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Microestrutura da substância branca em adolescentes diagnosticados com Perturbação do 

Espectro do Autismo de alto funcionamento: uma análise de Tract-Based Spatial Statistics 

 

 

 

Resumo 

 

A Perturbação do Espectro do Autismo (PEA), apesar de ser uma perturbação que 

afeta cerca de 1% da população mundial, tem a sua origem e funcionamento interno 

envolvidos em mistério, e o seu diagnóstico depende de critérios comportamentais e de 

interação social. Utilizando Diffusion Tensor Imaging (DTI), um método promissor de 

ressonância magnética (MRI) capaz de reconstruir imagens in vivo de tecidos biológicos, 

como os axônios neurais, e Tract-Based Spatial Statistics (TBSS), realizamos uma análise dos 

tratos da substância branca (TSB) para procurar possíveis alterações da mielina na PEA. A 

nossa amostra foi composta por 6 participantes, adolescentes, com PEA de alto 

funcionamento, e com 6 controles, com desenvolvimento típico, da mesma idade. Apesar de 

a literatura apontar para a existência de alterações nos TSB, possivelmente causadas por 

anomalias de crescimento da mielina, não foram encontradas diferenças estatisticamente 

significativas neste estudo. Nós ponderamos o efeito de vários fatores, incluindo o tamanho 

da amostra, variáveis individuais (especificamente idade), metodologia estatística ou/e viés 

de publicação, como causas para a discrepância dos resultados não significativos. No 

entanto, esta análise contribuiu para uma maior compreensão das possíveis alterações nos 

TSB no TEA e deixou sugestões para futuras pesquisas neste campo. 

 

 

 

Palavras-chave: perturbação do espectro do autismo, diffusion tensor imaging, mielina, 

tratos da substância branca, tract-based spatial statistics. 
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White matter microstructure in adolescents diagnosed with highly functioning autism 

spectrum disorder: A Tract-Based Spatial Statistics analysis 

 

 

 

Summary 

 

Autism spectrum disorder (ASD), despite being a disorder affecting around 1% of the 

global population, has its origin and inner workings shrouded in mystery, and its diagnosis 

relies on behaviour and social interaction criteria. Using diffusion tensor imaging (DTI), a 

promising magnetic resonance imaging (MRI) method capable of reconstructing images of in 

vivo biological tissues, such as the neural axons, and tract-based spatial statistics (TBSS), we 

carried out an analysis on the white matter tracts (WMT) to search for possible myelin 

alterations in ASD. Our sample was composed by 6 high functioning late teenage ASD 

participants with 6 age-matched typically developing controls. Despite the literature pointing 

to the existence of WMT alterations possibly caused by myelin growth anomalies, no 

statistically significant differences were found in this study. We weighted the effect of 

various factors, including the sample size, individual variables (specifically age), statistical 

methodology, or/and publication bias as causes for the discrepant non-significant results. 

Nonetheless, this analysis contributed to the further understanding of possible WMT 

alterations in ASD and left suggestions for future research in this field. 

 

 

 

 

Key-words: autism spectrum disorder, diffusion tensor imaging, myelin, white matter tracts, 

tract-based spatial statistics. 
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Introduction 

 

Autism spectrum disorder is currently defined as a spectrum composed primarily of 

two core features, as reported in the Diagnostic and Statistical Manual of Mental Disorders 

(5th ed.; DSM–5; American Psychiatric Association, 2013), “Persistent deficits in social 

communication and social interaction across multiple contexts” and “Restricted, repetitive 

patterns of behaviour, interests, or activities” with the existence of subtypes such as 

Asperger’s disorder and pervasive developmental disorder not otherwise specified. Due to the 

fact that there are no reliable biomarkers, the diagnosis of ASD must be made based on these 

behavioural symptoms, which usually manifest themselves in the early developmental period. 

In a recently updated systematic review (Zeidan et al., 2022), commissioned by the World 

Health Organization (WHO), it was estimated that the global prevalence of ASD was about 1%, 

with sample sizes of the studies considered ranging from 465 to 50 million participants, and 

the prevalence was found ranging from 1.09/10,000 to 436/10,000, with a median prevalence 

of 100/10,000, based on the different populations of the studies. The median male-to-female 

ASD prevalence ratio was 4.2. 

