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através do RepositóriUM da Universidade do Minho.



A C K N O W L E D G E M E N T S

First and foremost, this dissertation is funded by COMPETE 2020, Portugal 2020 and FCT
- Fundação para a Ciência e a Tecnologia, under the project ”Using computational and exper-
imental methods to provide a global characterization of viral fusion peptides”, through the
funding program ”02/SAICT/2017 - Projetos de Investigação Cientı́fica e Desenvolvimento
Tecnológico (IC&DT)”, with the reference ”NORTE-01-0145-FEDER-028200”, who I would
like to thank for their trust.

I would like to thank both of my supervisors for giving all the best support and orientation
throughout the development of this dissertation.
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A B S T R A C T

Viral fusion proteins are essential to allow enveloped viruses (such as Influenza, Dengue,
HIV and SARS-CoV-2) to enter their hosts’ cells, in a mechanism referred to as membrane
fusion. This makes these proteins (with special relevance to their fusion peptides, the com-
ponent of the protein that can insert into the host’s membrane by itself) interesting potential
therapeutic targets for preventing or treating for some well-known diseases. However, there
is no centralized data repository containing all the relevant information regarding viral
fusion proteins.

With that in mind, the main purpose of this work is to develop a CRUD (Create, Read,
Update and Delete) web server that will allow researchers to find all the necessary data
regarding viral fusion proteins, through an easy-to-use web interface. The web application
will also contain other bioinformatics functionalities, such as sequence alignment (through
BLAST, Clustal and Weblogo) to allow researchers to retrieve key pieces of information
regarding a fusion protein, as well as machine learning models capable of predicting the
location of fusion peptides inside the viral fusion protein sequence.

The implementation of the server used Django as its back-end, retrieving the data from a
MySQL database, and Angular as its front-end.

The main result of the work is, therefore, a working webserver, with a web interface
available online through the URL: https://viralfp.bio.di.uminho.pt/.

The web application allows users to explore the gathered data related to viral fusion
proteins in a user-friendly way. This tool contains all the proposed functionalities and
machine learning models. As expected in an application’s development, there are several
aspects that require future work to improve the usefulness of this tool to the scientific
community.

Key words: Fusion Proteins, Fusion Peptides, Web Server, Machine Learning.
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R E S U M O

Proteı́nas virais de fusão são essenciais para que vı́rus encapsulados (tais como Influenza,
Dengue, HIV e SARS-CoV-2) sejam capazes de se inserir nos seus hospedeiros, num mecan-
ismo conhecido como fusão membranar. Por este motivo, estas proteı́nas (com especial
relevância para os seus péptidos de fusão, que são a parte da proteı́na que se insere na
membrana do hospedeiro por si mesma) são potenciais alvos terapêuticos interessantes para
prevenir ou tratar algumas doenças bem conhecidas. No entanto, não existe nenhuma fonte
de dados centralizada disponı́vel que contenha toda a informação relativa a proteı́nas virais
de fusão.

Sabendo isto, o propósito primário deste trabalho é desenvolver um web server CRUD
(Create, Read, Update and Delete) que permitirá investigadores encontrar toda a informação
necessária relacionada com proteı́nas virais de fusão, através de um interface user-friendly.
Este web server incluirá outras funcionalidades bioinformáticas, tais como ferramentas de
alinhamento de sequências (como BLAST, Clustal e Weblogo), que permitirá investigadores
extrair informações importantes acerca de uma proteı́na de fusão. Por fim, incluirá modelos
de machine learning capazes de prever a localização de péptidos de fusão na sequência da
proteı́na de fusão.

A implementação do servidor usou Django como seu back-end, que permite extrair a
informação da base de dados MySQL, e Angular como front-end.

O principal resultado deste trabalho é, portanto, um web server funcional, com a interface
web disponı́vel através do URL: https://viralfp.bio.di.uminho.pt/.

Esta aplicação web permite que utilizadores possam explorar a informação acumulada
acerca de proteı́nas virais de fusão através de uma interface user-friendly. Esta ferramenta
contém todas as funcionalidades e modelos de machine learning propostos. Como seria
de esperar no desenvolvimento de uma aplicação, existem vários aspetos que requerem
trabalho futuro para melhorar a utilidade desta ferramenta para a comunidade cientı́fica.

Palavras-chave: Proteı́nas de Fusão, Péptidos de Fusão, Web Server, Machine Learning.
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I N T R O D U C T I O N

1.1 motivation

Enveloped viruses, a type of viruses that includes Dengue, Influenza, HIV and SARS-
CoV-2, have an outer lipid envelope that contains one or more types of glycoproteins on its
surface (Marsh, 2005, Preface I) (Marsh and Helenius, 2006) (Weissenhorn et al., 2007). These
proteins are crucial for viral entry into the host cell, since they bind to receptors on the host
cell and catalyse the fusion between the viral envelope and the host cell membrane.

In some viruses, binding to the host and fusion are carried out by the same protein,
whereas in other viruses these functions are executed by different proteins. Fusion proteins
(VFP) are essential in a process called membrane fusion, which allows the virus to insert
its genetic material into the host cell, enabling it to replicate. These proteins function as
catalysts in membrane fusion reactions, since without them this process would have a very
high energetic barrier (Apellániz et al., 2014) (Harrison, 2015).

Over the years VFPs have been divided into 3 distinct classes: I, II and III, each with their
own features, such as its structure, orientation within virus’ membrane and location of their
fusion peptide (FPep). The FPep corresponds to the segment of the VFP that inserts into
the host’s membrane, promoting the fusion between the viral envelope and the host cell
membrane. This peptide can induce lipid mixing of membrane vesicles even if detached
from the rest of the protein (Epand, 2003).

The importance of the VFP and, in particular, the FPep in the process of membrane fusion
makes them very promising therapeutic targets for which drugs can be developed to inhibit
or treat diseases related to those viruses (Apellániz et al., 2014) (White et al., 2008).

However, even though a lot of information for each of these proteins is available in
databases such as UniProt, NCBI Protein and PDB, there no centralized repository that has
all known information regarding these proteins, making it necessary to search several data
sources when the aim is to have a comprehensive characterization of one or several of these
proteins. Thus, it would be very useful to have all the available data on VFPs and FPep
centralized in a common repository, which could be easily accessed and used to retrieve
important information, analyse different protein features and make useful predictions.

1
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A possible way to display large amounts of data is through a web server. This is a service
that allows multiple users to access and utilize stored data (for example within a database)
by a web browser in an easy, shared and fast manner (MDN Web Docs, 2019).

To understand better how VFPs (and their components) are characterized, some tools
can be deployed, like sequence alignment tools, that allow computational biologists and
bioinformaticians to discover a peptide’s conserved sequences and several other key pieces
of information regarding their features, giving valuable insights about the way they operate
(Madden, 2013).

Also, in recent years, there is a growing interest in applying machine learning (ML) models
to augment our comprehension regarding these proteins. This type of algorithm has been,
for instance, applied on predicting the location of FPeps in the VFP sequences of retroviruses
(Wu et al., 2016) (Wu et al., 2019) and predicting inhibitors for different VFPs so that possibly
they can be used as potential therapies for some diseases (Xu et al., 2015).

1.2 objectives

In this context, the main purpose of this thesis is to develop a CRUD (Create, Read,
Update and Delete) web server that will allow to easily store, retrieve, display and analyse
the gathered data on VFPs and their respective FPeps, as well as allow authorized users to
alter the database, all of which through user-friendly interfaces. This will be done using a
relational database, which contains relevant data regarding several hundred VFPs, collected
by one of the host groups. The back-end part of this proposed application will be built using
Django (and Django REST API) library, which is a Python package built for that purpose,
and its front-end will be built using Typescript, through the use of the Angular framework.
This webserver and its interface will be freely available and will be useful for the scientific
community working with VFPs and FPep.

This web application will include selected bioinformatics tools, such as sequence alignment
tools, and ML models developed in previous work capable to detect FPeps within the VFP
sequence to expand the capabilities of the web server. Finally, manual curation of the
database information will also be performed in order to add / correct entries in the database,
by searching several protein databases, such as UniProt, NCBI Protein and PDB, and
taxonomy databases (useful for the VFP’s host virus and those viruses’ host organisms), like
NCBI Taxonomy, as well researching through scientific publications.

The following list describes the main tasks performed during the current work:

• Review the relevant literature on viral VFPs to find important information that needs
to be added to the database and related applications/software that can be useful to
implement the proposed web server (e.g. by linking our webserver to existing tools);
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• Develop a CRUD dynamic web server that will allow users to explore the data and
authorized users to alter the database, all of which through user-friendly interfaces;

• Include selected bioinformatics tools into the application, such as sequence alignment
tools, to expand the capabilities of the web server;

• Include ML models developed in previous work capable to detect FPeps within the
VFP sequence;

• Perform manual curation of the database information in order to add / correct entries
in the database;

• Writing the master dissertation.

1.3 dissertation’s structure

This document is described by the following structure:

Chapter 2: State of the art

Description of the biological problem, referring the already known information regarding
the viral fusion process and the viral fusion proteins and its fusion peptides’ role in this
process. The technological implementation aspects of the tools to be used will be detailed,
as well as all the necessary pipelines, that explain how web servers and ML models operate.
A review of the proposed ML methodology applied in this field will also be performed.

Chapter 3: Methods

Description of all the methodologies necessary to create the proposed web server applica-
tion, as well to implement sequence alignment tools and ML models into it. This chapter
will mostly contain a deeper description of relevant frameworks that will be heavily utilized
during the development of the work. Finally, this chapter contains brief review of the
biological databases relevant to this work will be provided.

Chapter 4: Development

Detailing of the development of application and its features. This will contain all the de-
scriptions necessary to explain the functioning of the different components of the application,
as well of all relevant complementary procedures.
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Chapter 5: Results and Discussion

The main results and issues detected during this dissertation; also includes a small manual
of how to use the developed application.

Chapter 6: Conclusion and Future Work

A short analysis whether the proposed objectives were achieved. This chapter presents its
contribution for the scientific community and possible directions for future work.



2

S TAT E O F T H E A RT

2.1 viral fusion and viral fusion protein’s role

Enveloped virus

According to the presence or absence of an outer membrane, viruses can be grouped
into two distinct groups: enveloped or nonenveloped. Nonenveloped viruses use a protein
shell in order to protect their nucleic material. By contrast, enveloped viruses have a lipid
membrane bilayer that protects both its capsid and its genome. This lipid bilayer, known
as viral envelope, is formed from their host’s membranes during the mechanisms of virus
assembly and budding (Marsh, 2005, preface I) (Marsh and Helenius, 2006) (Weissenhorn
et al., 2007). Enveloped viruses insert part of their viral proteins into the host membrane,
fuse their envelope with the membrane of the host cell, insert their genetic material into the
host cell and replicate inside their host cell. Enveloped viruses then exit the now infected
host cell by budding and secretion (Marsh and Helenius, 2006) (Wolf et al., 2010).

Membrane Fusion

In order for enveloped viruses to insert their genetic material into a host cell, it is required
to occur membrane fusion between the viral envelope and a host cellular membrane, bringing
those two initially separate membrane bilayers into close contact so that they can merge
themselves into a single one (Baquero et al., 2013) (White et al., 2008). An enveloped virus
has several copies of one or more VFPs on its membrane, which are in their native pre-fusion
conformation, that needs to convert into a fusogenic conformation to initiate the fusion
process.

Two events must take place for the fusogenic conformational transition to occur: the
first makes that conversion possible, usually by proteolytic cleavage; the second begins
the conformational transition, in a process that requires triggering by one of the following:
ligand binding (by a coreceptor on the host membrane or in of its internal compartments),
proton-binding by pH decrease (usually on the host’s endosome, in case of viruses that
enter it through endocytosis) or by binding of another protein on the virus outer membrane
(Harrison, 2015) (Hughson, 1995) (Teissier and Pécheur, 2007). VFPs are necessary for

5



2.1. Viral fusion and viral fusion protein’s role 6

Figure 1: Generic steps of the membrane fusion process, including the different conformations that
the fusion protein present on the virus membrane assumes during those steps: (i) the fusion
proteins in a fusion competent form in the virus’ membrane, upon a trigger, (ii,iii) links to
the host’s membrane in their prehairpin conformation, (iv) bringing the two membranes
into a close contact, (v) eventually forming a hemi-fused state, when the outer layers of the
membrane fuse with one another but the inners ones still are not in contact; (vi) finally a
pore starts to form when those layers merge; figure from (White et al., 2008).

membrane fusion to occur due to the presence of a high kinetic barrier that the fusion of
two membranes must overcome, caused by a repulsive hydration force, which increases
massively as the distance between the two membrane surfaces shrinks below 20 Å. Thus,
VFPs act as catalyst that make this reaction possible by enabling the virus to overcome this
energetic barrier (Harrison, 2015).

According to the currently most accepted model, after the initial apposition step, mem-
brane fusion passes through a “hemi-fusion intermediate”, when the outer leaflets of the
two membranes merge together, but with the distal ones still not in contact. The hemi-fused
state forms a stalk-like structure, shrinking the contact area to its possible minimum so that
it can minimize the work needed to overcome hydration force repulsion. The final step
of this reaction corresponds to the fusion of the still unattached inner leaflets, starting to
form a hydrophilic pore that eventually enlarges, connecting the intermembrane volumes
originally separated by the 2 membranes, allowing the viral genome to transferred to the
host cell’s cytoplasm, enabling the virus to start its replication process (Apellániz et al., 2014)
(Harrison, 2015) (Hughson, 1995) (Teissier and Pécheur, 2007). All the steps and the fusion
process mentioned above can be observed on the figure 1.
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Classes of Fusion Proteins

All VFPs can be described by some common characteristics they all share, such as the fact
they are trimers-of-hairpins in their post-fusion form. This structure has a central N-terminal
trimeric core, with C-terminal regions packed outside it, allowing to bring the two key
hydrophobic components of any viral VFP, the FPep and transmembrane domain, into
close functional proximity (White et al., 2008). However, VFPs differ substantially between
themselves, which led to the necessity to group them into classes. At the time of writing, the
consensus is that there are 3 known distinct classes of VFPs: I, II and III (Apellániz et al.,
2014) (Harrison, 2015) (White et al., 2008). The following descriptions may not be applied to
all the proteins of each class, since there are excepts for some of the referred characteristics,
but they are true for at least most of the class members.

Class I proteins, which include proteins found in Influenza, HIV and SARS-CoV-2 viruses,
form spike-shaped structures in perpendicular orientation with the viral membrane. Their
main native fusion secondary structure consists in a α-helix. The FPep (structure present in
all VFPs, corresponding to the segment that can insert itself into the host’s membrane, even
if detached from the rest of the protein) (Marsh, 2005, pp. 42) is found buried in subunit
interface, in the pre-fusion structure, and is close to the N-terminal on the protein primary
sequence. Both their native VFP and their fusion-active structures are trimeric, being that the
post-fusion form is a trimer-of-hairpins, and this class is characterized by a 6HB (six-helical
bundle) structure, which is a central N-terminal trimeric α-helical coiled coil with three
C-terminal helices. The pre-fusion form of the protein is metastable, and the protein needs
proteolytic processing to maturate into a fusion competent form. This class contains proteins
that can be activated to their fusogenic form by low pH, receptor binding (with or without
being followed by low pH) or enzyme-induced covalent modifications (Baquero et al., 2013)
(Modis et al., 2004) (Teissier and Pécheur, 2007) (White et al., 2008).

