
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Paulo Edgar Mendes Caldas

Development of a System
Compliant with the Application-layer
Traffic Optimization Protocol

July 2021

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Paulo Edgar Mendes Caldas

Development of a System
Compliant with the Application-layer
Traffic Optimization Protocol

Masters dissertation
Integrated Masters in Informatics Engineering

Dissertation supervised by
Pedro Nuno Miranda de Sousa

July 2021

AUTHOR COPYRIGHTS AND TERMS OF USAGE BY THIRD PARTIES

This is an academic work which can be utilized by third parties given the compliance
of the rules and good practices regarding author and related copyrights, which are
internationally accepted.

Therefore, the present work can be utilized according to the terms provided in the
license shown below.

If the user needs permission to use the work in conditions not foreseen by the
indicated license, the user should contact the author, through the RepositóriUM of
University of Minho.

License provided to the users of this work

Attribution-NonCommercial-ShareAlike
CC BY-NC-SA
https://creativecommons.org/licenses/by-nc-sa/4.0/

[This license allows others to copy, redistribute, remix, transform and build upon
this work, for non-commercial purposes, as long as both appropriate credit and license
are given, indication is provided if modifications were made, and the new contribu-
tions are licensed under the same license as the original.]

i

A C K N O W L E D G E M E N T S

I would like to firstly thank my advisor, professor Pedro Nuno Sousa, who was
always present in any moment I struggled and required input to improve my work.

I would also like to thank my family for financially and emotionally supporting me
through my academic journey, as well as the friends I’ve made along the way that
made me see the best in people, and last but not least my dog Oscar who showed me
unconditional love like only a dog could.

I finally also thank you, the reader. Since a work unused is no work at all, may you
find some value in this one.

iii

v

A B S T R A C T

With the ever-increasing Internet usage that is following the start of the new decade,
the need to optimize this world-scale network of computers becomes a big priority
in the technological sphere that has the number of users rising, as are the Quality of
Service (QoS) demands by applications in domains such as media streaming or virtual
reality.

In the face of rising traffic and stricter application demands, a better understand-
ing of how Internet Service Providers (ISPs) should manage their assets is needed. An
important concern regards to how applications utilize the underlying network infras-
tructure over which they reside. Most of these applications act with little regard for
ISP preferences, as exemplified by their lack of care in achieving traffic locality during
their operation, which would be a preferable feature for network administrators, and
that could also improve application performance. However, even a best-effort attempt
by applications to cooperate will hardly succeed if ISP policies aren’t clearly commu-
nicated to them. Therefore, a system to bridge layer interests has much potential in
helping achieve a mutually beneficial scenario.

The main focus of this thesis is the Application-Layer Traffic Optimization (ALTO) work-
ing group, which was formed by the Internet Engineering Task Force (IETF) to explore
standardizations for network information retrieval. This group specified a request-
response protocol where authoritative entities provide resources containing network
status information and administrative preferences. Sharing of infrastructural insight
is done with the intent of enabling a cooperative environment, between the network
overlay and underlay, during application operations, to obtain better infrastructural re-
sourcefulness and the consequential minimization of the associated operational costs.

This work gives an overview of the historical network tussle between applications
and service providers, presents the ALTO working group’s project as a solution, im-
plements an extended system built upon their ideas, and finally verifies the developed
system’s efficiency, in a simulation, when compared to classical alternatives.

Keywords: Application-Layer Traffic Optimization, Content Distribution Networks,
Network Optimization, Peer-to-Peer, Traffic Engineering

vii

R E S U M O

Com o acrescido uso da Internet que acompanha o início da nova década, a necessi-
dade de otimizar esta rede global de computadores passa a ser uma grande prioridade
na esfera tecnológica que vê o seu número de utilizadores a aumentar, assim como a
exigência, por parte das aplicações, de novos padrões de Qualidade de Serviço (QoS),
como visto em domínios de transmissão de conteúdo multimédia em tempo real e em
experiências de realidade virtual.

Face ao aumento de tráfego e aos padrões de exigência aplicacional mais restritos, é
necessário melhor compreender como os fornecedores de serviços Internet (ISPs) devem
gerir os seus recursos. Um ponto fulcral é como aplicações utilizam os seus recursos
da rede, onde muitas destas não têm consideração pelas preferências dos ISPs, como
exemplificado pela sua falta de esforço em localizar tráfego, onde o contrário seria
preferível por administradores de rede e teria potencial para melhorar o desempenho
aplicacional. Uma tentativa de melhor esforço, por parte das aplicações, em resolver
este problema, não será bem-sucedida se as preferências administrativas não forem
claramente comunicadas. Portanto, um sistema que sirva de ponte de comunicação
entre camadas pode potenciar um cenário mutuamente benéfico.

O foco principal desta tese é o grupo de trabalho Application-Layer Traffic Optimiza-
tion (ALTO), que foi formado pelo Internet Engineering Task Force (IETF) para explorar
estandardizações para recolha de informação da rede. Este grupo especificou um pro-
tocolo onde entidades autoritárias disponibilizam recursos com informação de estado
de rede, e preferências administrativas. A partilha de conhecimento infraestrutural
é feita para possibilitar um ambiente cooperativo entre redes overlay e underlay, para
uma mais eficiente utilização de recursos e a consequente minimização de custos op-
eracionais.

É pretendido dar uma visão da histórica disputa entre aplicações e ISPs, assim como
apresentar o projeto do grupo de trabalho ALTO como solução, implementar e melho-
rar sobre as suas ideias, e finalmente verificar a eficiência do sistema numa simulação,
quando comparado com alternativas clássicas.

Palavras-Chave: Application-Layer Traffic Optimization, Content Distribution net-
works, Engenharia de Tráfego, Otimização de rede, Peer-to-peer

ix

C O N T E N T S

Acknowledgements iii

Abstract vii

Resumo ix

List of Figures xiii

List of Tables xiv

List of Listings xvi

List of Acronyms xviii

1 introduction 1

1.1 Context and motivation . 1

1.2 Objectives . 4

1.3 Contributions . 5

1.4 Thesis organization . 5

2 state of the art 7

2.1 Peer-to-Peer (P2P) Networks . 7

2.1.1 Concepts and Applications . 7

2.1.2 Architecture . 9

2.1.3 Effects to the network infrastructure 13

2.2 Content Distribution Networks (CDNs) 17

2.2.1 Concepts and applications . 17

2.2.2 Architecture . 19

2.2.3 Effects to the Network Infrastructure 22

2.3 Client-Server Model . 25

2.3.1 Concepts and applications . 25

2.3.2 Effects to network infrastructure 28

2.4 Traffic optimization by applications and layer-cooperative approaches . 29

2.4.1 Peer-to-peer applications . 30

2.4.2 Content Distribution Networks . 33

2.4.3 Server-client applications . 35

2.4.4 Summary . 36

2.5 Application-Layer Traffic Optimization (ALTO) working group 37

xi

2.5.1 Context and motivation . 37

2.5.2 Architecture . 41

2.5.3 Viability . 44

2.5.3.1 Security . 44

2.5.3.2 Privacy . 47

2.5.3.3 Incentivisation . 48

2.5.3.4 Network neutrality . 50

2.5.3.5 Multi-Domain orchestration 52

2.6 Summary . 54

3 system architecture and developed mechanisms 55

3.1 General Architecture . 55

3.2 Role system . 60

3.3 Resources . 62

3.4 Roles . 71

3.4.1 ALTO Client . 71

3.4.2 ALTO Server . 74

3.4.2.1 Resource filtering . 75

3.4.2.2 Server discovery . 78

3.4.2.3 Inter-server communication 78

3.4.3 Network State Provider . 80

3.4.3.1 Network Information Aggregator 80

3.4.3.2 Network State Collector 81

3.4.3.3 Network status processing 83

4 implementation 85

4.1 Technologies used . 85

4.2 Server architecture . 88

4.3 Network Information Aggregator . 101

4.4 Network State Providers . 101

5 experiments 103

5.1 Technologies Used . 104

5.2 Setup . 106

5.3 Scenarios . 109

5.3.1 Peer selection in P2P file transfer 109

5.3.1.1 Overview . 110

5.3.1.2 Analysis of results . 112

xii

5.3.2 HTTP resource request scheduling 116

5.3.2.1 Overview . 116

5.3.2.2 Analysis of results . 117

5.3.3 HTTP mirror selection . 120

5.3.3.1 Overview . 120

5.3.3.2 Analysis of results . 122

5.3.4 Media redirector proxy . 126

5.3.4.1 Overview . 126

5.3.4.2 Analysis of results . 127

6 conclusion 129

6.1 Developed work . 129

6.2 Future work . 132

Bibliography . 135

xiii

L I S T O F F I G U R E S

Figure 2.1 Demonstration of Gnutella’s file searching mechanism [16] . . . 11

Figure 2.2 Examples of structured P2P query mechanisms that utilize DHTs 12

Figure 2.3 Examples of Peer-to-Peer (P2P) query mechanisms with applica-
tion optimizations . 14

Figure 2.4 Example demonstration of an overlay network and correspond-
ing physical layer [22] . 15

Figure 2.5 Conceptual architecture of a Content Distribution Network (CDN)
[31] . 20

Figure 2.6 Request routing functionality of a CDN [31] 20

Figure 2.7 Client-server architecture [43] . 25

Figure 2.8 Linux Mint prompt to select a software repository mirror 27

Figure 2.9 Approaches to decrease tension between P2P applications and
ISPs grouped by their involvement [30] 30

Figure 2.10 ALTO scenario of achieving traffic locality [7] 38

Figure 2.11 ALTO architecture (adapted from [71]) 41

Figure 2.12 ALTO services (adapted from [71]) 42

Figure 3.1 Conceptual representation of the ALTO system within a given ISP 56

Figure 3.2 System architecture at a macro level 58

Figure 3.3 High-level communication diagram of a successful resource ac-
tion request . 61

Figure 3.4 Example network topology with ISP boundary 64

Figure 3.5 Example overlay network topology without ISP boundary . . . 65

Figure 3.6 High-level communication diagram of a P2P application utiliz-
ing ALTO . 72

Figure 3.7 High-level communication diagram of a tracker utilizing ALTO 73

Figure 3.8 High-level communication diagram of a CDN controller utiliz-
ing ALTO . 74

Figure 3.9 Communication diagram of how external network state providers
upload information to the network information aggregator . . . 82

Figure 4.1 Controller layer class architecture for unversioned resources . . 89

xv

Figure 5.1 Network topology and integrating Autonomous Systems (ASs) . 109

Figure 5.2 Scenario 1 acquisition time results 113

Figure 5.3 Inbound traffic by network areas measured in Scenario 1 114

Figure 5.4 Scenario 2 transfer time results 118

Figure 5.5 Inbound traffic flux by network areas measured in scenario 2 . 119

Figure 5.6 Scenario 3 transfer time results 122

Figure 5.7 Inbound traffic flux by network areas measured in scenario 3 . 124

xvi

L I S T O F TA B L E S

Table 2.1 Types of P2P systems (Adapted from [13]) 10

Table 3.1 Example network map referencing Figure 3.4 64

Table 3.2 Example cost map for overlay in Figure 3.5 65

Table 3.3 Example cost map for the network with limited ISP domain in
Figure 3.4 . 67

Table 3.4 Example endpoint property map for server replicas 69

Table 3.5 Example of an ALTO server’s Information Resource Directory (IRD) 70

Table 3.6 ALTO server’s available endpoints 75

Table 3.7 Example ALTO queries with the filtering functionality 77

Table 3.8 Network Information Aggregator’s available endpoints 81

Table 5.1 Description of each fragment that can be requested 111

Table 5.2 Peer selection algorithms to be tested in scenario 1 112

Table 5.3 Measurements to be taken in scenario 1 112

Table 5.4 Maximum available bandwidth from client to server consider-
ing dynamic link capacity variation 116

Table 5.5 Client algorithms to be tested in scenario 2 117

Table 5.6 Measurements to be taken in scenario 2 117

Table 5.7 Description of the available server mirrors in scenario 3 121

Table 5.8 Client transfer throughput throttling to be applied if it chooses
each given mirror server in scenario 3 121

Table 5.9 Client algorithms to be tested in scenario 3 121

Table 5.10 Measurements to be taken in scenario 3 122

Table 5.11 Scenario 4 proxy decisions upon given packet loss values 127

xvii

L I S T O F L I S T I N G S

Listing 4.1 Parametrized Controller class for unversioned resources 90

Listing 4.2 Concrete controller extending from a parametrized one 90

Listing 4.3 Parametrized controller class for versioned resources 91

Listing 4.4 Cost map DTO class . 92

Listing 4.5 Excerpt of the resource authorization service 93

Listing 4.6 Cost map service class . 95

Listing 4.7 Example calendar cost map in protocol and database representa-
tions . 96

Listing 4.8 Similar structure in an endpoint property map and endpoint cost
map storage entities . 97

Listing 4.9 Network map repository . 99

Listing 4.10 Main exception handling class . 100

Listing 5.1 Execution of an example command through the control channel
of a given node . 105

xix

A C R O N Y M S

ACL Access-Control List.
ADSL Asymmetric Digital Subscriber Line.
ALTO Application-Layer Traffic Optimization.
ANE Abstract Network Element.
API Application Programming Interface.
AS Autonomous System.

BGP Border Gateway Protocol.

CAN Content Addressable Network.
CaTE Content-Aware Traffic Engineering.
CDN Content Distribution Network.
CDNI Content Distribution Network Interconnection.
CORE Common Open Research Emulator.
CPU Central Processing Unit.

DHT Distributed Hash Table.
DiffServ Differentiated services.
DNS Domain Name System.
DoH DNS over HTTPS.
DoS Denial of Service.
DPI Deep Packet Inspection.
DTO Data Transfer Object.

EGP Exterior Gateway Protocol.
EMEA Europe, the Middle East and Africa.

FCC Federal Communications Commission.
FTP File Transfer Protocol.

GNP Global Network Positioning.
GSLB Global Server Load Balancing.

HTTP Hypertext Transfer Protocol.

xxi

HTTPS Hypertext Transfer Protocol Secure.

ID Identifier.
IDMaps Internet Distance Map Service.
IETF Internet Engineering Task Force.
IGP Interior Gateway Protocol.
IP Internet Protocol.
IPv4 Internet Protocol version 4.
IPv6 Internet Protocol version 6.
IRD Information Resource Directory.
ISP Internet Service Provider.

JSON JavaScript Object Notation.

LSPD Label Switched Path Database.

MAC Media Access Control.
MPLS Multi-Protocol Label Switching.
MTR Multi-Topology Routing.
MVC Model-View-Controller.

NETCONF Network Configuration Protocol.
NetPaaS Network Platform as a Service.

OSPF Open Shortest Path First.
OSPFv2 Open Shortest Path First Version 2.

P2P Peer-to-Peer.
PaDIS Provider-Aided Distance Information System.
PC Personal Computer.
PID Provider-Defined Identifier.
PoP Points of Presence.

QoE Quality of Experience.
QoS Quality of Service.

RAM Random-Access Memory.
RBAC Role-Based Access Control.
REST Representational State Transfer.
RFC Request for Comments.

xxii

RTT Round-Trip Time.

SDN Software Defined Networking.
SNMP Simple Network Management Protocol.
SQL Structured Query Language.

TCP Transmission Control Protocol.
TED Traffic Engineering Database.
TLS Transport Layer Security.

URL Uniform Resource Locator.

XMPP Extensible Messaging and Presence Protocol.

xxiii

1 I N T R O D U C T I O N

1.1 context and motivation

As society as a whole advances, so does the individual’s quality of life, which in turn
increases the standard to be expected of the society he lives in. As such, technology
itself must quickly adapt to the needs of the people it serves, whichever they may
be - educational, medical, logistical, just to name a few - and consistently create or
improve upon solutions that inevitably change the day-to-day living of the many that
use or indirectly reap the benefits of such solutions. A particular example that is still
fresh in this generation is in the relationship between people and computers - where
they may have been nonexistent a century ago, reserved for industries fifty years ago
and valuable household commodity a few decades ago, it is now common to see a
family home with more than a dozen computers, with a variety fitting for the many
kinds of problems they can solve. The increased number of devices and their expected
functionalities has made it so computer networking as a whole has to be improved
upon.

The Internet allows computers to connect to one another in a worldwide network
that applications can use to further increase their possibilities. However, when certain
applications go unchecked it becomes very difficult for Internet Service Providers (ISPs)
because such applications can create traffic which is either impossible, infeasible, or
too costly to manage. This issue is further exacerbated when considering the scale
of the next decade, where Cisco [1] predicts that by 2022 global Internet users will
make up 60 % of the world’s population, and global IP traffic will reach 396 exabytes
per month [2]. The problem of network management will thus increase in difficulty
due to the sheer scale of Internet usage, and traffic engineering solutions are then
required to provide certain service standards to applications, e.g., the Differentiated
services (DiffServ) architecture, and more recently [3] and [4].

Considering a network of computers which are running applications to fit a given
use case for the user, such as transferring a file, watching a real-time video, or consum-
ing the content of a given social network, these applications are responsible for creating
traffic that must be supported by the underlying network infrastructure, meaning all

1

the hardware and software that is utilized by given companies to provide to end users
the ability to communicate with each other. These applications can be thought of as
citizens of a communications facility that provides the service of accessibility to other
citizens, and there is a common incentive in maintaining this facility in such a way that
keeps the service up to its standards. As such, and like any other community-shared
facility, it must be maintained by the owners, and part of it includes creating and en-
forcing policies that uphold the facility’s quality. During the runtime of an application,
the way it is programmed to operate has impact on the traffic it generates on the net-
work, and thus how resourceful it is with the shared domain it uses. The logic of the
program dictates how the shared network is used to achieve a given goal, and how it
accomplishes it can be more or less preferable by the service providers - for example,
application decisions such as which hosts to consume a service from, at what time of
the day some traffic is generated, or how much traffic is needed to achieve a use case,
have a concrete impact on the shared network structure.

Peer-to-Peer (P2P) applications are an infamous example of a kind of application
that often makes decisions that are not preferable by ISPs. These applications create
overlay networks, which are abstract networks constructed on top of the underlying
network that supports it, and on which the application’s logic runs on, essentially
making it infrastructure-agnostic. Historically, P2P traffic has not been preferable by
ISPs due to its unpredictable and hard to manage nature. Indeed, if P2P applications
simply keep an overlay connection between peers that does not span more than a
few hops, whilst ignorant to them being, for example, either directly connected with
a single network link or spanning multiple Autonomous Systems (ASs) of distance in
the underlay, the generated traffic is always at risk of being inefficient and too taxing
on the supporting infrastructure - e.g., by neighboring other peers residing outside
network borders, which are more infrastructurally expensive to reach. As global file-
sharing traffic currently uses around 7 exabytes per month (including P2P-based file-
sharing) [2], and BitTorrent [5] alone makes up 27% of total upstream volume of traffic
[6], both ISPs and P2P applications have much to gain from finding a way for the
overlay and underlay levels to operate in synergy, i.e., how should the layers combine
efforts to guarantee that their needs are met in a sustainable manner.

Current consumer trends suggest that media consumption will make up a consid-
erable part of global Internet traffic. In fact, Cisco predicts that, by 2022, more than
82% of all consumer Internet traffic will be dedicated to Internet video streaming and
downloads, and Content Distribution Networks (CDNs) will carry 72% of all Internet
traffic [2]. CDNs act by injecting content geographically nearby end users to increase

2

availability and reduce total traffic usage, and are an example of how applications can
better leverage the shared domain’s resources to achieve their goal. The CDN’s man-
agement layer can optimize its application behaviour in ways that are advantageous
to both applications using the CDN and the shared network structure, and such ways
include what edge server to cache data to, how to efficiently match end users to appro-
priate edge servers, or how to increase service reachability among other CDNs. Thus,
much like P2P networks, content distribution networks could also greatly benefit from
cooperative interactions with network providers. These optimizations should be made
by the parties which have economical interest in guaranteeing good performance of
the overall ecosystem, i.e., those acting on the overlay and underlay, and should seek
to, by resorting to application and network administration input, understand how to
utilize the given network resources to achieve functional requirements in a way that is
cheap, effective and sustainable.

More broadly, most kinds of applications that generate traffic on a network could
benefit from input by entities which know how such network is structured and what
political and administrative biases exist. Of course, a one-sided approach could also
exist to optimize resourcefulness of the network structure - applications could use an
independent internal logic that utilizes measurements and its, albeit limited, knowl-
edge of network details to better aid their decisions, and likewise ISPs can attempt
to throttle, block, or generally apply traffic engineering. In fact, these one-sided ap-
proaches are precisely what most happens currently, but this work aims to argue for a
two-sided cooperative approach.

In short, the issue that motivates this thesis is the lack of proper cooperation be-
tween the overlay and underlay network layers in the task of optimizing traffic that
originates from decisions that occur at the application level, e.g., peer selection for file
retrieval in file-sharing P2P applications, software distribution mirror selection, CDN
provider server or cache redirections, high traffic load scheduling, etc. This problem is
not new to the Internet Engineering Task Force (IETF), who devised a working group to
explore possible IETF standardization on network status exchange for traffic localiza-
tion purposes, after test results concluded that P2P applications that select peers based
on exclusive network information provided by ISPs could reduce network infrastruc-
tural and administrative costs, as well as increase application download rates [7]. The
working group, named Application-Layer Traffic Optimization (ALTO), devised a request-
response protocol with the same name, where clients could query authoritative and
trustworthy servers for information that regards to the underlay structure where the
client operates.

3

While the tussle between P2P applications and ISPs were the motivation for the cre-
ation of the ALTO working group, the benefits of a standardized, maintained, and well
provided system for network information querying and guidance on traffic-related de-
cisions could help create the vision of ISPs and applications cooperating for mutual
benefit, being thus advantageous for more than P2P applications - in essence, it would
be a helpful system for any situation where a decision could be optimized with the
addition of proper insight on network infrastructure.

With this in mind, this work focuses on tackling the theme of application-infrastructure
cooperation on the Internet, with particular focus on presenting, implementing, im-
proving and testing a system that leverages the ALTO protocol as a cooperation en-
abler.

1.2 objectives

The main objective of this thesis is to develop a working system that both adheres
to and expands upon the ALTO working group’s devised protocol and architecture.
Whilst expanding upon the working group’s devised solution is indeed a goal, it is
also important that the developed work complies with the specifications it is based
on, so the work done by the IETF in regards to documentation and general reasoning
of the protocol remains consistent with this implementation, with further additions
being reasoned in this work.

With the intent of completing its main goal, this work’s partial objectives were de-
vised as follows:

• Literature review in regards to application-level traffic optimization and the co-
operation - or lack thereof - between overlay networks and the underlay they
operate on. More specifically, an understanding of what the problem entails, the
consensus on the existing issues, and an overview of currently proposed solu-
tions.

• Complete overview of the ALTO working group’s current work. More specif-
ically, an overview of both their existing RFC documents and currently active
internet drafts (at the time of writing).

• Definition of both a system architecture which complies with the ALTO solution,
as well as the new modules to be added and how they should operate.

4

• Implementation of the devised solution.

• Construction of multiple realistic network simulation scenarios and prototype
applications to run the test scenarios with.

• Testing of the implemented solution within the devised scenarios, and evaluat-
ing how it compares against other traditional methods in regards to achieved
network infrastructural resourcefulness and client application performance.

1.3 contributions

This thesis’s contributions include an extensive overview of the problem of applica-
tion inefficiencies with network resources and the existing working and implemented
solutions. Additionally, the work contributed with a working implementation of the
ALTO protocol as specified by the working group of the same name, which includes
functionally extensions, as well as the implementation of a devised architecture to
fulfill the ALTO working group’s proposed idea of layer cooperation, that includes
a network status supply, resource access control, and domain synchronization layers.
Additionally, the accomplished experiments in a simulated environment served as em-
pirical proof of the usefulness of an ALTO system for layer cooperation, as it was able
to display what is to be gained by using the proposed approach over traditional ones
in regards to application performance and optimal network resourcefulness.

1.4 thesis organization

This dissertation will be organized in six chapters, as follows:

• Introduction: Provides context to the tussle between applications and Internet
providers, as well as an argument for the necessity to fix this issue to reach
a sustainable environment for both parties. Coupled to this, the dissertation’s
main goal is presented.

• State of the Art: Displays the existing theory related to popular technologies or
overall concepts that could leverage the ALTO protocol for improved functional-
ity and/or performance; secondly, displays existing proposed solutions to traffic

5

optimization at the application level that do so using network information with
and without close underlay cooperation; thirdly, overviews the ALTO working
group’s proposed protocol and architecture.

• System architecture and developed mechanisms: Presents the devised system’s
functional and non-functional requirements, as well as an overview of the planned
architecture.

• Implementation: Provides reasoning for the decisions that were made in the
task of implementing the specified project.

• Experiments: Overviews the planned simulation scenarios, how they were ma-
terialized, how the related tests were performed, and discusses the obtained
results.

• Conclusion: Presents a critical analysis of the simulation test results, and how
they compare to the previously proposed hypothesis. Finally, it presents the
results of this thesis in regards to what objectives were completed, the general
conclusions that were retrieved, and discusses future work.

6

2 S TAT E O F T H E A R T

This chapter provides a literature overview of the topics that relate to the main
problem that this thesis tackles, which is the lack of cooperation between applications
and the service providers of the infrastructure where such applications reside. As
such, focus is given on discussing networking patterns utilized by applications to give
them particular properties which are helpful to achieve their use case. Among these
patterns, particular interest will be given to three of them for a couple of reasons: their
popularity in the current Internet paradigm, and their potential to optimize traffic
that is generated at the application level. Considering this, the patterns that will be
discussed are the distributed approach of P2P architectures on Section 2.1, the quite
recently popular CDNs on Section 2.2, and the classic client-server model on Section
2.3. For each of these, a conceptual analysis is made - more specifically, contextual
background, the architecture itself, advantages and disadvantages of their adoption,
and possible use cases. Additionally, there’s an examination of how applications that
utilize these patterns affect, positively or negatively, the physical infrastructure where
they operate on, and where does potential reside for mutually-beneficial cooperative
behaviours between these two layers. Following this, Section 2.4 displays existing
proposals for increased layer cooperation, and alongside it a discussion on the practical
consequences of adopting them. Finally, Section 2.5 gives special attention to the ALTO
working group’s proposal for a layer-cooperative system, as it is the baseline for this
thesis’s work.

2.1 peer-to-peer (p2p) networks

2.1.1 Concepts and Applications

Due to the many hybrid implementations that have surfaced, the definition of a P2P
network has become harder to pinpoint. Nevertheless, a P2P network is grounded on
some properties, among them that it consists of many singular computing elements,
the "peers", which have between themselves similar privileges and functions (this con-

7

trasts with the client-server architecture, where two different roles exist - the one that
provides a service and the one that can consume it - with functionality and control be-
ing thus centralized). P2P networks decentralize computational resources as a means
of achieving a given task in a way that is inherently different from a centralized coun-
terpart. This decentralized architecture of the entire system as a whole gives it an
interesting list of properties, including:

• Dynamic scaling: As all member nodes can share their computing resources
with the network, the system increases its capacity with an increase in its users.
As a new peer acts as client to the network, scaling the service becomes less of
a challenge as each new client will also act as a server. This then removes the
necessity to manage how many service resources are needed - the amount of
existing resources is linked to the number of existing clients, and thus there’s
no need to purchase and manage central resources, as the network dynamically
allocates them by design.

• Resilience to failure: Whereas centralized solutions are much more vulnerable
to node and link failures, a decentralized one can more easily work around such
threats - as all peers can encompass the same server functionality, services and
resources are not only available on a small fraction of the network, but instead
can be redundantly deployed throughout as needed.

• Power decentralization: As a consequence to sharing server roles and resources,
no single peer has direct control of the network, and the information is not
centralized. As such, this considerably deters any attempts to overpower the
network, e.g., via means of censorship or biased node favoring.

These, however, are not without their nuances - since many P2P hybrids exist, these
properties are not immutable. For example, if we consider BitTorrent, which has
tracker servers to redirect users to a correct peer with the requested resource, whilst
the network itself can still be resilient to failure, the content-retrieval service that the
P2P network provides has a single point of failure and of control - the trackers them-
selves. Furthermore, the P2P network design brings, by its nature, alongside their po-
tentially advantageous properties, also some some potentially disadvantageous ones
to consider:

• Security hazards: The equal functionality property that P2P networks have gives
peers much power to influence others. Without proper care, malicious actors are
a security risk.

8

• Management: Since resources and services are not centralized, tasks such as
event logging and resource backups become very difficult, and perhaps impossi-
ble if the peers do not abide by any proper orchestration strategies.

P2P applications have had, in the past decades, a mainstream image that is plagued
with legality and security issues. Nonetheless, its design possesses many interest-
ing properties - some of them displayed above - that make it fitting for varied use
cases, e.g., file sharing, media streaming, social networking, and computation with
distributed and cooperative algorithms.

Despite their reputation, the influence of P2P applications is undeniable: Sandvine
[8] published a global Internet phenomena report concluding that BitTorrent alone had,
in 2019, a global application total traffic share of 2.4%, but, perhaps most importantly,
over 27% of total upstream volume of traffic, with that value being 44% for the Europe,
the Middle East and Africa (EMEA) region alone [6].

Beyond file sharing purposes, P2P applications have been recently considered a fit-
ting solution for low-cost content delivery systems in scenarios of high demand - for
example, in applications such as PPStream [9] in China, which provide television con-
tent over IP to large audiences. Similarly, Akamai [10] recognizes the potential of P2P
technologies to provide a highly distributed option for serving static content over the
network, although it being currently lacking in management and control features [11].
Indeed, P2P Internet video broadcast services - and other content delivery services
that utilize P2P for that matter - seem attractive as they are cost-effective and easy to
deploy, and are fitting for large scale demands, and thus have the potential to become
a more mainstream solution [12].

Concluding, the P2P network architecture has many appropriate use cases, and
their rather different strategy, compared to the client-server architecture, gives it many
potentially interesting properties for users and ISPs. Considering its large global traffic
share, particularly in upstream traffic, and its potential adoption towards the large
scale demands of the future, P2P applications are likely to persist and will be in the
minds of ISP administrators for the near future.

2.1.2 Architecture

As stated previously, the term "peer-to-peer" has become very broad and now serves
as an umbrella for many different variations of the core decentralized architecture
design. Thus, this section focuses not on giving an overview of a single conceptual

9

architecture that defines a P2P network, but instead of the many existing variations
and how they differ among themselves.

All P2P networks are characterized by consisting of peers that know one another as
to form a so-called overlay network on top of its supporting underlay network. How
peers organize themselves in this structure and how they operate is what distinguishes
the many sub-types. Table 2.1 groups known P2P systems in regards to their central-
ization and structure, similar to the groupings of [13] and [14], with the latter further
distinguishing the protocols in regards to other parameters, e.g., security, reliability,
and performance. The rest of this section follows the survey made by the former.