Due to the relatively high prevalence of this disorder, the scientific community 

developed an effort to try to discover the origin and the underlying mechanisms of ASD, with 

various studies being conducted in distinct, although interconnected fields of research, 

including genetics, animal models, neurobiology, neuroimmunopathogenesis, and 

neurosience. The results of these varied works point to abnormal development of the ASD 

brain and possible disruptions of the neuronal connectivity, with each field arriving at these 

conclusions using distinct methods that we are going to describe with more detail.  

One of the first studies in the field that tried to quantify developmental abnormalities 

in cerebral and cerebellar volume in ASD was conducted by Courchesne et al., in 2001 using a 

longitudinal varied sample of 60 autistic and 52 typically developing boys, ages from 2 to 16 

years old. This study has a peculiarity rarely seen on ASD studies since, as of the 15 ASD boys 

with ages comprised between 2- and 5-year-olds, they had access to the neonatal head 

circumferences from clinical records of 14 of them, that indicated a typical overall brain 

volume at birth. However, by ages 2 to 4 years, 90% of the boys with ASD had a brain volume 

larger than the normal average, including more cerebral (18%) and cerebellar (39%) white 

matter, and more cerebral cortical grey matter (12%). This was opposed to volumes of older 
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ASD children and adolescents that did not have such enlarged grey and white matter volumes, 

the contrary in fact, leading to the conclusion of abnormal regulation of brain growth in ASD 

resulting in early overgrowth followed by abnormally slowed growth. 

This was demonstrated in a post-mortem human brain tissue study conducted by 

Zikopoulos and Barbas (2010) into single axons and their ultrastructure in the white matter. 

The authors found various alterations in the structure and connectivity in the brain, including 

a decrease in myelin thickness, an overexpression of growth-associated proteins ), with a 

decrease in axons that communicate over long distances and an excessive number of thin 

axons that link neighbouring areas. These alterations led them to conclude that “this 

connectivity bias may help explain why individuals with autism do not adequately shift 

attention when necessary, and engage in repetitive and inflexible behavior” (p. 12) 

Catani et al., (2015) also found similar patterns of brain growth abnormalities in a 

sample composed of 61 adult males ASD and 61 neurotypical controls. Their study found 

evidence of abnormal connectivity of the frontal lobes, for example in the anterior portions of 

the corpus callosum connecting the left and right frontal lobes, and various regional 

differences and microstructural alterations in brain anatomy, further correlated with specific 

aspects of ASD symptoms (eg.“ASD subjects with severely impaired reciprocal conversation in 

childhood had a significantly lower number of streamlines in the anterior segment of the 

arcuate fasciculus compared to ASD subjects with moderate symptoms” (p.6)), that led to the 

conclusion that “male adults with ASD have regional differences in brain anatomy, (..). We also 

found that ASD was associated with specific structural abnormalities of white matter fibres, 

compatible with the concept of autism being associated with atypical developmental 

connectivity of the frontal lobes.” (p.12). 

A more recent review by Galvez-Contreras et al. (2020) also explored the alterations in 

the abnormal development of brain regions in the autistic population and possible disruptions 

in the neuronal connectivity associated with neural alterations. Their findings led them to 

conclude that “patients with ASD show an aberrant growth pattern in several white-matter 

regions that varies throughout life. During the first 15 years of life, axon tracts in the arcuate 

fasciculus, occipitofrontal fasciculus, and external capsule show a significant hypomyelination, 

whereas the fusiform gyrus and hippocampal area show a substantial increase in their myelin 

volume (…). In both cases, these alterations tend to normalize throughout development. 
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Intriguingly, other brain regions such as cerebellum, cingulum, and internal capsule remain 

hypomyelinated” (p.8). 

An attempt to utilize these, and other studies, that suggested that brain volume 

overgrowth is a possible factor in the emergence and severity of autistic social deficits was 

conducted by Hazlett et al., in 2017 with promising results. Utilizing a magnetic resonance 

imaging (MRI) deep-learning algorithm that used surface area information (specifically the 

growth rate of the total brain volume of 6–12-month-old high-risk children) they were able to 

predict the diagnosis of autism at 24 months, with a positive predictive value of 81% and a 

sensitivity of 88%. Their analysis of the data correlated the hyperexpansion of cortical surface 

areas to subsequent brain overgrowth, which, in turn, was linked to the emergence of social 

deficits. Although they didn’t conclude if these were the causes or the consequences of the 

emergence of autism, they provided, what themselves called, “a proof of principle that early 

prodromal detection using a brain biomarker may be possible” (p.4). 