Class II proteins (a class that contains proteins found in Flaviviridae and Togaviridae
viruses) lie parallel (near flat) to the virus membrane in the pre-fusion state, and its main
secondary structure is a β-sheet. They contain internal FPeps connected to the protein by
both ends and located at the tip of elongated β-strands. Unlike Class I proteins, this class’
proteins are dimeric in its native structure, albeit also trimeric in its fusion-active form. Their
post-fusion conformation is also a trimer-of-hairpins, usually β-structures. Like the previous
class, these proteins are metastable and require proteolytic processing, but unlike Class I,
this processing occurs on a complementary peptide. The only known activation mechanism
for this class is low pH (Baquero et al., 2013) (Teissier and Pécheur, 2007) (White et al., 2008).

Class III was found more recently, therefore information regarding this type of proteins
may not be as complete as the former two classes. This class, present in proteins of the
Rhabdoviridae and Herpesviridae viruses, is somewhat a hybrid between Class I and Class
II features. Proteins from this class orient perpendicularly in relation to the virus membrane
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Figure 2: Examples of the differences between proteins of different classes, regarding its structures in
prefusion, pre-hairpin and post-fusion conformations, orientation with the outer membrane
in the pre-fusion state and the types of possible triggering; figure from (Plemper, 2011),
complemented with (White et al., 2008) information.

and can contain both α-helix and β-sheet secondary structures. Like class II, their FPep
is internal (in two fusion loops) within the primary sequence and is located at the tip of
elongated β-strands, but unlike Class II that have them masked, Class III protein tend to
have them exposed. Like Class I, they are trimeric in both native and fusion-active forms,
and its post-fusion form is also a trimer-of-hairpins, with a structure having features from
the other two classes. However, contrasting both previous classes, these proteins are not
metastable and do not require proteolytic processing. This class of protein can be activated
by low pH or by receptors (Baquero et al., 2013) (Teissier and Pécheur, 2007) (White et al.,
2008).

Some of the differences between the referred classes can be seen in the figure 2, mainly
differences in the prefusion, pre-hairpin and post-fusion conformations.
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Triggering Mechanisms

As referred above, for the fusion reaction to occur, the VFP needs to be converted into
a membrane embedded pre-hairpin and then to the final fusion-competent conformation,
which is known as a trimer-of-hairpins. So that this conversion can happen, the protein
needs to be activated by a trigger in the form of an environmental stimulus (Marsh, 2005,
pp. 27-28) (White et al., 2008).

The current consensus is that there are 4 distinct known triggering mechanisms: exposure
to low pH, receptor binding, receptor binding followed by low pH and enzyme-induced
covalent modifications. Low pH (at the endosome, after the virus is endocytosed) promotes
reactions that lead to structural rearrangements of the protein, upon which the FPep position
is shifted, allowing to insert itself into the host’s membrane. This trigger mechanism is
common in viruses such as orthomyxoviruses, togaviruses and flaviviruses (Marsh, 2005, pp.
28) (White et al., 2008).

Receptor binding (at neutral pH) occurs at cell membrane or at intercellular compartments
and it can occur in different conditions, depending of the virus: binding of a host cell
receptor, receptor binding to a receptor-binding subunit of the VFP, receptor binding to a
separate viral receptor binding protein or binding to several receptors; in this trigger the pH
is a non-relevant environment factor, and it is found in paramyxoviruses, herpesviruses and
coronaviruses (White et al., 2008) (Marsh, 2005, pp. 29).

Receptor binding that requires to be followed by low pH is a two-step reaction: a receptor
binds with the metastable fusion competent protein at physiological temperature (at neutral
pH), allowing the protein to perform structural modifications, enabling it to assume its
membrane-embedded pre-hairpin state; after that the contact of the protein with low pH
converts it into its final state, as a trimer-of-hairpins. This trigger was found in avian
retroviruses (Marsh, 2005, pp. 29) (White et al., 2008).

The last known process, which was found in the Ebola virus, also requires low pH, but in
order to active the protein into its fusion capable state this mechanism needs the action of
endosomal proteases, like cathepsins (B and L) and thermolysin for the case of Ebola (White
et al., 2008).

Fusion Peptides

As already mentioned, the FPep is the part of the VFP that can insert into the host’s
membrane during the fusion process. It can also promote lipid-mixing even if detached
from the rest of the protein. These characteristics make it a crucial part of the VFP. This
structure has numerous possible forms, but it tends to always follow at least most of the
following features (note that the next characteristics are not global to all FPeps, since there
are exceptions for most of them): FPeps tend to be hydrophobic structures, with abundant
glycine and alanine residues in its sequence, as well as common aromatic residues and
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finally FPeps tend to be a conserved region (this means that mutations within the FPep
decrease or even abolish the activity of the peptide) (Apellániz et al., 2014) (Epand, 2003).

Fusion Proteins’ Importance as Therapeutic Targets and in Therapy Clinical Trials

The importance of VFPs in the fusion process makes them interesting therapeutic targets
for the diseases associated with those viruses. This is especially true for their FPeps, since, as
already seen, they tend be a conserved region. In fact, these conserved elements are known
drug targets for development of antivirals and vaccines (Apellániz et al., 2014). Alongside
the FPep, another interesting structure for the development of therapies is the final common
trimer-of-hairpins, which corresponds to the fusion capable state of the protein (White et al.,
2008).

Examples of antivirals that have been researched in recent years include peptides com-
posed of Human Pegivirus’ E2 and E1 envelope proteins domains, which target both loop
region and the FPep of the HIV-1 gp41 (Gomara et al., 2019), bnAb’s that can be used
to target Influenza’s hemaglutinin (Wu and Wilson, 2018), and compounds derived from
heptad repeat regions of the fusion envelope glycoproteins that can inhibit Measles virus
fusion mechanism (Figueira et al., 2017).

VFP’s importance can also be exemplified by the defining pandemic of 2020: severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). As mentioned before, this is also an
enveloped virus, and one of the main therapeutic targets that were studied was its VFP,
which in this virus is called spike (S)-protein. Several therapeutic monoclonal antibodies
have been experimented that specifically targeted the SARS-CoV-2, naturally with variable
degrees of efficacy and toxicity, to become potential epitope-specific therapeutics (Li et al.,
2020).

Several of the most promising vaccines being developed for this virus are based on the
spike (S)-protein’s mRNA. This genetic information is inserted into a lipid nanoparticle, that
will enter our cells. Those cells will then produce the protein in its prefusion conformation,
which will induce an immune response on the organism, by producing antibodies capable
of targeting those proteins and later, if in case of a SARS-COV-2 infection, the virus’ VFP.
Examples of this type of vaccine are the Moderna’s mRNA-1273 (Jackson et al., 2020) and
the Pfizer-BioNTech’s BNT162b2 mRNA (Polack et al., 2020).

Another example of the importance of VFP is within research for gene therapy clinical
trials, like exemplified by the paper by Tomás et al (Tomás et al., 2019), on which the authors
describe how VFPs from some enveloped virus, like rhabdovirus vesicular stomatitis virus
and γ-retrovirus, are used to pseudotype lentiviral vectors, which are well-known tools
capable of gene transfer into mammalian cells. In this context, the VFPs are used to enable
these viral vectors to transfer the genes of interest into the target cell, which is crucial in
gene therapy strategies.
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2.2 relational databases

A relational database is defined by its logical structure being solely made up by relations.
Mathematically speaking, a relation is a declaration of a table containing attributes (columns)
and tuples (rows). This declaration does not define the table’s data, but what each column
will store. Each row of data is an instance of the declared relation (Harrington, 2016, pp.
89-90).

Each table’s column has its own unique name and a domain (normally a data type
associated with that attribute). A table’s columns must be able to be observed in every
possible order without affecting the meaning of its data (Harrington, 2016, pp. 90-91).

Each row must be unique in its values and, for each row, there is a single value for a
specific column and a presence of a primary key (a column or a set of columns that can
uniquely identify a given row). Like in the case of the columns, the rows must be able to be
observed in every possible order without affecting the meaning of its data (Harrington, 2016,
pp. 91).

So, in a relational database, the user must be able to access a given piece of data by
specifying 3 things: the table’s name, that table’s columns and the row’s primary key.
Different tables can have related data using foreign keys. A foreign key is a column of a
table’s row that match a primary key of another table’s row, thus relating the data of those
rows (Harrington, 2016, pp. 92, 93 and 98).

So, in relational databases, the data are stored fragmented in multiple tables, which allows
to access only the relevant data when a search is made, and to store the data into multiple
smaller files, instead of a larger one (Oracle, 2021).

2.3 web server

The main objective of this thesis is to develop a web server and, thus, it is important
to make some relevant definitions. Indeed, a way to store, retrieve and display a great
amount of data is through a web server coupled with a relational database. A web server is
a software that receives HTTP (Hypertext Transfer Protocol) requests from a web browser
whenever it requires access to a certain file; when this request reaches the correct server, it
will send the required document, also through HTTP, like schematically shown in the figure
3 (MDN Web Docs, 2019).

HTTP is a protocol, which means that it is a list of conditions that determine communi-
cation between two computers (the client and the server), that must be both textual and
stateless. Being textual implies that HTTP’s commands ought to be plain-text and human-
readable, whilst to be stateless implies previous communications cannot be remembered by
either the server or by the client. These conditions include, but are not limited to: HTTP
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Figure 3: Basic functioning of the HTTP communications between the user’s browser and the web
server: HTTP request from the client (Browser) leads to the server send back the access to
the requested files also trough HTTP; figure inspired by (MDN Web Docs, 2019).

requests can only be sent by clients, they can only be sent to servers and they must always
contain files’ URLs; the servers must always answer to all requests, even if only with an
error message (like the “404 not found” warning).

There are two main types of web servers: static servers, which send the files as they were
created and stored to the browser, and dynamic web servers that have the basic structure
of a static web server, albeit with additional software, such as an application server and
a database, being the main difference that the application server updates the stored files
before sending them to the browser (MDN Web Docs, 2019).

A web server has basically 2 fundamental parts: a back-end and a front-end. The back-end
serves a multitude of tasks, such as connecting the application to the required databases,
assuring correct connection between components and engendering back-end functionality.
There are several frameworks available and some of the most popular include ExpressJS
(that uses JavaScript), CakePHP and Laravel (both based on PHP), Flask and Django (both
using Python). All of them have their strengths and weaknesses, depending on the type
of application for which they will be used. The front-end is what the browser user will
see, for which the developer will require to create a user-friendly interface to allow an easy
utilization of the web server. The front-end is developed using HTML (the content that will
show on the browser), CSS (the layout of the browser) and finally JavaScript or TypeScript,
both of which describe the behaviour of the web page (Williams, 2019).

To understand several of these frameworks, some other definitions must be understood,
like the concepts of API and REST.

An API (Application Programming Interface) functions like a contract that ensures that
whenever a client makes a request, the server will always send back a response in a pre-
determined format or provide a defined action. APIs allow developers to access, update or
delete information and other resources remotely without the need to fully comprehend all
the technical details associated with that particular server (Braunstein, 2018, pp. 9).

REST stands for “REpresentational State Transfer”. REST guarantees that the server
remains stateless (the client and server are independent from each other). This allows the
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request to contain all the required information to handle the request itself, which reveals
extremely important in managing an application with non-periodical requests and with
queries that result in different possible outputs (Braunstein, 2018, pp. 9).

2.4 machine learning

Machine Learning is a field within artificial intelligence that consists in algorithms whose
purpose is to optimize a certain performance criterion using experience gathered from
training datasets. Computationally, this type of algorithms is built by generalizing the
problem from learnt experience regarding a certain class of tasks (Alpaydın, 2010, pp. 1-4)
(Awad and Khanna, 2015, pp. 1-2).

2.4.1 Classes of Machine Learning Algorithm

An algorithm can belong to one of several classes. Supervised learning creates a relation-
ship between the input data and its label (target variable), using its labelled training dataset
to build the model function that tries to generalize the relation between the inputs and the
desired outputs (figure 4). Unsupervised learning aims to hypothesize representations of
input data to obtain predictions of hidden structures in unlabelled datasets; examples of
this type of algorithm include clustering and dimensionality reduction. Semi-supervised
learning uses features of the previous two types of algorithms, matching a small number of
labelled data with a larger number of unlabelled information to create a model; this type
of algorithm is promising in human learning, such as speech and vision. There are a few
other well-known types of ML, such as reinforcement learning, transductive learning and
inductive inference (Alpaydın, 2010, pp. 11) (Awad and Khanna, 2015, pp. 6-9). Here we
will focus on supervised ML.

2.4.2 Pipeline to Develop a Machine Learning Model

Before starting to develop a supervised ML algorithm, it is important to understand that
it has also its shortcomings, mainly that ML will not be able to attain perfect accuracy in
most cases. This type of algorithm is most useful when the problem in question requires a
large amount of data with unknown patterns. In order to develop this type of algorithm one
should usually follow these steps (Awad and Khanna, 2015, pp. 5-6):

1. Collect all the data that can be used to build the model;

2. Preprocess the data so that it can later be used by a ML model; this step does not have
a universal pipeline to follow, but may include tasks such as putting the data in an
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Figure 4: General procedure of supervisioned learning.

appropriate format, removing or treating missing / incorrect data, sampling it into
intervals (so to it can minimize redundancy) and normalizing;

3. Transform the data to attain features adequate to be the input of the training algorithm
(this can be performed in the form of feature scaling, decomposition into features,
aggregation of several instances into one feature or feature selection);

4. Split the dataset into training and testing datasets, either by defining them manually
or through methods like k-fold cross-validation, boosting or bagging (these last two
methodologies are based on bootstrap);

5. Select one class of ML models and train it: use the training dataset to be the input
to training algorithm which will output the trained model; this step will possibly
include processes such as hyperparameter optimization to try to improve the overall
capabilities of the model;

6. Test the algorithm to validate its effectiveness and performance in a test dataset not
used in the previous step; in case of non-desirable results, it might be need to perform
additional hyperparameter optimization in the training step;

7. If the last step ended with good results, some other methods can be applied to try to
improve the output, like combining different created models to obtain a better overall
one;
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8. Finally, apply the final model to make predictions in new unlabelled datasets.

2.4.3 Types of Machine Learning Algorithms

There are several classes of ML algorithms, each with its methodology and applications.
Some of the most relevant and well-known will be reviewed below.

