
- iii -

Abstract
Two recent approaches in software engineering are capturing the attention of the academic
community as well as the industry: model driven engineering and software product lines. The
software product line approach to software development is being put into practice from several
years and the results seen very promising. However, the resources required to implement this
approach are very significant and, as such, a wide adoption of the software product line approach is
still not a reality. This is in some sort a result of the heavy methods that such an approach requires.
These methods usually require the use of high level abstractions to capture domain knowledge
which is commonly represented using models. These abstractions are usually far from the
abstractions used to implement the software solutions. Also, the processes are more complex than
the ones commonly used for developing single software systems, since they imply a domain
engineering approach to develop reusable assets as well as an application engineering approach to
develop final applications in the domain.

Model driven engineering approaches promise to promote the use of models as assets of
development to the same level as code. Models should be treated as first class entities in software
development, similarly to what happens with code. To achieve this goal, some technologies have
been proposed, such as, metamodeling frameworks and model transformation languages. These
technologies have the potential to support the automation of many software development tasks of
heavy methods, particularly those that rely significantly on modeling activities and that use models
as a source for producing software. This is the case for the majority of the software product line
development methods.

This thesis is about supporting the development of software product lines by adopting a model
driven engineering approach. For that, we start by analyzing major domain engineering and product
line methods. We identify and discuss fundamental concepts for product line development.
Resulting from that, a set of common and crucial activities for software product line development
are identified and contextualized in a variant of software product line development that we call
domain-specific platform approach. This thesis presents methodological approaches and techniques
to support the referred activities using several kinds of models and a model driven engineering
approach. We particularly show how concepts, such as commonality and variability, can be
modeled at different levels of abstraction during the development activities. We present approaches
on how to relate concepts that are present at different levels of abstraction or from different
perspectives of the system. The approaches presented in this thesis are essentially focused on
computation independent models since these are the kind of models that have less support at the
moment. This results from their nature of being computation independent and, therefore, more
difficult to relate to the computation concepts that are used in models that support the
implementation of the software system being developed. Consequently, the proposals presented in
this thesis are essentially related to the following kinds of models: use cases; feature; entity;
activity; component; and class.

This thesis contributes to the foundations of the novel model driven approach to software
product line development. The approaches presented in this thesis, when applied, enable the
automation of previously manual based tasks, such as: feature modeling; the creation of the first
logical architecture of a software product line; and multi-stage domain specific modeling.

The approaches presented in this thesis are illustrated through demonstration cases. These
demonstration cases reflect experimentations of our approaches using problems described on other
publications in the field or result from our own experience in applying the approaches in the
context of projects developed at a software development company. We also discuss how the
methodological approaches and techniques can be realized by using metamodeling frameworks and
model transformation languages, particularly EMF and QVT.

- v -

Resumo
Métodos e Técnicas para o Desenvolvimento Baseado em Modelos de Linhas

de Produtos de Software

Duas recentes aproximações no campo da engenharia de software estão a capturar a atenção da
comunidade académica e da indústria: a engenharia de software baseada em modelos e as linhas de
produtos de software. O modelo de desenvolvimento de software baseado em linhas de produtos é
já adoptado na indústria há alguns anos e os resultados são bastante prometedores. No entanto, os
recursos necessários para a implementação deste modelo de desenvolvimento de software são
bastante significativos e, portanto, a adopção em larga escala desta abordagem ainda não é uma
realidade. Isto resulta, certamente, dos métodos pesados que são necessários para essa abordagem.
Estes métodos normalmente requerem o uso de abstracções de alto nível que permitem capturar
conhecimento do domínio que é, vulgarmente, representado através de modelos. Estas abstrações
encontram-se muitas vezes bastante distantes das abstrações usadas nas implementações das
soluções de software. Para além disso, os processos são mais complexos que os vulgarmente
usados no desenvolvimento de sistemas de software singulares (por oposição a linhas de produtos),
uma vez que estes implicam dois sub-processos: engenharia de domínio para desenvolver
artefactos reutlizáveis e engenharia de aplicações para desenvolver as aplicações finais do
domínio.

A engenhria de software baseada em modelos promete promover a utilização de modelos como
artefactos de desenvolvimento em igualdade com o código. Os modelos passam a ser tratados como
entidades de primeira classe no desenvolvimento de software, à semelhança do código. Para se
atingir este objectivo foram propostas algumas tecnologias, tais como, ferramentas de
meta-modelação e linguagens de transformação de modelos. Estas tecnologias têm características
que potenciam a automação de muitas tarefas de desenvolvimento de software usadas em métodos
mais pesados, particularmente aqueles que dependem signifcativamente de actividades de
modelação e que usam modelos como fonte para a produção de software. Este é o caso da maioria
dos métodos de desenvolvimento de linhas de produtos de software.

O tema desta tese é o desenvolvimento de linhas de produtos de software através da adopção
de uma aproximação baseada em modelos (model driven). Nesse contexto, começa-se por analisar
diversos métodos relevantes de engenharia de domínio e desenvolvimento de linhas de produtos de
software. Identificam-se e analisam-se conceitos fundamentais para o desenvolvimento de linha de
produtos de software. Em resultado dessa análise, um conjunto de actividades comuns e cruciais
para o desenvolvimento de linhas de produtos de software são identificadas e contextualizadas
numa especialização do processo típico de desenvolvimento de linhas de produtos de software que
designamos por aproximação ao desenvolvimento de linhas de produtos de software baseada em
plataformas especificas de domínio. Esta tese apresenta aproximações metodológicas e técnicas
para suportar as referidas actividades usando diversos tipos de modelos e uma proposta para a
engenharia de linhas de produtos de software baseada em modelos. Em particular, mostra-se como
conceitos, tais como as características comuns ou variáveis dos sistemas, podem ser modeladas em
diferentes níveis de abstração e em diferentes perspectivas nas diversas actividades de
desenvolvimento de software. As propostas apresentadas nesta tese são essencialmente focalizadas
em modelos independentes da computação, uma vez que este tipo de modelos são os menos
suportados actualmente pelos métodos de desenvolvimento de software. Isto resulta da sua
natureza, ou seja, de representarem conceitos que não são directamente suportados pelos sistemas
computacionais actuais e, como tal, é mais difícil relacionar estes conceitos com os conceitos
usados na implementação das soluções de software. Em consequência, as propostas apresentadas
nesta tese estão essencialmente relacionadas com os seguintes tipos de modelos: diagramas de

- vi -

casos de utilização; diagramas de características; diagrams de entidades; diagramas de actividades;
diagramas de componentes e diagramas de classes.

Esta tese contribui para as bases de uma nova aproximação ao desenvolvimento de linhas de
produtos de software baseada em modelos. As propostas apresentadas nesta tese, quando aplicadas,
permitem a automação de tarefas de desenvolvimento de linhas de produtos de software que são, no
presente, fundamentalmente manuais, tais como: a modelação de características de linhas de
produtos; a criação de arquitecturas lógicas de linhas de produtos; a modelação especifica de
domínio em multíplas etapas ou sítios.

As propostas apresentadas nesta tese são ilustradas através de casos de estudo. Estes casos de
estudo refletem os resultados de experiências na implementação das referidas propostas usando
problemas descritos noutras publicações do mesmo campo científico ou resultam da própria
experiência do autor deste documento na aplicação das propostas no contexto de projectos
desenvolvidos numa empresa de desenvolvimento de soluções informáticas. Esta tese também
descreve como as metodologias e técnicas propostas podem ser implementadas através de
ferramentas de meta-modelação e linguagens de transformação de modelos tais como o EMF e o
QVT.

- vii -

Abbreviations
4SRS 4-Step Rule Set
ADL Architecture Description Language
AOP Aspect-Oriented Programming
ATL Atlas Transformation Language
CASE Computer Aid Software Engineering
CFRP Conceptual Framework for Reuse Processes
CIM Computation Independent Model
CWM Common Warehouse Metamodel
DARE Domain Analysis and Reuse Environment
DARTS Design Approach for Real-Time Systems
DSL Domain Specific Language
DSSA Domain-Specific Software Architecture
EMF Eclipse Modeling Framework
EMOF Essential MOF
ERP Enterprise Resource Planning
FAST Family-Oriented Abstraction, Specification, and Translation
FeatuRSEB Feature based evolution of RSEB
FODA Feature-Oriented Domain Analysis
FORM Feature-Oriented Reuse Method
GME Generic Modeling Environment
HTML Hyper Text Markup Language
IDE Integrated Development Environment
IESE Institute for Experimental Software Engineering
ISV Independent Software Vendor
JET Java Emitter Templates
MDA Model Driven Architecture
MDE Model Driven Engineering
MoDeLine Model Driven Development of Software Product Lines
MOF Meta-Object Facility
OCA Object Connection Architecture
OCL Object Constraint Language
ODM Organization Domain Modeling
OMG Object Management Group
OOSE Object-Oriented Software Engineering
PIM Platform Independent Model
PLUS Product Line UML-Based Software Engineering
PSM Platform Specific Model
PuLSE Product Line Software Engineering
QVT Query/Views/Transformations
RSEB Reuse-Driven Software Engineering Business
SEI Software Engineering Institute
SI System Integrator
SME Small to Medium Enterprises
SPEM Software Process Engineering Metamodel
SQL Structured Query Language
STARS Software Technology for Adaptable, Reliable Systems
SWEBOK Software Engineering Body of Knowledge
UML Unified Modeling Language

- viii -

UML-F UML Profile for Frameworks
USDP Unified Software Development Process
XML Extensible Markup Language

- ix -

Preface
After five long years of very intensive work, my PhD thesis (tese de doutoramento) is finally
finished. I owe some acknowledgements to many people.

First of all I would like to thank my supervisor, Ricardo J. Machado. We met at University of
Minho, after being introduced by João Álvaro Carvalho. Ricardo has been a full-time supervisor
and also a good friend. I had delayed my PhD from a long period of time, since I really wanted to
do something scientifically interesting but also useful for myself. Ricardo has made this possible
for me. Many thanks.

I am also grateful to João Álvaro Carvalho. I participated in his course of preparation for PhD at
University of Minho. A lot of things I now know about scientific research I own to him. Thank you.
Thank you also for introducing me to Ricardo.

I would like to thank University of Minho for accepting me as a PhD student. Special thanks to the
colleagues of the SEMAG research group. This last five years were the best working years so far.

Instead of doing the traditional acknowledgements, I am going to present a resume of my
professional and scientific path and, during that, make the proper acknowledgements.

My bachelor degree is in Informatics and from ISEP, a Portuguese polytechnic school. After that, I
started working at I2S, a Portuguese software house specialized in software solutions for the
insurance industry. I started my collaboration with I2S in 1990. In that period, I also owned a
position to become teaching assistant at ISEP. I started teaching at ISEP in 1993. However, I
continued to work at I2S as an external collaborator. I have also collaborated in several other
industry projects before my PhD.

I thank Carlos Ramos and Zita Vale, the supervisors for my Msc dissertation at FEUP, University
of Porto (1996). Although in a somewhat different field (workflow), they, as well as other teachers
and colleagues from my Msc course, had a great influence on my scientific studies.

I officially started my PhD in November, 2002. At that moment, I was working at I2S and also
teaching at ISEP. I started my PhD with a focus on domain-specific languages and runtime
variability techniques. I think this research topic come out of the influence from my work at I2S
and also from the classes I was teaching at ISEP (manly classes dealing with operating systems,
object-oriented programming, and software components). At I2S, I had always worked in the
innovation group. There, my team (José Timóteo, Sérgio Ribeiro, Nuno Ferreira, Paulo Sousa, and
many others) and I, had developed a domain-specific platform for supporting the specification and
realization of (mainly) insurance contracts. It was essentially developed in C and had some
interfaces for COM and Java. The main goal was to support the specification of the contract
domain rules by domain specialists and also to be able to introduce new types of contracts in the
running system without disrupting its regular behavior. So, the first year of the PhD (2003) resulted
in the elaboration of a technical report of the state-of-the-art about domain engineering with a great
focus on variability realization techniques. Special thanks to Fernando Brito e Abreu from UNL for
its thorough revision and comments on this report.

In 2004, I published my first PhD papers. These papers resulted essentially from the previous
state-of-the-art and from my first ideas on what I should attack in the field of domain engineering.
This was also the year when I really started to interact with my scientific field community. I had

- x -

five major interactions: a visit to the Interactive Software Development and Renovation research
group at CWI, Netherlands (I really have to thank Joost Visser and Arie van Deursen for that); my
participation at SEDES2004 (Coimbra, Portugal), the first Portuguese doctoral symposium in
software engineering; the ICSR8 conference (Madrid, Spain), where I met some notable figures in
the field, e.g., Dirk Muthig, Hassan Gomaa, Stan Jarzebeck, and Jan Bosh; the QUATIC2004
conference (Porto, Portugal) and, finally, my first OOPSLA at Vancouver, Canada (I won’t give
any comments on that; if you have already attended one of the OOPSLA conferences you know
what I am talking about). Those interactions had a major impact on my view on scientific research
in the field of software engineering. In 2004, I realized that I had a long way to go and that I needed
to dive deeper.

In April 2005, I decided to suspend my collaboration with I2S since I realized that it was very
difficult for me to take the dive I needed unless I suspended my responsibilities at the software
company.

In April 2005, I started the long dive with a model driven method developed at University of
Minho, by a team leaded by Ricardo J. Machado, called 4-Step Rule Set (4SRS). In June of that
year, I presented a first approach to include support for variability in the method at the
MOMPES2005 workshop at ACSD2005 (Rennes, France). By that time, I really started to see my
work focusing on model driven and variability. Another important theme was UML, since the
4SRS method was based on the UML notation.

In July 2005, I attended the first summer school on generative and transformational techniques in
software engineering, in Braga, Portugal. It was a major milestone on my PhD. I was then certain
that metamodeling and model driven was the way to go in software engineering, particularly in the
application areas of variability intensive systems (e.g., software product lines, software factories,
and enterprise resource planning software).

During 2005, I have also done experimental software development with several metamodeling and
model driven related tools, particularly GME, GReAT, OpenArchitectureWare, and ATL. During
that year, I supervised an undergraduate final year project at ISEP regarding metamodeling with
GME. Thanks to the student João Riqueza.

One year later, I had a paper accepted at SPLC2006 (Maryland, Baltimore). In that paper, I
presented my findings in adopting UML use cases as CIM models for MDE approaches. I am very
grateful for the comments of Czarnecki and Greenfield. I am also grateful for the revision of
Tommi Manisto.

2006 was also the year when I started focusing my work on experimental tool support on the
Eclipse platform and the modeling tools project, particularly EMF, GMF, and UML2. I have also
worked with SmartQVT for model transformations and Feature Modeling from the University of
Waterloo.

In March 2007, I had a paper accepted at the MOMPES2007 workshop at ETAPS2007 (Braga,
Portugal). In that paper, I presented my findings in deriving the logical architecture of a system
from UML use cases and activity diagrams. I thank Marcus Fontoura for his comments and
suggestions on a draft of that paper.

In September 2007, I participated once again in SEDES (the second edition took place in Lisbon,
Portugal, within QUATIC20007). This time with a paper that presented an overview of my PhD.
That month, I had my second participation at the SPLC conference series (SPLC2007 took place at

- xi -

Kyoto, Japan) with a paper that presented an approach to automate mapping between use cases and
feature models.

During 2007, I supervised an undergraduate final year project at ISEP regarding metamodeling
with EMF and GMF. Thanks to the student Abílio Pinto.

I wish to thank Luis Paupério and Anibal Oliveira, from I2S, who have supported my scientific
activities. I also extend my acknowledgements to several other elements of the I2S family. They
know who they are.

I wish to thank my coordinator from ISEP, Adriano Lhamas. He has always supported my teaching
activities and endorsed my PhD work. This acknowledgement is extended to the Informatics
Department and ISEP School. I also extend my acknowledgements to several other elements of the
ISEP family, including my students. They know who they are.

A special thanks to all the unknown reviewers of my papers.

I specially wish to thank the members of the KTC family, a recent project that started during my
PhD and that I had the privilege of being part of. They helped me putting my ideas in perspective
with the real world.

- xiii -

Contents
Abstract..iii
Resumo ... v
Abbreviations..vii
Preface ... ix
Contents ...xiii
List of Figures... xv
List of Tables ...xix
1. Introduction .. 1

1.1 Motivation ..1
1.2 Overview of Software Engineering Trends ..3
1.3 Research Goals ...8
1.4 Research Approach...9
1.5 Overview ..10
1.6 References ..12

2. Related Work .. 15
2.1 Introduction ..15
2.2 Draco ..20
2.3 Feature-Oriented Domain Analysis (FODA) ... 22
2.4 Organization Domain Modeling (ODM)..29
2.5 Domain Analysis and Reuse Environment (DARE) ..33
2.6 Family-Oriented Abstraction, Specification, and Translation (FAST)35
2.7 Reuse-Driven Software Engineering Business (RSEB) and FeatuRSEB...............................38
2.8 Product Line UML-Based Software Engineering (PLUS) ...43
2.9 Product Line Software Engineering (PuLSE) and Kobra...51
2.10 Discussion ..60

2.10.1 Features ... 61
2.10.2 Variation Points and Variants ... 62
2.10.3 Method Comparison..62

2.11 Conclusion..64
2.12 References ..65

3. The MoDeLine Method .. 71
3.1 Introduction ..71
3.2 Extending 4SRS for Variability Support ..72

3.2.1 Requirements Modeling.. 73
3.2.2 Architecture Derivation... 77
3.2.3 Logical Architecture ... 80

3.3 Adopting CIM Models for Derivation of Architectural Requirements83
3.3.1 The Method... 83
3.3.2 Modeling Requirements with Use Cases and Activity Diagrams 87
3.3.3 Capturing Functional Architectural Requirements with Use Case Realizations............. 89
3.3.4 Logical Architecture ... 92

3.4 Conclusion..93
3.5 References ..94

4. Modeling and Metamodeling.. 97
4.1 Introduction ..97
4.2 Extending UML 2.0 Use Case’s Metamodel..98

4.2.1 Use Case Relationships...99
4.2.2 Extending the UML 2.0 Metamodel ... 102

- xiv -

4.2.3 From Problem to Solution Domain ...105
4.3 Extending UML-F for Analysis Models...108

4.3.1 UML-F: Variability at Design...109
4.3.2 Case Study...112
4.3.3 Variability at Requirements...114
4.3.4 Variability at Analysis...118

4.4 Conclusion ..120
4.5 References ..121

5. Formal Model Transformations ..123
5.1 Introduction ..123
5.2 On the Transformation of Models ..124
5.3 Automating Mappings between Use Cases and Features ...126

5.3.1 Feature Models ..127
5.3.2 Use Cases ..130
5.3.3 Relating Use Cases and Features...132
5.3.4 Implementation Roadmap ...134

5.4 Transformation Patterns for Multi-Staged Development ...139
5.4.1 Multi-Staged Modeling Approach...139
5.4.2 Multi-Staged Model Transformations ...143
5.4.3 Transformation Patterns ..146

5.5 Conclusion ..150
5.6 References ..152

6. Conclusion ..157
6.1 Discussion...157

6.1.1 Research Contributions ...157
6.1.2 Publications ...159
6.1.3 Research Validation ..160

6.2 Perspectives and Future Work ..161
6.3 References ..164

Appendix A: Experimental Implementation of Use Case Modeling Environment.........................167
Appendix B: Experimental Implementation of Model Transformations ..173
Appendix C: Experimental Implementation of Multi-Staged Modeling Approach........................181

- xv -

List of Figures
Figure 1: Metamodeling metaphor: Puppeteer as Puppet. ... 3
Figure 2: Domain Engineering and Application Engineering. ...4
Figure 3: Model Driven Architecture. .. 7
Figure 4: Software product line development using a domain-specific platform approach.8
Figure 5: The context of Software Engineering Research. ... 9
Figure 6: Excerpt of activities for model driven development of software product lines. 11
Figure 7: Domain engineering vs. application engineering (based on [SEI 2007b])........................17
Figure 8: Draco activity of research a domain (based on [Neighbors 1980])................................... 21
Figure 9: Phases and products of Feature Oriented Domain Analysis (based on [Kang et al.

1990]). .. 23
Figure 10: Possible feature diagram for a car (based on [Kang et al. 1990]). 24
Figure 11: Textual description of a feature (based on [Kang et al. 1990])....................................... 25
Figure 12: Architectural layers in Feature-Oriented Domain Analysis (based on [Kang et al.

1990]). .. 27
Figure 13: Overview of Feature-Oriented Reuse Method (based on [Kang et al. 1998]). 28
Figure 14: ODM process phases (based on [Simos et al. 1996])... 30
Figure 15: ODM plan domain phase (based on [Simos et al. 1996]). ... 31
Figure 16: ODM model domain phase (based on [Simos et al. 1996]). .. 32
Figure 17: ODM engineer asset base phase (based on [Simos et al. 1996]).................................... 33
Figure 18: Overview of the DARE method (based on [Prieto-Díaz et al. 1995]). 34
Figure 19: A partial definition of the grammar of the architecture definition language used in

DARE (extracted from [Prieto-Díaz et al. 1995])...35
Figure 20: Overview of RSEB (based on [Jacobson et al. 1997]).. 39
Figure 21: Overview of the Application Family Engineering process of RSEB (based on

[Jacobson et al. 1997]). ..40
Figure 22: Example of variability notation used in RSEB (based on [Jacobson et al. 1997]).......... 41
Figure 23: Feature notation used in FeatuRSEB (based on [Griss et al. 1998])............................... 42
Figure 24: Example of the FeatuRSEB proposal for depicting feature diagrams as

stereotyped UML class diagrams (based on [Griss et al. 1998]). .. 43
Figure 25: Overview of the PLUS method (based on [Gomaa 2005]). .. 44
Figure 26: Software product line engineering in PLUS (based on [Gomaa 2005]).......................... 45
Figure 27: Example of use case modeling in PLUS (based on [Gomaa 2005]). 46
Figure 28: Example of modeling variability with the extend relationship in PLUS (based on

[Gomaa 2005]). .. 47
Figure 29: Example of feature diagram in PLUS (based on [Gomaa 2005]). 48
Figure 30: Classification of application objects/classes by stereotype in PLUS (based on

[Gomaa 2005]). .. 50
Figure 31: Example of entity class diagram in PLUS (based on [Gomaa 2005]).............................50
Figure 32: Overview of PuLSE (based on [Bayer et al. 1999]).. 51
Figure 33: Example of KobrA enterprise process model (based on [Bayer et al. 2001])................. 54
Figure 34: Example of KobrA use case diagram for the actor ServiceLibrarian (based on

[Bayer et al. 2001]). ... 55
Figure 35: Example of KobrA enterprise concept diagram for a library (based on [Bayer et

al. 2001]).. 55
Figure 36: Specification class diagram for the LibrarySystem component (based on [Bayer et

al. 2001]).. 57
Figure 37: Supplied and required interfaces for the LibrarySystem component (based on

[Bayer et al. 2001]). ... 57

- xvi -

Figure 38: Operation schema for loanItem (based on [Bayer et al. 2001]).58
Figure 39: Realization class diagram for the LibrarySystem component (based on [Bayer et

al. 2001]). ...59
Figure 40: Activity diagram for the loanItem operation (based on [Bayer et al. 2001]).60
Figure 41: Relating variability, human mind and object-oriented terms. ...61
Figure 42: Development activities covered in section 3.2. ...73
Figure 43: Use case diagram depicting the main functionality of the messaging domain

(Based on the IESE’s GoPhone Technical Report [Muthig et al. 2004]).................................74
Figure 44: Description of the use case Send Message (Based on the IESE’s GoPhone

Technical Report [Muthig et al. 2004])..75
Figure 45: Decomposition of use case {U0.1} Send Message. ..76
Figure 46: Variability perspective of use case {U0.1.2} Compose Message.77
Figure 47: Object model of the messaging domain. ...80
Figure 48: Feature diagram for Send Message (Based on the notation proposed in [Gomaa

2005]). ..81
Figure 49: Excerpt of class diagram for Send Message. ...82
Figure 50: Development activities covered in Section 3.3..84
Figure 51: Excerpt of the MoDeLine metamodel. ..85
Figure 52: Feature diagram for a library product line, following notation proposed in

[Deursen et al. 2002]. ...87
Figure 53: An «extend» relationship between use cases {U0.1.2} Handle Gold Member and

{U0.1.1} Renew Loan. ..88
Figure 54: Activity diagrams for {U0.1.1} Renew Loan and {U0.1.2} Handle Gold

Member. ...90
Figure 55: Use case realization diagram for {U0.1.1} Renew Loan (filtered view).91
Figure 56: Use case realization diagram for {U0.1.2} Handle Gold Member (filtered view)........91
Figure 57: Architectural logical view showing {I0.1.1.b1.7.i}CollectFine connecting

the LibrarianUI and LoanControl components (filtered view). ..92
Figure 58: Applying the abstract factory design pattern to realize the variability point of the

collectFine method of the LoanUI class. ...93
Figure 59: Types of alternative sequences of actions in use cases..98
Figure 60: Excerpt of UML 2.0 use case metamodel..99
Figure 61: Excerpt of use case Renew Loan..100
Figure 62: Excerpt of use case Handle Gold Member. ...101
Figure 63: Modeling MemberType as a dimension of variability in use cases.102
Figure 64: Excerpt of proposed metamodel. ...103
Figure 65: Development activities covered in Section 4.2..104
Figure 66: Proposed notation for the Extend relationship...106
Figure 67: Extension points and rejoin points depicted in activity diagrams for base use case

Renew Loan and extending use case Handle Gold Member. ...107
Figure 68: Development activities covered in Section 4.3..109
Figure 69: Example of extensible and variable stereotypes..110
Figure 70: Example of incomplete interfaces..111
Figure 71: Implementation of the template method OpenDocument. ...111
Figure 72: Functional decomposition of use case {U0.1} Operate an Insurance Policy........113
Figure 73: {U0.1.1} Buy a Policy functional decomposition. ...113
Figure 74: Excerpt of MoDeLine metamodel with proposed stereotypes to support

variability. ..116
Figure 75: Activity diagram for the classifierBehavior of use case {U0.1.1} Buy a

Policy. ..117
Figure 76: Extend relationships of use case {U0.1.1} Buy a Policy. ...118

- xvii -

Figure 77: Simplified feature diagram for insurance product line.. 119
Figure 78: Example of traces between analysis and design elements...119
Figure 79: Example of applying the separation construction principle. .. 120
Figure 80: Example of MOF metadata architecture. .. 124
Figure 81: Model transformations. ... 125
Figure 82: Process for obtaining a product use case model from a family use case model............ 127
Figure 83: Development activities covered in section 5.3. ... 128
Figure 84: Feature metamodel. ... 129
Figure 85: Excerpt of a library feature model... 129
Figure 86: Example of OCL constraint implementing a feature dependency.................................130
Figure 87: Excerpt of UML 2.0 metamodel relating to use cases. ... 131
Figure 88: Example of OCL constraints for validating the use case metamodel. 131
Figure 89: Example of a use case diagram for a Library product line.. 133
Figure 90: Removing a node from an activity diagram. ... 133
Figure 91: Variability annotations for use case models. .. 135
Figure 92: Extract of QVT Operational transformation from use case to feature model. 136
Figure 93: Extract of QVT Operational transformation from feature to Ecore model. 137
Figure 94: Declaration of untype transformation configuration2usecases. 138
Figure 95: QVT helper function that dynamically verifies if a use case in included in a

feature configuration. ... 138
Figure 96: Development activities covered in Section 5.4. ..140
Figure 97: Multi-staged model driven insurance supply chain...141
Figure 98: EMF multi-staged model driven metadata architecture for insurance supply chain

with one modeling level (M1).. 141
Figure 99: Kernel of the Ecore model. ... 142
Figure 100: EMF modeling layers for insurance agreements. .. 142
Figure 101: EMF multi-staged modeling of insurance supply chain with two modeling levels

(M2 and M1’)... 144
Figure 102: Specialization metamodel vs instantiation model vs domain model. 145
Figure 103: Domain metamodel for a car insurance agreement (CarInsurance.agreement). 146
Figure 104: Native metamodel for a car insurance agreement (CarInsurance.ecore).................... 148
Figure 105: Instantiation metamodel for a car insurance agreement (ICarInsurance.ecore). 149
Figure 106: Development activities covered by this thesis. ... 161
Figure 107: Editing constraints in the MetaGME paradigm...167
Figure 108: Creating a new modeling project based on MetaGME. ..168
Figure 109: GME metamodel paradigm sheet for Use Case. ... 168
Figure 110: GME paradigm sheet for the Extend relationship. .. 169
Figure 111: GME paradigm sheet for modeling the behavior of use cases with Activities. 169
Figure 112: Implementing the COM use case decorator in Microsoft Visual Studio..................... 170
Figure 113: Creating a new GME project based on the new use case paradigm (metamodel)....... 170
Figure 114: Editing use case models with the GME environment adapted to the new use case

paradigm. ... 171
Figure 115: Modeling the behavior of use case Renew Loan with activity diagrams.171
Figure 116: Editing, with EMF, a domain use case metamodel, i.e., a use case metamodel

with support for variability annotations. .. 173
Figure 117: Generating model, edit, editor and test code from the use cases genmodel. 174
Figure 118: Inspecting the generated code for the UseCase element. ..174
Figure 119: Editing GMF graph metamodel for the domain use case metamodel. 175
Figure 120: Domain use case model plugins installed in Eclipse... 175
Figure 121: Editing feature metamodel in EMF. .. 176

- xviii -

Figure 122: Editing QVT code and inspecting generated QVT operational model for use case
to feature transformation. ...176

Figure 123: Coding, in Java, a helper function used in the feature to Ecore transformation..........177
Figure 124: Using the use case editor generated with EMF to create a domain use case

model for a library product line..178
Figure 125: Inspecting the feature model generated from a domain use case model of the

library product line and a use case model that resulted from a feature configuration............179
Figure 126: Editing a metamodel for insurance agreements (stage N). ..181
Figure 127: Annotating the insurance agreement metamodel with annotations to guide the

transformations (stage N). ..182
Figure 128: Entering a model of an insurance car agreement with the agreement modeling

environment (stage N+1)..182
Figure 129: Inspecting the instantiation model (ecore model) of stage N obtained from the

annotated agreement metamodel. ...183
Figure 130: Inspecting the metamodel of stage N+1 that was obtained by promoting the

insurance car agreement model of stage N...183

- xix -

List of Tables
Table 1: Partial faceted classification for the library systems domain (based on [Prieto-Díaz

et al. 1995]). ... 34
Table 2: Example of PuLSE decision model for a library product line (based on [Bayer et al.