Different efforts to discover such a brain biomarker, or other helpful evidence that 

could lead to an earlier ASD diagnostic, had already been researched in a series of studies 

published from 2011 to 2016 in the area of genetics, with positive, but mixed, results that 

deserve a mention. 

Firstly, Ozonoff et al., (2011) published a longitudinal study of infants at risk for ASD by 

following 664 infants with an older biological sibling with an ASD diagnostic. These infants 

were monitored from the earliest age possible until they reached the 36 months mark. At this 

age mark, they were, if not before, evaluated and classified as having or not ASD. Of these 664 

infants, 132 (18.7%) were consequently diagnosed with ASD. The significant predictors of the 

diagnosis were the gender and the existence of one or more older siblings diagnosed with 

ASD, with a threefold increase in risk for male subjects and an additional twofold increase if 

more than one sibling was autistic. 

In 2014 Sandin et al., utilized a population-based cohort spanning 24 years, including   

2 049 973 Swedish children, 37 570 of which twin pairs, 2 642 064 full sibling pairs, 432 281 

maternal and 445 531 paternal half-sibling pairs, and 5 799 875 cousin pairs with whom they 

tried to measure the relative recurrence risk (RRR) of autism in a participant with a sibling or 

cousin who has an ASD diagnostic vs no diagnostic. The results reported a probability of an 

ASD diagnosis of 59.2% for monozygotic twins, 12.9% for dizygotic twins, 8.6% for maternal 

half-siblings, and 6.8% for paternal half-siblings, and 2.6% for cousins expressing a marked 
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genetic predisposition for autism, leading to the conclusion that “the individual risk of ASD 

and autistic disorder increased with increasing genetic relatedness. Heritability of ASD and 

autistic disorder were estimated to be approximately 50%”. 

Tick et al., (2016) conducted a systematic review and meta-analysis that identified all 

twin studies on ASD to the date in order to explores the ethology of the spectrum through 

these lenses. Of the thirteen eligible studies gathered, only seven meet the Systematic 

Recruitment criterion. The meta-analysis of these studies concluded that the correlations for 

monozygotic twins was almost perfect, .98, while dizygotic twins had a significantly lower 

correlation of .53, thus remarking that “we demonstrated that the ethology of ASD in a 

combined sample is more consistent with strong genetic influences” (p. 9). 

While this is strong evidence of the genetic component of autism, the values varied 

significantly between studies and posed limited practical benefits to the inner workings of this 

spectrum, as no specific gene or genome was pointed out as a possible origin of autism. Yet 

researchers were able to use these findings to support a new avenue of research, utilizing 

animal modelling. 

One such animal model study was conducted by Khanbabaei et al. (2019), where they 

investigated the myelin development in a model of idiopathic ASD, the BTBR mice. Using MRI 

they found increased volume in the frontal fibber tracts of the BTBR mice´s brain in the 

postnatal period that was consequently reduced over time, (similar to the findings in young 

patients of Courchesne et al. (2001). High levels of myelin basic protein were also found in the 

young mice; however, the myelin pattern was unaltered in adult BTBR mice. 

In a most recent study by Phan et al. (2020), brain transcriptional changes were 

analysed in five mouse models of Pitt–Hopkins syndrome (PTHS), a syndromic form of ASD 

caused by mutations in the TCF4 gene. Analyses of differentially expressed genes of the PTHS 

mouse models showed oligodendrocyte (a type of neuroglia whose main functions are to 

provide support and insulation to axons) dysregulation, namely cell-autonomous reductions 

in the oligodendrocyte numbers and myelination. This study also compared the mouse model 

differentially expressed genes with human idiopathic ASD post-mortem brain RNA-sequencing 

data, where significant enrichment of overlapping of the differentially expressed genes and 

common myelination-associated pathways were found, the implication being that disruptions 

in oligodendrocyte biology are a cellular mechanism in ASD pathology. 
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One last study in animal models worth mentioning was led by van Tilborg et al. (2017). 

These authors attempted to create autism-like behaviour in a rat model by combining fetal 

inflammation and postnatal hypoxia to cause myelin deficits and diffuse white matter injuries. 