Support Vector Machines

A Support Vector Machine (SVM) model will use its training dataset observations as
points in a multiple dimension space, typically applying a transformation to the original
points through a kernel function which increases the dimensionality of the space. The
algorithm will build a map (hyperplane), which consists in the descriptive surface of the
model, that is optimized itself by finding the hyperplane that confers the maximal margin
(or functional margin) that can best separate the partitions implied by the class labels. The
model represents this optimal hyperplane as a group of support vectors. The label of an
unknown observation is predicted as the class corresponding to the partition it will be part of.
This type of model has the capability of generating both simpler (linear) or highly complex
decision boundaries through the use of kernel functions, allowing them to be applied in
several types of problem. They are useful in such tasks such as classification, regression
and novelty detection (Awad and Khanna, 2015, pp. 11, 67-68) (Ben-Hur and Weston, 2010)
(Noble, 2006).

K-Nearest Neighbours

A K-Nearest Neighbours (KNN) model classifies an unlabelled example by selecting the
group of the k examples in the training dataset that are most similar to the example, and
labels it based on the most common class label within that group of nearest neighbours. This
type of algorithm requires a labelled training dataset, a distance metric (such as Euclidean
or Manhattan) to determine the similarity between pairs of examples and the definition of a
parameter k. This parameter must be chosen wisely, since different values may lead to very
distinct neighbourhoods. This algorithm tends to be computationally less demanding than
many other algorithms of ML, which allows to apply it to datasets with multiple dimensions.
However, the quality of the training dataset will be a key factor to create an accurate model
and large training and testing datasets (or with a high number of dimensions) may lead to
models that are too complex (Awad and Khanna, 2015, pp. 11) (Kuang and Zhao, 2009).
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Naı̈ve Bayes

Naı̈ve Bayes (NB) is a probabilistic classifier that estimates probabilities for class labels by
calculating the frequency of each possible combination of feature and label values in the
training dataset. This method uses, as its name implies, the Bayes’ Theorem for conditional
probabilities to infer class probabilities with a strong assumption of independence, which
explains the “naı̈ve” in the algorithm’s name. This means that it assumes all attributes are
independent from one another (conditional independence), which, even if not completely
true in most situations, shortens the algorithm learning time, maintaining still a reasonable
approximation in many problems. It is one of the simplest ML algorithms to build and
use, since it does not require extensive parameter estimation methods, and it is especially
effective in certain applications such as text classification and spam filtering (Awad and
Khanna, 2015, pp. 15) (Patil and Sherekar, 2013) (Zhang, 2005).

Classification and Regression Tress

Decision / regression trees are composed by nodes (each will make a test regarding a
single feature of the sample) and leaves (the terminal nodes that provide an output). Nodes
are connected to the following nodes by edges, that lead a sample to the next test (or, if a
leaf, provide an output). To build a model, this algorithm starts with the entirety of the
training dataset in the root node, analyses all possible tests (attributes) and selects the one
which is the most promising to accurately predict the intended target, thus splitting the
dataset into child nodes (according to the possible values of the attribute). This recursive
partitioning will repeat for each node until each terminal node (leaf) is associated to only
one type of output (when this occurs the leaf is called pure), which may not be possible for
all models. To reduce the complexity of the model, so that it can become less prone to overfit,
the algorithm can either stop creating branches early (pre-pruning) or try to remove some of
the less useful branches (pruning). The prediction of an unlabelled sample corresponds to
verify on which partition of the feature space it belongs, providing the output of the leaf
reached when navigating the tree based on the feature values of the example (Awad and
Khanna, 2015, pp. 15) (Loh, 2011) (Müller and Guido, 2016, pp. 70-74).

Linear Regression

For regression, a linear function is described by the following equation:

ŷ = ∑ (w[i] ∗ x[i]) + b, iε[0, p] (1)

where ŷ is the predicted output, x[i] corresponds to the value of the i-th feature for a given
example, p is the number of features present in the function, and w and b the parameters
that describe the model.
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This model tries to find the w and b parameters by minimizing the mean squared error.
i.e. the sum of the squared differences between the correct outputs (y) of the training dataset
and the predictions (ŷ). By not requiring to define hyperparameters, this model is simple to
build and train, but does not have ways to control its own model complexity.

One alternative to address this issue is using regularization methods, which aim to restrict
a model to prevent overfitting. One example of regularization is Ridge regression (also
called L2 Regularization), which follows the same basic principles of linear regression,
but also tries to keep the w (coefficients) as close to zero as possible, thus minimizing the
importance of each individual feature in the model. Another common method is Lasso (or
L1 Regularization), which is similar to Rigde, but penalizing weight values by its absolute
value (L1-norm). This typically leads some of the w values to be exactly zero, removing all
the importance given to some of the features present in the dataset (which in essence is also
a form of feature selection) (Müller and Guido, 2016, pp. 45-53).

Logistic Regression

A Logistic Regression model corresponds to a probabilistic statistical classification algo-
rithm. This model forms multivariate regression relations between a dependent outcome (Y)
and several independent attributes (X). The logistic function (P(Y|X), as seen in the figure 5,
has all its possible outputs contained between 0 and 1, and the model will use this function
to select the predicted output of an unknown observation. In binary classification problems,
values of P(Y|X) under 0.5 will lead the model to assume a 0 (zero) label, and an outcome of
1 will be assumed if the value is bigger than that threshold (Awad and Khanna, 2015, pp.
22-23) (Lee, 2005).

Artificial Neural Networks

As its name implies, this type of model is inspired in the structure of a biological neuron.
In this structure, a given number of inputs, each with its own weight, enter the neuron,
which sums those inputs and passes the value of that operation to an activation function,
giving the corresponding output. An artificial neural network (ANN) uses several layers of
these neurons (or nodes). It has one input layer, one or several hidden ones and an output
one. The hidden layers, as well as the output one, are characterized by having its specific
weight matrix and bias vector (structure that allows to shift the flow of data), and output
vector, allowing to construct complex structures.

The optimal number of hidden layers, and how many neurons each layer should have,
will depend greatly on the problem at hands. Each output for a neuron corresponds to a
non-linear transformation of the inputs. Increasing the number of neurons increases the risk
of overfitting of the model, and it will struggle to generalize new data, which will worsen
the overall performance of the model. So, during the training stage of this model, it must
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Figure 5: The equation on the top left expresses the logistic function and the one on the top right
the one to obtain the coefficients of the logistic regression; the graph shows this relation
where all the values of the P(Y|X) are comprised between 0 and 1. Figure and equations
from (Awad and Khanna, 2015, pp. 22-23).

learn from a significant amount of data to create a model complex enough that can be useful
for the problem, but not too much to not lose its ability to generalize. Because this type of
model can be used on very complex problems, it is a very popular ML algorithm in areas
such as biology and chemistry (Amato et al., 2013) (Awad and Khanna, 2015, pp. 129-133).

Hidden Markov Model

An Hidden Markov Model (HMM) model can be described as a hidden Markov chain with
a given number of states, that can be characterized by a number of possible (hidden) states
and by a number of observed states (or symbols). There are two types of transitions, each
with its associated probability: state transition and observation emission (the latter describes
each state), and finally the model can also be described by its initial state. This type of model
has several advantages that makes it an interesting algorithm for certain applications, such
as handling new data robustly and having a relative short model development time. Even
though HMM are not usually classified as a supervised learning model, they can perform a
similar purpose if they use sequential data. HMMs are extensively used in temporal pattern
recognition, such as speech and calligraphy recognition, and DNA sequence analysis (Awad
and Khanna, 2015, pp. 24-25) (Hassan and Nath, 2005).
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2.4.4 Ensemble Models

It is common to ensemble different ML models to create functions capable of correctly
predicting outputs with better accuracy. For that, an algorithm can be built with several
types of ML models, on which a combination function is used so that the ensembled model
can provide an overall output. To work properly, the ensemble model requires its individual
models to be at least “weak learners” (better than random) and those models to differ
between them in the examples they get wrong. One of the ways to achieve this is to train
different models with distinct datasets through cross-validation, bagging or boosting, or to
inject randomness into the algorithm by turning deterministic decisions into stochastic ones.

Combination functions can be implemented through model votes or confidence metrics
(or some combination of both), in classification problems; in regression ones it is common to
use simple or weighted average of the individual outputs (Awad and Khanna, 2015, pp. 3 &
13) (Dietterich, 2000) (Whitehead and Yaeger, 2010).

Random Forest

A Random Forest (RF) is a type of ensemble model that is composed by several decision
trees to provide an overall prediction. In order to form this combination of trees, it needs
to use bagging, which is a method that creates a set of training sets from the original
one, by sampling in each iteration N examples with replacement (N being the original
size of the training sample). In this type of model, each individual decision tree is built
on a subset of the original features, being typically a tree with low complexity. Each tree
makes its own output predictions, and since those individual trees are weak learners, these
predictions tend to have high variance between them. However, by having several trees in the
“forest”, it allows the model to provide averaged outputs based on those individual models,
thus becoming a strong learner, usually with better performance and less variance when
compared with a single deep tree. RF can also help to determine the relative importance of
each variable (Awad and Khanna, 2015, pp. 24) (Pal, 2005).

2.4.5 Evaluating a machine learning model

Useful metrics have been developed to determine the accuracy of the created model, i.e.
the frequency of correct predictions over a dataset, and other relevant statistics. In binary
classification models, a confusion matrix can be built (table 1), which is a table where the
model’s predictions produced are shown as true positives (TP), false positives (FP), false
negatives (FN) and true negatives (TN), when taking into account their output and actual
result (Alpaydın, 2010, pp. 489) (Awad and Khanna, 2015, pp. 2-3).
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Confusion Matrix
Predicted Value

Positive Negative

Real Value Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Table 1: Confusion Matrix.

With those values, useful metrics can be computed to describe the performance of the
model (in a classification model) (Alpaydın, 2010, pp. 490) (Awad and Khanna, 2015, pp. 3,
52-53) (Boughorbel et al., 2017):

Accuracy =
TP + TN

TP + TN + FN + FP
(2)

Speci f icity =
TN

TN + FP
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F−Measure =
(β2 + 1) ∗ (Precision ∗ Recall)

(β2) ∗ Precision + Recall
, β ∈]0, ∞[ (6)

MatthewsCorrelationCoe f f icient =
TP ∗ TN − FP ∗ FN√

(TP + FN)(TP + FP)(TN + FP)(TN + FP))
(7)

For regression models we need to define other metrics applicable to continuous variables,
such as RMSE (root mean squared error) and MAPE (mean absolute percentage error), as
shown in the following equations, being e the differences between the real and output values,
Y the real value and n the number of observations (Cho, 2003):

RMSE =
2

√
∑ e2

n
(8)

MAPE =
∑ |e| /Y

n
(9)

All these metrics help to select the most appropriate model for a given problem, and to
compare the performance of different models. More sophisticated approaches have been
developed to better determine the model’s performance. One of the most well-known is
k-fold cross-validation, in which the dataset is randomly split into mutually exclusive k
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sub-datasets of roughly the same dimensions; the model trains those k times, within each
cycle using one of sub-datasets as its validation dataset, and the rest as its training, allowing
to have k sets of values of performance for the model, in turn having a better perspective
of its accuracy metrics. One special case within k-fold cross-validation is leave-one-out
cross-validation, when k is equal to the size of the dataset, and it is especially useful for
small samples of data.

Another important method is called bootstrap, which creates a bootstrap sample from n
instances sampled (with substitution) from the original dataset, and that will become the
model’s train dataset, with the same size of initial dataset; the rest of the data will be used
for testing the model (Alpaydın, 2010, pp. 486-489) (Kohavi, 1995).

2.4.6 Feature Selection

A frequent necessity is to select the features that generate better and simpler ML models,
with shorter training cycles, in a process referred as feature selection, on which the most
irrelevant and redundant features are removed. This procedure is usually performed by
fixing a maximal number of features and determine how many and which combination of
them leads to models that have the minimal generalization error.

For the first one there are 3 distinct methods: filter, wrapper and embedded. Filter
methods rank each feature by a given metric (such as Pearson correlation or Fisher score),
and then sort all attributes by that property, enabling to remove the less significant ones;
this methodology is simple and computationally light.

Wrapper methods perform searches through the feature space, creating subsets of features,
and analysing each subset by training a specific model to evaluate its predictive power
(through an error metric as accuracy or f-measure), and then decide which subset leads to
the model with the best performance. The output of this type of algorithm is highly related
with the chosen learning algorithm, and it is also a more expensive method in computational
terms.

Embedded methods combine feature selection and model fitting, creating a single op-
timization methodology; there are several algorithms within this class, each with their
characteristics (Peralta and Soto, 2014) (Weston et al., 2001).

2.4.7 Application of Machine Learning in Peptide Prediction

Frameworks for Machine Learning Development Applied to Proteins

Several ML tools are being developed and published that help to augment our under-
standing of proteins. Those models are usually applied to predict a protein’s subcellular
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location, structural characteristics and function sites, fold recognition, or protein–protein and
protein–ligand interactions (Chen et al., 2019). Even though there are several frameworks
available to help in such tasks, most of them either focus on just one (or small group of)
step(s) necessary to the development of a ML model, or, if they are more advanced, they
tend to lack some of the necessary tasks to build a model with good performance (such as
feature selection functions) (Chen et al., 2019).

Two of the most promising frameworks within the category of web servers that allow
the development of ML models applied for proteins are BioSeq-Analysis (Liu et al., 2019)
and iLearn (Chen et al., 2019). Both contain functions for feature extraction and model
construction and evaluation. iLearn is slightly more complete than BioSeq-Analysis, since it
contains more feature extraction and selection functions, and it allows the training of more
types of models, and finally, it can also use ensemble methods to combine models, but both
can be very useful when building models for proteins (Chen et al., 2019).

Cell-Penetrating Peptides Prediction

One of the most promising areas where ML models are being applied is in cell-penetrating
peptides prediction. These peptides (as its name implies) can insert themselves into cells,
being interesting molecular tools in multiple biomedical applications (Manavalan et al., 2018).
With this type of task in mind, Manavalan et al developed a web server called MLCPP, that
contains a two-layer prediction framework: the first one predicts if a specific peptide can be
classified as a cell penetrating peptide or not (build using an ERT model, which is a model
similar to RF) with an MCC of 0.768; and the second layer predicts its uptake efficiency
(a RF model with an MCC of 0.445) (Manavalan et al., 2018). Another example of such
application is proposed by Kumar et al, that also launched a web server, called CellPPDMod,
that uses a RF model with data from peptide’s 2D and 3D structure, as well as fingerprints,
and achieved accuracy of 95.1% and an MCC value of 0.90 (Kumar et al., 2018).

