on the platforms
and the data flux increases considerably.

3.3.1.2 Architectural Solution

By evaluating the requirements of this project, considering the need of response to the challenges
in section 3.1.1, and by assessing the several situations and risks, as well as the characteristics of

Beevo's e-commerce platforms, it was made the following decision:

A microservices architecture was adopted, rather than a monolithic approach, because a modular
system enables the RS to be very flexible, easily implemented and extended depending on the e-
commerce platforms different needs (56). This modular approach allows the usage of different
technologies and methods on each component, thus facilitating the best implementation to solve a
problem and fit to the companies necessities.

As stated before, a monolithic architecture may present data congestion problems (bottleneck)
when faced with a scenario where platforms are visited by numerous users and, consequently,
many events, generating a great amount of traffic in the network. With the microservice approach,
a single architectural service will serve multiple clients - multi-tenancy -, instead of creating a copy
of the service for each e-commerce platform considered as each platform is served by one instance

- single-tenancy.

With the scaling and multi-tenancy problems solved, we focused on how to perform data analysis

34

on custom data sets. To make this possible, it's important to decide which database types should
the RS hold. Two types of databases were contemplated: relational and non-relational DBs. A non-
relational database revealed to be the best choice, since the objective is to build a generic and flexible
architecture, capable of adapting to any type of data from different online platforms. Non-relational
databases confer flexible storage to the system, accepting various variables with distinct types. On
the other hand, relational databases must be planned and structured beforehand, defining what
entities and respective fields is the system going to work with.

As for security concerns, it were implemented authentication and authorization mechanisms with
JW'T' (JSON Web Tokens - RFC 7519 standard (57)) in the API.

3.3.1.3 Architecture Diagram

This section presents a detailed explanation of the system’s workflow. The diagram in figure 3.1 illus-
trates the sequence of interactions between online platforms and components of the recommender
system, data flow and other mechanisms that occur in the process.

- .
S Elasticsearch]

/qs> Recommender

API
- ==~ POST m Recomn'lender

e BlApp L 5 Engine
(g Paefom! i@ o= T

[app——
MysQL Blipp ‘l .

v Plataform 2 Th Endpoint 4
T aa—

"2 Plataform N ;Mppu:' |
g MongoDB

Source: Improving Performance of Recommendation System Architecture (Appendix | - Publications)

Figure 3.1: Recommender System Architecture diagram

As it can be observed, several online e-commerce platforms connect to the recommender system
through its API. In turn, this API contains multiple endpoints, each one related to a certain type
of entity (client, product or event) corresponding to a given RS action. It was also recognized the
existence of a recommendation engine, assuming that it was able to connect to the databases used
in the architecture - Elasticsearch (58) and MongoDB (59). The recommender engine is capable

35

of storing data in these databases in the format that the architecture requires to communicate with

platforms, according to a Data Contract previously determined.

For security concerns, each request is filtered by an authentication and authorization mechanism,
before reaching an endpoint. This security measures validate and ensure that the author of the
request has the right permissions to make use of the API, protecting it from potential threats. It was
implemented authentication, with JW'T (JSON Web Tokens (57)), and authorization mechanisms
with an Access Control List (ACL), further explained at section 4.5.

3.4 Summary

Before the conception of the proposed architecture, several potential problems were addressed, that
may arise during the development of the system, such as personalized data sets, data analysis, cold

start problem, availability, scalability, multi-tenancy and security.

It was also gathered the requirements that the recommendation system must satisfy before it can

be employed as a service by e-commerce platforms.

It was assumed, therefore, the development of an architecture based on a microservices approach,
supported by non-relational databases, thus giving great flexibility to the system. An APl was defined
to serve as a bridge between the e-commerce platforms and the recommendation engine, to manage
the communication between tenants and the service and ensure the privacy of the data involved.

36

This chapter reflects the stages of development and implementation of this project. At first, the
Technology Used in the architecture is identified, described and complemented with the list of
infrastructure requirements for the host machine. Posteriorly, Product Recommendations are ex-
plored, more specifically the concept and structure of each type developed for this system. In order
to complete this section, online and offline computing modes are also compared. Afterwards, the
System Communication Process is explained, i.e., the interaction between service and tenants,
ending up focusing the e-commerce platforms side through the Beevo's Business Intelligence Ap-
plication. To conclude this chapter, Security mechanisms applied by the recommendation system
in the preservation and management of data are specified in detail.

4.1 Technology Used

In this section is presented a description of all components of the recommender system architec-
ture, illustrated in figure 3.1, and their role in the process of obtaining recommendations for an
e-commerce platform.

The recommender API acts as an intermediary between e-commerce platforms and the recom-
mender engine. It's a communication channel between both elements, handling platforms’ requests
and delivering recommendation results, produced by the engine. It can be designated as the RS
manager. To build this component, Node.js (60) was used as the server engine with great per-
formance, scalability and lightweight, supporting the APl with the Express framework (61), which
has a great potencial to assemble a microservices architecture. The server’s application modular
structure - appendix A.1 - was developed based on the Principle of Separation of Concerns (62),

having been created three layers: Controllers Layer, Service Layer and Data Access Layer.

37

Controllers Layer

Defines Express route controllers
to handle requests from all the
endpoints of the application
and manages the server responses

A

Service Layer

The application business logic resides in this
layer, consisting in a collection of classes with
clear purposes, following the SOLID principles

A

Data Access Layer

This layer is the access point to the
application's database and contains
Models which structure the data

Figure 4.1: Node.js Application Modular Structure Design, according to Separation of Concerns (3)

The API allows any external entity to access the service, as long it is properly authenticated. In
this case, as it can be observed on diagram 3.1, each e-commerce platform communicates with
the RS through a Beevo's application, designated as Business Intelligence Application. The B/
App was specifically developed to operate as a communication point for the platforms, connecting
them to the RS through its API. Thus, both these components (Bl App and Recommender API) form
the communication channel between online stores and the service, handling platforms’ requests
and delivering recommendation results, produced by the recommender engine. Recommended
products are then displayed in vitrines placed throughout the stores’ web pages. The Bl application
uses RabbitMQ for asynchronous communication and load balancing purposes, as well as Redis for
caching results. Another alternative for RabbitMQ would be Apache Kafka (63), as both technologies
stand out as a distributed messaging system based on the publish-subscribe model capable of
playing as an event distributor. However, it was decided to use the RabbitMQ and Redis components
that were already developed and implemented by the company. These software functionalities will
be explored further in section 4.4.

Elasticsearch (58) is a full-text search engine, based on Lucene! library, built to handle large

volumes of data. Among the many existing database types, Elasticsearch was chosen because its

Lhitps://lucene.apache.org/

38

https://lucene.apache.org/

characteristics match with the database defined in the Architectural Solution section, to handle the
unstructured data expected in the recommendation process, the need for a generic architecture and
a highly scalable and flexible database.

Elasticsearch is a non-relational database that operates with schema-free JSON documents and
scales very efficiently. It allows to index documents and search them in near-real-time. Using flexible,
JSON:-like documents, means that fields can vary from document to document and data structure
can be changed over time. Therefore, it has advantages both in storage structure, performance
and flexibility, being capable of handling entities with distinct attributes, e.g., different products may
have different characteristics. It also provides a REST API, which means it can be deployed on any
system regardless of the platform. Besides, this APl is useful to access and perform analysis on
data stored in Elasticsearch, opening up many opportunities to explore in the Bl area.

In order to complement Elasticsearch, a Kibana (64) component was considered in the architecture
as itis a powerful data analytics and visualization tool, that works along with this database. It enables
users to create bar, line and scatter plots, or pie charts and maps, on top of the content stored
on Elasticsearch, thus increasing its great potential to explore e-commerce Business Intelligence
opportunities. This will answer the need for data analysis, addressing the Challenges list in the

previous section.

On the other hand, MongoDB (59) is a NoSQL and document-oriented database. It stores data in
the form of JSON style documents, which keeps the consistency with data format used in HT'TP
requests and Elasticsearch. MongoDB has highly query performance and is easy to scale, making
it a good choice to preserve recommendation results. This data must be always ready on platform
demand, being possible with MongoDB'’s replication, high availability and fast access to data.

Finally, the recommender Engine is a set of Python scripts responsible to produce recommen-
dations from various types, based on platform e-commerce data. Although we won't focus on the
Machine Learning techniques, algorithms and models used by the engine, it is important to have
into consideration the data necessary to "feed” this component. The architecture must be prepared
to handle any type of data required by the engine. Moreover, it is known that this engine is capable
of interacting with the databases used in the architecture (Elasticsearch and MongoDB) and pro-
duces different recommendation models specifically to each platform. A more detailed explanation
of the recommender engine workflow can be found in the article Integrating a Data Mining Engine

into Recommender Systems (65), where this component is exhaustively described.

4.1.1 Infrastructure Requirements

To simplify the process of building, running, managing and distributing the service application, all
architecture components were deployed using Docker (66) stack. Docker is a collection of PaaS

39

products that make use of OS-level virtualization to distribute software in packages called containers.
Each component was built inside its own container, independently from others, to keep them sep-
arate and avoid potential conflicts. This allows the service to always run in the same environment
(local or cloud server) and easy to share with all its dependencies.

By locking the versions’ number of the software used we are promoting a more stable development,
preventing problems from occurring due to updates of the third-party tools used. This project’s
architecture was assembled with the following software and hardware specifications:

Table 4.1: Version table of docker images used in RS architecture

Software .Docker H.Ub
(image:version)

Elasticsearch elasticsearch:7.4.2
Kibana kibana:7.4.2
Node.js node:10
MongoDB mongo:4.2.5
Recommender Engine python:3.8.2
RabbitMQ rabbitmq:3.7-management
Redis redis:5.0-stretch

Table 4.2: Server host machine hardware specifications. Note that the server is hosted in a virtual
machine, emulated using QEMU (4). QEMU allows to run operating systems for any machine, on
any supported architecture, with near native performance.

Host machine Specifications
Operating System CentOS Linux release 7.7.1908
CPU 8 cores x 2100MHz
Memory (RAM) 8 GB
Swap 3.2GB
Disk storage SSD 34 GB
Network 100 GbE

40

4.2 Product Recommendations

4.2.1 Recommendation Types and Structure

Since there are several different scenarios within the business of an e-commerce platform, there was
a need of having a flexible recommendation structure to present different types of recommendations,
depending on which fits better on the context of the current web page being displayed to the client.
Recommendations are based on data extracted from the platforms, which is related to the three
unique Entities considered by the recommendation system:

- Client: represents customers of e-commerce platforms. These can be regular users (B2C) or
companies (B2B) that make purchases on the online stores.

- Product: represents the products available, all inventory and stock of items in the online stores.

- Order-item: represents the relation between a client and a product. An orcer is a set of one
or more order-items, where each order-item corresponds to the link between the order and each
different product (item) from that order. For example, if a client purchases three different products
in a single order, then that order will originate three order-items. This entity was considered, instead
of the entire order, as it is possible to represent information in more detail, facilitating the training
of recommendation models by the system’s engine and, consequently, increase the accuracy of

-

Client Order-item Product

recommendation results.

Figure 4.2: Recommender System Entities

E-commerce platforms send business information about clients, products and orders’ history to the
RS, which preserves this data for later analysis and processing by the recommendation engine. In
turn, the engine produces and stores recommendations of different types and formats. However,
results are sent in the same format to all platforms: a list of recommended product IDs, regardless
of the type and context of the recommendation.

Distinct web pages of an online store may present different scenarios, hence four types of recom-

mendation have been developed to cover various perspectives and functionalities:

41

Popularity: In this type of recommendation, a list of IDs related to "hot products” is returned.
These are the most popular products at the moment and with the highest likelihood of being pur-
chased by clients. The list of IDs is ordered by a score, which varies from 0 to 1 (0% -100%), and
represents the probability of a product being purchased by a client. This metric is calculated by ap-
plying a formula to several attributes of the entities mentioned, such has how many times a certain
product was searched and bought, its average quantity in clients’ orders and the respective order

status (shipped, canceled, etc).

Hybrid: These recommendations are oriented to each client of the e-commerce platform. Given the
client ID, the RS returns a list of recommended product IDs computed specifically for that client. As
one may conclude by the type's name, these recommendations result from a combination of ML al-
gorithms, following Customer Segmentation, Collaborative and Content-based filtering approaches.
In the case of the Collaborative-filtering method, the Singular Value Decomposition (SVD) (67) al-
gorithm is used. On the other hand, Content-based filtering uses the Term Frequency - Inverse
Document Frequency (TD-IDF) (68) technique. Customer Segmentation uses K-means algorithm
to group clients with similar profiles in clusters. An hybrid model is composed by these different
sub-models, which in turn can be configured and balanced in order to complement each other’s

flaws and obtain more robust recommendations.

Similar Products: Recommendations are oriented to each product of the platform. Given a certain
product ID, the RS returns a list of product IDs that are similar to that specific product, sorted by
similarity score. In this type of recommendation, the TD-IDF algorithm is also applied to look for
similarities between the textual descriptions/characteristics of each product.

Complementary Products: These recommendations serve as suggestions for completing clients’
current shopping cart. Given the IDs of product selected by a client, the RS returns a list of product
IDs that are usually sold together with the selected items, trying to complement a client’s current
purchase. Each suggestion produced by the recommendation engine is stored with a support value
associated, that corresponds to the probability of certain products being purchased together. This
support is a metric related to Association Rules with Apriori algorithm (69), which is used to calcu-

late these results and it is very popular to solve this type of problems.

42

4.2.2 Recommendation Storage

When the service receives data from platforms, duly identified with the type of entity to which
they correspond, these are stored in the Elasticsearch database. Subsequently, the Elasticsearch
indices are organized by the three entities of the system, per platform,: ${platform} clients,
${platform} productsand ${platform} order-items.

${platform} is the name of the platform which is used as prefix, to distinguish data from different
platforms (e.g. deeply_ clients, deeply_products, deeply order-items, where the online
store is named Deeply).

An index is created for each platform-entity combination, instead of storing all data into a single
index, as searching against smaller data sets is faster and it is less limited in mapping structure. If
there is a need to change an index for new data, it can keep old data without reindexing and just
put a new mapping for the new index.

The platform name is also used as prefix in Mongo collections. Recommendations are stored in a
collection identified by the type and the platform: deeply popularity, deeply_hybrid,

deeply similar products and deeply complementary products.

* Popularity collections contain just one document as these recommendations are only in-
tended for one type of clients (anonymous clients, i.e., not logged in in the website). Further-
more, each recommended product has associated a /ist of categories to which it belongs.
This list of categories will be used by the RS to filter recommendations, depending on the
context for which they were requested (section 4.2.3).

» Hybrid collections hold several documents and, despite documents following a format similar
to the previously described, each document is related to a client, containing the respective
recommended products.

e Similar products collections contain several documents, one document related to each prod-
uct of the platform, containing a list of products which are similar to it.

* Finally, Complementary products collections store documents which translate the association
rules generated by the recommender engine. Each document is identified by a product ID
and contains a list of product IDs that are commonly present in clients’ orders with the first.
In turn, each of these suggested products have their support value associated, as previously
mentioned.

43

${platform}_popularity B ${platform}_hybrid Il

{ {
id: 0, client_id: 'XXXX-XXXX-XXXX',
items: [items: [
{
product_id: 'XXXX-XXXX-XXXX', product_id: 'XXXX-XXXX-XXXX',
categories: [categories: [
XXXX', XXXX',
XXXX', 'XXXX',
XXXX' XXXX'
]]
3 fi
{..}, {..}
| .|
} ' } '

${platform}_similar_products Il ${platform}_complementary_products Il

{

product_id: 'XXXX-XXXX-XXXX', {

items: [product_id: 'XXXX-XXXX-XXXX',
items: [
XXXX-XXXX-XXXX',
product_id: XXXX-XXXX-XXXX',
XXXX-XXXX-XXXX', support: 0.XX

3>
XXXX-XXXX-XXXX'
1 product_id: 'XXXX-XXXX-XXXX',
} support: 0.XX
}
]

) |’)

Figure 4.3: MongoDB recommendation documents structure

The process of saving a recommendation, in MongoDB, is instant and consists in replacing the exist-
ing recommendation for a recent result, thus not increasing exponentially storage space. Addition-
ally, every document is saved separately so there’s no downtime in recommendations’ availability.
This means that while the recommender engine is updating recommendations, platforms are still
able to get results from the RS, because MongoDB database persists the previous results during
this process.

4.2.3 Filters

It is evident that the number of recommendations generated is proportional to the number of prod-
ucts available on the online stores. The recommender’s API allows a tenant to specify the maximum
number of recommended products it expects to receive, as well as the category or set of categories
to which those items should belong. If the limit of recommendations is not specified, the default
maximum quantity of recommended products to retrieve in the server response is 100 items. This
acts as a security measure, if for any reason there is a large number of recommendations for a
certain kind of request, preventing the transmission of unnecessary amount of data, since usually

when a client performs a search, it doesn't inspect more than 100 results.

On the other hand, when a tenant makes a request indicating the categories to which it expects the
recommendations to be related, the system must ensure that all recommended products respect the

44

filtering rule. As previously mentioned, the filtering process is only possible for recommendations
of the type popularity or hybrid and it is executed according to the following steps:

1. Find the client's recommendation document stored at MongoDB database;

2. Obtain all recommended products which belong to categories from the request’s query filter;

3. Order recommendations by score, in descending order;

4. Apply limit of recommended items quantity;
If this filtering process did not occur, it was possible that recommended products with a higher
score would be sent in the response, even if they don't belong to the indicated categories, and
may not correspond to the context that the tenant desired. An example of this is the product listing

scenario: when a client selects a category on the website, only products within that category should
be displayed.

When the tenant sends a request to the recommender, the categories found in the query are in-
dividually tested against the list of recommended products. Later, the recommender selects each
product that includes the indicated categories. This process is done by MongoDB, which acts as
a very powerful and effective search engine, and therefore a good filtering tool. In addition, it is
possible to create search indices to increase the performance of MongoDB search.

For complementary products recommendations, the filtering process is as followed:

1. Fetch complementary product suggestions, for each product selected by the tenant;
2. Remove products that are already selected from the suggestions;
3. Sort product suggestions by support value, in descending order;

4. Get complementary product suggestions IDs and remove duplicates, since different products
may be complemented with the same product;

5. Limit the result’s length with given limit value;

6. Return complementary product suggestions.

In this type of recommendation, as well as in Similar products, there is no option to filter by cate-
gories, since the contexts in which they are applied do not require filtering by this parameter.

45

4.2.4 Online and Offline Computation

As mentioned in the Netflix's Architecture Overview section, algorithmic results can be computed
either in online or offline mode.

In online computation, recommendations are created in realtime, responding better to recent
events and user interactions, whereas in offline computation results are calculated and stored in
batch mode for later use upon platform’s request (offline jobs). Nearline computation suggests
the combination of both approaches, in which it's performed fast and simple computation (online
mode), but it's not required to serve in real-time. Instead, results are stored making it asynchronous
(offline mode).

Decisions regarding the method and frequency of calculating recommendations were reflected in
these concepts. In the end, these decisions can be summarized in two considered options:

1. Training recommendation models in periodic cycles (e.g., every day at 3:00 am, since there
is less activity on the e-commerce platforms) for all clients and store recommendations in
the database. Thus, when a platform requests recommended products for a given user, the
response is immediate, due to the pre-computation performed. Nevertheless, this approach
can present several problems, such as the great computational effort on the engine during
the period of generating recommendations and after a given moment these are no longer
up-to-date, since they are not produced in real-time.

2. Training recommendation models each time a platform requests the list of recommended
products for a user. This approach has the advantage of producing recommendations al-
ways taking into account the latest data from the platforms. However, if the models are
too complex, the training and recommendation process can influence the response time, by
increasing it and making it unacceptable. Additionally, the computational effort is propor-
tional to the number of requests the RS receives, presenting a possible bottleneck when the
number of requests increases.

Ultimately, to achieve a flexible and efficient system, all approaches should be considered and
combined. The general idea is to pre-compute part of a result with an offline process, and using
it as a backup, leaving the less costly or more context-sensitive parts of the algorithms for online
computation.

46

User Interaction

E-commerce platform

VERIFY IF PLATFORM GEIBROD OS]

ALREADY HAS
RECOMMENDATIONS

USER BROWSES ON CACHE

THE WEBSITE

USER CLICKS A SEND USER RO DESTUIIRINES
PRODUCT ACTION AS EVCI)TH PROD{E Cg S
AN EVENT RECOMMENDATION
TO RS

SHOW TARGET

Q J

PAGE
PERSONALIZED

RECOMMENDATIONS
FROM RECOMMENDER

Figure 4.4: User Interaction Activity Diagram

Recommender System

Engine

AN\JOSTPATA STORE DATA
IN ELASTICSEARCH
GET RECOMMENDATION

API RECEIVES EXTRACT, ANALYSE

HTTP REQUEST

AND TRANSFORM DATA
FROM ELASTICSEARCH

ONLINE&OFFLINE

TO PRODUCE

APPLY ML ALGORITHMS
RECOMMENDATIONS

TRIGGER THE ENGINE

RETURN
RECOMMENDATIONS TO
PLATFORM

TO TRAIN MODEL, FETCH
GENERATE AND RECOMMENDATION
RETRIEVE ONLINE FROM MONGODB FILTER AND
RECOMMENDATION GROUP RESULTS

SAVE
RECOMMENDATIONS IN
MONGODB

@

Figure 4.5: Recommender System Activity Diagram

4.2.5 Offline recommendations

Much of the computation of recommendation ML algorithms can be done offline. Offline or schedule
jobs can be defined as tasks executed in background, on the machine, by a job scheduler (70).
This program monitors and manages batch jobs automatically, allowing users to define and control
a schedule to execute those jobs. With this in mind, jobs can be scheduled to run these algorithms
periodically and their execution does not need to be synchronous with the request or presentation
of recommendation results.