Centralization
Hybrid Partial None

Structure

None
BitTorrent, Napster,
Publius

Kazaa,
Morpheus,
Gnutella (extension proposals),
Edutella

Gnutella,
FreeHaven

In Infrastructure

Chord,
CAN,
Tapestry,
Pastry

In System

BitTorrent (DHT/Trackerless),
OceanStore,
Mnemosyne,
Scan,
PAST,
Kademlia,
Tarzan

Table 2.1: Types of P2P systems (Adapted from [13])

One would expect that all P2P applications would have no centralization at all, since
the P2P design ponders functionality spread throughout the network. However, some
modifications have been made in some of these sub-types, which shift how much
decentralization they really have in practice. Similarly, different strategies exist that
dictate the structural hierarchy that resides within the member peers. As would be
expected, these sub-types of P2P networks thus possess different strengths and weak-
nesses, and these can be leveraged to the most appropriate use cases.

Early versions of Gnutella [15] come as a famous example of a decentralized and
unstructured architecture, as peers act with equal functions and privileges, and no
inherent structure exists for peers to connect to each other, nor does it for storing
or retrieving content from the overlay network. The bootstrapping phase consists of
users reading from a list containing a set of Gnutella peers - a list that is retrieved
from a trustworthy source - and attempting to connect to each one of them until a

10

preferred number of known neighbours is reached. The unstructured nature of this
protocol makes it so there’s no systematic way to efficiently retrieve content, and thus
a technique of flooding the network with content queries is used until either a reply is
met or the predefined TTL value is exceeded, as is exemplified in Figure 2.1.

Figure 2.1: Demonstration of Gnutella’s file searching mechanism [16]

Partially centralized architectures were defined as similar to those which are decen-
tralized, but with the added caveat that some peers are chosen to specially service
a portion of the network. This is done to take advantage from the fact that not all
network peers are alike in terms of memory, computational power, or other relevant
resources. As such, more capable peers are elected as "super nodes" and are delegated
with more responsibilities, noting that the network self-configures in situations where
such elected nodes either fail or willingly leave the network, and as such there is no
single point of failure as there would be on a true centralized architecture.

A hybrid architecture approach in a P2P network employs some elements from the
client-server architecture. With Napster [17] as an example, whilst peers still operate as
both servers and clients, they must contact an intermediary and central server when

11

querying for content, which will in turn redirect them to one or many peers that
contain it - a similar concept applies for BitTorrent, where such intermediary servers
are called trackers. Obviously, the choice to add a centralized aspect to the architecture
hinders many of the advantages from a purely unstructured solution - namely its
scalability, resilience to failure, and decentralization of control - serving as a trade-off
to facilitate the control and maintenance of the network, as well as the peers’ ability to
bootstrap to it and locate content.

A P2P architecture is structured if it employs some non-random and systematic cri-
teria on how the network operates, e.g., how peers organize themselves and where
content is stored and retrieved. For example, FreeNet [18] uses the content’s hash as a
key that is used to query for it, and which in turn is used by the peers in each subse-
quent hop to know where to forward the request, instead of flooding the network in
attempts to blindly find it like Gnutella does. Many of the structured P2P architectures
rely on Distributed Hash Tables (DHTs), which act as a decentralized map structure that
binds a given key to some content in the network, in such a way that the full key-space
is partitioned over the peers. Two examples of structured P2P architectures that use
DHTs can be seen in Figure 2.2.

(a) Chord file query mechanism [19] (b) CAN file query mechanism [13]

Figure 2.2: Examples of structured P2P query mechanisms that utilize DHTs

Specifically, Figure 2.2a displays how the Chord algorithm uses a circular DHT
where each peer knows the location of some peers that are their predecessors, and
some that are their successors. When a peer needs to query for some content, it uses
its key to firstly search for it locally and, if it doesn’t exist, it forwards the query to
their successors, and the process recursively continues. On the other hand, Figure 2.2b
display how Content Addressable Network (CAN) has the key-space mapped to a virtual
two dimensional grid, and its area is partitioned to peers considering a deterministic

12

function, which in turn is used by querying peers to figure out where a given con-
tent is stored. A straight arrow from querying node to providing node represents the
routing path that the querying message must travel: A-B-E.

Employing a systematic way to self-organize and share content is the means to
guarantee that a P2P network can be fully decentralized whilst maintaining a desirable
level of performance. However, the reliance on structure results in more maintenance
operations, e.g., managing neighbour pointers on Chord or managing area allocations
on CAN, and that can be costly or even impossible with high rates of peer churn, i.e.,
with a sufficiently large rate of peers entering and leaving the network.

2.1.3 Effects to the network infrastructure

Historically, ISPs have deemed P2P traffic as unideal or even undesirable. Besides
the aforementioned troubled legal past that is tied to P2P applications, the overall
properties of P2P networks make them unappealing to support - due to the distributed
nature of these types of networks, the overall traffic is less predictable, with the higher
upload traffic volume in edge networks requiring infrastructural investments, and
the network-agnostic operation mode of P2P applications leads to inefficient network
resource usage.

P2P networks who neither have structure nor a central point of control have to utilize
content retrieval methods which are bound to be less efficient than their counterparts.
However, architectures which fit in these categories mostly do so with a clear purpose
- Gnutella’s decentralized nature makes it very hard for individual nodes or external
entities to regulate what can happen in the network (such as enforce legal actions),
and its lack of structure simplifies the implementation and reduces the overall effort
to bootstrap to the overlay, making it a good fit for applications with a high peer churn
rate. Similarly, FreeHaven, an also unstructured and decentralized P2P protocol, has
its architectural decisions fit a very specific use case, as it "emphasizes distributed,
reliable, and anonymous storage over efficient retrieval" [20]. The lack of systematic
means to efficiently locate content by these P2P architectures means that more ad-hoc
methods have to be used, which are less efficient and thus incur in bigger workloads
for ISPs - the usage of query flooding by Gnutella and message broadcasting by Free-
Haven are examples of this.

The usage of structure by P2P networks can, as stated before, result in more effi-
cient content and peer location algorithms. However, maintaining such structure also

13

requires a chunk of ISP resources, as peers need to periodically update other neigh-
bouring peers, as well as react to them abruptly entering and leaving the overlay. The
usage of key-value mappings with DHTs can also have the potential to be ISP un-
friendly, as the hash function can be designed to evenly distribute resources over the
peer pool, and thus over the network - whilst such property is certainly advantageous
in certain use cases, doing so removes any application context that exists in the con-
tent - for example, grouping resources which belong to the same web page with such a
method isn’t efficient, as they will be individually hashed and spread throughout the
network, despite the fact that they’ll likely be requested together for each page access.

A first point of improvement is optimizations made in the applications themselves
to less degrade network resources. An example of these can be visualized in Figure
2.3.

(a) Chord file query mechanism with
more neighbours known per peer [19]

(b) Gnutella file query mechanism assum-
ing reduced resource-to-peer hop dis-
tance

Figure 2.3: Examples of P2P query mechanisms with application optimizations

Specifically, regarding Figure 2.3a, a point of optimization in the Chord system
would try to reduce the number of query messages per resource by increasing the
number of successors a given node knows. That way, the querying node can instead
query not for the single successor it knows, but instead by querying for the one whose
ID immediately precedes the content’s, thus guaranteeing a reduced number of hops
to retrieve the message. This consequentially also reduces the total amount of traffic
on the network, and improves application times. Regarding Gnutella in Figure 2.3b, a

14

point of optimization would try to tackle the usage of query flooding to locate data,
since such flooding grows exponentially and thus intakes a massive toll on network
resources. A query flooding system would not be as prejudicial if content was equally
scattered throughout the overlay and each given content was a minimal amount of
hops away. However, as concluded by extensive analysis of user traffic on Gnutella
during its heightened use, nearly 70% of users shared no files and nearly 50% of all
responses were returned by the top 1% of sharing hosts [21].

Regardless of the many ways through which P2P systems can operate, e.g., in re-
gards to structural mechanisms and centralization, and even disregarding potential
application optimizations, no classic P2P system operates in full understanding of
the underlying network topology, nor with a cooperative behavior towards ISPs. The
network-agnostic manner under which they operate results in overlay networks which
are layered on top of the underlay where they run, as exemplified in Figure 2.4 - as P2P
applications are network-agnostic, two neighboring peers could exist in completely
different contexts on the common network layer - for example, they could either be
connected by a single data link or be multiple network provider domains away from
each other.

Figure 2.4: Example demonstration of an overlay network and corresponding physical layer
[22]

The inability of P2P applications to localize traffic is seen as a big problem - as con-
cluded by [23], ISPs face bottleneck bandwidth pressure in the large scale Internet of
the future, with it being in particular due to P2P applications. However, an argument
is made that an increase in users from such applications is not necessarily harmful,
and perhaps helpful, if traffic locality can be boosted. Thus, there is value in ensuring

15

that peers prefer to generate traffic within network locality over traffic that crosses
network borders.

A first step towards more traffic locality would be increasing the availability of
content inside network boundaries, through means such as cache injections or peer
content serving incentives. Given that one manages to concentrate content inside net-
work borders, a second step would be that P2P applications have a network-aware
vision of the overlay, which does not happen with classic P2P protocols. This issue
is particularly damaging in P2P applications whenever neighbours are selected, and
when deciding what peer or collection of peers to consume a given service from.

If it is the case that P2P applications are not locality aware, it can easily be seen how
this can be an issue. In one hand, for the applications, choosing peers which are not
local to the querying peer may result in more time to retrieve the requested contents.
On the other hand, for the ISPs, bad network resource utilization can incur in higher
operational costs, and may degrade overall network performance in many cases, e.g.,
by not being able to stop applications from overusing inter-AS links, which usually are
network bottlenecks (a conventional wisdom demonstrated in [24]) and which, due to
peering agreements with other ISPs, are less desirable to be overused due to peering
costs. If the P2P application were to attempt to choose the peers that would most
effectively serve the querying peer, it could depend on privileged information that the
ISP has on the network’s properties and current status, such as the inherent network
topology, link properties, or scheduled resource maintenances.

Attempting to optimize peer selection without a co-operational channel with ISPs
would be sub-optimal, as not enough information can be derived with network prob-
ing alone, and could perhaps even be more damaging with the wrong techniques
- consider a peer selection algorithm that chooses the peers with lowest Round-Trip
Time (RTT) of a probing ping message, whilst having no indication of available end-
to-end bandwidth, existing network bottlenecks, or peak traffic hours. Likewise, at-
tributing neighbour pairings via geographical proximity, whilst initially seems like
a good step in location awareness, may also not be optimal - ISPs may not always
prefer geographical proximity in connections, as peers could be very geographically
close to one another, but residing in different ASs and thus separated by costly links.
Other peer-selection techniques focus on randomly selecting nodes, such as the means
through which a BitTorrent tracker selects between redundant peers serving the same
file chunk [25], which is simple and resilient to peer churn [26], but as a consequence
is sub-optimal at network resource usage as no network consideration exists. It is
reasonable to assert that no P2P application can act with full ISP consideration with-

16

out directly cooperating with it, and simple heuristics should be, whenever possible,
traded for methods where full cooperation with the underlay is done - that is, if the
needs of both layers are being met.

Indeed, it is the case that current P2P solutions are ISP-unfriendly. More concretely,
[27] shares the view that P2P applications and ISPs are in a tussle, since P2P appli-
cations generate traffic which favours the application’s needs while ignoring those of
the ISP, which in turn upsets the latter’s business model. To name a few examples,
BitTorrent seems to employ peer selection algorithms which do not consider the un-
derlay network, which can result in degraded download performance and increased
load on ISPs [26]. [28] found that since this protocol is locality unaware, 70-90% of con-
tent existing locally was found to be downloaded from external peers, and suggests
that locality-aware content distribution algorithms could significantly reduce the total
amount of traffic generated. Likewise, Gnutella generates traffic which is not ideal,
as it may have to cross ISP network boundaries multiple times [29] due to the same
fundamental issue stated before - an application layer that operates in disregard of the
network underlay it runs on.

As [30] describes, the ongoing friction between the overlay and underlay layers has
reached a point where ISPs have chosen to throttle the bandwidth of P2P traffic, or
even outright block it. In return, P2P applications have tried to mask their presence
to bypass such restrictions via tunnelling or using non-standard and random port
numbers. This is an unsustainable system that is bound to hurt both ISP profit and ap-
plication functionality, and a strategy of cooperation between the overlay and underlay
layers is crucial to guarantee that the requirements of both parties are met, specially
in the face of the increased challenges contained in the Internet of the future.

2.2 content distribution networks (cdns)

2.2.1 Concepts and applications

A CDN, as the name implies, is a network specifically designed with its main focus
on distributing content to a set of end users. Its design allows for the alleviation of
performance bottlenecks on the Internet generated by providing data to clients, and
has been recently considered a powerful tool as a response to the existing high demand
for media content, which has a huge share of the global Internet traffic of today.

Functionalities of CDNs include [31]:

17

• Content outsourcing and distribution: Replicate content throughout the net-
work into edge servers nearby end users. This allows CDN clients to pay for
their content to be hosted on these edge servers, and in doing so guaranteeing
that it is quickly accessible by their own content clients.

• Request redirection: Direct a content request to the most appropriate edge
server at a given time. This redirection is done considering relevant network
properties, such as client and server geographical locations, as well as current
server loads.

• Content negotiation: Manage the network’s properties and allocate resources to
fit the needs of its clients through negotiation.

• Management: Manage the distribution network, which includes accounting,
monitoring, statistical analysis of content consumption, etc. A close manage-
ment of the distribution network is important for its business model, as, besides
being needed for a billing system, allows for a better understanding of the net-
works’ usage patterns, which is helpful information for better engineering the
system to most optimally serve content with increased revenue and decreased
costs.

The current focus of CDNs is thus to provide content, e.g., web pages, documents,
photos, videos, or media-related streams, with high availability and performance. The
strategy used by them to guarantee a satisfying Quality of Experience (QoE) on a global
scale is the deployment of content close to the end user - a CDN contains many nodes
which are geographically spread throughout the globe and close to the users they
wish to serve, and whenever such users request for content, they are routed to the
node which is closest to them [32].

Data replication to servers which are placed closest to end users, coupled with good
means to properly redirect such users to the most strategically appropriate edge server,
is what allows content to be available more often and more quickly. These are undoubt-
edly attractive features in the world of e-commerce, where user QoE can dictate much
of the profit - for example, Akamai, one of the leaders in CDN-related services, ran a
research concluding, among other things [33]:

• A 100 millisecond slower web page loading speed can result in a 7% drop in
sales.

18

• A 2 seconds slower web page loading speed can almost double the number of
visitors who end up abandoning their carts.

• 53% of users who use smartphones to visit web stores won’t make the sale if the
web page takes more than 3 seconds to fully load.

• 28% of users won’t return to the same web store if they think it takes too long to
load.

It should then come as no surprise that streaming services such as Netflix or Youtube,
who now reach a global scale and whose utility is highly dependant on their high
availability and low transmission delay, routinely use CDN solutions. More broadly,
typical CDN customers include media and Internet advertisement companies, data
centers, ISPs, online music retailers, mobile operators, etc. [31]. Indeed, companies
that wish to provide a given service in the web at scale routinely partner with compa-
nies whose focus is providing content delivery services, with popular examples being
Akamai, CloudFlare [34], or Amazon Cloudfront [35]. Coupled with the promise of
highly available and quick content retrieval, these companies also provide other attrac-
tive services, such as firewalls and Denial of Service (DoS) protection.

The Internet’s currently most targeted use being media consumption has made it
so CDNs and their providers have an important role in dictating a very considerable
percentage of traffic flow in ISP-owned infrastructures, and as such their study and
improvement is quite important. With their great influence over global traffic, active
efforts should exist to increase harmonious behaviours between applications that uti-
lize their services and the ISPs that support it, with the goal in mind being network
resource efficiency to guarantee that the infrastructure can remain operational and
applications can provide a satisfiable user experience.

2.2.2 Architecture

Figure 2.5 represents a high-level conceptual architecture of a CDN.

19

Figure 2.5: Conceptual architecture of a CDN [31]

The true power of these kinds of networks comes from their strategically deployed
cluster of replicated servers - at a global scale, this implies having them geographically
dispersed and located inside or nearby networks with large content demands. The
origin server possesses the content that is to be served, and the bootstrapping process
has the content uploaded into the network, which is afterwards replicated to these
edge servers.

Figure 2.6 displays how, conceptually, the request routing functionality of a CDN
works.

Figure 2.6: Request routing functionality of a CDN [31]

20

As can be seen, the request is firstly directed to the origin server, which serves
only light and basic content. In the situation where large static content is requested,
the origin server redirects the request to the CDN provider, which utilizes a selection
algorithm to elect the most appropriate edge server to serve the content to the end
user.

The request routing mechanism is the one that redirects a given user to a given edge
server. The prevalent approaches are, according to [36], the following:

• Domain Name System (DNS) request routing: The user must first resolve a
domain name to retrieve a piece of content. The CDN’s DNS server processes
the request and, utilizing the user’s Internet Protocol (IP) address, historical delay
measurement information and current server loads, responds with the address
of the edge server that seems most fitting to provide such content.

• Hypertext Transfer Protocol (HTTP) request routing: Content is firstly requested
to a nearby proxy server, which in turn answers with an HTTP redirect to be
resolved by the client in order to find the content. The HTTP requests can occur
in subsequent rounds and can also use DNS knowledge when the redirection
domain must be resolved.

• Anycast request routing: The CDN provider announces an anycast prefix to
the network. Whenever a router receives multiple announcements to the same
prefix incoming from different locations, it chooses one considering some custom
criteria, usually being AS hop count and Interior Gateway Protocol (IGP) weight.
Thus, different routers can have a given anycast address mapped to different
hosts, meaning the ones that are most suitable for that particular router.

These mechanisms are also discussed in [31], but also add:

• Global Server Load Balancing (GSLB): Service nodes, consisting of edge servers
and GSLB-enabled web switches, are interconnected in a network. Individual
nodes possess global awareness of the network, meaning the status of each in-
dividual server. With edge servers having more information on the health and
status of all other candidate edge servers, and the web switches acting as authori-
tative DNS servers, the network can enable the support of a globally-wide server
load balancing mechanism that intakes dynamic server information.

• Uniform Resource Locator (URL) rewriting: The origin server redirects the end
user via dynamically altering the host page’s URL links.

21

• CDN peering: An extension of a single CDN network to multiple, intercon-
nected CDNs which serve content on behalf of others when appropriate. This is
helpful to extend the domain reachability of a single CDN, increase fault toler-
ance, and ability to achieve better performance with more candidate servers to
choose and balance loads from.

It is vital that a CDN possesses a clear view of the network performance inside its
domain. [31] lists important metrics which are used to measure CDN performance:

• Geographical proximity of end users

• Path latency

• Path packet loss

• Path bandwidth

• Path startup time

• Path frame rate

• Server load

Means through which these metrics are retrieved by the network include traffic
monitoring of end user to surrogate server communications, and retrieval of surrogate
server feedback via application requests or measurement probings [31] [11].

Having a clear understanding of CDN performance is important for system manage-
ment in two fronts - firstly, through performance evaluation, by providing the billing
and monitoring modules the verification of how the network is faring at its task of
caching and delivering content on behalf of clients; secondly, through performance op-
timization, by providing the logical layer an updated view on network status, serving
as contextual input that the system uses to better reason on how to act - for example,
in regards to the caching and request routing mechanisms.

2.2.3 Effects to the Network Infrastructure

As previously discussed, CDNs came as a tool to strategically position content on
the network in such a way that it can more quickly and more reliably be retrieved by
an end user. These CDN systems are then inherently a method of optimizing network

22

resource utilization in the application layer, and thus are of great interest for ISPs and,
if done properly, can be very appealing not only to them but also to end users that use
applications leveraging these networks.

The usage of a single content-providing server - or a limited set of them - which
is far away from globally dispersed content demand, is prone to server overloading
and path congestion problems if a big enough scale is achieved. Data caches are a
classic solution to network inefficiency problems, and are used by CDNs as a means
to replicate content to strategic locations to better serve users, with the added benefit
for ISPs that their network resources are efficiently used, with the ability of reducing
the total amount of used bandwidth needed for a service to operate - as data travels a
shortened total amount of network hops from data source to points of data demand -
and reducing congestion of inter-domain links - as data caches will reside locally and
redistribute traffic away from highly contested network links. It can thus be stated
that the relationship between CDNs and ISPs allows for a win-win scenario because
efficient network usage has consequentially better service quality, benefiting service
providers and applications, respectively.

However, CDNs seem to lack cohesion with the underlying network infrastructure
during normal application operations. As stated by Akamai, a leader in CDN services,
in their report [11], the large scale and complexity of the Internet, where it takes well
over 650 networks to reach 90% of all access traffic, adds to it many challenges to the
CDN’s role of content delivery. In particular, whilst good investment seems to exist
at the first and last mile of Internet access (server and end user placements, respec-
tively), there seems to be little economic incentive to invest in the middle mile, com-
posed of peering points shared among networks. These peering points then become
network bottlenecks that are susceptible to increased traffic packet loss and latency,
making inter-network communications unreliable, and loose coordination between au-
tonomous networks with internal biases is pointed as a main cause. Due to this, even
a well provisioned data center will be at the mercy of the various inter-network bot-
tlenecks that may arrive, and performance is susceptible to degradation. In fact, the
paper suggests a clean-slate redesign of the Internet as a potential solution to its many
problems - besides the peering point congestion mentioned above, inefficient routing
protocols, unreliable networks, inefficient communications protocols, and application
limitations also add to the problematic - but such a redesign to a massive and highly
critical global infrastructure doesn’t seem feasible.

In alternative to proper network infrastructural insight, CDNs have to rely on net-
work probing, traffic monitoring, and server feedback, as discussed on Section 2.2.2.

23

Even assuming that these are sufficient, the usage of probing techniques will incur in
overhead traffic on the network, with this overhead being exacerbated if many other
overlay networks or applications also apply this technique. Similarly, traffic monitor-
ing to extract end-to-end path metrics to end users requires resources and takes time,
and may also incur in redundant operations being applied on the network.

Advantageous as network probing and traffic monitoring mechanisms can be for
CDNs to properly conduct request routing and caching decisions, a case must be
made for proper application-infrastructure synergy during decision making in the
overlay. Much like P2P systems, to infer on network status by measurements alone
is insufficient when compared to receiving input from trustworthy and authoritative
entities that possess privileged network information, such as ISP administrators. At-
tributing node pairings entirely on geographical data was previously discussed as
being a non-optimal way of assessing node selection at the application layer in Section
2.1.3, and the same would apply in the case of CDNs, where edge servers are paired
with end users. Again, much like in the scenario of peer selection in P2P systems, the
usage of network measurements made by the CDN itself to better pick the appropriate
end-server, while potentially beneficial, can certainly be improved upon if it used ad-
ditional, hard to retrieve data that only ISPs or other privileged infrastructural entities
could possess, and which are at position to guide applications in the infrastructure
they deeply possess knowledge of.

There indeed seems to be a consequential coupling between overlay decisions in
the CDN systems and the underlying infrastructure. If the CDNs were not to take
ISP input when redirecting clients, suboptimal choices would be made that would be
prone to bottleneck congestion, and if, on the other hand, ISPs were to employ only
their own biases in content request redirection, user-level application Quality of Service
(QoS) agreements might not be met. [37] states that this lack of awareness to network
status is indeed problematic for CDN systems, listing end user mismatching to edge
servers based on dubious DNS-based location binning and resource consuming, non
exact methods to detect bottlenecks, as well as lack of agility in server deployment in
ideal locations. This is a view shared by [38], which adds that these problems reside
in a shared medium that raises the opportunity for cooperative behavior that would
enable better application performance and optimized ISP resource utilization. In fact,
Akamai themselves have formed content delivery strategic alliances with major ISPs,
with AT&T [39], Orange [40], Swisscom [41] and KT [42] among them [37], which hints
at this type of partnership being the norm for content distribution technologies of the
future.

24

ISP input permits applications to act in a more network-aware fashion than without
it - whereas pairing overlay nodes or deploying edge servers in terms of geographic
distance, RTT, or any other metric, may give further decision power than a purely
network-agnostic overlay system, proper guidance by ISPs could help pairing based
on more complex metrics that, besides the aforementioned ones, also consider ISP
objectives, e.g., to minimize network distance, avoid bottlenecks, locate content caches,
etc. A more efficient Internet can be obtained if many other overlays coordinate their
efforts with the ISP, which in turn can now orchestrate its traffic in a way that would
previously be generated with no prior guidance, and that can now be engineered to
maximize network resource utilization and, consequently, application performance.

2.3 client-server model

2.3.1 Concepts and applications

The Client-Server model is a classical way of attributing roles in the network. Whereas
the P2P architecture blends server and client roles into each node, this architecture de-
lineates these distinctly, and their purpose on the network, as Figure 2.7 shows. With
it, the service layer is centralized onto the server nodes, and the only role expected of
client nodes is to request services from them.

Figure 2.7: Client-server architecture [43]

Operating with philosophies which are opposite to the P2P architecture, it is to be
expected that the advantages and disadvantages should too be contrasting - by central-
izing the services, maintenance and general administration of serving nodes are much
facilitated, and limiting the number of servers to a select and trustworthy few, instead
of scattering that functionality to all nodes in the network, greatly minimizes security
risks. On the other hand, the drawbacks are also apparent and mirror a distributed
solution - issues of scalability, resilience to failure, and resilience to monopolization of

25

power arise from the decision to engineer an application that creates clear boundaries
between client and server.

This classic architecture has seen a lot of adoption by applications, with use cases
that include serving content via HTTP or File Transfer Protocol (FTP), or enabling e-
mail communications [43], to name a few. Adding to this, the client-server approach
also serves as a direct alternative to the P2P one in many fields, e.g., file transfer or
media streaming, with their respective advantages and disadvantages needing to be
weighted out for a proper choice to be made.

As an attempt by service providers to still operate a client-server model whilst re-
ducing its associated downsides, given techniques were created and employed. These
techniques will be explained from the perspective of the client-server architecture, but
can easily be adapted to other structural paradigms as they stand on their own concep-
tually. One of which, by the name of CDN, is of particular importance in this work and
as such has its specific overview in Section 2.2. Some other methods will be discussed
below.

Server mirroring, one famous technique, is the act of continuously synchronizing
a server into its replica, or mirror, essentially creating an exact copy of it that is now
accessible as if it were the original. Whilst CDNs aim for replicating chunks of con-
tents wherever it may be necessary, the act of server mirroring performs an integral
copy of a server which is self sufficient at servicing a given client, as long as it periodi-
cally checks up with the primary server for synchronization. It is a standard business
strategy that uses redundancy as a means to increase reliability, availability and perfor-
mance. The existence of many servers that perform the same task means that these can
be strategically chosen to serve a client in a given situation, e.g., by selecting the one
that has reduced load and smaller end-to-end message delay to the user. Figure 2.8
shows an application of this, where multiple server mirrors exist to deliver software
packages to the Linux Mint [44] distribution. The user has the choice to manually
select one of these mirrors, and ideally chooses the one that is most fitting to them.

26

Figure 2.8: Linux Mint prompt to select a software repository mirror

Server load balancing is another popular technique to solve scalability issues, and it
refers to the act of distributing tasks over a set of computing nodes as a means to make
the service more efficient, since a server with little processing load is bound to respond
quicker than one with more, and situations of overloading become less common as it
is now spread out over multiple processing units. Load balancing algorithms can be
categorized, according to [45], into two categories:

• Static: Does not take current system status into account, instead acting upon
static rules that define the load type, in regards to, for example, processing power
and memory requirements. A round-robin or random selection of load attribu-
tion are part of a static approach.

• Dynamic: Load is distributed at runtime, considering dynamic information
about the system that is continuously being collected.

A static approach can be compelling due to its simple nature that makes it easy
to implement and much faster in comparison to run. On the other hand, a dynamic
approach is more complex by definition as it requires the additional infrastructure
required to collect and compute upon the system statistics. As it might be expected
though, a load balancing scheme that attempts to optimize resource utilization con-
sidering real-time information about system status and performance is bound to have
bigger potential at effectively selecting which server should handle a given request,
since more factors are known to better aid the decision, including the current server

27

loads in the server cluster, their available storage and processing resources, network
conditions, etc.

Several methods exist through which to implement load balancing. For example,
DNS-based approaches perform the load balancing at the domain name resolving
stage, where the IP address response is given after selecting an optimal server, such as
the proposal in [46]. Software Defined Networking (SDN) solutions, as another example,
leverage a control pane that is responsible for intercepting server access calls and
activate the load balancing mechanisms that redirect that call to the selected server, as
happens in the proposal in [47].

2.3.2 Effects to network infrastructure

As a base method, the utilization of the client-server architecture is not at all recent
to ISPs. Quite the contrary, it was the norm throughout the decades to provide a
service by using a set of single-purpose server machines. Intuitively, using a limited
number of servers to respond to client needs will have problems scaling, as increased
demand is prone to service overload and path congestion, hence the need to employ
some of the strategies discussed on the previous section. These strategies come from
the necessity to fulfill both application and ISP requirements, i.e., to achieve proper
QoS levels and infrastructure resourcefulness that helps the general good function of
the network, respectively.

Much like the content replication utilized in CDNs, an integral replication of a main
server proves itself as an advantageous tool capable of delivering services more closely
to users, and as such allows the reduction of the total amount of bandwidth used to
serve all clients. Optimizing application traffic is crucial to guarantee good network
resource usage, and in case of server mirroring it comes down to good strategic deploy-
ment and dynamic, intelligent algorithms to properly attribute mirrors to requesting
end users.

Giving end users the choice to manually select the serving mirror, as commonly
happens when downloading software, for example, seems problematic, as application-
generated traffic is not optimized. In fact, when considering the Linux Mint software
package distribution discussed in the previous section, despite there currently existing
seventy mirrors deployed throughout the globe to fit this role, a large number of
these remains mostly unused whilst the main and default server is constantly prone
to overworking [48].

28

It can be stated that end users both don’t care enough to optimize traffic nor do they
have enough information to properly do so even if they did. Deployment of server
mirrors is a great tool that brings with it the issue of optimizing server selection, and
much like all examples given so far, traffic generated by applications can be firstly opti-
mized by the applications themselves if they consider static and dynamic information
of the network they operate on.

Load balancing is too a point of great interest in the task of application-layer traffic
optimization. The task of attributing a current request to a pool of available redun-
dancy workers is a common strategy to help scalability, and the means through which
to do so have concrete network consequences, since it has the power to shape great
amounts of traffic in ways that can be more or less preferable for ISPs. It could then
be deduced that a load balancing strategy has better chances of being efficient if it
fully aware of both server status and network conditions. Doing so with ISP cooper-
ation would reveal insight into some network status information and administrative
preferences. For the section of data that could be retrieved utilizing probing and
measurement strategies, a bank of centralized data possessed by an entity with full
network knowledge would greatly reduce overhead probing traffic and monitoring
computation cycles. For the section of data that could only be retrieved with proper
ISP insight, more efficient and network-cognizant decisions would now be possible,
in contrast to the limited one-sided attempt at optimizing application decisions that
generate traffic.

2.4 traffic optimization by applications and layer-cooperative
approaches

This section serves to display proposed solutions and existing implementations that
have been made in the attempt to optimize application traffic utilizing network infor-
mation. Given the increasing scale of the Internet as a near ubiquitous system, and the
increasing tension between applications and service providers, it comes as no surprise
that the area of layer cooperation has been through exhaustive work. Many solutions
have been devised for specific use cases, with varying degrees of power given to each
one of the layers, and different levels of cooperation. Along with their description, a
review will subsequently be made in regards to what the proposals state their impact

29

is to applications and the infrastructure, as well as the accompanied advantages and
disadvantages.

