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The application of near infrared (NIR) spectroscopy for industrial process monitoring is achieving

increasing importance over the last twenty years. In fact, the real time monitoring capacity of NIR

spectroscopy is a very important feature for process monitoring, prediction and control as it

allows a fast evaluation of the state of the process. However, the application of NIR spectroscopy

in wastewater treatment processes is still to be explored. Although some applications of the

technique for wastewater monitoring have been reported in the literature, there is still a need for

more investigation related with applications, limitations and advantages of the technique when

compared with other methods.

An activated sludge reactor for aerobic treatment of a complex medium was monitored in situ

with a NIR transflectance probe and traditional chemical parameters analysed off-line. NIR

spectrophotometric data measured at the feed, reactor and settler were coupled to principal

component analysis (PCA) to infer about the ability of this monitoring system to detect changes

in the feed influent. The analysis of the score plots resulting from PCA permitted to identify the

moments at which the perturbations occurred and to follow the consequent instability induced in

the reactor till the day where the system is recuperated. The promising results obtained, suggest

the interest in more detailed studies on the feasibility of NIR spectroscopy as an alternative

method for monitoring and control of wastewater treatment processes.
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INTRODUCTION

Activated sludge systems are among the most widely used

secondary biological process treatments. It consists of

inoculating a high filamentous and floc-forming bacteria

concentration responsible for the oxidation of the organic

matter in an aerated tank. Subsequently, the flocculated

biomass is separated by means of their settling ability from the

treated effluent in a settling tank. Part of the settled biomass is

then returned to the aerated tank in order to maintain a

constant biomass concentration. As most biological pro-

cesses, aerobic systems are sensitive to sudden changes in

feedstock composition, which cause significant variability in

the process conditions. So far, the control of such processes is

most of the times achieved through manual sample extraction

with off-line analysis of a few key process parameters such as

total solids (TS), volatile solids (VS), chemical oxygen

demand (COD), etc. This kind of analysis is time consuming,

expensive, and can only provide a temporary view of the

system’s performance. Therefore, fast, simpler and inexpen-

sive analysis techniques, that allow continuous and in situ

monitoring, are needed. Near infrared spectroscopy (NIR) is
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being proposed as a valuable candidate (Benson 1996). The

low reflectivity and absorptivity in the NIR-range makes it

possible to analyse samples that are strongly light scattering,

such as opaque liquids and slurries (Hansson et al. 2003). The

NIR region permits to record the response of the molecular

bonds of certain chemical species to the IR radiation and

consequently originate the characteristic spectrum of the

sample being analysed.

Among the advantages of NIR spectroscopy, when

compared to standard methods, are the facts that it is a non-

destructive and non-invasive, fast, low maintenance cost

technique that do not use reagents, do not produce residuals

and allows the determination of several parameters simul-

taneously (Hansson et al. 2003; Pons et al. 2004; Uddin et al.

2006). The main disadvantages attributed to NIR technologies

are the fact that although being considered a very flexible

method, it is often affected by the operation conditions like

temperature, agitation, aeration, dispersive light, etc. These

interferences difficult the calibration process and reduce the

quality of the results for quantitative assessments (Blanco et al.

2001). Moreover, it is not possible to obtain direct information

from the technique by itself. In fact, due to the large amount of

information inherent to each spectrum, the technique is

always associated with chemometric tools that extract and

report the most relevant information that can be taken from

the spectral data. Chemometric tools allow correlating the

spectral patterns with variations in the physical and chemical

properties of the sample being analysed. This can be a problem

when no skilled hand exists. However, specialized qualifica-

tions are mostly needed for models development. After, the

analysis of the results given by those models is relatively simple

and intuitive and no especial qualifications are needed to

interpret the information.

Numerous applications are being given to NIR spectro-

scopic methods for monitoring, prediction and control of

industrial processes (Heikka et al. 1997; Geladi & Forsström

2002; McGill et al. 2002; Lopes et al. 2004a). The applications

include a broad range of areas ranging from food to

petrochemical industries. The advantages that have been

achieved by application of NIR techniques to those processes

let us admit that similar good results could be obtained if the

NIR spectroscopy is applied to environmental monitoring

and correlation purposes. So far, the applications of the NIR

technology to environmental processes are scarce, mostly

due to the great complexity of the large number of chemical

species present and to the intrinsic composition changes in

the matrix. To our knowledge only a few works were

published reporting correlating methods between NIR

spectral data and process parameters (Stephens & Walker

2002; Hansson et al. 2003; Holm-Nielsen et al. 2006)

The aim of this work is to conjugate NIR spectral data

with chemometric tools to develop multivariable supervision

models to monitor the operation status of an activated sludge

reactor without using further analytical information.