47

In this project, Cron was used as a job scheduler, which is compatible with the operating system
of the host machine, to execute cronjobs that are applied to model training and recommendations
production on the recommender engine. A crontab was created to list and configure several jobs;
each job runs periodically and executes a python script of the engine, to train models and generate
recommendations for each different e-commerce platform. For example, 00 03 * * * python
recommend.py deeply configures a job to run recommend.py everyday at 03:00 am, when
there’s less activity on the website. The recommend.py script makes the engine to perform an ETL
(Extraction, Transformation & Load (71)) process, extracting data from Elasticsearch, analysing and
transforming it into relevant information (EDA), and loading it into data sets to apply ML algorithms,

training models and updating recommendation results of Deeply e-commmerce platform.

This way, it is possible to use more powerful and complex recommendation techniques, by exe-
cuting them in the background allowing to produce more accurate results, asynchronously within
the system. When the process ends, results are stored in the MongoDB database, being available
anytime the platform demands for recommendations.

4.2.6 Online recommendations

Although offline recommendations may provide quite accurate results, the updating rate of these
results can be very low. For example, consider the following scenario:

1. Aclient buys several different shoes;

2. When the recommender engine generates recommendations, it will take this into account
and recommend other shoes;

3. Moments later, the client buys various t-shirts;

4. Recommendations remain only for shoes during the period in which the engine stays idle. If
the engine runs in cycles of one day, only the next day will the recommendations be updated.
In other words, the engine will train the models again taking into account the client’s latest
purchases, in this case the t-shirts, only on the following cycle.

Summarizing, if a client buys a certain type of product, than only on the next cycle will there be
recommendations for him that include products of that type, as models are re-trained and results
updated.

A possible solution for this scenario is to make the recommender engine stay put, permanently
listening for requests related to online recommendations. The recommender APl will receive and
handle these requests from platforms and redirect them to the engine, which in turn simply starts the

48

necessary processes to obtain the demanded recommendations. In offline mode, the engine just
takes into account the data loaded at the beginning of the training. If a client has purchased other
products in the meantime, the engine will not take these orders into account as this information
will only be loaded in the next training session. To obtain recommendations in realtime, a lighter
and faster model would have to be developed, even if it is not highly accurate, so as not to increase
the response time significantly and to be used only for situations in which it is necessary to have
real-time recommendations: results are only produced when requested by the platform, not being
needed to store them in the MongoDB database. This model would always take into account the

client’s latest orders.

However, this solution will depend on the scalability of the system, since it will generate a large
number of requests to process, derived from the multiple interactions of users in the platforms.
Besides, it is necessary to consider the time for training and formulate new recommendations, as
it will influence the response time. In fact, if the recommender is triggered every time a user pur-
chases, to recalculate the recommendations for that user taking into account this new information,
a large flow of information will be generated in the system, compromising its capacity to process

data, recommend and, consequently, increasing the response time.

4.2.7 Nearline recommendations

In order to keep the performance of the system stable, it was decided to exclude the solution of
online recommendations and adopt an intermediate approach: nearline recommendations. This
method consists of a faster and simpler recommendation model from the ones used in offline
mode, which trains in smaller cycles (every 20 minutes, for instance) to produce near real-time
recommendations, e.g.: when a client buys t-shirts, 20 minutes later he is presented with t-shirts

recommendations.

Nearline and online modes provide adaptability to the system, updating recommendations according
to the client’s recent interactions with the platform. For the nearline mode, it was necessary to
create a lighter hybrid model that uses variables more focused on this context, that is, a model
that has a reduced execution time to achieve a balance between short updating cycles and a sense
of adaptation from the client’s perspective. Nevertheless, the disadvantage of a more simplistic
recommendation model is reflected in less accurate results. The engine trains this model and
generates results more regularly in nearline mode than in offline mode, but the recommendation
process is similar on both, saving the results in the MongoDB database at the end, in different
collections.

This is, therefore, another very useful recommendation mode, which can be applied in several
scenarios, complementing the offline mode, e.g .: a showcase on the platform’s Homepage where
the first 3 products would be nearline results and the others offline, presenting the most recently

49

updated recommendations first and giving the feeling of an adaptive system. Yet, offline mode is
the most frequently used, since it is more accurate and is always available, allowing an immediate
response time and also serving as a backup for the other modes.

4.3 System Communication Process

As previously mentioned, the core of the recommender system’s communication focuses on its
API. It acts as an intermediary between the platforms and the recommendation engine, making it
possible to divide this communication process into two operations: the communication between API
and Engine and the communication between RS and e-commerce platforms.

When developing this recommendation system, the interaction between APl and Engine was
first considered, where two options were contemplated to achieve this process:

1. Develop the APl independently of the recommendation engine. The engine would be consid-
ered a black-box, ignoring its mode of operation, software and algorithms used. The com-
munication between these two elements would be made through HT'TP requests based on
REST, that is, the engine would also have to have several endpoints in order to exchange
requests with the system’s API. The engine’s development would be solely focused on the
formation of recommendations, disregarding the origin of data or the destination of recom-
mendations. Thus, the APl would manage the entire process of storing data and delivering
results to platforms. So, whenever the engine needs to train the models and update recom-
mendations, it would reach the recommender API, which in turn would fetch the necessary
data from the data lake (Elasticsearch) and return it to the engine. After training and gener-
ating the recommendations, the engine sent the results to the API, which would save them

in MongoDB, for later platform demands.

50

Online stores

Elasticsearch

2.2. Fetch
data for
recommendations

1.2. Save data

Y

_\ 2.1. Request data
1.1. Send store's to produce
e-commerce data » recommendations
<
Recoxﬁfnder 3.1. Return
4.1. Request for recommendation
recommendations P results
<
4.2. Fetch 3.2. Save
recommendation recommendation
results results
Y
MongoDB

Recommender
Engine

API;

Figure 4.6: Communication process between Recommender’s API an Engine - option 1

2. Recognize the functioning of the recommender engine, assuming that it not only has the

capacity to access Elasticsearch directly to retrieve the necessary data for model training,

but also direct access to the MongoDB database to store the results.

Online store

1.2. Save data
Elasticsearch

R

1.1. Send store's
e-commerce data

Recommender
API
4.1. Request for
recommendations
-/
4.2. Fetch
recommendation

results

MongoDB

2. Fetch data for
recommendations

Recommender
Engine

3. Save
recommendation
results

Figure 4.7: Communication process between Recommender’s API an Engine - option 2

The first option aimed to produce more generic elements, making the system more flexible. In other

words, when implementing a REST communication between the APl and the engine, it allows collect-

ing recommendations from several distinct engines, thus having a more robust base of outcomes

to be provided to platforms. It would also make it possible to test and replace different engines,

o1

giving the possibility to choose the one most suited to the tenants’ goals. However, the complexity
of data management in this communication approach does not make the process very efficient,
hence adopting the second option. Since the context of this project was properly defined, as well
as its objectives, the second approach offers greater performance and effectiveness in the system.
So, we assumed the development of a recommendation engine (65) that can connect directly to the
databases, with no need to implement REST in the engine for communication by HT'TP requests,
consequently taking the weight off the system’s APl of managing too much resources. It is assumed
that the engine produces and stores the results in the format that the system architecture requires

to communicate with the e-commerce platforms.

The communication between RS and e-commerce platforms is made via HT'TP requests,
through the APl based on a REST architecture. This allows the system to be used not only by Beevo,
but also by other external entities, i.e., recommendations generated by the recommender can be
requested by several different tenants, that may not be related to the company, providing they are
duly authenticated in the service. The communication with the RS must be properly authenticated
and authorized, as well as validated according to a Data Contract. Any entity can communicate
with the RS and obtain recommendations if they follow the data contract and this is what offers the

system such flexibility to cover all e-commerce platforms.

In the context of the project, the recommendation system was assessed through the interaction
with Beevo's platforms, which communicated with RS through the Beevo's Business Intelligence
Application.

52

4.4 Beevo’s Business Intelligence Application

As stated in the previous section, any entity can communicate with the recommendation service
through HTTP requests, as long as it complies with the requirements established in the data
contract, regarding formatting and mandatory data that must be included in those requests.

In order to complement the communication process at the company’s side, an application called
Business Intelligence Application or Bl App was developed, allowing platforms to communicate with
this service, transmitting all the information necessary to form data sets, perform EDA, Model Train-
ing and obtaining product recommendations. The reason why it was called Business Intelligence
App is because in the future this application will hold more features, directly linked to the Bl area,
in addition to this first feature developed - product recommendations. The same is reflected in the
recommendater server, which will later host other types of services related to the Bl area, hence
adopting a generic and flexible development.

Synchronous

1
: communication
/ E-commerce platform \ .
1

a

]

-
Elasticsearch

1
1
1
1
]
.| Fetch data AR - = 1 1
-— > Plugins e e HTTP Requests L é Recommender System
- : > :
................ =soocccoocoosos 1
MySQL ~ [[PeeeeCSSESEStRSER 1em T T mmmmes J API Y Engine
Core :’ Response i g
BI A Vg (list of recommendations) | .
"""""""" Do PP y; .
cone [b B AN BRARN -
recommendation H 1
e results] Resources = oy .
4—\ ______________ : ‘x..::::::::::::._y ; ’
1
Redis L 1
1 MongoDB

y
>

Occurrence of events and RabbitMQ

messages are sent to the message
broker

Queues are processed and
Asynchronous respective requests sent to RS

communication

~————— -

Figure 4.8: Communication process between Bl App and Recommender System

Each platform is capable of integrating the B/ App, earning the ability to interact with the recom-
mendation service and, consequently, obtain product recommendations.

This application was developed in PHP (72), a language specially suited to web development,
which is the context where this project is inserted. The following diagram shows the general file
structure of the Bl App developed. Note that some nuances may not correspond to reality to protect

the company’s property and privacy:

53

i Bl Plugins

! /Users /Products /Orders

. . afterCreateProduct()

' aﬁerUs?rReglster() afterUpdateProduct() afterCreateOrder() !
' afterEditUserInfo() afterUpdateOrder() '

I
triggers fired when an entity is created or updated J

—

Client.php ’ Product.php ’ ‘ Orderltem.php ’:
: /Facades :
: BlFacade.php I :
; . . g << extends >> —J |
! « loginBlUser() ' '
! « saveConfigurations()] l :
' « initialPopulate() E :
' « sendUpdate() i '
' « getRecommendations() Entity.php ’ '

'
>
- 3

| /Libraries/Middlewares

Tenant.php

Requests.php

Populator.php

Recommender.php

Figure 4.9: Beevos' Business Intelligence Application File Structure

The main directories of the application can be described as:

* Facades: The B/ App presents a facade (BIFacade.php) with all available methods that
enable Beevo to interact with the Recommender System. It allows each tenant (e-commerce
platform) to authenticate itself in the recommendation service, edit settings of the engine's
recommendation models, send the necessary data to generate recommendations and, fi-
nally, obtain product recommendations.

« Entities: It holds the three types of entities considered by the system: Clients, Prod-
ucts and Order-items. The class Entity is an abstract PHP class model representation
of the three entities, which is then extended to the respective classes. Each of these has
specific methods to extract, process and manipulate data from the respective entities, stored

54

in Beevo's database. Each class also defines a set of default fields, which are used as the
foundation for the formation and training of recommendation models. These standard fields
are specified in Variables Selection and Filtering section.

* Middlewares: Here we have two main classes: Populator.php and Recommender.php.
Populator php is responsible for sending information from Beevo to the RS and populate its
database, using the existing methods in entities’ classes. It handles events that occur in the
platform, extracts, filters and sends entities’ data to the RS API, which in turn receives and
stores it in Elasticsearch to feed the engine. It also sends requests containing the settings
that should be used by the engine to generate recommendation models for the respective
platform. On the other hand, Recommender php has the role of getting the appropriate rec-
ommendation results by requesting it to the RS, depending on the context in the platform.

Both of these classes can send requests to the RS, through the Request.php class, which
acts as the HTTP client of the Bl App, by implementing a cURL client (73), and handles
request’s authentication and management. The Tenant.php class represents the identity
of a RS User, who can access and interact with the recommender. This class will, therefore,
be used to authenticate and validate requests sent by Requests.php class. The tenant's
authenticity is given by their login credentials (email, password and associated platform) and
it is through it that the Bl App gains legitimate access to the recommender system.

* Plugins: B/ Plugins have the duty of dealing with events that occur on the platform, firing
triggers whenever there is a change in the entities’ information, useful for model training
and generating recommendations. These triggers send messages, whose content is the
information of the entity that has been changed at that instant, to RabbitMQ. In turn, this
message broker will process the messages and send the respective updated information to
the RS. The objective of this process is to keep the RS database updated and consistent with
the platform’s. In section 4.4.3, the operation of these triggers will be explained in more
depth.

4.4.1 Application configurations

To integrate the B/ App on a platform it is required to set some configurations, necessary to establish
a connection to the recommendation service and obtain the appropriate engine results. These

settings are described in the following table:

55

Table 4.3: Beevo's business intelligence application configurations

Recommender API

url Recommender System API base url (server domain).

Tenant

it Name of the online store to be associated with the tenant.
Used to name indices/collections on databases.

email Email credential to login in the RS.

password Encrypted password credential to login in the RS.

Entity

Client Client entity.

Orderltem Product entity.

Product Orderltem entity.

Fields

Addresses List of fields to be selected, related to clients’ addresses.

Client List of fields to be selected from the client model.

Orderltem List of fields to be selected from the order-item model.

Product List of fields to be selected from the product model.

Attributes

Product Set of product attributes to be extracted from the database.

Model

last_months_orders
min_score
min_support

n_clusters
cb_weight
cf_weight
cl_weight

bought_products

evaluate

Number of months to be considered in order’s history when
producing recommendations.

Minimum score of recommendations to save in database.
Minimum support of complementary product suggestions to save
in database.

Number of clusters to use in Customer Segmentation (k-means clustering).
Content-based model weight on Hybrid recommendations.
Collaborative-filtering model weight on Hybrid recommendations.
Clustering model weight on Hybrid recommendations.

Include (or not) products already bought by a client,

in their recommendations.

Configuration to indicate if metrics should be calculated to evaluate
models accuracy, whenever they are trained.

These configurations include the domain address of the server where the recommendation service

is hosted as well as the tenant credentials necessary to authenticate within the system and send

requests. Settings related to the Entity parameter consist of boolean values that indicate whether

the respective entity should be considered in RS database initial population process, or not. In Fields

parameter, lists of optional fields can be configured, which will be added in the Model Training phase,

combining with the standard fields defined in the model class of each entity.

The parameter Aftributes is only related to the Product entity.

If no attributes are defined, the

attributes used in the selection and filtering of product listing on the online store will be selected,

by default.

56

The remaining parameters are associated with the specific recommendation Mode/ of the platform,
produced by the Engine. Since these parameters are related to the RS and not the Bl App, any
external entity, in addition to the Bl App, can send a request with these settings to customize
the recommendation results they want to obtain. These configurations are stored in the recom-
mender_configs collection at MongoDB database so that the engine accesses it to determine how

to develop the recommendation models.

The min_score value defaults to 0.4 (40%) and only recommendations with a higher score than the
minimum score are persisted in the RS database. On the other hand, the min_support values de-
faults to 0.1 (10%) and only complementary products with higher support than the minimum support
are saved in the RS database. These default values were established to avoid storing disposable
results, whose precision makes the recommendation irrelevant. Thus, there is better management
of the storage space of the databases and greater efficiency in the search and obtaining recommen-
dations.

All these configurations allow greater flexibility and customization of the recommendation engine
models, by changing their behaviour, adapting them to the context of each platform and, therefore,
obtaining better recommendations.

4.4.2 Database population process

As previously mentioned, the class Populator.php is responsible for sending data to the RS API
which will populate the Elasticsearch database. The process is executed according to the following
steps:

1. The first step is to make sure that the tenant is able to send valid requests, so it is necessary
to verify if they are authenticated in the recommendation service;

2. Subsequently, the entities whose records must be sent to populate the RS are obtained using
the parameter Entity of the Bl App settings;

3. Next, each of these entities is populated. For that, a set of ids of all the respective entity’s
records is collected.

4. Finally, this set is divided into 4 different chunks. The reason for dividing this set is to in-
crease the performance and speed of the population process: each chunk will be processed
individually in background, at the same time, thus making the population process concur-
rently. This is possible to achieve through the message broker RabbitMQ. Messages are sent
to it, responsible for carrying out the processes of populating the records that correspond to
the ids of each chunk, hence being sent 4 messages in total, by each entity. The messages

57

are subsequently processed in queues, in parallel, increasing the rate of requests sent and
consequently making the population process faster.

5. The method populateAll() will send HTTP POST requests to RS, with each request
corresponding to an entity’s entry record. The various types of requests accepted by the API
can be explored in the APl Documentation section. According to the activated RS endpoint,
data from requests is stored in the Elasticsearch database.

The pseudocode of the population method, present in Populator.php, is displayed below:

<?php

/**

* Populator class

*/

// Check if tenant is logged in
if (!$tenant->isAuthenticated()){
return false;

// Get active entities
$entities = $this->getEntities ();

// Populate RS database with records of each entity

foreach ($entities as $entity) {

// Get all entry ids of entity
$ids = entity->getAlllds ();

// Divide the set of ids into 4 smaller chunks.
// This way, a message will be sent to RabbitMQ to process each
// chunk, improving the population process performance

$ids_ chunks = array chunk(8$ids, count($ids)/4);

// Process each chunk
foreach ($ids_ chunks as $chunk) {
// Run population process in the background
$this->closure (
function () use ($entity, $chunk) {
// Send data to recommender API, via HITP POST requests
BlFacade:: populateAll ($entity , $chunk);

58

At a first stage, the application must do an initial population of the RS’s database, by fetching current
data related to the entities mentioned, filtering it by selecting only the relevant fields for recommen-
dations and send it to the RS’s server API, which in turn will handle and store this information.

Since there are thousands of records of each entity stored in the company’s database, the popu-
lation process will take a long time, hence being transformed into multiple smaller tasks that run
concurrently in the background, to make a better experience for the tenant. This is crucial to create
the initial data sets, so that the engine has the required data to form recommendations.

4.4.3 Event triggers

An e-commerce platform is subject to a lot of activity since the intense interaction with users leads
to a large number of events, such as the registration of new clients, order placements, browsing,
shopping, promotions, database updates, etc. Collecting this constant change and exchange of in-
formation is essential to make more accurate recommendations. Hence, the recommender system
must be able to listen these events so that its database remains consistent with the platform’s, and
recommendation results are always up-to-date.

Events’ generated by consequent activities in Beevo platforms, such as the creation or update of
entities will be communicated to the recommender, so it can be continually up-to-date. This is
possible, due to triggers fired whenever one of these events occur. These triggers were implemented
in BI App plugins which listen for events such as:

e Clients (/Users): A client registers, or edits their profile information, such as gender, birth
date, country, etc.

* Products (/Products). A product is created or its attributes changed.

* QOrder-ltems (/Oraers). A client places an order or the order’s status is changed.

Whenever such events occur, the Bl App sends updated information about the respective entity to RS,
through HT'TP requests to its API. This way, it is possible to combat the cold start problem, always
keeping the RS database consistent and synchronized according with the platform. It guarantees
that all entities registered on the platforms are inserted in recommendations, ensuring that there
are no gaps of information to provide recommendations to recent clients and include new products
in results.

Once again, the Bl App uses RabbitMQ message broker to enable asynchronous communication of
information sent by the mentioned triggers. This way, bottleneck problems are less prone to occur
when there's intense activity on platforms, while loading time is not affected. RabbitMQ receives

59

messages from triggers and distributes them across several queues, balancing the load. In turn,
these queues process messages asynchronously and sends the information almost in real-time to
the RS server - diagram 4.8.

This technique gives RS the possibility to implement online computation in the future to create rec-
ommendations in real-time. Besides, by keeping the Elasticsearch database always up-to-date, it

allows to perform real-time business analysis in Kibana's dashboards.

4.4.4 Storefront widgets

Specific widgets were created to display recommendations to users through vitrines on the platform,
communicating with the RS, by using the Bl App methods and identifying the client for which it is
requesting recommendations, the number of recommended products and the categories to which
they should belong, in case these filters are applicable.

These recommendation widgets request recommendations according to the type that they were
configured, displaying the recommended products that were received through vitrines in the web
page. In this project, four different features were developed, which use different types of recom-
mendations, and were implemented in several widgets strategically placed through the platform.

In the Homepage, "Recommended Products” vitrine presents a set of recommended products spe-
cific for the user currently on the page, based on hybrid or popularity recommendations. Popularity
recommendations are used everytime the user is anonymous, i.e. not logged in. Otherwise hybrid
recommendations are requested. However, if there are no hybrid recommendations for the client,
popularity recommendations are used as default as they represent a generic result to use in these
situations. This way, the cold start problem can be solved, in the sense that new or recent clients
get recommendations, even though the system has no information about them.