While they only achieved success when both conditions were present (fetal inflammation and 

postnatal hypoxia) this led to the observation of “signs of autism-like behavior, i.e., repetitive 

self-grooming and a reduction in social play behavior” (p.10-11) and, similarly to Phan et al. 

(2020), delayed cortical myelination and long-term changes in the oligodendrocyte 

maturation.  Interestingly they observed that “social play behavior was affected in a more 

pronounced manner in male rats, compared with females (i.e., males showed attenuated 

pinning and pouncing, females showed reduced pouncing). This observation seems to reflect 

the clinical situation, where male gender is an important predictor for ASD in the preterm 

population” (p.12). This is an important study to keep in mind and correlate to the previous 

genetic studies because, while the latter predicted ASD in families, the former presents a 

possible explanation for the emergence in non-ASD-related environments.  

While these studies were all conducted on animal models, where experimental 

conditions can be manipulated and autism-like behavior mimicked, such manipulations 

cannot happen on human subjects, yet there exists an area of research able to analyse gene 

expression, cortical myelination, and oligodendrocyte maturation, 

neuroimmunopathogenesis, whose findings led directly and indirectly to the same conclusions 

on role of myelin in autism in humans. 

A laboratory evaluation of brain autoantibodies and virus serology conducted by Singh 

(2001) in approximately 250 children with ASD and 150 controls focused on studying the 

autoantibodies to three major constituents of myelin sheath, myelin basic protein (MBP), 

galactocerebrosides (GC) and 2, 3-cyclic nucleotide 3'-phosphohydrolase (CNP). This analysis 

led to the detection of antibodies to myelin basic protein (MBP) in 84% of autistic children (n 

= 223), compared to less than 1% in normal children (n = 60). There weren’t found any 

statistically significant different between groups regarding the anti-CNP anti-GC antibodies. 

Even so they concluded “that autism is quite likely a neuro-immune dysfunction syndrome 

(NIDS) or neuro-immune biology syndrome (NIBS)” (p.10) 

These findings were corroborated by Mostafa et al., in their 2008 study of Serum Anti-

Myelin–Associated Glycoprotein Antibodies in Egyptian Autistic Children, which considered 

both the neuroimmunopathogenesis and the genetic hypothesis. They found anti-myelin–
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associated glycoproteins in 62.5% of autistic children vs 9.4% of controls. Additionally, family 

history was taken into account with 50% of the autistic children having a first- or a second-

degree relative with an autoimmune disease. Anti-myelin–associated glycoproteins levels 

were also significantly higher in these children compared to those without it. 

Therefore, the evidence converges and points toward myelin being, if not “the” crucial 

factor, at least “a” crucial factor in the origin of autism. MRI had already been employed in 

reaching a link between autism and abnormalities in myelin development, as seen by the work 

of Lewis et al. (2014) and Ecker et al. (2015) with the former analysing the network efficiency 

of the ASD brain and the latter reviewing these similar studies. The results and conclusions are 

also similar, finding significantly decreased local and global efficiency over temporal, parietal, 

and occipital lobes in infants diagnosed with ASD and an atypical trajectory of brain 

maturation, which gives rise to differences in neuroanatomy, functioning, and connectivity of 

both local and global aspects of network structure, ending their papers with a call for future 

exploration of these alterations using “four-dimensional multimodal methods to accurately 

estimate and analyse changes in connection lengths, connection strengths, network 

organization and behavior” (Lewis et al., 2014, p. 10), such as Diffusion Tensor Imaging (DTI). 

DTI is a Magnetic Resonance Imaging technique that utilizes the physical principles of 

water diffusion and applies them to access the mobility of water molecules in human tissues, 

for example, within the brain´s white matter. Le Bihan et al. (2001), and Hagmann et al., (2006) 

both gave an overview of this technique and its use to demonstrate subtle abnormalities in 

various diseases (including strokes, multiple sclerosis, dyslexia, and schizophrenia). Their 

approach to explain its basic principles start with a glass of water. In the glass, the motion of 

the water molecules is completely random and limited only by the boundaries of its container, 

the same happens in neuronal axons, where the myelin sheaths surrounding them limit the 

diffusivity of water molecules. In statistical terms, this fact is called displacement distribution. 