2.4.1 Peer-to-peer applications

Many different mechanisms have been developed with the goal of decreasing ten-
sions between ISPs and P2P applications, which is a subset of the general layer co-
operation problem. Figure 2.9 represents a grouping proposed by [30] where such
mechanisms are ordered in agreement with how much involvement the P2P systems
and the ISPs have.

Figure 2.9: Approaches to decrease tension between P2P applications and ISPs grouped by
their involvement [30]

In a more detailed fashion, these classes can be described as follows:

• Class 1: There is not much - or any - interference in the overlay by ISPs nor
are P2P systems cooperative. Instead, ISPs apply traffic engineering methods
to selectively favour types of traffic. This is usually done to guarantee certain
QoS levels to some classes of traffic, which are then to be treated favourably at
the forwarding and routing levels. Examples of such techniques are DiffServ,
Multi-Topology Routing (MTR) and Multi-Protocol Label Switching (MPLS). These

30

classes of methods do not fix the underlying application behaviour, but are in-
stead used to control preexisting traffic. As such, the peers’ routing decisions are
not affected and P2P traffic still remains non localized.

• Class 2: There is ISP intervention in the overlay in such a way that peers continue
normal operations without realizing that such interventions occurred. This can
be accomplished via the use of proxies that affect the control plane with the
redirection of content requests to local peers, or at the data plane with content
caches which act as normal peers and are strategically placed in the network.
These methods are advantageous because they do not require any changes to the
P2P protocols, since the ISP has an active role in molding to the overlay, intercept
traffic, and either help or guide it in a way that favours them.

Class 2 techniques haven been proven to work , as concluded in [30], and put into
practice, for example, in [49], [50], and [51], via the specification of a BitTorrent
tracker that is programmable to allow for P2P qualitative differentiation and ISP-
cooperative traffic engineering that could help reduce inter-domain traffic signif-
icantly. Additionally, in [52], with the injection of special nodes on the Gnutella
overlay which interface with the base protocol nodes but with the added caching
and load-balancing mechanisms, in the attempts to alleviate the great amount of
"free riding" that exists in Gnutella applications - as discussed in Section 2.1.3
- by minimizing the total amount of query floods and more evenly distributing
content throughout the network for increased infrastructure resourcefulness.

Despite their proven results in many areas, this class of mechanisms is not with-
out its challenges - firstly, it involves much effort by ISPs, as it requires struc-
tural upgrades and constant adaptiveness to new and changing P2P protocols.
Perhaps worse, even when considering proper budget and maintenance, such
methods can prove themselves to not be possible at all - for legal reasons, as data
caches could possibly contain illegal content; and for technical reasons, since the
packet inspection required by ISPs to detect and steer P2P traffic may be blocked
due to the peer’s attempts to mask its traffic. It’s also important to note that
since no application-layer input exists, this approach could be one-sided in the
sense that only ISP needs are favored without directly considering application
needs.

• Class 3: Relative to a class 2 approach, the active role is switched and it is the
P2P system itself that acts in regards to the underlay it operates on, but without

31

ISP involvement. Peers probe the neighboring network elements as a way to
get more familiar with connection properties, and act on these probings during
operation, e.g., when choosing neighbours to construct the overlay network with,
or when choosing from whom to request a given resource.

Whilst these methods can be advantageous for both applications and ISPs, it
can’t be assumed that to always be the case - as peers have no ISP input, they
cannot have a full knowledge scope of the network and its needs, and as such
these application optimizations can end up being more hurtful than helpful. For
example, consider a scenario where a peer uses RTT measurements to choose
between two candidate peers, but the one that is the least round-trip time away
from him belongs to another AS, and his preference for it to supply the service
would incur in more infrastructural costs.

The previously mentioned paper describes this class as a "win-not-lose" situation,
meaning that while the P2P system can, in the right circumstances, improve
their performance via measurement-oriented strategies, the ability to act in a
way that positively affects the underlay, without any feedback from ISPs, cannot
be guaranteed.

Such an example of class 3 mechanisms could be seen in [26], which improved
BitTorrent’s download performance and even managed to reduce ISPs’ backbone
and cross-ISP traffic. The technique consisted of having peers send traceroute
measurements to the tracker, which in turn grouped the peers into local, intra-
ISP and inter-ISP groups, with the assumption that inter-ISP links generally have
much more latency than the rest. As peers would later query the tracker for
content, the returned peer list would be biased in such a way that promotes traffic
locality. Another example of this is found in [53], which devised a CDN-P2P
hybrid where peers utilize RTT measurements to group themselves by separate
orders of geographical proximity with the same intent of the previous example,
which is to localize traffic whenever possible. This technique also proved itself
to be advantageous, as the solution was more efficient in terms of reduced total
service disruption time when compared to a previous iteration of the hybrid
architecture which used random peer selection to look up available target peers.
As a final example, [54] proposed a node binning scheme that groups nodes
of similar orders of magnitude of RTT values to pre-defined landmarks, and
utilized such scheme for topology-aware overlay construction mechanisms in
some unstructured and structured P2P overlays. Results allowed to conclude that

32

even surface-level topological information is advantageous and can significantly
improve application performance.

• Class 4: Full and active cooperation exists between the ISPs and P2P systems.
The role of the ISPs is to provide information and guidance, and P2P systems
let themselves be influenced during operation. It is the methodology that most
comes close to a mutually advantageous scenario for both parties, given that they
both keep the entire group’s needs in mind.

For example, [55] proposes an oracle that receives as input a list of candidate
peers that the querying peer is considering connecting to, and ranks them by
client connection proximity. Such method was tested in a simulated environ-
ment and proven to decrease negotiation traffic and improve the scalability of
P2P networks. The functional intent of the oracle pattern is that he possesses
privileged network information and acts on it to provide guidance to querying
applications, and thus has the power to impose policies and optimizations unto
applications, e.g., pair peers which are the least number of network hops apart
via a Dijkstra algorithm using link costs derived from network-related ISP in-
sight. Another approach is the oracle proposed in [56], containing algorithms to
dictate peer selection, task assignment and rate allocation. The method requires
the full network topology as input - including link capacities and peer service
costs - to minimize file downloading time and cost. The oracle would also be
free to enforce ISP biases as preferential by modifying such algorithms to, for
example, minimize usage of costly links (such as inter-AS ones, and subjected to
peering agreements).

The ALTO working group - whose work this thesis attempts to materialize into a
working system and further extend its features - was formed to standardize the
oracle-user scenario so it could be properly used in many situations at the scale
of the Internet.

2.4.2 Content Distribution Networks

Given the current share that CDNs have on the global Internet traffic of today, cou-
pled with the demand for a good QoE by end users, this application domain has also
been through efforts to optimize its traffic. One such way to do so is to optimize client
query redirection, i.e., better choose which edge server should be attributed to an end
user.

33

[57] considers a CDN built to deliver video data where some given set of content
exists redundantly in many edge-servers, and presents an algorithm where the choice
is made to optimize client download time, which in turn has to consider the network
parameters at time of request, as well as current server load.

Some simple, flexible and scalable techniques exist that utilize no ISP input. For
example, [54], mentioned in Section 2.4.1 for its P2P overlay construction with a bin-
ning technique based on RTT measurements to landmarks, also utilized such binning
technique for improved server selection. Similarly, the IETF tackled application traffic
optimization via multi-CDN cooperation, and devised a problem statement in regards
to Content Distribution Network Interconnection (CDNI) [58], which outlines the efforts
required to specify a set of interfaces that allow for the interconnections of many
CDNs, with the added benefits that a multi-CDN system, over an individualistic one,
will have better properties, e.g., in regards to availability, coverage, and supported ca-
pabilities, as well as better QoE for the end user, and reduced delivery costs for the
service providers. The four devised interfaces - CDNI Control interface, CDNI Re-
quest Routing interface, CDNI Metadata interface, and CDNI Logging interface - are
all to be operated at the application layer, and the group states that no new applica-
tion protocol needs to be devised. Instead, existing protocols could be leveraged, e.g.,
HTTP, Atom publishing protocol, Extensible Messaging and Presence Protocol (XMPP),
and in particular to the CDNI Request Routing interface, the ALTO protocol could
enable CDN server footprint retrieval.

Centralized network measurement repositories for wide consumption were tackled
in projects such as Internet Distance Map Service (IDMaps) [59] and Global Network Posi-
tioning (GNP) [60], that describe architectures for a global distance estimation service,
leveraging measurements made by specialized nodes that retrieve raw network data,
and heuristics provide scalable and functionally reliable path costs in metric such as
bandwidth and latency. These consist of systems that centralize and share network
probing results to querying entities, thus minimizing the overhead traffic on the net-
work that would result if all clients made these probings themselves. Such advantage
goes outside of the CDN realm, being useful for any overlay-residing application that
wants to utilize network probing to be more underlay-aware for application optimiza-
tions.

[38] argues for the advantage of CDN-ISP cooperative interactions and overviews
three possible strategies that will be now discussed briefly: Provider-Aided Distance
Information System (PaDIS) [61] is a system deployed and controlled by ISPs that mon-
itors the network by listening to Exterior Gateway Protocol (EGP) and IGP messages

34

and contains a privileged view of the topology and its status. It provides a service
that ranks host-client pairs in regards to, for example, delay, bandwidth, or hop count,
and experimental testings concluded that the download times of content provided by
CDNs that utilize PaDIS could be improved up to a factor of four, and generally gives
much flexibility for ISPs to engineer traffic; Content-Aware Traffic Engineering (CaTE)
[62] is designed in a similar manner to PaDIS but requires no client-side configuration,
and experimental results concluded that network wide traffic was reduced by 15%,
link utilization was reduced by 40%, and user-server performance generally increased;
Network Platform as a Service (NetPaaS) [37] was devised to fulfill two key enablers in a
fruitful CDN-ISP collaboration - user-server assignment, as it was tackled in the pre-
vious two examples, and server allocation, i.e., where should a CDN owner deploy its
servers and their contents. This service, besides having the advantages of increased
application performance and better ISP traffic control that were also mentioned in the
previous two solutions, also facilitates the task of server allocation for CDNs, reinforc-
ing the discussed advantages and further optimizing CDN operations.

Still in the topic of CDN’s edge server selection, [36] suggests an SDN-oriented solu-
tion that combines the performance of DNS load balancing with the low management
overhead of IP anycast. Load balancing is performed at the SDN control layer by
applying collaborative efforts between the CDN and the ISP. This example of layer
cooperation can allow for many optimization opportunities that leverage an existing
and low-maintenance mean of request routing with the flexibility of SDN solutions.

2.4.3 Server-client applications

Attempting to optimize web server selection, [63] argues that DNS-oriented solu-
tions, which select the nearest server but also employing load balancing, may not be
the best at optimizing server-client QoS levels. Instead, it proposes a selection based
on QoS measurements, from which three types are distinguished: a static method,
such as choices based on least number of hops to server (which is unlikely to change);
a dynamic method, consisting of network probing to assert, for example, RTT values
to the servers; and statistical methods, which decide based on a larger set of measure-
ments previously made in various points in time. Utilizing the latter method, RTT
measurements and web-related request benchmarking is made, such as time to estab-
lish a Transmission Control Protocol (TCP) connection, elapsed time from an HTTP GET
method to first packet received, time to retrieve data fully, etc., every five minutes

35

and spanning several weeks. The work concluded that statistical methods used to
select between multiple equal web servers had high correlation with download time
from the selected server, but optimizations should be evaluated in regards to computer
workload and the amount of probing traffic.

Tackling a similar challenge, [64] proposes a method of server mirror selection which
is better optimized than the more popular approach of giving the user the selecting
choice. The proposed solution’s architecture consists of two types of agents: a client
agent, which monitors the mirror server it was deployed in and stores static infor-
mation, e.g., geographical location of server and maximum capacity, and dynamic
information, e.g., current service load and bandwidth in use. This information is then
sent to the other role of the architecture, the server agent, which compiles it and acts
as an oracle that is queried by users whenever mirror selection is needed, replying
with a ranking of candidate servers based on bayesian networks.

Congruent to the task of optimizing network traffic with layer cooperation, [65] pro-
poses a reconfigurable and adaptable overlay multicast system, further optimizing the
multicast strategy - used for group communication as a means to reduce redundant
traffic - and leveraging collaborative efforts between it and the ISPs to construct mul-
ticast distribution trees whilst integrating traffic engineering mechanisms for the task
of network usage optimization.

2.4.4 Summary

Concluding, application traffic optimization does indeed seem to be a common con-
cern for P2P, CDN, and Server-Client systems, as it improves application performance.

Indeed, potential to optimize traffic at the application layer exists if attempts are
made to better comprehend current network status to aid application decisions, and so
is made by realizing more about the underlay, whether by probing it, or retrieving that
information from - or delegating decisions to - authoritative and generally trustworthy
sources that keep both interests in mind.

A fully mutual cooperative scenario seems much more efficient than one sided ap-
proaches. Considering ISPs, the ability to directly impact application behavior lets
them engineer traffic at a more fine-grained level, that would be impossible without
it. Considering applications, one of the following could happen: one possibility is
that the application can start using network data to optimize its decisions, another
possibility is that an application already leveraging only probing data can swap it’s

36

own deduced knowledge with the ISP’s, minimizing the amount of redundant net-
work overhead generated from all kinds of applications monitoring the underlay for
their status, and another possibility is that, besides using the oracle’s probing data,
the application further improves its decisions with the better insight that only the ISP
itself could provide, with its privileged and intimate knowledge of the infrastructure
and how to more efficiently run it, and in possession of a centralized monitoring struc-
ture that gives information about historical traffic patterns over long stretches of time,
factors including operational costs, data locality, cache detection, or network-wide bot-
tleneck alleviation can then be targeted.

Summarizing, a win-win scenario between layers is theoretically possible, and an
argument was made stating that, assuming an existing cooperative infrastructure and
voluntary participation from both parties, there are ample benefits to be gained.

2.5 application-layer traffic optimization (alto) work-
ing group

2.5.1 Context and motivation

Acting on research indications informing that improved peer selection algorithms
based on ISP-provided information could help reduce infrastructural costs and in-
crease P2P application performance, the IETF devised working groups to explore pos-
sible standardization in the area of layer-cooperation [7]. Among those groups is the
ALTO working group, whose domain is traffic localization.

The ALTO [66] working group designed an HTTP-based protocol whose function
is to allow hosts to query authoritative entities on network information. The IETF-
devised working group’s project has gathered much academic interest, e.g., [7], [61],
[65], [23], and [30], as well as being suggested as an appropriate framework to help fix
various problems, e.g., [62], [61], [36], and [58], and these form a subset of a larger pre-
occupation with the underlay-overlay tussle and the attempt to find layer collaboration
mechanisms.

The envisioned scenario of the service provided by the ALTO architecture, as can be
seen in Figure 2.10, considers both the physical and application domains - the underlay
and overlay, respectively.

37

Figure 2.10: ALTO scenario of achieving traffic locality [7]

The ALTO service is provided by some oracle, which in turn needs to be supplied
with network information that can take many forms - topological structure, routing
costs, static policies, etc. - and, most importantly, such data is to be fed by an ISP or
such other authoritative entity that contains truthful and relevant network information
that the oracle could deem useful in aiding its clients. Using Figure 2.10 as an example,
consider that "Peer 2" wishes to retrieve a given resource, and after probing the overlay
network - by querying a tracker, using a flood of peer pings, or some of the means
utilized by structured P2P networks - the peer locates "Peer 1" and "Peer 3" as possible
candidates to serve the content it wants to retrieve.

Aware of the fact that choosing whom to consume a service from has impacts
on both application performance and network resource utilization, "Peer 2" uses the
ALTO service, querying the oracle on information pertaining to the candidate peers,
and in regards to metrics that better fit the needs of the application - because different
applications could have different QoS metric priorities in mind, like a media stream
with low delay needs or a file sharing application with focus on high bandwidth avail-
ability. The ISP is then in full control of engineering how the traffic from this resource
transfer will flow, and can steer "Peer 2" into favoring "Peer 3" - since they reside in
the same physical network domain, this would improve infrastructure resourcefulness
since there would be no need to make use of peering links that interface with external
regions. As could be deduced from this and similar scenarios, an architecture contain-
ing one or more servers that are knowledgeable of the network they reside on could

38

be an important tool to make P2P applications locality-aware, a common goal for the
underlay and overlay parties since it is a win-win scenario.

Despite its origins lying in the efforts to localize traffic in P2P applications, the ALTO
protocol and its encompassing system is now being considered in other fields, to be
now further discussed.

A first area of interest is CDNs, most specifically the on-going works in extending
the base protocol to implement the CDNI Request Routing Footprint & Capabilities
Advertisement interface [67], which is a subset of the CDNI standard [58] that aims
to allow upstream CDNs to query known downstream CDNs for their willingness to
accept content requests on their behalf. In particular, one of the main functionalities
of the CDNI request routing interface is the ability for upstream CDNs to retrieve
static or dynamic information of download CDNs (available resources, usage loads,
etc.), which they provide themselves, and that allow the upstream CDNs to better
choose the appropriate edge server that could serve a given end user. ALTO serves
as a good protocol to implement such functionality because it fits its use-case: some
node wishes to improve its routing decisions to better decide on which other node
to select by using information that, in its entirety, is hard, or nearly impossible, to
independently retrieve, specially without generating much overhead querying traffic.
Regarding CDNs, the querying node is an upstream CDN server that wishes to resolve
their content requests by attributing the client to the most optimal downstream CDN
servers, where the content resides. At a more abstract level, this is similar to the use
case already discussed, which is shown on Figure 2.10, where overlay peers required
assistance to more optimally select peer connections.

Edge computing, similarly to CDNs, uses a paradigm of flexible service distribution
that enables deployment closer to the end user for better performance, and thus is
inherently affected by network status. Current work is being made on how ALTO can
be leveraged to aid the deployment of functions or applications in the network edge
[68]. Much like the previous example, ALTO is being used to guide an application in a
decision that impacts both layers. By querying the ALTO server, the client can retrieve
information that regards to Points of Presence (PoP) where functions/applications can
be deployed, such as a cloud computing provider’s available resources, e.g., Central
Processing Unit (CPU), Random-Access Memory (RAM), or storage, but also network in-
formation that pertains to the outside of the PoP, mainly network connectivity metrics,
e.g., end-to-end bandwidth and delay, and routing costs. The utilization of the ALTO
protocol in this context would allow edge service clients and providers, as well as ISPs,
the ability to combine efforts as a means to optimize edge computing deployment that

39

considers the current network status, and doing so would thus result in benefits for
both end users and infrastructure maintainers.

More broadly, current work is also being done in specifying Abstract Network Ele-
ment (ANE) path arrays between points [69] and time-specific cost values [70], both of
which share higher insight into the network, at the discretion of the ISP, as a means
to provide even more context to applications about the infrastructure, such as iden-
tifying potential path bottlenecks and times of traffic peaks, and thus improve the
application’s ability to optimally generate traffic.

A mode of operation where applications no longer act in disregard of the network
infrastructure they run on, but instead in deep consideration of it, could help sig-
nificantly alleviate the issues emerging from the tension between the underlay and
overlay, and is of mutual interest - improving application performance and reducing
infrastructural costs. Enabling a communication channel can thus allow for many dif-
ferent cooperative use cases besides the aforementioned ones. For example, redirecting
users to nearby data caches or warning them of server maintenance ahead of time.

The existence of an all-encompassing oracle could also prove beneficial for applica-
tions which utilize periodic network probing to guide their choices, as such informa-
tion could be measured by a select few nodes in the network and applicable to all
nodes which are close-by in ways that the ISP deems advantageous, such as belonging
to the same AS or geographically near, thus minimizing the amount of otherwise re-
dundant probing required by all application entities that wanted some network status
information.

The oracle, besides containing measurements that could only be retrieved by the
ISP itself due to its privileged access to the network, such as IGP packet inspections
or secure Simple Network Management Protocol (SNMP) queries, by handing over the
decision-making process to the service provider entity, gives power to better steer
traffic in a way that favors internal policies and strategies, regarding, for example,
peering agreements, current traffic flow of other applications, known bottlenecks, etc.,
that could not be deduced by the applications alone. Thus, in the decision of how
to generate application traffic, the responsibility should reside in both the application
and the infrastructure as a way to benefit all relevant parties, i.e., the end users, the
application stakeholders, and the service providers. The ALTO protocol serves as
an enabler of a mutually cooperative layer interaction system that, by becoming the
standard, would aid towards a sustainable life-cycle of the Internet.

Finally, standardizing an architecture and related protocols for a clear problem do-
main could help a large subset of similar issues, since a well defined and tested speci-

40

fication would exist, thus allowing many applications to leverage the ALTO protocol’s
functionalities to their needs, not requiring further cycles of development for a specifi-
cation when one already exists. Also, the attempt to standardize the oracle pattern is
helpful as it joins forces from many different domains which share common problems
- many of which were exemplified previously - into a single specification. A widely ac-
cepted and used solution can evolve from a combined effort, and would target issues
such as security and scalability, creating a single point of convergence that is mature
enough to be adopted with confidence, accelerating the transformation of the Internet
as individual players would not need to develop their own specifications.

2.5.2 Architecture

The high-level conceptual ALTO architecture can be seen in Figure 2.11.

Figure 2.11: ALTO architecture (adapted from [71])

Central to the operation is the ALTO server, which stores network information and
provides it to querying clients. Such network information is provided by trustworthy
and relevant entities, and could be derived by routing protocols, ISP-specific policies,
historic measurements, and feedback provided by third parties regarding application
performance on the network. Two protocols can be seen as part of the general architec-
ture: firstly, the provisioning protocol, which is not at time of writing contemplated by

41

the ALTO working group, should specify how information is provided to the ALTO
server, and secondly, the ALTO protocol, which is the main focus of the working group
with the same name, specifies server-client interactions as a request-response interface
for retrieval of network attributes. The ALTO client is the main consumer of the ALTO
service, and it queries the ALTO server on network information whenever it deems
such data as necessary to what it’s doing at a given moment, with some potential use
cases discussed previously. An ALTO client could be seen as any entity which is able
to interface with the ALTO protocol with the role of a client, and as such is not tied
to a specific implementation - in the example of P2P file sharing, a peer can act as
an ALTO client (like the example scenario in Figure 2.10), but a tracker could instead
take that role, enhancing its ability in assisting peer communications by having an
embedded ALTO client that would then act on behalf of peers when querying for ISP
insight with the goal of providing an optimal peer pairing. Using the tracker-oriented
ALTO client approach would minimize needed P2P client protocol modifications and
thus facilitate integration with currently existing applications.

The ALTO services contemplated by the working group can by visualized in Figure
2.12.

Figure 2.12: ALTO services (adapted from [71])

The ALTO server stores and provides special mappings in the form of network and
cost maps.

A network map provides network location grouping identifiers and the correspond-
ing aggregated endpoints. It utilizes Provider-Defined Identifiers (PIDs) as keys, and
the mapping itself is left to the responsibility of the providers. A provider is free
to group endpoints with the criteria it pleases. For example, he could group nodes
by geographical location, by common subnets or ASs, etc., and in that way attribute
properties to the aggregate, instead of the endpoint. This is advantageous not only

42

for scalability reasons - since it can compress information - but more importantly be-
cause it allows ISPs to abstract network endpoints into groups, thus ensuring privacy
of network topology details whilst maintaining useful network guidance, as the ISP
has full control of how endpoints are aggregated, and consequentially how traffic is
engineered since this changes how clients interpret resources.

A second resource type provided by the server is the cost map, which can be de-
fined as a matrix M, where Mij - with i and j being the source and destination PIDs,
respectively - is the associated path cost. The cost has two components: its metric
and mode. The ALTO base protocol only defines a single, generic, cost metric called
"routingcost". However, [72] is currently specifying more concrete metrics, with many
associated with QoS evaluation, e.g., one way and round trip delay, packet loss and
throughput. The other cost property, cost mode, can either specify that the metric is
to be interpreted as a numerical value or as an ordinal ranking among all other costs
in that cost map - this is useful in cases where too much network information is not
deemed reasonable to share, and a simple order of preference that doesn’t expose ex-
cessive infrastructural details can suffice. The decision to separate network and cost
map information into two types of resources comes from the reasoning that network
mappings are unlikely to change, whereas cost mappings could be periodically up-
dated. As such, it alleviates client applications from the need to retrieve redundant
information, and gives them the ability to only retrieve a subset of it - this ability is
further expanded in the map filtering service, which allows an ALTO client to further
specify which regions of the requested maps it wishes to retrieve (much like a "SE-
LECT" statement from an Structured Query Language (SQL) database), and only these
are transmitted.

Finally, the last two services focus on mappings that regard to specific endpoints,
instead of abstract mappings that utilize PIDs. An endpoint is currently identified
by one of the following: IP address, Media Access Control (MAC) address, or generic
overlay ID. The endpoint property service maps to an endpoint a set of properties,
e.g., geographical location or connectivity type, and the endpoint cost map has the
same meaning of a cost map, but mapping to particular endpoints addresses and not
abstract collections. The ISP has thus the ability to work with abstract aggregates or
specific endpoints, showing as little or as much network information as it deems fit.

As could be seen, the ALTO project specifies an architecture for sharing of network-
related information, with well defined roles and a request-response protocol to fulfill
interactions between them. It also attempts to standardize such interactions in the
form of data structures with well defined attributes which are then to be manipulated

43

for each use case. This could then serve as a useful service for any application that
wishes to retrieve network information as a means to improve its decision making at
the application level. It is important to note that there are restrictions to what kinds
of information are contemplated by the ALTO protocol - for example, transport-level
congestion is beyond its scope, and thus should not replace conventional mechanisms.
The type of data which is valid to consider, according to the group’s problem statement
[73], should not be easily obtainable by the clients themselves - such as immediate end-
to-end delay - and should be variable on a longer timescale than the instantaneous
kinds that are seen on, for example, congestion control mechanisms, as the frequently
resulting querying traffic would be counterproductive to the task of traffic optimiza-
tion. Potentially valuable information that is in the ALTO scope would then have to be
harder to obtain without aid of this service, and not highly mutable through time - for
example, routing costs, geographical locations, network proximity, operator’s policies,
scheduled down-times, historical application feedback, etc.

This project is, at time of writing, still on-working, with many drafts being cre-
ated and updated as the ALTO project matures and increases its domain applicability.
These are, however, relating to service extension and deployment, since the main ar-
chitecture, protocol design, implementation guidelines and security analysis are fully
published into their respective Request for Comments (RFC) documents, serving as pil-
lars for this work, and the ongoing efforts will serve as inspirations for potential ex-
tensibility.

2.5.3 Viability

2.5.3.1 Security

Given the nature of this system, particularly the trading of sensitive network struc-
ture information that can alter application behavior, it is quite apparent that its design
and implementation are not without challenges from a security perspective. Indeed,
the working group published discussions regarding security preoccupations at the
development and deployment stages of the ALTO system [73] [71] [74].

Utilizing the "STRIDE" threat model [75], the main threats to the ALTO architecture
can be summarized as follows:

• Spoofing of a legitimate ALTO server that would mislead clients with wrong
information - this could give the malicious party the ability to change traffic

44

to its will. Spoofing of the clients themselves can also occur, and could allow
a malicious party to retrieve sensitive network data outside their permission.
Spoofing of a network status provider that could feed information into the server
to be spread to applications, possibly misleading them in the same way an ALTO
server spoofing could, but by proxy.

• Tampering of data to mislead either ALTO servers or clients. If some unau-
thorized and malicious party can retrieve data that is in transit or storage and
tampers with it, clients would act on information that they assume is trustwor-
thy but in fact has been modified. As such, clients could be redirected to wrong
addresses, or receive incomplete or incorrect data that results in bad and/or
harmful decision making. On the other hand, data tampering that occurs in
the communication channel between data providers and the ALTO server would
give the latter, from a seemingly trustworthy party, untrustworthy data, and this
would result in the same issues that could arrive from spoofing threats. Tam-
pering could also occur in input forms in the server-client or server-provider
interface with potential to inject malicious code execution. Finally, data tamper-
ing with the goal of simply destructing data could have the potential of ruining
valuable information that would have taken much time and resources to retrieve,
and be hard to replace.

• Repudiation of being the source of some network information, whether it be by
a third party that volunteered the data or the ALTO server itself, which would
make it difficult to neutralize and attribute culpability to incorrect or malicious
sources, jeopardizing the legitimacy of the provided network information.

• Information disclosure in the form of ALTO resources being made available to
entities that were not authorized to access it. These resources could give mali-
cious parties insight of network topology status as well as the ability to derive
the client’s network usage patterns by observing what kinds of resources they
attempted to retrieve at a given moment.

• Denial of service of the ALTO server through request flooding beyond its capabil-
ity, which would severely hinder - or even negate - its ability to serve legitimate
users. By proxy, service denial of external entities can also happen through the
manipulation of ALTO resources themselves - leveraging the system’s potential
to guide traffic, if a given resource is manipulated in such a way that unreason-

45

ably favors the preference of a specific subset of servers, these could be selected
by clients in a disproportionate manner, and highly affect their availability.

• Elevation of privileges that enable a user to obtain or modify more information
than initially permitted, resulting in the previous threats being heightened.

Many of these threats are standard preoccupations for most computing systems and
could be solved with state of the art solutions which are well proven and tested, as in-
deed states [71]. However, regarding threats of information disclosure, whilst they can
be negated with in-transit encryption, what is done with this information the moment
it reaches the client is hard to control - situations may arise when a client with proper
resource permissions shares, intentionally or not, sensitive network information with
other users who may or may not have proper clearance, in interactions outside of the
ALTO architecture. Furthermore, many authenticated clients with different permis-
sions could share information, which they retrieved legitimately, among themselves,
to get an illegitimate complete view of the network structure. Thus, individual clients
could internally collaborate outside the system to bypass access control measures ap-
plied inside it. As such, it is firstly important for the ISP or third parties to carefully
plan on what information they are comfortable with sharing, knowing that it may
be susceptible to future disclosure outside the secure domain. Possible solutions to
minimize these threats include:

• Reduce the granularity of the provided data. Intuitively, the less granular and
precise the shared information by the ALTO server is, the less valuable the re-
sulting application guidance will be, and thus a balance would have to be found
between layer cooperation and ISP privacy. One example of making network
data less granular is the usage of network groupings by PIDs instead of mapping
information to concrete endpoints, working with network status about aggregate
entities. Another possible mean to reduce information granularity would be to
utilize ordinal cost values, which instead of specifying a concrete metric value,
e.g., bandwidth in bits per second or packet loss in percentages, the server would
give a relative preference rating with lower values meaning higher preference. In
both examples, the granularity of network information transmitted to the client
is several levels lower than the one retrievable in the actual physical layer, and
this could reduce the flexibility of applications to optimize traffic. However, the
oracle service can still enable acceptable application optimization without con-
siderably impacting ISP privacy, acting as a much needed compromise.