Homepage

[J {)

Recommended Products
o o o q i—o
=
g g g 3

Figure 4.10: Homepage recommendations vitrine generic template. In this example, four recom-
mended products are displayed to the user: two from "Clothes’ category (shirt and pants) and two
from 'Drinks’ category (iced tea and smoothie). Products are ordered by score, with the product on
the left having the highest score, i.e., is more likely to be bought by the user.

60

Product Details page also presents a recommended products vitrine, visually similar to the one
used in Homepage. However, recommendations are from similar-products type, meaning that prod-
ucts that are recommended have similarities to the selected product of the page.

Product details
Shirt
. Price: €€

Recommended Products

Figure 4.11: Product details page recommendations vitrine generic template. In this example, the
user selected a shirt, thus be presented products similar to it in the recommendation vitrine, where
the product on the left is the most similar to the selected shirt (ordered by score).

As for suggestions to complete the shopping cart, these are available on a Side Cart, accessible at
any point during the purchase process on the store. Whenever a client adds or removes a product
to their cart, the widget reloads and the respective vitrine is updated displaying the appropriate sug-
gestions according to the current cart content. The platform informs the RS of the current products
in the cart, which in turn returns the complementary products suggestions required by the widget.
Furthermore, whenever a client has no products added in their shopping cart, popularity/hybrid

recommendations are used instead of complementary products recommendations, due to being
impossible to make cart suggestions with an empty cart.

Side cart
' -
D a

Recommended Products

Total: €€

&

Figure 4.12: Side cart recommendations vitrine generic template. In this example, the user added a

shirt and pants to the shopping cart, so the recommendation vitrine displays some products which
are commonly bought together with the cart’s current content.

61

Lastly, a new ordering option was added to Product Listing on the websites: "Order by Recom-
menaed’. With this option, products from product listing are ordered according to recommendations
given by the RS. Here, once again, recommendations are from types hybrid or popularity. In this
case, two scenarios had to be considered: a generic product listing, when the store page is displayed
showing all available products, and a specific listing, when the user filters the product by category.
In this last situation, it was necessary to ensure that all recommended products belonged to the cat-
egory selected by the client. Since each recommended product of hybrid and popularity types has
its category associated, and taking advantage of MongoDB's capacity to be a very efficient search
engine, it was possible to filter the recommendations and send only those related to the category

of the page.

Product Listing
[] %f_ o = O o
YA
2 & y

Figure 4.13: Product listing page recommendations vitrine generic template. In this example, the
user browses for products within the ”"Drinks” category and orders them with the "Recommended’
option. Ergo, products related to "Drinks” are listed, ordered by recommendation score, i.e., the
products that would appeal the most according to the user’s profile are shown first.

Recommendation widgets use the Redis component to cache results received from the RS. By saving
recommendations, for a certain time, the application no longer needs to send repeated requests
demanding the same recommendations, therefore reducing the number of calls to the server and,
consequently, the load on the communication flow, increasing overall system performance. A user’s
session on a Beevo platform typically takes half an hour, with the possibility of the user returning
within the next hour after that visit. Thus, when a widget obtains recommendations from the RS, it
saves those results in cache. When the user accesses a page whose context requires recommen-
dations that have been previously loaded, the widgets will fetch the results from cache, allowing the

page to load faster and improving the user experience.

The format of recommendation requests is specified in section 5.3.

62

4.5 Security

In order to assemble the security mechanisms of the system, potential threats were raised first
according to the STRIDE (74) methodology: Spoofing, Tampering, Repudation, Information disclo-
sure, Denial of service and Elevation of privilege. Consequently, it was ensured that the system has
properties such as authenticity, integrity, non-repudiability, confidentiality, availability and authoriza-
tion.

Thus, it was decided to develop an Access Control List (ACL), which dictates a hierarchy of user
roles, and their respective permissions. The ACL establishes the various policies of the system,
indicating which resources exist, which operations can be done in each of them and who can execute
them, thus constituting the RS authorization mechanism.

There are three types of users, i.e. roles, with access to the recommender system:

* System Admin: The user is an administrator of the system. The administrator has global
access to the recommendation system and is allowed to create different types of users for
each platform (Tenant Admin and Tenant User). It also can access and operate on any

platform and respective resources.

Each platform is referred as a tenant and has its own Tenant Admins and Tenant Users.

* Tenant Admin: The user is associated to a platform and acts as an administrator for the re-
sources of that platform. They cannot make CRUD operations on other platforms’ resources,
just manage the ones of their own. Tenant Admin users are allowed to create common users
(Tenant Users), which are consequently associated with the respective platform.

* Tenant User: These are common users that can only make GET requests to the resources
of the platform with which they are associated. They cannot make CRUD operations in ACL

nor access the other platforms.

System users and the ACL are stored and managed in the MongoDB database, supported on the
npm ACL package 2 - Node ACL - Access Control Lists for Node. This module offers a minimalist
ACL implementation, providing methods that help to create roles and permissions. The following
table describes the system policies:

Zhttps:/ /www.npmijs.com/package/acl

63

Table 4.4: RS Access Control List: existing roles, resources and permissions. As it can be observed,
Tenant Users are not allowed to access Users and ACL resources. On the other hand, Tenant Admins
are not allowed to edit system users information nor create or remove ACL elements (roles, resources
and permissions). The System Admins are able to see the roles and permissions of all users. They
have full access to the ACL, which allows them to manage all system’s policies.

Resources/ Roles System Admin Tenant Admin Tenant User
/recommender * GET/POST
PUT/DELETE
Jusers . GET/POST)
‘ DELETE
. GET
/acl PUT]
. . GET/POST
/clients PUT/DELETE GET
. GET/POST
/products PUT/DELETE GET
. . GET/POST
/order-items PUT/DELETE GET
. . GET/POST
/hybrid PUT/DELETE GET
. . GET/POST
/popularity PUT/DELETE GET
- . GET/POST
/similar-products PUT/DELETE GET
. GET/POST
/complementary-products PUT/DELETE GET

System Admin operates at the /api/resource level, where the platform is not specified and the de-
fault is assumed. Tenant Admin and Tenant User operate with endpoints in the /api/${platform}
/resource format, where it is necessary to specify the platform to which they are trying to access,
having only access to the one they are associated with. The existing resources are listed in the API
Documentation section. Note that only System and Tenant administrators are allowed to access
platform engine recommendations configurations (/recommender), as Tenant Users are not.

In practice, this table is translated into JSON documents and later stored in the MongoDB collec-
tions, thus dictating which operations are allowed for each role to perform on each system resource
- policies. All system users are stored in a single collection, with a composite primary key formed by
the user’s email and platform. Thus, a user can associate their email on more than one platform

with different roles.

64

Taking into account the user hierarchy, we can draw the following process for the creation of users:

1. System Admin is registered directly in the database;

2. System Admin logs in to the service and registers another user with one of the remaining

roles;

3. Tenant Admin logs in and has the possibility to register a Tenant User.

To develop the login feature, an authentication mechanism was created using JW'T' (JSON Web
Tokens (57)) to transmit information in a secure way between entities as a JSON object, since it
can be verified and trusted because it is digitally signed. This was implemented through the npm
jsonwebtokens 3 package to exchange information about users in requests between the system and

tenants.

Whenever a tenant logs in, and after verifying the login credentials (email and password), the system
creates an authentication token to return as the response. In the token's payload, it is stored the
user’s identifier, their role and platform. At the end of this process, that token is signed with the
server’s secret key and encrypted. To increase security, the token is defined with a 2 hours expiration
time, preventing the abuse of its use indefinitely in case a third party can access a valid token. The
properties of authentication, integrity, non-repudiation and confidentiality are therefore maintained.

Both authentication and authorization mechanisms were incorporated into middlewares installed on
the system’s server to filter requests received from tenants. Access to platforms, according to roles,
is validated in the authentication phase, while access to the respective resources is verified in the
authorization phase.

The authentication middleware sets the system endpoints as private, so that only authenticated
users can reach them. It verifies if a user has access to an endpoint, by validating the token
received from requests. The middleware fetches the authorization token from request’s cookies or
authorization header, verifies and decodes it according to the server’'s secret key and, after this
validation, it stores the user data from the token into a session, to pass it to the next middleware

(authorization).

In turn, the authorization middleware protects the resources of the system, by checking the user
role permissions; If the user has the System Admin role, then they have access to all resources of
the system. Otherwise, they only have access to the resources of the platform they are associated
with. It takes the user identifier from the session and checks their permissions according to the
ACL, by taking into account the resource they are trying to access and the method of the request.
This way, authorization property is established.

3https://www.npmis.com/package/jsonwebtoken

65

As for the rest of the architecture’s components, they already have security tools integrated, thus
being sufficient creating users with secure login credentials for direct access to these elements:
Elasticsearch, Kibana and MongoDB. As for the availability property, this is also ensured by the
existing mechanisms of high availability of these databases.

Furthermore, as an extra security measure, alternative TCP ports were opened, instead of the default
ports, for the system’s docker containers on the host machine in order to make the resources
available through the Recommender API in a more secure way.

4.6 Summary

Having identified which technologies to use, which best fit the context of the project and require-
ments of the host machine, we proceeded to the planning and design of the types and structure
of product recommendations. Therefore, four types of recommendation were defined - Popularity,
Hybrid, Similar-products and Complementary-products - with three entities being assumed through-
out the recommendation system: Client, Product and Order-item. These recommendations will be
produced in offline mode, which means that the recommendation engine will generate results, in
the background and in cycles, always keeping recommendations relatively up-to-date and available
for online stores. To communicate with the recommendation service, Beevo online stores integrate
an application, called B/ App, which connects to the RS API and send the necessary information so
that the engine can produce recommendations, as well as receive these results to show products
to clients. During the project, four scenarios were contemplated to show recommendations on the
web pages: Homepage with popular products, Product Listing with a new 'Recommended’ ordering
option, Product Details page showing products similar to the selected one and Sice cart suggestions
that displays products suited to complete the customer’s purchase. The Bl App also allows cus-
tomizing the recommendation models of the system’s engine, while all this communication process

is ensured by the authentication and authorization mechanisms of the service.

66

The process of recommending can be understood as a Data Mining (75) process, in which correla-
tions between clients and products are discovered, supporting the recommendation of an item to a
user. Although this process is of recommendation engine’s responsibility, it is important to contem-
plate the first phase of Data Mining, which consists of Data Analysis and Preprocessing: obtaining
data, processing it and forming data sets that will be the source of information for engine consump-
tion. As mentioned, obtaining the necessary data for recommendations is of most importance, thus
the architectural elements being crucial for the existence of communication. However, not all data
can be relevant, so there is a need for filtering to get only significant information, discarding those
considered outliers and that can negatively influence the results.

The flow of retrieving data from the platforms, filtering and subsequent storage in the databases
can be described based on the ETL (71) process (E xtraction, Transformation and Load).

5.1 Data Extraction Strategy

Before deciding that data would be received via API, the possibilities of adopting other approaches
were considered for the first step - E xtraction - such as using Logstash or Debezium for CDC. In the
next sections, the conclusions drawn after exploring these alternatives are explained, as well as the

decisions that led to adopting an Application Programming Interface.

5.1.1 Logstash

Like Kibana, Logstash (76) is another tool from the vast arsenal developed by Elastic, which serves

to complement the use of the Elasticsearch database.

Logstash is a server-side, lightweight and open-source data processing pipeline that allows to collect

67

data from different sources, transform it in real-time and insert it to any database, in the desired
format. Due to its close integration with Elasticsearch, powerful log processing features and multiple
plug-ins that can help an application to adapt to most data sources, we tried to use Logstash as a
channel for data linking e-commerce platforms to Elasticsearch, rather than using an API.

Logstash has a wide range of plugins, which allows an application to consume different types of
database, providing great versatility in adapting and extracting information. The streams used in
Logstash are better than conventional ETL processes, because they can extract data from multiple
different sources simultaneously, faster and efficiently. Instead of this process being divided into 3
phases (extraction, transformation and load), the tool's streams and filters can execute everything
in one step and on-the-fly.

All of these features have great potential for the construction of generic architectures. However, to
be possible to extract data from Logstash, there must be at least one of the following two cases:
either e-commerce platforms grant access credentials to the system, specifically Logstash, to reach
its database or provide an API for Logstash to request data through HT'TP requests. Furthermore,
plugins would have to be configured according to the different types of databases from inside and
outside Beevo's domain and this strategy could lead to some security breaches. Since both sce-
narios imply dependencies and developments on the part of the platforms and do not present a
generic way of obtaining data, this technique was abandoned.

Besides, this tool was developed not to receive data, but to collect it within a certain time interval,
constantly monitoring the target databases in cycles. However, considering the event-driven side of
our architecture, it was declared that it would be more efficient to build a structure that listens to
requests, receiving and processing changes only when they occur (triggers). Additionally, in each
cycle Logstash always runs through all existing records rather than only new records, making the
process more costly and time-consuming. Hence the choice of using an API, in a more economical
perspective in terms of computational process and resources consumption.

5.1.2 Debezium (Change Data Capture)

While continuing to deepen the hypothesis of applying streams in the data extraction process, the
implementation of Debezium (77) tool was studied. This tool, sponsored by Red Hat (78), is a
distributed platform capable of transforming platforms’ databases into event streams, allowing the
recommender to immediately detect and respond to changes in each entry in the database tables.
Debezium is built on Apache Kafka (63) and provides Kafka Connect compatible connectors that
monitor database management systems. In addition, it records the history of data changes in the
Kafka logs, from where the application consumes them. This makes it possible for the RS to easily
consume all events correctly and completely. Even if there is a problem causing the system to crash,
when restarted it will begin to consume the events from where it left off, without losing any piece of

68

information.

Hence, Debezium is basically a modern, open-source Change Data Capture platform that will even-
tually support the monitoring of a variety of database systems. Change Data Capture, or CDC, is
an older term for a system that monitors and captures changes in data so that other software can
respond to those changes.

Through this tool, it would be possible to cover various types of data sources, as it can be imple-
mented for most e-commerce platforms. Yet, with the condition that a user needs to be created
with access to the database with certain privileges and that the database must be enabled for bin-
log. These limitations, coupled with the fact that this tool is still at an early stage of development,
determined that it was too risky to design an architecture based on it. With Debezium, e-commerce
platforms would have the responsibility to create specific tables with the necessary information for
RS consumption, which implies altering the infrastructure and schema of the existing database.

With this option, Debezium would be used for data extraction, but the communication and return of
recommendations to the tenants would still have to be done through the API. Thus, it was decided
to focus the entire communication process on a single element.

5.2 Exploratory Data Analysis (EDA)

As mentioned throughout this document, the quality of the data used will be reflected in the accuracy
of the recommendations produced, which reinforces the aphorism of this dissertation - information

is power.

In order to obtain quality data of the entities considered (Clients, Products and Order-items), there
must be a refinement process, resulting from previous analysis and filtering. However, this process
must be delicate so that the filtering rules don’t compromise the amount of data extracted: clean-
ing data can cause the removal of data that appears useless and, consequently, losing potential
information. On the other hand, a large amount of data can lead to the existence of wide variations
due to unusual values (outliers) and this can prejudice the final results. That is why it is important

to do exploration and analysis of the data, as the first step, to ensure a balance between quality and
quantity.

According to the creator of this process, John W. Tukey, he describes his perspective of EDA, in the
book E xploratory Data Analysis (EDA) launched in 1977, combining statistical reasoning with the

processes of data transformation and exploration:

"Exploratory data analysis can never be the whole story, but nothing else can serve as the
foundation stone.” - John W. Tukey (79)

69

Lyle V. Jones summarizes the EDA process in three steps, in his work titled The Collected Works of
John W. Tukey: Philosophy and Principles of Data Analysis (1965-1986).

"Three of the main strategies of data analysis are:
1. graphical presentation.
2. provision of flexibility in viewpoint and in facilities
3. intensive search for parsimony and simplicity.”
- Jones, 1986, Vol. IV, p. 558 (80)

The recommendation service offers the possibility not only to developers but also to tenants them-

selves to carry out the Exploratory Data Analysis process through its Kibana component.

Kibana provides several tools to explore and learn about data stored in Elasticsearch indexes, the
construction of graphical representations and other forms of analysis.

One of these tools is Data Visualizer, which belongs to the Elastic Machine Learning area and lets
users view data and gain an understanding of the metrics and fields associated with the respective
indices. With this tool, it is possible to take a sample of data (or even the entire data set) and build
basic views for all fields according to an index pattern. This area also features other tools such as the
Anomaly E xplorer which by applying unsupervised machine learning helps to find patterns in the
received data, stored in the Elasticsearch database. By using time series modelling, it is possible
to detect anomalies in current data and predict trends based on historical data, allowing for quick
and effective corrections when an error occurs, keeping the database always valid. The Analytics
functionality enables users to build data analysis and outlier detection structures.

Additionally, Kibana's Discover interface is the tool traditionally used for data exploration. This
interface also provides several ways to learn about data, sorting all documents of an index according
to a pre-defined timestamp. This facilitates the visualization and analysis of the structure and content
of each document, in a simple way, in addition to various filtering options or even the execution of
KQL (Kibana Query Language) or Lucene search queries.

Finally, another useful section of Kibana is the Visualize area, which supports the development of
graphical representations of various types from the data in Elasticsearch, in order to obtain new
knowledge and to translate the raw data into relevant information, in a visual manner. Afterwards,
the graphics created can be grouped into dashboards, giving valuable Business Intelligence insights
to users.

It appears, therefore, that through Kiabana it is possible to fulfil all the steps mentioned by Jones,
in the previous quote. A practical example of applying this process through Kibana is described in
Kibana Data Analysis section.

70

5.2.1 Variables Selection and Filtering

Following the concept of product recommendations and the context in which the system was devel-
oped, there was a need to consider the extraction of data that is suitable not only for the formation
of the said recommendations but also for other applications such as the Business Intelligence pro-
cesses mentioned: analyzes, dashboards, etc.

The selection of variables to be extracted was developed around the notion of e-commerce, in which
these are typically used in this type of commerce and, therefore, common among platforms of this
area. Thus, the base variables for the formation of recommendations in this system were defined,
since all e<commerce platforms are usually able to obtain and send them to the RS. Evidently,
different additional variables can be used depending on the platform, as is the case with product
attributes, e.g., a store that sells clothing will have different attributes from a store that sells food.
This is possible given the system’s generic and flexible structure and the dynamic mapping of the

databases, as already discussed.

Since each tenant is responsible for sending data to the system, the basic and obligatory variables
for the proper functioning of the service must be tangible to all and available on the platforms.

In order to define and filter the fields to be used by each Entity, a pre-selection took place, to choose
the variables that presented the minimum of potential to form recommendations but taking care not
to discard data that could offer unknown knowledge and important information.

The following mappings describe which variables are considered for each Entity and that must be
sent by default to the system, in order to be consumed by the engine and used by the recommen-

dation models:

Table 5.1: Fields selection for Client entity

Field Description

client_id Client identifier

gencder Client gender

birth_date Client birthdate

created_at Record creation date

updated_at Last record update date

isNew Indicates if client is new to the online store
country Client country prefix (ISO 3166-1 alpha-2 code)
address_country Shipping address country prefix (ISO 3166-1 alpha-2 code)
address_1 Shipping address

address_2 Optional second shipping address

locality Shipping locality

city Shipping city

Zip Shipping zip

district Shipping district

/1

Table 5.2: Fields selection for Product entity

Field Description
product_id Product identifier
parent_id Product parent identifier
name Product name

Sku Product sku code

aggregator_id
stock

oraering
status
buyable
published
created_at
updated_at

hits
manufacturer
parent_published

categories
has_discount

attributes

Product aggregator identifier

Product stock amount

Product ordering for sorting options

Product status

Indicates if the product can be bought
Indicates if product should be available in the store
Record creation date

Last record update date

Number of hits, i.e., number of visits to

its product detail page

Product manufacturer

Product parent 'published’ status

List of product categories

Indicates if product price has discount
Product attributes, with key-value format, as in
{ "attribute_name” : "attribute_value” , ... }

Table 5.3: Fields selection for Order-item entity

Field Description

order_item_id Order-item identifier

order_id Order identifier

product_id Order-item'’s product identifier

product_name
product_category
quantity

Product name
Product category name
Product quantity

product_total_with_tax Price per item, with tax

item_total_with_tax
status
created_at
updated_at
client_id
ip_address
ship_city
ship_locality
ship_country
manufacturer
hits_count

product_attributes

Sum of prices of total items in order, with tax
Order status

Record creation date

Last record update date

Order’s client identifier

Order’s user ip address

Shipping city

Shipping locality

Shipping country prefix (ISO 3166-1 alpha-2 code)
Product manufacturer

Number of hits on that product by the client
Product attributes, with key-value format, as in
{ "attribute_name” : "attribute_value” , ... }

72

In the case of the project’s company, these fields are defined in the PHP classes of each of the
entities of the Bl App, thus being selected by default from Beevo platforms’ databases and sent to
the RS. It should be noted that it is possible to define extra fields, to be selected in addition to the
default ones, in the parameters of the application’s configurations, thus allowing to train the models
more specifically for the platform context and thus achieving better results. The rules for variables
selection are translated into data contracts between the RS and tenants. A practical example is

described in section 6.1.1.

As it can be observed in the Client fields table, the data relating to the personal area (name, email,
phone number, etc.) are not selected, as they are not necessary for the recommendation pro-
cess. Each client is identified by its client id, promoting information security, as their privacy is

protected.