When this displacement is homogenous, it’s called isotropy. When a specific orientation is 

preferred, this is called anisotropy. From the application of one single pulsed gradient spin-

echo sequence in one gradient direction, it is possible to calculate the effect of the isotropy 

or anisotropy of the white matter tracts (by verifying the water molecules movement within 

the myelin sheets, taking into account not only the myelin density but also the packaging of 

the fibber, meaning, the number of axons going in a preferred direction). By computing the 

normal movement in typical developing controls and in an experimental group it is 
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(theoretically) possible to compare the degree of myelination of the individual axons and the 

density of cellular packing that modulate the anisotropy. 

The derived measures from this computing are the fractional anisotropy (FA, that 

describes the degree of anisotropy of the diffusion process), mean diffusivity (MD, the 

measure of the total diffusion within a voxel), radial diffusivity (RD, that reflects the diffusivity 

perpendicularly to the axonal fibres), and axial diffusivity (AD, that reflects the diffusivity 

parallel to axonal fibres). 

Before introducing the articles with findings regarding DTI and myelin it is important 

to mention the work of Alexander et al. (2007), who explored the relationships between DTI 

measures and white matter pathologic features (ischemia, myelination, axonal damage, 

inflammation, and edema). In summary, they found that FA is highly sensitive to 

microstructural changes, but not very specific to the type of changes and is thus a non-specific 

biomarker of neuropathology and microstructural architecture and recommend the use of 

multiple diffusion tensor measures (e.g., AD, MD, and RD) to better characterize the tissue 

microstructure.  

Deoni et al. (2014) specifically focused on understanding the myelin alteration in ASD 

through the analysis of white-matter and myelin differences in young adults. These authors 

found “for the first time that adults with ASD have highly significant (widespread) differences 

in myelin content (as measured by the myelin water fraction) compared to age- and IQ-

matched controls; and that these myelin content differences in some brain regions are related 

to clinical symptoms and autistic traits.” (p.8). 

Barnea-Goraly et al. (2004), investigated white matter structure in seven male children 

and adolescents with autism and nine age-, gender-, and IQ-matched control subjects. They 

observed reduced FA values in white matter in the following areas: adjacent to the 

ventromedial prefrontal cortices; the anterior cingulate gyri; the temporoparietal junctions; 

adjacent to the superior temporal sulcus (bilaterally); the temporal lobes approaching the 

amygdala (bilaterally); occipitotemporal tracts; and the corpus callosum. 

Other DTI studies that utilized fractional anisotropy as their central measure reached 

similar conclusions such as Brito et al. (2009), that compared a sample with ASD (9.53 ± 1.83 

years), and a neurotypical control sample, (9.57 ± 1.36 years) with the FA values suggesting 

impairment of white matter microstructure, possibly associated with reduced connectivity in 

the corpus callosum, internal capsule, and superior and middle cerebellar peduncles. 



8 

 

Jou et al. (2011), in a mean age sample of 13.5 ± 4.0 years, reported that total brain 

volume and total white matter volume were significantly higher in the ASD group vs 

neurotypicals. Moreover, while there were no volumes of interest (VOIs) where FA was 

significantly higher in the ASD group, there existed VOIs with significantly lower FA in the ASD 

group, namely in the corpus callosum/cingulum and temporal lobes involving the inferior 

longitudinal fasciculus/inferior frontal-occipital fasciculus and superior longitudinal fasciculus 

in ASDs. 

Inversely, Andrews et al. (2019), in a study with preschool-aged children (i.e., < 30–40 

months), found significantly increased measures of FA were in several WM tracts including 

regions of the genu, body, and splenium of the corpus callosum, inferior frontal-occipital 

fasciculi, inferior and superior longitudinal fasciculi, middle and superior cerebellar peduncles, 

and corticospinal tract. Interestingly, in these tracts, females with ASD showed increased AD 

compared to controls, while males with ASD showed decreased AD compared to matching 

controls.  