46

• Work only with a small set of trustworthy ALTO clients that are to act on be-
half of a larger subset of less trustworthy clients. For example, network status
resources could only be provided to authorized cooperation-oriented trackers
in the BitTorrent protocol, which would in turn use this information to provide
customized replies to clients without the need to change the base protocol. Sim-
ilarly, information relevant for user-server assignment could only be provided
to authenticated CDN control nodes, who’d use among themselves a private
virtual domain to share information about user-server connectivity and server
status that would be inappropriate for any other type of user to retrieve. This is
still, however, worthy of further threat analysis as restricted information could
still leak outside of the system - beyond the means of spoofing discussed previ-
ously, seeing how a system behaves with ALTO guidance can give - albeit limited
- insight into ISP bias. To see this, consider how a BitTorrent peer could continu-
ously query a tracker with carefully crafted parameters - such as source address
and candidate peers - and attempt to derive information from the resulting ac-
tion, or similarly how an end user could utilize similar parameter modifications
to observe the edge server selection mechanism in action.

• Utilize terms of agreement that are to be enforced on every querying client, stat-
ing that network status information does not get used beyond its original pur-
pose, prohibiting sharing. Although a potentially helpful mechanism to dissuade
malicious users, it can be deemed impractical to apply, especially considering the
scale at which this information could be shared. Thus, such means should be ap-
plied at a case-by-case situation and it should not replace ISP discretion and
server resource maintenance to ensure a given standard.

2.5.3.2 Privacy

Privacy concerns are also very prevalent in the ALTO system, being an ubiquitous
talking point in most of the working group’s problem statements and protocol spec-
ifications. When an ALTO client queries a server for one or more network status
resources in the attempt to optimize the application traffic it will generate in the near
future, certain parameters can be passed to the server that can make the response be
more personalized and contain more granular information. For example, a real-time
P2P media-streaming application seeking ALTO guidance to help choose among a list
of candidate streaming peers may wish to include in its query helpful parameters
such as the candidate peer list, the desired QoS levels for each relevant metric, and

47

the network position of the querying client. Indeed, these and more patterns will help
increase the effectiveness of the ALTO server’s guidance in helping the client appli-
cation achieve its goal, but such happens at the expense of potentially allowing an
ALTO server to infer on user pattern statistics. Even assuming that the previously
discussed information disclosure threats are nonexistent in the ALTO system, privacy
concerns can arrive from client applications because the resource queries they need
to produce can contain information about what the client either will or wants to do.
This is recognized by the ALTO working group as a possible concern [71] [73], and in
response they state that the clients should firstly be cognizant of the potential track-
ing risk that is associated with the usage of the system and, as an attempt to make
tracking harder, they could disable HTTP cookies and/or opt for more vague query
parameters, e.g. by randomizing some bits on endpoint addresses or simply using
more broad addresses, whilst being aware that the helpfulness of query results may
vary with increased parameter obfuscation.

Very much like client privacy, ISP-related privacy is also considered by the working
group. PIDs were created as a means for ISPs to abstract network components as a
collection of single network endpoints with similar properties, helping them not to
disseminate network information that is too sensitive, and in turn also allows clients
to make queries based on these identifiers and maintain a higher level of privacy.
An ongoing proposal for protocol extension includes path vectors [69], that aim to
represent information on the intermediary hops from a given source-destination pair,
and each of these hops is represented as an ANE that, similar to PIDs, give ISPs the
ability to under or over-abstract the topological representation that gets published
to clients, giving more options to balance guidance usefulness with provider privacy.
Other solutions could also be considered depending on the needs of the clients and the
direction of the project as a whole. For example, the servers themselves could operate
on a secure communications channel and maintain a clear agreement on what can and
cannot be made with the collected information. Alternatively, clients that wish not to
impose much trust on the server’s claims not to track them could make bulk queries
(or use proxies to do so for them) and privately filter out the relevant information,
heavily restricting on the ability to retrieve user activity patterns.

2.5.3.3 Incentivisation

Incentivisation relates to creating and divulging, to both layers, incentives for a
fully cooperative layer relationship that is inherent to the oracle pattern adopted by

48

the ALTO system. It is quite the challenge to fundamentally change how applications
behave on the Internet, as indeed is to ask of ISPs to launch a view of their infras-
tructure to the outside world. [30] notes incentivisation as one of the key challenges
in overlay-underlay cooperation in regards to P2P applications, stating that incentive
mechanisms need to exist to ensure that both layers agree to participate in, and main-
tain, a cooperative relationship. According to the ALTO problem statement [73], the
incentives for both parties to act on the system are the advantages that derive from
using it. Meaning, clients are to expect better application performance by leveraging
ALTO guidance, and similarly ISPs should expect that their internal goals, such as
an optimization of infrastructure utilization, can be met with the increased traffic en-
gineering ability that results from their oracle role. If the overlay consuming ALTO
guidance has a manageable number of accountable entities, such as a single CDN or
data center that the ISP agrees to partner with, it is realistic to maintain a cooperative
agreement that can be solidified with feedback and service agreements. However, if
the overlay utilizing the ALTO system makes it hard to pinpoint accountability, such
as a large P2P application with many users, it will naturally be harder to ensure that
the power dynamic between layers doesn’t shift beyond an equilibrium. In these cases,
policies could be created and enforced to give assurance to both parties that a cooper-
ative relationship is maintained.

The ISPs could too, like mentioned above, lack proper cooperation, as they are found
in a new power dynamic that would leverage their application traffic engineering capa-
bilities to steer traffic in a way that is advantageous to only them, or at least favourable
in a disproportionate manner. Again, much like the lack of cooperation by clients, it
is difficult to guarantee an equilibrium in the power dynamic between layers, but by
promising improved QoS levels for applications that utilize ALTO cooperation, ISPs
become responsible for guaranteeing that these improvements are met, fearing client
abandonment otherwise. Giving freedom to both layers on how they act ensures that
the system evolves to a common ground that benefits both sides, at least enough to jus-
tify them remaining there. As a more intrusive strategy to assure mutual cooperation,
operation transparency could be achieved with the implementations pertaining to the
generation, manipulation, and utilization of ALTO resources being made open-source,
and entities could be given the choice to compile and run their own instances of ALTO
servers.

Finally, if the application-ISP tussle becomes harsher and unmaintainable, which is
a point that was argued for in the network infrastructure effects portion in Section 2, a
cooperative system such as ALTO may become necessary, and thus beyond preferable,

49

meaning that ISPs may be forced to block or throttle traffic that it cannot route properly,
as it historically happened. Thus, acting with ALTO could go beyond a voluntary
action and evolve into a symbiotic relationship, meaning that both parties have to act
cooperatively to maintain network sustainability. Regardless, the best approach seems
to be that the system must be self-justifiable, meaning that the advantages that it brings
should be enough to convince both parties to act on it. ISPs are nevertheless free to
deploy their own incentive mechanisms to facilitate early application adoption, that
could include monetary rewards or routing privileges, but doing so could damage
network neutrality, something that is already at potential of being damaged by the
ALTO system, as will be discussed in the following section.

2.5.3.4 Network neutrality

As stated by [76]: "According to most network neutrality proponents, network neu-
trality rules are intended to preserve the Internet’s ability to serve as an open, general-
purpose infrastructure that provides value to society over time in various economic
and non-economic ways. In particular, network neutrality rules aim to foster innova-
tion in applications, protect users’ ability to choose how they want to use the network,
without interference from network providers, and preserve the Internet’s ability to
improve democratic discourse, facilitate political organization and action and to pro-
vide a decentralized environment for social, cultural and political interaction in which
anyone can participate.". Network neutrality has been a popular point of discussion
as society grows with increased dependency to the Internet, sparking debates around
the world on what the best course of action should be - for example, regulations were
introduced by the Federal Communications Commission (FCC) [77] in the United States to
police network neutrality, and the European Union has a framework for net neutrality
laid down in Article 3 [78]. However, potential violators of the spirit of a network
neutrality exist, such as British Plusnet’s [79] usage of Deep Packet Inspection (DPI)
to implement limits and differential charges for different traffic [80], or Portuguese
MEO’s [81] smartphone contracts which include zero rating programs for a given set
of services [82] that bundle applications such as Facebook or Spotify.

Network neutrality advocates are concerned with guaranteeing that ISPs keep Inter-
net communications free and do not discriminate based on the traffic’s specifics, such
as platforms, applications, or source and destination addresses. On the other hand,
opponents of net neutrality, among them the ISPs themselves, broadband and telecom
companies, and hardware manufactures, argue against net neutrality - they claim that

50

it would would reduce incentive to invest, as investments would be harder to ensure
without the ability to charge higher rates for better infrastructure capabilities. Zero rat-
ing programs, such as Wikipedia Zero [85], which provide Wikipedia [86] pages with
no charge to a select group of low income regions, are popular in developing countries
[87] , provide to select regions Internet content they could not otherwise get, but in
the form of a non-neutral view to the network. Additionally, with net neutrality, the
ISP’s ability to route traffic could itself be at jeopardy - as [88] states when he argues
for a solution that compromises net neutrality via service differentiation, the Internet
is growing at an astonishing rate, as are the demands of applications, and operating
the infrastructure on a purely best-effort basis will not be sufficient without a con-
stant provisioning of such infrastructure to keep up with demand, and this too may
not be economically viable nor even possible. Thus, discrimination of traffic services
may be needed to guarantee that, e.g., real-time medical information gets priority over
real-time media streaming, which in turn gets priority over e-mail or file sharing.

Considering that the ALTO system behaves in an oracle pattern of cooperation
where a single entity - the ISP - is able to heavily influence the traffic patterns of
the applications it aids, on the promise of a cooperative network underlay-overlay re-
lationship, such system could violate the principles of net neutrality. In particular,
this could happen if the oracle either blocks, or at the very least provides different
guidance to different clients, depending on where the query originated from - e.g.,
which application, which source address, or other defining characteristics. A possible
consequence of such a system guiding the Internet could be that given applications
can consistently have better QoS measurements not on the basis of the application’s
implementation, but on the ISP personal biases. Oracle systems such as ALTO do
not seem to be analogous to other traffic engineering strategies, such as the usage
of MPLS, DiffServ, nor to other means of ISP intervention on overlays, such as the
deployment of data caches and redirector proxies - this is because the oracle system,
in contrast to the previously mentioned strategies, is one of mutual voluntary and
cooperative nature between ISPs and applications. However, it could be argued that
if the ALTO system offered guidance to applications in such a way that consistently
resulted in better application performance, such applications would be pressured to
use such guidance as a means to remain competitively viable, and the ISPs would then
have a platform to influence a considerable amount of traffic to their will, being in a
position to, depending on how they treat guidance requests, break network neutrality.
This neutrality concern can be alleviated if application guidance operated on classes
of traffic, e.g. real-time communication or file sharing, thus operating on traffic aggre-

51

gates to ensure QoS levels needed by given application types, but never discriminating
beyond such given classes.

As the protocol is defined [71], the provided network status information is truthful
and guidance is optional, and neutrality can then still remain outside of the system,
since no routing measurements exist within it. If particular implementations of the
ALTO system give guidance in such a way to guide traffic in a discriminatory fash-
ion, and if such guidance has advantages that much outweigh any alternative, thus
rendering it beyond optional, a case can be made for how ALTO as a concept can
break network neutrality, considering all its advantages and disadvantages discussed
below, as the ISP can utilize discriminatory behaviour to treat applications on their
infrastructure differently.

2.5.3.5 Multi-Domain orchestration

The Internet as we know it today spans the entire globe and is rather complex in
nature. According to [30], the classic vision of the Internet consisting of a network of
transit and stub ASs no longer seems accurate, as it now is much more complex - for
starters, the role of network owner and service provider are separating, and Internet
access is provided by numerous competing ISPs.

Considering this administrative complexity in the Internet’s topology, it can thus be
inferred that the act of layer cooperation can get harder when the influence domain
increases and potentially spans many different ISP regions which will inevitably act
differently as they can have different technologies, biases, policies, and overall goals.
These per-ISP biases can make it difficult to guarantee that traffic optimization span-
ning multiple administrative domains is actually useful and achieves the cooperative
nature in mind. For example, an ISP may not be comfortable categorising end-point
costs of a given metric, thus making path calculations that pass through that ISP do-
main not viable. Regardless, per-domain ISP guidance has nonetheless plenty of po-
tential, e.g., the ability to localize traffic, and similarly per-domain optimization of
resources can still be useful when such domain is large, and can be applied to high-
volume operations such as those in a data center. The ALTO server within a given
domain can also leverage probing measurements and feedback statistics to derive in-
formation in areas whose topological details are unknown, giving a partial network
view that contains topological insight and also information derivation that, whilst not
being as good as a complete topological insight, may nonetheless power a cooperative
effort within a given domain with good results. Some data may, however, be both not

52

shared by an external domain nor derivable. This includes endpoint property infor-
mation, such as network connection types, or server footprints, e.g., available CPU,
RAM and storage. This information can in some conditions only be retrieved by au-
thoritative entities in a given domain and probing solutions may not be available, thus
considerably limiting the applicability of a single ALTO domain.

Even assuming that all ISPs are comfortable with sharing sufficient information, am-
biguity may arise. For example, considering a cost map with the generic "routingcost"
cost metric, ISPs could internally calculate routing costs differently, and prioritizing
different goals, e.g., reducing overall link usage versus reducing inter-AS traffic first
and foremost. The base ALTO protocol specification states that each network region
can provide its ALTO services, which in turn convey network information from their
perspective. A network region, per the protocol specification, consists of a given ad-
ministrative domain, such as an AS, an ISP, or a given set of agreeing ISPs [71], thus
implying that if multiple ISPs share an ALTO server they must reach a consensus on
what network status is available for query from the outside. Furthermore, the ALTO
working group’s deployment considerations [74] document states that an ALTO client
can query a single server for one or many metrics, or he can additionally query mul-
tiple server instances on different networks. It is explicitly stated in the document
that each server could give guidance for only a given network partition, and such
guidance may wildly differ between them due to the fact that different algorithms
and objectives may have been applied. The document also states that, in regards to
extending the reachability of a single server, three different strategies could be applied:

• Authoritative Servers: A given set of servers can provide guidance for all kinds
of destinations to all ALTO clients.

• Cascaded Servers: An ALTO server can possess an embedded ALTO client and
query other neighbouring servers if it cannot serve the original request, acting
as a middleman between the client and the more appropriate servers.

• Inter-server Synchronization: Different ALTO servers communicate among them-
selves to expand the knowledge space.

The last strategy is still being subjected to development and standardization by
the working group as part of a bigger attempt to link different network regions and
technologies into a single, homogeneous abstraction of the Internet. Current efforts
in multi domain orchestration and relevant use case examples are summarized in the
ongoing work of [89].

53

2.6 summary

In the evaluated case studies seen in this chapter, it can be clearly seen that there is
room for improvement in application-layer traffic generation that can benefit both the
applications themselves and the infrastructure administrators that support them. Ap-
plications struggle to achieve optimal network resource utilization, whether that be in
the task of matching peers in overlay networks, deploying and attributing edge server
to media clients, selecting mirror servers, etc., and solutions are being continuously
proposed and created that attempt to optimize these decisions. Traffic optimization
solutions vary between them in the range of control that is given to the overlay and
underlay parties. It seems to be the case that one-sided solutions can hurt the other
layer in a worst case scenario, and be lacking maximum efficiency and generating re-
dundant probing traffic in the best. ALTO’s proposal seems to bridge the best of both
types of proposals that are either underlay or overlay-centric, standardizing a system
and associated protocol whose purpose is to achieve layer cooperation so proper net-
work utilization is possible. Despite many of its associated challenges - namely in the
regions of security, privacy, and incentivisation - the project certainly has the potential
for a more resourceful Internet that can be more sustainable.

54

3 S Y S T E M A R C H I T E C T U R E A N D
D E V E LO P E D M E C H A N I S M S

As the main proposed goal of this work is the implementation of a system that
complies with the ALTO working group’s devised protocol, this chapter exhibits the
planned software specifications needed to implement the system as a whole, with the
aforementioned protocol being a crucial part of client-server resource exchange. Initial
attention is given to the general architecture on Section 3.1, with the goal of identify-
ing key entities, their purpose, and how they interact among themselves at the macro
level. Following, Section 3.2 reviews the planned access control methods to ensure the
delineation and enforcement of rules about which users can do what actions on the
system’s resources. The aforementioned ALTO resources can be considered the driv-
ing force behind the system, as they are what client entities seek, and what ISPs wish
to provide, and an overview of their design is given on Section 3.3. Finally, Section 3.4
provides a more detailed specification of each of the main system roles. Within it, a
overview of the interfaces and possible functions is given - regarding the ALTO client,
how it retrieves server insight to help its application decisions; regarding the server,
how it can be located, how it provides its data with optional query parameters, and
how it can synchronize with other servers in another domain; for last, how the net-
work state providers retrieve raw network information and gather it for administrator
processing and subsequent upload into the ALTO server.

3.1 general architecture

Figure 3.1 presents a high-level conceptual model of how the network information
flows in a given ISP.

55

Figure 3.1: Conceptual representation of the ALTO system within a given ISP

56

Network data originates in the topology itself, and is gathered into a network in-
formation aggregator by the appropriate means - this aggregator defines an interface
through which network data can be uploaded, and entities utilize it to provide the
network data they have collected. These entities will use different means to gather in-
formation, as the Internet is supported by a massive variety of protocols and standards
for network and resource information querying. For example, a node could deploy a
daemon listening for Open Shortest Path First (OSPF) protocol packets to gather path
cost information, and another using SNMP to gather node property information. Obvi-
ously, since the interface simply defines how raw data must be formated to be accepted
by the network information aggregator, means through which the data is uploaded are
left to the source itself, and, because of this, static data uploads that were previously
collected, such as ones residing in another system’s database, could be preferred over
dynamic provisioning.

The network information aggregator serves as a hub for network administrators to
process the raw network data that was collected by the previous tier, and transform it
into ALTO resources ready to be accepted and distributed by the corresponding server.
This task of network information processing is where ISP policies and preferences are
injected via, for example, the abstraction of network entities with the aggregation of
network addresses into PIDs, and the creation of cost maps which result from the
transformation of network link information mixed with given ISP goals. If, say, the
administrator wished to provide a cost map between network entities which aimed to
reduce inter-network traffic, it would firstly aggregate endpoints into abstract entities
with common properties, as an attempt not to share too much infrastructural informa-
tion, and then use the previously collected network link information, attribute higher
costs to highly contested links, and transform it utilizing the Dijkstra’s algorithm to
create a shortest path map that is bound to provider preferences. Such map is then
parsed as an ALTO resource - more specifically, a cost map - and afterwards uploaded
into the ALTO server with the access policies the administrator sees fit.

More formally, Figure 3.2 presents the proposed system architecture.

57

Figure 3.2: System architecture at a macro level 58

One can identify the ALTO interface, which is logically separated in its download
and upload components, as a key factor of the system, since it allows to bridge three
different application layers - the ALTO resource consumer, the ALTO server, and the
network information aggregator, to be further specified in the following sections.

The ALTO working group has extensively specified the ALTO protocol, which re-
gards to resource querying, and the concrete implementation of this work will aim
to comply to it. However, no resource provisioning protocol was, at time of writing,
specified by the working group, nor has an interface been specified to allow network
data to reach the ALTO server. It has been set as a work in progress, and the topic
of network information sources was briefly discussed in [74]. The working group has
grouped the tasks of raw network processing and supply into the role of the ALTO
server. However, as seen in the aforementioned architecture in Figure 3.2, a different
approach was taken in this work, with the roles being separated and an additional pro-
tocol proposed to bridge communication between them. This was made as an attempt
to adhere to the philosophy of single responsibility, making the sole task of the ALTO
server the management of ALTO resources. This aims to facilitate the independent
development of the different roles, and make it easier to interchange implementations,
which would make it particularly useful, for example, to deploy many ALTO servers
in a cascade fashion whilst utilizing only a single network information aggregator.
These are, however, only conceptually separated, and an implementation could, if it
is more practical, merge the server and information provider roles into a single phys-
ical entity, mimicking then the architecture designed by the ALTO working group. A
more distributed approach is then presented as an option, where multiple servers are
separately deployed. To permit the data interchange and synchronization between
multiple of these servers, an Inter-Domain Synchronization server is also included in
the architecture as an centralized bridging entity between domains.

As most software architectures, each new communication channel represents a pos-
sible source of attack vectors and, attending to the critical security concerns posed in
Section 2.5.3.1, all of these channels must be secure and reliable, as signified by the
padlocks on the presented architecture. This implies that data communications within
it must block being read or altered by non authorized users, and the identity of the
participating parties assured to be trusted and made accountable. The identified com-
munication channels must then have methods of maintaining data integrity in transit,
user authentication and authorization, and communication confidentiality.

59

3.2 role system

As an access control measurement, the system will work with Role-Based Access Con-
trol (RBAC) methods which, as the name states, center their control policy logic around
roles, which themselves are tags that can be attributed to users. A pre-requisite is then
that users attempting to access a system employing RBAC must be authenticated as a
given user, and with that assured, a list of attributed roles can be retrieved to validate
if a given action is permitted according to the set rules. The ALTO resources have
associated to each of them an Access-Control List (ACL), that maps, for a given set of
roles, the list of user actions that are allowed to be performed to that resource, with
the implicit rule that a resource’s owner has full clearance. The available user actions
are "read", "update" and "delete", meaning the ability to get, change the contents of,
or remove the resource, respectively. This ACL must be provided by the Network In-
formation Aggregator whenever a new resource is inserted into the ALTO server. The
ISP administrator that controls the aggregator not only then designs the resource itself
- adding the information that it deems important whilst not too detailed to damage
privacy - but also defining access control policies on that resource, which will be then
enforced by the server in future requests.

Employing access control based on roles seems appropriate for this system since
roles can be applied to - and thus group - many users, and indeed that seems to be ap-
plicable on real case deployments of the ALTO system, where each given application,
that consists of a great number of users, can correspond to a single group, and more
private scenarios, such as a data center server cluster, can also be grouped. This facili-
tates permission management, as the RBAC approach allows grouping of permissions
into roles, which inherently affect every user associated with it. This would contrast to
an approach where permissions are set per user, which would be considerably harder
to manage at scale. As a user can be granted many roles, he can naturally act on the
system with a role that fits the currently queried resource, if so applies, and likewise
the network administrator can give permissions per role, which in turn can group as
many as millions of users, or to just a single one.

An RBAC-based access control mechanism will help mitigate security threats per-
taining to the ALTO working group’s architecture, e.g., having unwanted users read-
ing or tampering with data. However, for such mechanisms to be viable at all, au-
thentication systems need to also be employed to help verify that the users are indeed
who they are announcing to be. Authentication mechanisms are, regardless, of ex-
treme importance, as they additionally help mitigate spoofing security threats. Data

60

breaches are not, however, totally mitigated with authenticity and access control mech-
anisms. After an entity gets a resource and acts outside the system, it becomes out
of its control and these mechanisms cannot be employed. This means that there are
no guarantees that the resources are not to be shared outside of the system’s domain
and consequentially there are no security guarantees after that point. Because of this,
privilege attribution by the ISP administrators not only give clearance to do a certain
action, but also imply that trust exists that these users will not be improper with the
given resources, such as sharing it with users with improper clearance.

Figure 3.3 provides a high-level communication diagram of how access control is
enforced.

Figure 3.3: High-level communication diagram of a successful resource action request

The ISP administrator that uploads the resource into the ALTO server appends to
it an ACL that maps actions to the considered roles, with the implied meaning that
those that weren’t considered have no permitted actions. When a resource consumer
requests an action, which is expected to be a "read" one, and proper authentication
was performed to verify its identity, the server checks that the roles associated with

61

that consumer have the requested action allowed in the ACL and, if indeed that is the
case, the action performs as expected.

3.3 resources

ALTO resources are pieces of network information which are provided by an ALTO
server and consumed by ALTO clients that ideally would use such information to aid
their application-level traffic decisions. All ALTO resources can be separated into the
following components:

• Meta information: Data which regards to the resource’s profile, that enable the
client’s ability to interpret and cross-reference the network data within. Meta
information contains the resource’s name, and if applicable, version, resource
dependencies and cost details: enclosed cost modes, metrics, and descriptions.
Also belonging to the meta section of the resource’s information is the resource’s
ACL which, to a given set of roles, specifies the allowed set of actions. Finally,
scope information was added which dictates if the given resource is the result
of a single ALTO administrative domain, or the collaborative result between
multiple ones, and thus possibly subjected to conflicts due to administrative
biases.

• Network status information: Data structures that give a characterization of the
ALTO Server’s vision of a network. Concretely, these can map network proper-
ties to a node - such as the connection types of their interfaces, or their geograph-
ical location - they can aggregate many network addresses to a single identifier,
or they can map properties to a node link or end-to-end path, such as link or
cumulative routing costs.

Meta information can be seen as a resource’s header, containing data that regards
to the network status and helps better handle it. Following the defined protocol [71],
this field includes the resource’s name for all resources, which is needed for identifica-
tion and indexing, and all other fields are dependant on the type of resource: at this
version of the protocol, only network maps are version-able, allowing ISPs to refer-
ence different versions of a network map as they are updated, maintaining support for
previously referenced versions; cost information is, naturally, only applicable to cost
maps, and gives insight on how the numeric costs are to be interpreted, i.e. what their

62

mode and metrics are, and what description it has. Finally, extending to the protocol
is the addition of an ACL as a solution to access control needs. An ACL is defined as
a matrix, with each entry defining a user role and actions - discussed in Section 3.2 -
as a restriction of what a given user was given clearance to do.

The network status information of a network map groups endpoint addresses into
a single PID as a text literal. Akin to the working group’s protocol, accepted endpoint
address protocols include Internet Protocol version 4 (IPv4) and Internet Protocol version
6 (IPv6), utilizing a 32 bit long bitmask to identify a subnetwork. Similarly, support
for aggregation of MAC addresses was added, with a 48 bit long bitmask to identify
address ranges, similar to the IP variant. Additionally, generic overlay IDs can be
added with the key "priv:X" - with "priv" meaning private scheme - where "X" is the
qualified name - this naming scheme was adapted from the endpoint property map’s
specification done by the ALTO working group, for semantic consistency. As end-
point addresses utilizing this scheme aren’t restricted to any type, their interpretation
is also left to the client. For example, if a server defines that an endpoint addresses
with "priv:my-overlay" can use regular expression to specify address ranges, a pre-
agreement must exist with a client. Of course, if a given addressing scheme besides
the previously mentioned ones becomes of relevant wide appeal, it could afterwards
become part of the specification, but the existence of a private addressing scheme
with liberal type and semantic verification gives liberties outside of the protocol for
network status supply schemes that aren’t supported officially. A valid network map
must unambiguously map every address in the domain range to a single PID, and
whenever multiple matches occur, a longest prefix match strategy is used. As the cus-
tom addressing schemes let the network map be interpreted in an undefined way by
the protocol, the server cannot properly assert to the matching validity, and thus de-
fault protocol addressing schemes for network maps should be preferred, as semantic
validity in private addressing schemes is not checked. Table 3.1 provides an example
network status component of a network map within the topology in Figure 3.4.

63

Figure 3.4: Example network topology with ISP boundary

PID IPv4 IPv6 MAC priv:my-overlay

1

[10.0.0.0/24,10.0.1.0/24,
10.0.2.1/32, 10.0.3.1/32]

- D0-9F-BF-2A-00-00/32 [1, 3, 4]

2 [10.0.2.2/32] - D0-9F-BF-2A-FE-00/40 2

3 [10.0.3.2/32] - F8-BB-0B-0A-AA-AA/40 5

4 0.0.0.0/0 ::/0 00-00-00-00-00-00/0 *

Table 3.1: Example network map referencing Figure 3.4

Three PIDs are given, each taking portion of an IPv4, IPv6, MAC, and custom over-
lay address range. The private address scheme groups users in regards to their private
overlay ID, and it can be seen that nodes with ID 1, 3, and 4 are grouped to a single
PID, which can be seen to belong inside the ISP domain. Lastly, nodes 2 and 5 are
given different PIDs as they reside outside the domain but are reachable through dif-
ferent peering points. The ISP could then in this case leverage the network map to
logically group collections of endpoints by reachability - those local to their domain,
and those reachable by one of the two possible peering points, which could be sub-
jected to different peering agreements and as such should be treated differently in
resources that reference this network map.

A cost map contains a list of cost map matrices, with each matrix setting pairwise
values between an origin entity and a destination entity. If it is a standard cost map,
these entities are represented by PIDs that can be cross-referenced from a network map
which this resource depends on, whereas if it is an endpoint cost map, these entities
are endpoint addresses which, similar to network maps, include IPv4, IPv6, MAC and
private endpoint types.

64

A given matrix must specify the type of cost represented with both their cost type
and cost mode, with available options being the ones specified in the ongoing ALTO
group’s cost metric specification [72]. Optionally, a cost matrix can specify calendar
information about that matrix - similar to the current work in [70] - which signifies
that besides having single-value costs, which are obligatory for any cost matrix, it also
contains a time-sensitive list of costs that must be interpreted according to the calendar
information provided, and give a chronological overview of what the costs will be in
the future. If the ISP contains full topological knowledge of the resource it is sharing,
the information that can be provided by the cost maps can be quite detailed.

Table 3.2 presents a cost table referring to the topology in Figure 3.5.

Figure 3.5: Example overlay network topology without ISP boundary

Cost Mode routingcost
Cost Metric numerical
From/To 1 2 3 4 5

1 0 1 1 2 3

2 1 0 2 3 4

3 1 2 0 1 2

4 2 3 1 0 1

5 3 4 2 1 0

(a) Routing cost cost matrix

Cost Mode delay-ow
Cost Metric numerical
From/To 1 2 3 4 5

1 0 2 2 5 6

2 2 0 4 7 8

3 2 4 0 3 4

4 5 7 3 0 1

5 6 8 4 1 0

(b) One way packet delay cost matrix

Table 3.2: Example cost map for overlay in Figure 3.5

One cost matrix depicts a generic "routingcost" cost matrix, depicting routing pref-
erence as a shortest path map with a Dijkstra algorithm and hop count as its link cost,

65

and another provides a "delay-ow" cost matrix, depicting expected one-way delay in
milliseconds, as the cumulative calculation of known link delays.

Without either full administrative control or some multi-ALTO domain orchestration
mechanism, a single ALTO server instance is restricted to the information it knows. Be-
ing bound by limited topological knowledge, however, does not necessarily mean that
valuable inter-layer cooperation is not possible, and will now be subject of discussion.
The network map presented previously contains in of itself important information,
grouping endpoints into PIDs that represent two possible types of network borders:
one local to the server, and two representing the peering relationships. This is relevant
to help clients localize their traffic and would be impossible to derive without insight.
Table 3.3 provides an example of cost matrices within a single cost map that consider
a limited single ALTO server domain topology in Figure 3.4. Notice how the admin-
istrative domain is within scope of only three of the five network nodes. The ISP only
possesses detailed network status information that regards to nodes "1", "3" and "4",
which limits the amount of topological information that can be retrieved and shared
to ALTO clients. However, it’s still very much possible to dictate routing preferences
and gaps in knowledge can be filled with probing measurements to be collected and
centralized by the ALTO server to acquire historical performance metrics.