METHODOLOGY

Process

The lab-scaleplant is based on a 14 L activated sludge tankand

25 L total volume followed by a 2.5 L settler. An effluent with

and average inlet CODin ¼ 600 mg/L and Qin ¼ 4.5 L/d was

fed to the reactor which was inoculatedwithbiomasscollected

from another continuous aerobic reactor fed with a similar

composition influent. In order to create system imbalances the

influent charge was approximately doubled after five days of

operation and then maintained around 950 mg/L in the

following days. A schematic layout of the process plant is

shown in Figure 1a. The efficient agitation of the system is

guaranteed by the aeration process with an air diffuser that

covers the bottom of the reactor. The bioreactor was equipped

with a TFK 325 thermometer (WTW, Weilheim, Germany),

one SensoLyt pH electrode connected to a 296 R/RS monitor

(WTW), a TriOxmatic 690 dissolved oxygen probe (WTW)

and a NIR spectrometer probe (OceanOptics, model 512).

The plant was monitored at three important points: at the

influent, reactor and settler. Daily minimum volume samples

were taken to measure VSS concentrations (reactor and

settler) and COD concentrations (influent and settler). The

analyses were done by weight differences and closed reflux

colorimetric methods, respectively. Each sample was

analysed in duplicate. In order to extensively monitor the

evolution of the process inside the aerated reactor, the NIR

probe was immersed in the reactor and NIR spectrum was

acquired every 5 minutes. Simultaneously to each influent

and settler sampling, a minimum of 5 spectra were obtained

at the same monitored points.
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NIR

The Ocean Optics NIR 512 model, a portable disper-

sive NIR equipment working in the range from 900 to

1,800 nm and including a PDA cooling detector, was used.

A transflectance probe (Ocean Optics/T300RT) is con-

nected through optical fibbers (OceanOptics/QP400-2-

VISNIR) to a light source (Stellarnet/SL1) and to the NIR

spectrometer which in turn is connected to a PC by a USB

2.0 cable. The beam coming from the light source passes

trough the sample as illustrated in Figure 1b. The optical

path is twice the value of the mechanical gap of the

transflectance probe. It is adaptable and depends on

the characteristics of the reactor content. In this work the

optical path was equal to 1 cm. The returned beam is send

to the NIR 512 detector connected to the PC allowing

the immediate spectra visualization and acquisition.

Spectra are acquired using a programme from OceanOptics

(OOIBase32/Ocean Optics). This software allows the

configuration of certain parameters like the integration

time, average spectra, filter type (to avoid noise mostly

when low integration times are used) and the temperature

of the detector. All these parameters were previously

optimized in order to improve the quality of the spectra

acquired. When measuring for the first time, a reference

spectrum is taken as in traditional spectroscopic methods.

The reference spectrum is checked regularly and if changes

occur, the above mentioned parameters may be adjusted in

order to fix the deviations.

Data analysis and calculation

Principal Components Analysis (PCA) (Jackson 1980) is one

of the most widely used chemometric tools for data

compression and information extraction. The general

objective of the application of the method is to describe

the data using far fewer factors than original variables with

no significant loss of information.

PCA finds combinations of variables, usually named

factors that describe major trends in the data. For a given

data matrix X with m rows and n columns, PCA decom-

poses the data matrix X as the sum of the outer product of

vectors t i and p i plus a residual matrix E:

X ¼ t1p
T
1 þ t2p

T
2 þ … þ tkp

T
k þ E ð1Þ

where k must be less than or equal to the smaller dimension

of X, i.e. k # min {m, n}. The t i vectors are known as scores

and contain information on how the samples relate to each

other. The pi vectors are known as loadings and contain

information on how the variables relate to each other.

In matricial terms Equation 1 can be written as

Xðn £ pÞ ¼ Tðn £ dÞPTðd £ pÞ þ Eðn £ pÞ ð2Þ

where n represents the number of objects (spectra),

p represents the number of variables (wavelengths) and d

the number of PC’s. T, L and E represent the scores, the

loadings and the residuals matrix.

On a PCA analysis the (ti, pi) pairs are arranged in

descending order according to the amount of variance

described by the pair. The first pair captures the greatest

amount of variation in the data that it is possible to capture

with a linear factor and each subsequent pair captures the

Figure 1 | (a) Schematic layout of the plant: (1) effluent, (2) feeding pump, (3) aerated

tank, (4) aeration system, (5) settler, (6) air pump; (7) outlet, (8) dissolved

oxygen probe; (9) pH probe, (10) NIR spectrometer probe. (b) Schematic

layout of the NIR transflectance probe.
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greatest possible amount of variance remaining after

subtracting tipT
i from X.