Considering the existence of these contradictory findings, reviews and meta-analysis 

such as the one conducted in 2012 by Travers et al., may shed light on the subject.  This work 

encompassed 48 studies with the theme “Diffusion Tensor Imaging in Autism Spectrum 

Disorder” that consistently demonstrated reduced FA and increased MD in ASD. Furthermore, 

they pointed out that children (>4 years of age) and young adults with ASD tend to have 

decreased FA in WM tracts spanning many regions of the brain (most consistently in the 

corpus callosum, cingulum, and WM tracts connecting aspects of the temporal lobe) that are 

often accompanied by an increase in both MD and RD. In contrast with this general pattern of 

findings, there were 8 studies (16,66%) that found no significant group difference or increased 

FA in ASD, and 7 studies (14,58%) that found an increased or a mixture of increased and 

decreased FA across different WM areas in persons with ASD, making a 31,25% of studies 

going against the reigning hypothesis. They forwarded one important issue that could have 

impacted these findings, the fact that DTI measurements are highly sensitive to several 

nonbiologic factors such as scanner, coils, pulse sequences, parameters, signal-to-noise, and 

that these limitations of DTI should be addressed. 

A last word of warning before proceeding with this paper´s analysis comes from a more 

recent systematic review conducted by Sousa et al. (2017), on diffusion tensor imaging studies 

on the developmental trajectory of the prefrontal cortex. This review found, from a sample of 
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27 studies, that while FA, MD, RD and AD have been observed as undergoing linear age-related 

changes, some periods of steadiness may also occur during development. Interestingly, the 

highest FA and lowest MD and RD were found in young adults. And again, a reminder that “DTI 

measures are not intrinsic properties of the tissues but instead, assumptions driven by a 

conglomerate of knowledge derived from several fields (mathematics, physics, engineering, 

computer science, and neurosciences) that might limit the associations between DTI data and 

biological variables” (Sousa et al., 2017, p. 11). 

 

 

 

 

 

 

 

Hypothesis 

 

With all this body of literature supporting us, we also aim to explore the white matter 

tracts in an autistic population. Specifically, in a population of high functioning 

teenagers/young adults. Since most of the studies found worked with populations of children, 

with some adult findings as well, we will assume the generally linear development of white 

matter tracts and associated measures and guide our work hypothesis with the findings of 

Sousa et al. (2017), and their report of high FA and low MD and RD measures in this age 

sample. We will consequently search for differences in these three measures and additionally 

AD, in order to obtain the clearest possible image of the white matter tracts and associated 

myelin properties in ASD. Since there are some discrepancies in the literature regarding the 

direction of the measures, we will respect the strength of the majority and predict that we will 

find a decrease in FA and AD, and an increase in MD and RD. 
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Method 

 

Participants 

 

Our sample was composed of 6 individuals with ASD (4♂, 2♀) and 6 typically developing 

individuals (6♂), ages 15-19 years old (Table 1).   

 

Table 1.  

Participant demographics 

 ASD (n = 6) 
 

TD (n = 6)  
 

Age (Years) 16.66 (1.86) 17.16 (1.72) 

Sex 4♂, 2♀ 6♂, 0♀ 

 

 

The ASD participants enrolled in this study were professionally diagnosed following the 

criteria established by the Diagnostic and Statistical Manual of Mental Disorders in its revised 

fourth version (DSM-IV-TR) or fifth version (DSM-5) with “high-functioning autism”. 

Participants were contacted via several ASD associations. The participants' diagnosis was 

confirmed by qualified clinicians who were part of the research team using the Autism 

Diagnostic Interview Revised, ADI-R (Rutter et al., 2006) and the Autism Diagnostic 

Observation Scale, ADOS (Lord et al., 2008). The control group was recruited using a 

convenience strategy. 

All participants were required to be ambulatory, have no contraindications for MRI, no 

suspected vision or hearing problems, or other known genetic disorders or neurological 

conditions. All participants (or their parents in the case of minors) voluntarily agreed to 

participate and gave the written informed consent, obtained in accordance with the 

Declaration of Helsinki. 
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Image acquisition 

 

All MRI scanning was performed at the Grupo de Medicina Xenómica, Universidade de 

Santiago de Compostela (USC) during the period of the evening, with all the participants 

awoken and in an alert state. The diffusion-weighted images were acquired between July 2017 

and January 2020, using a 3 Tesla Philips Achieva MRI Scanner. DWI scans were performed 

using a spin echo–echo planar imaging (SE-EPI) sequence: TR = 9312.163 ms, TE = 93.408 ms, 

FoV = 240 mm x 240 mm, acquisition matrix = 128 x 128, 70 2mm axial slices with no gap, 34 

non-collinear gradient directions with b = 700 s/mm 2, one b = 0 s/mm 2 acquisition. 