2001]). .. 53
Table 3: Domain engineering methods comparison. .. 63
Table 4: Summary of UML-F based stereotypes used in MoDeLine and their meanings................ 86
Table 5: Orthogonal dimensions of model transformations. .. 126

- 1 -

1. Introduction
“One can envisage component systems and business models delineated so clearly that client

personnel can themselves create the application systems”
Ivar Jacobson et al., in “Software Reuse”

This thesis is about two recent trends in the field of the software engineering discipline: software
development based on models (as opposed to code) and the product line approach to software
development. Therefore, this thesis presents contributions related to the research field of software
engineering, particularly for model driven engineering of software product lines. This chapter
presents the context for the research, the related knowledge areas, the research method, and the
goals supported by the thesis contributions. In this chapter we also describe how the remainder of
the document is structured.

1.1 Motivation
Software is widely spread and helps automate several activities. Software is present from low-cost
cellular phones to cutting edge spacecrafts. It does not only control machines but also supports
nuclear activities of entire organizations and governments. The world is greatly dependent on
software and software has also become increasingly more complex. Nonetheless, if an observer
from the outside of the software industry followed the way we develop software in the last thirty to
thirty five years, he/she may detect only a small evolution. If we think of it in a detached way, we
see that we still edit our programs with text editors and the syntax of our programs is similar to the
way people programmed in C thirty years ago. Of course we know this is not totally true, because
we now program in a different paradigm; we have integrated development environments that
greatly enhance the features of the old text editors; and our programs run on top of software virtual
machines. And, of course, we also have started to use analysis and design modeling tools. They
help us to cope with the complexity of the software systems we develop. We build models of our
software and we try to build our programs according to these models. The problem with this
approach is that it is not simple to make the transition from the models to the code of the programs.
Many times this is done manually or it is partly automated and, since we know that software,
because of its characteristics, is prone to modification, it is almost a certainty that models and code
will become unsynchronized. On another related perspective, we observe that the requirements for
software projects are becoming more demanding and the rigor that stakeholders demand of other
industries is gradually becoming also a reality in the software industry. One way to cope with such
demands is to reuse as much already tested software. Recent practical approaches to reuse are
software product lines and software factories.

The development of software systems requires knowledge from two main sources. One is of
technical (computer) nature, i.e., programming in a specific language; manipulating xml
documents; understanding a communication protocol. The other is usually of non-technical (i.e.,
non-computer) nature and relates to knowledge about the problem that the software system is
supposed to attack. This latter knowledge is necessary to understand the problem domain, while the
former is used to build a solution, i.e., it relates to the solution domain. Because usually

Chapter 1: Introduction

- 2 -

abstractions from those domains are so far apart it is very difficult to make accurate previsions
about software projects. As a result, software projects are hard to manage, their costs may largely
surpass budgets and the solution may not correspond entirely to the requirements [Johnson 1995].

A software product line is a set of software-intensive systems sharing a common, managed set
of features that satisfy the specific needs of a particular market segment or mission and that are
developed from a common set of core assets in a prescribed way [Clements et al. 2002]. This
implies one (or more) common domain(s) shared by the developed applications (products). Because
applications share domains, it becomes possible to reuse software artifacts between applications
and reduce the conceptual gap between the problem domain and the solution domain.

In a software product line approach the domain knowledge grows as each new application of
the domain is developed. It is commonly accepted in the field that the initial investment in a
product line approach can have return by the third developed application. Some authors,
particularly Krueger, go further and defend that the adoption of a software product line can be
beneficial from the first application developed if the approach is introduced incrementally [Krueger
2006]. Nonetheless, all well-known software product lines have been implemented in large
organizations or have required significant consultant knowledge from software product line
specialists. Examples of such organizations are, among others: Nokia; Philips; GM; Bosch;
Hewlett-Packard; Boeing; and Ericsson1. Examples of software product line expert support
organizations are SEI and IESE. Even if there are a few documented examples of software product
lines in small to medium enterprises, one has to agree that the effort required to implement the
necessary processes and methods may be out of reach for the majority of SMEs.

Recently, the software engineering community has assisted the appearance of several
proposals, such as aspect-oriented programming [Kiczales et al. 1997], feature-oriented
programming [Batory 2004] , domain-specific languages [Hudak 1998] and model driven
engineering [D.C. Schmidt 2006]. Although diverse in nature, they all share the pretension of
complementing or solving some limitations of the dominant object oriented paradigm. Some of
these proposals, notably domain-specific modeling and model driven development are starting to
capture the attention of the industry and major software development environments, like Eclipse
and Visual Studio .Net are starting to support them. Also, large industry consortiums, such as OMG
(Object Management Group) are supporting and promoting such proposals.

Model driven development is based on using models as the central artifact in software
development as opposed to source code in traditional development. In these approaches, models are
transformed into other models and, eventually, are transformed into code that can be executed.
Theoretically, a model driven approach can be realized by standard modeling tools, such as UML
modeling tools. All that is required is the possibility to automate transformation between models
and models and code. In practice, it is common that modeling languages be adapted for the specific
needs of the model driven method. For instance, a higher-level model could require adaptations to
include information used to guide the transformation to lower-level model(s). In such a case, it is
required that the modeling tool support some sort of metamodeling [D.C. Schmidt 2006].
Metamodeling consists essentially in modeling the model. If a model is like a language that can be
used to represent a system, then a metamodel is the grammar of that language [Balasubramanian et
al. 2006]. As a metaphor for metamodeling, we like to use the example of the puppet and the
puppeteer: the puppeteer models the world of the puppet and, as such, a puppeteer is a
metamodeler.

1 See Product Line Hall of Fame available at http://www.sei.cmu.edu/productlines/plp_hof.html.

1.2 Overview of Software Engineering Trends

- 3 -

If we consider the puppeteer also as a puppet, then we see that the puppeteer can only model
the world of the puppet according to the rules of its world. These rules are defined by the puppeteer
of the puppeteer. In a metamodeling approach, this means that a model has a metamodel and, since
a metamodel is also a model, it also has a metamodel. This can go on indefinitely. In practice, the
Model Driven Architecture (MDA), which is a standard for model driven and metamodeling from
OMG, only defines four layers of modeling [MDA 2003].

Figure 1: Metamodeling metaphor: Puppeteer as Puppet.

We particularly defend the model driven approach with metamodeling because it supports the
adoption of domain-specific modeling languages and can be used at several levels of abstraction
and in different components of a method. Also, with adequate tool support, this approach may
automate the more cumbersome and demanding tasks of software engineering methods, like the
methods used in software product lines.

1.2 Overview of Software Engineering Trends
In this section we present the most significant trends in software engineering that are related to our
work.

Domain Engineering
Although definitions of concepts and terms may be volatile and a source of discussion, particularly
in recent knowledge areas, we find it is preferable to have a bad definition than to have none at all.
For domain engineering we will adopt the definition found in [Czarnecki 1998]:

“Domain Engineering is the activity of collecting, organizing, and storing past experience in
building systems or parts of systems in a particular domain in the form of reusable assets (i.e.
reusable workproducts), as well as providing an adequate means for reusing these assets (i.e.
retrieval, qualification, dissemination, adaptation, assembly, etc.) when building new systems.”

By capturing the acquired domain knowledge in the form of reusable assets and by reusing
these assets in the development of new products, organizations are able to deliver the new products
in a shorter time and at a lower cost. According to the former definition, domain engineering is a
systematic approach to achieving this goal.

Chapter 1: Introduction

- 4 -

Domain Engineering encompasses three main process components: Domain Analysis, Domain
Design, and Domain Implementation.

Application Engineering

Domain Requirements

Application

Domain Engineering

Reusable Software
Artifacts

User Requirements

Application 1

Application 2

Application N

Application-Specific
Software Artifacts

Figure 2: Domain Engineering and Application Engineering.

The major results of domain analysis are the domain scope, the domain model and the domain
requirements. Domain design is concerned with the common architecture for the systems in the
domain and the design of the reusable artifacts of the domain (for instance components and
domain-specific languages). Domain implementation regards the realization of the designed
artifacts. Figure 2 represents the relationship between domain engineering and application
engineering.

As we can see from Figure 2, there is a parallelism between domain and application activities.
Software artifacts that result from domain engineering can be reused in the development of
applications of the domain. Software artifacts that are specific to an application do not go to the
reusable artifacts repository. Applications of the domain can be used as a source for new domain
requirements. This is the traditional view of domain engineering, where domain and application
engineering are separated but cooperating activities. However, even for single system development
a domain engineering approach is of great value, particularly if the application to be built is
complex. Examples of adopting a domain approach to system design can be found in [Evans 2004].
The approach we present in this thesis also follows this direction.

Examples of domain engineering methodologies are Feature-Oriented Domain Analysis
(FODA) [Kang et al. 1990], Draco [Neighbors 1984], FAST [Weiss 1998], and Organization
Domain Modeling (ODM) [Simos et al. 1996].

Software Product Lines
Here, we adopt the following definition for software product line [Clements et al. 2002]:

“A software product line is a set of software-intensive systems sharing a common, managed set of
features that satisfy the specific needs of a particular market segment or mission and that are
developed from a common set of core assets in a prescribed way.”

1.2 Overview of Software Engineering Trends

- 5 -

From this definition it becomes clear that a software product line involves domain engineering
and also that it implies that the developed software systems are specific to a particular market
segment or mission. It is an approach to software engineering that promotes reuse within the
software development organization. It involves three essential activities: core asset development
(domain engineering); product development (application engineering); and technical and
organizational management.

In software product lines, applications share features, and as such, share common software
artifacts. Applications are built by reusing these common artifacts in order to support common
features and the specific or adaptable features are supported by variability mechanisms. This is very
similar to the process depicted in Figure 2.

One central aspect of a software product line is the architecture. The product line architecture
is common to all the products (applications of the product line) and needs only be instantiated for
each one. The architecture is a blueprint for how each product is assembled from the components in
the repository of artifacts. Some components may need to be tailored for a particular product using
variability mechanisms. Some components will be specific to products. Product lines also include
other concerns in the organization, such as marketing, management, and training. Software product
lines are a global business approach to software development.

Examples of product-line methods are PuLSE [Anastasopoulos et al. 2000] and PLUS [Gomaa
2005].

Software Factories
The term software factory was used to identify software development industrialization approaches
that were developed in Japan since the fifties [Cusumano 1991]. Recently, Microsoft has reused the
same term to describe a specific approach to software product line development. The definition of
software factory according to [Greenfield et al. 2004]:

“A software factory is a software product line that configures extensible tools, processes, and
content using a software factory template based on a software factory schema to automate the
development and maintenance of variants of an archetypal product by adapting, assembling, and
configuring framework-based components”.

Software factories seek to achieve the same level of reuse of other industries by adopting
similar approaches of automation. As such, the basis for software factories is essentially the same
of software product lines. However, they introduce the concept of factory schema, which defines
the artifacts and the assets used to build them. A software factory schema is a directed graph whose
nodes are viewpoints and whose edges are computable relationships between viewpoints called
mappings. According to these definitions, software factories are well suited for model driven
development, since viewpoints could be realized by models and the mappings by transformations
between the models that implement the viewpoints. With software factories it becomes more clear
the advantage of adopting model driven approaches for the development of software product lines.

Regarding product lines, software factories also promote software automation and reuse at an
inter-organizational scope, for instance, for the realization of software supply chains. In this
context, for instance, software product development can be outsourced by sending a software
factory template to an off shore SI (System Integrator). It is also possible that an ISV (Independent
Software Vendor) develops a software factory not for in-house development of software products
but for the development of products in its customers. These are some of the possibilities of
realizing a software factory approach. If we do not take a restrictive view, we can say that some

Chapter 1: Introduction

- 6 -

packaged enterprise applications, such as ERPs [ERP 2007], already fall in the definition of
software factory.

Domain Specific Languages
A domain specific language (DSL) regards a programming language which syntax and semantics
are specialized for a particular application domain or type of problem [Hudak 1998; Thibault
1998]. Domain specific languages have been around for quite some time. Two well-known DSLs
are Structured Query Language (SQL) [SQL 2003] and Hyper Text Markup Language (HTML)
[HTML 2007]. The former is a DSL for the domain of querying and manipulating relational
databases and the later a DSL for the domain of constructing hyper linked digital documents.

DSLs are very well suited for specifying specific perspectives or aspects of a system. In fact, it
is current the use of several DSLs for the specification of software systems. We already mentioned
two examples. Other common example is the use o XML [XML 2007] files for the configuration of
systems. Usually DSLs are also one of the possible results of domain engineering, since they can be
used to specify the variable parts of a system. One possible usage of such a language is to glue
together (and possible adapt) the reusable software components of a product line in order to build a
specific application of the domain.

Similarly to DSLs, models represent a perspective of a system and, as such, we can say that
metamodels define domain specific languages and models are valid sentences of such domain
specific languages.

As we will see next, there is a natural convergence between the previously presented
approaches and model driven engineering. Next, we will briefly present the concept of model
driven architecture, an OMG initiative in the context of model driven engineering.

Model Driven Architecture
Model Driven Architecture (MDA) is an OMG standard that aims at promoting a new way to
develop software in which models are the central piece. According to the MDA specification, this
approach is model driven because it “provides a means for using models to direct the course of
understanding, design, construction, deployment, operation, maintenance and modification”
[MDA 2003].

One of the principles of MDA is the separation of domain knowledge and platform knowledge.
As a result of such principle, there are three types of models: Computation independent models
(CIM) represent business processes and entities; Platform Independent Models (PIM) resolves
functional requirements without platform specifics; and Platform Specific Models (PSM) represent
a solution for a specific platform and includes functional and non-functional requirements. Figure 3
presents and overview of MDA.

Basically, with MDA it is possible to: (1) specify the environment of the system and the
requirements for the system (CIM); (2) specify a system independently of the platform that
supports it (PIM); (3) specify platforms; (4) choosing a particular platform for the system; and (5)
transform the system specification into one for a particular platform (PSM).

The Model Driven Architecture is based on the following OMG technologies and standards:
(1) Meta Object Facility (MOF) [MOF 2006]: Meta-modeling language and interchange (XMI
[XMI 2007]); (2) Unified Modeling Language (UML) [UML 2005]: A standard modeling
language, instance of the MOF model; (3) Common Warehouse Metamodel (CWM) [CWM 2007]:
Modeling languages for data warehouse applications; (4) Object Constraint Language (OCL) [OCL

1.2 Overview of Software Engineering Trends

- 7 -

2006]: Expression language, extends the expressive power of UML and MOF; (5)
Query/Views/Tranformations (QVT) [QVT 2005]: A transformation definition language. Also for
queries and views of models; and (6) Software Process Engineering Metamodel (SPEM) [SPEM
2005]: Metamodel and UML profile used to describe a concrete software development process.

Computation
Independent Model

Platform Independent
Model

Platform Specific
Model

CIM to PIM transformation

PIM to PSM transformation

Computation
Independent Metamodel

Platform Independent
Metamodel

Platform Specific
Metamodel

conforns to

conforns to

conforns to

Figure 3: Model Driven Architecture.

Model Driven Engineering
As we have seen, MDA is the OMG view of what should be a model driven approach to software
development. Model Driven Engineering (MDE) is a more broader vision, encompassing many
popular current research trends related to generative and transformational techniques in software
engineering, system engineering and data engineering [Bézivin 2005]. In this approach, the whole
software life cycle is seen as a process of model production, refinement and integration. As such,
source code is just another form of models.

This is not so different from MDA. We could say that the great difference is that MDE is not
constraint by the OMG technologies and standards.

Applying an MDE approach requires, at least, two engineering levels: one related to
metamodeling and the other related to modeling. If we think of it, the metamodeling part implies
domain engineering, because the result will be a domain specific platform that will be used to
support the modeling of specific applications. When we use the term domain specific platform, we
intend to include, for instance, object-oriented frameworks, template languages, and modeling
environments, which are based on the domain engineering process and are used to support the
modeling of applications. This is a way of software development that is very different than the
usual way, in which developers only work at one level, using tools for developing applications. In
an MDE approach, developers also have to work at the tool level, i.e., the metamodeling level. As
we will see throughout this thesis, MDE is based essentially on two new software development
activities: metamodeling and model transformation.

In this thesis we use the term model driven engineering and model driven development
interchangeably.

Chapter 1: Introduction

- 8 -

1.3 Research Goals
As the reader already has been able to notice, this thesis is about two main topics: model driven
engineering and software product lines. In this thesis, we adopt a broader interpretation for
software product lines that includes systems such as software factories as well as enterprise
applications, such as ERPs. Although there are model driven approaches applied to such types of
systems, they are essentially related to platform independent and platform specific models [Childs
et al. 2006]. On the other end, in this thesis, the focus is on computation independent and platform
independent models. The other context of this thesis is the adoption of a domain-specific platform
[Braganca et al. 2004; Czarnecki et al. 2006] approach using model driven engineering, which is
depicted in Figure 4.

Domain Requirements

Domain-Specific Platform Engineering

Software Artifacts

User Requirements

Application Building

Application 1

Application N

Application 2

Figure 4: Software product line development using a domain-specific platform approach.

The main research objective of this thesis can be described by the following statement:

The primary objective of this thesis is to provide a set of methodological approaches and
techniques that effectively enables the widely adoption of model driven methods for the
development of software product lines.

In the context of this main objective, the following goals are defined:

Goal 1: Propose an approach for the modeling of commonality and variability in the context of
computation independent models.

Goal 2: Propose an approach to support the derivation of platform independent architecture models
based on computation independent models.

Goal 3: Propose an approach to support the tracing between analysis and design model elements.

Goal 4: Propose technical approaches for tool supporting of the goals 1 through 3.

Each of these goals topics resulted in approaches that were described in research papers. These
papers were all peer-reviewed anonymously. They were also publicly presented and discussed by
researchers specialized in the scientific field.

We propose to accomplish the research goals of this thesis by adopting model driven
engineering techniques, and we particularly focus on metamodeling and transformation techniques.
This objective is not pursued as a theoretical study. Instead, we take a pragmatic viewpoint in
which existing theories, methods, tools and techniques can be combined to support our goal. We
also take this approach because our research is in the field of software engineering where, in

1.4 Research Approach

- 9 -

contrast to other fields of computer science, the human factor is of the most importance. In this
context, it is not sufficient to have the best technical solution; the process and all involved
resources/persons must also be taken into account. In the next section we discuss our research
approach.

1.4 Research Approach
As well as a model has to conform to a metamodel, research in software engineering has to
conform to a research method. In this section, we briefly present the research method used in this
thesis.

Software engineering is a discipline of the computer science with particularities when
compared to other disciplines such as theory of computation or programming languages and
compilers. According to the SWEBOK (Software Engineering Body of Knowledge), software
engineering encompasses knowledge, tools, and methods for defining software requirements, and
performing software design, software construction, software testing, and software maintenance
tasks [SWEBOK 2007]. It also states that software engineering is related to other disciplines such
as management, project management and software ergonomics. These are disciplines which are
related to social sciences such as economics, management, anthropology and sociology. The
human/social factor makes software engineering a particular discipline of an applied science
(computer science). Figure 5 presents the context for software engineering research. Not all
solutions in software engineering are solely technical. Software practitioners adopt tools and
methods of software engineering that they will use in organizations, within teams, and for the
purpose of developing software products such as information systems that will, most probably,
interact heavily with persons.

Research
Methodologies

Software Engineering
Research

Software Practitioners

Tools and
Methods

Software (to solve
problems)

Figure 5: The context of Software Engineering Research.

This thesis follows the classification for software engineering research methods proposed in
[Adrion 1993]: Scientific, Engineering, Empirical, and Analytical. Of these four research methods,
and according to the same author, the empirical method is the most appropriated for software

Chapter 1: Introduction

- 10 -

engineering research. The empirical method is based on the application of the proposed model to
case studies (in some contexts also called demonstration cases) in order to measure and analyze the
results and, eventually, repeat the process. In contrast, the analytical method does not force the use
of case studies; the results can be derived. The scientific method is the traditional research method
that is based on the observation of the real world, and as such, is more tailored to natural sciences.
In the engineering method, existing solutions are observed and better solutions proposed and
developed. The new solutions are measured, analyzed and evaluated and the process is repeated if
needed.

Although the empirical method is the most suited for software engineering research it is also a
very demanding method since it requires the application of the proposed models to case studies in
order to measure the results. In the context of the work of this thesis, it was not possible to fully
develop the case studies that the method would require and, consequently, we do not have
quantitative evaluations of our work. As such, we decided to use qualitative measures of our
proposals. These measures resulted essentially from our own experience in several software
engineering projects in the form of discussions and observations with practitioners. These
qualitative assessments of our proposals are usually presented in the form of case studies that
reflect real cases but are simplified in order to facilitate their description in research papers. We
have also used another form of evaluation of our work that consisted in the analysis and
comparison of other solutions to the same problems, which is a validation more common to the
engineering research method.

Regarding validation approaches used by software engineering research works, Mary Shaw
identifies the following types of validation [Shaw 2003]: Analysis, Evaluation, Experience,
Example, and Persuasion. Shaw states that it is essential to select a form of validation that is
appropriate for the type of research result and the method used to obtain the result. She also states
that a simple example derived from a practical system may play a major role in validating a new
type of development method.

1.5 Overview
The structure of this thesis partially covers the activities depicted in Figure 6. This figure presents
the major activities regarding model driven development of software product lines. The figure only
represents the major concerns of this thesis, it does not show all the activities involved in
developing software product lines and it also does not show all the data and control flows and, as
such, all the dependencies between activities.

The remainder of this thesis is structured in five chapters and three appendixes.

The contents of chapter 2 to 5 are partially based on research papers. All the research papers
were peer reviewed. These chapters are as much as possible self-contained. As such, the reader is
free to select the topic of interest without much concern regarding a required reading flow. Our
only suggestion is the reading of Chapter 2 previously to chapters 3, 4 and 5, particularly if the
reader is not familiar with the research field of domain engineering and software product lines.
Each chapter covers specific topics depicted in Figure 6. To help the reader, we highlight the topics
covered by the text at specific location of the chapters. Chapter 2 is an exception since it covers all
the topics presented in Figure 6.

Chapter 2 presents the state-of-the-art of the research fields, particularly for domain
engineering. We discuss several relevant domain engineering methods and compare them

1.5 Overview

- 11 -

according to three perspectives: variability identification; variability representation; and variability
implementation. The major concepts of the field are also presented and related.

a) Elicitation of Requirements

b) Create Use Case Model

e) Create Feature Model d) Create Entity Model

c) Create Activity Model

f) Create Use Case Realization Model
(Component/Class Model)

g) Create Component/Class Model

h) Refactor Component/Class Model

j) Create Code Base

i) Create State Model

D
es

ig
n

Im
pl

em
en

ta
tio

n
An

al
ys

is
R

eq
ui

re
m

en
ts

Figure 6: Excerpt of activities for model driven development of software product lines.

Chapter 3 is concerned with methodological proposals for model driven development of
software product lines. It covers the analysis and design phases in a transversal way, i.e., it is not
specific to any activity depicted in Figure 6. Part of it describes an approach to extend an existing
model driven method, called 4SRS (4-Step Rule Set) [Machado et al. 2005], to explicitly handle
variability. The second half of this chapter presents a proposal to support the transformation of
analysis models into architectural models. It also delineates some approaches to detail the first
logical architecture of a system by integrating design patterns in the proposed approach. The
proposals discussed in the second half of Chapter 3 constitute the major components of MoDeLine
(Model Driven Development of Software Product Lines), a model driven method for the
development of software product lines that started from our experience in adapting 4SRS.

Chapter 4 is concerned with metamodeling and modeling issues. The first half of the chapter
describes a proposal to adapt the UML 2.0 metamodel in a way that effectively enables the
adoption of use case diagrams in model driven approaches aimed at the development of software

Chapter 1: Introduction

- 12 -

product lines. The second half of the chapter describes a proposal to extend a UML profile for the
design of frameworks and product lines called UML-F so that it includes requirements and analysis
diagrams.

Chapter 5 is dedicated essentially to model transformations. The first half of the chapter
presents a proposal of mappings between use cases and feature diagrams. It also presents how these
mappings can be supported by the QVT operational language and the SmartQVT tool [SmartQVT
2007]. The second half of the chapter presents a proposal to support multi-staged software
development in the context of model driven and software product lines. This is one of the scenarios
of usage for software factories.

Chapter 6 is dedicated to conclusions. In this chapter we analyze the research goals and how
they have been covered by our work. We also present future work and open issues.

Appendixes A, B and C present some details about experimental implementations regarding
the proposals presented in this thesis.

1.6 References
[Adrion 1993] Adrion, W. R., "Research methodology in software engineering," Dagstuhl
Workshop on Future Directions in Software Engineering, 1993.

[Anastasopoulos et al. 2000] Anastasopoulos, M., J. Bayer, O. Flege and C. Gacek, "A Process for
Product Line Architecture Creation and Evaluation - PuLSE-DSSA - Version 2.0," IESE
038.00/E, 2000.

[Balasubramanian et al. 2006] Balasubramanian, K., A. Gokhale, G. Karsai, J. Sztipanovits and S.
Neema, "Developing Applications Using Model-driven Design Environments," IEEE Computer,
vol. 39, 2006.

[Batory 2004] Batory, D., "Feature-Oriented Programming and the AHEAD Tool Suite,"
International Conference on Software Engineering, Edinburgh, Scotland, UK, 2004.

[Bézivin 2005] Bézivin, J., "Model Driven Engineering: Principles, Scope, Deployment and
Applicability," GTTSE 2005, Braga, Portugal, 2005.

[Braganca et al. 2004] Braganca, A. and R. J. Machado, "Run-time Feature Realization based on
Domain-Specific Platforms," ICSR8 (Poster Presentation), Madrid, 2004.

[Childs et al. 2006] Childs, A., J. Greenwald, G. Jung, M. Hoosier and J. Hatcliff, "CALM and
Cadena: Metamodeling for Component-Based Product-Line Development," IEEE Computer,
vol. 39, pp. 42-50, 2006.

[Clements et al. 2002] Clements, P. and L. Northrop, Software Product Lines - Practices and
Patterns: Addison Wesley, 2002.

[Cusumano 1991] Cusumano, M. A., Japan's Software Factories. Oxford: Oxford University Press,
1991.

[CWM 2007] OMG, "Common Warehouse Metamodel Specification v1.0 (ad/01-02-01),"
Available at http://www.omg.org, 2007.

1.6 References

- 13 -

[Czarnecki 1998] Czarnecki, K., "Generative Programming Principles and Techniques of Software
Engineering Based on Automated Configuration and Fragment-Based Component Models," in
Department of Computer Science and Automation: Technical University of Ilmenau, 1998.

[Czarnecki et al. 2006] Czarnecki, K., M. Antkiewicz and C. H. P. Kim, "Multi-level
Customization in Application Engineering," Communications of the ACM, vol. 49, 2006.

[D.C. Schmidt 2006] D.C. Schmidt, "Model-Driven Engineering," IEEE Computer, vol. 39, pp. 25-
31, 2006.