66

Cost Mode routingcost
Cost Metric numerical
From/To 1 2 3 4 5

1 0 10 1 2 22

2 - - - - -
3 1 11 0 1 21

4 2 12 1 0 20

5 - - - - -

(a) Routing cost cost matrix

Cost Mode delay-ow
Cost Metric numerical
From/To 1 2 3 4 5

1 2 20 1.5 3 42

2 - - - - -
3 4 24 2 2 39

4 7 27 2 2 36

5 - - - - -

(b) One way packet delay cost matrix

Cost Mode tput
Cost Metric numerical
From/To 1 2 3 4 5

1 256000 10000 256000 256000 5000

2 - - - - -
3 256000 10000 256000 256000 5000

4 256000 10000 256000 256000 5000

5 - - - - -

(c) TCP throughput cost matrix

Cost Mode tput
Cost Metric ordinal
From/To 1 2 3 4 5

1 1 2 1 1 3

2 - - - - -
3 1 2 1 1 3

4 1 2 1 1 3

5 - - - - -

(d) TCP throughput ranking
cost matrix

Cost Mode tput
Cost Metric numerical
Calendar Start Tue, 20 Sep 2020 17:00:00 GMT
Calendar Interval size 7200

Calendar Interval number 6

From/To 1 2 3 4 5

1 (1,[1,1,1,2,2,1]) (2,[2,2,2,1,1,2]) (1,[1,1,1,2,2,1]) (1,[1,1,1,2,2,1]) (3,[3,3,3,2,2,1])
2 - - - - -
3 (1,[1,1,1,2,2,1]) (2,[2,2,2,1,2,1]) (1,[1,1,1,2,1,1]) (2,[2,2,2,1,1,1]) (1,[3,1,1,1,1,1])
4 (1,[1,1,2,2,1,1]) (1,[2,2,1,1,1,1]) (1,[1,1,1,1,2,1]) (2,[1,1,2,2,2,2]) (3,[3,3,3,3,2,2])
5 - - - - -

(e) TCP throughput cost matrix with calendar values

Table 3.3: Example cost map for the network with limited ISP domain in Figure 3.4

As can be seen in Table 3.3a, a generic "routingcost" cost matrix is presented, whose
value increases with the associated costs of transferring data through that path, and
constructed as the ISP best sees fit. Specifically to this case, costs within the ISP
domain are minimal, whereas paths that originate locally and target "PID2" or "PID5",
both requiring the utilization of peering links, are less preferable, with the former
being at least twice more preferable than the latter.

A "delay-ow" cost matrix is also provided in Table 3.3b, specifying one way packet
delay in milliseconds, with the ISP applying preceding probing measurements be-

67

tween endpoints and averaging the results as a means to fill the knowledge gap out-
side its domain.

A "tput" cost matrix can be seen in Table 3.3c and 3.3d, specifying expected through-
put in a numerical fashion with a value of bytes per second, and in an ordinal fashion
with a ranking, respectively. The ISP applied probing measurements, topological in-
sight, as well as collected feedback of previous application connections that occurred
between endpoints to deduce excepted throughput between target points in practice.
The ordinal mode of displaying information serves as a way to preserve relative pref-
erence information without requiring from the ISPs the need to concretely specify
network status, and instead ordering connections by relative preference, with the op-
tion of assigning equal preference to paths that differ in a given order of magnitude
that the ISP sees as negligible.

Finally, the inclusion of cost calendar capabilities to the cost matrix in Table 3.3e
enables users to get a chronological view of the excepted throughput at rush hours,
with the single value cost being updated to the present time if a decision needs to be
made only considering data pertaining to the time of request.

In the presented example scenario, locality is correlated with more reliable commu-
nications and less operational costs from the ISP’s point of view, and a concrete better
choice exists regarding routing cost, delay, and throughput, between any two peering
connections. That information can be part of the ALTO system as query-eligible by
client applications that can now better optimize their network-related decisions in a
mutually beneficial scenario.

The network status information of an endpoint property map stores the property in-
formation of a given endpoint. The ALTO working group’s protocol specification [71]
does not directly specify what kind of properties are pondered for this map. Following
the same design pattern used for the other specified resources, the endpoint property
map will have a set of defined properties with associated semantics, and all other prop-
erties can be added with the "priv" prefix to designate private properties outside of the
considered domain, and thus all semantics and validation rules don’t apply. Much like
the other resources, an endpoint can be identified by an IPv4, IPv6, MAC or private
overlay address, and the pondered properties are PID value, geographical coordinates,
connection type (fiber, Asymmetric Digital Subscriber Line (ADSL), etc.), server footprint
information (total RAM, CPU, and storage), and server status information (what por-
tion of the footprint information is currently available, such as free processing power).
In practice, a given property could be promoted from a private type to one pondered
in the protocol and have a resulting official semantic and validation rules. Table 3.4

68

display an example endpoint property map, which is used to store status information
relating to servers, identified by their IPv4 address, that serve the same content.

Endpoint CPU % RAM % Geographic Coordinates Connection type priv:is-mirror
145.132.164.101 22 50 (34.28278,-82.50490) Fiber False
245.217.176.67 30 45 (23.24178,-53.51290) Fiber True
48.43.96.168 25 30 (55.33218,-12.50490) Fiber True
207.20.148.21 10 20 (-23.28121,-22.55530) Fiber True
89.140.253.77 5 0 (12.231278,75.70890) Fiber True

Table 3.4: Example endpoint property map for server replicas

Finally, as a means to facilitate resource divulgence from servers to clients, there is
also included the specification of an Information Resource Directory (IRD), that is also
based from the ALTO working group’s protocol specification [71]. An IRD can also
be thought of as a resource, but instead of sharing network information, it serves as
an index of the available resources that a given server provides. Each server must
have available for query a single IRD, that lists all the available resources it provides,
along with their metadata. Each resource attribute must contain the resource’s ID, its
HTTP media type and, if applicable, their capabilities, accepted input media types,
and resource dependencies. The capabilities identify, if existing, the cost and property
types that are used. Being indexed by their unique name, this allows for these to
be cross-referenced on further protocol exchanges without need to repeat information.
Additionally, the resource’s capabilities also serve to indicate what resource functional-
ity extensions are enabled. These functionality extensions are currently applicable for
cost maps only, and thus the capabilities serve to signal if the cost map has enabled
one or more of the following functionalities: calendared costs, a protocol extension
adapted from the work in progress in [70], that serves to retrieve calendar cost val-
ues; or the multi-cost extension functionality, a protocol extension adapted from [90],
which lets multiple matrices be requested at once to save on overhead traffic that
would otherwise be necessary to request many matrices.

Two additions are made to the working group’s specification: firstly, a description
field, which for each resource attribute gives a brief description of what it is about, as
it could facilitate resource selection, since such a description could go into detail about
appropriate usage guidelines of that resource and suggested use cases; secondly, the
resource’s ACL, letting a user know beforehand what clearances the given resource
has.

69

A default network map entry must also exist in the IRD, as per the working group’s
specification, to serve as a guideline for clients that wish to use the most basic of ISP
endpoint groupings.

An example IRD is provided in Table 3.5.

Cost ID Cost Mode Cost Metric Description
routing routingcost numerical Default routing preference

routing-rank routingcost ordinal
Routing preference by rank-
ing

owd delay-ow numerical
Expected one way delay of a
single packet. Based on ap-
plication statistics

tput-theoretical tput numerical
Theoretical maximum avail-
able TCP throughput. Based
on topological knowledge

tput-practical tput numerical
Practical expected TCP
throughput. Based on appli-
cation statistics

(a) Available cost types

Property ID Property type Description
cpu CPU Machine’s current CPU load
ram RAM Machine’s currently occupied RAM
coord geographic-coordinate Machine’s geographical coordinates
connection connection-type Machine interface’s connection type
is-mirror priv:is-mirror Flag stating if machine is a mirror of original server

(b) Available property types
Resource ID URI Media Type Uses Accepts Capabilities Description
def-nmap resources/networkmaps/default alto-networkmap - alto-networkmapfilter - Default
cluster-costmap resources/costmaps/cluster alto-costmap def-networkmap alto-costmapfilter Costs: [routing, routing-rank] For main data center cluster
cluster-endprop resources/endpointpropmaps/cluster alto-endpointprop - alto-endpointpropparams Properties: [cpu, ram, coords] For main data center cluster
client-endcost resources/endpointcostmaps/ alto-endpointcost - alto-endpointcostparams Costs: [routing-rank, owd, tput-practical] For user application guidance

(c) Available resources

Resource ID
def-nmap

(d) Default Network Map

Table 3.5: Example of an ALTO server’s IRD

A list of available costs and properties is shown in Table 3.5a and Table 3.5b, respec-
tively, with their descriptive data discussed above, along with the available resources
provided by that server in Table 3.5c, which contains data useful for their server clus-
ter, as well as a broader-purpose endpoint cost map to query for path connection types
and facilitate user selection. Finally, a default network map is included in Table 3.5d.

70

Further formal specification is not made as it has been extensively done in the ALTO
protocol [71], and the proposed system complies to it whilst extending upon the de-
sign.

3.4 roles

3.4.1 ALTO Client

An ALTO resource consumer is materialized in the architecture in the form of an
ALTO client, which can be any entity who is able to interface with an ALTO server to
query for ALTO resources. Whilst the ALTO working group was initially devised to
help increase P2P-related traffic localization via the sharing of network information, it
now has an increased scope where an ideal client is any application which generates
network traffic and would be able to optimize it with aid from an oracle entity with
privileged network information. Thus, an ALTO client is fit to be implemented in P2P
applications, and could be embedded in a P2P client itself to help with picking neigh-
bouring and content providing nodes, or on a tracker that would accomplish the same
goal on behalf of the querying peer. Likewise, nodes which are unable to optimally se-
lect between other nodes, such as CDN controller nodes or selectors of mirror servers,
could also benefit from oracle guidance, and thus qualify as appropriate ALTO clients.

Figure 3.6 exemplifies how a cooperative P2P application would, acting as an ALTO
client, interact with the ALTO server to retrieve relevant network resources to aid their
application choice of what candidate peer to consume a service from.

71

Figure 3.6: High-level communication diagram of a P2P application utilizing ALTO

Firstly, a network map is retrieved to help group endpoints into groupings, and
afterwards a cost map is retrieved filtering only the querying peer as source, candidate
peers as destinations, and the routing cost and bandwidth cost matrices. Acting on
this information, the peer chooses the candidate that gives a good balance between ISP
routing cost and path bandwidth, making a decision that should ideally benefit both
them and the ISP that helped provide that information.

Figure 3.7 is similar to the previous example, in the sense that it aids a P2P ap-
plication by resorting to ALTO’s guidance, but this time the application-level traffic
optimization is made in a way that is transparent to the P2P client.

72

Figure 3.7: High-level communication diagram of a tracker utilizing ALTO

As a choice to purely localize traffic, as this alone can bring plenty of benefits to both
layers, and as a means to minimize protocol modification, it is the tracker that acts as
an ALTO client. Whenever a request is made by a P2P client to retrieve peers serv-
ing a given data chunk, the tracker first consults with the ALTO server and retrieves
its network map that groups peers within administrative domains: either inside the
providing ISP’s domain, thus the local network, and outside administrative domains,
grouped by types of peering connections to different autonomous regions. The tracker
could use a very simple algorithm to filter out of its candidate pool peers that reside
outside of the ISP region where the requesting P2P client resides, if a local alternative
exists. After packaging a reply to the P2P client, the protocol acts normally and traffic
could be successfully localized with minimal impact.

In the same vein, Figure 3.8 exemplifies how this time a CDN controller would use
the system to better help its decision in matching CDN clients to an edge server on
their system.

73

Figure 3.8: High-level communication diagram of a CDN controller utilizing ALTO

To do this, it retrieves a property map to query for server status information, and
subsequently retrieves a cost map to query for path information between the CDN
client and the candidate edge servers. Having all the relevant server status information,
e.g. available processing and storage resources, as well as connection properties, e.g.
max possible bandwidth, latency, and packet loss, the CDN controller is in a condition
to more optimally redirect his client.

3.4.2 ALTO Server

An ALTO resource provider is the ALTO server, an entity that possesses pre-processed
and authorized network information in the form of ALTO resources. Its job is to store
and manage such resources so they can be provided to querying ALTO clients, with
the additional responsibilities of data validation and persistence. Conceptually, the
ALTO server is seen as a single entity, but considering the sensible information that
could be stored within it and the influence it has on shaping network traffic, it would
not be uncommon for an ALTO server to have a knowledge domain correspondent to
the ISP that owns it. Physically, though, the resource provider layer could consist of
many interlinked ALTO providers with an increased coverage area of network knowl-
edge. Means through which this could occur are further specified in Section 3.4.2.3.

A listing of available HTTP endpoints of the ALTO server interface is available in
Table 3.6.

74

HTTP Verb Resource Description
GET /resources Retrieve the Information Resource Directory for that server
GET /resources/networkmaps Get summary overview of all available network maps
POST /resources/networkmaps/ Add a new Network Map
GET /resources/networkmaps/{id} Get the Network Map with the specified ID
POST /resources/networkmaps/{id} Get the Network Map with the specified ID, with the applied filter provided in body
PUT /resources/networkmaps/{id} Modify the contents of a Network Map with the specified ID
DELETE /resources/networkmaps/{id} Remove a Network Map with the specified ID
GET /resources/costmaps Get summary overview of all available cost maps
POST /resources/costmaps Add a new Cost map
GET /resources/costmaps/{id} Get the Cost Map with the specified ID
POST /resources/costmaps/{id} Get the Cost Map with the specified ID, with the applied filter provided in body
PUT /resources/costmaps/{id} Modify the contents of a Cost Map with the specified ID
DELETE /resources/costmaps/{id} Remove a Cost Map with the specified ID
GET /resources/endpointpropmaps Get summary overview of all available Endpoint Property Maps
POST /resources/endpointpropmaps Add a new Endpoint Property map
GET /resources/endpointpropmaps/{id} Get the Endpoint Property Map with the specified ID
POST /resources/endpointpropmaps/{id} Get the Endpoint Property Map with the specified ID, with the applied filter provided in body
PUT /resources/endpointpropmaps/{id} Modify the contents of an Endpoint Property Map with the specified ID
DELETE /resources/endpointpropmaps/{id} Remove an Endpoint Property Map with the specified ID
GET /resources/endpointcostmaps Get summary overview of all available Endpoint Cost Maps
POST /resources/endpointcostmaps Add a new Endpoint Cost Map
GET /resources/endpointcostmaps/{id} Get the Endpoint Cost Map with the specified ID
POST /resources/endpointcostmaps/{id} Get the Endpoint Cost Map with the specified ID, with the applied filter provided in body
PUT /resources/endpointcostmaps/{id} Modify the contents of an Endpoint Cost Map with the specified ID
DELETE /resources/endpointcostmaps/{id} Remove an Endpoint Cost Map with the specified ID

Table 3.6: ALTO server’s available endpoints

All resource types hierarchically descend from a "resources" path, and each unique
type of resource exposes his own endpoint, with the methods to add, update, remove,
and retrieve with and without filter as arguments. These methods are subjected to
the access control mechanisms discussed in Section 3.2, as one should only expect
reputable sources to upload and modify data, and only permitted users to query it.

3.4.2.1 Resource filtering

Resource filtering is the task through which a resource consumer can pass a filter
object to the resource provider that specifies the parameters that the consumer wishes
to retrieve specifically. With it, there’s no need to pass more information to the client
than he wishes to get, thus minimizing used network bandwidth and client CPU cycles
to send and process the resource, respectively. The need for filtering becomes a greater
necessity, and perhaps a critically needed one, at a larger system scale, i.e., with an
increased number of users that query routinely, and resources that can have a massive
amount of entries, specifically those that regard to network endpoints. Keeping with
the objective of implementing a fully compatible ALTO protocol as specified by the
working group, so will the resource filtering specifications be equal to those already
specified in the protocol design [71], thus no further specification will be necessary.

For clarification, the ALTO server must maintain an endpoint for retrieving all main
specified network status resources via filtering, i.e. the server must let the client re-

75

trieve ALTO resources with parametrization that dictates what concrete fields must be
delivered. The types of resource filters considered are the following:

• Network Map filter: List of PIDs of value PID_List, that if empty signifies the
entire subset of available . All entries of value:

(PID, Endpoint_List), PID ∈ PID_List

must be retrieved, and all others must be filtered out.

• Endpoint Property Map filter: Pair of list of endpoints and list of properties that
must be selected, of value (Endpoint_List, Property_List). All entries of value

(Endpoint, Property), Endpoint ∈ Endpoint_List ∧ Property ∈ Property_List

must be retrieved, and all others must be filtered out.

• Cost Map filter: Tuple of list of source PIDs, list of destination PIDs, list of cost
types and list of cost value conditionals of value

(SrcPID_LIST, DstPID_LIST, CostType_List, CostValueConditional_List),

with CostType_List > 1 assuming a multi-cost map extension and the emptiness
of a list signifying the entire subset of available values that the list refers to. All
entries of value

(Src_PID, Dst_PID, Cost_Type, Cost_Value, CostValueContidional_List),
Src_PID ∈ SrcPID_List ∧ Dst_PID ∈ DstPID_List ∧ Cost_Type ∈

CostType_List ∧ satis f ies_atleast_one(Cost_Value, CostValueConditional_List)

must be retrieved, and all others must be filtered out.

• Endpoint Cost Map filter: Equal to the cost map filter, but considering a list of
source and destination endpoint filters instead of PIDs.

By analogy, one can consider the ALTO server to act as a remote database with an
interface for clients to interact with it, and the filters act as selection statements, such
as the "SELECT" method in SQL databases, to retrieve specific parts of the dataset.
The filters of cost maps and endpoint cost maps also include a list of premises which
themselves are logical operators applied to the candidate cost values. Continuing the
analogy, these allow the clients to use "WHERE" statements on the numerical cost
values that are retrieved. In summary, the filter functionality could be explained in the
demonstrative examples shown in Table 3.7.

76

HTTP Verb Resource Body Description

POST resources/networkmaps/default
{
"pids": ["PID1", "PID2"]
}

Retrieve a network map with id "default", fil-
tering for the entry PIDs "PID1" and "PID2"

POST resources/endpointpropmaps/default

{
"endpoints": ["ipv4:10.0.0.1", "ipv4:10.0.0.2"],
"properties": ["CPU", "RAM", "connection-type"]
}

Retrieve an endpoint property map with the id
"default", filtering for the entries with the prop-
erties "CPU", "RAM", and "connection-type"
and the IPv4 endpoints "10.0.0.1" and "10.0.0.2"

POST resources/costmaps/default

{
"cost-type": {

"cost-mode" : "numerical",
"cost-metric": "routingcost"

},
"pids": {

"srcs" : ["PID1"],
"dsts": []
}

}

Retrieve the cost map with the id "default",
filtering for the entries with the cost matrix
having cost mode "numerical" and cost metric
"routingcost", whose entries have source PID
"PID1" and any destination

POST resources/costmaps/default

{
"multi-cost-types":
[
{
"cost-mode" : "numerical",
"cost-metric": "routingcost"
},
{
"cost-mode": "ordinal",
"cost-metric": "routingcost"
}
],

"pids" : {
"srcs": ["PID1", "PID2"],
"dsts" : ["PID3"]
}

}

Retrieve the cost map with the id "default" and,
assuming a multi-cost protocol extension, re-
trieve both the "numerical" and "ordinal" varia-
tions of the "routingcost" metric, whose entries
have source PID "PID1" or "PID2", and destina-
tion "PID3"

POST resources/costmaps/default

{
"multi-cost-types":
[
{
"cost-mode" : "numerical",
"cost-metric": "routingcost"
},
{
"cost-mode": "numerical",
"cost-metric": "delay-ow"
}
],

"calendared": [false, true],
"pids" : {

"srcs": [],
"dsts" : ["PID3"]
}

}

Retrieve the cost map with the id "default" and,
assuming a multi-cost and cost calendar proto-
col extensions, retrieve the numerical variants
of the "routingcost" and "delay-ow" metrics, re-
questing a singular value and a calendar value
respectively, of all entries whose destination is
"PID3"

POST resources/costmaps/default

{
"multi-cost-types":
[
{
"cost-mode" : "numerical",
"cost-metric": "delay-ow"
},
{
"cost-mode": "ordinal",
"cost-metric": "routingcost"
}
],

"pids" : {
"srcs" : ["PID1"],
"dsts" : ["PID2"]
},

"or-constraints" : {
[
["[0] ge 0","[0] le 20"],
["[1] eq 1"]
]
}

}

Retrieve the cost map with the id "default" and,
assuming a multi-cost protocol extension, re-
trieve the "numerical" mode of the "ow-delay"
metric and the "ordinal" mode of the "routing-
cost" metric, whose entries have source "PID1"
and destination "PID2", and whose cost values
satisfy for a given source and destination pair
that either the "ow-delay" is within 0 and 20 ms
or it’s the "routingcost" value with a preferen-
cial value of 1

Table 3.7: Example ALTO queries with the filtering functionality

77

3.4.2.2 Server discovery

ALTO server discovery, by hand of either network information aggregators or re-
source consumers, must be done leveraging existing DNS technologies. Each server
entity maintains a given domain name, and along it is included the need to also main-
tain domain records in the chosen DNS system to map the domain name to the server’s
IP address. Much like the choice to utilize HTTP as an application protocol, so do the
server discovery mechanisms aim to comply with the ALTO working group’s philoso-
phy of leveraging existing proven technologies when possible as a means to facilitate
development and minimize errors, with the added benefit of extending functionality
with the chosen technologies since it is mature and has plenty of options. With DNS,
this gives flexibility of either privately configuring domain names to IP addresses -
like so does happen in Linux systems with the "/etc/hosts" file - or its deployment
by leveraging existing authoritative DNS servers. Additionally, by working around
the existing technology and its specification, one can easily implement load balancing
for performance reasons, or, among others, DNS over HTTPS (DoH) for preventing
eavesdropping, and ensuring both data integrity and host authenticity [91]. A similar
approach is to be taken for network information aggregator server discovery by part
of the network state collectors for the same reasons explained above.

3.4.2.3 Inter-server communication

A glaring gap in the working group’s base ALTO protocol is its single administrative
applicability domain. Meaning, an ALTO server is managed by a single administrative
entity - likely an ISP - and its knowledge domain is limited by the network topology
details that the entity knows, which is a subset of the entirety of the Internet’s infras-
tructure. In the attempt to fix the server’s inability to provide network status infor-
mation outside its domain, this section overviews mechanisms that enable inter-server
communications as a means to expand the capabilities of each domain.

Firstly, consider how efforts for full resource synchronization could be taken. These
would be similar to data synchronization mechanisms employed by popular databases
to ensure consistency across several server replicas, and could increase availability as
well as the serviceability of content nearby clients. However, it does not seem to fit this
use case - for starters, if all data were to exist redundantly on all servers, that would
defeat the purpose of having many self-sufficient and self-autonomous administrative
domains, and thus a single server architecture would suffice; secondly, the architecture
is inherently designed to work within a trust domain of selected clients and, because

78

of it, the servers may not even be comfortable with sharing all of its information within
other domains to begin with, limiting replication strategies; thirdly, accounting for the
amount of users acting on the ALTO system, better scalability could be achieved with
a distributed solution that limits information within set boundaries. Accounting for
these reasons, an inter-server synchronization protocol was designed for servers to
negotiate information exchange among themselves, as opposed to one that enabled
the synchronization of a single monolithic dataset between servers.

It is very important that a multi-domain solution assures that each ISP has full
sovereignty over their domain. Simply collecting data from each domain and storing it
in an third-party entity from which the original source has no control fails to comply to
the sovereignty requirement. Each ISP that participates in a multi-domain knowledge
system must, at any time, have control over what the information is and who gets
access to it, being able to retroactively change its content and the access control policies,
respectively. This solution will then consider that each ALTO server belonging to the
multi-domain orchestration mechanism will compute and store it’s data locally, and
will have an interface open for data querying from other ALTO servers, being then
open to selecting and enforcing their own policies as they see fit, in regards to how
and when data is calculated, and who gets access to it.

To achieve the stated requirements, a "scope" property will be added in the "meta"
field of every ALTO resource. This property, like the name implies, states the scope
of the resource. A "local" resource is no different from those in the base protocol,
meaning that it gets calculated and distributed within a single administrative ALTO
domain. On the other hand, a "global" resource is essentially virtual, in the sense that
it is presented as if it were stored in the server, but instead is dynamically retrieved
every time through inter-server communication. The decision for this property to be
visible in the IRD was made so it is communicated to the client that a given property
can be retrieved as a multi-domain effort, and as such is susceptible to a clash of
different ISP policies and strategies, or as a locally bound resource that will be less
prone to inconsistencies, as only a single domain is responsible for managing it.

To manage the synchronization of globally-scoped ALTO resources, a new entity,
the domain synchronizer, is required in the architecture. This central server will too
be an ALTO server, meaning that it will be used to store and manage ALTO resources,
although its use is specialized for inter-server synchronization. The server maintains
property maps, where each of them refers to globally and locally scoped resources,
and contains the addresses of the servers that independently store that data and make
it available for querying. Locally-scoped resource IDs are stored in this server with the

79

addresses of the server’s that host it, so that a given ALTO server, whenever asked for
a resource which he does not posses, can contact this synchronization database and
appropriately redirect a client to a server that contains that information. In contrast,
globally-scoped resource IDs and their owner’s addresses are also stored in this server,
so that a given server can know who he must query to retrieve the needed information
to locally build the resource to be delivered to the client.

3.4.3 Network State Provider

3.4.3.1 Network Information Aggregator

The network information aggregation layer is the layer that enables the translation
of raw topological information, such as the physical attributes of network devices and
connections, into processed, query-eligible network knowledge. To do so, a very im-
portant entity, perhaps the heart of the system as a whole, is the network state collector,
which is the supply of network information that is injected, through a network state
provisioning protocol, into a network information aggregator. This latter entity is then
responsible for providing the ALTO resource provider layer with valid information
after the raw topological data has been processed. This processing of network data
can include the calculation of optimal paths, the abstraction of network entities, or the
injection of static ISP preferences. This pre-processing stage requires input from an
ISP administrator, responsible for acting on the best interest of the ISP from which
the raw topological data originates - by interacting with the network information ag-
gregator, the administrator acts on this network information hub to retrieve from the
database a history of retrieved network information, and afterwards manipulate this
information to create ALTO resources to its liking - this is where data is transformed
utilizing the algorithms the administrator deems fitting, and transforms the raw data
to be publishing ready, meaning that it contains an acceptable amount of abstraction
not to compromise topological privacy. Finally, the administrator defines important
meta data that identifies the resource, and defines the access control list to be enforced
by the ALTO server.

Like discussed, the main point of data entry for the network information aggregator
is the network state collectors. The available endpoints supported by the Network
Information Aggregator server are presented in Table 3.8.

80

HTTP Verb Resource Description
POST /measurements/endpoint Add a measured endpoint property value
PUT /measurements/endpoint/{id} Modify the contents of a measured endpoint property value
DELETE /measurements/endpoint/{id} Remove a measured endpoint property value
POST /measurements/links Add a measured link value
PUT /measurements/links/{id} Modify the contents of a measured link value
DELETE /measurements/links/{id} Remove a measured link value
POST /measurements/group Add a measured endpoint grouping
PUT /measurements/group/{id} Modify the contents a measured endpoint grouping
DELETE /measurements/group/{id} Remove a measured endpoint grouping

Table 3.8: Network Information Aggregator’s available endpoints

All measurements contain two portions:

• Meta data: Information that pertains to the characterization of the measurement.
These include the type of source from where the measurement came from, such
as "OSPF", to better help parse and, in future system iterations, validate the data.
Additionally, the time the measurement took place and a description are also
required, as they better help store and index the measurements in such a way
that facilitate the administrator’s ability to reason on the collected network status
information.

• Measurement values: The actual measurement values, which map a node, pair
of nodes, or group of nodes, to a value, if these are regarding to an endpoint
property, a link value, or a node grouping, respectively.

3.4.3.2 Network State Collector

Before ALTO resources are provided into the ALTO server by the Network Infor-
mation Aggregator, the latter needs himself to be provided with raw network status
information. The ALTO working group has discussed possible sources of raw topolog-
ical information, including protocols like IGP, Border Gateway Protocol (BGP), SNMP,
or Network Configuration Protocol (NETCONF), or databases like the Traffic Engineering
Database (TED) or Label Switched Path Database (LSPD) [74]. A protocol needs to exist
to interface between the entities that collect and provide the raw topological data, and
the Network Information Aggregator that processes it and provides it to the ALTO
server.

An illustrative example on how certain Network State Collectors of some network
data could use this endpoint to interface with the Network Information Aggregator is
presented on Figure 3.9.

81

Figure 3.9: Communication diagram of how external network state providers upload informa-
tion to the network information aggregator

This protocol is specified in such a way that the network data is provided raw,
without validation. This is due to the fact that, as explained before, a big range of

82

protocols and data types define the Internet, and because of this an equal range of
validation modules would be necessary for a complete validation of all input data.

3.4.3.3 Network status processing

Given that data is retrieved by the network state collectors into the network informa-
tion aggregator and now resides in its database fully tagged with important descrip-
tive information, it is now responsibility of some entity to interact with the network
status information and process it into an ALTO resource. This would include, for ex-
ample, using an automated shortest path algorithm considering link costs which were
retrieved by an OSPF daemon, or filtering out sensitive SNMP data initially retrieved
with a script, leaving out only data that would be advantageous to share without jeop-
ardizing the network’s security. A final important step would be to set the resources
ACL list as a means to signal to the ALTO server how to enforce access control policies
better fit to each data.

83

4 I M P L E M E N TAT I O N

Following the specification, the aim of this chapter is to overview aspects of the
implementation stage of the proposed ALTO system. Firstly, attention is given in
Section 4.1 to the chosen technologies that were leveraged to get the system from its
specification stage into a working product. This includes tools and frameworks in the
development and deployment phases, and whose choice greatly delimits the system’s
properties. Secondly, the server is put into spotlight in Section 4.2 by detailing how
it is structured and how it behaves, taking special concern in how object oriented
programming was leveraged to maximize modularity and reasoning of the system to
facilitate future alterations and extensions. Brief implementation overviews are given
of the Network Information Aggregator and Network State Providers in Section 4.3
and Section 4.4, respectively, commenting where they are similar and where they differ
from the ALTO server’s implementation.

4.1 technologies used

Starting the implementation stage of every project, attention must be given into what
tools are selected to make it come to fruition. These can greatly impact the success of
the developed software, and has concrete consequence in its maintenance and future
extensions.

The specified system architecture is composed by key entities whose interactions are
bound by clearly defined interfaces. More so, considering the example deployment
scenarios, its evident that each entity resides in different topological regions through-
out the network, with the ALTO server, clients, and status providers being scattered
throughout an ISP domain. Each entity can then be thought of as a self-contained
system in of itself who must abide by the proposed interfaces to properly work on
the system. A logical conclusion to this is that each entity implementation is indepen-
dent from the next, needing to only assure a common communication channel that all
entities within it can properly understand. This gives great flexibility in the system
implementation as a whole, because different tools can be leveraged to different enti-

85

ties if needed, and that such entities can be worked on independently from the rest
without impacting the function of the group.