 

Diffusion-weighted image pre-processing and Tensor Fitting 

 

The diffusion data were pre-processed using the FMRIB Diffusion Toolbox (FDT) 

provided with the FMRIB Software Library (FSL v6.0.3) (fsl.fmrib.ox.ac.uk), created by the 

Analysis Group, FMRIB, Oxford, UK.  

Pre-processing steps included: (1) transforming the raw DICOM images collected from 

the machine into NIfTI format (utilized by FSL); (2) performing a DWI visual quality control 

using the tool FSLEyes; (3) correcting for motion artifacts and eddy current distortions using 

FSL’s eddy tool; (4) applying affine transformations to register each volume and rotate the 

gradient vectors; (5) removing nonbrain structures by extracting the first b0 volume of each 

subject and skull stripping.  A mask was created and applied to the remaining volumes; (6) 

using the DTIFIT tool (included in the FDT toolbox) to perform tensor fitting (i. e. fit each voxel 

with a diffusion tensor that can be defined by its three principal Eigen vectors (iλ1, λ2, λ3)) 

and use the derived tensor maps to calculate the corresponding scalar maps of fractional 

anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity (Table 2). 
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Table 2.  

Scalar Maps Formulas 

 Formula 
 

Fractional Anisotropy √
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ1 − λ3)2

2(λ1
2 + λ2

2 + λ3
2)

 

Mean Diffusivity (λ1 +  λ2 +  λ3)

3
 

Radial Diffusivity 
 (λ2 +  λ3)

3
 

Axial Diffusivity λ1 

 

 

 

Diffusion tensor modelling and tract-based spatial statistics 

 

Whole-brain voxel-wise statistical analysis of FA, MD, RD, and AD maps was conducted 

using tract-based spatial statistics (TBSS) procedures (Smith et al., 2006), also part of the FSL 

library. 

The first step involved non-linearly registering each subject’s FA template to each other 

to find a study-specific template most representative of the sample (i.e., requiring the least 

warping to align all images, in this case, C_04), into a 1-mm. 1- mm. 1-mm standard space. 

Secondly, all FA images were then transformed into the Montreal Neurological Institute (MNI) 

152 standard space by combining the non-linear transform to the target, with the affine 

transformation of the target which was subsequently averaged, and the resulting image 

skeletonized thus producing a mean FA image of all participants. Thirdly, this white matter 

“skeleton” was thresholded to include FA values at the recommended value of 0.2 to remove 

from the skeleton regions encompassing other tissues, such as grey matter or cerebrospinal 

fluid (CSF). The resulting final white matter skeleton was used as a binary mask on which 

individual measures of FA, MD, RD, and AD were separately projected and subsequently 

exported for voxel-wise statistical analysis. 
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Statistical analyses 

 

The statistical analyses of this study were performed using the non-parametric 

permutation methods of the “randomize” tool from FSL (Winkler et al., 2014). A two-sample 

t-test was fitted to the data and the Threshold-Free Cluster Enhancement (TFCE), using the 

924 unique permutations for each contrast in the skeletonized maps, was calculated to search 

for between-groups differences. Family-wise error (FWE) correction, p ≤ 0.05, was applied to 

control for multiple comparisons 

 

Results 

 

No statistically significant differences were observed between groups for the 

measures of FA (Figure 1), MD (Figure 2), RD (Figure 3), or AD (Figure 4).  

In the figures, the green colour is used to identify the WMT where the calculated 

scalar maps are consistent between participants. If there were any statistically significant 

differences, they would be highlighted in red colour (with its intensity, from almost orange 

to dark red, signalling the increasing differences). 

 

 

Figure 2               Figure 3 

Fractional Anisotropy                   Mean Diffusivity 
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Figure 4                Figure 5 

Radial Diffusivity               Axial Diffusivity  

 

 

 

Discussion 

 

In our work we tried to verify the reported existence of myelin alterations in with 

matter tracts in ASD using a DTI analysis and TBSS. According to the literature we expected to 

find differences between conditions, with an increase in FA and AD, and a decrease in MD and 

RD, in the ASD brain. However, no statistically significant differences weren´t found. 