[ERP 2007] Wikipedia, "ERP: Enterprise Resource Planning," Available at
http://en.wikipedia.org/wiki/Enterprise_resource_planning, 2007.

[Evans 2004] Evans, E., Domain-Driven Design - Tackling Complexity in the Heart of Software:
Addison Wesley, 2004.

[Gomaa 2005] Gomaa, H., Designing Software Product Lines with UML: Addison Wesley, 2005.

[Greenfield et al. 2004] Greenfield, J., K. Short, S. Cook and S. Kent, Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools: Wiley, 2004.

[HTML 2007] W3C, "HTML: Hyper Text Markup Language," Available at http://www.w3c.org,
2007.

[Hudak 1998] Hudak, P., "Modular Domain Specific Languages and Tools," Fifth International
Conference on Software Reuse, Victoria, Canada, 1998.

[Johnson 1995] Johnson, J., "CHAOS: The dollar drain of IT project failures," Application
Development Trends, pp. 41-47, 1995.

[Kang et al. 1990] Kang, K. C., S. G. Cohen, J. A. Hess, W. E. Novak and A. S. Peterson, "Feature-
Oriented Domain Analysis (FODA) Feasibility Study Technical Report," Software Engineering
Institute, Carnegie Mellon University CMU/SEI-90-TR-21, 1990.

[Kiczales et al. 1997] Kiczales, G., J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M.
Loingtier and J. Irwin, "Aspect-Oriented Programming," European Conference on Object-
Oriented Programming (ECOOP), Finland, 1997.

[Krueger 2006] Krueger, C. W., "New Methods in Software Product Line Development," 10th
International Software Product Line Conference SPLC 2006, Baltimore, Maryland, USA, 2006.

[Machado et al. 2005] Machado, R. J., J. M. Fernandes, P. Monteiro and H. Rodrigues, "On the
Transformation of UML Models for Service-Oriented Software," ECBS International
Conference and Workshop on the Engineering of Computer Based Systems, Greenbelt,
Maryland, 2005.

[MDA 2003] OMG, "Model Driven Architecture Guide Version 1.0.1," Available at
http://www.omg.org, 2007.

Chapter 1: Introduction

- 14 -

[MOF 2006] OMG, "Meta Object Facility (MOF) 2.0 Core Specification (formal/06-01-01),"
Available at http://www.omg.org, 2006.

[Neighbors 1984] Neighbors, J. M., "The Draco approach to constructing software from reusable
components," IEEE Transactions on Software Engineering, vol. 10, pp. 64-74, 1984.

[OCL 2006] OMG, "Object Constraint Language Specification v2.0 Final Adopted Specification
(formal/06-05-01)," Available at http://www.omg.org, 2006.

[QVT 2005] OMG, "MOF QVT Final Adopted Specification (ptc/05-11-01)," Available at
http://www.omg.org, 2005.

[Shaw 2003] Shaw, M., "Writing Good Software Engineering Research Papers," 25th International
Conference on Software Engineering, 2003.

[Simos et al. 1996] Simos, M., D. Creps, C. Klinger, L. Levine and D. Allemang, "Organization
Domain Modeling (ODM) Guidebook, Version 2.0," Informal Technical Report for STARS
STARS-VC-A025/001/00, 1996.

[SmartQVT 2007] France Telecom, "SmartQVT - Open Source Transformation Tool Implementing
the MOF 2.0 QVT-Operational Language," Available at http://smartqvt.elibel.tm.fr/, 2007.

[SPEM 2005] OMG, "Software Process Engineering Metamodel Specification v1.0 (formal/05-01-
06)," Available at http://www.omg.org, 2007.

[SQL 2003] ISO, "Information technology -- Database languages -- SQL -- Part 2: Foundation
(SQL/Foundation)," Available at http://www.iso.org, 2003.

[SWEBOK 2007] IEEE, "Guide to the Software Engineering Body of Knowledge," Available at
http://www.swebok.org, 2007.

[Thibault 1998] Thibault, S., "Domain Specific Languages: Conception, Implementation and
Application." Paris: Université de Rennes 1, 1998.

[UML 2005] OMG, "Unified Modeling Language Version 2.0: Superstructure (formal/05-07-04),"
Available at http://www.omg.org, 2005.

[Weiss 1998] Weiss, D. M., "Commonality Analysis: A Systematic Process for Defining Families,"
Second International Workshop on Development and Evolution of Software Architectures for
Product Families, 1998.

[XMI 2007] OMG, "MOF 2.0/XMI Mapping Specification, v2.1 (formal/05-09-01)," Available at
http://www.omg.org, 2007.

[XML 2007] W3C, "XML: Extensible Markup Language," Available at http://www.w3c.org, 2007.

- 15 -

2. Related Work
“Leave no Stone Unturned”
Euripides, in “Heraclidae”

This chapter presents the state-of-the-art of the research fields, particularly for domain engineering.
We start by introducing and contextualize domain engineering. We then analyze eight software
development methods that can be classified as domain engineering methods. The major concepts
used in these methods are then discussed and a comparison is made on how each method deals with
the following topics: variability identification; variability representation; and variability
implementation.

2.1 Introduction
Domain engineering is the basis for software reuse, particularly in the case of software product
lines. Domain engineering can enable an effective reuse of several types of artifacts in a given
domain ranging from code to analysis models. Scoping the problem space to a given domain
implies that the possible solution space is limited. Therefore, it becomes more simply to reuse parts
of the solution space in several applications (that are also part of the domain solution space). In
order to reuse these common parts in several applications, it is very probable that adaptations, or
variations, will be needed (in these common parts) to meet the requirements of the different
applications of the domain. Domain engineering focuses on finding common and variable parts of a
domain in order to support reuse in that domain. This chapter presents an overview of domain
engineering methodologies and related work. The major focus is on how to identify, represent and
implement variability in a domain.

Providing a domain engineering state-of-the-art is an overwhelming task. We could start with
the work of Parnas on program families [Parnas 1976] and with the work of Neighbors, to our
knowledge, the first explicit domain engineering methodology [Neighbors 1980]. If we want to go
even further, we can say that domain engineering appears also in the work of Dijkstra on structured
programming [Dijkstra 1969], where he already speaks of step-wise program composition and
program families. The more recent works are, naturally, on more specific sub-topics of the domain
engineering field of knowledge. One of the most referenced works in the product-line area is [Kang
et al. 1990] with the introduction of feature diagrams. Regarding methodologies, Gomaa discusses
the adoption of UML 2.0 for software product line development [Gomaa 2005]. IESE has produced
a lot of industrial experience reports on software product lines [Anastasopoulos et al. 2000]. An
overview of the practical application of domain engineering in product lines can be found on
[Clements et al. 2002] and in software factories on [Greenfield et al. 2004].

Software Engineering
The development of software systems is still a very hard and difficult engineering process. In fact,
the main aim of software engineering, according to Fritz Bauer is “The establishment and use of
sound engineering principles in order to obtain economically software that is reliable and works
efficiently on real machines” [Naur et al. 1969]. To achieve these goals, Pressman states that

Chapter 2: Related Work

- 16 -

software engineering encompasses a set of three key elements: methods, tools and procedures
[Pressman 2004]. In the context of these elements, various software engineering paradigms have
been proposed and used. Examples are the waterfall model [Royce 1970], the spiral model [Boehm
1988a], or Rational Unified Process (RUP) [RUP 2004].

All these paradigms aim at provide sound engineering principles. Even if many of these
paradigms have been widely adopted, it is still very hard to, make accurate predictions of a
software project delivery date, for instance. If the duration of the project is not accurate then the
project is not economically feasible. In order to maintain the economically feasibility of the project,
normally the product outcome will have less functionalities, be less reliable or less efficient. It may
even be economically worst because of maintenance cost that came out of the poor reliability and
efficiency of the product. We have seen various documented reports of such difficulties in the
software industry since the CHAOS report [Johnson 1995].

Reuse and Software Product Lines
Recently, more pragmatic approaches, like Extreme Programming [Beck 1999], have been
proposed. Several of the authors of such approaches have founded the Manifesto for Agile Software
Development [Beck et al. 2001]. One such pragmatic approach is based on the intuitive concept of
reuse. The reuse approach is based on building new software systems reusing already existing and
proved artifacts. With this approach software engineering projects become more predictable.
Particularly, predictions of costs and delivery dates become more accurate. Software reliability can
also improve because of the reuse of already tested and proved artifacts.

In the past, reuse has been adopted in the industry with relative success. Examples are the use
of class libraries like wxWindows [wxWindows 2007]. These all have the benefit of providing the
programmer the possibility of code reuse that deals with programming needs, like implementing
graphical windowing systems or data containers structures such arrays and lists. However, these are
all reuse of software of generic nature. The advantages of software reuse can be much more if
exploited in specific domains.

Product families and product lines aim at promoting reusability within a given set of software
products [Bosch 2000]. Software product lines have achieved substantial adoption by the software
industry. The adoption of product line software development approaches has enabled a wide variety
of companies to substantially decrease the cost of software development, maintenance, and time to
market and increase the quality of their software products [Bosch 2002].

To accomplish reusability among various software products, there must be common
characteristics among them. Normally, this means that the various software products must share the
same domain. Therefore, an organization that has built several software systems in a domain also
has acquired very good knowledge of such a domain. This knowledge can be used when building
new software systems in the same domain. A fundamental technical requirement for achieving
successful software reuse is the systematic discovery and exploitation of commonality across
related software systems [Prieto-Diaz 1990]. A software product line approach involves domain
engineering to build common assets, application engineering to reuse these assets when building
new products, and technical and organizational management to apply the approach.

Commonality and Variability
By capturing the acquired domain knowledge in the form of reusable assets and by reusing these
assets in the development of new products, organizations will be able to deliver the new products in
a shorter time and at a lower cost [Czarnecki 1998].

2.1 Introduction

- 17 -

So, we can say that reuse has to do with finding commonalities among software systems within
a domain. Nonetheless, to build diverse software systems within a domain we also need to specify
variability. Domain engineering focuses on supporting systematic and large-scale reuse by
capturing both the commonalities and the variability of systems within a domain to improve the
efficiency of development and maintenance of those systems. As such, variability is one of the key
aspects of domain engineering.

Figure 7 depicts the life cycles of domain engineering and application engineering based on
documentation available at the Software Engineering Institute (SEI) [SEI 2007b] of Carnegie
Mellon University.

Domain Management

System n

System 2

Domain Engineering

Domain Analisys Software Architecture
Development

Reusable Asset
Component/Generator

Development

Domain Model
Domain Software

Architecture
Reusable Components

and/or Generators

System 1

Application Engineering

Analisys based on
Domain Model

Software System Design based on
Domain Architecture

Application Software
Development

Application Performance
Specification

Application Software
Architecture Application Software

User Requirements

Figure 7: Domain engineering vs. application engineering (based on [SEI 2007b]).

In the figure it is clear that domain engineering has to do with engineering for reuse and
application engineering with engineering with reuse. Based on that figure, it is also clear that the
application engineer must reuse artifacts from domain engineering to instantiate a new application
in the domain. This new application will have common functionalities with others in the domain
but will also have differences that make it a particular instance of that domain. This means that the
notion of variability and the methods, techniques and technology used to achieve variability are one
of the most important issues in domain engineering.

Variability in software is achieved fundamentally by the following techniques [Svahnberg et
al. 2000; Gurp 2003]:

Inheritance, is used when the variation point is a method that needs to be implemented for
every application, or when an application needs to extend a type with additional
functionality.

Chapter 2: Related Work

- 18 -

Extensions and extension points, are used when parts of a component can be extended with
additional behavior, selected from a set of variations from a variation point.
Parameterization, templates and macros, are used when unbound parameters or macros
expressions can be inserted in the code and later instantiated with the actual parameter or
by expanding the macro.
Configuration and module interconnected languages, are used to select appropriate files
and fill in some of the unbound parameters to connect modules and components to each
other. By configuration is meant the process in which source code is selected from a code
repository and put together to form a particular product. Module interconnection languages
are one way of describing configurations.
Generation of derived components, is adopted when there is a higher level language that
can be used for a particular task, which is then used to create the actual component.

There are also more recent techniques and methods that came from the academia but have still
limited adoption in the industry, such as: aspect-oriented programming [Kiczales et al. 1997],
subject-oriented programming [Ossher et al. 1994]; frame technology [Bassett 1997]; feature-
oriented programming [Batory 2004]; and generative programming [Czarnecki 1998].

Domain Engineering
In domain engineering, the term domain is used to denote or group a set of systems or functional
areas, within systems, that exhibit similar functionality [SEI 2007a]. Domain engineering is the
foundation for the product line software development approaches [Foreman 1996].

One can say that domain engineering started with the work of Dijkstra regarding structured
programming and the notion of programming for reuse [Dijkstra 1969; Czarnecki 1998].

The next major reference is the work of Parnas on program families [Parnas 1976]. Parnas
stated why one should study program families instead of individual programs. He also stated that a
set of programs is considered a family when it is the case that in order to study this set, it is
necessary to study the common properties among the elements of the set first, and then study the
properties of the individual family members. He also stated that in a program family one should
first study the commonalities (common features) and then the variability (diverse features) of each
program.

The work of Neighbors is also of major importance. He introduced the first domain
engineering methodology, named Draco, in his PhD [Neighbors 1980]. In his thesis he argues that
many software systems are very similar and so should be built out of reusable software
components. He also states that for reuse to be successful it is necessary to reuse not only code, but
also analysis and design artifacts. Neighbors states that “the concept of domain analysis is
introduced to describe the activity of identifying the objects and operations of a class of similar
systems in a particular problem domain”.

There are not so many well-documented domain engineering methodologies. There are also
less documented applied case studies. The Software Engineering Institute of Carnegie Mellon
University is one of the exceptions. In fact, in 1990, SEI published a technical report regarding
Feature-Oriented Domain Analysis [Kang et al. 1990]. To our knowledge this is the first method
which claims it self to be a domain engineering methodology. One major advantage of this
methodology regarding others is that it has much public available documentation. Another
advantage is that much of this documentation regards applied cases.

2.1 Introduction

- 19 -

In domain engineering, the domain products represent the common functionality and
architecture of applications in a domain. These are generic and should be reused in the
development of new systems in the domain. The generic nature of the domain model implies that
there is variability in the possible implementations of applications (systems) in the domain. The
development of new systems in the domain requires refinements in domain products so that the
specificity of new system can be achieved. When we add specificity we are removing the
variability of the domain model, i.e., we are selecting one of the possible choices of
implementation. The process of removing generality - or adding specificity - in order to build a new
system needs some mechanism to implement variability.

As already mentioned, the domain products are artifacts that can be reused in building new
systems in the domain. These artifacts can be abstractions of functionalities or designs (i.e.,
architecture) to be reused in the development of new systems in the domain. Product frameworks
and product lines are based on the reuse of such abstractions [Bosch 2000]. Thus, one can say that
domain engineering should be used in the development of product lines and product frameworks.

In a domain there are common parts that represent invariants of the domain. If we are talking
about product frameworks or product lines we can say that these common parts are software
components that implement invariant functionalities (abstractions). In order to differentiate
between diverse products in a product line or different applications from a framework we need a
variability mechanism. On the modeling phase there is also the need to represent variability. Some
usual design concepts that can represent variability are:

Aggregation/decomposition and generalization/specialization. These are modeling
concepts very familiar to object-oriented programmers. With aggregation, grouping several
abstractions creates a new abstraction. Decomposition is the inverse of aggregation. When
we decompose one abstraction into its components we are refining that abstraction.
Generalization/specialization. When we create one abstraction by using the commonalities
between abstractions we are generalizing. With generalization abstractions loose
specificity. Specialization is the inverse of generalization. An abstraction is specialized
when we add features to the abstraction. Specialization is also a refinement.
Parameterization. Parameterization is a technique in which software is adapted/configured
by substituting the values of the parameters in the software.

These design concepts are heavily used in the original GoF (Gang of Four) design patterns
[Gamma et al. 1995]. Some authors defend that some design patterns can be considered as small
product lines [Pree et al. 2002]. Patterns can be considered a micro-architectural view of a system.
Most work in patterns is from a component or design reuse perspective. Software patterns are
widely used in the development community because they normally originate from best practices
[Fowler 2002].

There are several fields/disciplines that are related to domain engineering. As we saw,
architecture modeling is a very important activity in domain engineering. One area of particular
interest is how to describe a software architecture [Garlan et al. 1994]. Architecture Description
Languages (ADLs) are used to describe the components, connectors, and information about their
interactions that compose a system. There are several languages and tools that can be classified as
ADLs [Medvidovic 1997]. This is also a very active field of research that is very strong related to
domain engineering. For instance, the concept of software architecture is central to the
Domain-Specific Software Architecture (DSSA) method [Hayes-Roth 1994]. We can see DSSA as
an application of the concept of software architecture in a domain. In fact, one of the outputs of
domain engineering is a software architecture for the domain.

Chapter 2: Related Work

- 20 -

The Object Connection Architecture (OCA) was presented in [Peterson et al. 1994] as a
method that uses the outputs of Feature-Oriented Domain Analysis to build a generic design for
the domain. This generic design encompasses software components that conform to the software
architecture model proposed for structuring software systems in OCA.

There are also other methods and techniques that can relate to domain engineering because of
the focus they put on reuse. Examples are the OOram method [Reenskaug et al. 1996] and the work
on software frameworks [Fayad et al. 1999].

Next, we will briefly present some domain engineering methods. Some of them are explicitly
aimed at software product lines. Our goal is not to present an exhaustive list of methods but one
that is representative of the evolution of the methods in this field and that took a major role in this
thesis to frame the research efforts described in the next chapters of this document.

2.2 Draco
Neighbors introduced the first domain engineering methodology, named Draco, in his PhD
[Neighbors 1980].

Draco uses domain-specific languages, prettyprinters, source-to-source transformations and
software components. Draco is based on the assumption that we can specify a program in a high
level domain, i.e., the problem domain, and then transform that program successively into other
domains, until we get a program in an executable domain. When we achieve this stage we have a
solution to the initial problem in an executable format. We can say that Draco is a transformational
system. In that perspective it has a lot of communalities with the model driven approach to software
development.

The method is based on the definition of several domains with the respective domain-specific
language and transformations between the domains. The initial domain is the domain of the
problem or the business domain. A program in the domain is specified using this domain-specific
language.

One can say that the Draco system was a precursor of domain engineering methodologies. It is
also accurate to say that Neighbors work seems to have influenced almost every methodology or
technology in the field of domain engineering. Other works based on transformation are Intentional
Programming [Simonyi 1995], GenVoca [Batory et al. 1992], and Generative Programming
[Czarnecki 1998].

The method is composed of basically three activities: determine domains of interest; research
the domain; and construct a software system.

Determine domains of interest
The determination of the domains of interest is based on the goals of the organization and on the
identification of areas where there is a demand for many similar systems. We can say that this
corresponds to scoping the domain. The output of this activity is a problem domain in which the
organization is interested in producing software. This result is used as input to the research domain
activity.

2.2 Draco

- 21 -

Research the Domain
The research domain activity is based on: analyze the domain; construct a domain; test a domain;
and add a domain to the library of domains. The result of domain analysis should be, at least, a
domain analysis report. If the report has enough detail, then it can be used as a source to the activity
of domain construction. The analysis of a domain is based on: information about the domain;
experience with building systems in the domain; and the library of domain analysis reports and
already available Draco domains (since new domains should be constructed in terms of domains
already known to Draco). According to the author of Draco, the construction of a domain is a
craftsman activity. Figure 8 presents the details of the research domain activity.

Information about the
Domain

Analyze the Domain

Construct a Domain

Domain
Analysis Report

Domain Library

Test Domain

Add Domain to Library

Experience with buiding
systems in the Domain

Domain Analist Draco and Domain Designer

successful

unsuccessful

enough detail

not enough detail
Add to Library

of Reports

Library of Reports

Figure 8: Draco activity of research a domain (based on [Neighbors 1980]).

Construct a Software System
The domain construction activity of Draco is based on the central concept of domain languages and
transformations between them. As such, the final outputs of domain engineering in Draco are
always domain-specific languages and tools. Because of that, the initial analysis phase of the
method is very oriented towards identifying language constructs. The syntax of the domain
language is designed (external form) and also a suitable internal form of the language (similar to a
parse tree). A prettyprinter is created which can generate the external form of the language based
on the internal form. Source-to-source transformations are designed which provide a mechanism to
specify refinements in the internal representation language of the domains. Finally, the components
of the domain are also designed. These components represent objects and operations in the domain.
The components of a domain relate the internal form of a domain to the internal form of other
domains.

At the application engineering level, applications can be built with or without the Draco
system. Even if applications are built outside Draco, the knowledge that results from the process
can be an input for the domain analyst. One can say that a major input of knowledge about the
domain is the actual organization experience in building applications in the domain. The Draco
method suggests that there can be other sources of information such as documents about the
domain. The method also states that after the identification of the objects and operations of the

Chapter 2: Related Work

- 22 -

domain, the domain designer can specify the syntax of the domain language. What the method
doesn’t state is how to do this. Draco also doesn’t specify clearly how to identify the objects and
operations of the domain. These objects and operations represent the commonalities of a domain.
The variability in Draco is the way we can combine these operations and objects. Since these
combinations are only limited be the grammar of the language, the results of the domain analysis
identify a very wide scope of variability, i.e., all the possible programs we can build with the
domain language.

2.3 Feature-Oriented Domain Analysis (FODA)
The primary goal of the Feature-Oriented Domain Analysis method [Kang et al. 1990] is to provide
a basis for understand and communicate about the problem space addressed by software in a
domain. In order to achieve this goal, the method is based on the examination and study of a class
of related software systems and the common underlying theory. The result should be a reference
model that describes the class of software systems. The method also proposes a set of architectural
approaches for the implementation of new systems. This means Feature-Oriented Domain Analysis,
as the name implies, is focused on analysis of the domain, i.e., the analysis and representation of
the problem space.

Since the central focus of the method is domain analysis, it encompasses basically three
phases:

Context Analysis: defining the extent of a domain for analysis;
Domain Modeling: describing the problems within the domain that are addressed by the
software;
Architecture Modeling: creating the software architecture(s) that implements a solution to
the problems in the domain.

Each of the phases of the domain analysis method is composed of several activities. The results
of these activities are documents that describe domain knowledge. These documents define the
scope of the domain, describe the problems solved by software in the domain and describe
architectures that can implement solutions.

As we can see, the method has one phase for architecture modeling, which could mean it also
addresses the creation of software solutions. As we will see later, this is not entirely true. In fact,
the original method is very vague on how to evolve from the problem representation into the
solution space.

The method also defines the possible roles of participants in the domain analysis process: end
user, domain expert, domain analyst, requirements analyst and software designer. These roles can
be further classified by their ‘relation’ with the method. The end user and the domain expert are
sources to the method. The domain analyst is a producer. Requirement analyst, software engineer
and the end user are consumers. Figure 9 represents the phases and products of Feature-Oriented
Domain Analysis.

One very important aspect is the roles people, or systems, play. If we refer again to Figure 9,
we can imagine a requirements analyst and a software designer using the products of a domain
analysis when implementing a new system in the domain. In this scenario, we can also imagine a
domain analyst using the feedback from the implementation of new systems to further extend and
evolve domain analysis.

2.3 Feature-Oriented Domain Analysis (FODA)

- 23 -

Domain Analysis

Context Analysis Domain Modeling Architecture Modeling

Structure Diagram
Context Diagram

Features Model
Entity Relationship Model

Functional Model
Domain Terminology

Dictionary

Process Interaction Model
Module Structure Chart

Figure 9: Phases and products of Feature Oriented Domain Analysis (based on [Kang et al. 1990]).

Features are the core concept of Feature-Oriented Domain Analysis. We can think of a feature
as a characteristic of a concept. The method uses features to represent characteristics of concepts of
the domain. Some of these features are invariant in the domain. Others can vary and there may be
rules in the selection and composition of features in a domain. The concept of features in domain
modeling is very used because the terminology adopted is very close to the end user and the
domain experts. As such, domain models that use features become of easy understanding.

Context Analysis
The objective of the initial phase of the method is the definition of the scope of a domain in terms
of the probability that the domain will give usable domain products. The relationships between the
domain and the external elements are evaluated. The degree of variability of the domain is also
evaluated. The availability of domain sources (experts, documentation, etc.) is also used to scope
the domain.

As depicted in Figure 9 the documentation resulting from context analysis is the structure
diagram and the context diagram. The structure diagram is used to show the relations between the
domain and other domains. This type of diagram includes higher, lower and peer level domains
regarding the domain in study. Higher domains are domains that include the domain.

The context diagram is a top-level data-flow diagram of the interfaces the domain has with
other domains or entities. The particularity of this data-flow diagram is that the variability of the
data-flows across the domain boundary must be indicated. If the variations are due to different
features of the applications in the domain, this fact must be described. Because features are only
introduced in the phase of domain modeling, this means that context analysis and domain modeling
may be done in parallel. Entities that appear in the context analysis must be described.

Domain experts, end-users, documents and applications of the domain are all sources of
knowledge that the domain analyst can use in the context analysis. The FODA method suggests
some guidelines in order to scope the domain. However, no precise process is indicated. The
feature model construction can start in parallel with the domain scope, so that initial identified
variability can be represented using feature models. A common model can be constructed by
classifying specifics of the contexts into general categories so that each context can be defined as
an instantiation of the common model.

Chapter 2: Related Work

- 24 -

The authors of the method also suggest that applications used for the scoping of the domain be
described using context and structure diagrams in order to validate the boundary of the domain.
This should also be done using, at least, one application not included in the analysis.

Domain modeling
The method uses aggregation and generalization to capture the commonalities of the applications in
the domain in terms of abstractions. Refinements are used to capture the differences between
applications. Parameterization is used to specify the context of the refinements. As such, one can
say that the result of the method is a group of abstractions of a domain and a series of refinements
of each abstraction with parameterization. When a new refinement is introduced in the domain, the
context in which the refinement is made must be defined in terms of parameters. Parameterization
is the technique used by Feature-Oriented Domain Analysis to select the refinements of the domain
abstractions. With the refinements, new applications in the domain can be specified.

Features and feature modeling are extensively used in the FODA method to model variability.
The method uses features to model (parameterize) the capabilities of applications from the end-user
perspective. In the domain modeling phase the domain analyst uses the information sources and the
other products of the context analysis to support the creation of a domain model.

Feature analysis allows the domain analyst to capture the diverse capabilities of the
applications in the domain according to the end-users. This is a very productive analysis tool since
it models the problem space from the end-user’s viewpoint. Thus, feature diagrams normally do not
include technical capabilities. The viewpoint of the user is normally centered in the services or
functionalities provided by applications and operating environments in witch they run. For
instance, programming technical features should not appear in a feature diagram.

Figure 10 presents an example of a feature diagram. A feature diagram looks like an inverted
tree. The structure of the relationships between features is represented by the connectors and visual
indicators that can be used in the diagram. For instance, in Figure 10, air conditioning is an optional
feature, as denoted by the circle in the end of the feature line.

Car

Air conditioning

Manual Automatic

Mandatory
Features

Optional
Feature

Alternative
Features

Rationale:
Manual more fuel efficient

Composition Rule:
Air Conditioning requires Horsepower > 100

Transmission Horsepower

Figure 10: Possible feature diagram for a car (based on [Kang et al. 1990]).

There can be rules regarding the combination of features that cannot be specified only by
visual indicators. In this case, the method uses what is called composition rules. In Figure 10 there
is a composition rule that says the air conditioning feature, when present, requires that the feature

2.3 Feature-Oriented Domain Analysis (FODA)

- 25 -

horsepower have a value greater than 100. Composition rules are used to define the semantics
existing between features that are not expressed visually in the diagram.

Feature diagrams are a rich and useful tool regarding their expressiveness for documenting
variability (mainly) from the end-user perspective. Features, and feature diagrams, are the basis for
the specification of variation points in the final architecture of a system. They are also used to
support the specification of the features to be included in particular applications of the product line.
This process is usually called feature configuration.

Apart from the visual diagram features also have a textual description. The proposed form for
describing features is presented in Figure 11.

Name: <standard feature name>
Synonyms: <name> [FROM <source name>]
Description: <textual description of the feature>
Consists Of <feature names> [{ optional | alternative }]
Source: <information source>
Type: { compile-time | load-time | run-time }
Mutually Exclusive With: <feature names>]
Mandatory With: <feature names>]

Figure 11: Textual description of a feature (based on [Kang et al. 1990]).

Because features capture domain knowledge from the end-user perspective, it’s very natural
that most features are, in fact, capability features. Features related to capabilities can be further
categorized into three areas [Myers 1988]:

functional features: these are basically services that are provided by the applications;
operational features: these are related to the operation of applications ;
presentation features: these are related to what and how information is presented to
end-users.