As for the Product fields, product__id and parent__id fields should be mentioned, where the first
refers to the id of the product itself and the last to the id of its parent product. These fields were
developed due to Beevo's product logic where parent products represent the generic model of a
product that can later be extended into several child products, each varying in different attributes
such as color or size, but maintaining the general characteristics of the product. This logic is
later applied in the engine, training models using detailed information from child products and
recommending parent products in a more generic way. However, platforms that do not possess
the parent__id field may ignore it, since the engine will then adapt to each tenant’s conditions.
Moreover, note the statuses buyable and published in product extraction; there was the possibility
of accepting only those products that were available and buyable in the online store, since only
those were relevant to recommend. It wouldn't make sense to recommend a product that is not
in these conditions. However, when discarding this data, one could be losing knowledge, which is
why it was decided to maintain a more profitable Data Mining process, discovering new information
and helping the recommendation algorithms to create connections and correlations between the
characteristics of various products, thus increasing the accuracy of results. Subsequently, it is the
engine’s responsibility to manage this logic and only recommend valid products.

The attributes field was design to create a generic structure in which each tenant could fill in their
data in a simple way: an object in a key-value format, e.g., {"Color”: "Red”, "Size”: "XL"},
which can be satisfied with any type of attributes, regardless of the type of product considered.

The API is only responsible for receiving the necessary data for engine consumption, i.e., all data
received is used in the recommendation process, without "waste” (excessive data). Null fields are
not saved, optimizing storage in Elasticsearch, but empty data is. It is up to the tenant to respect
the rules of the data contract, yet, not all of this data may come standardized (some may be empty
or in invalid formats) so, if necessary, the data transformation process can occur on the engine side
according to its needs and the context of the recommendation models. The engine has the ability to

73

process data from Elasticsearch, transform it and make it valid for application in its ML algorithms.
One can say, therefore, that this phase resembles to the Transformation and Load stages of the ETL

process.

5.3 API Documentation

The documentation of a RESTful APl is a controversial subject among current software developers,
according to the article Best Practices for the Design of RESTful Web Services (17):

"A documentation for Web APIs is a debatable topic in the context of RESTful web services since it
represents an out-of-band information, which should be prevented according to Fielding: “Any
effort spent describing what method to use on what URIs of interest should be entirely defined

nn

within the scope of the processing rules for a media type

The description of a REST API violates two of the mentioned constraints of REST in section 2.1:
messages must be self-describing and hypermedia must be the engine of application state (55).
However, it is justified that although this API is not full-REST, it was created based on the REST
principles, since it belongs to a service to be used by developers and not normal users, hence its

documentation being necessary.

Swagger (81) framework was used to compose the API documentation, for description, consumption
and visualization of the service. This tool allows the documentation to evolve at the same rate as
the implementation since it can be generated automatically based on annotations of the code.
Documentation is generated according to the standard, programming language-agnostic interface
description for REST APIs defined by the OpenAPI Specification (OAS) (82) which allows humans
and machines to understand the capabilities of a service without requiring access to source code,
additional documentation, or inspection of network traffic.

The API documentation describes, therefore, all the existing resources in the system, established
endpoints, possible methods of making requests for each corresponding route and which parame-
ters are necessary for these requests to be successful.

The documentation composition can be described by dividing it into the following schemas:

¢ Client, Products and Order-ltems: These schemas describe the parameters needed to
insert a record of one of these entities, following the data contract established. To insert, ob-
tain, replace or delete a record, a request must be made using the HT' TP methods POST,
GET, PUT and DELETE, respectively, making it possible to make CRUD operations un-
der the system database.

74

 Recommender: This schema represents the recommendation engine configurations, de-
scribed in table 4.3, providing several endpoints to obtain and update these parameters in
order to customize the engine recommendations.

» User: Describes the endpoints and respective operations that can be performed under the
system’s User model, such as registration, login and various CRUD operations.

* Recommendation: It is an abstract schema, used for the different types of recommenda-
tions. Each type has a different endpoint associated, thus separating the multiple resources
related to each recommendation.

* ACL: Describes all endpoints that allow the configuration of the system’s Access Control List
and respective policies, managing the existing roles, their assignment to users and permis-
sions of each role.

This documentation was shared among all RS and platforms’ developers, so that teams were aware
of the system’s general functioning and how to communicate with it to develop certain features. In
appendix A.2 it is possible to visualize the appearance of the documentation made with Swagger. It
should be noted that the technical description of the system was also published in the company’s

documentation.

5.4 Summary

In this chapter, different options for data extraction were addressed, in order to populate the recom-
mendation system. This is an important phase since, without quality control of these data, it would
be improbable to form good recommendations by the engine. It was decided that the best approach
would be the API, instead of extracting data in cycles or using change data capture techniques, as it
would be the most efficient way of the service to react to platforms’ events and consequent changes
in the databases. Before developing the extraction process, a pre-selection took place to elect the
fields that would be used in the formation of recommendations. The standard fields to be extracted
were defined, as they are common to most e-commerce platforms, leaving space for additional fields
that can be used to personalize the recommendation models and obtain more accurate results, in
line with the needs of the online store. Finally, the APl documentation was made available to all
developers, spreading the service’s functioning mode throughout the company.

75

In order to prove this project’s concept, the recommendation system was applied in practice on
Deeply’s online store, a platform developed by the company. The RS was implemented in a stag-
ing environment of the platform to carry out several tests and evaluations so its development and
deployment in production environments can be justified, in the future.

In this chapter, a practical experience made on Deeply e-commerce platform is described, exploring
the extracted data from the store and multiple analysis techniques possible with Kibana, as well as

the widgets to display recommended products to clients.

Finally, the obtained results are explained and discussed, reflecting the overall performance of the
system according to the architectural component and highlighting the potential of this data in the
Business Intelligence area.

6.1 Experiment setup

Deeply is an online store that sells clothing collections and surf equipment. The steps to install
the recommendation system on an e-commerce platform can be summarized as follows:

1. Register the tenant in the recommendation service through the web pages directly provided
by the system. A login page is presented, which after authenticating, redirects the user to a
registration page - to create new users in the system. Only System Admins and Tenant Admins
can authenticate themselves on the login page, as they are the only ones allowed to create
other users. Note that when a System Admin creates a user, he can indicate the platform
and role (Tenant Admin or Tenant User) that he wants to associate with the new user, while a
Tenant Admin can only create new Tenant Users associated with its own platform, as defined
by the system'’s policies - section 4.5. The appearance of these web pages are attached in

76

appendix A.4.

2. After registration, the tenant will be able to get an authentication token, by sending a request
to the system’s login endpoint, as described in the APl documentation, and insert it in the

header of its consequent requests, making them valid and accepted by the service.

{

“userld”: ”5e4bf76bbbeTed151aeb99ae”,
“userRole”: ”SystemAdmin”,
"userPlatform”: ”deeply”,

"iat”: 1582036952

}

Listing 1: Example of a JWT decoded JSON object

In the case of Beevo's online stores, this is possible through the platform’s Back-Office (man-
agement area for store administrators), in a specific section for the interaction with the RS,
through the Bl App. This section presents a tab to enter the tenant’s credentials that will be

used to authenticate in the recommendation service.

Bl User Login o2 Configurations & Populate BBIS

Bl User Association

Please, insert the login credentials for an existing BBIS account. The respective Bl user will be associated and used to access the BBIS API.

f you do not have an account, please contact the BBIS developers to grant you access to the service.

Email address @ Password @ Platform name

test@emall.com | e deeply

cancel

Figure 6.1: Deeply Back-Office - RS user association to tenant

3. Afterwards, it is necessary to configure the recommendation engine, again through the B/
App, in the section entitled for that. Here, all model parameters mentioned in section 4.3
can be changed and adapted with the desired behavior for the engine.

77

2 Bl User Login o? Configurations & Populate BBIS

Recommendation Model Configurations

on this form, recommendation model parameters can be configured to adapt the behavior and results (recommendations) of the BI engine
Minimum score (& 0.4
Minimum support & 0.1
Last months of orders @ 12
Number of clusters 5
es No

Show 'Recommended’ ordering G
Recommend products already bought &
Evaluate model = ves

Content-based model weight &

amm——
Collaborative-filtering model weight & =9
]

Clustering model weight &

Figure 6.2: Deeply Back-Office - Recommender engine configurations

4. Ultimately, it is necessary to perform an initial population of the Elasticsearch database of the
RS, extracting the data previously described from the entities Client, Product and Order-item,
so that the engine has the data sets it needs to produce recommendations. The population
can be general, cloning information from all entities, or selected ones. In this tab, it is also
possible to indicate the optional fields to be extracted from those entities, in addition to the
fields selected by default, or even additional attributes for the Product entity - section 5.2.1.

& BlUserLogin & Configurations @ Populate 881

(optional) Attributes Selection by Bl App

On this form, optional fields can be added to be selected when Bl App extracts information from Beevo's database.
PRODUCT ATTRIBUTES (3 G PRODUCT FIELDS (7 G CLIENT FIELDS (2 G CLIENT'S ADDRESS FIELDS (* G ORDER-ITEM FIELDS (%

. ¢ phone. Q vendor id

Cancel

Bl Initial Population
The Bl Application transfers data from Beevo databases to the Bl System. It allows an initial population of the BI's database and sending further events’ generated by consequent
activities in Beevo's platforms.

Atthe first stage, the B/ App must do an initial population of the BIs database, by fetching current data from Beevo's DB, filtering it by selecting only the relevant fields for
recommendations and send it to the BI's API, which In turn will handle and store this information.

Check population progress status

BI Entity Population

Itis also possible to populate entities individually, by selecting only those to be sent to BBIS.

Select entities to populate: Client
Populate
Orderitem
Product

Figure 6.3: Deeply Back-Office - Attribute selection and Recommender Population

78

5. At the time of execution defined by a cron job, the engine will load, process and analyze
data from these data sets, train recommendation models according to previously defined
configurations and generate recommendations for Deeply’s clients, storing those results in
MongoDB at the end of the process. These results will then be available via API.

deeply_popularity B deeply_hybrid B
{
_id: 0, _id: '11e2278a-8351-459¢c-aa4b-b01{b966b74b',
items: [items: [
{ {
product_id: 'f779e01a-be88-4be6-9704-0f9248eebfOb', product_id: '3c3bb63c-2a74-4d6c-9047-44598b925857',
categories: [categories: [
'MEN!, 'WOMEN!,
'5/3 MM, 'T-SHIRTS & TOPS',
'"WETSUITS' 'PROMOTIONS'
]]
b b
{oh [
]]
}) :)
deeply_similar_products B deeply_complementary_products B
{ {
_id: "2210c94c-76bd-44df-8fdb-f0ab6b070b66", _id: '49503076-1f08-4696-b014-91963073f8f3',
items: [items: [
{
'9aacf2¢7-0933-4254-991a-62¢8974afb4 1", product_id: '60d8a266-d2ac-11e8-852b-bca7105b98e9',
support: 0.50
'35f8d8d2-d138-40d4-85a3-8e82e8b9a9d7', s
'c478gh6c-de32-443¢-b909-b7781dd9936a', product_id: '846hcn77-1631-4858-86a0-41eebfd5b636',
support: 0.25
'f66afc3c-7a07-458-b549-d5b60781¢758'
]
} ' } .

Figure 6.4: Deeply MongoDB recommendation documents examples

Once the recommendation process has taken place, it is time to show the results to the store's
clients, through the storefront web pages. As described in section 4.4.4, the recommended products
are displayed in vitrines, coordinated by widgets developed for this purpose, according to the type
of recommendation that is intended to be used on the web page. When a client visits the web page,
widgets request recommendations to the service, using the methods available in Facade.php of
the Bl App, and after receiving the list of recommended product ids, it fetches the information of
the those items in the store’s database and presents them to the client. These results are cached
for about 2 hours, so when the client visits the same page it is not necessary to request the same
results to the service again and avoid a great page loading time and resource usage. Below are

some examples of these vitrines:

79

RECOMMENDED PRODUCTS FOR YOU

METSULIT SURF JUNIOR PERFORMANCE %/3 SWEAT SWEAT HOODIE METSULT SURF MWOMAN PERFORMANCE %73 EMBEROIDERY SWEAT HOODIE

ZIPPERLESS 35 88¢ CHEST ZIF 35,88¢
120,688¢€ 196, 88¢€

tetor “ feter “
Gotor “ “

Figure 6.5: Deeply Homepage - Popularity recommendations example

GLASS BOTTLE ACCESSORIES

25,080¢
INE STIE v ADD TO CART
<
il |
2128 sutoe
-l
o DESCRIPTION
W
) Stainless Steel 521 ml (21 oz] Eottle. TempShield™ insulation sliminates
o condensotion and keaps es cold tor up to 2% hours or hot tor up to L2 hours
® Bottlepouder ooat moan mey_grip ewoet fros end oxtne durablo bettle that you
wan teho anywhoro. BPA Froo and Phthelate Froo.
CHARACTERISTICS
® TampSh-ald™ unime Aokl a-enll uaeiim-ineslntion pentents tompasntura far haoee
: =
|) ¥
A =
&
|
5 5 -
a a
: -
o
® ® v X\
ii.t_._ r
GLASS BOTTLE AGEZ330FTIES GLASS BOTTLE ACDZ330FTES DEEPLY ACCZ330RTES COAST ABCZSSOFTES
29,88¢ 29,89¢ 35,868€ 35,88¢€

Figure 6.6: Deeply Product Details - Similar-products recommendations example

80

CART »

®@ YOUR CART x

WETSUIT CRYSTAL CAPSULE 2/2 FRONT ZIP 88, 88C
5 526
Quantity 1 o o

WETSUIT PREMIUM 3/2 ZIPPERLESS 108, 88¢
] 522
Quantity 1 o i)

ENTER PROMO CODE

TOTAL 279,00€
B0 TO CHECKOUT

FREE SHIPPING

D TO YOUR CART:

e

WETSUIT PERFORMANCE WETSUIT COMPETITION WETSUIT CRYSTAL WETSUIT PERFORMANCE
3/2 IIPPERLESS 3/2 IIPPERLESS CAPSULE 2/2 BACK ZIP 3/2 CHEST ZIP
186,66¢ 246, 68¢C 98.88¢ 156, 66¢C

Figure 6.7: Deeply Side-Cart - Complementary-products suggestions example

FILTER BY COLOR v SIZE v GENDER v ORDER BY ~

35,00¢ 35,00€ ZIPPERLESS
186,686¢

SWEAT SWEAT HOODIE DEEPLY EUROPE T-SHIRT PYRAMIDE BOARDSHORT BODYBOARD DP 5 BODYBOARD
49,88¢ 20,00¢ 49,00€ 146 ,80¢

goter “ goter “ goter “ “

Figure 6.8: Deeply Product Listing - Hybrid recommendations example

81

6.1.1 Data Contract

To ensure the steady functioning of the system, it is necessary to ensure good communication be-
tween it and the platforms. This is achieved through a data contract, where it is agreed between
tenants and the service which and in what format data should be exchanged between them, guar-
anteeing that the system receives the necessary information to produce recommendations and that
tenants can obtain and use these results. This is a way to "oblige” both parties to maintain a

coherent and flawless communication.

The data restrained in the contract reflects the variables pre-selection made in section 5.2.1, con-
sidering that, when selecting and filtering data in the extraction process, all string variables are in
the same language, as this will affect recommendations made by the engine since some recom-
mendation algorithms are based on textual terms.

The data contract between the recommendation service and Deeply is available in appendix A.6.

6.1.2 Kibana Data Analysis

With the Elasticsearch database filled in, Kibana can be used to explore its content. Elasticsearch
has two core data types that can store string data: text and keyword. Text data type is useful
when it comes to product descriptions: if a product description has "t-shirt made of 100% cotton”
and the user searches for the string “cotton”, that product will appear as a result. On the other
hand, the data type keyword is used for exact matches, where the results must precisely match
the search terms: in the case of a product being a "blue t-shirt”, if the user searches only for the
"t-shirt” keyword it is likely that this product will not be returned as a result of that search. This is
what makes Elasticsearch an excellent full-text search engine, a feature that may complement this
recommendation system in the future.

Through the Data Visualizer area we can obtain statistical information regarding data extracted from
Deeply. Deeply platform has a Portuguese database, hence some data values can be presented
in that language has they do not have an English translation stored. Appendices A.8, A.10 and
A.12 show the information that Kibana offers from Client, Product and Order-item entities’s data,
respectively!. Each document corresponds to an entity record.

IThe Deeply database used is deprecated and was only used for testing purposes, thus some data may have poor
values or even the lack of them. Nonetheless, the engine adapts the recommendation models according to the needs
of the online platform.

82

Clients

Regarding the Client entity, it was possible to verify that there are 23,889 documents stored in
Elasticsearch, which means that there was the same total of client records on the platform, at the
time. Only 5,265 documents (22.04% of clients) contain the gender field, while in other records
this field remains null. These values are in Portuguese, so it can be assumed that sr/dr values
refer to the male gender and sra/dra to the female gender:

Table 6.1: Deeply clients’ gender distribution

Male sr 62.1% | 65.4%
dr 3.3%

Female sra 23.2% | 23.7%
dra 0.6%

Undefined | (empty) | 10.9% | 10.9%

About 14.761 (61.79%) of clients have their country associated with their record, allowing to un-
derstand in which countries the store has more affluence:

Table 6.2: Deeply top 5 country values

(g gu;i[;};) Percentage
PT 55.6%
ES 34%
FR 5.7%
DE 1.5%
IT 0.9%

From the translated values in the tables, we can conclude that most of the store’s clients are Por-
tuguese and Spanish men.

Note also that several values are not normalized. For example, the locality field is filled in manually
by the client at the registration page, so different clients, even belonging to the same locality, can
type its designation differently.

Due to this type of flaws and inconsistencies, it is necessary that the engine executes a data treat-
ment before model training and production of recommendations.

83

Products

In Deeply platform there are 8,860 products in total, so far, but only 22.1% of them are available
(published) in the online store. When analyzing the data through Kibana, we can see the following
top of values of the categories field, color and size attributes:

Table 6.3: Top 5 values of colors, sizes and categories of Deeply products

Color Percentage | Size Percentage Categories Percentage
526 30.5% L 16.9% PROMOTIONS 13.3%

504 10.5% S 15.5% MEN 12.8%
pink 7.2% M 15.3% CLOTHING 6.8%
508 6.7% XL 11.2% WOMEN 6.7%
510 5.6% XS 8.9% JUNIOR 4.3%

Exposing the data in this table, one can easily notice that the store produces mostly black products
(color 526) for men between sizes from S to L (agreeing with the previous data analysis), and many

of them were in promotions at the time this analysis was made.

Through this examination, it is also possible to check the different manufacturers associated with

the various products of the store, however in this experimental case there is only one: Deeply.

Finally, the parent_id field stands out, in which 29.8% has a value of O, indicating the number of
parent products in the store, that is, the number of products available for recommendation - section
5.2.1.

Order-ltem

As for order-items, there are a total of 37,148 records, but the number of orders placed is obviously
smaller, since several order-items can belong to the same order. Hence, it is necessary to have this
notion into consideration when analyzing order data. In this case, the use of the aggregation func-
tionality of Kibana was decisive to assist in the analysis of orders, exploited in Business Intelligence
Dashboards.

However, in the analysis of the individual order-item instances, one can realise that the median price
for each product in an order-item (product_total_with_tax) is about 98.75, which is similar to
the total price of the products in an order (item_total_with_tax), justified by the fact that the
quantity of products in an order-item record being 1, in about 98.7% of cases.

With this data, we can already obtain information on the color, size and category fields, that are
present in most of the ordered products:

84

Table 6.4: Top 5 values of colors, sizes and categories of ordered products

Color Percentage | Size Percentage Categories Percentage
526 47.8% M 25% PROMOTIONS 31.2%
grey 8.1% L 14.4% MEN 21.4%
504 7.2% S 14.3% WETSUITS 4%
dark grey 3.8% MT 8% 4/3 MM 3.8%
508 3.7% MS 7.3% ACCESSORIES 3.2%

Translating these values into a table for better visualization, it is easy to understand that most of the
products sold are products whose color is black (526 code) for men, with the size between S and
L, belonging to the promotions group. Thus, there is an evident correlation with the previous table,
being logical that the store invests more in the stock of products that are most sold. About 42.4%
of order-items belong to orders addressed to Portugal, 36% to Spain and 12.3% to France. In total,
61.2% were shipped and 28.6% cancelled (status).

As can be seen from the examples of the values that Kibana presents for the fields mentioned
above, these are not normalized (in the same format), meeting the issue highlighted throughout
this section: the recommendation engine is responsible for handling data in such a way that it
satisfies the requirements for the application of the ML algorithms and consequent production of
recommendations. Besides, as the engine recommends for textual terms, it does not matter whether
the fields’ values (such as colors or sizes) are represented by their number or name, as long as
consistency is maintained. It is this capacity for abstraction that makes the system so flexible.

Furthermore, the information presented in Data Visualizer is updated in real-time, as Elasticsearch

receives new data.

From a Business Intelligence perspective, the variables previously discussed are quite interesting to
analyze in order to obtain relevant information for Targeted Marketing, for example. This potential
is demonstrated in the Business Intelligence Dashboards section.