Regarding the ALTO server, first attention is given to the ALTO resources that must
be provided by it. They all share some common properties, such as resource id, ACLs,
owner, etc., and functionality, such as the ability to be read and updated, or their
permissions modified. This similarity is further intensified within groups of resource
types, more specifically cost maps. In these resources, the only concrete difference
between an endpoint and a PID cost map is the type of entity the costs refer to, which
are endpoint and PID addresses, respectively. The sequence of steps that must be
taken from the initial point where a client requests a resource up until that resource
is provided can be abstracted as the sequential interaction between concrete modules
that have a given, self contained, purpose, and communicate with a common inter-
face. This is an architectural pattern that is a micro version of the one existing in the
system, that shares all its properties that were discussed previously. Some of these
modules would include client request monitoring, its parsing, its validation, database
retrieval, database storage, and serialization. With all this in mind, an object-oriented
programming seems like a proper fit for the complexity pertaining to the ALTO server,
especially considering how future extensions would be likely, as very much will be in
case of the ALTO working group. By working with objects as the base programming
entity, many of the highlighted similarities between resources will become easy to be
put into evidence, and module encapsulation and interfacing are natural and thus
arguably easier to develop and maintain. Importance is also placed in choosing a com-
piled language that is statically typed. This is due to the fact that a compiled language
favors performance over an interpreted alternative, which seems favourable for the
expected scale of the ALTO system, and typed constrictions provide needed structure
verifications that aid in the programmer’s confidence in its reliability, and often helps
reduces mistakes. The language choice finalizes with Java [92], which matches the
given requirements and is the one with most prior personal development experience,
coupled with its maturity and wide access to libraries and frameworks.

The Java Spring framework [93] is a main component of the developed server soft-
ware. The framework’s inversion of control paradigm allows dependencies to be man-
aged through configuration files and annotations to identify objects to be scanned by
the framework, providing a means of development that is quite flexible, reduces boil-
erplate code, and favors loose coupling between objects, facilitating the independent
development of implementations that can themselves be changed in the future with lit-
tle consequence to the entire system, given that they implement the stipulated interface.

86

Adding to this, the Spring framework provides modules that are very much needed
for the server implementation, namely for Model-View-Controller (MVC) architectures,
HTTP-based Representational State Transfer (REST) Application Programming Interfaces
(APIs), authentication and authorization, data access, and both unit and integration
testing, to name a few. Given that other frameworks could provide similar function-
ality, Spring was favored due to its development team’s focus on performance and
flexibility, and because the framework has continuous development support and an
increased community popularity, all of this raising the likelihood that this framework
becomes maintained throughout the future, in comparison to some that have since lost
support.

Finally, focus was given for database-related decisions. Since resource manipulation
through the REST APIs revolve around JavaScript Object Notation (JSON) manipulation,
a preference was made for a database that allows the resources to be saved in a sim-
ilar fashion, thereby reducing a layer of abstraction that makes reasoning about the
software easier. Considering the scale at which an ALTO server might be subjected
to requests, a database that favors performance seems like a better choice, in partic-
ular one that easily allows for horizontal scaling. A last consideration is made for a
database that is schema-less, since for the network information aggregation server, a
myriad of types of data can be added by state providers to account for the huge variety
of protocols and standards that retrieve network information, and more can exist in
the future that weren’t initially pondered by the ISP administrator, as more network
protocols and data properties become relevant to attain, so a flexibility in what can
be stored seems more appropriate. In a similar vein, for the ALTO server, the ALTO
protocol itself has been subject to continuous changes that still aim for legacy support,
it can be argued that future changes will be common, and doing so without increased
server downtime - something that would be required by schema-driven databases -
seems favorable considering the scale and importance of an ALTO service. The exis-
tence of private properties whose scope is outside of the protocol and can be freely
defined by the user, while not impossible to implement with a schema, seems to lend
itself more naturally to a schema-less design. With all these considerations in mind, a
database that abides to these constrictions and has a healthy developer support and
user adoption is MongoDB [94], which was chosen.

As per security, the same philosophy of the ALTO working group will be used and
pre-existing, mature technologies will be leveraged. Hypertext Transfer Protocol Secure
(HTTPS) will be used over base HTTP as a communication protocol between entities
as a means to resolve many of the identified security threats. By using certificates

87

with HTTPS, the server entity authentication can be assured, and through the usage of
Transport Layer Security (TLS) as a cryptographic security tool, both confidentiality and
integrity are secured in the communication channel via the usage of data encryption
and digest calculation, respectively. As per client authentication, a deliberate choice
was made to use HTTP basic [95], as opposed to HTTP digest [96] that is demanded
by the base ALTO working group’s specification. With basic authentication, user and
password fields are sent in encoded - not encrypted - fashion, and such information
is firstly validated by the server that, if the attempt is successful, proceeds with its
normal operation. Due to the lack of encryption, this method of client authentication
will be complemented with the usage of HTTPS to provide a secure communication
channel that would otherwise be open to credential exposure and tampering. The
working group’s suggested digest method hashes the credentials by using a nonce - a
number to be used only once - that was provided by the server, thus also protecting
against data exposure and tampering. However, since HTTPS will be leveraged, there’s
no need to have an authentication system that does much more beyond of what HTTP
basic does, therefore facilitating client applications and giving the server flexibility on
how they wish to store user credentials, since the basic authentication allows one to
store the hash of passwords alone, whereas digest requires the storage of the hash
value of "username:password:realm". These and other comparisons between these
authentication methods are available at [97] and further helped in the decision.

4.2 server architecture

The macro-level architectural diagram specified that the server’s role is to serve
incoming requests by clients and providers, and to interface with a database to persist
resource storage. The server will implement a REST interface leveraging HTTP as this
pair is widely accepted and ubiquitous on the Internet, but also due to the fact that its
resource-oriented interface standards fit nicely into the specified interface for ALTO
server interactions, which too revolve around resource manipulation, and by adhering
to proper REST designs good scalability can be achieved due to its stateless nature
and potential for resource caching. The choice of HTTP as an application protocol
fits nicely into a philosophy of leveraging existing and well proven protocols and
technologies to increase the project’s success, and indeed so was done to integrate
authentication and encryption mechanisms.

88

To accomplish this interface implementation, the internal server architecture will
utilize the MVC design pattern. This three-layered architecture consists firstly by a
controller layer that intercepts communication requests, which after parsed and val-
idated are redirected to the business layer, which in turn employs business logic to
help satisfy the controller’s requests, which may require a subsequent layer descent
into the data layer via database queries.

Figure 4.1 displays a class diagram focusing on controller classes that deal with
resources that are not susceptible to version control - this includes every resource
except the network map.

Figure 4.1: Controller layer class architecture for unversioned resources

As can be seen, all concrete controllers - such as an endpoint property map controller
- are extensions to a generic controller class that is parametrized by its Data Transfer Ob-
ject (DTO) , filter DTO, and service instances. This design choice was made because all
controller logic that regards to resources without version control are the same, and by
creating generic classes with type parametrization code reutilization is increased. The
parametrization required by the controller is required to pass a concrete instance of
the unversioned resource service generic class, which in of itself requires parametriza-
tion in resource DTO and resource filter DTO. By reflecting on common controller and
service behaviour between all resources lacking version control, the conclusion was
that working around generic classes maximizes reutilization, facilitates reasoning and
decreases potential error.

To help better visualize the result, refer to how the generic controller is implemented
in Listing 4.1.

89

Listing 4.1: Parametrized Controller class for unversioned resources
publ ic c l a s s ParametrizedUnversionedResourceControl ler

<ResourceDTOType ,
ResourceFilterDTOType ,
ResourceServiceType extends ALTOUnversionedResourceService

<ResourceDTOType ,
ResourceFilterDTOType >

> {

p r i v a t e f i n a l ResourceServiceType r e s o u r c e S e r v i c e ;

@Autowired
publ ic ParametrizedUnversionedResourceControl ler (ResourceServiceType r e s o u r c e S e r v i c e) {

t h i s . r e s o u r c e S e r v i c e = r e s o u r c e S e r v i c e ;
}

@PreAuthorize (" @ResourceAuthorizat ionService . hasPermission (a u t h e n t i c a t i o n , # resourceId , T (com . example .
r e s t s e r v i c e . dto . s e c u r i t y . PermissionDTO) .READ) ")

@RequestMapping (method = RequestMethod . GET, value = " { id } ")
publ ic ResourceDTOType getResource (@PathVariable (value = " id ") S t r i n g resourceId) {

return r e s o u r c e S e r v i c e . getResource (resourceId) ;
}

@PreAuthorize (" @ResourceAuthorizat ionService . hasPermission (a u t h e n t i c a t i o n , # resourceId , T (com . example .
r e s t s e r v i c e . dto . s e c u r i t y . PermissionDTO) .READ) ")

@RequestMapping (method = RequestMethod . POST , value = " { id } ")
publ ic ResourceDTOType getCostMapWithFilter (@PathVariable (value = " id ") S t r i n g resourceId ,

@Valid @RequestBody ResourceFilterDTOType costMapFilterDTO) {
return r e s o u r c e S e r v i c e . getResource (resourceId , costMapFilterDTO) ;

}
}

To retrieve a resource, simply call the service class with or without the proper filter,
depending on which method was triggered, by calling the appropriate methods that
must implement the resource service interface. For example, an endpoint property
map controller implementation simply extends the generic controller by providing the
concrete DTO, filter DTO, and service implementations, as seen in Listing 4.2.

Listing 4.2: Concrete controller extending from a parametrized one
@RestControl ler
@RequestMapping (" endpointprops ")
publ ic c l a s s EndpointPropertyMapController

extends ParametrizedUnversionedResourceController <EndpointPropertyMapDTO , EndpointPropertyMapFilterDTO ,
EndpointPropertyMapService > {

@Autowired
publ ic EndpointPropertyMapController (EndpointPropertyMapService r e s o u r c e S e r v i c e) {

super (r e s o u r c e S e r v i c e) ;
}

}

The same reasoning was used to implement the network map controller, but since
this is the only resource that accepts versioning, the correspondent generic controller
behavior does not contain similar behavior to the one above, and thus another was
created, as seen in Listing 4.3.

90

Listing 4.3: Parametrized controller class for versioned resources
publ ic c l a s s Parametr izedVersionedResourceControl ler

<ResourceDTOType ,
ResourceFilterDTOType ,
ResourceServiceType extends ALTOVersionedResourceService

<ResourceDTOType ,
ResourceFilterDTOType >

> {

p r i v a t e f i n a l ResourceServiceType r e s o u r c e S e r v i c e ;

@Autowired
publ ic Parametr izedVersionedResourceControl ler (ResourceServiceType r e s o u r c e S e r v i c e) {

t h i s . r e s o u r c e S e r v i c e = r e s o u r c e S e r v i c e ;
}

@RequestMapping (method = RequestMethod . GET, value = " { id } ")
@PreAuthorize (" @ResourceAuthorizat ionService . hasPermission (a u t h e n t i c a t i o n , # resourceId , T (com . example . r e s t s e r v i c e .

dto . s e c u r i t y . PermissionDTO) .READ) ")
publ ic ResourceDTOType getVersionedResource (@PathVariable (value = " id ") S t r i n g resourceId ,

@RequestParam (value = " vers ion " , required = f a l s e) S t r i n g
resourceVers ion) {

return resourceVers ion != n u l l
? r e s o u r c e S e r v i c e . getResourceVersion (resourceId , resourceVers ion)
: r e s o u r c e S e r v i c e . getLates tResourceVers ion (resourceId) ;

}

@PreAuthorize (" @ResourceAuthorizat ionService . hasPermission (a u t h e n t i c a t i o n , # resourceId , T (com . example . r e s t s e r v i c e .
dto . s e c u r i t y . PermissionDTO) .READ) ")

@RequestMapping (method = RequestMethod . POST , value = " { id } ")
publ ic ResourceDTOType getVers ionedResourceWithFi l ter (@PathVariable (value = " id ") S t r i n g resourceId ,

@RequestParam (value=" vers ion " , required = f a l s e) S t r i n g
resourceVersion ,

@Valid @RequestBody ResourceFilterDTOType r e s o u r c e F i l t e r) {
return resourceVers ion != n u l l

? r e s o u r c e S e r v i c e . getResourceVersion (resourceId , resourceVersion , r e s o u r c e F i l t e r)
: r e s o u r c e S e r v i c e . getLates tResourceVers ion (resourceId , r e s o u r c e F i l t e r) ;

}
}

The service layer implementation must now let the controller retrieve either a spe-
cific version of a resource, or the most recent one if no version is specified by the
client.

The purpose of some pieces of the shown code isn’t immediately obvious, and will
be now further explained. Starting with input validation, the usage of the "@Valid"
annotation on an endpoint controller parameter signifies that the framework must
initialize a validator class that should examine and validate that input against the
defined rules. The rules are defined on the DTO class whose instance is to be passed by
the client into the server, and validation annotations from the framework are leveraged
to define attribute-specific rules. Listing 4.4, for example, includes the "@JsonProperty"
annotation that defines optional and obligatory fields in the de-serialization step, and
whenever needed, more types of attribute validation annotations were used, including

91

non-blank strings, non negative integers, and values within a certain discrete set of
possibilities.

Listing 4.4: Cost map DTO class
@Document (c o l l e c t i o n = " CostMaps ")
publ ic c l a s s CostMapDTO {

@JsonIgnore
@Id
p r i v a t e S t r i n g id ;

@NotNull
@Indexed (unique = t rue)
@Field (" meta ")
p r i v a t e MetaDataDTO metaDataDTO ;

@NotNull
@Field (" cost −map")
p r i v a t e Map<Str ing , Map<Str ing , Integer >> costMappings ;

@JsonCreator
publ ic CostMapDTO(@JsonProperty (value = " meta " , required = t rue) MetaDataDTO metaDataDTO ,

@JsonProperty (value = " cost −map" , required = t rue) Map<Str ing , Map<Str ing , Integer >>
costMappings) {

t h i s . metaDataDTO = metaDataDTO ;
t h i s . costMappings = costMappings ;

}

publ ic S t r i n g get Id () {
return id ;

}

publ ic void s e t I d (S t r i n g id) {
t h i s . id = id ;

}

publ ic MetaDataDTO getMetaDataDTO () {
return metaDataDTO ;

}

publ ic void setMetaDataDTO (MetaDataDTO metaDataDTO) {
t h i s . metaDataDTO = metaDataDTO ;

}

publ ic Map<Str ing , Map<Str ing , Integer >> getCostMappings () {
return costMappings ;

}

publ ic void setCostMappings (Map<Str ing , Map<Str ing , Integer >> costMappings) {
t h i s . costMappings = costMappings ;

}
}

For class-wide validation, custom validator classes were created and afterwards an-
notated into the class in question. For example, for the cost map filter DTO, which
defines the filter that is passed by the client whenever cost map filtering is selected, a
custom validator class was created and annotated with "@ValidCostParametrization".
This class implements the class-wide restrictions imposed in the ALTO protocol re-
garding cost map filters, which dictate that a user can only select either a single or

92

multi-cost map request, and whenever calendarization is requested, the total count
of cost types requested must match the number of flags that dictate if a given cost
type must provide its calendar form. Assuring both attribute and class-wide rule def-
inition and enforcement, the system can validate all user input to maintain system
correctness.

Another element from the shown controller implementations is the "@PreAuthorize"
annotation. These, and similar others, are part of the Spring security module and serve
as constriction setters that, if not successful, do not let the annotated method be exe-
cuted. This is the basis for access control in the server system, as is shown in Listing
4.3, retrieving a resource using the GET method requires that a given constraint is
verified. This constraint verification process is handled by a specially created autho-
rization service that receives authentication information, the resource id in question,
and what action is being requested - in this case being "READ". This is how all access
control restrictions upon ALTO resources is implemented - with uploaded resources
containing an ACL mapping user roles to allowed actions, all controller access must
first verify that the given authorized user is authorized to perform that action. The
authorization service, seen on Listing 4.5, exposes a "hasPermission" method in its
interface and is tasked with confirming if the following action is allowed considering
the system’s constrictions and the upload entity’s defined access control rules.

Listing 4.5: Excerpt of the resource authorization service
@Service (" ResourceAuthor izat ionService ")
publ ic c l a s s S ingleProviderResourcePermiss ionsResourcesAuthor izat ionService implements ResourcesAuthor izat ionService

{

publ ic boolean hasPermission (Authent icat ion a u t h e n t i c a t i o n , S t r i n g resourceId , PermissionDTO permissionDTO)
{

i f (a u t h e n t i c a t i o n i n s t a n c e o f AnonymousAuthenticationToken) {
// User must be authe nt i ca ted
return f a l s e ;

} e lse {
// Get r o l e s the user has a t t r i b u t e d to him
Lis t <Str ing > userRoles = getRoleNames (a u t h e n t i c a t i o n . g e t A u t h o r i t i e s ()) ;

return hasGeneralActionPermission (userRoles , permissionDTO)
&& hasResourcePermissions (userRoles , resourceId , permissionDTO) ;

}
}

/*
* Implementation

*/
}

93

Simply put, for a service to validate a request it must validate that the following
are all true: a) the user is authenticated; b) the user has general system access to
the system with that action and c) the user has concrete access to that resource with
that action. By creating an additional access layer to the system that is separate from
the resource’s access list, the server can apply both a per-role and per-resource access
control, allowing more control for server administrators outside of what the resource
ACLs dictate. Because of this, it’s possible, for example, to completely blacklist a given
role from a system even if a resource upload entity allows him with his ACL.

As per the service layer, a similar philosophy to the controller was taken - i.e., to
expose behavior similarities and utilize generic types to inject dependency implemen-
tations, and an equal class structure exists. Much like the controller architecture, by
isolating common patterns one can minimize code repetition and promote function
modularity, and this results in faster development in less errors that could result in re-
dundant logic being applied. Service classes leverage resource repositories and map-
per classes that translate an entity into a transfer object, which is a helpful design
decision that decouples class implementation from representation, allowing the sys-
tem to comply to the defined protocol without the restriction of storing and handling
it the same way within the system. A versioned service is quite similar, but exposes an
interface that lets the caller retrieve resources considering their version tag, or simply
retrieve the most recent version.

As an example, Listing 4.6 shows the cost map service implementation, that simply
extends the parametrized class and injects the implementations specific to how a cost
map service must behave - i.e., how it stores and how it translates resources.

94

Listing 4.6: Cost map service class
@Component
publ ic c l a s s CostMapServiceImpl extends ALTOGenericResourceRepoService <CostMapEntity ,

CostMapProjection ,
CostMapDTO ,
CostMapRepository ,
CostMapMapper>

implements CostMapService {

p r i v a t e CostMapFilterMapper costMapFilterMapper ;

@Autowired
publ ic CostMapServiceImpl (CostMapRepository costMapRepository ,

CostMapMapper costMapMapper ,
CostMapFilterMapper costMapFilterMapper) {

super (costMapRepository , costMapMapper) ;
t h i s . costMapFilterMapper = costMapFilterMapper ;

}

@Override
publ ic Optional <CostMapDTO> getResourceWithFi l te r (S t r i n g resourceId , S t r i n g resourceVersion , CostMapFilterDTO

costMapFilterDTO) {
CostMapProjection costMapProject ion = costMapFilterMapper . mapFrom(costMapFilterDTO) ;
Optional <CostMapEntity > optionalCostMapEntity = resourceReposi tory . f indVersionOfResourceWithProject ion (

resourceId , resourceVersion , costMapProject ion) ;
return optionalCostMapEntity . map(costMapEntity −> resourceMapper . mapVersionAtPosition (costMapEntity , 0)) ;

}

@Override
publ ic Optional <CostMapDTO> g e t L a t e s t R e s o u r c e W i t h F i l t e r (S t r i n g resourceId , CostMapFilterDTO costMapFilterDTO) {

CostMapProjection costMapProject ion = costMapFilterMapper . mapFrom(costMapFilterDTO) ;
Optional <CostMapEntity > optionalCostMapEntity = resourceReposi tory . f indLates tVers ionOfResourceWithPro jec t ion

(resourceId , costMapProject ion) ;
return optionalCostMapEntity . map(costMapEntity −> resourceMapper . mapVersionAtPosition (costMapEntity , 0)) ;

}
}

It then adds only methods specific to their service implementation that aren’t shared
among others - in this case, how to retrieve a resource with a given cost map filter,
which requires different actions depending on whether or not the filter specifies a
single or multi cost request.

The mapper classes, mentioned above, are tasked with mapping between two dif-
ferent representations of a class. Specifically, mapper classes are used in the server
to map between protocol representations of a resource or a filter, into representations
to be used internally. Like previously mentioned, decoupling protocol and internal
class representations makes the resources easier to store, as they can be translated
into a form more ideal for MongoDB storage - in some cases making some queries
quite impossible to achieve otherwise - and easier to handle, since protocol represen-
tation of data is better for data transmission and user readability, but not as much
for querying and algorithmically processing. For example, the protocol representation
of calendarized cost maps separates the cost information, cost values and calendar
information into three separate lists, and their matching must be made by equal in-

95

dex access. Working internally with a data structure that is optimized for simpler
and quicker data handling and querying can optimize application performance and
reduce code complexity, being a good compromise for the added mapping layer that
is consequentially required. As an example, Listing 4.7 display how a calendar cost
map is represented in the ALTO protocol versus that same content as a storage-ready
entity.

Listing 4.7: Example calendar cost map in protocol and database representations

/calendar/costmap/ f i l t e r e d
HTTP/1 .1 200 OK
Content −Length : 1043

Content −Type : a p p l i c a t i o n /al to −costmap+json

{
" cost −type " : {

" cost −mode" : " numerical " ,
" cost −metr ic " : " r o u t i n g c o s t " ,

} ,
" calendar −responde − a t t r i b u t e s " : [

{
" calendar − s t a r t −time " : " Tue , 1 J u l 2019

1 3 : 0 0 : 0 0 GMT" ,
" time − i n t e r v a l − s i z e " : 7200 ,
" number−of − i n t e r v a l s " : 12

} ,
] ,
" cost −map" : {

" PID1 " : {
" PID1 " : [1 , 12 , 14 , 18 , 14 , 14 , 14 , 18 ,

19 , 20 , 11 , 1 2] ,
" PID2 " : [13 , 4 , 15 , 16 , 17 , 18 , 19 , 20 ,

11 , 12 , 13 , 1 4] ,
" PID3 " : [20 , 20 , 18 , 14 , 12 , 12 , 14 ,

14 , 12 , 12 , 14 , 16]
}

}
}

{
" resourceId " : " f i l t e r e d " ,

" mappingEntit ies " : [
{

" costMode " : " numerical " ,
" co s tM et r i c " : " r o u t i n g c o s t " ,
" c a l e n d a r A t t r i b u t e s E n t i t y " : {

" s tar tTime " : " Tue , 1 J u l 2019 1 3 : 0 0 : 0 0 GMT" ,
" i n t e r v a l S i z e " : 7200 ,
" intervalNumber " : 12 ,
" i t e r a t i o n s " : 1

} ,
" f r o m S r c C o s t E n t i t i e s " : [
{

" srcNode " : " PID1 " ,
" d s t C o s t E n t i t i e s " : [
{

" dstNode " : " PID1 " ,
" calendaredCostValues " : [1 , 12 , 14 , 18 , 14 , 14 , 14 ,

18 , 19 , 20 , 11 , 12]
} ,
{

" dstNode " : " PID2 " ,
" calendaredCostValues " : [1 3 , 4 , 15 , 16 , 17 , 18 , 19 ,

20 , 11 , 12 , 13 , 14]
} ,
{

" dstNode " : " PID3 " ,
" calendaredCostValues " : [2 0 , 20 , 18 , 14 , 12 , 12 , 14 ,

14 , 12 , 12 , 14 , 16]
}
]
}

]
}

]
}

Whilst still storing the same information, changing its structured could facilitate hu-
man reading and client parsing for a display-oriented usage in the protocol representa-
tion, and facilitate backend traversal and general database query for a storage-oriented
usage.

Data access is materialized in the form of repository classes, responsible for pro-
viding an interface for service classes that let them retrieve entity classes from the
database, doing so by generating the required queries for the Mongo database. Again,

96

for behaviour similarity exposure, the repositories inherit from a base versioned and
unversioned repository that compiles the queries needed to retrieve resources, requir-
ing the inheriting repositories to specify additional implementation-specific queries
needed to extend upon the functionality. For this to be possible, entity representation
on the database must too be similar, so the base queries, when applied to either a
network map or an endpoint property map, which are two unversioned example re-
sources, can work the same. Listing 4.8 shows an example database representation of
an endpoint property map, and a cost map, respectively.

Listing 4.8: Similar structure in an endpoint property map and endpoint cost map storage
entities

{
" resourceId " : "my−defaul t −cost −map" ,
" mappingEntit ies " : [

{
" addressType " : " IPV4 " ,
" addressValue " : " 1 9 2 . 0 . 2 . 3 4 " ,
" e n d p o i n t P r o p e r t y E n t i t i e s " : [

{
" propertyType " : "my−defaul t −network−

map . pid " ,
" propertyValue " : " PID1 "

} ,
{

" propertyType " : " geo loca t ion " ,
" propertyValue " : " 123132 ;33231 "

}
]

}
]

}

{
" resourceId " : " f i l t e r e d " ,

" mappingEntit ies " : [
{

" costMode " : " numerical " ,
" co s tM et r i c " : " r o u t i n g c o s t " ,
" c a l e n d a r A t t r i b u t e s E n t i t y " : {

" s tar tTime " : " Tue , 1 J u l 2019 1 3 : 0 0 : 0 0 GMT" ,
" i n t e r v a l S i z e " : 7200 ,
" intervalNumber " : 12 ,
" i t e r a t i o n s " : 1

} ,
" f r o m S r c C o s t E n t i t i e s " : [
{

" srcNode " : " PID1 " ,
" d s t C o s t E n t i t i e s " : [
{

" dstNode " : " PID1 " ,
" calendaredCostValues " : [1 , 12 , 14 , 18 , 14 , 14 , 14 ,

18 , 19 , 20 , 11 , 12]
} ,
{

" dstNode " : " PID2 " ,
" calendaredCostValues " : [1 3 , 4 , 15 , 16 , 17 , 18 , 19 ,

20 , 11 , 12 , 13 , 14]
} ,
{

" dstNode " : " PID3 " ,
" calendaredCostValues " : [2 0 , 20 , 18 , 14 , 12 , 12 , 14 ,

14 , 12 , 12 , 14 , 16]
}
]
}

]
}

]
}

Notice how common properties are indexed in the same way, and only differ on
implementation-specific details. The "resourceId" attribute can be queried and the
"mappingEntities" attribute can be loaded by the high-level query without needing

97

to know what concrete resource entity is being treated, and further implementation-
specific querying is made by the inheriting repositories.

Listing 4.9 shows a portion of the network map repository implementation.

98

Listing 4.9: Network map repository
@Repository
publ ic c l a s s NetworkMapMongoRepository extends VersionedResourceMongoRepository <NetworkMapEntity>

implements NetworkMapRepository {

publ ic NetworkMapMongoRepository (MongoTemplate mongoTemplate) {
super (NetworkMapEntity . c l a s s , mongoTemplate) ;

}

p r i v a t e Optional <Lis t <AggregationOperation >> givenSingleVers ionOfResourceBui ldPro ject ionAggregat ionOperat ions (
NetworkMapProjection networkMapProjection) {

i f (networkMapProjection . getSrcPIDs () . i s P r e s e n t ()) {
return Optional . of (

Arrays . a s L i s t (
unwind (" mappingEntity . addressAggregat ionEnt i t i es ") ,
match (C r i t e r i a . where (" mappingEntity . addressAggregat ionEnt i t i es . pid ") . in (

networkMapProjection . getSrcPIDs () . get ())) ,
group ()

. f i r s t (" resourceId ") . as (" resourceId ")

. f i r s t (" mappingEntity . versionTag ") . as (" versionTag ")

. push (" mappingEntity . addressAggregat ionEnt i t i es ") . as (" addressAggregat ionEnt i t i es
") ,

p r o j e c t (" resourceId ")
. and (" versionTag ") . as (" mappingEntity . versionTag ")
. and (" addressAggregat ionEnt i t i es ") . as (" mappingEntity . addressAggregat ionEnt i t i es "

)
)

) ;
} e lse {

return Optional . empty () ;
}

}

p r i v a t e L i s t <AggregationOperation > buildFindResourceAggregationOperations (S t r i n g resourceId , S t r i n g versionTag ,
NetworkMapProjection p r o j e c t i o n) {

L i s t <AggregationOperation > aggregat ionOperat ions = new ArrayList < >() ;

i f (versionTag != n u l l) {
aggregat ionOperat ions . addAll (buildGetVersionOfResourceAggregationOperations (resourceId , versionTag)) ;

} e lse {
aggregat ionOperat ions . addAll (buildGetLatestVersionOfResourceAggregationOperations (resourceId)) ;

}

g ivenSingleVers ionOfResourceBui ldPro ject ionAggregat ionOperat ions (p r o j e c t i o n) . i f P r e s e n t (aggregat ionOperat ions
: : addAll) ;

aggregat ionOperat ions . add (getWrapVersionInsideArrayOperation ()) ;

return aggregat ionOperat ions ;
}

p r i v a t e L i s t <AggregationOperation > buildFindResourceAggregationOperations (S t r i n g resourceId ,
NetworkMapProjection p r o j e c t i o n) {

return buildFindResourceAggregationOperations (resourceId , null , p r o j e c t i o n) ;
}

@Override
publ ic Optional <NetworkMapEntity> f indOneFi l terByVers ion (S t r i n g resourceId , S t r i n g resourceVersion ,

NetworkMapProjection networkMapProjection) {
L i s t <AggregationOperation > aggregat ionOperat ions = buildFindResourceAggregationOperations (resourceId ,

resourceVersion , networkMapProjection) ;

TypedAggregation <NetworkMapEntity> aggregat ion = newAggregation (NetworkMapEntity . c l a s s ,
aggregat ionOperat ions) ;

NetworkMapEntity networkMapEntity = findResourceViaAggregation (aggregat ion) ;

return Optional . o fNul lable (networkMapEntity) ;
}

@Override
publ ic Optional <NetworkMapEntity> f indOneFi l te rByLates tVers ion (S t r i n g resourceId , NetworkMapProjection

networkMapProjection) {
L i s t <AggregationOperation > aggregat ionOperat ions = buildFindResourceAggregationOperations (resourceId ,

networkMapProjection) ;

TypedAggregation <NetworkMapEntity> aggregat ion = newAggregation (NetworkMapEntity . c l a s s ,
aggregat ionOperat ions) ;

NetworkMapEntity networkMapEntity = findResourceViaAggregation (aggregat ion) ;

return Optional . o fNul lable (networkMapEntity) ;
}

}

99

To retrieve a specific version of a resource, query-focused build methods are re-
trieved from the versioned repository class, and network map specific processing is
added to apply network map projections, which in this case means retrieving only the
specified PIDs.

A good API must be aware of possible errors that may occur, and communicate these
to the client in a way that is easy to understand. To achieve this, a global exception han-
dling mechanism was used with the aid of the "@RestControllerAdvice" annotation,
that is tagged to a class that will consequently catch and process controller-thrown
exceptions, which themselves could’ve been propagated from the service, mapper, or
repository layers. It then centralizes the error handling aspect that is then focused in
building the correct error packets that contain the appropriate HTTP code and a mes-
sage with helpful details. These message details are extracted directly from the thrown
exception, but it is important to assume that these are to be exposed to the clients, and
thus should not contain heavy implementation details for developers, with logging
instead taking that role. Listing 4.10 shows the main exception handler used.