These are just the most common categories of features. It is possible that more categories of
features exist in a given case. These new categories can be identified in the analysis of a domain.
The method does not discard this possibility.

Apart from then end-user perspective there is the need to capture more precise domain
knowledge from an implementation perspective. Feature-Oriented Domain Analysis does this using
a kind of entity-relationship model. The purpose of this model is to represent the domain
knowledge explicitly in terms of domain entities and their relationships, and to make them
available for the derivation of objects and data definitions during the functional analysis and
architecture modeling.

The entity-relationship model is based on Chen’s method [Chen 1976] with the adoption of
generalization and aggregation concepts from semantic data modeling that are used as predefined
relationship types [McLeod 1978; Borgida et al. 1984].

Given the fact that the entity-relationship model contains domain knowledge from the
implementation perspective it is the base for identifying and derive objects and components. The
method makes no assumptions regarding implementation technology. Object-oriented
programming or other methods and techniques can be used.

Chapter 2: Related Work

- 26 -

This functional model should be built after the feature and entity-relationship diagrams.
Feature, entities and relationships can be used to support the activity of functional analysis. For
instance, alternative features in the feature model may be used to identify generic functions.
Alternative features are specializations of a more general feature, and the functionality
corresponding to the general feature is defined as a generic function witch is inherited by the
functions implementing the alternative features. In addition, the generalization/specialization
relationships (i.e., is-a relationships) of the entity-relationship model can be used to identify
generic objects and the functionality associated with the generic objects.

Architecture Modeling
As depicted in Figure 9, Feature-Oriented Domain Analysis also encompasses an architecture
modeling phase. The focus of this phase is shifted to the design of solutions in the domain. In this
context, the primary goal is to provide a base architecture to support the systems in the domain and
the building of software components to be reused (when building these systems).

The architecture model is a high-level design of the applications in a domain. Therefore, the
method focuses on identifying concurrent processes and domain-oriented common modules, and on
allocating the features, functions, and data objects defined in the domain model to the processes
and modules. The packaging of functions and objects into modules must be done considering the
processing time of the features (e.g., compile-time, activation-time, and run-time) that each module
implements.

One of the objectives of features is that they be used for the construction of software
components. This has to do with moving from the problem space into the solution space.
Implementation techniques must be used according to the analysis. The implementation techniques
vary mainly according to the binding time of the feature. For instance, stable features with compile
binding time can be build/packaged with pre-processor techniques or application generators and
run-time features can be implemented as menu options.

Features have to be ‘transformed’ into software constructs that realize the variation points.
There are different moments when this is possible. These moments are binding times, when the
feature is realized in terms of software. The method describe three possible binding times for the
realization of optional or alternative features:

Compile-time: features that are decided when the system is built and do not change. This
kind of features should be realized at compile-time of the system (package) for efficiency
reasons.
Load-time: features that are defined only at the beginning of the execution of the system.
These features remain stable during the execution of the system. This usually originates
what is called ‘table-driven’ software.
Run-time: features that can change during the run-time of the system. The method gives as
example menu-driven software. One example of such is a word processor that can have the
auto spelling checker feature active or not.

According to Czarnecki these binding times are incomplete. In reality there may be other
binding times, e.g. linking time or first call time (that is very important for just-in-time
compilation) [Czarnecki 1998]. We can then generalize the binding time concept according to the
specific times of the systems in the domain. For instance, there can be specific times like
debugging time and testing time. It is possible also to conceive special times in the life cycle of
applications like off-line time or emergency time.

2.3 Feature-Oriented Domain Analysis (FODA)

- 27 -

Apart from the binding time (when to instantiate the feature or component) of a feature, there
is also the problem of the binding local, i.e., the location of the feature (where to instantiate the
feature or component). For this reason the concept of binding site was introduced to cover both
situations [Simos et al. 1996].

The method proposes a layered approach for modeling the architecture of a product line.
Figure 12 presents the architectural layers proposed by FODA. The architecture is defined at
various levels of abstraction so that reuse can occur at the level appropriate for a given application.

Domain Architecture Layer

Domain Utilities Layer

Common Utilities Layer

System Layer

Figure 12: Architectural layers in Feature-Oriented Domain Analysis (based on [Kang et al. 1990]).

In terms of architecture, an application is a collection of programs (i.e., processes) that can be
compiled separately and executed in parallel. These processes can be defined based on the
functional analysis. Each process must be designed as a hierarchy of modules with the allocation of
functions and data objects defined in the data-flow model. Then, domain-oriented common
modules that can be used across the applications must be identified to increase the reusability.

 At the top, the domain architecture layer is represented as a model showing the concurrent
domain-processes and inter-connections between them. This model is called a process interaction
model and is represented using the DARTS (Design Approach for Real-Time Systems)
methodology [Gomaa 1984].

The domain utilities layer shows the packaging of functions and data objects into modules and
the inter-connections between them. This is called module structure charts and is represented using
the Structure Chart notations [Yourdon et al. 1978] following the DARTS methodology.

The common utilities layer contains modules that can be used across different domains.
Normally programming aspects that are common to applications of diverse domains are realized in
modules in this layer (examples are synchronization and communication aspects). Aspects that
regard the operating system or the programming languages are part of the system layer.

As we saw, Feature-Oriented Domain Analysis presents some guidelines into what should be a
domain architecture. Nevertheless, it doesn’t present much information regarding the process of
going from the problem space into the solution space. This issue is addressed in Feature-Oriented
Reuse Method (FORM) [Kang et al. 1998], an evolution of the FODA method.

Feature-Oriented Reuse Method
Feature-Oriented Reuse Method (FORM) [Kang et al. 1998] is an evolution of Feature-Oriented
Domain Analysis. In this evolution, features became the central concept of domain engineering and
feature models are used not only in requirements engineering but also in the design phase
(architectures) and in the building of software components. This means that FORM extends the
adoption of features from the domain problem space into the decision and the solution space.

Chapter 2: Related Work

- 28 -

The designers use features to build architectures and the engineers use features to build
applications in the domain. Figure 13 presents the mapping between features and
artifacts/components in FORM.

Application Development

Application N

Feature Space

Application 3

Application 2

Application 1

Feature Selection Architecture and component
Selection and instantiation

Mapping

Artifact Space

Capabilities

Operating Environment

Implementation Techniques

Domain Technologies

Composition rules, issues and decisions

Subsystem model

Reusable Components

Process model

Module model

Figure 13: Overview of Feature-Oriented Reuse Method (based on [Kang et al. 1998]).

As with Feature-Oriented Domain Analysis, the FORM method also entails four major aspects
related to features: capabilities, operating environment, domain technologies and implementation
techniques. The major difference is that FORM focuses all the feature aspects and not only the
capability features. By doing so, the method captures not only the features of the domain
applications in terms of functionalities but also the features in terms of implementation details. We
can imagine these different kinds of features as layers. There can be dependencies between features
in different layers. For instance, the selection of one functional feature may imply the use of one
specific implementation feature.

The idea beyond the focus on features in domain engineering is that they are used from the
analysis phase into the architecture and component building phase. By doing so, in the application
engineering process, the requirements phase can be done by selecting domain features of interest
for the new application. This selection will guide the selection of the application architecture and
the reuse of software components.

The adoption of features through all the engineering process raises one major problem: how to
connect, or map, between the ‘traditional’ feature model used to describe the problem to a decision
space and ultimately a solution space (components for reuse in application building)

2.4 Organization Domain Modeling (ODM)

- 29 -

As depicted in Figure 13, the artifact space has also layers. These layers represent reference
architectures in the domain at different levels of abstraction. The method uses functional features
mainly to identify required components, while non-functional (technical or implementation)
features are used to partition components or to select type of connectors between components.

In FORM, modules are in fact the software components to be reused. Every process from the
process model should be described in terms of modules. As modules reflect ‘selection’ of features
at different levels, we can say that they normally satisfy a set of features. In fact, a module contains
an abstract specification that satisfies features. Therefore, it is possible to have several concrete
software components that match the specification of one module. The implementation of a module
can be done in several ways according to diverse reuse strategies. For instance, there can be pre-
coded components or parameterized template components of even skeleton code components that
need to be completed.

Object Connection Architecture
The Object Connection Architecture (OCA) method is another method that we can say that
complements FODA in the design phase [Peterson et al. 1994].

The OCA method is a proposal to realize concrete designs and software components based on
domain models as the ones resulting from Feature-Oriented Domain Analysis. It also relies on the
notion of subsystem as the first level of partition of a system. Subsystems interact with each other
by means of imports and exports. We can say that imports and exports define the interface of the
subsystems. Objects represent the behavior (and possible state) of real-world or virtual entities.
Subsystems are composed of objects. A subsystem uses a controller to coordinate the activities of
its composing objects. At a higher level, there is the notion of an executive that coordinates the
subsystems. Surrogates are a concept that OCA uses to represent logical or physical devices that
interface with the system. The concept of signature is used to represent the interface of OCA
components (objects, subsystems and surrogates). To support a separation between an object and its
actual implementation each object has a manager, which is a mediator between the object
implementation and the clients of the object. The objective is to achieve a higher degree of
independence from the implementation.

OCA describes the process of mapping from domain models to software components. Let’s
take for instance the case of the object concept. Objects are one of the more important parts of an
OCA architecture because they represent the base functionality. They are the building blocks of
subsystems which in turn compose the architecture of a system. As mentioned, objects represent
entities, so they can be identified based on diagrams such the entity-relationship diagram of
Feature-Oriented Domain Analysis. Objects that need to be represented are identified based on the
selected features. For instance, if we don’t select any feature related to an entity of the domain we
don’t need to define an object for that entity. According to OCA, one way to discover the
operations of an object is from the possible features of the object identified in the feature diagram.
Other source can be the functional model. The possible composition of features can also guide the
object definition. For instance, all mandatory features (descendent from a selected feature) need to
be implemented in the object. Alternative features can be supported with different implementations
of the object.

2.4 Organization Domain Modeling (ODM)
Organization Domain Modeling (ODM) is another major domain engineering methodology [Simos
et al. 1996]. To our knowledge, ODM is in structure similar to Feature-Oriented Domain Analysis

Chapter 2: Related Work

- 30 -

but its process is far more elaborated and detailed. As its name implies, the method is focused on
the organizational aspects of domain engineering as opposed to more technological focus of other
methods. As a result from this approach, the method is very detailed in terms of the process,
activities and roles it prescribes for the adoption of domain engineering in an organization. The
specific objectives of ODM are: to make the domain engineering process more systematic, formal,
manageable and repeatable; to ground domain engineering projects in a specific organization
context; to maximize use of legacy artifacts and knowledge; to reveal the hidden constraints
embedded in legacy systems and artifacts; to encourage exploration of maximum variability within
the domain; to provide effective strategies for selecting an intended scope of applicability for asset
bases; and to support evolution of the asset base, and the scale-up of the technology to support new
kinds of organizations, organized around domains rather than around systems or products.

According to the authors of ODM, domain engineering has two fundamental aspects that make
it distinct with regard to single system engineering: (1) its scope regards multiple systems and,
therefore, the aim is to model the space of solution alternatives for several applications of the
domain; (2) its scope can be smaller then the scope of single systems. This may seem contradictory
with the previous aspect but it is true if domain engineering is focused on specific functionality of
applications of the domain as opposed to model the whole system.

The first aspect regards the scope for the market of the domain, while the second aspect
regards the scope of feature coverage of the domain. These are key aspects of ODM that have
influence in all the phases, activities and artifacts of the methodology.

Another focus of ODM, that justifies its name, is the recognition and assertion that domains
are always socially situated or socially constructed. They are shaped by the context of multiple
overlapping communities of use, development, maintenance, customization, and application. ODM
explicitly models social and organizational context to ground the entire process.

Figure 14 presents the phases of ODM. ODM was projected to be adaptable so the method
supports other activities that are not the core of domain engineering but that, eventually,
organizations may require in their adoption of domain engineering. In ODM these are called
supporting methods, and they can also be integrated in the ODM process. ODM is also a part of a
broader context called Software Technology for Adaptable, Reliable Systems (STARS) [DARPA
1994] Conceptual Framework for Reuse Processes (CFRP) [Unisys 1993], a defense research
program sponsored by the U.S. Department of Defense related to software reuse. For instance,
CFRP includes application engineering while ODM is only focused on domain engineering.

Domain
Engineering

Plan Domain Model Domain Engineer Asset
Base

Figure 14: ODM process phases (based on [Simos et al. 1996]).

ODM can be classified as a very flexibly, adaptable and comprehensive domain engineering
method. ODM does not prescribe any particular system modeling, engineering, or market analysis
method. The user of ODM has to customize the method for its requirements, provide methods, and
select appropriate notations and tools. This characteristic of the method also implies consequences.
One of the major consequences is that the ODM process requires many resources that may be out
of reach for some organizations, for instance, for small and medium enterprises (SME).

2.4 Organization Domain Modeling (ODM)

- 31 -

Plan Domain
As a result of its high concern with the organization context, ODM has a scoping phase that is very
detailed when compared, for instance, with FODA. In ODM the scoping phase is called plan
domain. Figure 15 presents the tasks for the plan domain phase. Basically, plan domain is
composed of set objectives, scope domain and define domain sub-phases.

Plan Domain

Set Objectives Scope Domain Define Domain

Determine
Candidate

Stakeholders

Indentify
Candidate
Objectives

Select
Stakeholders

and Objectives

Characterize
domains of

interest

Define
Selection
Criteria

Select Domains
of Focus Bound Domain

Focus Domain

Situate Domain

Figure 15: ODM plan domain phase (based on [Simos et al. 1996]).

The artifacts that result from the plan domain phase of ODM basically permit the identification
of the domain and its boundaries. In the end of this phase it is possible to know what aspects of
systems fall within the scope of the domain. This means identifying key interfaces from domain
functionality to related system capabilities that are to be considered external or internal to the
domain. This information permits an informal identification of common functionality of the domain
as well as capabilities that are inside or outside of the domain. The information also includes the
historical context of the domain, broader, narrower, and related domains.

The plan domain phase does not really identify variability. What are identified are the
capabilities or functionalities that are within or outside the domain. It is only in the model domain
phase that variability is identified and modeled. Figure 16 presents the tasks of the ODM model
domain phase.

As Figure 16 depicts, a domain in ODM is described by a lexicon, concepts and features. In
order to identify these elements data from the domain must be collected. This is the goal of the
acquire domain information sub-phase. Similarly to other methods, ODM uses system artifacts and
domain informants as sources for this task. Significant outputs of this task are:

Features of Interest: Short, informal sentences describing features of a system or many systems
to which attention was drawn during data elicitation.
Domain Terms: Terms that have specific meanings for practitioners in the system settings
studied, as deduced from the artifacts and informant data.

Model Domain
With the acquired information, a domain model is constructed based on three fundamental
elements: lexicon, concepts and features. As such, the lexicon, the concepts and the features of the
domain are the base to describe commonality and variability. In ODM, domain modeling can be
thought of as defining a formal language for describing domain entities and behavior. Following
the language analogy, lexicon terms provides the vocabulary for this language, concepts provide

Chapter 2: Related Work

- 32 -

the semantics, and features correspond to actual sentences or statements in the language. Unlike a
natural language, however, the domain language produced in domain modeling creates a fixed
repertoire of statements that can be made about domain entities.

Model Domain

Acquire Domain
Information

Describe
Domain

Refine Domain
Model

Plan Data
Acquisition

Elicit Data

Integrate Data Develop
Lexicon

Model
Concepts

Model Features
Integrate

Descriptive
Models

Interpret
Domain Model

Resolve
Domain Model

Figure 16: ODM model domain phase (based on [Simos et al. 1996]).

ODM adopts a broader definition for the term concept. Usually, in software engineering, the
term concept is used for entities primarily within the operational environment for the systems
within the domain. However, in ODM, the term concept is used to address elements in the
development setting or any other domain setting. The criteria to choose to focus on something as a
concept should reflect phenomena that display patterns of commonality and variability across
domain exemplars significant for the modeling objectives. In order to facilitate the starting of
concept modeling, ODM supports concept starts sets as a way to customize the method and help
the modeler. A concept starter set provides an initial set of elements which are generally presumed
to be a useful starting point in modeling certain kinds of domains.

In ODM, a feature is a difference observed by modelers among multiple exemplars of a
concept of interest. Features should always be of interest to some domain stakeholders. As a result
of this context of utilization, the concept of feature is broader in ODM as compared to FODA.
Nonetheless, in both cases it is used to model variability. Another key difference is that ODM does
not prescribe any specific modeling language while other methods like, for instance FODA, do.
ODM also introduced the concept of binding site of a feature. Basically it represents the site where
a feature is bound to a particular variant. This concept is significant because prior to ODM the most
important factor for feature implementation was its binding time. With ODM, and the introduction
of the binding site concept, methods start to explore other concepts for characterizing features.

The primary artifact that results from this phase of ODM is the domain model. This model
describes the common and variant features of systems within the domain, and rationale for these
variations. This model will be the base for selecting the range of variability to be supported by the
asset base. The building of the asset base is presented next.

Engineer Asset Base
The last phase of ODM is where variability is implemented. Figure 17 presents the tasks that
constitute the engineer asset base phase of ODM. In this last phase of ODM the goal is to scope,
architect, and implement an asset base that supports a subset of the total range of variability
encompassed by the domain model, a subset that addresses the domain-specific requirements of a
specific set of customers.

2.5 Domain Analysis and Reuse Environment (DARE)

- 33 -

Engineer Asset
Base

Scope Asset
Base

Architect Asset
Base

Implement
Asset Base

Correlate
Features and
Customers

Prioritize
Features and
Customers

Select Features
and Customers

Determine
External

Architecture
Constraints

Determine
Internal

Architecture
Constraints

Define Asset
Base

Architecture

Plan Asset
Base

Implementation

Implement
Assets

Implement
Infrastructure

Figure 17: ODM engineer asset base phase (based on [Simos et al. 1996]).

2.5 Domain Analysis and Reuse Environment (DARE)
According to its authors, Domain Analysis and Reuse Environment (DARE) is a domain
engineering method which aims to support automation and focuses on domain analysis to extract
high level domain information from experts [Prieto-Díaz et al. 1995].

In DARE there is a clear analogy between the method activities and the scientific and
engineering methods. According to its authors, domain analysts follow the scientific method, while
software engineers follow the engineering method. This statement is based on the fact that the goal
of domain engineering is to specify a class of problems, to propose a generic solution, to create an
architecture that is representative of the generic solution, and to design reusable elements that will
fit the architecture. In this perspective, proposing a domain architecture is an inductive process
equivalent to postulating a theory, analyzing existing systems is equivalent to conducting
observations, abstracting the architecture from existing systems is equivalent to doing experiments,
and refining the architecture is equivalent to testing the theory. On the other end, the goal of a
software engineer is to match a given problem to an instance of a generic solution in a domain, to
specify the solution, and to design and create the product.

DARE uses the concept of domain book to capture the information resulting from domain
analysis. This information results from domain experts, domain documents, and code from systems
in the domain. Once completed, the domain book provides a detailed specification of the domain,
including the generic architecture for the domain and domain specific reusable components.

One of the major advantages that DARE authors state about the method is its comprehensive
prescriptive strategy for domain analysis, and its tool support. Figure 18 presents an overview of
the DARE method. We observe that a postulated domain architecture is basically the result of a
top-down process, that is, by induction from domain experts experience. On the other end, we see
that the bottom-up process is deductive and based on faceted conceptual clustering [Prieto-Diaz
1991]. This bottom-up approach is systematic and repeatable and, as such, can be automated. This
possibility of automating a significant part of the domain engineer method is a significant
difference from other methods that do not explicitly aim at this goal.

As depicted in Figure 18, the DARE method uses two approaches for domain analysis. One is
top-down, significantly based on the domain expert’s knowledge and highly creative. The other is
bottom-up, based on domain documentation and code, and can be automated to a significant extent.

Chapter 2: Related Work

- 34 -

The automation is based on a technique used in library science for deriving faceted classification
schemes for special collections [Prieto-Diaz 1991]. The two approaches are then combined to fill a
domain book. The domain book is used in DARE to structure and represent the outputs of the
domain analysis process.

Consult Experts

Postulate
Architecture

Analyze Code

Analyze Text

Validate
Architecture

Form
Conceptual

Clusters

Domain
Knowledge

High level
Architecture

Code

Low level
Architecture

Candidate
Architecture

Common
Functions

Controled
Vocabulary

Documentation

Requirements

Designs

Validated
Architecture

Figure 18: Overview of the DARE method (based on [Prieto-Díaz et al. 1995]).

When compared to other domain engineering methods, DARE has the particularity of aiming
at automating the bottom-up approach to identify variability in the domain. The technique used is
based on analyzing words and phrases that appear in documents that describe the domain. As
mentioned earlier, DARE uses a faceted classification approach for the bottom-up process. Table 1
presents an example of a faceted classification for a domain of library systems.

Table 1: Partial faceted classification for the library systems domain (based on [Prieto-Díaz et al. 1995]).

Function Items Users Request Notice Status Subject-area
browse aliases borrower change address-change delinquent art
cancel books child loan available lost children
change catalogs delinquent register borrowed on-shelf engineering
check dictionaries librarian reserve loan-renewal on-loan fiction
lend directories privileged search new-acquisition out-of-print law
make government-doc registered … overdue registered science
process indexes regular registration suspended …
register journals senior-cit returned …
report magazines student schedule-

change
reserve maps … stolen-lost
return newspapers task-change
search records …
send textbooks
update …
…

DARE also uses the concept of feature. However, to our knowledge, this concept is limited
when compared to FODA and ODM. In DARE, features are represented in feature tables. Rows in
the table correspond to domain features while columns represent the values that the feature can take
for different systems in the domain. This information seems to be heavily based on the domain
expert’s knowledge. However, facets are also used to help generate the system feature table that
captures summary information about commonalities and variabilities of systems across the domain.

2.6 Family-Oriented Abstraction, Specification, and Translation (FAST)

- 35 -

The DARE method does not cover all the activities related to the generation or development of
reusable artifacts. DARE only supports asset identification and requirements definition within asset
creation. As such, we will describe the domain architecture specification of DARE, since reusable
assets should be conformant with that generic architecture.

The notation used for architectures in DARE is based on the concept that any architecture and
architectural view can be represented as a network of frames similar to an attribute grammar. Each
element of the architecture is defined by a standard frame with a fixed set of slot-value pairs. For
each frame we must provide a name and a type identifier, where name is a unique name and type is
the type of element in the architecture. Possible types are: system; subsystem; class; object;
framework; function; data-structure, etc.

Slot values provide a way to specify relationships between elements of the architecture.
Examples of relationship types are: requires; provides; consists-of; inherits; and implements.
Although most of these values are domain independent, some of the values assigned to the slots can
be domain specific, derived from a faceted domain vocabulary. If such is the case, then it becomes
more clear the relationship between the domain architecture and the faceted classification resulting
from the bottom-up process of domain analysis. This approach also facilitates validations. For
instance, one could validate if the facets of a system are supported by the domain architecture.

A partial definition of the grammar of the architecture definition language in Backus–Naur
form (BNF) is shown in Figure 19.

Domain-Architecture := context-diagram
high-level-decomposition-diagram
{domain-element}*

context-diagram := system
{external-entity, {relation}+}*
domain-boundary-statement

system := system-graphic-symbol
system-definition

external-entity := external-entity-graphic-symbol
external-entity-definition

high-level-decomposition-diagram := {domain-element, {relation}+}+
domain-element := element-type

element-name
{frame}*
{domain-element}*

element-type := subsystem | function | object | class | framework |
data-structure|...

frame := {slot-name, slot-value}+
slot-name := provides | requires | element-of | consists-of |

communicates-with | performs | computes |
has-children | child-of | represented-as |...

slot-value := domain-element | name

Figure 19: A partial definition of the grammar of the architecture definition language used in DARE
(extracted from [Prieto-Díaz et al. 1995]).

2.6 Family-Oriented Abstraction, Specification, and
Translation (FAST)

Family-Oriented Abstraction, Specification, and Translation (FAST) is a domain engineering
method developed at Lucent Technologies [Weiss 1998]. FAST is aimed at providing a systematic

Chapter 2: Related Work

- 36 -

approach for analyzing potential families and supporting the rapid generation of family members
by using a domain specific language suited for specifying the family members. A translator is used
to automatically translate from the family specification into the individual applications.

FAST has two development phases: domain engineering and application engineering. The
domain engineering phase includes defining the family and generating reusable assets. Defining the
family is composed of discovering the family requirements, potential family members and
identifying commonalities and variabilities between them. To identify the common and variable
requirements, FAST uses a process called “commonality analysis”. This is the core part of the
FAST method.

Several reusable assets result from the commonality analysis: a domain specification language;
product abstractions specified using the language; and the translator required to generate the final
code. Since the development of a domain specific language may require significant resources,
Nakatani et al. describe how this process can be facilitated in FAST by the use of jargons
[Nakatani et al. 1999].

Commonality analysis is based on two primary sources of abstractions: the terminology used
to describe the family and on assumptions that are true for all family members. To complete the
scope of the family it is necessary to include variability. Variability makes it possible to determine
the possible future members of the family. Variabilities define the scope of the family by predicting
what decisions about family members are likely to change over the lifetime of the family. For each
variability there must be a range of possible values. These ranges of values act as parameterizations
of the variabilities, and are known as parameters of variation. In addition to specifying the range of
values for each variability, the method also specifies the time at which the value is fixed, i.e., the
binding time for the decision represented by the variability. This is similar to the concept used in
FODA for the binding time of features.

The information gathered during commonality analysis facilitates the building of a generic
architecture and reusable artifacts that supports actual family members as well as possible future
family members. The results of the commonality analysis are compiled into a document that is
similar to the domain book of the DARE method.

The process of building the commonality analysis document is iterative and human based. The
process is based on meetings that include domain experts, a moderator and a recorder. The
moderator must be an expert in the FAST method. The recorder is someone that registers the results
of the meetings. The recorder and the moderator can be the same person. The moderator must be
able to recognize well-formed, clear, and precise definitions, commonalities, variabilities,
parameters of variation, and useful issues, and also know how to guide the discussion to produce
them.

Domain-Specific Languages
One of the goals of FAST is to provide a way to rapidly support the generation of domain
members. To achieve this goal, FAST uses domain specific languages to specify domain members.
Such domain specific languages should be based on the variabilities identified and modeled during
commonality analysis. In order to develop the required domain specific languages in a time that is
adequate for the FAST projects, the jargons approach was proposed [Nakatani et al. 1999].

According to the authors, jargons are DSLs that are unusually easy to make. The key
differences between jargons and DSLs are:

All the expressions in jargons have the same abstract syntax

2.6 Family-Oriented Abstraction, Specification, and Translation (FAST)

- 37 -

All the jargons are processable with the same generic interpreter specialized at runtime
with the semantics of the pertinent jargons.

Jargons can be made distinguished by:
Having concrete syntax that is different from each other
Having specific set of actions corresponding to the expressions that define the semantics of
the jargon

There is also a set o tools that supports the development of jargons. These include a generic
interpreter (the InfoWiz), a programming language for specifying actions (named Fit), and API
functions for interfacing actions to the interpreter. The abstract syntax for the expressions has the
following format:

;term(note-1| ...| note-n)[memo]

The ‘;’ is used as a metacharacter, to distinguish jargons’ expressions from plaintext. The term
is the name of an expression. If the names for the terms of different jargons don’t collide then the
jargons can be used together. The memo is the information that is the focus of the expression. The
notes are either attributes of the memo, or parameters to control the processing of the expression.

An action, which is a function written in the Fit programming language, specifies how the
information associated with an expression (the memo) should be processed. To interpret a program
written in a jargon, the jargon interpreter needs to read files that contain definitions of actions.
These files are called wizer. The InfoWiz interpreter processes a program written in jargon by
parsing the text and then traversing the parse tree in top-down, left-right, depth-first order and
executing the action corresponding to the expression at each node of the parse tree. The result of
the expression is appended to an output buffer. The memo of a parent expression is composed of
the concatenation of the output buffers of the of the child expressions.

Lets assume the following jargon expression: ;greet[InfoWiz]. A possible definition of an
action for that expression is (using the Fit language):

A_greet
 WizOut “Hello, ” GetWizMemo

If the presented jargon expression was interpreted the output would be: Hello, InfoWiz. In
this example, WizOut and GetWizMemo are API functions that interface the Fit language with the
jargon interpreter. GetWizMemo returns the memo of the expression and WizOut concatenates its
arguments and appends the result to the output buffer.

The jargon approach to develop DSLs seams very simple and effective. Their authors state that
the development of DSLs can be reduced from months or even years to days or weeks. They also
defend other advantages when comparing the jargon approach to conventional DSL development.
More details about these statements and the jargons approach can be found in [Nakatani et al.
1999].