Antimicrobial Peptides Prediction

Another field that has gained a lot of attention in the past few years addresses the
prediction of antimicrobial peptides. Examples of web servers with this purpose include
AntiBP2 that uses peptide’s amino acid composition (AAC) based features to train SVM
models, which achieved an MCC value of 0.843 (Lata et al., 2010). Another example is
iAMP-2L which uses a two-layer classifier: the first layer to detect if a peptide is antimicrobial
or not, and the second to identify the functional type or types. It uses PAAC (pseudo amino
acid composition) information as inputs to KNN models, achieving an MCC value of 0.726

(Xiao et al., 2013). Another tool called iAMPpred used SVM models that learned from
compositional, physicochemical and structural features, achieving MCC values between 0.74

and 0.91 (depending of the test dataset and combination of used features, which included
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AAC, PAAC, physicochemical and structural features) (Meher et al., 2017). AmPEP used also
RF models trained with information based of distribution patterns of each peptide’s amino
acid properties along its sequence, with the best model achieving an MCC performance of
0.900 (Bhadra et al., 2018).

Anticancer Peptides Prediction

Several papers describe the development of anticancer peptides prediction models. For
example, Anticp used SVM models which received as input AAC and binary profiles
of SwissProt entries of anticancer and random peptides (or antimicrobial peptides, in
their alternative dataset); the model trained with the binary profiles achieved MCC of
0.83 (Tyagi et al., 2013). Another method named MLACP trained SVM and RF models
to classify anticancer peptides using features from the amino acid sequences, including
AAC, dipeptide and atomic composition, and physicochemical properties, obtaining MCC
value of 0.78 (Manavalan et al., 2017). A related predictor called ACPred-FL applied SVM
models that used the features listed in MLACP, with the addition of a few more, like CTD
(Composition, Transition, Distribution), and after feature selection, trained models achieved
MCC performance of 0.813 and 0.814 in the different tested feature descriptors (Wei et al.,
2018). Hajisharifi et al proposed SVM models that were trained with Chou’s PAAC and
local alignment kernel data; the former achieved a MCC value of 0.66 and the latter of 0.784

(Hajisharifi et al., 2014).

Machine Learning applied to Fusion Proteins / Fusion Peptides

Even with a lot of effort put in applying ML to proteins, there are not many examples of
ML models specifically developed for VFPs. The ones that can be found are usually aimed
to predict where the FPep locates within the VFP, given its crucial role in the fusion process.
Moreover, they tend to focus on a single viral family, which is a much simpler problem than
building a general model that can be applied to VFPs from different viral families.

One of the models developed for this task is proposed by Wu et al (2016), in which they
developed HMM models with similarity comparison. Their models were trained with NCBI
retroviruses’ FPep entries (with as complete as possible annotations). This model predicts
roughly the location of new FPeps, which through a similarity comparison is more accurately
located. This last step determines the “refined” FPep position by maximizing the amount of
matches, as well as the Smith-Waterman local alignment score, between the initial predicted
FPep and an annotated FPep, minimizing also the absolute difference between the initial
and ending positions of the model’s predicted location and the “refined one”. This overall
procedure achieves an accuracy of 92.0% (10-fold cross-validation) and 92.3% (leave-one-out
cross-validation) (Wu et al., 2016).
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Wu et al, in 2019, suggested a different computational model to approach similar problems.
They used the same data as mentioned on the paper above (also for retroviruses’ FPeps),
but also included entries from UniProtKB and UCSC genome browser databases (including
annotations when available and removing entries deemed redundancies or with inaccurate
annotations). For their training dataset, from each annotated FPep they retrieved 2 types
of sample, one containing the start position of the peptide and the other containing its
end position. All samples consist in arrays with a random size that will contain several
amino acids before and after the true position of the start / end amino acid. They extracted
features from each sample in the form of a vector containing normalized position weight
matrix method values. From those features they trained SVM models capable of predicting
each of those positions in a peptide sequence (if the model is not able to predict both of
those positions for a particular sequence, the algorithm would consider that there is not a
FPep domain on it). This methodology achieved accuracies of 91.2% and 89.1% in 10-fold
cross-validation and 5-fold cross-validation respectively (Wu et al., 2019).

To address the same issue, Pereira et al started by building 3 different datasets from a
total of 107 PDB and 640 UniProt entries from 255 different enveloped viruses, where FPeps
were detected in 617 of those sequences. The first dataset allowed to detect whether the
model could identify FPeps from other random sequences within the VFP; the second one
to determine if it could distinguish between FPeps and transmembrane domains; and the
third negative dataset contained both random VFP segments and transmembrane domains
to access the models ability to discriminate FPeps from non-FPeps sequences. Using SVM it
was performed a feature generation for each dataset. Features were generated by calculating
different physicochemical descriptors using available packages and the best ones were
selected using an iterative scheme for feature elimination based on linear SVM model. These
features included single amino acid and dipeptide compositions, hydrophobicity, polarity,
secondary structure, charge and solvent accessibility, and PAAC. After data pre-processing
and feature selection (using support vector classifiers), several models were tested, with
varying results, but the one with the most promising performance was a weighted ensemble
of KNN (with a weight of 3), SVM (4), neural network (2), Logistic Regression (2) and
Naı̈ve-Bayes (3) models. This model achieved accuracies of 0.94, 0.99 and 0.81, and F1 Scores
of 0.93, 0.98 and 0.83, for the first, second and third datasets, respectively (Pereira et al.,
2019).

Sequeira et al built ProPythia, a general automated ML platform for protein classification,
and applied it to the same problem described above (Sequeira et al., 2019). They took
the 3 original datasets developed by Pereira et al and for each of those built several new
datasets: 4 datasets resulting of feature selection of the generated continuous features
(one using support vector classifiers, a second using a tree classifier and the other two
were the result of applying univariate feature selection on the first two), one with AAC,
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another with Composition, Transition and Distribution (CTD) information, and the latter
containing PAAC features. Several models were trained, including SVM, RF, stochastic
gradient descent, Gradient Boosting, KNN, ANN and NB models. For the first dataset (of
which the aim was to verify the model’s capability of distinguish FPeps from other random
sequences of VFPs) the best models were SVM’s and ANN with the datasets created by
feature selection (with MCC and accuracy values greater than 0.94); the second (to verify
the model’s capability to distinguish FPeps from transmembrane domains) achieved the
best results using SVM, stochastic gradient descent and ANN, with the dataset built using
support vector classifiers for feature selection, achieving performances near 1; the third (to
distinguish FPeps from random sequences from VFPs and transmembrane domains) had
naturally lower performance metrics (due to the more complex nature of the problem), but
still achieved MCC values around 0.8 and accuracy of 0.9 when using SVM or stochastic
gradient descent, with the support vector classifier dataset for feature selection (Sequeira
et al., 2019).

Besides prediction of the location of FPep in a VFP sequence, ML models are also being
applied to predict possible antiviral peptides for enveloped viruses, by targeting fusion
processes (on which VFPs and their FPeps are fundamental, as referred before). One such
work focused in this type of prediction is reported by Xu et al, that built SVM models using
5 physicochemical properties of peptides (isoelectric point, molecular weight, grand average
of hydropathicity, solvent accessibility and secondary structure), as well as using a statistical
scoring function based on the peptide sequence, from a library of 202 known enveloped
virus entry inhibitors, as the model’s inputs. The model with the best performance achieved
an accuracy of 92.3% (5-fold cross validation), with a MCC value of 0.84 (Xu et al., 2015).

2.4.8 Machine Learning Packages

Scikit-Learn

Scikit-learn is a high-level efficient package that contains several easy to use ML methods
(both supervised and unsupervised) in Python language, using some of its libraries like
Numpy and Scipy (it also uses some C++ libraries). It has several methods that allow to
perform the ML tasks described above, such as tools to preprocess data, to create models, to
determine a model’s performance and perform model selection (Pedregosa et al., 2011).
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M E T H O D S

3.1 relevant biological databases

There are several protein databases available, that allow to retrieve a lot of information
regarding proteins, such as their sequence, structure, function, families, post-translational
modifications, subcellular localization, binding and interactions locations and energetics (Xu,
2004).

The following descriptions concern some of the most relevant and widely used protein
databases: UniProt, NCBI Protein and Protein Data Bank. Alongside those protein databases,
NCBI Taxonomy will also be referred, which holds data regarding the taxonomy of the
viruses that contain the referred proteins, as well as information regarding those viruses’
host organisms.

Finally, Immune Epitope Database will be also explained, detailing their importance
regarding epitope information.

3.1.1 UniProt

Universal Protein Resource (UniProt) is a well-known open-source protein sequence and
annotation database. It is comprised by 3 distinct databases: UniProt Knowledgebase
(UniProtKB), the UniProt Reference Clusters (UniRef), and the UniProt Archive (UniParc). It
was a result of a joint venture of the European Bioinformatics Institute (EMBL-EBI), the Swiss
Institute of Bioinformatics (SIB) and the Protein Information Resource (PIR). Each protein
entry (depending on the level of curation) can have information regarding sequence, function,
coding gene, structure, organism taxonomy, subcellular location, processing, expression,
interaction and more (The UniProt Consortium, 2019).

26
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3.1.2 NCBI Protein and NCBI Taxonomy

NCBI’s (National Center for Biotechnology Information) mission is to gather new infor-
mation technologies (like automated systems to store biological information, interfaces to
allow the easy use of that data and ways to gather new information) to help understand
fundamental molecular and genetic processes that control health and disease. It has several
databases like NCBI Protein, whose entries usually contain information regarding sequence,
coding genes and links to other databases to complete the information about a specific
protein or peptide. Another pertinent database is the NCBI Taxonomy one, since it contains
all the relevant taxonomy data regarding organisms, including viruses and their hosts (NCBI
Resource Coordinators, 2016).

3.1.3 PDB

Protein Data Bank (PDB) aims to, according to their own moto, “enable open access to
the accumulating knowledge of 3D structure, function, and evolution of biological macro-
molecules, expanding the frontiers of fundamental biology, biomedicine, and biotechnology”.
It mainly provides 3D structure data of proteins (or of parts of them), DNA and RNA
molecules, but can also include other information depending of its curation (Burley et al.,
2019).

3.1.4 IEDB

Immune Epitope Database or IEDB (http://www.iedb.org/) is a repository of experimental
data of immune epitopes, funded by National Institute of Allergy and Infectious Diseases.
Epitopes, according to their own documentation, are “molecular targets of adaptive immune
responses”, which are important for researching possible therapies for specific medical
conditions. This database contains epitope’s information gathered mostly from literature,
all of which are manually curated. They perform searches of PubMed articles related to
issues such as allergies, infectious diseases and autoimmunity every two weeks to always be
up-to-date with the most recent publications. Besides providing this type of information, this
repository makes available several tools to allow to perform prediction of epitopes within
biological sequences (Vita et al., 2014) (Vita et al., 2018).

3.2 sequence alignment tools

A sequence alignment search allows scientists to find homologous biological sequences,
which helps to determine the function of an unknown sequence comparing it against similar

http://www.iedb.org/
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Type of BLAST Type of alignment Programs

nucleotide blast Nucleotide sequence
vs. nucleotide sequence

Megablast: used in intra-species
comparison;
Discontiguous megablast: for
cross-species comparison;
Blastn: for cross-species comparison
also, but for shorter queries.

protein blast Protein sequence
vs. Protein sequence

Blastp: sequence identification
and similarity searches;
DELTA-BLAST: similar with blastp
but with higher sensitivity;
PSI-BLAST: iterative search for PSSM
construction or identification of
relatives for a protein family;
PHI-BLAST: protein alignment with
input pattern as constraint

blastx nucleotide translated sequence
vs protein sequence blastx

tblastn protein sequence
vs nucleotide translated sequence tblastn

tblastx nucleotide translated sequence
vs nucleotide translated sequence tblastx

Table 2: Description of the several types of BLAST analysis (NCBI, 2016)

ones with already known functions. There are several sequence alignment tools available,
but one of the most popular is BLAST (Basic Local Alignment Search Tool). It uses heuristic
algorithms to produce results quicker than exact methods such as dynamic programming. It
also provides an estimation, called expect value, of the number of matches that could have
occurred by chance, helping to evaluate the confidence given to the alignment produced.
As referred by its name, it performs local alignments which is useful to detect similarities
against domains/shorter stretches of sequences, allowing to detect some sub-sequences’
functionalities (Madden, 2013). There are several types of BLAST, which are described in the
table 2.

NCBI has a functionality called NCBI BLAST which is one of the most popular tools to
perform BLAST analysis, that allows the user to choose between all the types mentioned on
the table above, and to run the analysis against all available databases (a list that includes
SwissProt, RefSeq and PDB), or run it against a specific database. Besides that, it enables
to select other important parameters like scoring (match/mismatch and gap costs) or filter
and masking parameters, which can affect heavily the output given by the BLAST analysis
(NCBI, 2016).

Another one of the most well-known sequence alignment tools is Clustal, which the latest
version of it is called Clustal Omega. This package allows to perform multiple sequence
alignments between three or more biological sequences in a fast and accurate manner. It
retains the core of the progressive sequence alignment methodology from its predecessors
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(Clustal X and Clustal W), but upgrades them by using a mBed algorithm to allow to
generate guide trees of any possible size, while also using a profile–profile aligner with a
high degree of accuracy, which is based on HHalign package (Sievers et al., 2011) (Sievers
and Higgins, 2014).

Other significant sequence alignment tools include HMMER, that is a software that
through probabilistic methods (HMM models) can detect sequence homology, being widely
applied to protein sequences (Finn et al., 2011). Weblogo is also a useful tool, that, given
a multiple sequence alignment, generates graphical representations of sequence patterns,
giving a description of the amino acid conservation for each position of the sequence. The
taller a character (in terms of bits) is one specific position, the more conserved this amino
acid is within the analysed sequences (Crooks et al., 2004).

BioPython

BioPython is an open source application programming interface (API) aimed for bioinfor-
matic or computational biology programmers to work with sequences of nucleic acids and
proteins. Through its class “Seq”, it allows to work with biological sequences as basically
Python strings, albeit defining its alphabet (p. e. DNA’s “ACGT”) and some other features.
The “SeqIO” class provides an interface that allows to handle biological sequence data in
several formats (such as fasta, genbank and embl), or even work with sequence alignments.
BioPython allows to access data from several databases, such as NCBI, ExPASy and KEGG,
and it also allows to perform Blast alignments calling the NCBI Blast server, along several
other useful tools for a bioinformatician (Cock et al., 2009).

3.3 mysql

MySQL is a popular open-source management system that uses SQL (“Structured Query
Language”), which is a well-known and widely used language to access and manage
databases. With the MySQL server, one can create relational databases by defining their
attributes in a relational schema, and then add and modify its data using SQL statements.
This is a fast, user-friendly and reliable framework that can be run from a personal computer,
but also supports web servers with multiple different back-ends, client programs and tools,
and APIs (Oracle, 2021).

3.4 django

Django is an open-source Python web application (one example of those is web servers)
development framework that allows developers to build their applications faster, since it
contains several features that help the construction of software development projects, such
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as built-in authentication and content administration. It is easy to learn, due to its simple
syntax and since Python tends to be a simpler language to learn when compared with other
languages, Django is usually attractive for beginners. This is also a secure software, and
with ample maintainability, scalability and versatility, and a popular framework to utilize
when it is required to retrieve data from SQL databases (like MySQL and PostgreSQL)
(DjangoSoftwareFoundation, 2019) (Plekhanova, 2009).