Listing 4.10: Main exception handling class
@RestControllerAdvice
publ ic c l a s s MainExceptionHandler {

@ExceptionHandler ({ Exception . c l a s s })
@ResponseStatus (INTERNAL_SERVER_ERROR)
publ ic ErrorMessageDTO handleAllOtherExceptions (Exception ex) {

return new ErrorMessageDTO (INTERNAL_SERVER_ERROR . value () , ex . getMessage ()) ;
}

@ExceptionHandler (AccessDeniedException . c l a s s)
@ResponseStatus (FORBIDDEN)
@ResponseBody
publ ic ErrorMessageDTO PermissionError (AccessDeniedException ex) {

return new ErrorMessageDTO (FORBIDDEN. value () , ex . getMessage ()) ;
}

@ExceptionHandler (MethodArgumentNotValidException . c l a s s)
@ResponseStatus (BAD_REQUEST)
@ResponseBody
publ ic ErrorMessageDTO v a l i d a t i o n E r r o r (MethodArgumentNotValidException ex) {

return new ErrorMessageDTO (BAD_REQUEST. value () , ex . getMessage ()) ;
}

@ExceptionHandler ({ NotFoundException . c l a s s })
@ResponseStatus (NOT_FOUND)
publ ic ErrorMessageDTO handleResourceNotFoundException (Exception ex) {

return new ErrorMessageDTO (NOT_FOUND. value () , ex . getMessage ()) ;
}

@ExceptionHandler ({ Mul t ip le Informat ionResourceDirec tor iesExcept ion . c l a s s })
@ResponseStatus (INTERNAL_SERVER_ERROR)
publ ic ErrorMessageDTO handleMult ip le Informat ionResourceDirec tor iesExcept ion (Exception ex) {

return new ErrorMessageDTO (INTERNAL_SERVER_ERROR . value () , ex . getMessage ()) ;
}

}

100

4.3 network information aggregator

The Network Information Aggregator behaves very similarly to the ALTO server, in
the sense that it is an HTTP REST server that exposes an interface for the addition,
modification, and deletion of resources, with the actions being pre-validated with an
authentication and access control mechanisms. Also equal is the database access pat-
tern to a MongoDB document used to store the network status information. The con-
crete differences come from the fact that whereas the ALTO server’s managed assets
are ALTO resources, the ones managed by the Network information Aggregator are
network status measurements. Because of this, most of the implementation decisions
remained the same and no technologies were added or removed from those chosen for
the ALTO server’s implementation. Thus, implementation details of this module will
not be expanded upon due to their redundant contents.

As per data pre-processing by the administrator, pre-existing tools were used. More
concretely, the Mongo shell was used to directly query the database, and Curl was
used to send POST requests to the ALTO server with finalized resources.

4.4 network state providers

The network state provider module is the one that can most horizontally scale in
future system iterations. This is due to the fact that, like previously said, the Internet
consists of a big variety of different protocols and technologies responsible for main-
taining the network’s infrastructure. Because of this, it would be needed that a state
provider is developed for each type of network status data that is required for the ISPs
to provide the clients with useful data. For the purpose of this project, a provider
was created with a simple script that collected values that were statically stored in csv
files that stored link and endpoint properties for the test network to be used in the
experiments phase. Afterwards, it uploaded those values using the POST verb of the
REST API enabled by the network information aggregator.

101

5 E X P E R I M E N T S

The purpose of this chapter is to overview the experimentation phase of the project,
which contains the work done to deploy and measure how applications behave when
using either classic or ALTO-guided solutions when faced with some of the con-
structed scenarios, that force some decision which impacts the underlying network.
Whereas the developed unit tests in the implementation stage aim to verify the correct
functionality of separate units of code pertaining to the system, the execution of the
entire system as a whole to serve a set of hypothetical use cases can help achieve a
better grasp on how correctly the system behaves.

Adjacent to the goal of testing the system’s behavior in an emulated environment,
the experimentation phase also aims to embed in such environment a list of case
study scenarios where applications could leverage the ALTO system to their advan-
tage, and subsequently observe and measure if and how the ALTO server can help the
client with its network insight that guide the client in taking application decisions that
aim for a win-win scenario between the overlay and underlay. As comparison, other
known application-network interaction strategies will also be observed and their re-
sults measured as a means to compare their impact in comparison to one that utilizes
the implemented system.

Findings on existing application-layer traffic optimization interactions and the pro-
posal of the ALTO protocol made on Chapter 2, together with the specified system
extensions on Chapter 3 leads one to believe that a theoretical mutually beneficial sce-
nario exists in an ALTO approach that could not exist in one where only one of the
layers gets all the input when applying traffic optimization decisions. This chapter,
however, puts those theoretical scenarios into a practical environment that could be
replicated by those reading this work, and exposing the created scenarios and col-
lected data can aid in corroborating the theoretical conclusions, as well as leave an
opportunity for future discussion on how the system behaved, including its perfor-
mance, its success in aiding clients, other existing client options that could be a better
route, system shortcomings, etc. In general, this discussion benefits the ALTO project
and can give more maturity to the system as it was put through multiple test scenarios
against other common strategies.

103

Section 5.1 displays the chosen technologies for tasks pertaining to the experiments.
Section 5.2 focuses on the required steps taken to setup the testing environment, which
includes the design and deployment of a network topology to be emulated, the cre-
ation of mock applications to serve as clients for the system, and the design and de-
ployment of application and network status measurement tools. Section 5.3 follows
with the individual overview of the devised scenarios to be executed, and with it ex-
periment specifics such as the initial problem, what strategies will be tested to solve it,
how many runs will be made per strategy, what metrics will be measured, and finally
the obtained results and discussion on it.

5.1 technologies used

The Common Open Research Emulator (CORE) [98] was used as a network emulator
and represents the backbone of the experiments as a whole as it will serve as the
background for the running scenarios. This tool allows for the creation and emulation
of network environments, and with it are included the abilities to construct network
topologies and manipulate properties of the member nodes, which can include net-
work routers, switches, and host machines, that will all be used for the designed
experiment scenarios. Additionally, link connection properties can themselves be cus-
tomized, as parameters like maximum bandwidth, packet loss percentage, or packet
delay can be meticulously customized, and in fact will be in the upcoming scenarios
as a means to simulate a given circumstance that may occur in a realistic environment,
such as link inefficiency that results from peak traffic hours. Another property that
was of great importance for the selection of CORE on this work is that, on top of the
virtual network environment, arbitrary code can be run on behalf of a given entity
and can be addressed to another, acting as if it were an actual network. This will
be leveraged to run software pre-packaged in the emulator, such as routing protocols
that are essential for the correct expected behavior of a network, but also to schedule
software execution that was developed for this work, which includes the ALTO server,
network state providers - e.g., probing daemons and application feedback collectors
- and system clients for the P2P and HTTP mock applications that will be devised to
play out a particular experiment scenario, and which will have embedded into it an
ALTO client to interface with the server for council. As the simulation tool runs on
Linux and builds a simulated network that behaves very much like a real one, well
known real-application tools can be used on top of it in other needed areas, includ-

104

ing the deployment and measuring phases, which gives plenty of flexibility on tool
selection.

The execution of arbitrary code on the network nodes is accomplished with the
vcmd [99] tool, that runs the specified commands in control channels that are created at
runtime by CORE - for example, the command in Listing 5.1 executes a ping to address
"10.0.0.1" with origins on node "P2P-Client-1", and on simulation session "12345":

Listing 5.1: Execution of an example command through the control channel of a given node

$ vcmd -c /tmp/pycore.12345/P2P-Client-1 -- ping 10.0.0.1

Python [100] will be utilized to implement all simple software prototypes whose
purpose is uniquely to test the application in a real scenario. This includes the P2P
file-transfer applications, the HTTP servers and clients. Appended to this program-
ming language will also be the task of application monitoring, which includes the
retrieval of performance statistics - doing so in the application’s code itself, instead of
using external tools, because more fine grained access exists and individual tasks can
be monitored for how long and how well they perform. The choice of this language
over others is simply because these software prototypes are not intended to be highly
optimized, nor are they to be complex. Instead, their mode of operation is supposed
to be simple in nature, to remove complex variables that might make the experiment
results harder to infer upon, and to make reasoning and replication of experiment re-
sults easier. Python seems then like a good fit due to its easy syntax, its interpreted
nature that skips work that would otherwise be needed for compilation that might in-
crease performance - but is not required - and, finally, its massive collection of helpful
libraries.

Finally, for the task of network monitoring, to collect data representative of the
impact that a given application strategy had in the infrastructure, the Linux file acces-
sible in "/proc/net/dev" will be read in the virtual environment of each node, which
contains the total amount of bytes that entered and left their interfaces during the
scenario’s run. Parsing all the data from each node and grouping them by area and
AS is performed on a shell script, following the execution of the given scenario, and
utilizing common text manipulation tools such as awk [101].

105

5.2 setup

Figure 5.1 displays the topology that will act as the main environment for all the
devised experiments, with partitioned views to be subsequently introduced. Figure
5.1a presents a simplified global view the network as a collection of ASs. It was
designed with the intent of reflecting, at a smaller scale, the structure of the Internet, in
particular with it being an aggregation of multiple, heterogeneous, domains, each with
their own topological properties and internal policies, with them being administrated
by different organizations. A single backbone network, shown on Figure 5.1b, provides
connectivity between many ASs and, to do its job correctly, a high degree of path
redundancy exists between its routers, and the links have better capabilities than those
associated with stub networks. Figure 5.1c shows AS1, a simple topological structure
consisting of five computers and three dedicated servers, connected with the help of
switches and routers, that eventually connect to a single edge router that links with
the backbone. Figure 5.1d shows AS2, which is representative of a data center with
two OSPF areas, both constructed with a hierarchical organization common for data
center networks. Links in these regions are also highly capable and high traffic peak
times are expected to occur. AS3, shown in Figure 5.1e, is a transit network which
is slightly more complex than AS1, but has the same structure, with the addition of
having three OSPF areas instead of two, and a variety of nodes and links with different
properties - for example, the links in area A are generally better, whilst area C has
wireless connections in it that are expected to have worse performance and be less
reliable. Finally, AS4, depicted on Figure 5.1f, connects directly with AS3. It consists
of a stub network containing many end users and some servers, and both node and
link properties vary accordingly.

Each node on the network has a given purpose that is represented as a node label,
and link labels are used to specify connection properties. Unless stated otherwise
with these labels, all other properties are equal throughout the network. The only
exception are the properties of wireless networks, which cannot be seen on the figures
- all wireless connections on the topology have a bandwidth of 5Mbps.

Some pre-packaged CORE services need to be enabled to assure network connectiv-
ity - mainly Open Shortest Path First Version 2 (OSPFv2) and BGP - and Python scripting
is used to - leveraging the Linux system and the CORE Python API, at the beginning
of the simulation, bootstrap programs in specific nodes and test the connectivity of the
entire network.

106

(a) Global view of the network, integrating multiple ASs

(b) Detailed view of AS0

(c) Detailed view of AS1

107

(d) Detailed view of AS2

(e) Detailed view of AS3

108

(f) Detailed view of AS4

Figure 5.1: Network topology and integrating ASs

5.3 scenarios

This section describes the four devised scenarios to test the impact to the overlay
and underlay that results of applications performing traffic optimization decisions
with and without the implemented ALTO solution. Section 5.3.1 focuses on a P2P
application who needs to decide, whenever a file fragment is served by multiple peers,
with whom to establish connection. Section 5.3.2 tackles the issue of an HTTP server
subjected to periodic load spikes, and how clients can selectively choose the timing
to initialize the resource request. Section 5.3.3 deals with the challenge of selecting a
given HTTP server to retrieve a content from, with a mirror cluster available. Finally,
Section 5.3.4 deals with a reverse proxy interfacing with a client user looking for HTTP
content, and how it cooperates with a network administrator to maintain sustainable
packet loss levels. Each variable method of each scenario was executed ten times, and
their average values were collected and, in case of transfer and/or execution times,
their minimum and maximum values.

5.3.1 Peer selection in P2P file transfer

109

5.3.1.1 Overview

In this scenario, all nodes in the network labeled as "CliN", visible in all sub figures
in Figure 5.1, with N from 1 to 32, actively serve some of the ten equally sized frag-
ments of a one gigabyte file to other peers. The overlay bootstrapping method for each
of these peers includes informing the tracker, labeled as "Tracker" on the network and
visible in Figure 5.1c, about what file fragments they serve.

"Cli2" wishes to retrieve the file, and to do so it firstly contacts the tracker for track-
ing information, which is given in the form of a file containing a mapping between
each fragment Identifier (ID) and the peers providing it, alongside with the file’s check-
sum for validation. Being an application to be used for media streaming, its QoS
standards would favour high bandwidth and low message delay, imposing for the
former a preference for connections whose one way delay don’t cross 5 milliseconds.

Table 5.1 shows what endpoints possess which file fragments. For comparative
reference, information is given about each fragment’s location, i.e., the area and AS of
the host serving it. Additionally, the connection is also described with metrics from
the perspective of the querying peer. These metrics include the maximum theoretical
bandwidth as the minimum link bandwidth in the optimal path from "Cli2" to each
peer regarding this metric, and the sample RTT measurement the client obtained after
10 sequential ping commands prior to the scenario’s start.

110

Fragment ID Endpoint AS Area Max bandwidth (Mbps) Sample RTT (ms)
x00 10.0.18.21 1 A 20 0.172

x00 10.0.24.20 2 B 10 0.994

x00 10.0.35.20 3 B 10 1.174

x01 10.0.18.20 1 A resides locally 0.057

x01 10.0.26.21 3 A 5 1.236

x01 10.0.48.21 4 A 5 12.238

x02 10.0.19.21 1 B 10 0.846

x02 10.0.24.21 2 B 10 1.014

x02 10.0.35.20 3 B 10 1.174

x03 10.0.24.21 2 B 10 1.014

x03 10.0.27.21 3 A 2 1.661

x03 10.0.31.20 3 C 5 1.456

x04 10.0.18.21 1 A 20 0.172

x04 10.0.26.23 3 A 10 1.111

x04 10.0.24.20 2 B 10 0.994

x05 10.0.19.20 1 B 10 0.820

x05 10.0.24.20 2 B 10 0.994

x05 10.0.24.21 2 B 10 1.014

x06 10.0.27.21 3 A 2 1.661

x06 10.0.48.20 4 A 5 12.278

x06 10.0.49.21 4 A 5 1.260

x07 10.0.48.21 4 A 5 12.238

x07 10.0.49.21 4 A 5 1.260

x07 10.0.50.21 4 B 5 1.616

x08 10.0.50.20 4 B 5 1.627

x08 10.0.50.21 4 B 5 1.616

x08 10.0.35.20 3 B 10 1.174

x09 10.0.25.22 3 A 10 1.170

x09 10.0.26.21 3 A 5 1.236

x09 10.0.31.20 3 C 5 1.456

Table 5.1: Description of each fragment that can be requested

After retrieving the mapping, the client will select a candidate peer per fragment,
and sequentially request all the fragments composing the file. Finally, the client merges
all the fragments into a single file, and calculates its checksum to be validated against
the one previously provided by the tracker.

An ALTO server resides in the same AS as the client and maintains resources. Specif-
ically, a local network map is available for request which groups endpoints into certain
domains, which can be categorized as peers within area A of AS1, peers within area

111

B of AS1, and peers external to AS1. Additional to this local resource, the server also
provides ones with global reach. Specifically, these resources are an endpoint cost
map indicating expected throughput and one-way delay between all the endpoints
participating in the overlay P2P network.

The variable actions to be tested are how the client selects which candidate peer,
from the available pool, will be selected to serve each given file fragment. Table 5.2
displays the different algorithms to be used.

Tracker Algorithm Description
Random Randomly select among all available peers

RTT
Select the peer with the smallest average RTT measurement in
10 ping commands

ALTO - Local
Retrieve the local network map from the local ALTO server and
select the peer whose PID matches the requesting peer, choosing
randomly if multiple matches exist within that group

ALTO - Global

Retrieve the global multi-cost endpoint cost map from the local
ALTO server by querying for the throughput and one way delay
metrics, and selecting the peer that maximizes throughput with
a delay no bigger than 5 milliseconds.

Table 5.2: Peer selection algorithms to be tested in scenario 1

The experiment seeks to examine network resource usage and application perfor-
mance for each algorithm. Table 5.3 presents the measurements that will be collected
during the experiment runs.

Measurement Units Description

Acquisition time Seconds
Total amount of time required to select and retrieve all the
file fragments

Network traffic Megabytes Total amount inbound traffic to each network AS and area

Table 5.3: Measurements to be taken in scenario 1

5.3.1.2 Analysis of results

Figure 5.2 shows the acquisition times for each of the variable methods in this sce-
nario.

It appears that the method of probing for path delay was the worst, at 1565 seconds
of average acquisition, followed by the method of randomly selecting between the
available peers, which, unsurprisingly, contains a wide variation of values throughout
the multiple runs. Considerably faster are the ALTO-related options. The method

112

Figure 5.2: Scenario 1 acquisition time results

guided by an ALTO server with a local network map aided the application in achieving
a 988 seconds of average acquisition time, whereas an approach using a global cost
map with throughput and delay values was able to considerably shave more time, at
around 809 total seconds with little variation.

Figure 5.3 show the average measured traffic influx of the network’s ASs and their
areas. It can be immediately identified that the delay probing method incurred in an
increased amount of inbound traffic being generated, in all ASs, due to the continued
probing done to all peers, as well as a preference towards external peers. Likewise,
the preference of external peers by a random approach of selection, over many runs,
resulted in even more external traffic entering the network. Finally, ALTO approaches
were both equally proficient and had the lowest amount of incoming traffic into AS1.

113

0 500 1,000 1,500 2,000 2,500

RTT

ALTO-Local

ALTO-Global

Random

1.55

7.85 · 10−2

7.45 · 10−2

0.16

2.82

7.74 · 10−2

7.43 · 10−2

2.82

10.1

5.18

2.56

10.1

12.76

5.18

2.56

5.06

5.48

2.74

7.27 · 10−2

5.48

5.42

7.76 · 10−2

2.71

5.42

5.13

2.56

5.05

5.13

28.32

10.32

10.16

12.84

10.7

2.71

2.71

10.7

0.16

8 · 10−2

7.61 · 10−2

0.16

10.7

2.71

2.71

7.99

0.16

5.05

5.05

8.81 · 10−2

814.6

785.7

785.7

994.1

675.6

561.2

561.4

965.3

Traffic influx by region (megabytes)

AS1

AS1-AreaA
AS1-AreaB

AS2

AS2-AreaA
AS2-AreaB

AS3

AS3-AreaA
AS3-AreaB
AS3-AreaC

AS4

AS4-AreaA
AS4-AreaB
AS4-AreaC

Figure 5.3: Inbound traffic by network areas measured in Scenario 1

114

It seems like a random selection of peers, as was expected, was far from optimal for
transfer time. Whilst random selection can be thought of as a good strategy to guar-
antee an even load distribution between peers within the overlay, acting purely with
this goal in mind is clearly not efficient in regards to network resources, as peers with
worse network conditions can be chosen, and traffic can more often escape outside of
local regions, as indeed was shown on the measurement of traffic that entered AS1,
which meant that a considerable amount of non-local peers were selected.

Perhaps surprisingly, a method of peer selection based on probing measurements
targeting packet delay performed worse in regards to transfer time and traffic locality
compared to the ALTO strategies. It appears that, for this topology, packet delay
was a bad indicator of application speed performance, and it favored a lot of peers
that resided outside of local regions. Indeed, manually running the ping command
shows wildly fluctuating values with little correlation with locality, which explains the
equally fluctuating values obtained in their runtime.

Both ALTO methods revealed to be the most efficient at both acquisition time and
traffic locality. Considering the approach using the local network map, the client had a
prioritization mechanism that favored area locality, followed by AS locality, and finally
random choice if the prior criteria could not be fulfilled. This approach was simple to
implement, required input from only one ISP knowledge domain which required few
resources to generate, and was able to get good application efficiency and the traffic
locality that is fruitful for ISPs.

The approach using global ALTO resources had concrete information regarding ex-
pected path throughput and one way delay, but no strategy to localize traffic, instead
favoring connections that maximize throughput with delay that did not compromise
its QoS standards. It appears, however, that there was a correlation between higher
throughput and peer locality, and by focusing only on the former, the latter was auto-
matically achieved. This can be seen because the global approach managed to generate
the same amount of inbound traffic to AS1 while simultaneously reducing the acqui-
sition time. By using as a heuristic the assumption that peering links usually have
comparatively lower bandwidth than their local counterparts, to group peers within
local regions, allowed the application using this method to maintain a win-win sce-
nario, very much like the local resource method, but leveraged the additional network
information exterior to its ALTO domain to select peers that more efficiently provided
their fragments. This was a similar assumption to the one used by the algorithm in
[26], which was discussed in Section 2.4.1, that took into consideration that inter-AS
links were subjected to higher latency, and thus path delay could correlate locality.

115

Being assumptions, however, means that this correlation could not be guaranteed. In-
stead, it is crucial that such data comes from an authoritative entity with specifics
about the network infrastructure, and fully aware of the impact that the guidance they
provide can have. Since the two ALTO approaches work with different sets of data,
an ideal cooperative solution could work with both datasets - one focused on locality
information, and another on network connection metrics - and attempt to achieve a
balance between optimal network resourcefulness and application performance.

5.3.2 HTTP resource request scheduling

5.3.2.1 Overview

In this scenario, "Server1", in AS1, acts as a server of HTTP content. "Cli1", of the
same AS, wishes to retrieve a 500 megabyte file from that server in one single session.
As they wish to present the file in a browser, and since the file is constructed in such
a way that it enables the client to render data as it is sent, a minimum bandwidth
of 10 Mbps is set for an appropriate client experience. The server is subjected to
random client loads that affect processing and storage power, as well as periodic traffic
loads within its AS whenever the server clusters in that system exchange data between
themselves for server redundancy and general synchronization. These two actions
are then expected to penalize the server’s ability to deal with client requests. For
experimentation purposes, this will be translated in practice as the dynamic variation
of the available bandwidth of the single link which is directly connected to the server.
This has direct impact on the theoretical maximum available bandwidth from "Cli1" to
the server, whose values are chronologically setup as specified in Table 5.4:

Simulation time (s) Max bandwidth (Mbps)
0 - 180 2

180 - 360 3

360 - 540 5

540 - ∞ 10

Table 5.4: Maximum available bandwidth from client to server considering dynamic link ca-
pacity variation

The server administrator is aware of the request loads that the server is subjected to,
as well as the routine data transfers that exist within the AS, and identifies a pattern of
behavior where server conditions have periods of higher and lower ability to operate.

116

As an attempt to optimize application decisions, he previously monitored server and
network conditions, which allowed him to reasonably predict how these will impact
the server’s performance in the future. The ALTO server local to "Cli1" maintains a
calendar cost map displaying the information mentioned in Table 5.4, i.e., it informs
the client about the expected available bandwidth in the present and future.

The variable action to be tested is how the HTTP client selects when to initialize its
content request with the server. Table 5.5 displays the different client algorithms that
will be tested for the task of server request scheduling.

Client Algorithm Description
Immediate Immediatelly request the resource from the server

Bandwidth
Request the file using wget and, after five seconds, which is suffi-
cient to get a view of the transfer performance, restart the trans-
fer unless a value of 10 Mbps or higher was reported

ALTO
Retrieve a calendar cost map from the local ALTO server of ex-
pected available bandwidth from itself to the server, and initiate
immediately when the value is expected to be 10 Mbps or higher

Table 5.5: Client algorithms to be tested in scenario 2

Table 5.6 presents the measurements that will be collected during the experiment
runs.

Measurement Units Description

Transfer Time Seconds
Total amount of time taken from file re-
quest to total file retrieval

Network Traffic Megabytes
Total amount of traffic that passed
through each area in AS1

Table 5.6: Measurements to be taken in scenario 2

5.3.2.2 Analysis of results

Figure 5.4 shows the obtained transfer times for each of the variable methods in sce-
nario 2. It appears that the ALTO-aided and bandwidth-probing methods were equally
circling at 439 seconds of transfer time, and an approach of immediately querying the
server was the slowest, at 801.19 seconds.

117

Figure 5.4: Scenario 2 transfer time results

Figure 5.5 shows the measured traffic influx. It appears that the method that used
bandwidth probing mechanisms took a considerable traffic overhead compared to the
other two alternatives.

118

0 100 200 300 400 500 600 700 800 900 1,000

Bandwidth

ALTO-Global

Immediate

6.21 · 10−2

6.46 · 10−2

5.25 · 10−2

6.22 · 10−2

6.44 · 10−2

5.22 · 10−2

6.3 · 10−2

6.36 · 10−2

5.23 · 10−2

6.12 · 10−2

6.12 · 10−2

5.23 · 10−2

6.25 · 10−2

6.28 · 10−2

5.39 · 10−2

6.43 · 10−2

6.34 · 10−2

5.51 · 10−2

6.55 · 10−2

6.51 · 10−2

5.48 · 10−2

6.2 · 10−2

5.98 · 10−2

5.08 · 10−2

6.41 · 10−2

6.44 · 10−2

5.64 · 10−2

6.41 · 10−2

6.57 · 10−2

5.44 · 10−2

6.29 · 10−2

5.98 · 10−2

5.41 · 10−2

20.7

15.01

16.75

782.19

548.19

555.03

6.65 · 10−2

6.63 · 10−2

5.94 · 10−2

Traffic influx by region (MB)

AS1

AS1-AreaA
AS1-AreaB

AS2

AS2-AreaA
AS2-AreaB

AS3

AS3-AreaA
AS3-AreaB
AS3-AreaC

AS4

AS4-AreaA
AS4-AreaB
AS4-AreaC

Figure 5.5: Inbound traffic flux by network areas measured in scenario 2

119

It seems to be that, unsurprisingly, query timing had a big impact on total file
transfer time, as it would relate to the available bandwidth during file transfer. Both
the probing and ALTO-aided strategies were able to correctly identify when the server
was least overwhelmed by other clients, which justified their improved transfer time
results in comparison to immediately querying the server. However, these do not
have similar impacts on network resources. Deducing that information without ISP
input required that a massive amount of overhead data be generated into the network,
that not only used network resources in a sub-optimal manner, but also added to
the increase of the server’s already overloaded capacity, which would, in a real-case
scenario, further decrease the server’s ability to handle client requests. One could note
that, in alternative to continuously probing the network, the client could use some
exponential backoff strategy to space out consecutive probing measurements, but that
would, at the very least, generate an undesirable amount of overhead traffic and server
load, and could never be more quick and efficient than retrieving historical server
pattern information from a reliable source. This last method was exactly what the
ALTO approach did, which was able to nullify any need to generate overhead traffic
besides a very small request for the ALTO resource, and simply waited to retrieve the
content when the server was most available to, benefiting both sides and contributing
to a more sustainable server-client architecture and the health of the entire network.

5.3.3 HTTP mirror selection

5.3.3.1 Overview

In this scenario, "Cli2", in AS1, wishes to retrieve a 500 megabyte file from a server.
After querying for the public index, a file is provided which contains an address lists
of the four mirror servers that provide that content. Since the client goal is to re-
trieve a static file and no real-time requirement exists, the application mostly favors
throughput and accepts packet delays which aren’t excessive, meaning more than 100

milliseconds of round-trip time, for this case. The listing is shown in Table 5.7, where,
for comparative reference, information is given about each mirror’s location, i.e., the
area and AS where they reside. Additionally, the connection is also described with
metrics from the perspective of the querying client. These metrics include the maxi-
mum theoretical bandwidth as the minimum link bandwidth in the optimal path from
"Cli2" to each server regarding this metric, and the sample RTT measurement the client
obtained after 10 sequential ping commands prior to the scenario’s start.

120

Server address AS Area Max bandwidth(Mbps) Sample RTT (ms)
10.0.16.12 1 B 10 0.807

10.0.37.10 2 A 10 1.013

10.0.23.11 2 B 10 1.060

10.0.13.10 3 B 5 1.475

Table 5.7: Description of the available server mirrors in scenario 3

The mirror servers will be subjected to constant loads at the start of the scenario,
representative of the quantity of users they would be serving at the time, which are
translated as throughput throttling applied from the client to the servers when the file
transfer begins, that specifically are the ones shown in Table 5.8.

Server address CPU Load (%) Throughput throttle (Mbps)
10.0.16.12 95 3.0
10.0.37.10 80 5.0
10.0.23.11 40 10.0
10.0.13.10 80 5.0

Table 5.8: Client transfer throughput throttling to be applied if it chooses each given mirror
server in scenario 3

The ALTO server local to that client provides global ALTO resources, including an
endpoint property map that contains CPU load information about all the mirrors, as
well as an endpoint cost map containing information about the expected throughput
and delay from the client to the mirror.

The variable action to be tested is how the HTTP client selects which mirror server
to retrieve the file from. Table 5.9 displays the different client algorithms that will be
tested for the task of mirror selection.

Client Algorithm Description
Random Randomly select a server

Bandwidth
Probe the mirrors for maximum path bandwidth using iperf3
and average RTT using 10 ping commands, and select the one
with most bandwidth whose delay doesn’t cross 100 ms

ALTO

Retrieve the global endpoint property maps and endpoint cost
maps by querying for the CPU load property, and both through-
put and RTT cost metrics, respectively, and choose the one which
maximizes throughput, assuming that it has delay below 100 mil-
liseconds and processing load is below 50%, so not to overload
the server.

Table 5.9: Client algorithms to be tested in scenario 3

121

Table 5.10 presents the measurements that will be collected during the experiment
runs.

Measurement Units Description

Transfer Time Seconds
Total amount of time taken from request-
ing a file to receiving it in full

Network Traffic Megabytes
Total amount of traffic that passed
through each area network and AS

Table 5.10: Measurements to be taken in scenario 3

5.3.3.2 Analysis of results

Figure 5.6 shows the obtained transfer times for each of the variable methods in
scenario 3. An approach of randomly choosing mirror servers had the average per-
formance of 1038 seconds, and the TCP bandwidth measuring method was slightly
behind at 940 seconds. Finally, the ALTO-aided approach was the quickest with 440

seconds of transfer time.

Figure 5.6: Scenario 3 transfer time results

Figure 5.7 shows the measured traffic influx into the network’s ASs and their areas.
It appears that the approach that probed for path bandwidth incurred in increased

122

overhead traffic being captured in the network regions, whereas the remaining ap-
proaches had a negligible amount in comparison, for those same regions. The in-
creased traffic in AS1 for the ALTO method meant that this strategy more often chose
to retrieve content from a server outside network locality.