6.2 Results

After integration and configuration phases of the recommendation system on the e-commerce plat-
form, several tests were carried out to assess the overall performance of the architecture idealized
in this project. These tests were used to identify possible flaws that may exist either in the general
functioning of the service, or in its communication with tenants, to raise performance improvements
and, finally, to support the proof of concept so that it can advance to production environments. Thus,
in this section, the results of the evaluations regarding the interactions with the recommendation

85

service are compared, justified and, subsequently, several graphs inherent to the Business Intel-
ligence area are exposed and grouped in dashboards, made with Kibana. Finally, all decisions
made throughout the project are reflected in a discussion section describing potential improve-
ments regarding both APl and the machine of the recommendation system, its scalability and a

global perspective on the entire project.

6.2.1 Performance Tests

To assess the performance of the proposed architecture, loadtests were developed collecting several

evaluation metrics from the server.

These tests were created using Locust tool (83), a distributed and scalable load testing framework,

which allows writing user test scenarios in Python to test any system.

The general flow for performing a load test consists of three concepts: Workload, System Under
Test (SUT) and Metrics.

Staging environment

Locust

Locust Recommender System

Workload > Metrics M Web-based Ul
(Tenants) . o System Under Test (SUT) y

(Results)

Figure 6.9: Execution of load tests: Workload, System Under Test (SUT) and Metrics.

Locust simulates the interaction of several tenants with the system, i.e., mimics the browsing be-
havior of multiple clients on the web pages of different e-commerce platforms, triggering events
and sending several requests to the recommendation system, pushing its performance to the limit.
According to the responses that the RS returns, Locust is able to collect various metrics and make
the results available through its web interface, showing the progress of the load tests in real-time.

The workload consisted of requests generated synthetically and randomly, either in time and pay-
load, intending to simulate real users and prevent the software used from caching data, after re-

ceiving the same requests in the same order for some time.

About 1500 users were simulated in total, at a rate of 2 users created per second, of which 375 (25%)
represent logged users and 1125 (75%) correspond to anonymous users (who are not authenticated
on the store), since users of this last type are more frequent in online stores. Logged users sent
requests between 5 to 10 seconds, whereas anonymous users send at a rate of 7 to 14 seconds,
this last simulating limited knowledge about the store and a longer search for products.

86

Table 6.5: Simulated users in the load tests

Total Users Authenticated Users Anonymous Users

1500 (100%) 375 (25%) 1125 (75%)
2 Users Sends request every Sends request every
created/second 5~10 seconds 7~14 seconds

Regarding NodeJS, it is known that this run environment is single-threaded by default, using a single
core of a machine while others remain idle. However, itis possible to implement a clustering module,
using Process Manager 2 (PM2) (84), which enables an automatic usage of Node’s Cluster API
(85) and a built-in load balancer, giving the application the capacity to run in multiple processes.
With this module, the parent process can be forked into several child processes, all sharing server
ports and handling a large volume of requests concurrently.

Two different scenarios were tested: the first was a simple environment test, without the installation
of PM2, while the second scenario implements this module, using all 8 CPUs of the host machine
simultaneously, each raising an instance of the application, allowing a better distribution in the
processing of requests.

An important note to take into account is that in these test scenarios, cache on the tenant-side was

not considered; in this case, caching results in Redis via Bl App.

The following table refers to the overall results of the system’s performance in the two mentioned
scenarios. It should be noted that each load test has a duration of 15 minutes and, in order to

collect metrics with reliable values, the server machine’s warm-up and cool-down were taken into

account.
Table 6.6: System’s server load test performance results
Throughput Reliability Medlan_ response Average_ response 95 percen_tlle2
(requests/second) (failures/second) time time response time
(ms) (ms) (ms)
Single-core 205.8 5.8 90 230 280
Multi-core
BxCPU) 239.4 6.5 69 107 170

Examining the values in table 6.6, one can verify that the response time is shorter when clustering

is implemented.

The average response time is influenced by momentary peaks due to some connection errors,
hence the most reliable value is the median response time, presenting a value below 100 ms, which
does not produce a significant impact on the loading time of web pages nor in the user experience
on the platform. In addition to some connection errors, failures include responses with HT'TP

295% of the requests are served before this time

87

404 code, regarding requests for recommendations that the system does not possess, due to the
recommender engine not having produced results for some products (e.g. some complementary
products may not be found for some items of the store).

Furthermore, a clustering approach increases the system capacity to scale, allowing it to serve a
greater number of requests while maintaining a reduced response time, making it more robust.
However, it is necessary to have a healthy management in the assignment of CPUs to the Node.js
component, since a large consumption of resources can affect the performance of the other docker
containers. Still, in this case, since Node.js is the most active element in the system, it is the one

that is entitled to more dedicated CPUs for its execution.

In this second scenario, a load test was set up in Locust, according to the following structure:

clients.json products.json carts.json

configs.json categories.json

}

Locust Test File

Users

AuthenticUser AnonymousUser

Userld: getUserId() Userld: (empty)

Type: Hybrid Type:Popularity

Weight: 1 Weight: 3

Wait_time: between(5,10] 'Wait_time: between(7,14)

L}

UserBehavior
Homepage Product Listing Product Details
Vitrine : 81’361‘ ilS: / o Vitrine
Cart rderlistw/ | L Can
e Vitrine & cart categories Vitrine & cart
filterin;

!

Recommendations

Popularity
« Limit
« Categories

/recommendations/popularity/?limit={limit} & {categories }

« Limit Eoled
« Categories
+ Userld

/recommendations/hybrid/user_id}/?limit={limit} &
{categories}

Similar

e Limit=8
+ Productld

/recommendations/similar-products/ {product_id}/?limit=8

o =5 Complementary
+ Weight
+ Productlds

/recommendations/complementary-products/?limit={limit}

Figure 6.10: Locust load test structure.

88

Several JSON files were created, to load the test program with samples of client and product ids,

from Deeply’s database, and various configurations related to the recommender’s server.

Two different classes of users were created - authenticated and non-authenticated users - each con-
figured according to the information referred in table 6.5. Each user class is supported by another
class, named UserBehavior, which defines the behavior of each type of user and simulates vari-
ous actions as if users were browsing the online store. This class requests recommendations from
the RS, choosing randomly several product and client ids in each execution cycle, according to
the configurations previously made. Only the scenarios in which users browse web pages covered
by the recommendation widgets were considered: Homepage, Product listing, Product Details and
Side-Cart.

As for recommendations, each type is specified in the class Recommendations, in which hybrid
and popularity recommendations, specific for authenticated and non-authenticated users respec-
tively, receive as arguments the maximum number of recommended items that the service should
return, as well as the list of categories to use in filtering results. These arguments are placed in the
query parameters of the requests. As for complementary products, it is worth mentioning that the
weight field represents the likelihood of a shopping cart being empty: most users, when browsing

an online store, explore a lot without adding a single product to their cart.

The following table presents detailed information of the load test that took place in this second
scenario. In addition, it is complemented with images of graphs referring to the total number of
users, the rate of requests per second and the response time value, over time:

89

06

Table 6.7: Locust table that translates the values of metrics collected during the load test, discriminated by each of the routes/endpoints provided by the
Recommender API

Median Average Min Max Average .
. Requests Failures
Request Failure Response Response Response Response Content

Method Endpoint per per
Count Count Time Time Time Time Size
(ms) (ms) (ms) (ms) (bytes) second second
POST / api/ deeply / recommendations / complementary-products / 9 9 19 38 4 87 0 0.01 0.01
POST / api/ deeply / recommendations / complementary-products / ? limit=6 25974 0 73 114 22 16571 220 28.86 0.00
GET / recommendations / hybrid/ client!D / ? limit=10 5265 45 60 105 5 16352 390 5.85 0.05
GET / recommendations / hybrid/ client!D / ? limit=100 1116 27 70 108 4 16343 3894 1.24 0.03
GET / recommendations / hybrid/ clientID? categories= [categories] / ?limit=100 3186 1935 75 119 6 16377 501 3.54 2.15
GET / recommendations/ popularity / / ?limit=10 18477 0 50 93 21 16483 391 20.53 0.00
GET / recommendations/ popularity / / ?limit=100 5679 0 70 98 22 16480 3901 6.31 0.00
GET / recommendations / popularity / / ? limit=6 71712 63 41 95 4 16529 234 79.68 0.07
GET / recommendations / popularity / ?categories= [categories] / ? limit=100 11970 3672 72 115 23 16381 521 13.3 4.08
GET / recommendations / similar-products / product!D / ? limit=8 64467 99 69 121 7 16590 252 71.63 0.11

None Aggregated 207855 5850 69 107 4 17081 429 230.45 6.5

All routes made available by the API to obtain recommendations are listed in the table, each with
the respective metrics collected during the test.

When carrying out load tests it was noticed that most of the simulated requests addressed to pop-
ularity recommendations. This can be justified by the fact that there are more non-authenticated
users and the Homepage has a greater number of hits. Thus, and since these recommendations
are the same for all users, it was proposed to cache them in the server, using Redis, in an attempt
to improve the performance of the system. However, when implementing the Redis component on
the server-side, there were no changes in response time. On the other hand, the load that was
submitted to MongoDB was reduced, allowing it to have more capacity to respond to the remaining
requests. This can be a solution, if there is a large number of requests that require multiple and dis-
tinct recommendations and compromise MongoDB's performance. Otherwise, the implementation
of a Redis server-side component does not pay off.

As for the other routes, it should be mentioned that the different limits in the query parameters
represent distinct vitrines, on different pages and that the first complementary-products route refers
to an empty cart, hence all requests for this route to fail, as there are no products to recommend
(HT'TP 404). However, the weight for this action to occur is quite low, so it can be ignored since
it is rare to request product suggestions for items that are not present in the cart.

It is also worth mentioning that the response time for the authentication route (login) is about 154
ms, on average, which can be considered quite slow. However, this is due to the authentication
password validation process, which uses the berypt® library that was designed to be slow in order
to avoid brute-force attacks.

Number of Users

Source: Locust web-based Ul

Figure 6.11: Number of Users over time

3https:/ /www.npmis.com/package/bcrypt

91

Total Requests per Second

Source: Locust web-based Ul

Figure 6.12: Rate of total requests per secod over time

Response Times (ms)

8:28:27 AM 8:20:35 AM 2 32:57 AM 34:04 AM 35:12 AM 8:38:34 AM 8:39:41 AM 41:57 AM

Source: Locust web-based Ul

Figure 6.13: Response time value over time

Comparing the 3 graphs, we can identify that there are some peaks where the response time
is higher and, consequently, the number of requests handled is lower, as the number of users
increases. This allows to identify several points where bottleneck problems may occur, caused by
the immense load made by test users - the limit of connections to the server is sometimes exceeded.
This is visible in the table, where a max response time of 17 seconds was recorded. In contrast, a
4 ms min response time was also recorded, which may have resulted from similar and consecutive
requests.

These failures are accounted for in the previous table, adding to the HT'TP 404 - Not Found
server-side errors when recommendations are requested for which the recommender has no answer:
e.g., product listing with a certain combination of categories or complementary products for a certain
item.

Obviously, in practical cases, the tolerance to these bottleneck concerns is greater, since after
sending a request, the response is cached on the platform side, by the B/ App, so the number of

requests will be much lower, for the same number of users.

92

6.2.2 Business Intelligence Dashboards

As it has been reinforced throughout this dissertation, it is important to take full advantage of the
collected data to obtain knowledge and, thus, allow the definition of strategies to give an economic
boost to companies. Hence, the data is not only used to produce recommendations but can also be
explored and give much more information about the online store’s general commerce. With Kibana,
this can be arranged in various visual representations (such as graphs, tables, etc) and grouped in
dashboards, to support business decisions.

In this case, a dashboard was created based on the Deeply platform with some of the following

graphs:

Total Orders by Country

From a Marketing perspective, it is interesting and useful to calculate the total number of orders by
country, since it is possible to identify and invest in various forms of marketing, such as advertising
strategies or promotions, appropriate to the context of each country, and consequently maintain or

even increase the number of sales.

ASIA

AAAAAAAA

iw

Total number of orders
AFRICA 1-2,687.25

@ 2,687.25-5,373.5

@ 53735-8,059.75

@ 8,059.75-10,746

SOUTH OpenStreetvap contributors, OpenMapTies, Elastic Maps Service, Made with NaturalEarth, Elastic Maps Service

Figure 6.14: Total Orders by Country - Map

Kibana allows to make various types of graphs, it is a matter of deciding which style best suits
the information one wants to know. Seeing countries on the map, for example, is more visually
appealing. However, a bars graph allows a more objective and effective analysis. As we can see,

these values correspond to the analysis made in section 6.1.2.

93

10,000

Number of total orders

w

BE
SE
SK

)
3] =

FR
DI
[
<]
A
ES
NI
DK
ES-CN

Countries

Figure 6.15: Total Orders by Country - Bars graph

Average spend by Country

In turn, when calculating the average spend by country, we must have in mind that a country
that has higher revenue than another does not necessarily mean that the first has more orders.
Nevertheless, knowing how much is spent on average for each order by country can show a glance
on the buying behavior of clients in that country, and the company can adjust both prices and invest
more in product promotions that match the average price spent by each client, in an attempt to

increase the number of sales.

NORTH ASIA

Overall Average of total spend per order

AFRICA 6-119
@ 119-232
@ 232-345
@ 345-458

A K
SOUTH OpensSireeivap coniributors, OpenMapTiles, Elastic Maps Service, Made with NaturalEarth, Elastic Maps Service

Figure 6.16: Average spend by Country

94

Average quantity and spend per order

It is also important to have graphs that show a global perspective of the stores'’s sales, such as the
average price or average quantity of items per order, giving feedback to users on how the online
store trade is going and if it corresponds to vendor’s expectations and the company’s objectives.

Overall Average of items per order
per order
Overall Average of items Overall Average of total spend

Figure 6.17: Average quantity and spend per order

Client Genders

The Client values previously analyzed in section 6.1.2 can be reflected in a pie chart for better
visualization. With this knowledge, companies can make certain decisions according to the gender
of their clients, applying this information to assume the right direction in their business and increase
profit, combining the Bl sector with Targeted Marketing.

dra (0.61%)

(10.88%) I"

sra (23.15%)

sr (62.09%)

Figure 6.18: Client genders

95

Promotion Tracking

Through the Time Series Data Visualizer (TSDV) feature, it is possible in Kibana to identify possible
moments with the potential to carry out promotions. As a hypothetical case, in this test scenario, an
alert was defined to notify the owner of the online store that there is a potential chance of making a
discount on clients’ purchases whenever the total price of the order (item_total_with_tax) is greater
than 400€ for each product of a different category. For example, whenever the store sells 400€ or
more of a certain product with X category (X € {MEN, WETSUIT, SURF ACCESSORIES, CLOTHING}),
a promotion is applied. This chart indicates and maintains the history of when promotions would

be most efficient and in what context.

*]

* * * * * * * ik
~ @ RevenueMen 3,276 @ Revenue Wetsuits 240 Revenue Surf Accessories 523 @ Revenue Clothing 750

Figure 6.19: Promoation Tracking

The complete dashboard is attached in appendix A.14, with the remaining graphs and tables:

Sales by Category;

¢ Sold products per Week;
¢ Total Revenue;

¢ Top Selling Products;

¢ Clients table;

¢ Products table;

¢ Order-items table;

Most of these visual representations are based on orders from the online store, even though this
does not correspond to any entity considered in this project. Nevertheless, it is possible to make
observations of orders through the Order-item entity by grouping them using the aggregation feature
provided by Kibana. Thus, the obtained results were produced by aggregating order-items forming
several "buckets” in which each one was identified by the order_id of the order-item, thus consid-
ering orders as a whole. This brings great advantages since we can have generalized information
about the orders from the online store, keeping the detailed data of each order-item.

96

Another feature that makes Kibana such a powerful tool is the ability to update in realtime, as
Elasticsearch receives and stores data. Since the Elasticsearch database is synchronized with the
database of the e-commerce platform, through the developed triggers, Kibana is able to update the
dashboard graphs in real-time.

The registration tables inserted at the end of the dashboard, obtained from Kibana’s Discover area,
operate as logs of the Elasticsearch database, indicating which data was received and when it was
received, thus maintaining a history and providing a preview of each stored document.

To obtain dashboards with more reliable results, the data must be as complete and normalized as
possible, being from tenants’ responsibility since they are the data providers.

6.3 Discussion

A microservice approach was adopted instead of a monolithic architecture, since a single application
can present data congestion problems (bottleneck) when faced with a scenario where e-commerce
platforms are hit by countless users, generating a large number of events/requests. A microser-
vice architecture allowed to build a robust and flexible system, due to the independence of each
component, capable of handling requests and managing resources efficiently. This way, the service
can serve multiple tenants - multi-tenancy - instead of assigning a monolith instance (copy) to serve
each platform - single-tenancy.

It should be noted that all requirements raised in section 3.2 are satisfied by the system:

1. The RS returns the results of recommendations in the form of a list of product IDs, in JSON
format, as required by Beevo’s e-commerce platforms;

2. ltis possible to control the information that comes in recommendation results, indicating the
quantity and category of recommended products that should be included in the response of
the service. If no limit is imposed, the service returns a maximum of 100 recommended
items;

3. RS provides a Kibana component, thus offering several data analysis and business intelli-
gence features;

4. The company guarantees the maintenance of the server machine for at least 361 of the 365

days a year;

5. From the results of the load tests, we can verify that the system fulfils the requirement of
responding under 100 ms to most requests, never exceeding 150 ms, even in moments of
intense activity;

97

6. The system has authentication and authorization mechanisms, supported by JWT and an

ACL, protecting all data involved in the recommendation process;
7. Supports multi-tenancy;

8. Allows the tenant to manipulate the recommendation models of the system’s recommenda-

tion engine.

All recommendations produced were based on three entities (client, product and order-item), forming
four types of recommendation (popularity, hybrid, similar and complementary products), having
considered four different scenarios on the web pages (homepage, product listing, product details and
side-cart) that meet the system requirements. These results were computed in offline mode, which
means that the recommendation system calculated recommendations in the background, saving
the results in MongoDB to be made available whenever required by the online stores. In turn, online
stores formed data sets in the system’s Elasticsearch, by sending data about the entities, from their
database to the service, through the Bl App. With this application it was also possible for tenants to
manipulate the service, changing the configurations and data used by the recommendation engine.

It was decided that this would be the best way to extract data from e-commerce platforms, as an API
allows the recommendation system to receive only data suitable for recommendations and to react
to events only when necessary. Before the extraction process took place, there was an investigation
and pre-selection of which fields should be extracted from the stores’ databases, regarding the
entities considered.

The accuracy of recommendations depends on the quality of the collected data and there is a need
to adapt the models of the recommendation engine according to the available data. Better results
could be obtained if there were more suitable variables for producing recommendations, such as:

¢ Sales per Time (SPT): Ratio between the number of sales and the time the product is on sale

¢ Sales per View (SPV): Ratio between the number of times a product has been sold and the
number of times the product has been viewed by users on the product listing page

¢ Product Buy Path: Products visited by the user, until his next purchase, since the beginning

of a session;
¢ Ratings and Reviews: product ratings and reviews given by users;
¢ Weather conditions: weather conditions and temperature at the time of the purchase at the

user’s location

These and many other variables could exponentially increase the accuracy of the results or even give
a greater capacity of adaptation to the service, extending the scope to realtime recommendations.

98

However, since Beevo's e-commerce platforms have not yet developed the necessary mechanisms
to obtain these variables, it was not possible to apply them. One can also notice that product prices
are not considered as a default field. This is due to Beevo's product pricing logic complexity, in
which price values change according to the type of client that is being addressed. Nevertheless, it
is possible to add this value in the optional extraction fields in the Bl App.

The architecture developed in this project, as well as the metrics and results obtained from its
performance, are exposed and analyzed in my paper "Improving Performance of Recommendation
System Architecture” (Appendix | - Publications).

There are several suggestions for improving the overall performance of the architecture, such as
converting the protocol used in requests from HTTP/1 to HTTP /2 (86): HTTP/2 is more
efficient and faster than the first due to multiplexing, header compression and binary formatting
capabilities. As for scalability, the company opted for horizontal scaling, from an economic point of
view, by adding more machines to the resource pool, instead of adding more power (CPU, RAM, ...)
to the existing machine (vertical scaling). This way, it is possible to better manage the resources
of each component and even open the possibility to implement a Nginx (87) element to serve as a
load balancer and security mechanism in the future.

99

Conclusions

Given the growing number of online offers, recommendation systems appear as an effective strategy
to combat the multiple decisions and divergent options that users face in online stores. The project’s
RS works as a PaaS, containing all the necessary infrastructure and computation for the production
of product recommendations. The e-commerce platforms that use this service, on the other hand,
only need to worry about communicating with it to receive such recommendations, through their

respective applications.

Although the system does not include real-time recommendations, the trigger mechanisms imple-
mented support the use of online computing in the architecture, giving the recommendation engine
the possibility to generate recommendations in realtime, if it has the capacity to do so, and conse-

quently allow platforms to present results in real-time, in response to user activities or other events.

This means that the progress of both architectural and engine components are interconnected, with
the structure depending on the complexity of the engine. The more features the recommendation
engine has, more endpoints and management will be required by the architecture to support these

features.

On the other hand, it is possible to analyze and obtain statistics in real-time from the data collected,
through Kibana dashboards, allowing greater control over data management. Thus, data stored by
the system not only is used to produce recommendations, but also helps to form new perspectives

on the market and support in business decisions - Business Intelligence.