To build a web server application in Django that can access data from a database (or
multiple ones) and export these data to a second application that will act as the front-end,
one possible way is through the use of the Django REST API (DjangoRESTFramework,
2020a).

This framework is a useful tool to develop Web APIs, by allowing to expand the already
described capabilities that the ”default” Django contains of easily creating a web server by
providing, among other features, pre-built views for the data to be displayed, additional
authentication features that are non-present in the ”base” Django, and also enabling serializa-
tion (DjangoRESTFramework, 2020a). This latter is of great interest, since it allows complex
data (like database querysets) to be converted to Python datatypes, which themselves can be
converted to JSON or XML data, both of them datatypes that other frameworks can easily
use. Django REST also includes features to enable deserialization, a process that converts
parsed data, that can be sent from other frameworks, back to more complex types that can
be used inside the Django app (DjangoRESTFramework, 2020d).

After creating the Django project (which is done automatically using the ”django− admin
startproject ′project name′” command), several files are created:

• manage.py allows the programmer to interact with the Django project and it is the one
that needs to be launched in order to run locally the project (most of the times it does
not require to be modified after the automatic creation).

• settings.py contains all the definitions necessary (all the installed apps, all the required
middleware, templates, ...) to run the apps contained within the Django webserver.
To connect Django to a database (SQLite, MySQL, PostgreSQL, Oracle,. . . ) the app
developer must define in this file’s parameter DATABASES the database’s engine,
name, user, password, host and port. Most of the installed apps built for Django REST
require to have several of their definitions declared here also.

• urls.py contains all the URL declarations contained in the project (all the possible
directories contained in the URL of the app).

• wsgi.py; WSGI is the Django’s main deployment platform; this file will be mostly
relevant when the developer puts the application online, since the app should be started
from this file instead of the manage.py during that stage (DjangoSoftwareFoundation,
2020b) (DjangoSoftwareFoundation, 2020f).



3.4. Django 31

Figure 6: Structure of a Django REST project.

Next, a Django app can be created (through the python command ”python manage.py
startapp ’app name’”), with the necessity of adding the app name into INSTALLED APPS
parameter of settings.py. This process automatically generates the following files, on which
most of the development will be done (the project’s structure can be seen in the Figure 6):

• admin.py contains models and functions related to the administration of the appli-
cation, including searching, creating, updating and deleting table data, as well as
administering the levels of access each user can be entitled to.

• apps.py contains further applications contained in the “main” app.

• models.py; models are, according to Django documentation, “sources of truth about
your data”. This file contains the description of the database’s tables (including all the
table’s fields key behaviors, like the data types of each attribute and each data table’s
foreign keys); this file can be built automatically using the ”inspectdb” command, if
the database is already built and if its settings are correctly described in the settings.py.

• tests.py, which contains functions that check the operation of the webserver’s code; it
can verify parts of the application or its overall functioning; basically, these functions
will identify and prevent eventual problems on the code and its respective requests.

• serializers.py: contains all the functions that perform the serialization of the data from
the models to the views (and vice-versa);
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• views.py; a view consists in a function or a method that determine what is the response
provided to a given request, which can or cannot be viewed in the browser whether
or not there is a template associated with the view. Django will utilize a set view in
function of the URL of the request, or, more accurately, the part of the URL after the site
/ domain name, that is requested (DjangoSoftwareFoundation, 2020c) (DjangoSoftware-
Foundation, 2020a) (DjangoSoftwareFoundation, 2020d) (DjangoSoftwareFoundation,
2020e)

Django REST can also contain several other optional functions that will help filter and
paginate the data shown in the browser. The following list describes some of those function-
alities:

• DjangoFilterBackend allows to filter the shown JSON data from a particular serial-
izer by exact matches against one or more of the object attributes. These attributes
will be included in the URL of the browser, in the following format: “urlname/-
page?param1=(string)&param2=(string)&...”. In order to use it, besides being declared
in the settings.py (as stated above), for each view the developer must define all the
possible attributes capable of restricting the data (within the filterset fields command)
(DjangoRESTFramework, 2020b).

• SearchFilter allows to perform single query parameter-based searching, and, unlike the
former, it can detect partial matches. The parameters will be added into the URL, in a
similar manner to the one shown in the Filter functionality. In order to incorporate
this functionality into the application, for each of the views, the developer ought to
define all the possible query attributes (within search fields parameter) against which
the search will be performed (DjangoRESTFramework, 2020b).

• PageNumberPagination allows to define how many objects show on a single page and
create links for all possible subgroups of data. This could be done automatically
by adding this package as paginator class and defining the size of the page on the
PAGE SIZE parameter in the settings.py, or one can build custom paginators as a class
within the view file (DjangoRESTFramework, 2020c).

3.5 angular

Angular is a Typescript-written framework that allows the development of the single-
page applications in Typescript and HTML for multiple devices. It enables to extend the
capabilities of HTML vocabulary, by introducing ways to, among other features, create
dynamic views, by creating data binding and updating the view whenever the model
changes. It has also the capability of creating components that allow parts of the code to
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be reusable. This last one makes it also more efficient, since it only loads the necessary
components for the page that is requested (Noring and Deeleman, 2017) (Super-powered by
Google, 2018).

An Angular application has as its core building blocks the modules (in Angular also
known as NgModules) that allow to compile components and retrieve related code to put it
into functional sets. All Angular applications have at least one module, the root module, that
allows to bootstrap the application, with the rest of the application’s modules commonly
referred as feature modules (Super-poweredbyGoogle, 2020a).

Components in Angular serve the same basic purpose than the view in Django: deter-
mining which sets of browser elements Angular can choose among and modify, according
to the program logic and data. In essence, an Angular application is a tree of different
components, each of them with its associated data, purpose and utility, and they are called
whenever needed. An Angular component encompasses 3 types of data: HTML, CSS and
JavaScript (or TypeScript, which is Javascript-based code). Components use services that
contain functionalities that are not directly related to views but that can be injected into
components as dependencies, allowing Angular components to be modular, which enables
their code to be reusable. Services are the way parts of the Angular app are allowed to
share data among themselves. This server data flow usually takes the form of a data stream,
that permits to transform more easily the data that is being returned and modifying it to
the desired format to be used (Super-poweredbyGoogle, 2020a) (Super-poweredbyGoogle,
2020b) (Super-poweredbyGoogle, 2020c).

The HttpClient method is the Angular method to fetch data from external servers and
provide it to the application as a stream. It enables to perform several types of request to
data sources (such as GET ones, that retrieve a given set of data; POST, that adds data into
the data source, but can also be used to retrieve data which requires inputs that cannot fit
the URL request; PUT, that allows to updating a given data entry and DELETE that remove
an data entry) (Super-poweredbyGoogle, 2020d).

Components and services are classes which contain decorators (functions capable of
modifying JavaScript classes) that define their type and associated metadata, that instruct
Angular in the correct manner to use them (Super-poweredbyGoogle, 2020a).

This component’s metadata essentially creates a relation between a component class and
a given template. The latter ultimately defines a view, since it contains both HTML info,
directives and binding markup, enabling the Angular application to change the HTML
code before rendering it when the app requires that HTML info to show a view (Super-
poweredbyGoogle, 2020b).

The service’s metadata determines the information required to enable the availability of
components by dependency injection (Super-poweredbyGoogle, 2020b).



3.6. Docker 34

An Angular component can define several different views, which are arranged hierarchi-
cally. In order to properly perform this type of task, Angular contains a Router service that
determines the navigation paths among distinct views. This Router allows to display distinct
components and data in function on which application’s directory is being used at a given
time, and also allows to navigate between different views when the user changes the URL in
the address bar, clicks in a link of a page or selects the back and forward buttons of the web
browser (Super-poweredbyGoogle, 2020e).

3.6 docker

Docker is a platform that allows developers to build, run, and share applications, using a
process called containerization. In essence, a container is just a running process with some
encapsulation features needed to separate it from different containers and also from the host;
this enables each container to interact with their own private filesystem, which in Docker is
referred as an image. This image needs to contain everything required to properly run the
intended application: code / binary, runtimes, dependencies, and all the other necessary
files (DockerInc, 2020d).

In order to build docker containers, the developer should understand two types of file:
Dockerfile and YAML. Regarding the former, Dockerfile is a text file that contains all the
necessary command line commands required to the task of creating an image. Using this
file, the user can use the ”docker build” to automatically execute all the instructions contained
in the file in order to form the image. Finally, it can run the container using the ”docker run”
command (DockerInc, 2020g).

If the aim is to build a multi-container Docker app, one can use an YAML file to define
all the application services, and through the command ”docker-compose build”, Docker can
create all of those in a single process; in order to use it, the developer must define the app’s
environment through the use of a Dockerfile (or multiple ones); define the app’s services
in the docker-compose.yml so that they can be deployed into an isolated environment, and
define all the relevant features to contain in those services; finally, the developer can build
the project and start the app (or multiple apps) through the ”docker-compose up” command
(DockerInc, 2020a).

In order to share the project with other developers / users, the developer can add the
project’s containers into the Docker online repository (https://hub.docker.com/). In order to
do so, it is necessary to commit a new image of the container using its container ID (visible
through the command ”docker ps”) through the docker commit command, and tag the image
of the intended repository, so to finally push it, which creates an image in that repository
that can be accessed by other users using the ”docker pull” (if the repository is public). If the
Dockerfiles are correctly defined, this manual process for creating images can be replaced by

https://hub.docker.com/
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Figure 7: General description of Propythia’s 7 modules (Sequeira et al., 2021)

the use of Automated Builds, which in essence connects the Docker hub repository to a code
repository (like Github), and whenever the latter is updated, new images are formed using
the latest changes (DockerInc, 2020f) (DockerInc, 2020e).

3.7 propythia

This is a Python framework meant to allow developers and advanced users to write code
to build ML models for classification of peptides / proteins from their physicochemical
properties, developed by the host group of this work. The major aim of the package is
to facilitate the development of the necessary pipelines to build ML models, by having
functions to preprocess data, perform feature selection, run clustering algorithms, train and
optimize ML models, as well as to deal with protein data and retrieve related descriptors
from their sequences (Sequeira et al., 2019) (Sequeira et al., 2021). With that purpose in mind,
this framework contains several functions lumped together into 7 distinct main modules,
also illustrated in the Figure 7:

1. sequence.py, contains functions that allow to read or change sequences, and transform
that information into objects; it contains functions that enable to retrieve sequences
through UniProt ID’s, to verify if a given sequence is a valid protein sequence and
from a given sequence obtain all its possible subsequences, among other functions;

2. descriptors.py allows to obtain all the relevant descriptors that describe a given peptide.
This list of features can be lumped together into several distinct groups, as defined
by the authors: binary profiles (of AAC and of residues for 25 phychem feature);
physicochemical features of the sequence (length, charge, charge density, number of C,
H, N, O and S atoms within the amino acids, sum of the each possible type of bond
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composition, molecular weight, gravy, aromacity, isolectric point, instability index,
proportion of aminoacids that most likely are in helix, turn or sheet, molar extinction
coefficient, flexibility, aliphatic index, Boman index and hydrophobic index); Aminoacid
Compositions (AAC, Dipeptide and Tripeptide compositions), PAAC (Type I PAAC,
Type I PAAC for a given property and Type II PAAC – Amphiphilic); auto correlations
(normalized Moreau-Broto, Moran and Geary); CTD; Conjoint Triad, Sequence Order
(sequence order coupling numbers and quasi sequence order) and base class peptide
features (moment of sequence, global or window averaging descriptor, hydrophobicity
/ hydrophobic moment profile, arcs, autocorrelation and cross correlation of amino
acid values for a certain descriptor scale);

3. preprocess.py contains all the typical functions to preprocess the data intended for the
training of ML models, including functions to check for missing data and remove
columns with only zero values, duplicate columns, or low variance of those values;

4. feature reduction.py that, like its name implies, has functions meant to reduce the
number of features present on the data, through both unsupervised methods, such as
PCA, and supervised methods. Other complementary methods allow to graphically
represent those results;

5. feature selection.py contains functions to select the features that are more likely to
produce better ML models, through supervised methods, like univariate feature
selection, recursive feature elimination, and also through methods that allow to select
features using specific models;

6. clustering.py allows to perform clustering analysis, containing functions for that purpose
such as K-means and hierarchical clustering;

7. machine learning.py contains functions that allow to train and test ML models; the
function train best model allows to retrieve the best classifier from a list of models that
include RF, KNN, SGD, LR, GNB, ANN and Gradient Boosting, each of those have
their hyperparameters optimized by grid search cross validation; it contains methods
to inform about the quality of a given model by retrieving performance measures such
as accuracy, precision, recall, sensitivity, specificity, MCC and ROC when predicting
a certain test dataset; this class has functions that allow to provide a prediction for a
given peptide, and also to predict all possible subsequences within a protein through a
sliding window (predict window function); finally, it also contains graphical interfaces
to represent the validation curve for a given classifier, through the plot of learning
curves (Sequeira et al., 2019) (Sequeira et al., 2021).



4

D E V E L O P M E N T

4.1 app’s structure

The overall structure of this project’s webserver can be seen in the Figure 8. There will be
three different components, each with its associated Docker container:

• The MySQL database (to store all the data that the server requires).

• Django back-end (to access the database data and serialize it, besides containing several
views that will be called by the front-end).

• Angular front-end (the application intended for the end user).

In the following sections, the development of the components of the project will be
described, as well as its deployment into a server.

4.2 mysql database

4.2.1 Description of the Database

The database that stores the gathered data on viral fusion proteins and peptides was built
based on the data gathered on a thesis by Pereira (Pereira et al., 2019). Its relational structure,
names of the tables and attributes, as well of the type of data stored in each attribute can be
seen on the following scheme (figure 9).

The ”main” table of this database is called Protein and contains the information regarding
each VFP’s name, class, type of activation, fusogenic peptide description (its name, location
within the protein and sequence), as well as having the UniProt and NCBI Protein entries
for the protein. Another main table is the Fusion Peptide, which describes the location of
this peptide within the VFP sequence (attribute “Residues”), sequence and some attributes
regarding annotation method and experimental evidence. Both previous tables connect to
the Structure table, which mainly has their respective PDB entries (when they exist), but can
have information from other repositories.

37
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Figure 8: Structure of the app: within the server there are the 3 Docker containers: the MySQL, with
the database dump; the Django (back-end) and the Angular (front-end). The latter two can
be accessed from a client through those browser links, even though it is the latter that is
intended as the one the client would use.

The last key table is the Taxonomy, which has all the relevant taxonomy of the protein’s
virus (family, genus, species and subspecies / strain), as well as having the virus’ NCBI
Taxonomy entry. This table connects to the Host’s table, which has the common name and
NCBI Taxonomy of each virus’ host organism.

A complementary table present on this database is the References table, which stores the
relevant bibliography regarding either each protein, FPep or structure, mainly in the form of
DOI links, but also can include PMC entries or even article’s references.