The first factor that might have contributed for the lack of statistically significant 

differences is the sample size of the study. With only 12 participants, the sample size is 

admittedly very small. In statistics, small samples have the drawback of reducing the power of 

the study and increasing the margin of error, which can overshadow statistically significant 

differences and, consequently, affect the relevance of the conclusions. This coupled with our 

very conservative threshold might have been a decisive factor in the lack of statistically 

significant differences. 

Our population´s age could also have contributed for this outcome. While most of the 

studies included either of infants and children (<10) or full adults (>21), our sample was 

composed by teenagers (15 < x < 19). Based on the evidence gathered from the review by 

Galvez-Contreras et al. (2020) and the reported stabilization of alterations in the abnormal 

development of brain regions in the autistic population after the 15 years old threshold, our 

results should have been similar to those reported by Catani et al. (2016) and Deoni et al. 
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(2014), both with reports of statistically significantly lower fractional anisotropy. The 

discrepancy here evidenced could be due in part to the peak of scalar map measures (such as 

FA) reported by Sousa et al. (2017) that could overshadow the underlying effects. Further 

studies in this particular age sample could shed better light in this issue. 

One possible explanation for the lack of differences in our work is the study of a sample 

with high-functioning autism, a population in which there may be fewer dissimilarities when 

compared with the neurotypical population. However, there is previous evidence of   similar 

alterations on the scalar maps of the white matter tracts in high functioning autism (Fletcher 

et al., 2010; Groen, 2011 (this one in a similar age sample); Mueller et al., 2013; Thomas et al., 

2011; Vissers et al., 2012). This leads to the conclusion that the “high functioning” specific 

diagnostic probably had no effect on the findings when compared to other ASD samples. 

Another point to touch upon is the fact that, working backward, the evidence that 

pointed towards the significance differences of the FA, AD, MD, and RD measures between 

participants were the various studies that reported such findings (Barnea-Goraly et al., 2004; 

Ecker et al., 2007; Lewis et al., 2014;Travers et al., 2012), while the only non-significant studies 

mentioned in the literature were the 8 studies (16,66%) included in the review by Travers et 

al. (2012) (to which the author offered no commentary). 

A comparison between these studies included in the review by Travers et al. (2012) 

and our analysis revealed only one potential similarity. Of the 8 studies that reported non-

significant results, 4 employed the same TBSS procedure as this paper, furthermore, 

considering that 10 studies in total employed TBSS, there was a 40% non-significance with this 

procedure. While there is a small possibility that the TBSS method has some intrinsic quality 

that could account for the lack of significance (or rather its use, as previously stated in the 

usage of conservative thresholds in small samples), this is not a likely explanation, as there 

were other non-significant studies that didn’t employ TBSS (and studies that employed TBSS, 

inclusively in both small and large samples, and still reported significant results). 

One final point to consider in the reduced existence of non-significant studies. Even 

the review by Travers et al. (2012), in a universe of 47 studies, found only 8 non-significant 

studies and 7 that went against the established predispositions. This similar number of non-

significant and opposed studies might be and indicator of a publication bias against non-

significant results that warrants more research. 
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We could envision a series of follow-up studies with the intention of tackling the 

shortcomings of this analysis and advancing the study of the developmental relationship of 

white matter tracts and myelin alterations in autism spectrum disorder such as: 

(i) A study on the impact that different sample sizes would have on the ability of DTI to 

compute statistical differences (with a study specifically using TBSS and different thresholds 

of particular interest). 

(ii) Utilize various different statistical methodologies on the same sample in other to 

ascertain its congruency regarding the statistical significance of the results (while also being 

mindful of the fact that the likelihood of finding false positives will also increase with each 

statistical analysis performed). 

(iii) Expanding the literature on late teenager autistic population (preferably using 

bigger sample sizes while maintaining the best possible age- and sex- sample matching).  

(iv) Investigate the possibility of publication bias against non-significant results (taking 

measures to ensure that studies are able to be published regardless of existence of results, 

thus increasing the quantity and quality of the body of literature available). 

 

 

 

 

Conclusion 

 

While the literature pointed towards a defined hypothesis (existence of differences 

between groups, with decreased in FA and AD measures, and increased MD and RD), it 

resulted in non-statistically significance, the cause of which could not be pinpointed to one 

specific reason. Possible factors contributing to this outcome includes the sample size, 

individual variables (specifically age), statistical methodology, or/and publication bias. Aiming 

to tackle the shortcomings of this analysis we left some promising suggestions for future 

research on the field. 
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