So we may conclude that all the objectives proposed for this project have been achieved. Although
the system is not yet a Beevo's final product, many of its customers have already shown interest
in subscribing and incorporating the recommendation service in their online stores. The developed
architecture allowed the integration of a recommendation engine in online stores, obtaining and

100

analysis of data from its clients and products, which will fulfil the company’s objective of collecting
more information for the application of various marketing strategies and expanding its Business
Intelligence sector. Therefore, there is an expectation of increasing the number of users on the
platforms, the number of sales and, consequently, obtaining a greater profit, leading the company

to stand out in its market.

The technological components used in the architecture allow to combat all the problems foreseen
in section 3.1.1, such as:

1. Personalized data sets: The Elasticsearch component allowed the storage of personalized
data sets that contain various types of data from different e-commerce entities, thanks to the
flexibility provided by the structure of the JSON documents used;

2. Data analysis: Complementing the previous component, Kibana allowed the analysis of the
personalized data sets, in order to extract important information either for the application of
marketing strategies or in the creation of dashboards to support business decisions;

3. Information up-to-date: Thanks to the triggers developed and implemented on the tenants’
side, it was possible to keep the data sets always up to date and synchronized with the
databases of the online stores;

4. Cold start problem: It was also possible, along with the algorithms used by the recommen-
dation engine based on Collaborative and Content-based filtering, to combat the cold start

problem by always including the most recent information in the recommendation process;

5. Availability and scalability: The MongoDB component guaranteed, to the system, a database
with high availability and scalability necessary to satisfy the requirements raised at the start
of the project, so that online stores could always have access to recommendation results;

6. Multi-tenancy and security: The approach of a microservices architecture gave the system
the capacity to serve multiple stores simultaneously (multi-tenancy), always maintaining the
communication flow protected by JSON Web Tokens and an Access Control List.

All the main points of this project are exposed and explained in the article Improving Performance
of Recommendation System Architecture (Appendix | - Publications), where it emphasizes the devel-
opment of the communication process between the RS and e-commerce platforms, the structure of

recommendations and analysis the performance results.

101

Future improvements

In a futuristic perspective, a Javascript library could be developed to accommodate all the logic of
communication with the recommendation system: this library would contain all the required meth-
ods for e-commerce platforms to communicate with the recommendation service. Online stores only
needed to import and implement this library on their side, integrating it in the code of their widgets
of the respective web pages, and the methods of recommendation would be responsible for commu-
nicating with the RS API to obtain results. Thus, facilitating the integration of the recommendation

service on any platform.

As for the management of the system’s host machine, a better alternative for the future would be to
host the service in a cloud (e.g. Google Cloud or Amazon Web Services), freeing the company from

the problems of resource management and scalability when the system evolves.

Finally, some ideas for future functionalities and types of recommendations were conceived, ac-
cording to the current technology of the architecture. One of them will be intelligent search, which
consists of search suggestions in the search bar of online stores. This would certainly be pow-
ered by the Elasticsearch full-text term search capabilities of the service, comparing the keywords
entered by the user with the terms of names, attributes and categories of products, for example.
Another improvement would be to make more direct recommendations, using child products instead
of parents, as these are more detailed, which would provide clients with an even more personal-
ized experience. However, Beevo does not yet support this feature. And lastly, in the Business
Intelligence area, other types of provisional mechanisms could be developed by Kibana's Machine

Learning feature, to predict stock replenishment or detect anomalies in sales.

Information is going to continue growing over the next years, and more and larger sources of data
will appear. As personalization algorithms keep improving and data keep growing, recommendation
system architectures must improve together, with opportunities and lessons to be learned.

102

REFERENCES

1]

(2]

(3]

(4]

(5]

(6]

(/]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

I. Amazon Web Services, “Amazon web services.” Url: htips://aws.amazon.com/, 3 2006.

Subsidiary of Amazon that provides on-demand cloud computing platforms and APIs.

I. Netflix, “Netflix.” Url: http://www.netflix.com, 8 1997. American media-services provider

and production company.

S. Quinn, “Bulletproof node.js project architecture.” Url: https://softwareontheroad.com/
ideal-nodejs-project-structure/, april 2019. [Accessed: 2020-08-18].

F. Bellard, “Qemu,” 2019. QEMU is a generic and open source machine emulator and virtu-

alizer.

Y. A. Nanehkaran, “An introduction to electronic commerce,” International Journal of Scientific
& Technology Research, vol. 2, pp. 190-193, 04 2013.

Beevo, “Beevo - business ecommerce evolution.” Url: https://www.beevo.com/, 2015. The

Business eCommerce Evolution for medium-sized and large companies.

|. Amazon.com, “Amazon.” Url: http://www.amazon.com, 7 1994. American electronic com-
merce and cloud computing company.

G. Adomavicius and A. Tuzhilin, “Toward the next generation of recommender systems: A
survey of the state-of-the-art and possible extensions,” Knowledge and Data E ngineering, IEEE
Transactions on, vol. 17, pp. 734-749, 07 2005.

S. K. Singh, V. Prasad, S. Tanwar, and S. Tyagi, Cloud Computing, pp. 1-50. 08 2019.
S. K. Singh, V. Prasad, S. Tanwar, and S. Tyagi, Software as a Service, pp. 95-118. 08 2019.

D. Pascual, P. Daponte, and U. Kumar, Handbook of Industry 4.0 and SMART Systems. 09
2019.

. Red Hat, “What is an api?.” Url: https://www.redhat.com/en/topics/api/
what-are-application-programming-interfaces, 2019. American multinational software

company.
S. K. Singh, V. Prasad, S. Tanwar, and S. Tyagi, Platform as a Service, pp. 119-150. 08 2019.

S. Carey, “What's the difference between iaas, saas and paas?,” 7 2019. [Accessed: 2019-
12-23].

L. MuleSoft, “Microservices vs monolithic architecture.” Url: https://www.mulesoft.com/

resources/api/microservices-vs-monolithic, 2019. [Accessed: 2019-12-09].

103

https://aws.amazon.com/
http://www.netflix.com
https://softwareontheroad.com/ideal-nodejs-project-structure/
https://softwareontheroad.com/ideal-nodejs-project-structure/
https://www.beevo.com/
http://www.amazon.com
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://www.mulesoft.com/resources/api/microservices-vs-monolithic
https://www.mulesoft.com/resources/api/microservices-vs-monolithic

[16] A. Kharenko, “Monolithic vs. microservices architecture.” Url: http://www.antonkharenko.
com/2015/09/monolithic-vs-microservices-architecture.html, 9 2015. [Accessed: 2019-12-
09].

[17] P. Giessler, M. Gebhart, D. Sarancin, R. Steinegger, and S. Abeck, “Best practices for the de-
sign of restful web services,” Proceedings - International Conference on Software E ngineering,
vol. 10, pp. 392, 11 2015.

[18] T. Johnson, “What is a rest api?.” Url: https://idratherbewriting.com/learnapidoc/docapis_
what_is_a_rest_api.html#what-is-an-api, 2017. [Accessed: 2019-12-12].

[19] A. Monus, “Soap vs rest vs json comparison [2019].” Url: https://raygun.com/blog/
soap-vs-rest-vs-json/, 1 2019. [Accessed: 2019-12-12].

[20] R. Meteren, “Using content-based filtering for recommendation,” 06 2000.

[21] B. Schafer, B. J, D. Frankowski, Dan, Herlocker, Jon, Shilad, and S. Sen, “Collaborative filtering
recommender systems,” 01 2007.

[22] M. Hasan, S. Ahmed, M. Malik, and S. Ahmed, “A comprehensive approach towards user-
based collaborative filtering recommender system,” pp. 159-164, 12 2016.

[23] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “ltem-based collaborative filtering recommen-
dation algorithms,” Proceedings of ACM WorldWide Web Conference, vol. 1, 08 2001.

[24] Y. Deng and Q. Gao, “A study on e-commerce customer segmentation management based on
improved k-means algorithm,” Information Systems and e-Business Management, 12 2018.

[25] NIST/SEMATECH, “Nist/sematech e-handbook of statistical methods.” Url: https://www.itl.
nist.gov/div898/handbook/eda/sectionl/edall.htm, 10 2013. [Accessed: 2019-12-02].

[26] a. S. M. G. c. KPl.org, “What is a key performance indicator (kpi)?.” Url: https://kpi.org/
KPI-Basics, 2019. [Accessed: 2019-12-03].

[27] K. D. Foote, “A brief history of business intelligence.” Url: https://www.dataversity.net/
brief-history-business-intelligence/, 9 2017. [Accessed: 2019-12-13.

[28] S. Negash, P. Gray, F. Burstein, and C. Holsapple, Business Intelligence, pp. 175-193. 01
2008.

[29] L. Google, “Youtube.” Url: http://www.youtube.com, 2 2005. American video-sharing plat-
form.

[30] S. Spotify Technology, “Spotify.” Url: http://www.spotify.com, 4 2006. Audio streaming plat-
form.

104

http://www.antonkharenko.com/2015/09/monolithic-vs-microservices-architecture.html
http://www.antonkharenko.com/2015/09/monolithic-vs-microservices-architecture.html
https://idratherbewriting.com/learnapidoc/docapis_what_is_a_rest_api.html#what-is-an-api
https://idratherbewriting.com/learnapidoc/docapis_what_is_a_rest_api.html#what-is-an-api
https://raygun.com/blog/soap-vs-rest-vs-json/
https://raygun.com/blog/soap-vs-rest-vs-json/
https://www.itl.nist.gov/div898/handbook/eda/section1/eda11.htm
https://www.itl.nist.gov/div898/handbook/eda/section1/eda11.htm
https://kpi.org/KPI-Basics
https://kpi.org/KPI-Basics
https://www.dataversity.net/brief-history-business-intelligence/
https://www.dataversity.net/brief-history-business-intelligence/
http://www.youtube.com
http://www.spotify.com

[31] I. Facebook, “Facebook.” Url: http://www.facebook.com, 2 2004. American online social
media and social networking service.

[32] e. . Pierre Omidyar, “ebay.” Url: https://www.ebayinc.com/, 8 1995. American multinational
e-commerce corporation.

[33] J. Mangalindan, “Amazon’s recommendation secret.” Url: https://fortune.com/2012/07/
30/amazons-recommendation-secret/, 7 2012. [Accessed: 2019-12-06].

[34] S. N. lan MacKenzie, Chris Meyer, “How retailers can keep up with con-
sumers.” Url: https://www.mckinsey.com/industries/retail/our-insights/
how-retailers-can-keep-up-with-consumers, 10 2013. [Accessed: 2019-12-06].

[35] S. Chhabra, “Netflix says 80 percent of watched content is based on al-
gorithmic recommendations.” Url: https://mobilesyrup.com/2017/08/22/
80-percent-netflix-shows-discovered-recommendation/, 8 2017. [Accessed: 2019-12-
06].

[36] C. A. Gomez-Uribe and N. Hunt, “The netflix recommender system: Algorithms, business
value, and innovation,” ACM Trans. Manage. Inf. Syst., vol. 6, pp. 13:1-13:19, Dec. 2015.

[37] X. Amatriain and J. Basilico, “System architectures for personaliza-
tion and recommendation.” Url: https://medium.com/netflix-techblog/
system-architectures-for-personalization-and-recommendation-e081aa94b5d8, 3 2013.
[Accessed: 2019-12-24].

[38] X. Amatriain, “Big personal: Data and models behind netflix recommendations,” pp. 1-6, 08
2013.

[39] J. Katukuri, R. Mukherjee, and T. Konik, “Large-scale recommendations in a dynamic market-
place,” 10 2013.

[40] Apache Software Foundation, “Hadoop.” Url: https://hadoop.apache.org.

[41] Y. Afify, |. Moawad, N. Badr, and M. Tolba, “A personalized recommender system for saas ser-
vices: A personalized recommender system for saas services,” Concurrency and Computation:
Practice and E xperience, vol. 29, 01 2016.

[42] G. Guleria, “How recommendation systems work in ecommerce.” Url: https://blog.
gluelabs.com/how-recommendation-systems-work-in-ecommerce-6¢cc30b56b401, 9 2018.
[Accessed: 2019-12-06].

[43] G.R..D.Ltd, “Yusp - personalization engine.” Url: https://www.yusp.com/, 2017. [Accessed:
2020-04-12].

105

http://www.facebook.com
https://www.ebayinc.com/
https://fortune.com/2012/07/30/amazons-recommendation-secret/
https://fortune.com/2012/07/30/amazons-recommendation-secret/
https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers
https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers
https://mobilesyrup.com/2017/08/22/80-percent-netflix-shows-discovered-recommendation/
https://mobilesyrup.com/2017/08/22/80-percent-netflix-shows-discovered-recommendation/
https://medium.com/netflix-techblog/system-architectures-for-personalization-and-recommendation-e081aa94b5d8
https://medium.com/netflix-techblog/system-architectures-for-personalization-and-recommendation-e081aa94b5d8
https://hadoop.apache.org
https://blog.gluelabs.com/how-recommendation-systems-work-in-ecommerce-6cc30b56b401
https://blog.gluelabs.com/how-recommendation-systems-work-in-ecommerce-6cc30b56b401
https://www.yusp.com/

[44] K. Hafner, “Netflix prize still awaits a movie seer.” Url: https://www.nytimes.com/2007/06/
04 /technology/04netflix.html, 06 2007. [Accessed: 2020-04-12].

[45] Strands, “Strands.” Url: http://retail.strands.com/, 2004. FinTech software company.

[46] i. salesforce.com, “Commerce cloud einstein implementation.” Url: https://trailhead.
salesforce.com/en/content/learn/modules/cc-einstein-plan-and-implement, 2019. [Ac-
cessed: 2019-12-13].

[47] i. salesforce.com, “Einstein product recommendations for commerce cloud.” Url: https://
trailhead.salesforce.com/en/content/learn/modules/cc-einstein-product-recommendations,
2019. [Accessed: 2019-12-13].

[48] 1. Amazon Web Services, “Amazon personalize.” Url; https://aws.amazon.com/personalize/,
2019.

[49] P. Basford, “Creating a recommendation engine using amazon per
sonalize.” Url: https://aws.amazon.com/blogs/machine-learning/
creating-a-recommendation-engine-using-amazon-personalize/, 6 2019. AWS Machine
Learning Blog.

[50] I. Amazon Web Services, “Amazon personalize developer guide.” Url: https://aws.amazon.
com/personalize/resources/, 2019.

[51] 1. Ltd, “Inawisdom.” Url: https://www.inawisdom.com, 2016.

[52] T.F. E. Wikipedia, “Multitenancy.” Url: https://en.wikipedia.org/wiki/Multitenancy, 12 2019.
[Accessed: 2019-12-27].

[53] F. Consulting, “Akamai reveals 2 seconds as the new thresh-
old of acceptability for ecommerce web page response times.”
Url:https://www.akamai.com/uk/en/about/news/press/2009-press/
akamai-reveals-2-seconds-as-the-new-threshold-of-acceptability-for-ecommerce-web-page-response-times.
isp, note = Akamai Technologies, Inc., Cambridge, MA, 10 2009.

[54] R. T. Fielding, “Rest apis must be hypertext-driven.” Url: https://roy.gbiv.com/untangled/
2008/ rest-apis-must-be-hypertext-driven, 10 2008. [Accessed: 2019-12-26].

[55] S. Allamaraju, “Describing restful applications.” Url: https://www.infog.com/articles/
subbu-allamaraju-rest/, 12 2008. [Accessed: 2019-12-26].

[56] A. Prando and S. N. A. Souza, “Modular architecture for recommender systems applied in a
brazilian e-commerce,” Journal of Software, vol. 11, pp. 912-923, 09 2016.

[57] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Token (JWT).” RFC 7519, May 2015.

106

https://www.nytimes.com/2007/06/04/technology/04netflix.html
https://www.nytimes.com/2007/06/04/technology/04netflix.html
http://retail.strands.com/
https://trailhead.salesforce.com/en/content/learn/modules/cc-einstein-plan-and-implement
https://trailhead.salesforce.com/en/content/learn/modules/cc-einstein-plan-and-implement
https://trailhead.salesforce.com/en/content/learn/modules/cc-einstein-product-recommendations
https://trailhead.salesforce.com/en/content/learn/modules/cc-einstein-product-recommendations
https://aws.amazon.com/personalize/
https://aws.amazon.com/blogs/machine-learning/creating-a-recommendation-engine-using-amazon-personalize/
https://aws.amazon.com/blogs/machine-learning/creating-a-recommendation-engine-using-amazon-personalize/
https://aws.amazon.com/personalize/resources/
https://aws.amazon.com/personalize/resources/
https://www.inawisdom.com
https://en.wikipedia.org/wiki/Multitenancy
https://www.akamai.com/uk/en/about/news/press/2009-press/akamai-reveals-2-seconds-as-the-new-threshold-of-acceptability-for-ecommerce-web-page-response-times.jsp
https://www.akamai.com/uk/en/about/news/press/2009-press/akamai-reveals-2-seconds-as-the-new-threshold-of-acceptability-for-ecommerce-web-page-response-times.jsp
https://www.akamai.com/uk/en/about/news/press/2009-press/akamai-reveals-2-seconds-as-the-new-threshold-of-acceptability-for-ecommerce-web-page-response-times.jsp
https://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://www.infoq.com/articles/subbu-allamaraju-rest/
https://www.infoq.com/articles/subbu-allamaraju-rest/

[58] N. Elastic, “Elasticsearch,” 2019. Elasticsearch - The heart of the Elastic Stack.
[59] I. MongoDB, “Mongodb,” 2019. The database for modern applications.

[60] Joyent, “Node.js,” 2020. Node.js® is a JavaScript runtime built on Chrome’s V8 JavaScript

engine.
[61] StronglLoop, “Express.js,” 2020. Fast, unopinionated, minimalist web framework for Node.js.
[62] K. Gamage, “Separation of concerns for web engineering projects,” 07 2017.

[63] A.S. Foundation, “Apache kafka,” 2020. Apache Kafka is an open-source distributed event
streaming platform used by thousands of companies for high-performance data pipelines,
streaming analytics, data integration, and mission-critical applications.

[64] N. Elastic, “Kibana,” 2019. Your window into the Elastic Stack.

[65] V. Peixoto, H. Peixoto, and J. Machado, “Integrating a data mining engine into recommender
systems,” in Intelligent Data Engineering and Automated Learning — IDEAL 2020 (C. Analide,
P. Novais, D. Camacho, and H. Yin, eds.), (Cham), pp. 209-220, Springer International Pub-
lishing, 2020.

[66] |. Docker, “Docker,” 2019. Docker: Empowering App Development for Developers.

[67] Sheng Zhang, Weihong Wang, J. Ford, F. Makedon, and J. Pearlman, “Using singular value
decomposition approximation for collaborative filtering,” in Seventh IEEE International Confer-
ence on E-Commerce Technology (CEC’05), pp. 257-264, 2005.

[68] C. Sammut and G. |. Webb, eds., TF-IDF, pp. 986-987. Boston, MA: Springer US, 2010.

[69] S. Gupta and R. Mamtora, “A survey on association rule mining in market basket analysis,”
International Journal of Information and Computation Technology, vol. 4, no. 4, pp. 409-414,
2014.

[70] K. Aida, “Effect of job size characteristics on job scheduling performance,” vol. 1911, 05 2000.
[71] T. Costello and L. Blackshear, What Is ETL?, pp. 1-3. 01 2020.

[72] R. Lerdorf, “Php: Hypertext preprocessor,” 1995. PHP is a popular general-purpose scripting
language that is especially suited to web development.

[73] D. Stenberg, “Php: Hypertext preprocessor,” 1997. Command line tool and library for trans-
ferring data with Urls.

[74] R. Khan, K. McLaughlin, D. Laverty, and S. Sezer, “Stride-based threat modeling for cyber-
physical systems,” in 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe
(ISGT-Europe), pp. 1-6, 2017.

107

[75] X. Amatriain, A. Jaimes, N. Oliver, and J. Pujol, Data Mining Methods for Recommencer Sys-
tems, pp. 39-71. 10 2011.

[76] N. Elastic, “Logstash,” 2020. Centralize, transform stash your data.
[77] D. Community, “Debezium,” 2020. Stream changes from your database.

[78] M. E. Bob Young, “Red hat,” 2020. Red Hat, Inc. is an American multinational software
company that provides open source software products to enterprises.

[79] J. W. Tukey, Exploratory data analysis, vol. 2. Reading, MA, 1977.

[80] J. W. Tukey, The collected works of John W. Tukey, vol. 1. Taylor & Francis, 1984.
[81] S. Software, “Swagger,” 2020.

[82] S. Software, “Openapi specification,” 2020.

[83] J. H. J. H. L. H. Carl Bystrdm, Hugo Heyman, “Locust,” 2020. An open source load testing
tool.

[84] A. Strzelewicz, “Process manager 2.” Url: https://pm2.keymetrics.io/, 2013. [Accessed:
2020-06-05].

[85] O. Foundation, “Node’s cluster api.” Url: https://nodejs.org/api/cluster.html, 2020. [Ac-
cessed: 2020-06-05].

[86] N. Ramadan and |. Abdelwahab, “Impact of implementing http/2 in web services,” Interna-
tional Journal of Computer Applications, vol. 147, pp. 27-32, August 2016.

[87] 1. Sysoev, “Nginx,” 2005.

[88] G.Cunha, H. Peixoto, and J. Machado, “Improving performance of recommendation system ar-
chitecture,” in Intelligent Data E ngineering and Automated Learning — IDEAL 2020 (C. Analide,
P. Novais, D. Camacho, and H. Yin, eds.), (Cham), pp. 495-506, Springer International Pub-
lishing, 2020.