123

0 100 200 300 400 500 600650700

Random

Bandwidth

ALTO-Global

8.59 · 10−2

5.59 · 10−2

5.34 · 10−2

1.1

5.51 · 10−2

5.34 · 10−2

7.62 · 10−2

5.46 · 10−2

5.37 · 10−2

7.46 · 10−2

5.41 · 10−2

5.24 · 10−2

7.71 · 10−2

5.59 · 10−2

5.48 · 10−2

1.1

7.36

5.43 · 10−2

7.97 · 10−2

5.81 · 10−2

5.44 · 10−2

1.1

7.72

0.4

0.96

15.59

7.4

0.56

13.79

5.56 · 10−2

1.46

28.31

7.43

1.19

14.59

5.61 · 10−2

548.2

548.16

548.18

274.2

330.16

551.71

Traffic influx by region (megabytes)

AS1

AS1-AreaA
AS1-AreaB

AS2

AS2-AreaA
AS2-AreaB

AS3

AS3-AreaA
AS3-AreaB
AS3-AreaC

AS4

AS4-AreaA
AS4-AreaB
AS4-AreaC

Figure 5.7: Inbound traffic flux by network areas measured in scenario 3

124

It seems like the random mirror selection tied to the worst transfer time on the worst
case scenario, likely due to the fact that most of the servers were under load, and
randomly selecting the best one, over many runs, was unlikely. Note that a random
selection can be seen as an approach with advantages over what happens in current
applications utilizing mirrors that give the user the chance to select it himself. In these,
it is common for the first choice to be picked, and mirror servers often aren’t properly
used, whilst the main server becomes increasingly overworked, as was discussed in
Section 2.3.2. Thus, a random mirror selection strategy can at the very least distribute
query loads throughout the mirror cluster. In this situation, however, this did not
contribute to better application performance, but had every client in this scenario
decided for load-distributing strategies, perhaps the cluster could increase its ability
to better serve clients.

A bandwidth probing approach was able to correctly identify which servers possess
the highest possible path bandwidth. This, however, did not take into account the
server’s current load, something which had direct impact on the application’s perfor-
mance. Even worse, this approach took increased traffic overhead since an expensive
bandwidth approximation measurement had to be performed for all mirror servers.
Additionally, to allow the usage of the iperf3 tool to deduce available network band-
width, it assumed that the servers hosted a service that made these measurements
possible, and this could not always be assumed for real-case situations.

The ALTO approach was able to get immediate ISP input in the form of a com-
bined multi-ALTO domain effort. The data contained information regarding connec-
tion properties, but also included very critical data about the server’s current load.
This information was crucial to give the client the ability to unambiguously pinpoint
the server that would optimize its request performance, and such information was im-
possible to deduce without third-party influence. The only way to mimic this without
ALTO would be if the servers themselves provided an API for server status query-
ing, which does not seem to be common in real-case scenarios. If it were, however, it
would be very much useful since, much like the ALTO system, it would leverage priv-
ileged network information to achieve better performance and network infrastructure
resourcefulness. Another advantage of this ALTO scenario is that, by selecting servers
which are less overloaded, they contribute to a better load distribution, and, like the
random selection strategy, this too could massively improve the entire cluster’s ability
to serve, were every client to follow the same common strategy, which benefits both
the overlay and underlay.

125

5.3.4 Media redirector proxy

5.3.4.1 Overview

This scenario shares the same pre-conditions of the previous scenario, where the
client "Cli1" wishes to retrieve the file from one of the same four mirror servers. In this
situation, however, all servers have no current load and thus are fully free to serve the
content to the maximum of their capacity. As an extra entity to the system, the edge
router of the AS where the requesting client resides serves as a reverse proxy, being
the only point of entry to the server cluster, and being responsible for server pairing
with total transparency to the client. During each experiment run, each of the links
directly connected to each mirror server, as well as those interconnecting the OSPF
area of the server to their respective edge router, will be subjected to a random value
of packet loss between 0 and 100 %.

The devised experiment will consider that the reverse proxy will take guidance from
the ALTO server residing in its AS, which provides a global "routing cost" cost map
with ordinal cost values from the client to all mirror servers. As per the protocol speci-
fication, a cost map whose cost type is ordinal has cost values which are dimensionless.
Instead, these are values which represent a preference ranking between all other avail-
able options, meaning that the smallest this ranking value is, the more preferable that
choice is, and equal costs represent equal preference. To calculate this cost map, the
ALTO server will prioritize paths that maximize the chance of a packet arriving at the
destination, with higher preference being given to values closer to 100% packet return
chance, with the caveat that if the value is below 50%, an arbitrary threshold of ac-
ceptable packet loss that could be adjusted in the future, that associated cost is given
an infinitely high ranking value, indicating to the client that it’s of the least possible
preference. To calculate the chance of a packet arriving at the destination it simply
computes (1− link_loss_1) ∗ (1− link_loss_2).

The reverse proxy will then receive this ordinal cost map from the ALTO server
and select the server whose ranking value is the lowest, i.e., the one which is more
preferable to be redirected to. However, if all cost values are infinitely high, indicating
from the ISP that no preferable choice exists, the proxy will return a "timeout" message
to the client, indicating to it that he has to retry at a later moment.

The experiment serves to display that, given a permutation of network conditions,
utilizing network guidance would be helpful in maintaining network resources below
highly overworked.

126

5.3.4.2 Analysis of results

Table 5.11 shows the obtained proxy redirection decision upon client request, con-
sidering different values of link packet loss percentage.

10.0.16.12 -> S3 S3 -> R2 10.0.37.10 -> S5 R10 -> R9 10.0.23.11 -> S8 R11 -> R9 10.0.13.10 -> R17 R16 -> R14 Guidance
77% 100% 15% 55% 35% 5% 45% 90% SELECT 10.0.23.11

58% 27% 87% 33% 71% 19% 41% 79% TIMEOUT
7% 66% 14% 69% 26% 16% 90% 88% SELECT 10.0.23.11

24% 28% 3% 13% 64% 93% 86% 11% SELECT 10.0.37.10

Table 5.11: Scenario 4 proxy decisions upon given packet loss values

Indeed, the ISP goal was accomplished as the server with the least path loss was
chosen to serve the client, and the user was given a solicitation to try later if no current
server would, upon more traffic load, be below the path loss threshold levels defined
by the administrator. It is then possible to conclude that the partnership between user
and administrator was successful because, in the assumption of a fully cooperative
interaction, the server resources weren’t exhausted past a certain acceptable level. This,
again, assumes a client that would be okay with delaying its response until network
status changes. Of course, if he were not to be, the network conditions would tend
to be poor and near unusable, and as such a voluntary back off is the application’s
best possibility to get acceptable QoS in the near future. The proxy could utilize this
network information to understand if the underlay is within capability of serving the
current load, and leverage that to understand if more servers need to be deployed
elsewhere. Since this information used data pertaining to link loss, deriving such
information without privileged ISP insight is not feasible without probing the network,
which further contributes to the already pending threat of constant data loss due to
link overwork.

127

6 C O N C L U S I O N

This chapter gives closing remarks on the work done. Firstly, Section 6.1 gives
an overview on the developed work, which includes the bibliographic research, devel-
oped architecture, implementation, experimentations, and general concluding thoughts
on the culmination of the project. On Section 6.2, emphasis is placed on possible future
work that could follow.

6.1 developed work

This work had as its main basis the ALTO working group, which was devised by the
IETF to explore possible standardization in the area of layer-cooperation. This working
group defined a protocol for the exchange of network information between service
providers and the applications that run on the Internet, with the goal of achieving a
mutually beneficial pattern of behavior between these two entities. With this in mind,
the work aimed to implement and extend upon the ideas of the ALTO working group.

Initial thought was put into discussing the state of the Internet in the 21st century,
and how it will be subjected to a massive increase in users, in particular with its wide
adoption in some continents, and how the evolution of user applications will increase
their QoS demands, in such areas like real-time streaming or virtual reality.

After exposing the main issue, attention was given at state of the art research in the
form of a literature review on the topic of traffic optimization at the application level.
Firstly, an overview was made on relevant and popular patterns that are used to lever-
age the underlay network to achieve application-related goals - these include the P2P
architecture, CDNs, and the client-server architecture with their resource optimiza-
tion strategies, among them load-balancing and server redundancy mechanisms. For
each of these, a review was made for core concepts, architectural design, popular use
cases, and their associated advantages and disadvantages. Tying to the thesis’s theme,
research exposed some of the issues that these patterns have classically brought to ser-
vice providers regarding lack of proper resourcefulness of the network infrastructure.

129

For example, in the P2P domain, the use of query flooding for content retrieval that
can easily overwhelm a network, or the lack of locality awareness in overlay networks,
which can significantly increase the usage of peering connections, that are known bot-
tlenecks and thus more expensive to operate due to peering agreements with other ser-
vice domains. For the CDN domain, a similar evaluation was made with how known
strategies such as DNS-based client binning can be dubious, and how CDN providers
often require the usage of traffic probing and monitor measurements that not only
incur in traffic overhead, they also lack the fine-grained information that could be
directly provided by ISPs and their topological knowledge. Finally, for client-server
applications, how the act of load balancing can too suffer from the traffic overhead
needed for network probing, and how mirror-selection applications often let the user
decide with insufficient measuring metrics, such as RTT. With these in mind, further
state of the art investigation served to explore existing proposals and implementations
in the domain of application-level traffic optimization. These solutions were briefly
explained, along with the experimentation results that the creators obtained and how
these reflected on real-world advantages for both applications and service providers in
regards to application performance and increased infrastructural resourcefulness, re-
spectively. The observed solutions varied widely in how much power is given to each
layer - from application-centric approaches that utilized measurements to better match
peers or attribute edge servers to clients, to ISP-centric approaches that inject nodes
or plain content in the overlay, as well as well-known traffic engineering mechanisms,
and finally more balanced approaches that focused on voluntary layer-cooperative
mechanisms. Leading from this, a particular layer-cooperative approach created by
the IETF-led ALTO working group was discussed. In particular, an overview is made
on the problem it aims to solve, its architecture, devised protocol, possible use cases,
as well as a viability evaluation that tackled some of its challenges, namely in the
realm of security, privacy, client motivation, network neutrality, and multi-domain
orchestration.

Following a state of the art research, a chapter is dedicated to the specification work
of a system that extends upon the ALTO working group’s project. More specifically,
this included the main architecture, which itself consists of system entities and inter-
faces for their communication. ALTO resources are themselves specified in regards to
their structure, i.e., what kinds are contemplated and for each of these what fields are
expected. Additionally, a framework is set for access-control, which enables system
users to set access policies which are to be enforced by the ALTO server upon request
of other users. Some other server-side mechanisms specified included resource filter-

130

ing, which enable users to filter and project only a given set of data from a resource,
and inter-server synchronization, which enables servers to share information among
themselves as to increase the individual server’s knowledge domain to deliver more
fine grained and expansive information to its users. Finally, the task of network infor-
mation supply and pre-processing were tackled by explaining the role of the specified
entities in the overall system.

The implementation chapter follows the formal specification, and focused on dis-
cussing decisions that were made at the project’s stage where the system was to be
implemented. The choice of which technology and framework was chosen for each
functionality, e.g., data storage, back-end logic, or in-transit message encryption, is
justified in the scope of the project and what it aims to do, and snippets of code are
shown and commented on to display the general code’s structure, and how it leverages
the language and framework’s potential to achieve code that can be easily extended
upon and maintained.

The project culminated in the experimentation phase, where simulations were setup
to test four scenarios where ALTO-aided methods of application-level decisions are
compared against some other heuristics which are common in real-world applications.
Similarly to the implementation phase, decisions regarding technologies and frame-
works are justified, but this time for the tasks of network-related activities, such as
network emulating, traffic generation and monitoring, etc. Each of the scenarios is
explained in regards to what the envisioned scenarios entails, which variables will be
tested, and what measurements will be taken. Afterwards, the simulation results are
plainly presented, giving attention to how the methods compared between each other
considering the measurements, and what other kinds of immediate observations can
be made. These results are afterwards commented upon, evaluating how they fared
against the main thesis’s hypothesis on how layer cooperation can positively benefit
both applications and service providers.

In conclusion, it is possible to state that all the main proposed objectives were suc-
cessfully achieved. The state of the art research was helpful to get a better grasp at
how ISPs struggle to maintain their service in the face of increased user scale and
service standards of experience, specially considering the Internet as a complex web
of many independent providers with their own politics and biases on how to route
traffic. The vast variety of proposed solutions helped understand some of the means
through which better network resourcefulness could be achieved, as well as the in-
herent advantages and disadvantages to solutions that either unevenly give power to
one of the layers, or attempt a full cooperative system. Fully understanding the scope

131

and limitations of the ALTO project, a system specification was provided which main-
tained support to the original ideas of the working group, whilst expanding upon it
in regards to network information supply, security, and inter-server synchronization.
The experimental phase concluded in tangible results that help understand how a full
win-win scenario is only achievable with a cooperative application, a helpful ISP, and
from the previous two a compliance to the implicit contract that states that the rela-
tionship only continues so as long as both parties gain more from with than without
it.

Hopefully this work was able to gather more attention to the existing tussle between
applications and ISPs on how to manage the shared infrastructural resources, and
presented a good argument for the potential of layer-cooperative solutions. It is also
hoped that the ALTO project gained more widespread attention as a framework that
could better prepare the Internet for the challenges of the future, and the devised
extensions help make it an improved tool.

6.2 future work

Concluded the work’s goals, many can be pointed at as possible advantageous fu-
ture goals. It is firstly important to consider how the ALTO project is still an ongoing
effort, with RFCs being published and Internet drafts being regularly updated. Thus,
efforts in further maturing the ALTO protocol are much needed, in regards to stan-
dardizing current solutions and expanding upon new ones not yet being considered.

Future work can too be appointed to the developed system, as it specified much
more functionality that too is subject to improvement. For example, more network
state providers could be developed, whose task would be to interface with other data
sources, such as some statically defined ones like a database, or by dynamically mon-
itoring and retrieving traffic that relates to protocols pertaining to network status, or
by probing the network and directing that data with the proper meta data. Adjacent
to this, as the provider gets support for more types of data, so too can the network
information aggregator be improved upon to have validation modules specific to that
data, assuring proper data semantic consistency. Additionally, this aggregator could
also be improved as to include an additional layer of abstraction that made administra-
tor interaction easier. Thus, instead of having the user resort to more low-level tools, a
fully-fledged application with an intuitive interface that facilitated the task of network
status retrieval and pre-processing, with helpful validation modules and built-in algo-

132

rithms for resource processing, such as the automatic calculation of the shortest path
cost map of a given metric.

133

bibliography

[1] Cisco. url: https://www.cisco.com/ (visited on 01/12/2020).

[2] Cisco. Cisco Visual Networking Index: Forecast and Trends. Tech. rep. Feb. 2019.
url: https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual- networking- index- vni/white- paper- c11- 741490.html

(visited on 01/02/2019).

[3] V. Pereira et al. “A Framework for Robust Traffic Engineering Using Evolution-
ary Computation”. In: 7th International Conference on Autonomous Infrastructure,
Management and Security (AIMS 2013), pp. 2–13.

[4] V. Pereira, M. Rocha and P. Sousa. “Traffic Engineering With Three-Segments
Routing”. In: IEEE Transactions on Network and Service Management Vol. 17.No. 3

(Sept. 2020), pp. 1896–1909.

[5] BitTorrent. url: https://www.bittorrent.com/.

[6] Sandvine. The global Internet Phenomena report. Tech. rep. Sept. 2019. url: https:
//www.sandvine.com/phenomena (visited on 01/09/2019).

[7] J. Seedorf, S. Kiesel and M. Stiemerling. “Traffic localization for P2P-applications:
The ALTO approach”. In: 2009 IEEE Ninth International Conference on Peer-to-Peer
Computing. 2009, pp. 171–177.

[8] Sandvine. url: https://www.sandvine.com/ (visited on 20/05/2020).

[9] PPStream. url: http://pps.tv/ (visited on 20/05/2020).

[10] Akamai. url: https://www.akamai.com/ (visited on 20/09/2020).

[11] E. Nygren, R. K. Sitaraman and J. Sun. “The Akamai Network: A Platform for
High-Performance Internet Applications”. In: SIGOPS Operating Systems Review
Vol. 44.No. 3 (Aug. 2010), 2–19.

[12] J. Liu et al. “Opportunities and Challenges of Peer-to-Peer Internet Video Broad-
cast”. In: Proceedings of the IEEE Vol. 96 (Feb. 2008), pp. 11 –24.

[13] D. Spinellis. “A survey of peer-to-peer content distribution technologies”. In:
ACM Computing Surveys (CSUR) Vol. 36 (Dec. 2004).

[14] E. Lua et al. “A Survey and Comparison of Peer-to-Peer Overlay Network
Schemes”. In: Communications Surveys Tutorials, IEEE Vol. 7 (Apr. 2006), pp. 72–
93.

135

[15] Gnutella. url: https://www.gnu.org/philosophy/gnutella.en.html (visited
on 20/05/2020).

[16] Wikipedia Commons. The gnutella search and retrieval protocol. url: https://en.
wikipedia.org/wiki/Gnutella#/media/File:GnutellaQuery.JPG.

[17] Napster. url: https://www.napster.com/ (visited on 20/05/2020).

[18] Freenet. url: https://freenetproject.org/ (visited on 20/05/2020).

[19] I. Stoica et al. “Chord: A Scalable Peer-to-Peer Lookup Protocol for Internet Ap-
plications”. In: IEEE/ACM Transactions on Networking Vol. 11 (Feb. 2003), 17–32.

[20] The Free Haven Project. url: https : / / www . freehaven . net / overview . html

(visited on 20/05/2020).

[21] E. Adar and B. A. Huberman. “Free Riding on Gnutella”. In: First Monday Vol.
5 (2000).

[22] C. Fiandrino. P2P System Topology. url: https://texample.net/tikz/examples/
p2p-topology/.

[23] Q. Liao, Z. Li and A. Striegel. “Is more P2P always bad for ISPs? An analysis of
P2P and ISP business models”. In: 2014 23rd International Conference on Computer
Communication and Networks (ICCCN). Aug. 2014.

[24] A. Akella, S. Seshan and A. Shaikh. “An Empirical Evaluation of Wide-Area
Internet Bottlenecks”. In: ACM SIGMETRICS Performance Evaluation Review Vol.
31 (May 2003).

[25] B. Cohen. “Incentives build robustness in BitTorrent”. In: Workshop on Economics
of Peer-to-Peer systems Vol. 6 (June 2003), pp. 68–72.

[26] F. Qin et al. “An Effective Network-Aware Peer Selection Algorithm in BitTor-
rent”. In: 2009 Fifth International Conference on Intelligent Information Hiding and
Multimedia Signal Processing. Sept. 2009.

[27] J. H. Wang, D. M. Chiu and J. C. s. Lui. “Modeling the Peering and Rout-
ing Tussle between ISPs and P2P Applications”. In: 200614th IEEE International
Workshop on Quality of Service. 2006.

[28] T. Karagiannis, P. Rodriguez and K. Papagiannaki. “Should Internet Service
Providers Fear Peer-Assisted Content Distribution?” In: Proceedings of the 5th
ACM SIGCOMM Conference on Internet Measurement. USENIX Association, 2005,
pp. 63–76.

136

[29] V. Aggarwal et al. “Methodology for Estimating Network Distances of Gnutella
Neighbors”. In: 34. Jahrestagung der Gesellschaft für Informatik, Informatik verbindet.
Vol. P-51. 2004, pp. 219–223.

[30] G. Dán et al. “Interaction Patterns between P2P Content Distribution Systems
and ISPs”. In: IEEE Communications Magazine Vol. 49 (May 2011), pp. 222–230.

[31] A. Pathan and R. Buyya. A taxonomy and survey of content delivery networks. Tech.
rep. Grid Computing and Distributed Systems Laboratory, The University of
Melbourne, Feb. 2007.

[32] E. Nemeth et al. UNIX and Linux System Administration Handbook (5th Edition).
5th. Addison-Wesley Professional, 2017.

[33] Akamai. The State of Online Retail Performance. Tech. rep. 2017.

[34] Cloudflare. url: https://www.cloudflare.com/ (visited on 20/09/2020).

[35] CloudFront. url: https://aws.amazon.com/cloudfront/ (visited on 20/09/2020).

[36] M. Wichtlhuber et al. “SoDA: Enabling CDN-ISP collaboration with software
defined anycast”. In: 2017 IFIP Networking Conference (IFIP Networking) and Work-
shops. June 2017.

[37] B. Frank et al. “Pushing CDN-ISP Collaboration to the Limit”. In: SIGCOMM
Comput. Commun. Rev. Vol. 43.No. 3 (July 2013), 34–44.

[38] R. Deshpande. “Overview of CDN-ISP Collaboration Strategies”. In: SDN Sem-
inar SoSe (July 2014).

[39] AT&T. url: https://www.att.com/ (visited on 20/09/2020).

[40] Orange. url: https://www.orange.com/ (visited on 20/09/2020).

[41] Swisscom. url: https://www.swisscom.ch/ (visited on 20/09/2020).

[42] KT. url: https://corp.kt.com/ (visited on 20/09/2020).

[43] L. Liu and N. Antonopoulos. “From Client-Server to P2P Networking”. In:
Handbook of Peer-to-Peer Networking. 2010, pp. 71–89.

[44] Linux Mint. url: https://linuxmint.com/ (visited on 20/09/2020).

[45] Z. Elngomi and K. Khanfar. “A Comparative Study of Load Balancing Algo-
rithms: A Review Paper”. In: International Journal of Computer Science and Mobile
Computing. June 2016, pp. 448–458.

137

[46] M. Chin, C. Tan and M. Bandan. “Efficient load balancing for bursty demand in
web based application services via domain name services”. In: 8th Asia-Pacific
Symposium on Information and Telecommunication Technologies. 2010, pp. 1–4.

[47] X. Y. L. Wang. “SDN Load Balancing Method based on K-Dijkstra”. In: Interna-
tional Journal of Performability Engineering Vol. 14 (2018), p. 709.

[48] Why you should switch to a different Linux Mint Mirror today! url: https : / /

unlockforus.com/why-you-should-switch-to-a-different-linux-mint-

mirror-today/ (visited on 03/01/2020).

[49] P. Sousa. “Context Aware Programmable Trackers for the Next Generation In-
ternet”. In: Lecture Notes in Computer Science. Vol. 5733. 2009, p. 78.

[50] P. Sousa. “A Framework for Highly Reconfigurable P2P Trackers”. In: Journal of
Communications Software and Systems Vol. 9.No. 4 (Dec. 2013), p. 236.

[51] P. Sousa. “Towards Effective Control of P2P Traffic Aggregates in Network In-
frastructures”. In: Journal of Communications Software and Systems Vol. 11 (Apr.
2015), pp. 37–47.

[52] D. Hughes, I. Warren and G. Coulson. “AGnuS: the altruistic Gnutella server”.
In: Proceedings of the 3rd International Conference on Peer-to-Peer Computing (P2P2003).
2003.

[53] T. N. Kim, S. Jeon and Y. Kim. “A CDN-P2P hybrid architecture with con-
tent/location awareness for live streaming service networks”. In: 2011 IEEE
15th International Symposium on Consumer Electronics (ISCE). June 2011.

[54] S. Ratnasamy et al. “Topologically-aware overlay construction and server selec-
tion”. In: Twenty-First Annual Joint Conference of the IEEE Computer and Commu-
nications Societies. Vol. 3. 2002, pp. 1190–1199.

[55] V. Aggarwal and A. Feldmann. “Locality-aware P2P query search with ISP col-
laboration”. In: Networks and Heterogeneous Media Vol. 3 (June 2008).

[56] K. Han, Q. Guo and J. Luo. “Optimal Peer Selection, Task Assignment and
Rate Allocation for P2P Downloading”. In: 2009 First International Workshop on
Education Technology and Computer Science. Vol. 1. Mar. 2009.

[57] M. L. Gromov and Y. P. Chebotareva. “On optimal CDN node selection”. In:
2014 15th International Conference of Young Specialists on Micro/Nanotechnologies
and Electron Devices (EDM). June 2014.

138

[58] B. Niven-Jenkins, F. L. Faucheur and D. N. N. Bitar. Content Distribution Network
Interconnection (CDNI) Problem Statement. RFC 6707. Sept. 2012. url: https://
rfc-editor.org/rfc/rfc6707.txt.

[59] P. Francis et al. “IDMaps: a global Internet host distance estimation service”. In:
IEEE/ACM Transactions on Networking Vol. 9.No. 5 (2001), pp. 525–540.

[60] T. S. E. Ng and Hui Zhang. “Predicting Internet network distance with coordinates-
based approaches”. In: Proceedings.Twenty-First Annual Joint Conference of the
IEEE Computer and Communications Societies. Vol. 1. 2002, 170–179 vol.1.

[61] I. Poese et al. “Improving Content Delivery with PaDIS”. In: IEEE Internet Com-
puting Vol. 16.No. 3 (2012), pp. 46–52.

[62] B. Frank et al. “Content-aware Traffic Engineering”. In: Proceedings of ACM SIG-
METRICS 2012. June 2012.

[63] K. Mase et al. “A Web server selection algorithm using QoS measurement”.
In: ICC 2001. IEEE International Conference on Communications. Conference Record
(Cat. No.01CH37240). Vol. 8. June 2001.

[64] M. Swain and Young-Gyun Kim. “Finding an optimal mirror site”. In: Proceed-
ings of IEEE SoutheastCon, 2005. Apr. 2005.

[65] A. Sampaio and P. Sousa. “An adaptable and ISP-friendly multicast overlay
network”. In: Peer-to-Peer Networking and Applications Vol. 12.No. 4 (Sept. 2018),
pp. 809–829.

[66] Application-Layer Traffic Optimization (ALTO). Nov. 2019. url: https://datatracker.
ietf.org/wg/alto/about/.

[67] J. Seedorf et al. Content Delivery Network Interconnection (CDNI) Request Routing:
CDNI Footprint and Capabilities Advertisement using ALTO. Internet-Draft draft-
ietf-alto-cdni-request-routing-alto-08. Work in Progress. Internet Engineering
Task Force, Nov. 2019. 38 pp. url: https://datatracker.ietf.org/doc/html/
draft-ietf-alto-cdni-request-routing-alto-08.

[68] L. M. Contreras, D. A. L. Perez and C. E. Rothenberg. Use of ALTO for Deter-
mining Service Edge. Internet-Draft draft-contreras-alto-service-edge-01. Work in
Progress. Internet Engineering Task Force, July 2020. url: https://datatracker.
ietf.org/doc/html/draft-contreras-alto-service-edge-01.

139

[69] K. Gao et al. ALTO Extension: Path Vector. Internet-Draft draft-ietf-alto-path-
vector-11. Work in Progress. Internet Engineering Task Force, July 2020. url:
https://datatracker.ietf.org/doc/html/draft-ietf-alto-path-vector-

11.

[70] S. Randriamasy et al. Application-Layer Traffic Optimization (ALTO) Cost Calendar.
Internet-Draft draft-ietf-alto-cost-calendar-21. Work in Progress. Internet Engi-
neering Task Force, Mar. 2020. url: https://datatracker.ietf.org/doc/html/
draft-ietf-alto-cost-calendar-21.

[71] S. Kiesel et al. Application-Layer Traffic Optimization (ALTO) Protocol. RFC 7285.
Sept. 2014. url: https://rfc-editor.org/rfc/rfc7285.txt.

[72] Q. Wu et al. ALTO Performance Cost Metrics. Internet-Draft draft-ietf-alto-performance-
metrics-08. Work in Progress. Internet Engineering Task Force, Nov. 2019. 29 pp.
url: https://datatracker.ietf.org/doc/html/draft-ietf-alto-performance-
metrics-08.

[73] J. Seedorf and E. Burger. Application-Layer Traffic Optimization (ALTO) Problem
Statement. RFC 5693. Oct. 2009. url: https://rfc-editor.org/rfc/rfc5693.
txt.

[74] M. Stiemerling et al. Application-Layer Traffic Optimization (ALTO) Deployment
Considerations. RFC 7971. Oct. 2016. url: https : / / rfc - editor . org / rfc /

rfc7971.txt.

[75] The STRIDE Threat model. url: https://docs.microsoft.com/en-us/previous-
versions/commerce-server/ee823878(v=cs.20)?redirectedfrom=MSDN (vis-
ited on 20/09/2020).

[76] B. V. Schewick. Network Neutrality and Quality of Service: What a non-discrimination
Rule Should Look Like. Tech. rep. June 2012, p. 1.

[77] Federal Communications Commission. url: https://www.fcc.gov/ (visited on
20/09/2020).

[78] Regulation (eu) 2015/2120 of the European Parliament and of the Council. url: https:
//eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32015R2120&

rid=2#d1e445-1-1 (visited on 20/09/2020).

[79] Plusnet. url: https://www.plus.net/ (visited on 20/09/2020).

140

[80] N. Anderson. Deep packet inspection meets ‘Net neutrality’. url: https://arstechnica.
com/gadgets/2007/07/deep-packet-inspection-meets-net-neutrality/2/

(visited on 20/09/2020).

[81] Meo. url: https://www.meo.pt/ (visited on 20/09/2020).

[82] Tarifários Móveis Pós-pagos Unlimited. url: https://www.meo.pt/telemovel/
tarifarios/unlimited (visited on 14/12/2017).

[83] Facebook. url: https://www.facebook.com/ (visited on 20/09/2020).

[84] Spotify. url: https://www.spotify.com/ (visited on 20/09/2020).

[85] Wikipedia Zero. url: https://en.wikipedia.org/wiki/Wikipedia_Zero (visited
on 20/09/2020).

[86] Wikipedia. url: https://en.wikipedia.org (visited on 20/09/2020).

[87] L. H. Newman. Net Neutrality Is Already in Trouble in the Developing World.
Jan. 2014. url: https://slate.com/technology/2014/01/net-neutrality-
internet-access-is-already-in-trouble-in-the-developing-world.html.

[88] J. Domzal, R. Wójcik and A. Jajszczyk. “QoS-Aware Net Neutrality”. In: 2009
First International Conference on Evolving Internet. 2009, pp. 147–152.

[89] D. A. L. Perez et al. Supporting Multi-domain Use Cases with ALTO. Internet-
Draft draft-lachos-alto-multi-domain-use-cases-01. Work in Progress. Internet
Engineering Task Force, July 2020. url: https://datatracker.ietf.org/doc/
html/draft-lachos-alto-multi-domain-use-cases-01.

[90] S. Randriamasy, W. Roome and N. Schwan. Multi-Cost Application-Layer Traffic
Optimization (ALTO). RFC 8189. Oct. 2017. url: https://rfc-editor.org/rfc/
rfc8189.txt.

[91] K. Bumanglag and H. Kettani. “On the Impact of DNS Over HTTPS Paradigm
on Cyber Systems”. In: 3rd International Conference on Information and Computer
Technologies (ICICT). 2020, pp. 494–499.

[92] Java. url: https://www.java.com/en/ (visited on 20/09/2020).

[93] Java Spring. url: https://spring.io/ (visited on 20/09/2020).

[94] MongoDB. url: https://www.mongodb.com/ (visited on 20/09/2020).

[95] J. Reschke. The ’Basic’ HTTP Authentication Scheme. RFC 7617. Sept. 2015. url:
https://rfc-editor.org/rfc/rfc7617.txt.

141

[96] R. Shekh-Yusef, D. Ahrens and S. Bremer. HTTP Digest Access Authentication.
RFC 7616. Sept. 2015. url: https://rfc-editor.org/rfc/rfc7616.txt.

[97] P. Siriwardena. “HTTP Basic/Digest Authentication”. In: Advanced API Security.
2014, pp. 33–46.

[98] Common Open Research Emulator. url: https://www.nrl.navy.mil/itd/ncs/
products/core (visited on 20/09/2020).

[99] vcmd. url: http://manpages.ubuntu.com/manpages/trusty/man1/vcmd.1.html
(visited on 20/09/2020).

[100] Python. url: https://www.python.org/ (visited on 20/09/2020).

[101] awk. url: https://www.gnu.org/software/gawk/manual/gawk.html (visited on
20/09/2020).

142