The use of jargons in FAST is relatively straightforward since the commonality analysis
document contains variability information that is organized in a structure similar to the abstract
syntax of the jargons expressions. The Variabilities and Parameters of Variation sections of the
commonality analysis document are used as a source to specify jargons. If needed, several jargons
can be developed to model different variability aspects of the domain. Jargons are then used to
model family members in terms of their variabilities. The jargon interpreters function as
translators, by translating jargon models into variability code. Finally, the code developed to

Chapter 2: Related Work

- 38 -

implement commonalities can be integrated with the code resulted from the jargons in order to
produce the family member.

2.7 Reuse-Driven Software Engineering Business (RSEB)
and FeatuRSEB

Although not explicitly described as a domain analysis or domain engineering method, we include
Reuse-Driven Software Engineering Business (RSEB) [Jacobson et al. 1997] in this analysis
because of its detailed technical and organizational components. Also, as far as we know, the
method was also the base for the first proposal to integrate use cases and features.

This method is based on Object-Oriented Software Engineering process (OOSE) [Jacobson et
al. 1992]. It extends OOSE with a more reuse-oriented process. This method introduces an
interesting approach: the adaptation of an existing object-oriented analysis/design method used for
application engineering in order to use it in “engineering for reuse”. RSEB extends OOSE with
architectural constructs for families of related applications built from reusable components. It uses
UML as the base notation [UML 2005].

The method has a strong focus on organizational issues. It provides technical support as well as
a management perspective. According to the authors of RSEB, for reuse to be successful, the
organization must be driven by the necessities of software reuse. As such, besides the technical
perspective, RSEB includes process, organizational and business proposals for the organizations to
achieve successful reuse. This focus on the organizational perspective makes the method similar to
ODM. However, on the contrary to ODM, RSEB proposes an explicit notation as well as concrete
technical components.

Figure 20 presents an overview of the RSEB method. The method is comprised of three major
technical activities: Application Family Engineering, Application System Engineering and
Component System Engineering.

In RSEB, an application system family is a set of application systems with common features.
To support the application system family, the application family engineering activity is responsible
for the development of a layered architecture. In this layered architecture, each layer is built on top
of another more general layer. Upper layers are more application specific, lower layers are more
general.

The method adopts the concept of variant point to represent variability in the models. A
variant point identifies one or more locations at which the variation will occur. The graphical
notation for variability points is a dot. This dot is presented inside the model element where the
variation occurs. Model elements that represent variations are connected with a line to the
correspondent variation point.

RSEB originally includes the concept of feature. In RSEB, a feature is described as being a use
case, part of a use case or a responsibility of a use case. However, the previous statement is
basically the only reference that RSEB makes to features. It is only with FeatuRSEB, an evolution
of RSEB, that the feature concept is integrated into the method [Griss et al. 1998]. FeatuRSEB is
described as an integration of FODA and RSEB. In FeatuRSEB, the feature model becomes the
central model of the method. It is used to provide an abstract and concise syntax for expressing
commonality and variability in the domain. By adopting features, the authors of FeatuRSEB claim
that the role of use cases and features becomes clearer. The use case model provides the “what” of

2.7 Reuse-Driven Software Engineering Business (RSEB) and FeatuRSEB

- 39 -

the domain: a complete description of what systems in the domain do. The feature model provides
the “which” of the domain: which functionality can be selected when engineering new systems in
the domain.

Application
Family

Engineering

Application
System

Engineering

Component
System

Engineering

Customer

Manufacturer

End User

Component
System

Application
System

Managing the Reuse
Business

Layered
System

Figure 20: Overview of RSEB (based on [Jacobson et al. 1997]).

The relation between features and variation points is that variable features are exploited at
variation points in components.

In the following sections that related to RSEB we will describe the original method as well as
featuRSEB.

The major goal of RSEB is to produce a layered architecture that can be used to support the
applications of a family of applications, i.e., a set of applications with common features. To achieve
this goal, the method proposes the Application Family Engineering process. Figure 21 presents an
overview of the process.

The typical layers of the architecture that results from the application family engineering
process are:

The application system layer. This layer contains one application system for each software
system that offers a coherent set of use cases to some end users.
The business-specific layer. This layer contains component systems specific to the type of
business.
The middleware layer. This layer contains components that provide utility and
platform-independent services.
The system software layer. This layer contains software for the computing and network
infrastructure.

Chapter 2: Related Work

- 40 -

Designing the
layered system

Application
System

Component
System

Testing the
layered systemImplementing the

architecture as a
layered system

Capturing
Requirements

Performing robustness
analysis

- Business models
- End users, customers
- Domain experts
- ...

Technolgy, standards, existing systems,
distribution and security mechanisms, etc.

Figure 21: Overview of the Application Family Engineering process of RSEB (based on [Jacobson et al.
1997]).

RSEB proposes that the identification of analysis objects should be based on the
“boundary-control-entity” pattern. In this pattern, control objects act as a central manager for
interactions with several boundary and entity objects. This separates user interface concerns
(boundary objects) from application functionality concerns (control objects) and structure (entity
objects) and also use-case-specific behavior from entity objects. When applied to use cases,
responsibilities that are specific to specific use cases are placed in distinct control objects. More
general responsibilities common to several use cases can be placed in shared entity or control
objects. Interactions of the system with actors become the responsibility of boundary objects.
Control objects act also as coordinators of other objects and, as such, they have a responsibility
similar to the mediator object in the Mediator pattern [Gamma et al. 1995]. This technique is used
to identify the realization of use cases in all three processes of RSEB (family, application and
component engineering). Next, we describe the major steps of this technique.

First, the “boundary-control-entity” pattern is used to map each use case into a collaboration of
objects. Next, the method proposes the homogenization of the set of identified objects. This is done
by deciding whether similarly named objects are in fact the same object, different instances of the
same object type or distinct. According to the findings, the objects are renamed or merged as
appropriate. The third step in the robustness process is the central one. In this step, objects are
grouped into stable subsystems, possibly by re-grouping or merging objects. Principles of cohesion
and coupling can be applied to increase the robustness of object clusters. Finally, use cases are
examined to assign responsibilities and operations to corresponding objects. At the end of this step
the there is one analysis object model for each use case.

As depicted in Figure 21, the other two main processes that compose RSEB are Application
System Engineering and Component System Engineering. Application System Engineering is
aimed at the development of specific applications of the application family. Since every application
will be different there is no need for a major support for variability in this process, with the
exception of supporting the reuse of variable components.

FeatuRSEB
We will now discuss the particularities of the FeatuRSEB evolution of the RSEB method.
FeatuRSEB extends RSEB with the adoption of feature diagrams (as in FODA) and with a domain
engineering perspective. In this perspective, the goal is not to provide and architecture that supports

2.7 Reuse-Driven Software Engineering Business (RSEB) and FeatuRSEB

- 41 -

a set of applications that share features, but to develop an architecture and reusable artifacts that
can be used to support present and future applications in the domain.

In RSEB, the method is driven by use cases, and variability is identified at specific points in
models. These points are identified as variation points, and their possible variants are also
represented. In FeatuRSEB, a feature model needs also to be constructed to provide a global and
integrated representation of the variability in the domain.

Since in FeatuRSEB the goal is to engineer a domain and not only an application family, the
sources for requirements and the process are slightly different from RSEB. Similarly to other
domain engineering methods, a significant part of requirements are based on the analysis of
existing applications in the domain.

Similarly to RSEB, FeatuRSEB proposes that the relations between different models of the
system should be explicitly maintained by using traces (i.e., links) between the correspondent
elements.

Variability and Variation Points
The RSEB method is driven by use cases, and variability is identified and represented in all types
of models by the concept of variation point and variant. In FeatuRSEB, features are used to be the
central model that integrates and expresses variability. The feature model provides a “configuration
roadmap” through the use case model, guiding through an understanding of what can be combined,
selected and customized. Features can also be used to express constraints that although possible to
represent in other models would pollute them with information that is out of their natural scope.
They can also be used to model characteristics of a system that are difficult to express in other
models, for instance, performance constraints.

Figure 22 presents an example of the notation used for variability. In this figure we can see
how a variation point is represented in two distinct models. The concept of variation point is always
represented in the same way, no matter the type of model. It is always depicted as a black dot with,
optionally, an identification enclosed in curly brackets. The variants are connected to the
corresponding variation point and a stereotype can be used to denote the type of variability support.

Withdraw Money

Deduct Fee Overdraft Not
Allowed

{Account
Overdraw}

«extends»

Cashier
Interface

Withdrawal Account

Deduct
Fee

Dispenser

Overdraft
Not

Allowed

{Account
Overdraw}

«template»

«trace»

Figure 22: Example of variability notation used in RSEB (based on [Jacobson et al. 1997]).

Features
Feature notation in FeatuRSEB, although based in FODA is slightly different. Figure 23 presents
an example of the notation adopted for feature diagrams. Basically in FeatuRSEB a distinction is
made between two types of alternative features: OR alternatives and XOR alternatives. An
alternative feature consists in a feature that acts as a variation point (called a vp-feature). The

Chapter 2: Related Work

- 42 -

subfeatures of this features become the variants. If the variant must be selected (i.e., bounded) at
use time, then we have an OR alternative. If only one variant can be selected (i.e., bounded) at
reuse time, then we have an XOR alternative. Or alternatives are usually bound at runtime.
Therefore, all the variants must be included in the system distribution. As we will see throughout
this thesis, particularly in Chapter 4, the tendency in the scientific community is to extend the
modeling power of feature diagrams (by extending its metamodel) and also to add more details
(i.e., attributes) to the concept of features.

Phone Service

exchange dialling mode billing line quality

type

PABX individual

video voice

pulse tone called caller T1 ISDN POTS

Composed of

Optional

Vp-feature
(XOR)

Vp-feature,
use time
bound (OR)

Legend

Figure 23: Feature notation used in FeatuRSEB (based on [Griss et al. 1998]).

In FeatuRSEB, the notation for features diagrams that is presented in Figure 23 is in reality a
kind of collapsed view of a stereotyped UML class diagram. Each feature is then represented as a
stereotyped class. The attributes presented in the stereotyped classes (i.e., features) correspond
essentially to the information presented in the textual featured description used in FODA (see
Figure 11). Figure 24 presents an example of this notation.

Variability Mechanisms
In RSEB and FeatuRSEB, variable features are exploited at variation points in a component.
Several variability mechanisms are proposed to support (i.e., implement) variability. All of them
are treated as a form of generalization. In particular, RSEB describes the adoption of the following
variability mechanisms:

(1) Inheritance. Used to create subtypes or subclasses that specialize abstract types of
classes at their variation points. A virtual operation can act like a variation point that is
specialized with inheritance.
(2) Extensions. These are particular small type-like attachments that can be used to express
variants (extensions) attached at variation points (extension points) in use case and object
components.
(3) Parameterization. This is used for types and classes using templates (i.e., generics),
frames, and macros.

Other mechanisms referenced in RSEB are, for instance, configuration, module-
interconnection languages and generators.

2.8 Product Line UML-Based Software Engineering (PLUS)

- 43 -

«feature»
Input

description: Acquire user authorization
source: Domain Expert A
nature: functional
existence: mandatory
alternative: fixed
category: operational
bindingTime: reuse
issuesAndDecisions: study other exemplars
notes:

«feature»
Variable

description: Inplement new input mode
source: Exemplar 2
nature: functional
existence: optional
alternative: fixed
category: context
bindingTime: reuse
issuesAndDecisions: need guidelines
notes: for example, “dial 1 for...”

«feature»
P.I.N.

description: Use PIN to id user
source: Examplar 3
nature: functional
existence: optional
alternative: fixed
category: context
bindingTime: reuse
issuesAndDecisions: must validate lenght of pin
notes:

consists_of

Figure 24: Example of the FeatuRSEB proposal for depicting feature diagrams as stereotyped UML class
diagrams (based on [Griss et al. 1998]).

All of these mechanisms have specific characteristics that can make them more suitable to
support particular variation points. For instance, extensions are well suited for variation points that
need to support several variations at the same time. Besides this concern, variability mechanisms
may also need to be adapted according to the programming language used. For instance,
inheritance is a variability mechanism that is commonly supported by object oriented programming
languages. Extensions, however, are not directly supported by the major object oriented
programming languages. In this case design patterns can be used to support variability [Gamma et
al. 1995]. Variability in design patterns is essentially based on inheritance, aggregation (i.e.,
composition) and interfaces. RSEB proposes the Strategy pattern to support variation points with
only one possible variant. The Decorator pattern can be used if several variants can be active at the
same time for the same variation point. Examples of applying design patterns to support variability
can be found in [Fontoura 1999; Pree et al. 2002].

2.8 Product Line UML-Based Software Engineering (PLUS)
The Product Line UML-Based Software Engineering (PLUS) is a software product line
development method that is based on UML [Gomaa 2005]. The method is described as being
compatible with other object-oriented software development processes, such as the Unified
Software Development Process (USDP) [Jacobson et al. 1999] and the spiral process model
[Boehm 1988b].

This method is based on two major processes: software product line engineering and software
application engineering. The software product line engineering process consists of developing a
product line use case model, product line analysis model, software product line architecture, and
reusable components. In the software application engineering, individual members of the product
line are developed. The artifacts resulting from the software product line engineering process are
used in the development of the product line members. The application requirements are used to
adapt the product line use case model and obtain the application use case model. A similar

Chapter 2: Related Work

- 44 -

approach is used to obtain the application analysis model from the product line analysis model and
the architecture of the application from the product line architecture. Reusable components are used
to implement the application architecture. Figure 25 presents an overview of the method. The
method is composed of two major activities: the software product line engineering and the software
application engineering. The software product line engineering activity produces several reusable
artifacts that model the product line domain. On of such artifacts is the feature model. In the
application engineering activity, an application engineer develops a software application that is a
member of the product line by using the feature model to derive the application from the product
line architecture and components.

Product line
requirements

Product
line

engineer

Software Product Line
Engineering Software Product Line

Repository

Product line use case model,
product line analysis model,
product line software architecture,
reusable components

Software Application
Engineering

Application
engineer

Application
requirements

Customer

Executable
application

Unsatisfied requirements, errors, adaptations

Figure 25: Overview of the PLUS method (based on [Gomaa 2005]).

Since PLUS is based on UML 2.0 it proposes the adoption of the majority of the UML
diagrams including: use case diagrams; class diagrams; communication diagrams; sequence
diagrams; state machine diagrams; composite structure diagrams; and deployment diagrams.
Besides the UML diagrams PLUS also adopts features diagrams. These feature diagrams are based
on FODA but use a notation that is based on UML class diagrams.

The method is compliant with the UML 2.0 notation. As such, it has improved support for
modeling several aspects of a product line. One of such improvements is the use of port, provided
and required interface notation in component models. The method proposes the use of stereotypes
and special notation for modeling variability in the UML models. However, similarly to
FeatuRSEB, it also proposes the adoption of feature diagrams for modeling variability. Regarding
features the method proposes: a specific notation for feature diagrams that is based on UML class
diagrams; modeling features using feature tables; stereotypes and specific notation for representing
features in other UML diagrams; and a feature/class analysis method the determine the
relationships between features and classes.

Figure 26 depicts the software product line engineering activity of PLUS. The major sub-
activities and modeling tasks are:

Software product line requirements modeling: use case and feature modeling.
Software product line analysis modeling: static modeling; dynamic interaction modeling;
dynamic state machine modeling; and feature/class dependency modeling.

2.8 Product Line UML-Based Software Engineering (PLUS)

- 45 -

Software product line design modeling: software architectural patterns and
component-based software design.

Product
line

engineer

Product Line
Requirements

Modeling

Software Product Line
Repository

Product Line
Analysis Modeling

Product Line Design
Modeling

Incremental
Component

Implementation

Product Line
Testing

Throwaway
Prototyping

Product line
test engineer

Figure 26: Software product line engineering in PLUS (based on [Gomaa 2005]).

In the analysis phase, several models are used to represent the possible realizations of the use
cases. Basically, the method proposes the usage of sequence or communication diagrams to depict
how objects collaborate to realize the use cases. State machine diagrams are used to model
state-dependent classes and objects. At this phase of development, a product line context model and
a product line information model are developed to depict, respectively, the product line boundary
and the entity classes. PLUS also proposes a method to determine the dependencies between
features and classes.

The software product line design phase is based on architectural patterns for software product
lines. The method describes how some well-known patterns can be used in the context of product
lines. In the design phase, component diagrams are used to model the architecture of the product
line and also for the design of the reusable components.

PLUS proposes support for modeling variability in all of the above mentioned models. A
metamodeling approach to PLUS is also discussed in [Gomaa et al. 2004].

Regardless of the engineering approach adopted, variation points are used to handle variability
in use cases. Small variation points can be represented in the textual description of use cases. More
complex variability points can be modeled either by the include or by the extend UML relationships
between use cases. Figure 27 presents a use case diagram for an e-commerce product line.

In Figure 27 we have presented an example of how variability is usually modeled in use cases
in the PLUS method. Basically, use cases are marked with the following stereotypes: «kernel»,
«optional» and «alternative». These stereotypes denote if a use case is mandatory, optional or

Chapter 2: Related Work

- 46 -

alternative. The method suggests the use of generalization/specialization relationships to model
actor’s variability.

«kernel»
Browse Catalog

«alternative»
Create

Requisition

«kernel»
Process Delivery

Order

«alternative» Check
Customer Account

«kernel» Make
Purchase
Request

«alternative»
Confirm Delivery

Customer

Authorization
Center

Bank Wholesaler

Supplier

«kernel» Confirm
Shipment

«alternative» Bill
Customer

«alternative»
Send Invoice

«optional»
Deliver Purchase

Order

«optional»
Prepare

Purchase Order

Figure 27: Example of use case modeling in PLUS (based on [Gomaa 2005]).

In PLUS, the description of the behavior of use cases is done textually, following guidelines
that are similar to the ones presented in [Cockburn 2001]. In the context of this textual description
of use cases, small variations (i.e., variations that occur within the behavior of the use case) are
specified in a specific section of the textual specification of the use cases. These variations occur at
specific points in the use case behavior called variation points. This concept of variation point is
similar to the one of RSEB, however in PLUS it has a narrow scope since it is only used in use case
models.

PLUS also proposes the use of relationships between use cases to model variability. The idea is
to model in the relationship a condition of inclusion. If such a condition is true, then the
relationship is included otherwise it is not included in the resulting model. These conditions are
based on the features from the feature model. Basically, each feature acts like a boolean variable.
Its value is true if it is included in a feature configuration or false otherwise. So, the conditions
associated with the use case relationships are boolean expressions involving feature variables. A
relationship is included in the use case model for a specific product of a product line if the
associated condition evaluates to true.

Use Cases: Extend Relationship
Figure 28 presents an example of modeling variability with the extend relationship in PLUS. In this
example we see how the use case Check Out Customer is extended by three extending use cases:
Pay by Cash, Pay by Credit Card and Pay by Debit Card.

2.8 Product Line UML-Based Software Engineering (PLUS)

- 47 -

«kernel»
Check Out Customer

payment

«kernel»
Pay by Cash

«optional»
Pay by Credit Card

«optional»
Pay by Debit Card

«extend»
(payment)

[cash payment]
«extend»
(payment)
[credit card

payment AND
credit card

option]

«extend»
(payment)
[debit card

payment AND
debit card

option]

Figure 28: Example of modeling variability with the extend relationship in PLUS (based on [Gomaa 2005]).

According to the UML documentation, an extend (Extend element in UML 2.0 metamodel) is
“A relationship from an extending use case to an extended use case that specifies how and when the
behavior defined in the extending use case can be inserted into the behavior defined in the extended
use case” [UML 2005]. Extended use cases are required to provide extension points, i.e., points in
the behavior of the use case where that behavior can be extended by the behavior of extending use
cases. Also, an extend relationship can contain an extension condition. If an extend relationship has
a condition, then that condition must be true for the extension to take place. These are the base
concepts regarding the extend relationship. As it is possible to observe from Figure 28, PLUS uses
these concepts to model variability with the extend relationship. However, PLUS distinguishes
between two type of extending conditions: selection condition and product line condition. The
selection condition is used to identify which extension is selected during runtime execution of the
use case. As such, it corresponds to the semantics of the original extend condition. As it name
implies the product line condition identifies if the behavior specified by a particular extending use
case is provided by a particular member of the product line. In PLUS, these to conditions are
combined into one by the logical AND operator and specified as the condition of the extend
relationship. Therefore, PLUS manages to represent variability with the extend relationship using
the existing characteristics of this relationship as described in the UML documentation [UML
2005].

In the example of Figure 28, all three extensions refer payment as the extension location. The
extend that connects Pay by Cash and Check Out Customer only provides the selection condition
and, as such, Pay by Cash is a mandatory or kernel use case. In the case of the other two extending
use cases a product line condition is present. The Pay by Credit Card will be present if the credit
card option feature is selected and the Pay by Debit Card if the debit card option feature is
selected. This is an example of using the extend relationship to model use cases that are optional.
The extend relationship is also suited to model alternative behavior. It is just a matter of specifying
the rules for the selection of the features. This can be done in the feature model.

Gomaa states that extension points can be used to model product line variability in the
following ways [Gomaa 2005]:

alternative variability: alternative extension use cases that can be mutually exclusive;
optional variability: an optional use case is provided only if the product line condition is
true;
future product line evolution: the extension point is used as a placeholder for future
extensions to the product line.

Chapter 2: Related Work

- 48 -

Use Cases: Include Relationship
In UML, an Include Relationship links two use cases and its semantics is that the behavior of the
included use case is inserted into the behavior of the including use case. The UML documentation
also states that “the included use case is not optional, and is always required for the including use
case to execute correctly”.

In PLUS the Include Relationship can also be used to model variability. The basic idea is
similar to the approach used in the extend relationship. A product line condition is added to the
relationship. When configuring a product in the product line, if this condition evaluates to true, the
Include is part of the product otherwise it is not.

The described approach has, however, a problem because in the UML metamodel there isn’t
support for the condition in the Include Relationship. PLUS doesn’t explicitly provide an approach
to deal with this problem. This could be done, for instance, by using the UML profile mechanism
or by extending the UML metamodel. In Chapter 3 and Chapter 4 we discuss this topic and a
possible approach to tackle the described problem.

Features
After the determination of the product line use cases, a feature model is developed as a way to
represent, in an integrated way, the variability of the product line. Basically, use cases give origin
to features and the variation points of use cases, as well as the dependencies between them, are
used as source for representing the dependencies between features. This process is also similar to
the process used in FeatuRSEB to construct the feature model. As we will see next, the relationship
between use cases and features can also be described by using tables.

The feature diagrams of PLUS are inspired in the FODA feature diagrams but based on UML
class diagrams. Figure 29 presents an example of a feature diagram following the PLUS notation.
This diagram regards the use case diagram for an e-commerce product line depicted in Figure 27.

«common
feature»

E-Commerce
Kernel

«exactly-one-of
feature group»

Customer

«optional feature»
«entity»

Bank

«alternative
feature»

Home Customer

«alternative
feature»
Business
Customer

«optional feature»
Purchase Order

requires requires

{mutually
exclusive feature}

mutually
includes mutually

includes

Figure 29: Example of feature diagram in PLUS (based on [Gomaa 2005]).

Basically, in PLUS, a feature corresponds to one or more use cases. For instance, the feature
Home Customer corresponds to the use cases Check Customer Account and Bill Customer. On the
other end, the feature Business Customer corresponds to the use cases Create Requisition, Confirm
Delivery and Send Invoice. Since these two features are alternative and since only one of them can
be selected in the configuration of a member of the product line they become sub-features of the
Customer feature group. This feature group is represented by the stereotype exactly-one-of feature
group that indicates that only one of the features of the group may be selected.

2.8 Product Line UML-Based Software Engineering (PLUS)

- 49 -

PLUS proposes the following UML stereotypes to denote feature types:
«common feature»: a feature that is required for all members of the product line;
«optional feature»: a feature that is optional;
«alternative feature»: a feature that is alternative to some other(s) feature(s).

The following relations between features are proposed:
mutually inclusive features: this relation is used when two features are always used
together;
requires: this relation is used to depict that the selection of a feature requires that some
other feature needs also to be present in the configuration of the member of the product
line.

Regarding constraints on grouping of features, PLUS proposes the following kinds of feature
groups that state how the elements of the group can be selected:

mutually exclusive features (“zero-or-one-of feature group”);
“exactly-one-of feature group”;
“at-least-one-of feature group”;
“zero-or-more-of feature group”.

There is also the possibility that a feature corresponds to a functionality that is smaller than a
use case. In this case it can correspond to a variation point in a use case or to a use case parameter.
The notion of variation point is similar to the one found in RSEB (see Section 2.7). If a feature
corresponds to a use case parameter, then the value of the parameter must be defined for the
configuration of a member of the product line.

Since there is a close relationship between features and use cases in PLUS (at least for
functional features), the method also proposes that features be modeled within use case diagrams by
using use case packages to represent, for instance, two or more use cases that correspond to a
feature. As discussed earlier, the extend and include relationships between use cases can also be
used to model optional and alternative features.

PLUS follows an approach similar to that of RSEB in order to support the analysis process.
The approach is based on the “boundary-control-entity” pattern but adds more specific stereotypes
to classify objects. Figure 30 presents the specific stereotypes proposed in PLUS.

The analysis process is also similar to the one used in RSEB. Similarly to the use case
development, the analysis process can follow a forward or reverse engineering approach. In both
approaches, the analysis is based on the use cases identified previously. Objects that realize each
use case are identified following one of the approaches.

Classes that are common to all members of the product line, i.e., participate in the realization
of kernel use cases also become kernel classes. Classes that only participate in the realization of
non-mandatory use cases become optional classes. Alternative classes can be captured by
generalization relationships. The common attributes and operations are captured in the superclass
and the differences are captured in the variant subclasses of the superclass.

Figure 31 presents an Entity class diagram for the product line described by the use case
diagram of Figure 27.

Chapter 2: Related Work

- 50 -

«application»

«interface» «entity» «control» «application
logic»

«user interface» «device interface» «system
interface»

«input device
interface»

«output device
interface»

«input/output
device interface»

«data
abstraction»

«database
wrapper»

«timer» «state dependent
control» «coordinator» «business logic» «algorithm» «agent»

Figure 30: Classification of application objects/classes by stereotype in PLUS (based on [Gomaa 2005]).

To represent the collaborations of objects that realize use cases PLUS proposes the use of
communication or sequence diagrams. In these diagrams, the object interactions are represented in
time sequence. In communication diagrams the order of an event is usually represented by a
number that labels the edge that represents the event. In PLUS a letter can follow the sequence
number in order to represent alternative message sequences. Alternative sequences can also be
depicted with a condition indicated after the message number. This condition can be based, for
instance, on features of the product line.

«optional»
«entity»
Payment

«optional»
«entity»
Invoice

«kernel»
«entity»

Customer

«optional»
«entity»

CustomerAccount

«optional»
«entity»

Requisition

«kernel»
«entity»

DeliveryOrder

«kernel»
«entity»

SelectedItem

«kernel»
«entity»
Catalog

«kernel»
«entity»

Inventory

«optional»
«entity»
Contract

«optional»
«entity»

OperationFunds

«optional»
«entity»

BankAccount

«kernel»
«entity»
Supplier

«optional»
«entity»

PurchaseOrder

«optional»
«entity»

PurchaseOrderItem

«optional»
«entity»

Wholesaler

Funded by

Billed
throughAuthorizes

Authorizes

Uses

Creates

Agress to

Needs

Payed by

Commits

Send to

Payes
through

Agress to

Is Payed through

Fills

Replenishes

Maintains

Items
Maintained in

Selected from

1..*

0..1

10..1 *

1 1

111

1 *

1

1

*

1

1

1

11

1

1

0..1

0..1

1

1

0..1

0..1

11..*

1..*1

1

1

Creates1

*

1 1..*

Figure 31: Example of entity class diagram in PLUS (based on [Gomaa 2005]).

The other two types of diagrams that are widely used in PLUS are the composite structure
diagram and the finite state machine diagram (statecharts). The former is mainly used to represent

2.9 Product Line Software Engineering (PuLSE) and Kobra

- 51 -

the architectural structure of the product lines while the latter is used to model state-dependent
objects and their interactions.

Regarding the architecture of the product line, PLUS describes how several architectural
design patterns can be applied. Regardless of the architectural pattern adopted, the main
architectural activity is the design of the components, particularly its required and provided
interfaces. PLUS describes some guidelines in how to perform this activity based on the other
models. The main idea behind these guidelines is the design of “plug-compatible” components as a
way to support architectural flexibility and variability.

In statecharts, variability can be supported by inheritance or by using parameterized statecharts
with conditions, in a similar way to the communication diagrams. In the case of inheritance, the
child state machine inherits the properties of the parent state machine and can modify them by:
adding new states; adding new events and transitions; and adding or removing actions and
activities. However, the child state machine must not delete states and events defined in its parent.