Finally, the inhibitor / antibody table was added, that contains info regarding those types
of protein that are associated with a particular VFP. Besides that, some attributes names
of the ”original” tables were changed, in order to make it more clearer, as well a NCBI
Taxonomy entry that was included into the Host table; finally, a primary key in the table
that links the Virus and Host’s tables was added. This last one was introduced to prevent
some errors when performing queries.

4.2.2 Curation of data

The initial filling of the database used as its starting point a database built by Pereira
(Pereira et al., 2019) in Excel, which contained an agglomerate of information of UniProt,
NCBI Protein and PDB entries, and additional protein information retrieved from some
scientific articles. This filling used the Python package mysql.connector (OracleCorporation,
2020) to automatically pick the CSV data and put it into the database.
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Figure 9: Structure of the database

In the filling of Taxonomy Virus table, BioPython (Cock et al., 2009) was also used to
search taxonomy parameters like each virus’ genus, that were not present in the original
database. However, one can predict that some of the data present in the original CSV
database might be outdated or could even contain some errors caused by the automatic
filling if those databases entries missed some parameter or were in a non-expected format.

So, in order to limit as most as possible this issue, a manual curation was performed. In
the Taxonomy Virus table, composed with data almost exclusively from NCBI Taxonomy,
the most common correction was on the Species parameter since the initial automatic filling
sometimes assumed the common name parameter to be the same as the species one, which
often is not true. Another focal point of the curation process was to make sure if the family
and genus parameters were in fact correct, because a lot of times they were filled with the
sub-family or sub-genus, respectively.

The Protein table is mostly composed by UniProt’s entries, but also from a sizeable number
of NCBI Protein entries. This curation was more difficult because it required to interpret
the description in the UniProt entry, whilst the NCBI Protein entries lack some of the key
aspects of the table, such as the class or activation method. The table was corrected as
best as possible with the available info from those databases, but the entries with unclear
parameters were mostly left the be filled in a later time.
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The FPeps data is mostly found on the same data entries as each respective protein, so its
curation was done in parallel with the Protein one. In this table, the most common fix was
to fill some parameters not included in the initial database. The curation of the remaining
tables was mostly to verify if the references introduced in the original database were also all
present in the final one, and also to verify if each virus had the expected possible hosts in
the table relating the virus’ taxonomy with the host one.

This curation process also involved the removal of the information associated with
eukaryotic organisms present in the original Excel database, besides removing all the blank
lines or data entries with no meaningful data, from the database.

A new table was created which contains some of most relevant publications and PDB
entries of inhibitors and antibodies associated with each VFP. This filling was performed
using Biopython for the Pubmed searches, and pypdb (Gilpin, 2015) for the PDB searches.
The search was in the form as “Species” + “Strain / SubSpecies” + “Protein Name” +
“Inhibitor / Antibody”.

4.3 django application

This component can be accessed through the URL https://viralfp.bio.di.uminho.pt/api.
The main purpose of this back-end is to access the data of the MySQL database, a task for

which Django contains several functionalities available. This framework will serialize the
query data into a JSON format, that can easily be used by client apps, which in this case will
be the Angular front-end, so that it can be displayed or saved. Besides that, the back-end
will allow a user of the front-end to add or modify data, through deserialization methods.

Since bioinformatics packages are more commonly written in Python that in the other
programming language used in this project (Typescript), those tools are inserted here, that
later will be called by the front-end. These features include Clustal and Weblogo tools,
connections to IEDB, ML prediction of the FPep within the VFP sequence and conservation
scores.

Table 3 contains a brief review of the most relevant views of the back-end. In the next
sections, a more detailed explanation of the all the parts of this app will be performed.

4.3.1 Table’s Views

There is one view for each MySQL database table, with the same name of the respective
table. When considered relevant, some data was included in the serializers from other tables
accessible through foreign keys. In the case of the fusion protein’s table, some of the virus’
taxonomy data was included; in the fusion peptides’ table, the protein’s name was added;
and, finally, in the tables that link data from two or more different tables, like the one that

https://viralfp.bio.di.uminho.pt/api
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URL Purpose
(table name) Display 10 entries of that table data in a JSON format.
(table name)/save Retrieve all results of a given query.
clustal all Retrieve Clustal Omega alignment of protein sequences.
conserv Retrieve conservation features from a protein.

iedb Retrieve the likelihood of subpeptides within a protein sequence being
a epitope.

ml predict Retrieve the likelihood of subpeptides within a protein sequence being
a fusion peptide.

weblogobackend Build a weblogo from protein sequences, using the package
Logomaker (Tareen and Kinney, 2019).

weblogoclustal Clustal Omega alignment of sequences for later produce weblogos.

Table 3: Relevant domains of the back-end.

connects the references table with the protein and fusion peptide ones, or the table that links
the virus’ taxonomy table with the hosts’ one, data from both tables were introduced so that
the view can contain all the important information and not just the foreign keys present on
them.

All data pages within the app will show something similar to the figure 10. The data will
be displayed in JSON format. The JSON object displayed in this page contains the 10 first
table data entries (plus any attributes related to the foreign keys that were added on the
serializers) on the ”results” parameter. This object also contains a “count” parameter, that
displays the total number of entries on this table, the “next” parameter that shows the link
to the view that provide the following 10 data entries, and the “previous” parameter which
provides the link for the previous 10 ones.

This page also contains the pagination buttons (implemented with the PageNumberPagi-
nation package), that serve a similar purpose as the “next” and “previous” parameters. It
also has a GET button, which allows to switch this API view to its corresponding raw JSON
one. The OPTIONS button shows the headers of the GET request that allowed to display
the page and the description of each attribute of the data (type of data, if a given variable is
required or not, if it is read only or not, its label and size / range parameters). The DELETE
button is necessary to later accept DELETE requests, but within this page, this button is not
functional since to perform both DELETE and PUT requests, the URL request requires the
presence of the primary key of the data entry to be updated / deleted.

The FILTERS button implements the filtering and searching methods described in the
DjangoFilterBackend and SearchFilter. These filtering / search possible parameters are usually
all the attributes present in each table with the notable exception of all foreign keys IDs in
the case of searching, because search against foreign keys would generate errors, since in
the Django app those foreign keys are essentially objects containing the corresponding data
entry and so cannot be filtered against a string. Finally, this page accepts both POST and
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Figure 10: Appearance of the browser page of the Django application.

PUT requests, both in this page; those type of requests can be done in this page also, either
through a HTML form or using raw data (in JSON) (only the POST form works within the
page, as already mentioned above).

In order to add a new entry to the database (through POST requests), for each class of the
serializers.py a function “create” was added that, upon receiving the JSON data from the
request, will create the object in the database. This was necessary because, as mentioned
before, attributes from tables related to the foreign keys were added in most of the views in
order to complement the information of each entry. However, because the back-end expects
these extra attributes in the request, the Django app will not allow to create new objects
of the ”main” table with only the ”base” attributes of the table in the POST request. This
added function can circumvent this issue by telling Django to create the object required with
certain attributes, which obviously in this case are the table attributes that are included in
the request. Also, some MySQL query code was included that ensured that the new object
would get the smallest primary key available.

To perform PUT and DELETE requests, a “put” and a “delete” function were required
to be added for each view. Both retrieve the request data and the primary key in the URL
(this is the reason why both buttons do not work in each view’s page) and update/ delete,
respectively, the intended data entry.
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4.3.2 Tools’ Views

Besides those views that allow to explore the database data, several others views were
added, mainly to later be called by the front-end. For that reason, most of them do not
contain any HTML information, meaning their content will not show up in the browser.
Most of these views are meant to be used in the Tools component of the Angular app.

IEDB

The ′iedb′ view will allow to send a POST request to IEDB (through the API http:

//tools-cluster-interface.iedb.org/tools api/bcell/), to retrieve the epitope’s prediction in-
formation regarding a given sequence (Vita et al., 2014). This view also requires defining a
method to perform the analysis (the methods available within the IEDB API are Bepipred,
Bepipred-2.0, Chou-Fasman, Emini, Kolaskar-Tongaonkar and Parker) and a window size
for that sequence. The results of this API are returned in a JSON format.

Weblogo

The ′weblogoclustal′, as its name implies, performs the Clustal Omega alignment (through
a Clustal Omega console) necessary to align the sequence to later perform the Weblogo
analysis. After that, the function reads the aligned sequences in the FASTA file written by
the console and returns the data as a JSON object. To fully build weblogos in the back-end
(in the view ′weblogobackend′), the most obvious solution was to use the official Python
API provided, through the package ′weblogo′ (https://weblogo.readthedocs.io/). This mostly
functions properly for text output, and so, if the TXT output is requested, the view sends
the result of that package. However, this was not possible for the PNG output, due to issues
of that package.

Thus, to circumvent this issue, a package called ′logomaker′ (Tareen and Kinney, 2019)
was used. This package allows to expand the matplotlib package (a well-known Python
package to build graphs) so that one can build a sequence logo from a matrix of weights. So,
to build a similar weblogo to the ones produced in that API, the weblogo matrix (obtained
with the ′weblogo′ package given a set of protein sequences) was required to be split into
several sub-matrices, one for each line of the weblogo. In order to use this package, special
attention was needed to assure that the same y-scale was used throughout all weblogo, as
well as to make sure that the last line does not change in size relative to the rest of the lines
(because the package will correct the size of the columns to fill all the line), something that
was achieved by adding columns of zeros in the last sub-matrix. After the graph is written
into a file, the same file is read as a base64-string. This string will be the output of this view
if the PNG output is requested.

http://tools-cluster-interface.iedb.org/tools_api/bcell/
http://tools-cluster-interface.iedb.org/tools_api/bcell/
https://weblogo.readthedocs.io/
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Clustal

Clustal Omega analysis was performed using the same console as mentioned for the
′weblogoclustal′ view. This view, called ‘clustal all′, will receive the sequences and the
additional parameters as part of the POST request, perform the Clustal alignment, write the
alignment and guide tree files, and, finally, send the alignment file content, as well as the
alignment’s guide tree file’s content as plain text.

Machine Learning

The ′ml predict′ view allows to perform the FPep prediction for a given sequence, using
models trained using Propythia (Sequeira et al., 2019) (Sequeira et al., 2021), from a dataset
kindly provided by Sequeira. This file was obtained by extracting the features available
in Propythia from a dataset where the non-positive results are composed with both trans-
membrane domains sequences and non-FPep and non-transmembrane domains. After that,
those features went through a feature reduction process using an SVC model. According
to Sequeira’s work, the models that are trained with data that went through this specific
feature reduction method tend to have better performance. Finally, ML models were trained
with the Propythia’s train best model function. Those models are stored in Pickle files. If
a given model is selected, the file corresponding to that model will be loaded using the
′pickle′ package and used in an instance of the Propythia’s ML class (which uses the already
mentioned dataset). This view also requires receiving a window size and size of the gap.
Using those parameters, the ′predicted window′ function of the Propythia is called to perform
the predict the likelihood of the subpeptides of that window size to be FPeps. Those results
will be returned in a JSON format.

Conservation Features

A view (‘conserv′) was added to obtain the conservation scores of a peptide against a
virus family’s weblogo (the procedure to obtain these scores is fully detailed in the section
”Conservation Features” of this chapter). This view receives a POST request which must
contain a protein sequence, a window size and a taxonomy family, and for each possible
peptide with that window size, the function obtains the conservation value for the selected
alignment. For each position of the sequence, the view obtains the maximal value for all the
conservation features from the peptides that contain it. A JSON containing those values is
returned.
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(a) Application Administrator Page. (b) Example of a Django Admin Table Page (in this case the Fusion
Peptides one).

Figure 11: Django Administrator Component.

4.3.3 Saving Data Features

There are several added views which aim to produce query results to store into CSV files.
For all the pages present in the front-end, a duplicate view was included, with only the
pagination definitions removed, which means that all the data for a given search is displayed.
There are other views that receive POST requests (sent by the front-end) with the JSON data
to save into files. There is a very similar one that does the same sort of task for the ML
prediction results, but this one saves the results as TXT file.

4.3.4 Authentication and Administrator’s Features

An authentication and registration package called ′django− rest− auth′ was added to the
application. This package contains a set of REST API endpoints to perform tasks such as
login, logout, password reset or change and registration. These endpoints will enable client
apps (in this case the Angular front-end) to communicate to the back-end independently
through REST APIs. In order to later match the Angular authentication methods already
present, which uses e-mail as mandatory (instead of the username which is the default in
this package), the settings.py file needed to contain all the necessary declarations so to turn
the username optional whilst making email mandatory (through the use of a package called
′django− allauth′). This file was also modified so that the payload would return in a JWT
format, which is the most common format for this type of data when its intend is to be
shared between multiple parties (TivixInc, 2018a) (TivixInc, 2018b) (JWT, 2020).

Alongside those pages, this application also includes an Administrator Page (figure 11a),
that contains functions to manage the info and access of users, as well as manage the
webserver data (it allows to perform view the data and also to perform POST, PUT and
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DELETE requests). Obviously, the access of each function is restricted by the type of user.
For each of the tables to appear in the Admin page, the statement ”@admin.register(NAME
OF DATABASE)” was inserted within the admin.py file, as well as defining which fields
needed to appear in the page, and finally which were the possible search fields. Ultimately,
this provides a user-friendly way to explore and modify the data as the user wishes (Figure
11b).

4.3.5 Connection to Other Frameworks

To allow the access of this data by other frameworks in Django, django-cors-headers was
added to the application. This is a Django App that adds Cross-Origin Resource Sharing
(CORS) headers to HTTP responses. It allows the Django application to accept in-browser
requests from other origins, enabling the application’s resources to be accessed on other
domains. Note that one important concern related to this package is to guarantee the
future security of the application, because using CORS can unintentionally open up the web
server’s private data to others (Yiu and Johnson, 2019).

4.4 angular application

This component can be accessed through the link https://viralfp.bio.di.uminho.pt/.
This application is aimed to be the interface where the end user can access all the data

present in MySQL database in a easy-to-use interface. The app also contains links to perform
BLAST and HMMER analysis, as well as having Clustal and Weblogo features, and, finally,
tools to predict epitopes and FPep from VFP sequences.

In order for the app to function as it is supposed to, the end user must allow the browser to
open popup pages, because several of the pages described below will require that permission.

This front-end was built using a framework called Nebular (https://akveo.github.io/

nebular/, which is an open-source Angular User Interface Library that consists in a “pre-
made” modular, customizable and configurable application. This enables to reduce the
development time by already having several features like authentication and security meth-
ods, as well as having tables and card formats that are user-friendly and visually appealing.

4.4.1 Front Page

The front page contains a description of the overall purpose of the application, with a
small text of the information that can be found and the authors of the application. Within
this text there are relevant links for the development of this project (figure 12). This page
also contains a side menu with all the functionalities present on the application, and a global

https://viralfp.bio.di.uminho.pt/
https://akveo.github.io/nebular/
https://akveo.github.io/nebular/
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Figure 12: Application’s frontpage.

search method in the page’s header, that opens a small window with the pages that contain
matches against the search term. This search is limited to the 3 most important pages in
the application, which are the fusion proteins, the fusion peptides and the taxonomy tables,
as well as providing some specific results within each of those three pages, like shown in
Figs. 13a and 13b, which provides links for new windows with the results.