108

https://pm2.keymetrics.io/
https://nodejs.org/api/cluster.html

APPENDICES

Appendix | - Publications

Improving Performance of Recommendation System Architecture (88)

Authors: Cunha G., Peixoto H., Machado J.

Editors: Analide C., Novais P., Camacho D., Yin H.

Title: Improving Performance of Recommendation System Architecture
Book: Intelligent Data Engineering and Automated Learning — IDEAL 2020
Year: 2020

Publisher: Springer International Publishing

Pages: 495-506

ISBN: 978-3-030-62365-4

Abstract: The exponential appearance of online stores has implied higher market competitive-
ness and, consequently, companies need to adopt certain strategies to obtain greater prominence
and gain clientele. This paper explores an architectural approach to incorporate a recommendation
system in online stores, in order to offer a solution to achieve those goals. Developing the recom-
mendation system infrastructure with NodeJS, based on a REST API, and according to microservices
architecture concepts, has proven to be very efficient when it comes to managing great volumes of
requests and data, and be capable to serve multiple tenants within a short response time. Clus-
tering techniques were also implemented to increase the system’s performance and capability of
handling requests.

109

Appendix Il - NodeJS Application Structure

.env
ecosystem.config.js
package.json

docs

src

}— app.js

b— config

| L— index.js
}— controllers #
— acl.js

|— clients.js

|— order-items.js

|— products.js

|— recommendations.js
|— recommender.js

L— users.js

loaders #
|— elasticsearch.js
|— express.js

— index.js

|— mongodb. js

— routes.js

L— services.js
middlewares # R
|— authentication.js
L— authorization.js
models #
|— ComplementaryProduct.js

— Item.js

|— Recommendation.js

|— Recommender.js

|— similarPreducts.js

|— suggestion.js

L— user.js

public # Public files
— css

| b 1login.css

| L— register.css
— js

L— register.js
routes #D
— acl.is
}— complementary-product.js
— clients.js
— hybrid.js
}— order-items.js
}— popularity.js
}— products.js
}— recommender.js
}— similar-products.js
L— users.js

server.js # Server
services #
— AclService.js
|— ClientService.js
|— EntityService.js
|— orderItemService.js

|— ProductService.js

|— RecommendationService.js
|— RecommenderService.js
L— UserService.js

e N e I

views #
— home.ejs
— 1login.ejs

L— register.ejs

Figure A.1: NodeJS Application Structure

110

Appendix Ill - APl Documentation with Swagger

Beevo Business Intelligence Service API®

BBI System documentation can be found here

Contact the developer
Apache 2.0

servers

Recommender v
S8 /{platform}/recommender/configurations S
/{platform}/recommender/configurations a
m /{platforn} /recommender/configurations [
Clients v
GET /{platform}/clients a
L5 /{platform}/clients "
GET /{platform}/clients/{clientID} a8
m /{platform} /clients/(clientID} e
/{platform}/clients/{clientID} a
Products v
GET /4{platform}/products =
POST /{platform}/products 8
GET /{platform}/products/{productID} ™
m /{platforn} /products/ {productID} a |
/{platform}/products/{productin} a
Orderltems v
GET /{platform}/orders 2
JEM /{platform}/orders a
950 /{platform}/orders/{orderID} a
m /{platforn} /orders/{orderID} - |
/{platform}/orders/{orderID} 8
Recommendations v
=8 /(platform}/re tions/simila { 0} -
953 /{platform}/recommendations/popularity [
S5 /{platform}/recommendations/hybrid/{clientId} =
POST /{platform}/recommendations/complementary-products/ 8

Figure A.2: API Documentation with Swagger - part 1

1

Users hd
m /{platform}/users s
(IR / watrommi fusors a
m /{platform} /users/register 2 |
m /{platform}/users/login. {format} a
m /{platform}/users/login. { format} - |
ACL v
[= -
Permissions v
m /acl/permissions]
[/acl/permissions]
ISR 7ac1/pernissions/users/ tuser o} a
Roles e
WS f2c1/zotes a
m /acl/roles a8
[/acl/zoles]
IEER /aci/rotes/tuserto) a
m /acl/rolesfusers/{role})
m /acl/roles/parents & |
‘ /acl/zoles/parents]
[Jacl/roles/{role} a
Resources e
m /acl/roles/resources/{role})
[/acl/resources/ {resource} a8
Schemas v
Client >
Product >
Orderitem >

Recommender >

User >

SimilarProducts »

Recommendation »

ComplementaryProduct >

Item >

Suggestion »

Figure A.3: API Documentation with Swagger - part 2

112

Appendix IV - User login page of the Recommender System

BBIS User Login Page

test@email.com

deeply

Figure A.4: User login page of the Recommender System

BBIS User Registration Page

Please fill in this form to create a BBIS account.

Email

Enter Email

Password (min. 6 chars)

Enter Password

Confirm Password

Confirm Password

Platform

deeply
Role Choose a role:| Tenantuser v

Read more about BI System Users - Access Control List.

Figure A.5: User registration page of the Recommender System

113

Appendix V - Beevo Business Intelligence Data Contract

Jaynuapt 19pI0 HIOILNI pi~iapio pi~1apio wajspIO
JauSp! Wa-IvpI0 NEREIN] pITwayJaplo w8y JapIo wa}lapIO
{" ".eneA ainquie, - ,BWeu” einqupe, ¥ 103rao - sejnquye 1onpoid
ul SE ‘Jewo anjeA-Aay Yim ‘sajnqguie jonpold
junoosip sey aoud jonpoud ji sajesipu| Nv31009g - Junoosip” sey jonpoid
salobajed Jonpoud Jo isi AVHYY - sauobejeds 1onpold
snjejs paysiignd, juaied jonpoid HIOALNI - paysiiqndjusied 1onpoid
Jainjoejnuew Jonpoid ONINYLS - Jainjoenuew jonpoid
S}y 0 JsquinN H3ADILNI - Sy jonpold
ajep ajepdn jse J1va je"payepdn Je"pajepdn jonpold
a]Ep UoNEaId Jonpold 31va Je"pajealn Je"pajeasn 1onpoid
snjels paysiignd, Jonpo.d HIDILNI paysijand paysiignd jonpoid
smess 2|qednq, Jonpoid HIOALNI a|qefnq 8|qefnq 1onpoid
snjejs Jonpoid YIOILNI snjejs snjejs jonpoid
suondo Buios Joy Buliap.o Jonpold NERLEIN] Bupapio Bupapio Jonpoid
JUNOWWE 320}S JoNPoId HIOALNI 3001 300} 1onpold
J8113uapl Jojebaibbe Jonpoid ONIYLS pi—iojebaibbe pi—iojebaibbe jonpold
NYs Jonpold ONIYLS s s Jonpoid
Sweu jonpoid ONIYLS sweu sweu 1onpold
Jaynuspl Jualed Jonpold ONIYLS piTjualed piTjualed jonpold
Jauspl yonpoid ONIYLS pi jonpoud pijonposd Jonpoid
Yousip buiddiys ONIYLS ousip PusIp sessalppy
diz Buiddiys ONIYLS diz diz sossalppy
Ayo Buiddiys ONIYLS Ao Ao sessaIppy
Aneoo) buiddiys ONIYLS Aujeodo) Aujeoo) sess8IpPY
Z ssaippe buiddiys ONIYLS Z ssaippe 2 ssaippe S9sSaIppPY
| ssaippe Buiddiys ONIYLS | ~ssaippe L ~ssaippe S9sSaIppPY
xiyaud Aunod sy ONIYLS - Aunos JVETe)
xyaid Aunod ssaippe Buiddiys ONIYLS - Ajjunoo~ssaippe
a)sqam/uLojield 8y} 0} Mau sI Jualjo I Sajedlpu| Nv310049 - MONS!
ajep ajepdn jse 31va jepajepdn 1" pajepdn
ajep uoyeald JualD) 3iva 18 pajeasd Je"pajeasd
sjepyiiq sl 3iva ajep” yuIgq ajep yuiq
Japuab jual) ONIYLS J9pusb J9pusb
Jayusprusiy ONIYLS pirjusip pirjual jusio
uonduosag jeuuod OA334 pIdld 19 P13l FELICTe]

Beevo Business Intelligence Data Contract - part 1

Figure A.6

114

{ " *.eneA"aInquye, : ,Bweu-enqupe, }
Ul SE ‘Jew.oy anjeA-Aay UM ‘sajnquie jonpo.d
jJualp s Japlio Aq jonpoud jey) uo spy Jo JaquinN

JainjoejnUBW JONPOId
9pod Aiunod Buiddiys
Aujeoo| buiddiys

Ao Buiddiys

ssaippe di Jesn s JopiO
Jaynuspl jusio s19pI0
ajep ajepdn jseq

o)ep uoleald wayIspI0
snjejs 1apI0

Xe} Y}Im ‘19pIO Ul SWal [e}0} Jo S9oud Jo wng
XE} Yyum ‘wayl Jad 9o1d
Ayyuenb jonpoid

aweu Aiobajeo Jonpoid
SWeu jonpo.d

Jaiuspl 1onpoud s JepiQ
uonduasaqg

103rao

Y3OALNI
ONIALS
ONIdLS

ONIYLS AHjeool diys (siopesy Jopio

ONIYLS
ONIILS
ONIYLS
diva
Jiva
ONIYLS
1voTd
1vo1d
Y3IOALNI
ONIYLS
ONIYLS
dIOFLNI
jewuo4

Ayo~diys (siepeay Japio
ssalppe”di (Jopio
pi~Aus (Jopio
je"pajepdn

Je"pajeaso

alWeu<-snje)s Iapio

Xe} yim~[ejoy” way
Xe)yym~[ejoy jonpoud
Ayyuenb

aweu~ Aiobsjes jonpoud
aweu~way Japio
piTjonpoud

OA339 pIdld4

sajnqupejonpold

Junoo~ sy
Jainjogjnuew
Ayunoo—diys
Ayjeool~diys
Awo~diys
ssalppe”di
pirjusip
je"pajepdn
Je"pajeasd

snjejs

Xe} Ypm~[ejoy wisy
Xe} yym-|ejo} jonpoud
Ayuenb
KioBajes jonpoid
aweu~jonpoud
piTjonpoud

19 p1ald

wajapI0

ws}uspIO
wa}uepio
wajepio
wajeplo
wsajuspIO
wajepio
wajuspIO
wajuepio
wa}epio
wajuspIO
wsajuspIO
wajuepio
wajepio
wsajuspIO
wsjuspIO
wajepio

300lq0

Beevo Business Intelligence Data Contract - part 2

Figure A.7

115

Appendix VI - Kibana’s data analysis on Clients data

Metrics

1 field (1 exists in documents) Sample all ~ documents per shard from a total of 23889 documents @

#document coul

700
0
0
0
1 1

0

00 35500 14:05:00

13

5:00

Calculated over all documents

Fields
25 fields (25 exist in documents) Allfield types Q
[Baddres taddress_1.keyword [Baddres taddres: ey W
examples [21,025 documents (88.01%) examples [20,901 decuments (87.49%)
Avenida Pedro Aares Cabral, 5, 4%Esq 0162 distinct values Lorgo de Sao Sebastinn 0 © 2921 distinct values
Largo Hintze Ribeiro , n°2, 1°Dt top values Praceta Dr. Clementino de Brito Pin top values
Calle Manuel de Falla 32, 6°4 rua das piscina| 0.9% Guadiaro 50 5 izquierda I 055%
Calle Severa Ochoa n°4 5° CI R BARTOLOME 0.2% 312 rua das piscina: 0.3%
Largo de Sao Sebastiao 10 Rua <01% Carrer el Xiprer 18 1 <01%
Rua Anténio Nobre n25 A teste <01% La Lomada, Calle Cascante 12 Escalera 2 sotal <01%
avenida fermandez latorre n53 /10 derecha Rua Sao Miguel <01% Praceta Jodo Anastacio Rosa N1 28 Lisboa <01%
paseo del parque 100, sotogrande asd <01% rua das piscinas 28 <01%
Travessa de Séo Jorge 52 Rua Dugue Salc <01% Cee D <01%
2, rue Président Carmot Rua Carlos Mag <0.1% Caldas de Séo . <0.1%
Rua X <0.1% Centro Comerci <01%
dsadsa <0.1% Estoril <0.1%

Baddress_country taddress_country.keyword @birth_date

examples [20,843 documents (8767%) [12,063 documents (50.5%) examples
PT 24 distinct values earliest Jan 2 1900, 23:23:15.000 Braga
ES top values latest Jul 5 2020, 01:00:00000
® PT I 519%
DE ES I 35.2%
DK FRE 77%
sK DE| 16%
i Im| 11%
B GB| 0.7%
NL AT 0.4%
BE| 0.4%
NL| 03%
sK 0.2%

[49 documents (0.21%) examples [23,889 documents (100%) examples

£ 2 distinct values 002268471226 4584419086 1cb 46215 £ 24081 distinct values -
top values 0006d6bf-d4a0-4b71-98ad-395b0177d833 top values PT
[RS 0019c543-1e92-4dd4-a09c-4d1cElelel76 000368d30efd <01% ES
gragall 21% 006a95bc-7060-4044-8068-a5031bb32¢78 00038bb3-52¢ <01% AT
001dd91e-c606-4111-a292-ed1d7fd 28efd 0006d6bf-d4a <01% I
000d85fd-06b9-4cc2-9f1e-0402152663d3 00078fcc-598 <01% DE
00788ea5-b542-4014-ba74-286cef7eeBcd 000d85fd-06b <01% BE
000f79¢e-922a-4578-927¢-4f5bde316d4 000ef5f9-9762 <01% GB

006fc7a6-09d6-41ba-8df0-16318a38610 00079ee-922¢ <01%

007bdd9f-c0e0-4eab-968e-82cob3a4f274 00194c56385¢ <01%

0019¢543-1e9: <01%

001bd984ac88 <01%

Figure A.8: Kibana's data analysis on Clients data - part 1

116

tco keyword @created_at Rdistrict tdistrict. keyword

[14,761 documents (61.79%) [23,888 documents (100%) examples [48 documents (0.2%)
= 3 distinct values

S 23 distinct values earliest Jan 22 2018, 1:11:30.000 Braga
top values latest May 13 2020, 17:35:32000 MADRID top values
T I 55.6% I 93.8%
£s 34% Bragall 22%
] 5.7% MADRID| 21%
DE| 1.5%
| 0.9%
cB| 06%
AT| 0.4%
NL| 0.3%
BE| 0.3%
sk 0.2%

tgender.keyword [Rlocality

examples [5,265 documents (22.04%) [23,889 documents (100%) examples
s 5 distinct values values Rio de Mouro
sra top values true 0% Lisboa
dr s I 621% faise [N 00% Alcobendas
sra 23.2% Gijén
[| 10.9% Ericeira
drl 3.3% Matosinhos
dra| 0.6% La Corufia
san roque
Gondomar
LYON

tlocality.keyword Otimestamp @updated_at

[21,025 documents (88.01%) [23,889 documents (100%) [23,889 documents (100%) examples
£ 6043 distinct values earliest Aug 16 2020, 13:32:14.193 earliest Jan 23 2018, 14:48:04.000 2635-387
top values latest Aug 16 2020, 14:10:46.866 latest May 13 2020, 17:35:32000 1250-122
Lisboa [l 8.2% 28100
Porto | 3.9% 33208
Madrid | 1.9% 2655-438
Barcelona | 1% 4450-818
Braga| 0.8% 15006
Gijon | 0.8% 11310
isboa | 0.8% 4515-227
Matosinhos | 0.7% 59002
Bilbao 0.7%
Cascais | 0.7%

tzip.keyword

[21,025 documents (88.01%)
£ 11381 distinct values

top values

47703 0.4%
20800 | 0.4%
64600 0.3%
64200 0.3%
33203 0.3%
20018 0.3%
11100 0.3%
39300 0.2%
4770-333 0.2%
33000 0.2%

Figure A.9: Kibana's data analysis on Clients data - part 2

117

Appendix VII - Kibana’s data analysis on Products data

Metrics
Sample all v documents per shard from a total of 8860 documents @

3 fields (3 exist in documents)

(18,860 documents (100%) (18,860 documents (100%)
© 678 distinct values © 100 distinct values
min median max min median max
o 47192 43258 o o 303
w00
. distribution of values v top values v
o Displaying 0th - 90th percenes o I 52.8%
- 10 15%
- 2| 1.2%
h 3] 1.2%
o0 9| 0.9%
w 4] 0.9%
o0 | | ”" 6l 0.8%
. X I 71 0.8%
) o H| 0.8%
08171300 08190100 0 2l 06%
0 106695 2133899 3200845 426775

Calculated over all documents.

Fields

32 fields (32 exist in documents)

[Baggregator_id taggregator_id.keyword tattributes.color.keyword

examples (18,857 documents (99.97%) examples [18,095 documents (91.37%)
© 45 distinct vakes

Alfildtypes v~ Q

DPY8232412W 81260 distinct values light green

DPY8223000M top values bordeaux top values

DPY8223006M DPYS8768003 | 0.7% 526 526 I 30.5%

DPYS9768062M NDSS18ESPOIL | 06% dark blue 5041 10.5%

DPY8222401M NDSSIBSWTOC| 0.5% dark grey pink Il 72%

DPY8231407W NDFW18TSHO8 | 0.5% 505 508l 6.7%

DPY8221415M NDSS18TSH13! | 0.5% pink B | 56%

DPYSI768065W DPYS97680501| 0.4% 522 dark bive || 5%

DPYSS768084W DPYS8768101¥| 0.4% 508 5221 4.4%

NDSS19RVO3W DPYS8768004 | 0.4% 510 light green || 43%
DPYS8768006! | 0.4% red || 4.2%
DPYS87680071 0.4% 505] 26%

N Bouyab e

examples [) 4,676 documents (52.78%) examples [8,860 documents (100%)
Il S 56 distinct values 1 S 2distinct values
o top values 0 top values
!] 16.9% 1 52.4%
m sHll 15.5% omm 176%
s m 15.3%
sim X 1.2%
xxl xsll 8.9%
40 xll 3.9%
v mt] 3.3%
P onesize | 27%
xxs| 25%
a4 2.4%

examples [28,553 documents (322.27%) [8,860 documents (100%) [8,860 documents (100%)
["SALDOS"MULHER"BEACHWEAI B 57 distinct values earliest Jan 24 2018, 16:42:14000 values
["CLOTHN top values latest Mar 6 2020, 23:08:48.000 true 0%
['MEN";BOARDSHORTS', MEDIUM"] PROMOTIONS Il 13.3% false N 100%
['TEES & TANKS'/MEN",CLOTHING'] MEN [l 12.8%
["SALDOS"JACKETS & COATS"MEN"HOODIE.. CLOTHING Il 6.8%
"BIKINI BOTTOMS"'LIFES. MULHER Il 6.7%
"LIFESTYLE""WOMEN"] saLDos il 5.3%
EACHWEAR'SWIMSUITS'] WOMEN 51%
ROMOTIONS'] JUNIORT Lo
["'WOMEN'; SWIMWEAR"; PROMOTIONS'] FaTost 37%
T-SHIRTS & TO | 37%
HOODIES & SW] 3%

[8,823 documents (99.58%) examples [8,860 documents (100%)

value
DEEPLY © 1 distinct value TROPICALS SURF BIKINITOP © 1266 distinct values
top values PERSONAL TEE top values

DEEPLY I 100% HORIZON STRIPES VOLLEY SHORT] 2.8%

LINE UP T-SHIRT SHORTS VOLLE| 15%

BIARRITZ SWEAT HOODIE T-SHIRT TEE| 13%

WETSUIT MAN SMS 2/2 ZIPPERLESS SHORTS BOARI| 1.2%

MISSION TEE WETSUITMAN | 11%

SWIMSUIT SWIMSUIT SWEATSHRT S| 1%

PYRAMID CURVE BOARDSHORT BRIEF BIKINIB(| 0-0%
WETSUITMAN | 0.9%
TOP BIKINI TOI| 0.8%
WETSUITMAN | 0.8%

Figure A.10: Kibana's data analysis on Products data - part 1

118

examples [8,860 documents (100%) examples [8,860 documents (100%)
o £ 69 distinct values o S 1546 distinct values
1004 top values 2559807 1-bdc5-42a4-af2e-3decacbadc3t top values
1002 o I 50.5% 3085ba20-0262-4728-blce-3db3796 e2be o 20.8%
7 1] 5.3% 43bf1951-ed2a-4393-8a8f-5d0e561b3577 23362408-087 0.3%
2 il a% 7a713205-3789-4200-84fd-0c1f95a57dbf acalfe55-0360 0.2%
1000 121 37% cldlcde3-beel-4876-b826-BcbfaZdi7ed5 59c0b2fd-d2ac 0.2%
5 1002 36% c8047bda-479d-4be0-be00-0901747e5c89 59c07f9e-d2ac 0%
1480 71 29% 58edadda-18f4-4062-9fa3-4814bdd8e601 59¢7d82a-d2ac 0.1%
35 21 28% c18dcbdi-36de-459d-a733-e486d2d72694 59ced1ld-dzac 0.1%
tooa] 22% 0c235d96-aef6-4464-0341-181347e7bb76 S9cedSte-d2a 0%
1000] 14% 58ceda70-d2a 01%
20| 11% 0509603-694 0.1%