2.9 Product Line Software Engineering (PuLSE) and Kobra
Product Line Software Engineering (PuLSE) is a method developed at Fraunhofer IESE which
purpose is to enable the conception and deployment of software product lines within a large variety
of enterprise contexts [Bayer et al. 1999]. According to the authors of PuLSE, its main advantage
comes from its focus on products, as opposed to domain engineering approaches which focus is on
domains. According to its proponents, the focus on domain that traditional domain engineering
approaches take imposes that the all domain must be supported. Domains are hard to scope and
engineer for an enterprise because a domain captures many extraneous elements that are of no
interest to an enterprise. According to the authors of PuLSE, the focus on products provides a more
economic and practical approach for enterprises. In fact, products usually comprise multiple
domains, but only cover parts of these domains. As such, scoping and manageability of product line
approaches can be less demanding than in domain engineering approaches.

Figure 32 presents an overview of PuLSE. The method is divided in three major blocks:
deployment phases; technical components; and support components.

PuLSE Initialization

PL
Infrastructure
Construction

PL
Infrastructure

Usage

Project Entry Points Maturity Scale Organization Issues

Customizing (BC)

Scoping (Eco)

Modeling (CDA)

Architecting (DSSA)

Instantiating (I)

Evolving & Mgmt (EM)

PL Infrastructure
E

volution and M
anagem

ent

Deployment Phases Technical Components

Support Components

Figure 32: Overview of PuLSE (based on [Bayer et al. 1999])

Chapter 2: Related Work

- 52 -

The deployment phases are the logical stages that a product line goes through when it is
implemented in an organization. The technical components provide the technical know-how needed
to operationalize the product line development. They are used throughout the deployment phases.
The support components are packages of information, or guidelines, which enable a better
adaptation, evolution, and deployment of the product line. This separation of roles supports the
flexibility and customization characteristics of PuLSE. It enables, for instance, partial and
incremental implementation of PuLSE in organizations. It also provides, for instance, the
adaptation of the technical components to specific tools or design methods already in use in the
organization.

PuLSE can be seen as a software product line method template, since it can be customized for
specific contexts. This method has also an object-oriented customization named KobrA [Atkinson
et al. 2000]. KobrA is a customization of the PuLSE method aimed at object-oriented and
component based implementations of PuLSE.

PuLSE is a very customizable method for developing software product lines. The
customization of the method for the context of an organization is done in the initialization stage.
After the method customization, the next stage is the infrastructure construction. This stage is
divided in three parts: scoping (PuLSE-Eco), modeling (PuLSE-CDA) and architecting (PuLSE
DSSA). These sub-stages of infrastructure have a direct correspondence with the technical
components scoping (Eco), modeling (CDA) and architecting (DSSA). Variability identification is
a concern that appears essentially in the scoping and modeling stages.

Here are some examples of information sources used for variability identification in PuLSE:
books, standards, papers, users, domain experts and application engineers.

In order to provide a more useful description of the PuLSE method, we will base our analysis
of PuLSE variability representation and implementation on KobrA. KobrA is a customization of
the PuLSE method aimed at object-oriented and component based implementations of PuLSE.
With this approach, not only we describe the generic phases and components of PuLSE, but we
also present an example of a customization of PuLSE.

To represent variability, PuLSE uses decision models. A decision model contains a structured
set o decisions. Each decision corresponds to a variability point in a workproduct together with the
set of possible resolutions. The specification of a product can be obtained by resolving all the
decisions of the decision model. For instance, all the variability existent in the generic storyboards
should be present in the decision models. If there are other workproducts that model variability,
there variability points and variants should also be present in the decision models.

Table 2 presents an example of decision models for a library product line. Table 2a presents an
integrated decision model. Each variability has an identification and possible resolutions. The
effect of resolutions is presented in the last column of the table. An effect can be a reference to
other variabilities in other decision models or a modification in workproducts. For instance, the
resolution yes for CR-1 has an effect in the variability CR1.1 of the decision model for the
enterprise process diagram. In Table 2b we can see that a resolution of no on CR1.1 has the effect
of removing the process reserveItem.

Decision models are less intuitive when used to communicate variability, when compared to
feature models. However, they provide a mechanism to link between the decisions about features
and the other modeling artifacts used. They reflect the effect that feature decisions might have in
the other models. Since features can have impact in several artifacts, in PuLSE there is a decision
model for every model of the system.

2.9 Product Line Software Engineering (PuLSE) and Kobra

- 53 -

Table 2: Example of PuLSE decision model for a library product line (based on [Bayer et al. 2001]).

ID Variation Resolution Effect
Yes (default) Yes: CR1.1, CR2.1, CR5.1 CR-1 Reservation
No No: CR1.1, CR2.1, CR5.1
Yes Yes: CR1.2, CR2.2, ... CR-2 External Database
No (default) No: LS13.2, LS14.1, ...
Yes (default) Yes: CR1.3, CR2.3, ... CR-3 Suggestion
No No: CR1.3, CR2.3, ...
Yes Yes: CR2.4, CR3.1, CR4.1, CR5.2, … CR-4 LibraryAccessCard
No No: CR2.4, CR3.1, CR4.1, CR5.2, …

...

a) Integrated Decision Model for the LibrarySystem Context Realization

ID Variation Resolution Effect
Yes (default) ----- CR1.1 Reservation
No Remove process reserveItem
Yes ----- CR1.2 External Database
No (default) Remove process data exchange (and its

subprocesses)
Yes (default) ----- CR1.3 Suggestion
No Remove process suggestItem

...

b) Decision Model for the enterprise process diagram

In the case of KobrA, there are several artifacts that are used for domain analysis. Two of the
artifacts that we already mention are the storyboards and the decision models. Other possible
models are: Enterprise Model (with the Enterprise Process Diagram and the Enterprise Concept
Diagram); Structural Model (with the Context Realization Class Diagram and the Context
Realization Object Diagram); the Activity Model (with Activity Diagrams and the Use Case
Model); and the Interaction Model (with Sequence Diagrams). The majority of these models, as
their name implies, are based on the UML notation [UML 2005]. Next, we will briefly describe
how these artifacts can be used.

The product map identifies the major tasks or business processes by domain. That information
can be compiled and integrated into the enterprise process diagram. The enterprise process diagram
is a tree of domain processes with a top node that represents the whole system. In this diagram,
processes that are not mandatory are distinguished from regular processes. Figure 33 presents an
example of an enterprise process diagram. Optional processes are depicted in gray.

Usually not all business processes are supported by the system. In KobrA, business processes,
or parts of business processes, that are supported by the system can be modeled as use cases.
Similarly to the other models, the «variant» stereotype is used to mark items that are not mandatory
and, as such, represent variability. In Figure 34, we see that the following process nodes become
use cases: createNewAccount, loanItem, printAccountInformation, identifyAccount and
identifyItem. Nodes that are too fine-granular in their functionality are not represented as use cases.
An example of this case is registerLoan. Figure 34 also shows three use cases that are not
supported by the system: printLibraryAccessCard, withdrawLibraryAccessCard and
handOutInfoMaterial.

Chapter 2: Related Work

- 54 -

Library System

Customer
Interaction Data Exchange Search Accounting

Register Unregister Change
Registration

Loan Items Return Items Reloan Items Report Loss Reserve Item Suggest Item

Data Import Data ExportCustomer
Management

Loan
Management

Stock
Management

Figure 33: Example of KobrA enterprise process model (based on [Bayer et al. 2001]).

Processes, activities and use cases are used in KobrA to model behavior. For the structure of
the system other models are used. Entities, roles and their associations are modeled in an enterprise
concept diagram. This diagram is at an abstraction level similar to the enterprise process model.
These two models provide an initial description of the system and enable the identification of the
components that are created in the following phases. They describe the business of the organization
and, as such, their construction requires expert domain information that can be obtained, for
instance, by consulting domain experts and artifacts containing domain information, such as books
and papers. Figure 35 presents an example of an enterprise context diagram.

The structure of the system is refined by using context realization class diagrams. Basically
these diagrams are UML class diagrams. They contain components and classes that realize the
concepts and processes of the enterprise diagrams that are to be support by the system. Other
components and classes that support the realization of the system from a context perspective are
also included. Some features (i.e., methods and fields) of the classes are also included in the model.
Items of this model that are not mandatory are marked with the «variant» stereotype. The
identification of the methods is based on the nodes of the activity diagrams for the business
processes and also on the modeled use cases. The attribution of behavior (methods) to classes and
components is based on the KobrA interaction model. KobrA interaction models provide a unified
view of structure and behavior by using UML sequence diagrams.

All the variability in the different models proposed by KobrA is integrated into the decision
models. Each model has its decision model. To obtain the requirements for a particular application
of the domain it is necessary to execute all the effects that are consequences of resolving all the
variations of the decision models (see Table 2).

An example of the adoption of feature diagrams for modeling variability in PuLSE can be
found in an IESE report about a cellular phone product line [Muthig et al. 2004]. This report also
demonstrates how variability can be represented in the textual description of use cases. In this case,
variability is represented in the text of the use cases by using the <OPT> and <ALT> marks for,
respectively, optional and alternative use case steps. The report also shows how a feature diagram
can be built based on the variability annotations in the textual description of the use cases.

2.9 Product Line Software Engineering (PuLSE) and Kobra

- 55 -

«variant»
reserveItem

reloanItem

returnItem

«include»

printAccountInformation

loanItem

removeAccount

createNewAccount

identifyAccount

identifyItem
«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

Service
Librarian

LibrarySystem

«variant»
printLibrary
AccessCard

«variant»
withdrawLibrary

AccessCard

handOutInfoMaterial

Figure 34: Example of KobrA use case diagram for the actor ServiceLibrarian (based on [Bayer et al. 2001]).

«entity»
LibraryAccessCard

«role»
User

«entity»
Account

«entity»
Reservation

«entity»
Item

«entity»
Loan

«entity»
Receipt

«role»
BudgetManager

«role»
Library

«role»
Librarian

«role»
ServiceLibrarian

*

1

*
* *

*

*

*

*

1

1

1

*

1

1

1

1
1

Figure 35: Example of KobrA enterprise concept diagram for a library (based on [Bayer et al. 2001]).

Architecting
PuLSE-DSSA is the sub-phase of PuLSE where the domain-specific software architecture is build.
The process is incremental and based on scenarios. There are two types of scenarios: generic and
property-related. The generic scenarios represent functional requirements and are derived from the
generic storyboards and other artifacts of PuLSE-CDA. The property-related scenarios describe
domain-independent quality aspects of the system. They are used to evaluate and rank the generic
scenarios of possible candidate architectures. The result of the ranking is a reference architecture
that is further developed. During the creation of the reference architecture, implementation-specific

Chapter 2: Related Work

- 56 -

decisions are collected that will have to be resolved during reference instantiation. These decisions
and their possible resolutions are captured in a configuration model that extends the decision
model.

Similarly to what we did for modeling, we will use KobrA as an example of customization of
PuLSE to present how architecting can be achieved. We will use the same IESE report [Bayer et al.
2001].

A system developed with KobrA is represented as a static set of KobrA components
(Komponents) organized in the form of a tree. Each component has an external and an internal
representation. The external representation describes the visible properties and behavior of the
component while the internal representation describes how the component fulfills the external
behavior and properties by using lower level components.

The specification of a component (i.e., its external representation) is comprised of four main
models: the structural model, the behavioral model, the functional model, and the decision model.

The structural model is based on class diagrams that represent the classes and relationships by
which a component interacts with its environment, as well as any internal structure of the
component, which is visible at its interface.

The behavioral model describes how a component reacts in response to external stimuli. It
consists of an arbitrary number of UML statechart diagrams. The statecharts are used to describe
user visible states of a component and state changes that are reactions on user visible events. Events
represent requests for the execution of an operation. These operations are the same that appear in
the specification class diagram of the component.

The functional model is based on operation schemas, similarly to the ones of Fusion [Coleman
et al. 1994]. They describe the externally visible effects of the operations that are provided by a
component. Each operation listed in the class diagram is described by an operation schema, which
defines its effects in terms of input parameters, changed variables, output values, and pre- and post
conditions.

Decision models have the same purpose as the ones described earlier.

We will now present a selection of models from the Library case study to illustrate the models
used for the specification of the KobrA components.

Figure 36 presents the specification class diagram for the top level component of the library:
the LibrarySystem component. The majority of the classes presented here come from the context
realization class diagram discussed earlier. The methods presented are also based on information
that resulted from PuLSE-CDA, particularly from the activity diagrams.

Items that realize variant features are also marked as variant. In the case depicted in Figure 36,
the classes Suggestion, Reservation and ExternalDatabase are marked as variant since they support
optional features (see Table 2a). The method reserveItem is marked as variant for the same reason.

Figure 37 presents another model of the specification of the LibrarySystem component: the
supplied and required interfaces.

2.9 Product Line Software Engineering (PuLSE) and Kobra

- 57 -

«subject»
LibrarySystem

«Komponent»
Printer

«variant»
Suggestion

*
Selector

ItemSelector AccountSelector

Form

Display

identifyAccount()
createNewAccount()
removeAccount()
identifyItem()
loanItem()
printAccountInformation()
returnItem()
reloanItem()
...
«variant» reserveItem()
...

«Komponent»
OPAC

«Komponent»
WebServer

1*

«acquires»

«variant, Komponent»
ExternalDatabase

1*

1*

*

1

«acquires»

print()

Account

id

1
currentAccount

*

Item

id
bibliographicInfo

isLoanable()

«variant»
Reservation

Loan

creationDate
returnDate
noExtensions

creationDate

*

* *

0..1

1

1

search()

*

Figure 36: Specification class diagram for the LibrarySystem component (based on [Bayer et al. 2001]).

identifyAccount()
createNewAccount()
removeAccount()
identifyItem()
loanItem()
printAccountInformation()
returnItem()
reloanItem()
...
«variant» reserveItem()
«variant» suggestItem()
...

Printer

«variant, Komponent»
ExternalDatabase

LibrarySystem

Figure 37: Supplied and required interfaces for the LibrarySystem component (based on [Bayer et al. 2001]).

In Figure 38 we see the operation schema for loanItem. We see the importance of the state
diagram of the component, since there are some constraints that are based on the state of the
component. For instance, the loan is only possible if the component has an account identified, i.e.,
is in the accountIdentified state. In the case of the operation schemas, variability is represented
using tags that surround the variant text (<variant> and </variant>).

The realization of a KobrA component is comprised of four main models: the interaction
model, the structural model, the activity model, and the decision model.

Chapter 2: Related Work

- 58 -

Name loanItem()
Description The loan of an Item to currentAccount is registered
Receives selector: ItemSelector
Sends <variant> Message “Reserved” </variant>

Message “Already Loaned”
Rules An item is loanable if it is not an item that must always stay in the library (e.g., antique books).

An item is currently loanable if it is loanable and not loaned <variant> or reserved </variant> by
another user.

Changes new Loan
Assumes Subject is in the state accountIdentified

Selector selects exactly one Item
Result item selected by selector has been obtained

if item is currently loanable
 a new Loan object, loan, has been created that relates item and currentAccount
 and has the attribute values
 - creationDate = today
 - returnDate = today + <loanPeriod> and
 - noExtensions = 0
 and, loan has been stored.
if item is not currently loanable
 one of the messages has been displayed to the user
 <variant> - “Reserved” or </variant>
 - "Already Loaned"

Figure 38: Operation schema for loanItem (based on [Bayer et al. 2001]).

Interaction models define how groups of objects interact at run-time to realize component
operations. UML interaction diagrams (either a UML collaboration diagram or a UML sequence
diagram) are used to specify operations of the components. The construction of these diagrams is
based on the operation schema from the component specification as well as on the activity
diagrams that provide a process-oriented view of the realization of the component operations.

The realization structural models describe the classes and relationships from which
components are realized. The realization class diagram is a refinement of the corresponding
specification class diagram. Elements taken from the specification class diagram are described in
more detail and new elements discovered in the process are also included.

Decision models are used in the same way as previously. They describe variability and the
effects that resolving that variability has on the other models.

In Figure 39 we see the realization class diagram for the LibrarySystem component. We
depicted in gray the elements that are new regarding the specification class diagram for the
LibrarySystem component (depicted in Figure 36). These are the components (and eventually
classes) that, in this case, were discovered to be necessary for the realization of the component.
Each of these new components integrates the tree of components of KobrA. Each of these new
components will need also to be specified and realized. The process is repeated until there is no
more refinements to be done, i.e., all components are modeled.

In Figure 40 we see how activity diagrams are used for modeling the operations of the
components. In this case, we present the activity diagram of loanItem, an operation of the
LoanManager component. Each node in the activity diagram represents an operation. Each swim
lane (partition) of the activity diagram represents a component or class that is responsible to
perform operations. In KobrA, these activity diagrams are used as intermediate models to bridge

2.9 Product Line Software Engineering (PuLSE) and Kobra

- 59 -

the step from the operation schemata of the specification models of a component to the interaction
models used for the realization of components. These are models that are very close to the
implementation level. In Figure 40 we see that variability is modeled in the activity diagrams in a
similar way to the other models in KobrA, i.e., with the stereotype «variant». We see, for instance,
that ReservationManager is a variant component. This is because reservation is an optional feature
(see Table 2). This means that in loanItem, the operation getItem that is performed by ItemManager
can be followed by the isReserved operation of the ReservationManager or by the isLoaned
operation of the LoanStore class. Although this is a very detailed specification of the loanItem
method of the LoanManager component it is, nevertheless, a platform independent model, which is
one step away from implementation details for a specific platform or technology.

«subject»
LibrarySystem

«Komponent»
ReportWriter

«variant»
Suggestion

Selector

ItemSelector AccountSelector

Form

Display

identifyAccount()
createNewAccount()
removeAccount()
identifyItem()
loanItem()
printAccountInformation()
returnItem()
reloanItem()
...
«variant» reserveItem()
...

«Komponent»
OPAC

«Komponent»
WebServer

1*

«acquires»

«variant, Komponent»
ExternalDatabase

1*

1*

*

1

printAccountInformation()
...

Account

id

1
currentAccount

*

Item

id
bibliographicInfo

isLoanable()

«variant»
Reservation

Loan

creationDate
returnDate
noExtensionscreationDate

*

* *

0..1

1

1

search()

*

«Komponent»
Printer

*

«Komponent»
Messagehandler

displayMessage()

«Komponent»
StockManager

«Komponent»
LoanManager

loanItem()
returnItem()
reloanItem()
«variant» reserveItem()
setAccount()
closeAccount()
printLoanInformation()
setStockManager()
setMessageHandler()
setReportWriter()

«Komponent»
AccountManager

createAccount()
identifyAccount()
removeAccount()
printAccountInformation()

«acquires»

Figure 39: Realization class diagram for the LibrarySystem component (based on [Bayer et al. 2001]).

For the implementation of variability, PuLSE does not force specific technologies.
Technologies must be selected according to the context of the project and the results of PuLSE-
DSSA. For instance, design patterns can be used to implement variability. The mediator pattern is
proposed as a way to achieve changeability and extensibility and, as such, variability [Muthig et al.
2004]. Another possibility is to use aspect-oriented programming [Kiczales et al. 1997] to support
variant features that crosscut several classes or components. These are only possible approaches to
implement variability.

Chapter 2: Related Work

- 60 -

getItem

isLoaned

create

insert

«variant»
isReserved

«variant»
displayMessage

displayMessage

LoanManager LoanStore ItemManager «variant, Komponent»
ReservationManager MessageHandler

«variant»

[No] [Yes]

[No] [Yes]

«variant»

Figure 40: Activity diagram for the loanItem operation (based on [Bayer et al. 2001]).

2.10 Discussion
This section is concerned with a discussion of what we find to be the major topics on the research
field. We start by analyzing the concepts of features, variation points and variants. These concepts
relate to the notion of variability.

As we have seen, domain engineering focuses on supporting systematic and large-scale reuse
by capturing both the commonalities and the variability of systems within a domain to improve the
efficiency of development and maintenance of those systems. As such, the notion of variability is
crucial in domain engineering since it supports the differentiation of systems that belong to the
same domain. If we search for definitions for variability we most probably will find statements like
“the state or characteristic of being variable” and synonyms like flexibility, adaptability, and
alterability2. If we search for the term variable we find definitions such as “able to change”.
Therefore, in the context of domain engineering, variability is used to support the changes or
differences that exist between systems that belong to the same domain.

Although commonality (“the sharing of characteristics or qualities”2) is what supports domain
engineering, since without commonality there is no reuse, it is variability that makes the domain
useful. If we are not capable of identify, represent and implement variability in a domain, then
domain engineering is no different than single system engineering since all applications share the
same characteristics. Therefore, we will focus our comparison of the methods presented in the
previous sections on how they identify, represent and implement variability.

2 Definition taken from MSN Encarta’s online dictionary and thesaurus available at http://encarta.msn.com/.

2.10 Discussion

- 61 -

2.10.1 Features
We have seen that a great majority of domain engineering methods uses features and feature
diagrams. They are used to represent variability.

In FODA, features and feature diagrams are used to represent characteristics of concepts of the
domain. To contextualize the discussion lets use the following definition of concept: “abstract idea
or a guiding general principle, e.g. one that determines how a person or culture behaves or how
nature, reality, or events are perceived”.

In ODM, a feature is a difference observed by modelers among multiple exemplars of a
concept of interest, that makes a difference, i.e., is of interest to some domain stakeholders. From
these two statements we see that there is a relationship between concepts and features. We can say
that a feature represents a characteristic of a concept that enables the distinction between multiple
exemplars of that concept. That is why feature diagrams are used to represent variability for
concepts of a domain.

In fact, the human mind seams to use features as a way to distinguish between instances of the
same concept. According to the prototype theory, concepts are organized around family
resemblances, and consist of not defining, but characteristic features, which are weighted in the
definition of the prototype [Aerts et al. 2005]. This has to do with the fact that people do not store
all the information about the objects they encounter [Smith et al. 1981]. People manage to
recognize new objects as instances of concepts they already know. Objects are recognized as
instances of concepts by means of categorization. This categorization and the distinguishing
between objects are achieved through features.

In Figure 41 we schematically represent the relationships between how the human mind
organizes concepts and how these relate to elements of the mainstream software engineering
paradigm.

Concept

Feature

represented by

characterized by

Class

Property
represented by

characterized by

Object

Value
instance of

characterized by

instance of

Object-Oriented ParadigmHuman Mind

Variability

Variation Point Variant
variant of

variability subject variability object

Variable Feature
represented by

Figure 41: Relating variability, human mind and object-oriented terms.

We would like to present some notes regarding Figure 41. Concepts can be categorized
according to its features in a similar manner to what we do with classes and its properties. So, why
not use only classes and properties to model concepts and its characteristics? The answer is that

Chapter 2: Related Work

- 62 -

classes in the object-oriented paradigm describe sets of objects while, as we have seen in the
beginning of this section, a concept is a much broader concept. A more precise mapping could be
done using UML 2.0 elements. In this case, Concept could be represented by Classifier. In UML
2.0, Classifier is a more generic term than Class and it can be refined, for instance, to UseCase or
Actor (see [UML 2005]). Even so, we are limited to things that can be modeled in UML 2.0. That is
the reason why class diagrams and feature diagrams have different natures. However, if the reader
is interested in the topic, deeper analysis concerning the relationship between features and classes
can be found in [Czarnecki et al. 2006; Kim 2006].

2.10.2 Variation Points and Variants
The domain engineering methods that have been previously described have two other common
terms that were used regarding variability: variation point and variant.

In RSEB, the concept of variation point is used to represent variability in the UML models. It
identifies one or more locations at which variation will occur. These locations are represented using
a dot inside the model element where the variation takes place. In RSEB, variable features are
exploited at variation points.

In PLUS, variation points are used to handle variability within use cases. They are called small
variation points and are represented in the textual description of use cases.

PuLSE adopts a more general approach to variation points. Here, variation points can occur in
any workproduct of the method. They are used in decision models to model variability and its
effect on the workproducts. A decision model contains a structured set o decisions. Each decision
corresponds to a variability point in a workproduct together with the set of possible resolutions.
The specification of a product can then be obtained by resolving all the decisions of the decision
model.

A general approach to variation points and variants can be found in [Pohl et al. 2005]. In this
work, variation points are based on the following two definitions: (1) variability subject: is a
variable item of the real world or a variable property of such an item; (2) variability object: is a
particular instance of a variability subject. Based on the previous definitions, variation point and
variant are defined as follows: (1) variation point: is a representation of a variability subject within
domain artifacts enriched by contextual information; (2) variant: is a representation of a variability
object within domain artifacts. These definitions are used to support an orthogonal variability
model that can complement any other model with the variability perspective.

In Figure 41 we see how variation point and variant can be related to the previously discussed
concepts.

2.10.3 Method Comparison
We now present an analysis of the previously described domain engineering methods with respect
to three different aspects: variability identification; variability representation and variability
implementation. Table 3 presents a summary of our analysis.

Variability Identification
Domain experts, end-users, documents and applications are the main sources of information for
variability identification. There are techniques used by some methods to help in the task of
variability identification. For instance, FODA uses data flows for first variability identification in
the scoping phase. DARE tries to automate the process of variability identification by adopting a

2.10 Discussion

- 63 -

bottom-up approach that is based on a faceted conceptual clustering technique that uses documents
and code as sources. RSEB and PLUS are UML-based methods and naturally adopt a use case
driven approach to identify variability. In the case of PuLSE, since it is a method framework for
product line development, it does not force particular techniques prior to the customization of the
method. However it suggests the use of product maps and also storyboards (IESE has developed
tool support for storyboards). In the KobrA customization of PuLSE, use cases are also used
because KobrA is UML based.

Table 3: Domain engineering methods comparison.

Variability Identification Variability Representation Variability Implementation

Draco Documents; applications in
the domain; and other
domains in Draco.

Variability is defined by the
grammar rules of the
domain-specific language of
the domain.

Components and
domain-specific languages.

FODA Domain experts; end-users;
documents; and
applications.

Variability mainly
represented using feature
diagrams.

Several implementation
techniques suggested based on
the binding time of features

ODM Social and organizational
sources of domain
information.

Uses the concept of feature
but does not prescribe any
specific notation

Does not prescribe specific
techniques for
implementation.

DARE Top-down based on domain
experts and bottom-up
Faceted Conceptual
Clustering approach based
documents and code.

Uses the concept of domain
book and feature tables to
represent the results of
domain analysis.

Does not prescribe specific
implementation techniques.

FAST interviews with domain
experts

A commonality analysis
document contains sections
that represent variability.

Based on domain specific
languages.

RSEB
and
FeatuRSEB

Use case driven process of
collecting domain
information from users and
customers.

Uses the concepts of
variation point, variation and
feature diagrams.

Based on the concepts of
inheritance, extension and
parameterization. Also
proposes the adoption of
design patterns.

PLUS Use case driven process
based essentially on user
input.

Features; variation points;
and UML stereotypes.

Architectural patterns;
component-Based design;
inheritance; and class
parameterization.

PuLSE and
KobrA

Information is elicited and
collected from several
sources in product maps and
storyboards.

Uses storyboards and
decision models. Other
models can be used
according to PuLSE
customization.

KobrA proposes techniques
such as AOP, component
technology or design patterns.

From the analysis of the methods we can say that variability identification is mainly a manual
task. Only DARE tries to automate the process with a faceted conceptual clustering technique.
However, to our knowledge, the results of such approach are not conclusive [Prieto-Díaz et al.
1995]. The UML related methods support their variability identification tasks on use cases or
similar techniques like storyboards.

Variability Representation
Variability representation is based on the concepts of feature, variation point and variant. Draco is
the only method that does not explicitly use these concepts. This maybe a consequence of being

Chapter 2: Related Work

- 64 -

based on domain specific languages and, as such, variability is implicitly model in the grammar of
the languages. FODA proposes features and feature diagrams not only to model variability, but also
to parameterize other models like entity relationship and activity and state charts. DARE and FAST
represent variability in documents that result from analysis: domain book in the case of DARE and
commonality analysis document in the case of FAST. DARE uses feature tables, whereas FAST
describes variabilities and parameters of variability in its analysis document. RSEB originally
based its representation of variability in variant points and variants. In the FeatuRSEB extension to
RSEB, features are included into the method to represent an integrated view on variability and as a
guide to the reuse process. The PLUS method is based on UML. Therefore, it proposes to model
variability with UML models. To represent variability, models are annotated with variability
stereotypes. It also uses the concept of variation point, particularly to represent small variations in
use cases and also variability in classes (class diagrams). To model features, it proposes the use of
stereotyped class diagrams. In PuLSE, storyboards and decision models are used to represent
variability. Other models can be used according to PuLSE customization. Decision models
represent the effect that resolution of variability has on artifacts. It complements the variability that
is modeled using, essentially, annotations and tags in other modeling languages such as UML.