4.4.2 Tables’ Pages

The information of the database can be found on the “Tables & Data” option of the side
menu. This contains links for the Taxonomy, Fusion Protein and Fusion Peptides tables.
Those tables and all the others that can be accessed through them are in a Tree Grid format
(figure 14), which is a Nebular feature: each data entry will correspond to a table line; upon
clicking on one line, its “children data”, which in this case corresponds to buttons that
connect to that line’s related data, will appear below. This related data is: in the case of
the Taxonomy one, the tables of their hosts, fusion proteins and fusion peptides; in the case
of the Fusion Protein one, their virus’ taxonomy, fusion peptides, structure, references and
known inhibitors / antibodies; and, finally, in the case of the Fusion Peptide one, their fusion
protein and references. These children information pages will appear in different tabs upon
clicking the respective button.

All the pages contain search methods that use the Search and Filtering tools described
in the Django app, as well as having pagination methods, also using the corresponding
methods in the Django back-end. All these data are retrieved using services (mentioned
above), where each page has its own dedicated file. Every time a search is made, the page
is changed, or a ”children data” is selected, new requests are made to the services, which
themselves make requests to the views from the back-end, that allows to update the table’s
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(a) Search Bar in the Angular App. (b) Results from the search Bar in the Angular App.

Figure 13: Search display in the front-end app.

data. The 3 main pages also contain suggestions to autocomplete search terms to match
terms presents in those tables.

All these data table pages contain forms that allow to perform both POST and PUT
requests to the back-end in order to add or update an entry, respectively. At the time of
writing, since there is no successful authentication features inserted in the application, in
order to prevent unauthenticated users to add or update data, the HTML code on each of
the table pages corresponding to those features was commented, but not eliminated, so that
in the future these functionalities can be added in the app.

These table pages have features that save the query results into CSV files (in the form of the
”Download Results” link). This procedure uses the views described in Django to retrieve the
full data of a given query, but the actual saving component was made within the front-end,
by transforming the JSON data returned by each respective subscribe into a CSV-like string.
Through the use of the ”DomSanitizer” class of the ’@angular/platform-browser’ package, the
app can in essence create an URL to download the result. Note that it is important to
only perform this request to the server after completely loading the page. Otherwise, the
output of the file comes often as ”undefined”, since loading the data is one of the last tasks
performed while loading a new page.

All table pages contain a “MANAGE DATA” button, that redirects into a new tab of the
back-end admin page, that allows to observe, add, update or delete data entries. This was
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Figure 14: Virus’ Taxonomy Table.

not as first envisioned, since the original plan intended to have all the major functionalities in
the front-end, but due to the difficulties of implementing authentication features, and since
the Django admin page contains all the data management tasks, it was decided to include it
in the front-end. This page is restricted to allowed users, since it requires authentication.

Finally, in order to select specific protein sequences to be used in the Tools present in the
app, in the Fusion Protein page there are checkboxes that allow to select one or multiple
sequences, and one button for each of the tools that can be found within the page.

4.4.3 Tools’ Pages

As mentioned above, the app also contains other tools, lumped together in the menu as
“Tools”. These pages can receive sequences inputs from the Fusion Protein page as an URL
parameter. Most of them receive the full sequences encoded into the URL. However, the
Clustal and Weblogo pages only receive the sequence IDs separated by commas. This was
a necessary fix, since both are meant for multiple alignments, meaning they will require
several sequences to be sent at the same time, so there is a higher risk of requests sent to
them surpassing the URL string size limit, invalidating the request. On those two pages, for
each of the IDs, a request is made to the back-end to retrieve the desired sequences, so they
can be used for the subsequent requests to be performed within the pages.

These Tools pages can be classified into one of two categories: sequence alignment and
sequence prediction.



4.4. Angular Application 50

Sequence Alignment’ Pages

In the Sequence Alignment tools, a page that links a selected sequence to the NCBI
BLAST was added; this page contains methods that allow to preselect also the type of
Blast to perform (the options are Quick BLASTP, BLASTP, PSI-BLAST, PHI-BLAST and
DELTA-BLAST) and select the database to run the BLAST against, where the included
options are Non-redundant protein sequences, Reference proteins (RefSeq Protein), Model
Organisms (landmark), UniProtKB/Swiss-Prot, Patented protein sequences (pataa), PDB
and Transcriptome Shotgun Assembly proteins (Johnson et al., 2008).

In a very similar manner, the HMMER app allows to select a sequence and the database
against which the search is made (in here the options are Reference Proteomes, UniProtKB,
SwissProt and PDB), and then send this info into the EMBL-EBI portal, showing the results
in this portal (Potter et al., 2018).

WEBLOGO contains two possible ways to perform the analysis. The first uses the
weblogo.threeplusone.com portal (Crooks et al., 2004), on which the app requires at least
three sequences (in a FASTA format), and from those it builds a weblogo (it can be in a PNG
or raw data formats) using the rest of the standard values to perform the analysis. to use
this functionality, the front-end sends the sequences to the Django back-end, that through
a Clustal Omega console, performs the multiple alignment. The second method will use
only the back-end; the page contains two different buttons for the purpose: one to display in
the same page the PNG output of the weblogo obtained; the second one allows to open a
pop-up page with the text result of the same process.

CLUSTAL also contains two possible methods. The first uses the https://www.genome.jp/

portal to perform a CLUSTAL W analysis; the app asks for the type of output of the analysis
(CLUSTALW, FASTA or PHYLIP), the type of pairwise alignment (FAST/APPROXIMATE
or SLOW/ACCURATE) and the weight matrix (BLOSUM or PAM) (Li, 2003). The second
performs a Clustal Omega alignment from the back-end; upon clicking the button, one
pop-up will open in the browser to display the alignment in the required format; a second
one can appear if the the guide tree data is also requested. The original plan intended to use
the CLUSTAL Omega from EBI, but since this web page does not accept query parameters
and the API Python file provided by them to connect generates a package import error (from
the package urllib) when it is used inside Django, that option was not used.

Sequence Prediction’ Pages

There are two tools relative to sequence prediction: epitope prediction and FPep prediction
(through the use of ML models).

Regarding the first, it contains access to the IEDB portal (Vita et al., 2014) in order to
perform antibody epitope prediction; the front-end sends a request with all the already
mentioned parameters to the back-end; the latter sends a second request to the IEDB’s API

https://www.genome.jp/
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Figure 15: Example of epitope prediction, in the Smart Table format.

Figure 16: Machine Learning prediction of the fusion peptide location.

URL for the tool (as stated above), and sends back the results to the front-end, showing them
in a Smart Table format, which is also a Nebular feature (Figure 15); both Bepipred methods
provide 2 different result tables, the rest of them provide just one (Vita et al., 2015).

Regarding ML prediction of the location of FPeps within the VFP sequence, models trained
by Propythia were used (Sequeira et al., 2019) as already described in the previous section.
This page contains a text box where users can insert a protein sequence or select one entry
from the Fusion Proteins pages. The user can also specify which model to use, from the set
of available models: SVM, RF, Gradient Boosting, KNN, Linear Regression, Gaussian NB
and ANN models. Also, the user can select the window and gaps sizes.

The page provides two types of output: a table one which contains every possible peptide
likelihood of being a FPep; and a graphical interface that, for each amino acid displays
a color that represents the likelihood of being a FPep (in this case the max probability of
all peptides that contain that particular character), with the respective color legend (like
shown in Figure 16); also, for each amino acid, a popup box shows its position within the
VFP sequence and the probability value of belong to a FPep. Finally, the page has a save
functionality that stores the results into a text file into the user desktop.

In the FPep prediction page, a tool was also included to obtain the already mentioned
conservation features. This will perform in a very similar manner as the one described for
the graphical representation for the FPep prediction. Upon receiving the JSON with the
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Figure 17: Example of the results of the conservation tool.

output (similar to the ML prediction, as seen in the Figure 17), for each sequence’s position,
a score is provided and from that value the colour corresponding to that score is attributed
to it. The family can be selected from a list, which upon clicking the button, updates the
schematic to the desired family.

4.5 creating the docker repository

In order to create the repository necessary to use the available server services, so that this
app can be used online, 3 images in a repository were created: one for the MySQL database,
one for the Django back-end and one for the Angular front-end.

The first two were originally created using a docker-compose. This was useful since,
as stated before, in order for the Django app work, the MySQL’s one also needs to do so.
To function properly, both of the images must be inserted into the same Docker Network.
Besides the docker-compose, 2 Dockerfiles were also defined.

The one related with the MySQL component retrieves the official Docker’s MySQL image,
defines all the relevant MySQL variables (user names, passwords and the name of the
intended DB) and adds the Dump of the MySQL database (this is a file that contains all the
commands required to create all the DB tables and its stored data) described above into the
entrypoint.

The Django’s Dockerfile retrieves the official Python image, copies all the project files into
the container, installs all the necessary Python packages needed within the back-end (all
these packages are defined in a text file) and, finally, installs the Clustal Omega.

Within the docker-compose, in both services, the exposed ports are defined, which
Dockerfile to build and the network associated. In the MySQL service, the entrypoint
command ’–default-authentication-plugin=mysql native password’ was required, so that the
Django service can access the data using the password defined in the docker-compose. The
Django service required the command python manage.py runserver to run the server and
to define the volumes (all the necessary data to be shared between local storage and the
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container). Finally, the DATABASES parameters of settings.py were required to be updated
so that it could respond to the MySQL service (DockerInc, 2020b) (DockerInc, 2020c).

Docker-compose files were only used for the original images; for the ones built using
automated builds (which are the ones kept updated), only the Dockerfiles were used. The
Django one needed to be updated to utilize the Gunicorn command. This will start the
server using the wsgi file instead of the manage.py one, which is more appropriate for the
production stage (deploying it into a server).

For the Angular image one tutorial that can be found online was followed. This one used
only a DockerFile that retrieved the Node base image, installed the browser Chrome for
protractor tests, copied all the necessary data from the project, installed Angular and all the
relevant packages in the container and added the command “ng build” required to run the
server. After building the image and running it, defining the apps volumes and ports, the
container could be run at the selected port (Herman, 2019).

Before the project could be inserted into the repository, some directories within the
Angular application required to be fixed since initially the project included static URLs.
They were replaced with URLs generated with RouterLink, which enables the app to create
the correct links independently of the domain name. Originally, only the Django’s save
query features were used, but they did not work within the container. So they had to be
replaced by the Angular functions. Also, the Clustal alignment tool, like already referred,
needed to use the console installed in the container, which replaced the one present in the
code. However, the views that used this console required an additional command to make
sure a response was not sent before the completion of the multiple alignment analysis, a
problem that did not occur when the code was run locally (Super-poweredbyGoogle, 2020f).

After all that, the public repository was built. In order to run it locally, one must use
the command docker pull for each of the three images, create a network and run the three
containers, with the caveat that both MySQL and Django must be in the same Docker
network and for each container must define the port (where MySQL is expected to be
3307:3306, Django 8000:8000 and Angular 4201:4200). Finally, the MySQL one must be called
“django db 1”, in order to match the settings of the Django container.

Alongside that, connections to a Github repository were added in the Docker Hub
repository. This will allow to perform automated builds of all the required images, and
update them whenever the project’s code is updated.

One can access this Docker repository at https://hub.docker.com/r/pedrodmmoreira/vfp

webserver, which contains all the instructions that allow to install all the components of the
app.

The live version of the webpage can be visited at https://viralfp.bio.di.uminho.pt/. This
link will display the front-end. When first deployed there was a major issue that was not
expected: the app did not seem to work whenever the request was made to a sub-directory

https://hub.docker.com/r/pedrodmmoreira/vfp_webserver
https://hub.docker.com/r/pedrodmmoreira/vfp_webserver
https://viralfp.bio.di.uminho.pt/
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directly. This means that whenever a request was made to a URL which was not the base
URL (the one indicated above) into the browser search method, or one refreshed the browser,
the page would show up a ”404 Not Found” error. The problem was that the routing
within the Angular app was not correctly deployed from the production. One could use the
HashLocationStrategy (instead the default PathLocationStrategy) to try to circumvent the issue.
However, this seemed to affect some of the router procedures, mainly when a button leads
to open a new tab, and so this strategy was removed (Super-poweredbyGoogle, 2020e). The
used alternative was updating the Nginx definitions within the server that is running the
site in order to try to find the required files that determine the routing within the app, as
well as to tell the server how to handle the most common types of request errors.

The back-end can be visited at https://viralfp.bio.di.uminho.pt/api/. This one is mostly
working according to the expected behaviour, except for its aesthetic look, since all the
static files are not loading (even though static directories were add to the URLs of the app),
meaning that the pages only shows up the raw HTML data, and so, it is not pleasing-looking
for the end user. This is troubling just because the Admin page was meant to be useful
for the administrator user, but it does not affect the end user, since all the tools work as
intended.

4.6 conservation features

Through the Propythia framework (Sequeira et al., 2019) (Sequeira et al., 2021), models
can be trained that are capable of predicting the probability of a given peptide to belong to
the FPep of its VFP. The Propythia framework already extracts a lot of features that describe
a given peptide (listed above). However, there is not a feature regarding the conservation of
that peptide. Since FPeps tend to be a well conserved region of the VFP, specially between
proteins of viruses that belong to the same taxonomic family, features specific for that regard
were created.

VFP sequences present in the database were used to create weblogos. After retrieving all
the sequences and the family of each respective virus from the database built for this project,
only the families that contained at least four sequences in the database ended up selected.
This allowed to select the following 13 families: Arenaviridae, that have 4 sequences in
the database; Coronaviridae (16 sequences); Filoviridae (16); Flaviviridae (71); Herpesviridae
(22); Orthomyxoviridae (170); Paramyxoviridae (55); Peribunyaviridae (4); Phenuiviridae (4);
Pneumoviridae (9); Retroviridae (164); Rhabdoviridae (6) and Togaviridae (32).

For each of those families, a Clustal Omega (Sievers et al., 2011) alignment, required
to create the weblogos, was performed. The weblogos themselves were created using the
′weblogo′ package, which is the Python API format for the http://weblogo.threeplusone.com

portal. However, it was detected that performing the same weblogo analysis to the same

https://viralfp.bio.di.uminho.pt/api/
http://weblogo.threeplusone.com
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alignment with apparently the same parameters would lead to different entropy values
when compared to the results obtained from the web portal. This can be explained if the
web portal performs some type of post-analysis correction, but by the time of writing of this
thesis, the reasoning of this discrepancy was not fully understood.