For the particular case of spectroscopic data, PCA

identifies the major sources of correlated variance in the

collection of spectra by defining a series of ranked factors

and assigning each spectrum a score based on the relative

contribution of each factor. The sources of variance, once

identified, can aid in the visualization of the major data

trends. In this way, the data collection can be reduced

from a complicated multidimensional representation to a

more easily visualized two or three-dimensional space

(score plots) describing the main information present in

the data (Lourenço et al. 2006).

The MatLab version 6.5 Release 13 (The Mathworks,

Inc) was utilized to data treatment, calibration and

validation of the chemometric models. The chemometric

functions included in the PLS MatLab Toolbox (PLS

Toolbox, Eigenvector Research, Inc) were used to generate

the PCA model.

RESULTS AND DISCUSSION

Data pre-treatment

The collected spectra were pre-treated by first applying the

standard normal variate method (Barnes et al. 1989) by

subtracting raw data from the mean of each spectrum and

dividing by the standard deviation of the absorbencies of

each sample. The second derivative was then applied to the

data according to the method of Savitzky-Golay (Savitzky

& Golay 1964). This procedure reduces the spectral noise

and the effect of light dispersion due to the presence of

particles as mentioned by Karlsson et al. (1995). The authors

compared different pre-treatment methods and concluded

that the Savitzky-Golay method is the most efficient, at least

when dealing with spectral data pre-treatment. Figure 2

exemplifies the differences in the raw (a) and pre-treated (b)

spectra for the data collected at the aerobic reactor during a

week of operation. Pre-treated data was used for PCA

model development.

Model development

The number of components used in a PCA model represents

a measure of the data complexity and can be regarded as the

number of independent underlying phenomena. There are

several methods which can be used to establish the

correct number of PC’s in a PCA model. In the present

case this number was assessed using a bootstrap strategy

(re-sampling method). This method re-samples the spectra

and builds several PCAs. Then the standard deviation of

the eigenvalues (or captured variance) is estimated. Figure 3

represents the percentage of variance captured by each PC

as a function of the number of PCs. The confidence interval

Figure 2 | Raw (a) and pre-treated (b) spectra for the data collected at the aerobic reactor during a week of operation.
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thus obtained is used to verify statistical significance of

each PC. In these data only 2 components appear to be

statistically significant at a significance level equal to 0.05.

This conclusion was the same for the spectra captured in

the feed, reactor and settler.

The detection of anomalies by analysis of data as

represented in Figure 2 can be a hard or even impossible

task. In this case it is possible to distinguish groups of

spectra, probably indicating similar operating conditions,

and more isolated spectra most probably remarking dis-

turbances on the system. However, on-line monitoring has

to accent on more direct, practical and clear information in

order to detect possible disturbances as soon and accurate

as possible and to extract the maximum information that

can in reality be ‘hidden’ from direct visual observation.

A more explicit way to analyse and detected changes in

the measured data is through a score plot analysis. A score

plot is any pair of score vectors plotted against each other,

in which each sample spectrum appears as a data point and

closely interrelated samples appear clustered together. The

score plot of PC1 vs PC2 from the PCA model with two

components generated from the pre-treated sample spectra

for each of the monitored zones is shown in Figure 4.

The figures present the evolution of the spectra

measured for a week of operation in the feed (a), in the

reactor (b) and in the settler (c). All the samples taken on a

same day of operation are represented by the same symbol

in the three figures. At the influent it is possible to perfectly

distinguish three clusters. The first one identifies the

feed samples before the increase of the COD (circles in

Figure 4a). After the charge increment, a second cluster

Figure 3 | Percentage captured variance for each PC in the PCA model of mean

centred spectra of samples collected from the feed (X), the reactor (B) and

the settler (O).