[Bparent_published tparent_published.keyword roduct_id.keyword

[8,859 documents (99.99%) examples [&,860 documents (100%)

examples
s S 2 distinct values 17436715-0467-4a17-0386-F3880 Acidb2f € 8876 distinct values
1 top values 768c7c9a-1cdb-48d3-a452-784cT59f0aze top values
o I s6.% 6e5¢5609-fdba-4edf-bb78-f7a0alc8ech9 0010c94c-76b1 <0.1%
T] 13.9% 9433¢551-eBef-4ddf-a3b0-aa85790f4dce 0035403-c76¢ <01%
904b0al9-of7-469¢-9c53-8fee6 047113 0072398¢-98a <0.1%
6928d759-9a89-428e-alad-bebaed8169ad 0086cd5a-elel <0.1%
859cd1c5-f75¢-4604-929e-c44886€21cte 00952022-9bd <0.1%
90b7e91e-9277-4b6-933f-797862eal6a8 00ab4cea-dOa <0.1%
9893¢369-4540-4352-b810-57680e5daabd 00d9c688-04% <01%
003f5403-c761-44b7-9632-30286054093 00e6bBES-057 < 01%
002b5¢2-f9f9 <0.1%
013d953¢c-065 <0.1%

Bpubishe e TR

value [8,860 documents (100%) examples [8,860 documents (100%)
s S 2 distinct values DPYB232412W © 8821 distinct values
top values DPY8223000M top values
o I 77.9% DPY8223006M <0.1%
1 221% DPYS9768062M 123456789 <0.1%
DPY8222401M 4062164 <0.1%
DPY8231407W 4062165 <0.1%
DPY8221415M 4062169 <0.1%
DPYS9768085W 4412599 <0.1%
DPYS9768064W 5253600 <0.1%
6750079 5403600 <0.1%
5412922 <0.1%
5414993 <0.1%

value ™ 8,860 documents (100%) [8,860 documents (100%) [8,860 documents (100%)
1 £ 2 distinct values earliest Aug 17 2020, 04:07:56.961 earliest Sep 12 2018, 10:56:33.000
top values latest Aug 21 2020, 16:09:56.135 Iatest Mar 10 2020, 17:35:52.000
1 I ©©.6
0 0.2%

Figure A.11: Kibana's data analysis on Products data - part 2

119

Appendix VIII - Kibana's data analysis on Order-items data

Metrics
Sample all v documents per shard from a total of 37148 documents @

5 fields (5 exist in documents)

(12,963 documents (7.98%) () 37148 documents (100%) [} 37148 documents (100%)
& 30 distinct values € 267 distinct values S 219 distinct values
min median max min median max min median max
1 2 93 0 98.926 840 0 9875 453
top values M distribution of values distribution of values
2 - 30.9% DisplayingOth - 95th percenties. DisplayingOth - 95th percentiles
0 4 16%
1 14.4%
sl 79%
o 3l 4.4%
sl 4.4%
. 0] 24%
o 5l 14%
T T T 71 1%
08170100 08181300 08200100 ol 08%

Cakculated over ll documents

[37,148 documents (100%)
& 1 distinct vales
min median max
1 1 22

top values v

1 I 05 .7%
2| 11%

3 01%

<01%
<01%
<01%
<01%
<01%
<01%
<01%

Bowwooas

Fields

31 fields (31 exist in documents)

examples [37148 documents (100%) [37148 documents (100%) examples
13241 distinct values earliest Jan 18 2018, 17:21:59.000 62.48.253.206

Alfeldtypes v~ Q

98c48b91ab22de64117afd fd6labad9d

240086249b6718a8518c49d cfea34c52 top values latest May 13 2020, 17:35:32000 946183233
BSOLUS BSOLUS | 1% 2120161140
ced53fb67fedad320015a578acaca23 5875757d-84bi| 0.5% 7754231173
4021353 9 I 0.4% 2120161222
669fdadda3dfado9n: | 0.4% 86.176.100.201
de8582b0d64f1c38952d3713545¢8780 €6848134-d47:| 0.3% 2120161141
8fc433007e1a70d02f00e779b52fdfch b36ed693-14d 0.3% 46.218.98.58
0079¢6022720d09fc25¢732b75(7b84 95204132-166¢ 0.3% 37713818
166¢16219020470988350631a337177 db305b9G-f3e 02% 8310254151
dfe205e48104(0.2%
13700177-b2c1 0.2%

[37,148 documents (100%) value [26,854 documents (72.29%) examples

S 11034 distinct values DEEPLY S 2distinct values 27

top values top values 2

[} 29.3% DeEePLY I 0% 3

62.28.131.165 [l 73% oPY| 1% 2%

62.48.253.206 | 3.3% 15

2120.161.141] 17% 23

212.0.161.222| 0.5% 19

832153109 0.2% 7

9461.83.233 01% 51

185.153.150.22 0.1% 19
176.141.126.42 0.1%
81.39.10.162 0.1%

torder_id.keyword [Rorder_item_id torder_item_id.keyword [Bproduct_attributes.color

[37148 documents (100%) examples [37,148 documents (100%) examples
25085 distinct values 2 & 37578 distinct values ght green
top values 7 top values dark green
31492 0.2% 4 1 <01% red
31496 01% 19 10 <01% 526
27669 01% 1a 100 <01% arey
33385 <01% 13 1000 <01% fight red
25444 <01% 2 10000 <01% dark grey
25515 <01% 18 10001 <01% surf blue.
26422 <01% 1 10002 <01% 508
23677 <01% 15 10003 <01% 52
34702 <01% 10004 <01%
23678 <01% 10005 <01%

Figure A.12: Kibana's data analysis on Order-items data - part 1

120

tproduct_attributes.color.key... [Bproduct_attributes.size tproduct_attributes.size. key... [Bproduct_category

[37,140 documents (99.98%)
£ 40 distinct values

top values

526 [47.8%
areyll 81%
504l 7.2%

dark grey I 3.8%
508 3.7%

red | 3.7%

dark blue | 3.3%
s10] 27%

522] 2.3%

navy blue |

2.2%

examples

XS
ms

[37,120 documents (99.92%)
88 distinct values

top values
m - 25%
] 14.4%
sl 14.3%
mt [l 8%
msll 7.3%
one size [l 56%
xsll 5.3%
il 47%
xxs| 1.2%
0] 11%

examples
FATOS
SURF

FOR MEN

[37,148 documents (100%)
= 38 distinct values

top values
sALDOS I

MEN I

|
FATOS Il
43MM I
SURF ACCESSC]
HOODIES & SW]
BODYBOARD |
TEES & TANKS |
CLOTHING

31.2%
21.4%
20.5%

3.8%
3.2%
2.4%
2.3%
2.3%
2.3%

examples
59ca8615-d2ac-11e8-8520-bca7105b9829
59c9b38d-d2ac-11e8-852b-bca7105b98ed
59cad2b2-d2ac-11e8-852b-bca7105b98e9
59c9b5ca-d2ac-11e8-852b-bca7105b98e9
59c971ae-d2ac-11e8-852b-bca7105098e9
59c8a238-d2ac-11e8-852b-bca7105b98e9
59c9b0ee-d2ac-11e8-852b-bca7105b98e9
59¢c6775-d2ac-11e8-852b-bca7105b98e9
59ca0847-d2ac-11e8-852b-bca7105b98e9
59c82ced-d2ac-11e8-852b-bca7105b98e9

[37,148 documents (100%)
B 2953 distinct values

top values
59cfddb3-d2a 0.9%
€7d894db-530 | 0.8%
59cb7497-d2al| 06%
59c0b38d-d2al 0.5%
59cc81f-d2ac | 0.5%
187db56-e3e5] 0.5%
59d08be9-d2al 0.5%
59ca80e2-d2ar| 0.4%
30daf244-55f1 | 0.4%
50cb5a65-d2a | 0.4%

examples
WETSUIT WOMAN CRYSTAL CAPSULE MM LA..
WETSUIT MAN COMPETITION 4/3 ZIPPERLESS
WETSUIT WOMAN COMPETITION 3/2 ZIPPERLE...
WETSUIT WOMAN PERFORMANCE 3/2 CHEST ZIP
WETSUIT WOMAN PERFORMANCE 4/3 CHEST ZIP
SURF BOOTS 3MM
WETSUIT MAN COMPETITION 3/2 ZIPPERLESS
WETSUIT SHORTS IMM
WETSUIT MAN COMPETITION 4/3 ZIPPERLESS ...
'WETSUIT MAN COMPETITION 5/3 ZIPPERLESS

tproduct_name.keyword [Rship_city tship_city.keyword [Bship_country

[37,148 documents (100%)
S 673 distinct values

top values
WETSUIT MAN I
WETSUIT MAN I
WETSUIT MAN I
WETSUIT MAN |
WETSUIT WOM ||
WETSUIT MAN |
WETSUIT MAN |
SWEATSHIRT S |
WETSUIT MAN |
WETSUIT MAN |

57%
5.4%
4.7%

2.9%
2.7%
26%
2.4%
2.2%

examples

Cidade
Braga

[37,148 documents (100%)
S 684 distinct values

top values
I 04.4%
Cidade 0.2%
Paris 0.2%
Berlin 01%
Salzburg 0.1%
Bordeaux <04%
Miinchen <01%
Anglet <01%
Biarritz <0.1%
Kiel <01%

examples

PT

T

GB
FR
ESI
ES
NL
HU

tship_country.keyword [Bship_locality tship_locality.keyword

[37148 documents (100%)
B 31 distinct values

top values
Ly
£s .
FRIN
DE|
IT|
AT
NL|
cB|
PR
Esl|

tsta eyw

[37,148 documents (100%.
13 distinct values

top values
SHIPPED [
CANCELED [N
cLoseD|l
oPEN]
CONFIRMED |
PENDING |
CANCELED/REF|
SCHEDULED
CANCELED: OR
CANCELED/REF

42.4%

)

61.2%
28.6%
3.5%
2.9%
2.3%
0.7%
0.5%
0.1%
0.1%
<01%

examples
Braga
Parto
Localidade
perto
PORTO
de
matosinhos
LONDON
Villeurbanne
LYON

Otimestamp @updated_at

[37.148 documents {100%)
earliest Aug 16 2020, 14:10:48.414
latest Aug 20 2020, 19:20:55.373

[37,148 documents (100%)
B 4478 distinct values

top values

Lisboa [l 75%
Porto I 4.4%

Madrid | 2%
Braga| 1.4%
Cartaxo] 1.4%
cartaxo| 1.2%
Barcelona | 11%
le havre | 0.9%
Bilbao| 0.9%
Vila Nova de Ge| 0.8%

[37,148 documents (100%)
earliest Jan 24 2018, 17:49:59.000
latest May 13 2020, 17:35:34.000

examples
CANCELED
SHIPPED
CANCELED/REFUNDED AT COSTUMER'S REQUE...

Figure A.13: Kibana's data analysis on Order-items data - part 2

121

Appendix IX - Kibana’s Business Intelligence Dashboards

KoL @~ Nov 6, 2018 @ 12:10:02171 > now

@ +Addfiter

[DEEPLY] Intro [DEEPLY] Filters
: Manufacturer Category
DEEPLY Business Intelligence Dashboards
DEEPLY x oV Select v
This dashboard contains information about the DEEPLY platform, obtained through the
Recommendation System developed by BEEVO. You can view it, search it, and interact with
the visualizations. For more information, please check our docs. Price sold . Quantity
g | C O " - s
- 840 - T 1 "
[DEEPLY] Average spend by Country -Map Country product Color
(] lec v Select -
) 1ceLAND
o [DEEPLY] Average quantity per order
®0-1
Moscow -2
Mockea ®2-3
KAZAKHS!
. DS ALY “BULGARIA
Y- N = vagosn Overall Average of items
SEAIN - ') o TURKEY T <
3 SvRIA .
TUNISIA AFGHANI
er order
MOROCCO . TRAN " "
- Overall Average of total spend per order
usA || ©6-119
@ 119-232
MAURITANIA 232345
W | MIGER @ 245 458 Overall A f it
SRS L CHAD /| gupan verall Average of items
iapTies, Elash Made wih NaturalE arh
[DEEPLY] Total Orders by Country - Map [DEEPLY] Average spend per order
®0-75
©
ICELAND 75-150
e n @is0-225
a NORWA,
— (S
LATVIA Moscow
VWITED DENHIC o
KINGDCIM BELARUS
& g CERMARY
UKRAINE
e, 169.986
FRANCE . ~ XOMANIA per order
A [IALY CAEULGARIA
S GEORGIA UzBEKISTA
= GHETE . TURKEY LY
TUNISIA SYRIA Y =
MoROCCO ISRAEL . Totalnumber oforders 11
ALGERTA ©1-268725
LIBYA | EGYPT SAV@ 2 6872553735
©5.3735-8050.75
MAURITANIA @8,059.75-10,746
NIGER /... e TVERIEN Overall Average of total spend
i Waturate arin
[DEEPLY] Total Orders by Country - Bars
@ Unique count of orde.
= 10000
H
H
g
£ 5000
€ o0
5
s
£ 4000
8
H
2 2000
5
N ——— J—
L g & 0w b ®m g & @ 2 & x 8 % w z 2 3 & 2 § & N =T & ® 2 w w o g
E 8 ¥ 8 = 8 & & g 2 # ¥ # ¥ ¢ 3 % 2 2 2 § £ T 5 F 2 @ 4 9 &

ship_country. keyword: Descending

[DEEPLY] Client Genders [DEEPLY] Sales by Category
osr @SURF @FATOS ® FORMEN @MEN @LIFESTYLE @ @FOR WOMEN ® T-SHIRTS & TOPS @ BIKINI TOPS.
LES @ SHORTS & PANTS @ SALDOS @ FOOTWEAR & ACCE.. @WOMEN @ NEW N @BOARDSHORTS ® CYBER MONDAY
. @ JACKETS & COATS @ HOODIES & SWEATS @ PROMOTIONS @ TEES & TANKS @ ACCESSORIES @ POOL

Sum of quantity

(1088%) ‘ ®dr @NEW ARRIVALS @ Uncategorized @ JUNIOR @RASHVESTS &RASH.. ®4/3MM @ BODYBOARD @ 3/2MM
®da @Hidden ® MULHER ®5/3 MM @ CLOTHING @1MM @ LONGBOARD @ SURF ACGESSORIES
3000
sra (2315%) 3
2000
sr (62.00%)
1000

2018-04-01 2018-07-01 2018-10-01 20190101 2018-04-01 2018-07-01 2019-10-01 2020-01-01 2020-04-01
created_at per week

Figure A.14: Kibana's Business Intelligence Dashboards - part 1

122

[DEEPLY] Sold Products per Week [DEEPLY] Total Revenue

Trxns / week 3'8§m.9ven'e
38

-

[DEEPLY] Top Selling Products
WETSUIT WOMAN PERFORMANCE 4/3 CHEST ZIP SUIT MAN PURE 4/3 C
WETSUIT MAN PERFORMANCE 5/3 CHESTZIP. WETSUIT MAN PERFORMANCE 3/2 ZIPPERLESS
WETSUIT MAN PERFORMANCE 4/3 ZIPPERLESS
WETSUIT MAN COMPETITION 4/3 ZIPPERLESS
product_name.keyword: Descending - Count
[DEEPLY] Promotion Tracking

018-12-01 002 019-04 019-06-01 2019-08-01 201p-10-01 0
* * per7daysk k k Ak
~ @ RevenueMen0 e RevenueWelsuits O @ Revenue Surf Accessories O @ Revenue Clothing O

[DEEPLY] Clients

1-500f23889 < > [
Time + _source

Aug 16, 2020 @ 14:10:46.866 created_at: Feb O,

updated_at: Feb, client id: birth_date: Jun 13, gender: st isNew: false
country: ES address_country: ES address.: Calle Miguel Labordeta 9 8E address_2: city: - zip: 50017 locality: Zaragoza district: - timestamp: Aug 16, 2020 @ 14:10:46.866 _id: 155ad8ct-
2485-4a71-89e9-08111e944203 _type: _doc _index: deeply_clients _score: -

Aug 16,2020 @ 14:10:46.783 created_at: Feb 16,

Updated_at: Feb 16, client id: birth_date: Feb 16, gender: sra isNew: false
country: ES address_country: ES address.: 21 carrer buenos aires address.2: city: - zip: 08029 locality: barcelona district: - timestamp: Aug 16, 2020 @ 14:10:46.783 _id: 0a00f9f-1c58-4d05-9dda-
5eba0b48046d type: _doc _index: deeply_clients _score: -

Aug 16, 2020 @ 14:10:46.704 created_at: Dec 15, 2019 @ 21:46:36.000 updated_at: Dec 15, client_id: birth_date: Dec 15, gender: sra isNew: false
country: ES address_country: ES address.: Juan Fiérez 104 B] address.2: city: - zip: 15005 localty: La Coruia district: - timestamp: Aug 16, 2020 @ 14:10:46.704 _id: 954a99ca-0a7e-4965

2491-2c958762607 _type: _doc _index: deeply_clients _score: -

> Aug 16,2020 @ 141046811 created at: Jun 30, 2019 @ 1724:06.000 pdated_at Jun 30,2019 @ 17:24:06.000 clent i birth.date: Moy 1, gender: s istew flse
[DEEPLY] Order-items
500f37148 < > g
Time _source

Aug 20,2020 @ 19:20:55.373 order_item_id: 28729 order_id: 28764 product_id: 59cfddb3-d2ac-11e8-852b-bca71056989 quantity: 1 product attributes.size: one size product attributes.color: 526 product total_ with tax: 28

item_total_with_tax: 28 created_at: Nov 28, 2019 @ 22:46:38.000 updated_at: Nov 30, 2019 @ 17:55:03.000 product_name: 2MM FASTDRY SURF HOODS manufacturer: DEEPLY product_category: SURF
ACCESSORIES status: SHIPPED client id: c7531769-2028-47e7-97da-4c322423d439 ip_address: ~ship_city: ~ ship_Jocality: Fano ship_country: T hits_count: - timestamp: Aug 20, 2020 @ 19:20:55.373
_id: 28729 _type: _doc _index: deeply_order-items _score: -

Aug 20,2020 @ 192054860 order_item_id: 28730 order_id: 28764 product d: es- quantity: 1 product 42143 product 526 product_totalwith tax: 245

tem_total_with_tax: 24.5 created_at: Nov 23, 2010 @ 22:46:38.000 updated_at: Nov 30, 2019 @ 17:55:04.000 product_name: BOTINS SURF 3MM SURF BOOTS manufacturer: - product_category: SURF
ACCESSORIES status: SHIPPED client d: c7531769-2428- 47e7-970a-4c324234439 Ip_address: ship_city: ~ship_locaity: Fano ship_country: IT hits_count: - timestamp: Aug 20, 2020 @ 19:20:54 860
_id: 28730 _type: _doc index: deeply_order-tems _score: -

> Aug 20,2020 @19:20:54330 order_item_id: 28731 order_id: 28764 product.id: -11e8-8520-! quantity: 1 product m product 526 product total_with_tax: 20.3
tem total with tax: 203 created at: Nov 28, 2019 @ 22:46:39.000 udated at: Nov 30. 2019 @ 17:55:04.000 broduct name: SURF GLOVES 2MM manufacturer: - broduct catedory: SURF ACCESSOREES
[DEEPLY] Products.
1-500f 8860 < > [
Time + source

Aug 21,2020 @ 16:09:56135 product_id: 75d959da-ef72-4542-8571-677506880€1e parent_id: O name: sku: DPY6253302W aggregator_id: DPY6253302W stock: 0 ordering: O hits: O published: O status: 1 buyable: 1

crested_at: Jun 13,2019 @ 19:11:09.000 updated_at: Jul 5, 2019 @ T1:45:55.000 parent_published: 0 manufacturer: DEEPLY has_discount: faise categories: FOOTWEAR & ACCESSORIES, HATS & CAPS,
PROMOTIONS attrbutes: ~ timestamp: Aug 21,2020 @ 16:0956.135 _id: 7509590a-ef72-4542-8571-677506889efe _type: _doc _index: deeply_products _score: -

Aug 21,2020 @ 160923822 product id:

parent id: name: sku: 6616684 aggregator_id: DPY81243558M stock: 0
ordering: 7 hits: O published: O status: 1 buyable: 1 created_at: Nov 30, updated_at: Jul 4, parent_published: 0 manufacturer: DEEPLY has_discount: false
categories: MEN attributes.color: 526 timestamp: Aug 21, 2020 @ 16:09:23822 _id: 75deadd2-3c55-4ded-acB9-0aB0676edOe5 _ty

doc _index: deeply._products _score: -

Aug 21,2020 @ 16:0908925 product id: 75efd3dd-7806-47c0-bkdb-06dIBCACASCS parent id: O name: sk NOWIBSCKOIUX aggregatorid: NOWIBSCKOIUX stock: O ordering: O hits: O published: 0 status: 1 buyable: 1
created_at: Jun 26,2019 @ 20:27:36.000 updated_at: Jul 5, 2019 @ 12:06:46.000 parent_published: 0 manufacturer: DEEPLY has_discount: false categories: ACCESSORIES, SOCKS, LIFESTYLE
attributes.color: 526 attributes.size: 43-46 timestamp: Aug 21,2020 @ 16:09:08.925 _id: 75efd3dd-78c6-47c0-bddb-06d18c8cd5¢5 _type: _doc _index: deeply_products _score: -

Figure A.15: Kibana's Business Intelligence Dashboards - part 2

123