One conservation feature was created for each of the families. For each of the weblogos,
the “final” scores for each character of each position of the matrix were precalculated. This
was achieved using the conservation equation described by Crooks (Crooks et al., 2004), in
which this metric is obtained by the following expression:

Rseq = Smax − Sobs = log2N − (−
N

∑
n=1

pn ∗ log2(pn)) (10)

where Rseq is the conservation of a given position; Smax is the maximal entropy possible in a
position, equal to log2(N), N being the total number of possible distinct symbols, meaning
that in a protein sequence this value is 20 (the number of possible amino acids); and Sobs is
the observed entropy in a given position. Because these weblogos are result of alignments of
families with different number of sequences, that number of sequences was taken into the
calculations.

So, before analyzing the sequences, the weblogo matrix was preprocessed by calculating
in each position the result of the following equation:

PositionScore =
(log2(20)− Sobs) ∗ bits

nseqs
(11)

where the Sobs is the value of the column ”Entropy” on that specific row, bits the number of
bits on each position of the matrix and nseqs the number of the sequences in the family.

After processing those calculations, there is one matrix saved in a Pandas dataframe with
only the scores per position. So, after transforming the Pandas dataframe to Numpy arrays,
it is possible to retrieve the local alignment scores for each sequence (or subsequence) by
verifying the scores of the sequence against all the possible positions in the matrix and save
the best of those values as a feature.

These functions were introduced into a file within the Django project that contains the
content of the descriptors.py of the Propythia package, to allow retrieving these conservation
features, so that they can be used in the page of ML prediction of the location of the FPep.



5

R E S U LT S A N D D I S C U S S I O N

5.1 brief manual of the application

There are two major components of the front-end application (the one intended for the
end users) that require an explanation: the tables and the tools.

The figure 18 shows the representation of the Fusion Protein page and will allow to
explain all the tables pages’ different elements. The following list describes them, from the
left to the right and top to down:

1. On the dashed green rectangle on the left, this is the menu of the application, where
one can access the main data tables, as well as access all the tools present in the server.

2. On the top right, in the black box, the user can find the link to the global search tool
described in the Figs. 13a and 13b images in the development chapter.

3. The red rectangle contains the search methods also previously described, that will
(partially) determine what is shown in the table.

4. The blue rectangle contains the link to download the query result as a CSV file.

5. The orange rectangle is the link to the back-end’s administrator page.

6. The green rectangle is the table resulting from the query determined by the search
performed and the current page; within each line, there are links to related data (if
available).

7. The yellow rectangles contains all the tools that allow to use the selected sequences
(chosen in the checkboxes on the yellow dashed rectangle, or through the “Select all
Sequences button”); upon choosing at least one sequence the bottom yellow rectangle
will appear, on which the user can eliminate some (in the table) or all (in the “Clear
All Sequences”) of the selected sequences and redirect the chosen sequences to the
Tools; the links in the menu will go to the same tools, but no sequences will be sent;
those links are exclusive from the Fusion Protein page.
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Figure 18: Fusion Protein Page Scheme.

8. Columns such as the one in the dashed grey rectangle will redirected to the selected
links; the links include UniProt, NCBI Protein, PDB and NCBI Taxonomy.

9. The purple box contains all the pagination links that will also determine the content of
the table (each table contains a maximum of 10 entries).

Regarding the Tool pages, all pages contain a text box to insert the sequence input; the
multiple alignment ones require at least 3 protein sequences in FASTA format to be inserted
into the text box; the prediction ones just need a protein sequence. Within the text boxes, a
small description for the type of expected input will appear; if those sequences come from
the Fusion Protein page links, these inputs already come in the expected format. Besides
that, the rest of the parameters are chosen within the pages, with clear labels to explain them,
in the form of buttons, check boxes or select lists. The results of the tools can appear in new
tabs to show text results, like in the Clustal and the text result of Weblogo of the back-end
or to access other web domains, like BLAST or HMMER. They can also appear within the
same page, like in ML prediction and the image result of Weblogo from the back-end.

5.2 current state of the application

The application is mostly as first planned: it allows a relatively easy access to the MySQL
database through a web interface that is user-friendly. However, some aspects must be
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taken into consideration: first, as an application, there are countless variable situations not
accounted for within the development of its code that in the future might lead to errors,
which only through extensive use can those problems be detected and resolved.

One other problem found is the time the web page takes to show up, which can take
up to several seconds. In order to try to reduce this problem, most of the unnecessary /
unused files and components, especially the ones that were automatically generated when
the Nebular project was created, were removed from the project, which did help to reduce
that loading time, but there is still room to improve.

Something that was not yet achieved was to automatically remove all the buttons of
the ”children data” that lead to empty tables. In order to tell Angular in real time that
a particular entry does not require a given link to another table, multiple requests are
necessary to be made, one for each type of data, through services within the ”main service”
(which corresponds to getting the main data for the table) to verify if the JSON responses
given for that ”children data” are empty. However, no solution was found to allow to send
service requests within another services’ request (inside the subscribe method); so, for the
time being, all the links are created, even those that lead to empty tables, which affects the
practicality of the app.

The most important feature lacking in the current application is the authentication. All
the front-end application’s table pages will contain code for both POST and PUT forms, in
order to add or update an entry, respectively. This should be only performed by allowed
users only, and the rest of the users to just suggest alterations to the database.

This authentication feature was already successfully performed in the back-end, through
the use of JWT tokens (mentioned above), and correctly tested its performance through a
program called Postman, that allows to emulate requests to a server. However, it was never
correctly implemented in the Angular front-end, so those definitions were removed from the
front-end in order not to interfere with the expected functioning of the web server.

One can also improve the security of the back-end, since in order to develop more quickly
the application, the ”@csr f exempt” command was frequently applied to the Django views,
which removes the necessity of providing a cookie while performing a POST request to
that view, which later, if more widely used, can be a security risk for the webserver. Also,
regarding the Django component of the project, the use of CORS is also a possible issue (as
already mentioned). Alongside that, the functions that allow to save querysets into CSV
data in the front-end used the ”bypassSecurityTrustResourceUrl” function of the ”Sanitizer”
class, which means that no security checks are made when downloading the data.

Other aspects which require further work concern the WebLogo, Clustal, IEDB and
ML Tools. Regarding the Weblogo, both methods (using http://weblogo.threeplusone.com/

webpage or using the solely the back-end) are flawed. The first one works as intended,
if the number of sequences is not large. This is due to the fact that the page sends URL

http://weblogo.threeplusone.com/
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requests into the Weblogo Portal; if the string that compresses the URL request is too long
(500 characters), the browser will show a request error. This is especially true because
Weblogo requires sequence alignments, meaning that the higher the number of sequences,
the longer the string will be, due to both the higher number of those sequences and also
the gaps that are result of the Clustal alignment performed. Weblogo Python API was tried
(https://weblogo.readthedocs.io/en/latest/intro.html) in the Django back-end, that uses the
same server, but there were found two problems to properly use it: first, there is not enough
information within both the API and webpage’s documentations to accurately insert all the
necessary parameters in the API to fully replicate the results produced to a given alignment
in the Webpage (as already mentioned); the second problem was the fact that the view was
unable to build PNG files using the API (even though the API works perfectly to write the
Weblogo results into text files), because this Python package requires the introduction of
the Python Ghostscipt package, but this package would generate several problems in the
Django project, rendering the back-end virtually unusable.

Regarding the second method, the created weblogos are not exact replicas of the ones
formed in the Weblogo site, mostly due to differences in the entropy values of the weblogo
matrix (because this method requires the ”weblogo” package described above). Also, the
”weblogo” package seems to generate errors whenever a protein alphabet is selected to
describe the multiple alignment needed to create the matrix. Again, this appears to be an
error exclusively within a Django project, since in a stand-alone Python script this issue does
not occur. So, a string alphabet containing all the aminoacids plus the gap symbol was used,
and for that reason there is a column in the text matrix for the gap symbol, which under
normal circumstances should not be necessary.

Like stated beforehand, regarding the Clustal analysis, the original intent was to use the
EBI one. However, it was found that URL requests cannot be sent to the webpage (unlike
the HMMER, which also uses a EBI Webpage), so the Python API code provided by the EBI
in https://raw.githubusercontent.com/ebi-wp/webservice-clients/master/python/clustalo.py

was experimented. Even though this script was perfectly usable outside the Django project,
within it the API produces an error regarding the urllib package, meaning that the request
needed cannot be performed, and so, no results are shown. The solution found was to use
the console on the Django, but the output is less complete as if that API could be used, and
there are concerns regarding the performance of this method.

Regarding the problems found in the IEDB page, some of the results of part of the possible
methods return empty, mostly, but not limited to, from both Bepipred methods. This was
confirmed by analysing the output of the JSON provided by the back-end, and performing
the analysis on the same sequence using other methods an output was provided.

Finally, on the page for ML predictions, the ML prediction still have problems since its
prediction output tends to take some time. Sometimes, this slowness causes problems within

https://weblogo.readthedocs.io/en/latest/intro.html
https://raw.githubusercontent.com/ebi-wp/webservice-clients/master/python/clustalo.py
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the Django container, stopping the process of that view, which results in no output for the
analysis to be provided.

5.3 curation of the data

The data was mostly corrected as first intended. But there are a few issues that still needs
future thought.

Most of the results of the inhibitors / antibodies search did not consider the strain
information, which meant that the majority of the results within the same species are similar
and not specific for each individual strain. Moreover, analyzing these results, one can see
that the PubMed searches did not produce very useful results, so only the PDB entries
(which do also have the same problem, albeit in a smaller scale) were used.

So, further work is required to gather all the known inhibitors / antibodies associated
with each strain in the Database. This work might include searches through data mining in
the case of the Pubmed articles search. Also, there are some reservations of the quality of
the results of this type of automatic search, which likewise will require a future full manual
review, or maybe to perform another type of search, since the one applied here seems to not
differentiate rather well results between distinct strains of the same species.

Finally, as this is a field were info keeps being published by the community, there will be
the necessity to add all relevant entries published in recent times in a future work.

5.4 conservation features

The graphs in the figure 19 help to describe the utility of the generated conservation
features. The families on those images were selected because they were the ones most
common in the dataset. Analysing these six families, it is easy to see that the peptides that
tend to have higher conservation scores are usually the ones belonging to the same family
as the weblogo, as it was expected, even though some of the highest scores in most of these
families are from peptides that do not belong the that specific family (this is especially true
in the Retroviridae and Herpesviridae’s weblogos). The majority of the results for all the
rest of the peptides tend to be below the average. Analyzing the scores of peptides that
belong to the same family as the ones in the weblogo (figure 20), we can see that most of
the higher results are from positive cases (i.e. FPep), indicating high degree of conservation,
even though some of the results show high levels of conservation within non-FPep.

The problem of using these features in a ML process is that most of them are removed
during feature selection. On the first dataset (where the negative cases are non-FPep and
non-transmembrane domains sequences), only three of the 13 features are maintained after
a SVC feature selection (which retains a total of 76 features); on the second dataset (negative
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(a) Scores against the Togaviridae family weblogo.
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(b) Conservation scores against the Flaviviridae family
weblogo.
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(c) Conservation scores against the Retroviridae family
weblogo.
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(d) Scores against the Paramyxoviridae family weblogo.
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(e) Scores against the Herpesviridae family weblogo.
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(f) Scores against the Orthomyxoviridae family weblogo.

Figure 19: Conservation scores against some of the weblogos built from the peptides of a dataset,
where the first 111 elements are non-Fusion Peptides (on the left of the dashed line) and
rest are Fusion Peptides (on the right). The peptides from viruses that belong to the same
taxonomy family as the ones on the webLogo are in black.
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Figure 20: Boxplot of the conservation scores of some of the most common families in the dataset
described in the figure 19. The scores in those boxplots are exclusively from peptides that
belong to the same family as the ones in the weblogo.
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Figure 21: Boxplot of the conservation scores of all families against all peptides in the dataset
described in the figure 19.
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cases are transmembrane domains sequences), none of the conservation feature is retained
after feature selection (which saves 58 features); in the third dataset (negative cases are
a mix of both previous datasets’ negative cases), only one feature was maintained (103

total features stored). For that reason, the performance scores of the models do not differ
significantly from the ones presented by Sequeira (Sequeira et al., 2019).

Furthermore, a closer look to the results of the figure 21 show that between those weblogos,
the maximal values differ considerably. Besides that, if extracting all these features from all
the sequences, regardless of their family, the data shows that there is not a clear distinction
between negative cases and positive cases. All these motives make obtaining a coherent
single feature from those individual scores difficult. Other features were tested based on
these conservation scores, but none of them achieved a desired degree of distinction between
negative and positive cases.

For these reasons, right now the conservation scores are more useful as a complementary
information to the ML prediction output and not as part of the ML pipeline.



6

C O N C L U S I O N A N D F U RT H E R W O R K

Even though there are still a lot of aspects that require future work, as been stated in the
previous topics, this work provides a significant contribution for the scientific community,
since it presents a tool that can be useful to any researcher interested in obtaining several
types of information regarding VFP in a user-friendly way.

In the context we currently live in 2020/2021, this sort of information is increasingly
important. As we all know, this past year a lot of research was put into SARS-COV-2, with
a particular emphasis for its VFP (the Spike protein) and FPep as therapeutic targets (as
mentioned above) to develop potential vaccines to control this pandemic. This server is a
simple way for researchers to be able to obtain information regarding these enveloped viruses
(and their VFP) in the future, since researchers can find that virus’ taxonomy information,
its VFP and FPep, besides information regarding other similar viruses from the same family
that can also provide key pieces of data, due to their similarity and because some of those
viruses are more well-understood than SARS-COV-2.

Currently, the application achieves most of the proposed objectives: it allows a relatively
easy access to the MySQL database through a web interface that is user-friendly. The
features that allow users to alter the database were developed, but the authentication
features that allow to distinguish between authorized and non-authorized users are still not
fully implemented. All the desired bioinformatics tools are inserted into the application,
through web interfaces, even if some of them require some work in order to improve
functionalities and performance.

ML models that are capable of predicting FPeps within the VFP sequence were trained as
described by Sequeira (Sequeira et al., 2019) and inserted into the server. In the same page, the
end user can also obtain a conservation score of a peptide against a virus’ taxonomy family
multiple alignment, information that can complement the output of the ML prediction, since
FPep is a conserved region within the VFP. Finally, a full manual curation of the database
information was performed.

Future work within the website will include fixing bugs and unaccounted situations within
the application; adding features to make the application more user-friendly; improving the
initial loading time of the website; upgrading the app’s aesthetic look: possible corrections
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may include deleting all the unnecessary options and features on some of the components
of the app; removing all the weblinks present in the data tables that lead to webpages with
empty tables; introducing all the necessary authentication features lacking currently on the
project and asserting the cybersecurity of the webserver for the end user.

Specific tasks necessary to improve the utility of this application for the scientific com-
munity will include fixing the Weblogo, Clustal and IEDB’s known problems, mostly by
correcting the mentioned issues and upgrading the performance of the server, as well as to
provide more options in those tools to increase their functionalities; looking into possible
solutions to make getting the outputs of the ML tools faster, which would also allow to
prevent problems within the server; studying and implementing alternative ways to consider
conservation features and, finally, adding all the relevant entries that were published in
recent times and correcting parts of the information present in the server.
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