Figure 4 | Score-plot of the first two principal components from the PCA model of the

NIR spectra from the feed (a), reactor (b) and settler (c) sample sets.
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appears including the samples corresponding to the higher

COD fed to the system (squares in Figure 4a). Finally, the

third cluster corresponds to the samples with an average

COD equal to 950 mg/L corresponding to the days after the

increment of the influent charge. According to the COD

values, samples represented by triangles in the figure should

also be located inside this third cluster instead of being

closer to the samples with higher COD. It is believed that

the reason for this behaviour has to do with the fact the on

day 19, the feed with a CODin ¼ 1,200 mg/L was contami-

nated with microorganisms which promoted the degra-

dation of the organic matter decreasing the CODin that was

monitored on day 20 (corresponding to the triangles in the

figure). The samples located in the third cluster on the score

plot diagram correspond to feed samples prepared on the

corresponding monitoring day. On the reactor (Figure 4b),

it is also possible to distinguish three clusters however, the

‘frontiers’ are not so clear in this case. Here, the large

increase in CODin is again easy to identify (1st arrow) but

on the second cluster appears a third group of data that was

not present on the influent analysis mentioned before. This

state evolves to an intermediate state that conduces to a

third data cluster where the samples correspondents to the

last days of operation are located, when the new stabiliz-

ation point of the system appears. Following the arrows on

the figure it is possible to identify the different states of

operation inside the reactor but it is not possible to precisely

identify the moments when the perturbations occur. This is

easily understood having in mind the non-linear and slowly

response characteristics of a biological process like the one

being studied. Finally, Figure 4c, refers to the monitoring

process of the settler. Here, two major periods can be

identified: one including the samples located inside the

circle and the other including the samples that evolve along

the arrow. The samples in the circle include data from day

19 (when the perturbation occurred) and day 20. At this

point the settler was not yet affected by the increase in the

influent charge. However, after day 21 the samples are

located in a second cluster, meaning that a change was

detected in the settler conditions. This observation can be

easily understood knowing that the hydraulic residence

time of the reactor was around 2 days.

During the days following the increase in the influent

charge, the probe was immersed in the reactor for a

continuous in situ monitoring in order to follow the effect

of the perturbation on the process. As shown in Figure 5,

the scores evolve along the plot originating clusters clearly

indicating that changes are occurring in the reactor. They

reflect changes due to variations in the organic compounds

concentrations as well as due to the presence of particles

(concentration, size, etc). In fact, NIR spectra reflect both

the chemistry and physics of the influent stream. NIR

absorption bands are originated by CZH, NZH and OZH

bounds. However, because measurements are being made in

transmitance mode and samples are slurries there is also the

effect of light scattering that is originated by suspended

particles. An increase in the particle number (or particle

size) increases the internal diffuse reflectance phenomena

Figure 5 | Score plots obtained after a continuous monitoring period with the probe immersed in the reactor for days 20 (a) and 21 (b), after the increase in the influent charge.
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which in practice increases the absorbance. As can be seen

in Figure 6f, the concentration of the biomass in the reactor

is increasing also promoting in some way the evolution of

data along the score plot diagram.

An interesting way to monitor the state of the process

along the different days of operation is by representing on

the same score plot the data for the three monitoring points

of the process. Figure 6 presents the sequence of the score

Figure 6 | Evolution of the state of an aerobic biological reactor monitored through the analysis of score plots including the three monitored points of the reactor: Feed (X), Reactor

(B) and Settler (O). Figure (f) represents the evolution of the COD in the feed (V) and the VSS in the reactor ( p ).

1649 A. M. A. Dias et al. | Activated sludge process monitoring by NIR spectrometry Water Science & Technology—WST | 57.10 | 2008



plots obtained for different days of operation following the

moment where the CODin was largely increased.

From figure a to b it is possible to detect a first change on

the reactor corresponding to the moment where the influent

charge changed from 600 to 1,200 mg/L. One day after the

perturbation, the reactor is still under unstable operating

conditions or at least at conditions that deviate from the

starting conditions. After five days of operation, the system is

recovered and it is possible to assist again to the differen-

tiation between the three monitored points of the process.

It is interesting to notice that data from the influent or the

settler moved along the score plot indicating that the new

conditions are not equal to the starting conditions, i.e., the

system evolved to a different equilibrium state.

CONCLUSIONS

The preliminary results presented in this work showed that

NIR spectra, collected along a pilot installation of an

aerobic biological wastewater treatment process, contain

information that can be extracted and used for qualitative

process monitoring. The descriptive capacity of PCA is

evident in the score plot of a PCA model using 2 PCs

applied to the NIR spectra of samples collected at the feed,

the reactor and the settler of the pilot installation. It was

possible to identify the moment when an induced pertur-

bation occurred and to follow the evolution of the process

until a new equilibrium state was reached. These results

support the use of on-line monitoring methods in quality

assessment of biological wastewater treatment processes

monitoring and control. From these preliminary studies it

can thus be concluded that NIR spectroscopy associated

with simple PCA can be a valuable tool for wastewater

quality monitoring.
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