Besides the variability representation approaches used in the discussed methods, other
complementary approaches can be found in the literature. Here we reference significant proposals
that are related to UML [Clauß 2001a; Clauß 2001b; Maßen et al. 2002; Pree et al. 2002;
Philippow et al. 2003; Ziadi et al. 2003; Fantechi et al. 2004]

Variability Implementation
Regarding variability implementation, the majority of the described methods are not prescriptive.
Exceptions are Draco and FAST, which propose the use of domain specific languages to implement
variability. RSEB and PLUS, as a result of being based on UML, propose that variability can the
implemented by inheritance and parameterization. They also propose the use of design patterns,
particularly when the adopted programming languages have limited support for variability. PuLSE
also does not prescribe specific implementation techniques. However, it proposes techniques such
as aspect-oriented programming (AOP), component technology or design patterns to implement the
modeled variability. Regarding the KobrA customization of PuLSE, we have seen that it uses UML
models to specify system realizations. These models can be easily used to select the
implementation techniques more suitable for each case.

As we have seen in Section 2.1 and also from the analysis of the domain engineering methods,
variability realization techniques are essentially based on: inheritance; extensions and extension
points; parameterization, templates and macros; configuration and module interconnected
languages; and generation of derived components. However, other more specific techniques can be
used like, for instance, aspect-oriented programming, frame technology, and feature-oriented
programming. A more detailed analysis of some specific variability implementation techniques can
be found in [Braganca 2003].

2.11 Conclusion
This chapter was dedicated to present and discuss related work in the research field of domain
engineering. We start by contextualizing domain engineering, particularly with regards to software
engineering, software reuse, and software product lines. We saw how domain engineering relates to
single system development (i.e., application engineering). We presented commonality and
variability as major concepts used in domain engineering. We have also briefly presented common
variability implementation techniques as well as other innovative ways to support variability.

2.12 References

- 65 -

Since this thesis is essentially about methods to develop software in the context of product
lines, we have presented and discussed a group of selected methods. We selected the methods
based on their historical relevance and also on the degree of relationship with our own work,
particularly in the case of FODA, RSEB, PLUS and PuLSE. Each of the methods were presented
and discussed with a particular focus on how they identify, represent and implement variability.
These characteristics of the methods were compiled into a comparison table that summarizes how
each method supports variability identification, representation and implementation. We have also
discussed and related major concepts used in domain engineering particularly, features, variation
points and variants.

From the description and discussion of the methods presented in this chapter, and in the spirit
that model driven approaches treat models as first-class artifacts of the software development
process, we can conclude that we are still far from a model driven development paradigm for
software product lines. We particularly identify the following major issues:

the lack of formalization of relationships and transformations between models;
the lack of a clear conceptualization of features that supports the definition of possible
relationships between features and other modeling concepts;
the lack of a global approach for modeling variability (and commonality) in the context of
UML, either by the profile mechanism or by extending the metamodel;
the lack of a clear approach to transformations between analysis and design models that
could support the automation of the bridging between the problem space and the solution
space;
the lack of explicit support for multi-stage software development.

The presented issues are also research opportunities that we will attack in this thesis and
discuss in the following chapters.

To provide a domain engineering state-of-the-art is an overwhelming task. Having said that,
we hope this chapter provides enough knowledge background to facilitate the reading of the next
chapters.

2.12 References
[Aerts et al. 2005] Aerts, D. and L. M. Gabora, "A Theory of Concepts and Their Combinations I:
The Structure of the Sets of Contexts and Properties," Kybernetes, vol. 34, pp. 167-191, 2005.

[Anastasopoulos et al. 2000] Anastasopoulos, M., J. Bayer, O. Flege and C. Gacek, "A Process for
Product Line Architecture Creation and Evaluation - PuLSE-DSSA - Version 2.0," IESE
038.00/E, 2000.

[Atkinson et al. 2000] Atkinson, C., J. Bayer and D. Muthig, "Component-Based Product Line
Development: The KobrA Approach," First Software Product Line Conference, Denver,
Colorado, 2000.

[Bassett 1997] Bassett, P. G., Framing Software Reuse: Lessons From the Real World: Prentice
Hall, 1997.

[Batory 2004] Batory, D., "Feature-Oriented Programming and the AHEAD Tool Suite,"
International Conference on Software Engineering, Edinburgh, Scotland, UK, 2004.

Chapter 2: Related Work

- 66 -

[Batory et al. 1992] Batory, D. and S. O'Malley, "The Design and Implementation of Hierarchical
Software Systems with Reusable Components," ACM Transactions on Software
Engineering and Methodology, vol. 1, pp. 355-398, 1992.

[Bayer et al. 1999] Bayer, J., O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T. Widen and
J.-M. DeBaud, "PuLSE: A Methodology to Develop Software Product Lines," Symposium
on Software Reusability ‘99 (SSR’99), Los Angeles, 1999.

[Bayer et al. 2001] Bayer, J., D. Muthig and B. Gopfert, "The Library Systems Product Line - A
KobrA Case Study," IESE 024.01/E, 2001.

[Beck 1999] Beck, K., Extreme Programming Explained: Addison-Wesley, 1999.

[Beck et al. 2001] "Manifesto for Agile Software Development," Available at
http://agilemanifesto.org/, 2007.

[Boehm 1988a] Boehm, B., "A Spiral Model of Software Development and Enhancement," IEEE
Computer, vol. 21, pp. 61-72, 1988a.

[Boehm 1988b] Boehm, B. W., "A Spiral Model of Software Development and Enhancement,"
Computer, vol. 21, pp. 61-72, 1988b.

[Borgida et al. 1984] Borgida, A., J. Mylopoulos and H. K. T. Wong,
"Generalization/Specialization as a Basis for Software Specifications," in On Conceptual
Modeling, Book resulting from the Interleave Workshop 1982. New York: Springer-Verlag,
1984, pp. 87-117.

[Bosch 2000] Bosch, J., Design and Use of Software Architectures Adopting and Evolving a
Product-Line Approach: Addison-Wesley, 2000.

[Bosch 2002] Bosch, J., "Maturity and Evolution in Software Product Lines: Approaches, Artifacts
and Organization," Second Software Product Line Conference (SPLC2), 2002.

[Braganca 2003] Braganca, A., "Run-Time Variability in Domain Engineering for Post-
Deployment of User-Centric Software Functional Completion," U. Minho, Guimarães,
PhD Report 2003.

[Chen 1976] Chen, P. P., "The Entity-Relationship Model - Toward a Unified View of Data," ACM
Transactions on Database Systems, vol. 1, pp. 9-36, 1976.

[Clauß 2001a] Clauß, M., "Generic Modeling using UML extensions for variability," DSVL 2001,
2001a.

[Clauß 2001b] Clauß, M., "Modeling variability with UML," GCSE - YRW01, 2001b.

[Clements et al. 2002] Clements, P. and L. Northrop, Software Product Lines - Practices and
Patterns: Addison Wesley, 2002.

[Cockburn 2001] Cockburn, A., Writing Effective Use Cases: Addison-Wesley, 2001.

2.12 References

- 67 -

[Coleman et al. 1994] Coleman, D., P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes and P.
Jeremaes, Object Oriented Development: The Fusion Method: Prentice Hall International,
1994.

[Czarnecki 1998] Czarnecki, K., "Generative Programming Principles and Techniques of Software
Engineering Based on Automated Configuration and Fragment-Based Component
Models," in Department of Computer Science and Automation: Technical University of
Ilmenau, 1998.

[Czarnecki et al. 2006] Czarnecki, K., C. H. P. Kim and K. T. Kalleberg, "Features are Views on
Ontologies," SPLC 2006, Baltimore, Maryland, 2006.

[DARPA 1994] DARPA, "Software Technology For Adaptable, Reliable Systems (STARS). Army
STARS Demonstration Project Experience Report.," STARS-VC-A011R/002/01, 1994.

[Dijkstra 1969] Dijkstra, E. W., "Notes on Structured Programming," Technological University of
Eindhoven, Eindhoven, The Netherlands 1969.

[Fantechi et al. 2004] Fantechi, A., S. Gnesi, G. Lami and E. Nesti, "A Methodology for the
Derivation and Verification of Use Cases for Product Lines," SPLC2004, Boston, 2004.

[Fayad et al. 1999] Fayad, M. E. and R. E. Johnson, Domain-Specific Application Frameworks:
Framework Experience by Industry: John Wiley & Sons, 1999.

[Fontoura 1999] Fontoura, M., "A Systematic Approach to Framework Development," in Computer
Science Department. Rio de Janeiro: Pontifical Catholic University, 1999.

[Foreman 1996] Foreman, J., "Product Line Based Software Development- Significant Results,
Future Challenges," Software Technology Conference, Salt Lake City, 1996.

[Fowler 2002] Fowler, M., Patterns of Enterprise Application Architecture: Addison-Wesley Pub
Co., 2002.

[Gamma et al. 1995] Gamma, E., R. Helm, R. Johnson and J. Vlissides, Design Patterns - Elements
of Reusable Object-Oriented Software: Addison-Wesley, 1995.

[Garlan et al. 1994] Garlan, D. and M. Shaw, "An Introduction to Software Architecture," Carnegie
Mellon University CMU-CS-94-166, 1994.

[Gomaa 1984] Gomaa, H., "A Software Design Method for Real-Time Systems," Communications
of the ACM, vol. 27, pp. 938-949, 1984.

[Gomaa 2005] Gomaa, H., Designing Software Product Lines with UML: Addison Wesley, 2005.

[Gomaa et al. 2004] Gomaa, H. and M. E. Shin, "A Multiple-View Meta-modeling Approach for
Variability Management in Software Product Lines," ICSR International Conference on
Software Reuse, Madrid, 2004.

[Greenfield et al. 2004] Greenfield, J., K. Short, S. Cook and S. Kent, Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools: Wiley, 2004.

Chapter 2: Related Work

- 68 -

[Griss et al. 1998] Griss, M. L., J. Favaro and M. d'Alessandro, "Integrating Feature Modeling with
the RSEB," Fifth International Conference on Software Reuse, Victoria, Canada, 1998.

[Gurp 2003] Gurp, J. v., "On the Design & Preservation of Software Systems," in Computer
Science Department. Groningen: University of Groningen, 2003.

[Hayes-Roth 1994] Hayes-Roth, F., "Architecture-Based Acquisition and Development of
Software: Guidelines and Recommendations from the ARPA Domain-Specific Software
Architecture (DSSA) Program," Teknowledge Federal Systems Informal Technical Report,
1994.

[Jacobson et al. 1999] Jacobson, I., G. Booch and J. Rumbaugh, The Unified Software Development
Process: Addison-Wesley Professional, 1999.

[Jacobson et al. 1992] Jacobson, I., M. Christerson, P. Jonsson and G. Overgaard, Object-Oriented
Software Engineering: A Use Case Driven Approach: Addison-Wesley, 1992.

[Jacobson et al. 1997] Jacobson, I., M. Griss and P. Jonsson, Software Reuse: Architecture, Process
and Organization for Business Success: Addison Wesley Longman, 1997.

[Johnson 1995] Johnson, J., "CHAOS: The dollar drain of IT project failures," Application
Development Trends, pp. 41-47, 1995.

[Kang et al. 1990] Kang, K. C., S. G. Cohen, J. A. Hess, W. E. Novak and A. S. Peterson, "Feature-
Oriented Domain Analysis (FODA) Feasibility Study Technical Report," Software
Engineering Institute, Carnegie Mellon University CMU/SEI-90-TR-21, 1990.

[Kang et al. 1998] Kang, K. C., S. Kim, J. Lee, K. Kim, G. J. Kim and E. Shin, "FORM: A Feature-
Oriented Reuse Method with Domain-Specific Reference Architectures," Annals of
Software Engineering, vol. 5, pp. 143-168, 1998.

[Kiczales et al. 1997] Kiczales, G., J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M.
Loingtier and J. Irwin, "Aspect-Oriented Programming," European Conference on Object-
Oriented Programming (ECOOP), Finland, 1997.

[Kim 2006] Kim, P., "On the Relationship between Feature Models
and Ontologies," 2006.

[Maßen et al. 2002] Maßen, T. v. d. and H. Lichter, "Modeling Variability by UML Use Case
Diagrams," REPL'02, Essen, Germany, 2002.

[McLeod 1978] McLeod, D., "A Semantic Data Base Model and its Associated Structured User
Interface," Massachusetts Institute of Technology, 1978.

[Medvidovic 1997] Medvidovic, N., "A Classification and Comparison Framework for Software
Architecture Description Languages," University of California, Irvine UCI-ICS-97-02,
1997.

[Muthig et al. 2004] Muthig, D., I. John, M. Anastasopoulos, T. Forster, J. Dorr and K. Schmid,
"GoPhone - A Software Product Line in the Mobile Phone Domain," IESE 025.04/E, 2004.

2.12 References

- 69 -

[Myers 1988] Myers, B. A., "A Taxonomy of Window Manager User Interfaces," IEEE
Transactions on Computer Graphics & Applications, vol. 8, pp. 65-84, 1988.

[Nakatani et al. 1999] Nakatani, L. H., M. A. Ardis, R. G. Olsen and P. M. Pontrelli, "Jargons for
domain engineering," DSL-99, Austin, Texas, 1999.

[Naur et al. 1969] Naur, P. and B. Randell, "Software Engineering," Garmisch, Germany Report on
a conference sponsored by theNATO Science Commite, 1969.

[Neighbors 1980] Neighbors, J., "Software Construction Using Components," in Department
Information and Computer Science. Irvine: University of California, 1980.

[Ossher et al. 1994] Ossher, H., W. Harrison, F. Budinsky and I. Simmonds, "Subject-Oriented
Programming: Supporting Decentralized Development of Objects," 7th IBM Conference
on Object-Oriented Technology, 1994.

[Parnas 1976] Parnas, D., "On the Design and Development of Program Families," vol. 2, pp. 1-9,
1976.

[Peterson et al. 1994] Peterson, A. S. and J. Jay L. Stanley, "Mapping a Domain Model and
Architecture to a Generic Design," Carnegie Mellon University/Software Engineering
Institute CMU/SEI-94-TR-8, 1994.

[Philippow et al. 2003] Philippow, I., M. Riebisch and K. Boellert, "The Hyper/UML Approach for
Feature Based Software Design," The 4th AOSD Modeling With UML Workshop, 2003.

[Pohl et al. 2005] Pohl, K., G. Böckle and F. v. d. Linden, Software Product Line Engineering:
Foundations, Principles, and Techniques: Springer-Verlag, 2005.

[Pree et al. 2002] Pree, W., M. Fontoura and B. Rumpe, "Product Line Annotations with UML-F,"
Software Product Lines - Second International Conference, SPLC 2, San Diego, 2002.

[Pressman 2004] Pressman, R. S., Software Engineering: A Practitioner's Approach, 6 ed: McGraw
Hill, 2004.

[Prieto-Diaz 1990] Prieto-Diaz, R., "Domain Analysis: An Introduction," ACM SIGSOFT Software
Engineering Notes, vol. 15, pp. 47-54, 1990.

[Prieto-Diaz 1991] Prieto-Diaz, R., "Implementing Faceted Classification for Software Reuse,"
Communications of the ACM, vol. 34, pp. 89-97, 1991.

[Prieto-Díaz et al. 1995] Prieto-Díaz, R., B. Frakes and C. Fox, "DARE A Domain Analysis and
Reuse Environment," Reuse, Inc., Fairfax, VA 1995.

[Reenskaug et al. 1996] Reenskaug, T., P. Wold and O. A. Lehne, Working with Objects: The
OOram Software Engineering Method: Manning, 1996.

[Royce 1970] Royce, W., "Managing the Development of Large Software Systems," IEEE
WESCON, 1970.

Chapter 2: Related Work

- 70 -

[RUP 2004] IBM, "Rational Unified Process web site at IBM," Available at http://www-
3.ibm.com/software/awdtools/rup/, 2004.

[SEI 2007a] Software Engineering Institute, "Domain Engineering: A Model-Based Approach,"
Available at http://www.sei.cmu.edu/domain-engineering/domain_engineering.html, 2007.

[SEI 2007b] SEI, "Software Engineering Institute web site," Available at http://www.sei.cmu.edu/,
2007.

[Simonyi 1995] Simonyi, C., "The death of Computer languages, the birth of intentional
programming," Microsoft Research, Technical Report MSR-TR-95-52, 1995.

[Simos et al. 1996] Simos, M., D. Creps, C. Klinger, L. Levine and D. Allemang, "Organization
Domain Modeling (ODM) Guidebook, Version 2.0," Informal Technical Report for
STARS STARS-VC-A025/001/00, 1996.

[Smith et al. 1981] Smith, E. E. and D. L. Medin, Categories and concepts. Cambridge,
Massachusetts: Harvard University Press, 1981.

[Svahnberg et al. 2000] Svahnberg, M. and J. Bosch, "Issues Concerning Variability in Software
Product Line," Third International Workshop on Software Architectures for Product
Families, 2000.

[UML 2005] OMG, "Unified Modeling Language Version 2.0: Superstructure (formal/05-07-04),"
Available at http://www.omg.org, 2005.

[Unisys 1993] Unisys, "STARS Conceptual Framework for Reuse Processes (CFRP), Vol. I:
Definition, Version 3.0.," Unisys, Arlington, VA STARS-VC-A018/001/00, 1993.

[Weiss 1998] Weiss, D. M., "Commonality Analysis: A Systematic Process for Defining Families,"
Second International Workshop on Development and Evolution of Software Architectures
for Product Families, 1998.

[wxWindows 2007] "wxWindows project web site," Available at http://www.wxwindows.org/,
2007.

[Yourdon et al. 1978] Yourdon, E. and L. Constantine, Structured Design: Yourdon Press, 1978.

[Ziadi et al. 2003] Ziadi, T., L. Hélouët and J.-M. Jezequel., "Towards a uml profile for software
product lines," Fifth Internationl Workshop on Product Familly Engineering (PFE-5),
2003.

- 71 -

3. The MoDeLine
Method

“Ironically, most of the processes in other industries are automated by software systems”
Jack Greenfield, in “Software Factories”

This chapter is concerned with methods for model driven development of software product lines. It
covers the analysis and design phases in a transversal way, i.e., it is not specific to any method
activity. The first half of the chapter describes an approach to extend an existing model driven
method, called 4SRS (4-Step Rule Set), to explicitly handle variability. In the second half of this
chapter, we present a proposal to extend 4SRS so that it can be used as the basis for a model driven
method for the development of software product lines. This evolution of 4SRS method was called
MoDeLine (Model Driven Development of Software Product Lines). We particularly discuss how
MoDeLine supports the transformation of analysis models into architectural models. We also
discuss some approaches to detail the first logical architecture of a system by integrating design
patterns in the proposed approach.

3.1 Introduction
One of the most important artifacts of a product line is the product line architecture. In Section 3.2
we present an approach for adapting a model driven method called 4SRS (4-Step Rule Set)
[Machado et al. 2005] so that it addresses commonality and variability explicitly. 4SRS started as a
model driven transformational technique and evolved into a method. 4SRS has been developed and
applied to obtain system architectures for single systems (as opposed to product lines) from
requirements specified as UML use cases. The method is based on UML v1.4 [UML1.4 2001]. The
resulting software architecture is modeled using object diagrams in which objects represent system
level components. We experiment how such a technique can be applied to product lines and what
adaptations are required to achieve that goal. For demonstration purposes we use the public
available IESE report of the GoPhone product line [Muthig et al. 2004] that uses the UML
modeling language.

The alignment of the software architecture and the functional requirements of a system is a
demanding task because of the difficulty in tracing design elements to requirements. The 4SRS
model driven method provides support to the software architect in this task. In the second half of
this chapter we propose an approach to evolve 4SRS into the basis of a model driven method for
the development of software product lines that we call MoDeLine (Model Driven Development of
Software Product Lines). For that, we show how to evolve 4SRS to support UML 2.0. Particularly,
we describe how to address the transformation of functional requirements (use cases) into
component based requirements for the product line architecture based on UML v2.0 [UML 2005].
We present how we evolve 4SRS to incorporate the UML-F profile [Fontoura et al. 2000] notations
and its extensions, as described in Chapter 4. We also show how to incorporate the UML 2.0
metamodel extensions that are proposed in Chapter 4. These extensions enhance the UML 2.0

Chapter 3: The MoDeLine Method

- 72 -

metamodel to support the modeling of complementary variability situations in use case diagrams.
We explore how the architectures that result from MoDeLine can be refined by using design
patterns and design principles that have its origin in UML-F. We present our approach in a practical
way and illustrate it with a case study.

3.2 Extending 4SRS for Variability Support
One of the most important artifacts of a product line is the product line architecture. A product line
architecture is the basis for the derivation of the architectures of the members of the product line
and also of the development of reusable product line components. As such, the product line
architecture must encompass all the actual members of the product line as well as future members.
This makes the architectural model a crucial artifact of the product line engineering process.

As for single systems development, the reference architecture for a product line is basically
obtained from requirements. UML use cases are a widely adopted technique for functional
requirements modeling. They are used with this perspective in single system development and also
in product line approaches [Gomaa 2005]. In a product line approach requirements result from
domain analysis. The domain analysis phase of product line engineering may involve several
specific activities, besides functional requirements modeling, such as product line scoping and
product portfolio definition.

The scoping activity aims at defining the products that the product line may include. In order
to do so it is necessary to identify what is the domain of the product line and what are external and
sub-domains. The result is usually a diagram representing the relations between domains.

The product portfolio aims at identifying the exact members of the product line, its
characteristics and the timing for its development. To differentiate between products of the product
line it is necessary to identify its features. Some features are common to several members of the
product line while others are not. Feature diagrams are usually adopted for this purpose [Kang et al.
2002].

The two major techniques for dealing with requirements in a product line approach are use
cases and feature models. They can be used together: the use case model is user oriented while the
feature model is reuser oriented [Griss et al. 1998]. In this way, use cases focuses on requirements
elicitation (what functionality should by provided by the product line), while features address better
the functionality that can be composed for the members of the domain.

Regarding the reference architecture of a product line, use case models are the driving force
that guides its development. Nevertheless, there are few documented processes in the product line
area to help in the transition from use case requirements to high-level reference architectures. For
instance, RSEB [Jacobson et al. 1997] (Reuse-driven Software Engineering Business) proposes that
each use case gives origin to three kinds of objects, following the boundary-control-data pattern.
But this is still just the starting point of the process. Other methods, like PuLSE [Anastasopoulos et
al. 2000], simply provide a framework for guiding the design and evaluation of the product line
architecture.

In this context, we find that the derivation of a high-level architecture from the requirements of
a product line is still a topic of the product line engineering process that needs further research. In
this section we address this problem. Our approach is based on a proven technique that has been
used for the derivation of single system architectures from requirements modeled as UML use
cases. The 4SRS technique applies transformational steps in order to derive a high-level

3.2 Extending 4SRS for Variability Support

- 73 -

architecture (system-level object model) from the requirements of a system. In order to use this
technique in the product line context, adaptations are needed. For instance, the technique has to
address the variability concept that is essential to product lines. In order to best evaluate our
approach we use, along this section, the publicly available IESE GoPhone product line technical
report [Muthig et al. 2004]. This technical report presents a mobile phone product line engineered
using PuLSE and KobrA. KobrA is an object-oriented customization of the PuLSE method [Bayer
et al. 2001].

The development activities covered in this section are depicted in gray in Figure 42.

a) Elicitation of Requirements

b) Create Use Case Model

e) Create Feature Model d) Create Entity Model

c) Create Activity Model

f) Create Use Case Realization Model
(Component/Class Model)

g) Create Component/Class Model

h) Refactor Component/Class Model

j) Create Code Base

i) Create State Model

D
es

ig
n

Im
pl

em
en

ta
tio

n
An

al
ys

is
R

eq
ui

re
m

en
ts

Figure 42: Development activities covered in section 3.2.

3.2.1 Requirements Modeling

Functional requirements of product lines can be modeled by use cases. Use case modeling in a
product line must capture the requirements for all the possible members of the product line. As
such, when adopting use cases to model the requirements of a product line, the major issue is the
representation of variability. This means that each use case can vary, depending on the functional
requirements of the members of the product line.

Chapter 3: The MoDeLine Method

- 74 -

Variability is usually modeled using the concept of variation points. These variation points
identify locations where variation will occur. In use cases, variation points can be expressed in
different ways: includes relationship, extension points and use case parameters. To our knowledge,
extension points are the more common way of expressing variability in use cases.

Variability can also be modeled in use case diagrams by using stereotypes to mark use cases.
For instance, Gomaa proposes three stereotypes to classify use cases regarding variability:
«mandatory», «optional» and «alternative» [Gomaa 2005].

In GoPhone, a variant use case has the stereotype «variant». A variant use case is a use case
which functionality can vary between elements of the product line. Figure 43 shows the use case
for the messaging domain of the GoPhone product line. From the model it is possible to observe
that send message is a variant use case of the product line. Further details regarding the use case
variability are specified textually, in the use case description. Figure 44 is an extract from the
textual documentation of the send message use case in the GoPhone report [Muthig et al. 2004].

«variant»
{U0.1} Send Message

Mobile User

Network

«variant»
{U0.2} Start Chat

«variant»
{U0.3} Show Message

Partner User

System

«include»

Figure 43: Use case diagram depicting the main functionality of the messaging domain (Based on the IESE’s
GoPhone Technical Report [Muthig et al. 2004]).

The send message description shows all the variation points of the use case. Variation points
are identified by OPT or ALT tags. This approach explicitly points out all variation points of the use
case but has disadvantages. For instance, if the use case is long, it may become very difficult to
recognize a possible scenario for a member of the product line. Even further, this textual
description is not adequate when the aim is the automation of tasks or the adoption of tools for
dealing with variability.

In order to ease the automation of transforming the requirements of a product line into its high-
level architecture (i.e., apply the 4SRS technique) we propose the explicit representation of the
variation points in the use case model. In order to do so, a careful analysis of the initial use cases
must be done.

The initial use cases, that are used to communicate the system functionalities with the
stakeholders, must be transformed in order to express explicitly the functional variations of the

3.2 Extending 4SRS for Variability Support

- 75 -

product line. This activity can be done without the intervention of the users of the system. The main
idea is to extract the include and the extend relationships from the textual description of the use
cases. The include relationships will result from functional decomposition and will allow the
discovery of functional commonalities among use cases. The extend relationships will basically
result from extracting alternative and optional functionality from the use cases.

Send Message
1. The user chooses the menu-item to send a message.
2. The user chooses the menu-item to start a new message.
3. Are there various message types?
<OPT> The system asks the user which kind of message he wants to send (Go Phone S, M, L, XL, Elegance, Com, Smart)
4. The system switches to a text editor.
5. The user enters the text message.
6. Is T9 supported?
<ALT 1> If T9 is activated, the system compares the entered word with the dictionary. (Go Phone XS, S, M, L, XL, Elegance)
7. Which kind of objects can be inserted into a message?
<ALT 1> The user can insert a picture into the message (Go Phone S, M, L, XL)
<ALT 2> The user can insert a picture or a drafted text-element into the message. (Go Phone Elegance, Com, Smart)
<ALT 3> (Go Phone XS)
8. Which kind of objects can be attached to a message?
<ALT 1> The user can attach files, business cards, calendar entries or sounds to the message. (Go Phone Smart)
<ALT 2> The user can attach business cards or calendar entries to the message.(Go Phone S, M, L, XL, Elegance, Com)
<ALT 3> (Go Phone XS)
9. The user chooses the menu-item to send the message.
10. The system asks the user for a recipient.
11. Which kind of message will be sent?
<ALT 1> The user types the phone number or chooses the recipient from the addressbook.(Go Phone XS, S, M, L, XL, Elegance)
<ALT 2> In case of a basic or extended SMS, the user types the phone number or chooses the recipient from the addressbook. In

case of an email, the user types the email-address or chooses the recipient from the addressbook. (Go Phone Com, Smart)
12. The system connects to the network and sends the message, then the system waits for an acknowledgement.
13. The network sends an acknowledgement to the system.
14. The system shows an acknowledgement to the user that the message was successfully sent.
15. Is a sent message directly saved in the sent-message folder?
<ALT 1> The system asks the user if the message should be saved. If it should be saved, the system saves the message in the

‘sent-message’ folder (Go Phone XS, S, M, L, XL, Elegance)
<ALT 2> The system saves the message in the ‘sent-message’ folder.
(Go Phone Com, Smart)
16. The system switches to the main menu.

Figure 44: Description of the use case Send Message (Based on the IESE’s GoPhone Technical Report
[Muthig et al. 2004]).

We like to view these activities as the construction of a three dimensional space representing
the functionality of the product line: commonality, detail and variability. For instance, for each use
case, we can go deeper (y axis) and broader (x axis) by adding detail as we do functional
decomposition and find commonality. In a third dimension (z axis) we can express variability. This
approach simplifies use case diagrams when requirements are extensive and complex because, for a
given use case, one can choose to view only one perspective from the three dimensional space. In
our approach we focus only on product line variability, i.e., functionality that can vary according to
product line members. Variability that is common to all members of the product line can also be
represented in the use case diagrams. But this can clutter the diagrams. We also advocate that this
kind of variability can be better expressed in other types of diagrams like, for instance, activity
diagrams. In this section we will only address product line variability.

Next, we briefly present how to construct the three dimensional space of use cases.

Functional decomposition
The initial use cases of the product line should be developed following, for instance, the process
described by Alistair Cockburn [Cockburn 2001]. This should result in use cases with a main

Chapter 3: The MoDeLine Method

- 76 -

scenario description similar to the one presented in Figure 44. These use cases should be at a
medium level of detail, also know as user level. Based on these initial use cases, an analysis should
be made with the goal of factor out fragments that have high degrees of commonality between
them. For instance, regarding the messaging domain of the GoPhone product line we have found
three of such fragments that have become the use cases {U0.1.1} Choose Recipient (steps 10
and 11 of Figure 44), {U0.1.2} Compose Message (steps 3 to 8 of Figure 44) and {U0.1.3} Send
Message to Network (steps 12 to 14 of Figure 44). These use cases are common to the initial use
cases {U0.1} Send Message and {U0.2} Start Chat. According to the 4SRS technique, each use
case name is prefixed, within curly brackets, with a ‘U’ followed by period separated numbers
denoting the level of the use case.

We adopt Gomaa’s notation [Gomaa 2005] for classifying use cases regarding their inclusion
in the product line. As such, use cases can be marked with the stereotypes mandatory, optional or
alternative. A mandatory use case is a use case that has to be included in all members of the
product line. Optional and alternative use cases are only included in the members of the product
line according to an inclusion condition. Alternative use cases must be in a group where usually
one of the use cases is the default. This classification provides a very good foundation for viewing
and analyzing the use case model according to the features of possible members of the product line.

When decomposing use cases, it is best to express the conditions regarding product line
membership in the relationships, not the use cases. The reason is that these use cases can be
included in several parent use cases, and the inclusion can vary depending on the parent. In Figure
45, {U0.1} Send Message has the stereotype mandatory, stating that this user level use case is to
be included in all members of the product line. All the included relationships are mandatory,
meaning that the use case {U0.1} Send Message requires all of the included use cases. Regarding
decomposability, the final stereotype indicates that the use case is not decomposable any further.
We also propose the stereotype abstract, to mark use cases which have all their functionality
realized by others use cases, as a result of the decomposition. Since the default stereotype for the
include relationship is mandatory, the diagram of Figure 45 does not show this keyword near the
relationships. To be noted that non-mandatory functionality regarding {U0.1} Send Message

should be left to the variability perspective.

«mandatory, variant»
{U0.1} Send Message

«variant»
{U0.1.1} Choose

Recipient

«variant»
{U0.1.2} Compose

Message

«final»
{U0.1.3} Send

Message to Network

«final»
{U0.1.4} Archive

Message

«include» «include» «include» «include»

Figure 45: Decomposition of use case {U0.1} Send Message.

Variability externalization
The presented stereotypes do not provide hints regarding the variability of the use cases. So, in
order to also express this information in the use case model we use the variant stereotype. When
this stereotype appears on a use case it means that the use case has variability at the level of the
product line. For instance, in Figure 46, use case {U0.1.2} Compose Message has the stereotype
variant. This means that, at the product line level, this use case is variable. According to our three

3.2 Extending 4SRS for Variability Support

- 77 -

dimensional approach, Figure 46 presents {U0.1.2} Compose Message in the variability
perspective (z-axis). The extension points of the use case are visible and also are the conditions of
inclusion of the extending use cases, according to the UML 2.0 notation. The information required
to construct these perspectives can be easily extracted from use case textual descriptions. For
instance, all the information required for Figure 46 can be extracted from Figure 44.

«variant»
{U0.1.2} Compose

Message

{U0.1.2ep1} Select Type of Message
{U0.1.2ep2} Check Entered Word

{U0.1.2ep3} Insert Objects
{U0.1.2ep4} Attach Objects

«variant»
{U0.1.2e3} Insert

Objects

«final»
{U0.1.2e2} Check

Entered Word

«final»
{U0.1.2e1} Select
Type of Message

«variant»
{U0.1.2e4} Attach

Objects«extend»

«extend» «extend»

«extend»

({U0.1.2ep1} Select Type of Message)
[Go Phone S, M, L, LX, Elegance, Com, Smart]

({U0.1.2ep2} Check Entered Word)
[Go Phone XS, S, M, L, XL, Elegance]

({U0.1.2ep3} Insert Objects)
[All except Go Phone XS]

({U0.1.2ep4} Attach Objects)
[All except Go Phone XS]

Figure 46: Variability perspective of use case {U0.1.2} Compose Message.

3.2.2 Architecture Derivation

4SRS is a method aimed at supporting the transition from system requirements to software
architectures and design elements. The method is essentially based on transforming UML use case
diagrams into UML object diagrams. It uses an approximation by which a use case is realized by a
collaboration of objects of three kinds: interface, control and data; similarly as suggested in RSEB
[Jacobson et al. 1997] (Reuse-driven Software Engineering Business). After this initial
transformation, a series of steps with rules are proposed to transform the initial object model into a
coherent object model that is compliant with the requirements. Basically, in each step, a set of
refactoring rules are applied that modify the initial component model by grouping, splitting or
discarding components. Some of these rules can be automated, others depend on human
intervention. The method has been applied (and adapted) in several cases, from e-government
[Machado et al. 2005] to protocol processing applications [Marcus Alanen et al. 2005].

This section presents the application of the 4SRS technique to the GoPhone product line use
case models. We basically present a description of the transformational steps with some examples
to better explain the involved transformations.

3.2.2.1 Step 1 – Object Creation
In this step, each use case originates three objects. This operation follows the same approach as
RSEB, which proposes the creation of three objects for each use case: an interface object, a control
object and a data object. For instance, in the example of Figure 45, the use case {U0.1} Send
Message originates three objects: {O0.1.i}, {O0.1.c} and {O0.1.d}. This is an automatic step,
and also a blind one, since each and every non-abstract use case originates three objects. Each
object is named according to the corresponding use case with a suffix that identifies the type of
object.

Regarding the original technique, the adaptation required for dealing with product lines is the
need to detail the use case diagrams with all the extension points. For instance, in the GoPhone

Chapter 3: The MoDeLine Method

- 78 -

case, this detail is never exposed in the use case model. The variability points are only described
within the use case main scenario.

3.2.2.2 Step 2 – Object Elimination
This step of 4SRS is aimed at eliminating the unnecessary objects that resulted from the previous
step. After this step, the object model should have only the objects that are functionally required,
according to the requirements of the product line. The original 4SRS technique also states that “this
step also supports the elimination of redundancy in the user requirements elicitation, as well as the
discovering of missing requirements”.

This is a major step of 4SRS and is comprised of several micro-steps.

Micro-step 2i: use case classification
In this micro-step, each use case is classified according to the interface-control-data heuristic that
was used to automatically generate the objects in the previous step. The idea is that the
classification of a use case can be a hint to eliminate unnecessary objects. Use cases are then
classified according to one of the possibilities: “Ø”, “i”, “c”, “d”, “i-c”, “i-d”, “c-d”, “i-c-d”. Each
letter is associated with one of the interface-control-data possibilities: “i”-interface, “c”-control
and “d”-data. For instance, {U0.1.4} Archive Message is classified as “d”, while {U0.1.2e2}
Check Entered Word is classified as being “c-d”.

Micro-step 2ii: local elimination
This micro-step regards the possible elimination of objects following the classification of the use
cases in the previous step. To assist in this task, the description of the use cases should be used. For
instance, the use case {U0.1.2e2} Check Entered Word, that was classified as being of type
“c-d”, is described in the GoPhone report as “If T9 is activated, the system compares the entered
word with the dictionary”. The value of this use case is based on the T9 functionality for validating
and suggesting words. As such, the control and data facets are much more important than the
interface. According to this, the object {O0.1.2e2.i} is removed from the object model.

Micro-step 2iii: object naming
This micro-step aim is to give proper names to objects that were not removed in the previous
micro-step. Names can be derived from the base use case name, the description of the use case and
also the classification of the object. For instance, object {O0.1.2e2.d} is named as Word
Repository.

Micro-step 2iv: object description
All the existing objects should have a description. According to 4SRS, this description should be
based on the use case description from which they resulted. Next we present an example of such a
description.

{O0.1.2e2.c} Word Validator: This object checks words as they are entered by the user. This
functionality is typical of phones that have the "T9" feature. For checking and memorization of
words, the object uses object {O0.1.2e2.d} Word Repository.

Micro-step 2v: object representation
The aim of this micro-step is to globally validate the model. For instance, redundancy can be
discovered and removed. Basically, this step performs a semantic validation of the object model
and also of the use case model. For instance, objects {O0.1.2e3e2.d} Picture Insertion,
{O0.1.2e3e1.d} Draft Text Insertion, {O0.1.2e4e2.d} File Attach and {O0.3e3e1.d}

File View and Save all represent the functionality of a repository of files. As such, we maintain

3.2 Extending 4SRS for Variability Support

- 79 -

only {O0.1.2e4e2.d} File Attach, since the semantic of this object includes the functionality of
the other three objects.

Micro-step 2vi: global elimination
This is an “automatic” micro-step, since it is based on the results of the previous one. This step
eliminates all the objects that were considered redundant in the previous step. For instance,
resulting from the last micro-step, the objects {O0.1.2e3e2.d}, {O0.1.2e3e1.d} and
{O0.3e3e1.d} are removed, since its functionality can be provided by the object
{O0.1.2e4e2.d} File Attach. The result of this micro-step is a minimum number of objects that
represent the product line functional requirements.

Micro-step 2vii: object renaming
The aim of this micro-step is to rename the objects that were not removed in the previous
micro-step and that represent other objects. The documentation of such objects must also be
updated. For instance, the {O0.1.2e4e2.d} File Attach object is renamed {O0.1.2e4e2.d}
File Repository to proper represent its functionality, taking into account all the previous objects
it represents.

3.2.2.3 Step 3 – Object Packaging & Aggregation
In this step, objects that make sense to be treated in a unified way can be placed in the same
package. Aggregation can also be applied if there is a strong relationship between objects. This is
usually the case of legacy objects in a sub-system. In the GoPhone product line this is not the case.

Since we are dealing only with the messaging domain of the product line, the packaging of
objects follows this fact. As such, objects representing the user interface of the messaging domain
are packaged in {P1} Messaging UI and objects representing messaging controlling and behavior
are packaged in {P2} Messaging. Objects which major functionality is data persistence are
included in {P4} Phone Database. We call this package phone database and not messaging
database because it archives data regarding not only messages but other phone concepts like,
contacts or files. {P3} Network is a package that includes objects with functionality regarding the
mobile network, i.e., they represent the interface between the mobile phone and the network.

3.2.2.4 Step 4 – Object Association
This step introduces associations between objects that can be obtained from micro-step 2i. Also the
relations between use cases can be used to generate associations between objects.

This is the last step in the 4SRS technique. Figure 47 presents the resulting object model for
the messaging domain, including the packages. This object model, which resulted from the
application of the 4SRS technique, is a system level object model. It provides high-level guidelines
for the next phases of the development process. As such, it provides the basis for the requirements
of a logical architecture that will support the following development phases. As it is possible to
observe in Figure 47, the object model that result from the 4SRS technique includes all the
functionality described in the source use cases. It is even possible to expose some hints regarding
the product line variability, because, for instance, objects with an ‘e’ in their identification resulted
from extending use cases. In the next Section we explore some issues regarding the logical
architecture of a product line, namely variability representation and product member instantiation.

Chapter 3: The MoDeLine Method

- 80 -

{P2} Messaging

{P1} Messaging UI

{P3} Network

{P4} Phone Database

{O0.1.i} Send Message UI

{O0.1.2.i} Compose Message

{O0.1.2e1.i} Message Type Selection

{O0.1.2e3.i} Object Insertion

{O0.1.2e3e2.i} Picture Insertion

{O0.1.2e3e1.i} Draft Text Insertion

{O0.1.2e4e4.i} Business Card Attach

{O0.1.2e4.i} Object Attaching

{O0.1.2e4e2.i} File Attach

{O0.1.1.i} Choose Recipient

{O0.1.2e4e1.i} Calendar Entry Attach

{O0.1.2e4e2.i} Sound Attach

{O0.1.1e2.i} Email Composition

{O0.1.1e1.i} Phone Number Composition

{O0.1.1e_e1.i} Addressbook Selection

{O0.2.i} Chat UI

{O0.3.i} Message Display

{O0.3e1.i} Sound Playing

{O0.3e3.i} Attachment Display

{O0.3e2.i} Picture Display

{O0.3e3e3.i} Calendar Entry
View and Save

{O0.1.3.i} Network Services

{O0.1.c} Message Sender

{O0.1.2e2.c} Word Validator

{O0.1.4.d} Message Repository

{O0.1.2e2.d} Word Repository

{O0.1.2e4e2.d} File Repository

{O0.1.2e4e1.d} Calendar
Repository

{O0.1.2e4e2.d} Sound Repository

{O0.1.2e4e4.d} Addressbook
Repository

{O0.2.c} Chat Controler

{O0.3e3e2.i} Business Card
View and Save

{O0.3e3e1.i} File View and Save

Figure 47: Object model of the messaging domain.

3.2.3 Logical Architecture

The major aim of a logical architecture is to serve as the basis for the design of a system. As such,
it encompasses the description of the logical components of the system and also the interactions
between them [Garlan et al. 1994]. As presented in the previous sections, the object model that
results from 4SRS contains the components (objects) and interactions between them (object
associations). As such, the object model that results from the 4SRS technique can be of great value
for a system architect, because it clearly provides ‘suggestions’ for the logical components of a
system and the interactions between them. This is very different from the usual gap that exists
between requirements and the initial architecture for a system. This gap can be very ‘dangerous’
when the problem domain is new and there is not much knowledge in the solution space of the
domain. In these cases it can be very difficult to design the system or even apply design patterns.

In the GoPhone technical report, the product line architectural design is based on the KobrA
method and also on two design patterns: the mediator pattern and the state pattern. The objective of
the mediator pattern is to achieve changeability and extensibility of the components and, as such,
achieve flexibility in the product line. The justification for the state pattern is that it enables
handling the small displays of mobile phones. These two patterns result from non-functional
requirements: flexibility and state management. They impose some guidelines in the architecture

3.2 Extending 4SRS for Variability Support

- 81 -

but they do not provide information regarding the functional components of the architecture. This is
what we propose to achieve with the adoption of the 4SRS technique: a semi-automatic technique
to obtain the product line’s architecture functional requirements. The object model presented in
Figure 47, which resulted from applying the 4SRS technique, depicts a partial view of such
requirements for the GoPhone system. With such a model it is possible to design the system by
applying well-known patterns, such as the mediator and the state pattern (such as in the GoPhone
report). The difference from the GoPhone report is that, with our approach, we know which logical
functional components are necessary to incorporate in the design. In this case, our logical
architecture for the GoPhone product line is very similar with the one from the original report, the
major difference being the fact that in our process we did not adopt KobrA.

The 4SRS technique was originally designed for obtaining the logical architecture of single
systems. For this reason it does not deal explicitly with variability. As we saw, the main resulting
artifact of the 4SRS technique is the object model. In our experimental approach to adapt 4SRS for
product lines we have already proposed the need to externalize variability in the use case model.
Regarding the logical architecture we also propose that other views of the system are needed to
properly address product line development requirements. For instance, a class model may be more
appropriate to express variability at the architectural level. Also, activity models are more
appropriate to express fine grained variability. As such, we propose a multiple model approach for
4SRS. A similar approach can be also find in [Gomaa et al. 2004].

This multiple model approach is also more suited to deal with product line member
instantiation. Product line member instantiation is based on the selection of features required for the
member being instantiated. As previously mentioned, the usual approach is to build a feature
diagram to guide this instantiation. The construction of a feature diagram can be done in parallel
with the use case diagrams. In our approach, feature diagrams correspond to choices in the
variability perspective (z-axis), when navigating through the use case model. A functional feature is
basically realized by a use case. Extending use cases become optional or alternative features.
Figure 48 presents a feature diagram for send message. The Figure also presents a possible example
of the selection of features for a product line member, by showing them in gray.

Send Message

Insertable Objects Recipient Attachable Objects Check Entered Word

Select Type Message

Save Sent Message

Picture

Draft Text Element

Phone Number Email

Addressbook

File

Calendar Entry

Sound

Business Card

Figure 48: Feature diagram for Send Message (Based on the notation proposed in [Gomaa 2005]).

Chapter 3: The MoDeLine Method

- 82 -

Figure 49 presents an excerpt of a possible class diagram depicting the send message feature
according to the feature selections of Figure 48. This class diagram is based on UML 2.0 notation
(the adoption of UML 2.0 in 4SRS is discussed in the next section). The class model should be
constructed after the object model. The major goal of the class model, at this logical architectural
level, is to be the first approximation to a structural model of the product line architecture. In the
process of constructing the class model it is possible and even common that functionalities
provided by several objects become realized by a single class or a hierarchy of classes.

The class diagram at this logical architectural level is used to represent the product line at a
component level of abstraction. These class diagrams could be substituted by component diagrams.
We have not done it in this case study because our aim was to follow as much as possible the
models used by the 4SRS method.

The class model also provides a way to explicitly represent the product line variability. So, the
construction of the class model is also based on the use case model and feature model. In this
section we do not discuss the process for the construction of the class model.

As it is possible to observe in Figure 49, in this experimental approach we have adopted
outgoing and incoming interfaces to model extension points. This seams to be an appropriate
choice at this logical component level. This option does not compromise later design decisions of
how to realize the extension points. In fact, other authors have proposed comprehensive feature
variability realization techniques at the design level that are based on interfaces [Lee et al. 2004].

Since in our approach there is a very direct mapping between the use case model and the
feature model and because it is easy to keep trace links from the class model to the object model
and ultimately to the use case model, it is possible to derive the architectural requirements for a
product line member based on its features. This topic will be addressed in the next section.

«interface»
Send Message UI

«interface»
Email Composition

«interface»
Phone Number
Composition

«interface»
Addressbook

Selection

«data»
Addressbook

Repository

«control»
Message Sender

«interface»
Network Services

«data»
Message

Repository

I. Choose Recipient

I. Select from Addressbook

«control»
Word Validator

«data»
Word Repository

I. Check Entered Word

«interface»
Choose Recipient

«interface»
Compose Message

«interface»
Object Insertion

«interface»
Object Attaching

I. Attach Objects

I. Insert Objects

Figure 49: Excerpt of class diagram for Send Message.

3.3 Adopting CIM Models for Derivation of Architectural Requirements

- 83 -

3.3 Adopting CIM Models for Derivation of Architectural
Requirements

The alignment of the software architecture and the functional requirements of a system is a
demanding task. The conceptual gap that exists between the problem domain and the solution
domain is very significant for the majority of the software projects. When this happens, it becomes
difficult to co-relate requirements specifications and design decisions. The software architecture
can rapidly become unsynchronized with the specified requirements of the system. To address this
problem it is necessary to keep links between elements of the different levels of development.
Achieving this without proper methodological and tool support is a daunting task. Model driven
development is a promising approach since models are treated as first-class software artifacts, as
traditional development does with code.

Model driven methods are still a research topic. Much of the actual effort is on supporting
tools and languages for transformation of models. One example is QVT [QVT 2005], an OMG
initiative to standardize model transformations in MDA [MDA 2007]. Also, reports of model
driven approaches tend to focus on transformations and are usually applied to design and
implementation models, and usually do not include requirement and analysis models. Nonetheless,
requirements specification and analysis are crucial activities of all software development processes.
They drive the design of the system’s architecture. As such, they should be integrated into model
driven methods.

Product lines are also another concept that is gaining popularity among the software industry.
In this section, we will present an approach in which MoDeLine, an evolution of the 4SRS method
aimed at supporting the model driven development of software product lines, is used to derive the
architectural functional requirements of a product line from its requirements.

3.3.1 The Method

MoDeLine is a method that is composed of our methodological proposals for model driven
development of software product lines. It is based on the 4SRS method with the following major
additions: (1) adopts the UML 2.0 modeling language; (2) extends UML 2.0 metamodel for
variability support; (3) adopts feature diagrams; and (4) adopts and extends the UML-F profile
[Fontoura et al. 2000].

Figure 50 presents an overview of possible activities of model driven methods aimed at the
development of product lines. These are also the activities that compose the MoDeLine method. In
this section, we will only cover the activities that are marked in gray (b, c, e, f, g and h). The next
sub-section describes how the MoDeLine method formalizes use case behaviors through activity
diagrams. This enables MoDeLine to capture functional requirements in a precise way. These
activity diagrams also capture a very fundamental concept of product lines: variation points. The
next sections also briefly discuss feature diagrams and how the concepts of these three kinds of
diagrams relate to each other. For clarity reasons, some details are left out of the diagram of Figure
50. For instance, activities b, c, d and e can be done in parallel but are not independent, they require
coordination between them.

Experimental work on adapting the 4SRS method to handle variability in the context of
product lines has been discussed in Section 3.2. From this previous work we have identified two
fundamental issues regarding UML that require further clarification in order to fully integrate use
case models into our evolution of the 4SRS method. These issues are:

Chapter 3: The MoDeLine Method

- 84 -

the semantics of the use case relationships: include; extend and generalization;
formalization of use case behaviors.

These two issues are addressed by the extension to the UML 2.0 metamodel and the adoption
of activity diagrams for the specification of the behaviors of use cases that are proposed and
discussed in Chapter 4. The major extension proposed was that Extend relationships may require
rejoin points that are different from the original extension point. In the next section, we briefly
present the MoDeLine metamodel and discuss this situation.

3.3.1.1 Metamodel
Figure 51 presents an excerpt of the MoDeLine metamodel. The figure contains only the necessary
elements to support the discussion of the topics covered in Section 3.3. From the figure we observe
that this metamodel is an adaptation of the UML 2.0 metamodel. This essentially relates to the fact
that the UML Extend relationship lacks the support for rejoin points, as indicated previously. As
advocated in Chapter 4, alternative behavior needs the rejoin concept to be totally specified. So, in
the MoDeLine metamodel, the new element ExtensionFragment adds this support to the original
Extend relationship of UML.

a) Elicitation of Requirements

b) Create Use Case Model

e) Create Feature Model d) Create Entity Model

c) Create Activity Model

f) Create Use Case Realization Model
(Component/Class Model)

g) Create Component/Class Model

h) Refactor Component/Class Model

j) Create Code Base

i) Create State Model

D
es

ig
n

Im
pl

em
en

ta
tio

n
An

al
ys

is
R

eq
ui

re
m

en
ts

Figure 50: Development activities covered in Section 3.3.

3.3 Adopting CIM Models for Derivation of Architectural Requirements

- 85 -

The formalization of use case behavior by means of activities is also depicted in Figure 51. For
each use case behavior there is an activity. Extend and rejoin points of use cases trace directly to
nodes of activities.

The advantage of adopting a model driven approach, if it is supported by proper metamodeling
tools, is that it is possible to add or adapt metamodels. One example of such adaptation is the
ExtensionFragment element. Another example of altering the UML metamodel is the added
support for feature diagrams that is also depicted in Figure 51. Although feature diagrams [Kang et
al. 1990] are not part of the UML metamodel, they are a crucial artifact of product lines. They
model the characteristics of a product line and how they relate to each other. A selection of the
features represents a particular application of the product line. As such, features should relate to the
requirements of the product line. Figure 51 also presents these relationships can be accomplished.

UseCase

ExtensionPoint

SolitaryFeature

extensionPoint

useCase

classifierBehavior

0..1 0..1

*

0..1

Activity

ownedBehavior
*

1

Behavior

ActivityNode
node

GroupFeature

«analysis»
Class

«analysis»
Interface

«analysis»
Component

DesignElement

Feature

RootFeature

*

groupCardinality
bindingTime

featureCardinality
bindingTime

*

ProductLine ProductDomainModel 1 1 *

*

*includes

refine

exclude

require

*
*

*
*

*

1..31..3

0..1

1 1 1..* 1

1

1..*

0..*0..*0..*

Extend

Constraint

*

1

1

extendedCase

extensionextend

extensionLocation

1

condition
0..1

Include

ExtensionFragment

Rejoin

fragment*

1*

rejoinTarget 1

extendingBehavior

* *

Action

ActivityEdge
edge

incoming

outgoing

location 1

RefAction

refersTo

rejoinSource

1

1

InclusionPoint

1

location
1

1

0..1

1..*

1..*

*

*

**

10..1

1..3

Figure 51: Excerpt of the MoDeLine metamodel.

Chapter 3: The MoDeLine Method

- 86 -

3.3.1.2 UML-F
UML-F was proposed as a UML profile for frameworks [Fontoura et al. 2000] and later support
was added to product lines [Pree et al. 2002]. With this profile it is possible to annotate UML
elements with stereotypes that properly model variability. Unfortunately, the original UML-F
profile only covers design elements. The profile lacks support for requirements and analysis
models. As such, MoDeLine had to extend the UML-F profile to include support for requirements
and analysis models. This topic is discussed in Chapter 4. Table 4 summarizes these stereotypes
and informally defines their semantics.

Table 4: Summary of UML-F based stereotypes used in MoDeLine and their meanings.

Stereotype Applies to element Description

variant UseCase Indicates that the behavior of the use case
can vary.

mandatory
optional
alternative

UseCase Classifies use cases according to their
inclusion in the product line.

inclusion_point Action Indicates that the Action is an inclusion
point for the classifierBehavior of the
included use case.

extension_point Action Indicates that the behavior of the use case
can be extended at the Action.

vp ExtensionPoint Indicates that the ExtensionPoint is a
variation point of the product line.

template «analysis»Component
«analysis»Class
DesignElement

Indicates an element which behavior is
affected by variants that relate to a hook
(based on [Pree et al. 2002]).

hook «analysis»Interface
DesignElement

An element that represents (or contains) a
location where variations occur, i.e., a
variation point (based on [Pree et al. 2002]).

rejoin_point RefAction Indicates that this RefAction rejoins the
flow at the referenced Action of the base
behavior.
Attributes: Moment (before or after).

application DesignElement Indicates that the DesignElement relates to
a specific application of the product line
(based on [Pree et al. 2002]).

framework DesignElement Indicates that the DesignElement is global
to all applications of the product line (based
on [Pree et al. 2002]).

variable Method Indicates that the behavior of the method
varies (based on [Fontoura et al. 2000]).
Attributes: Instantiation (dynamic or static).

extensible Class Indicates that new methods can be added to
the class (based on [Fontoura et al. 2000]).
Attributes: Instantiation (dynamic or static).

incomplete Generalization Indicates that the generalization set can be
incomplete, i.e., it is possible to add new
classifiers to the set (based on [Fontoura et
al. 2000]).
Attributes: Instantiation (dynamic or static).

3.3.1.3 Case Study: Library Product Line
To demonstrate the MoDeLine method, and particularly how it can be used to derive the
architectural requirements of a product line, we will use a library product line. Suppose there is a
software company that is planning to provide software management applications for libraries. Such

3.3 Adopting CIM Models for Derivation of Architectural Requirements

- 87 -

company could adopt a product line approach. It could develop products with different features to
address the specific needs of its customers. It could also plan on release versions of its products
with different features at different moments. Figure 52 presents a possible feature diagram for such
a product line. We follow a notation for feature diagrams that is based on the one proposed in
[Deursen et al. 2002]. In MoDeLine, the initial feature model can be automatically constructed
from the use case model. This topic is further discussed in Chapter 5.

Membership Web Access

LibrarySystem

Media

Basic Member Gold Member

Book Video Audio Software

Borrow

0..1

WebReservation

WebSearch WebAccount

«requires»

«requires»

«requires»

0..1

0..1

0..1

1..*

Regular Member

1..*

Fee

Figure 52: Feature diagram for a library product line, following notation proposed in [Deursen et al. 2002].

3.3.2 Modeling Requirements with Use Cases and Activity Diagrams

UML use cases are very useful in capturing requirements because of their simplicity but, as
discussed in the previous section, they also have some informal characteristics that difficult their
adoption in model driven methods. To address these issues, MoDeLine extends the UML use case
metamodel and adopts Activities to formally specify use case behavior. In MoDeLine, for each use
case behavior there is an activity diagram.

When use cases of the domain are identified, their behavior is modeled by activity diagrams.
This is not so different than the traditional way of describing use case behavior by natural language,
such as in [Cockburn 2001]. Basically, each step in a text description of a use case is modeled as an
Action node in the activity diagram. Sequence diagrams can be a helpful tool in modeling diverse
use case scenarios that together describe the global behavior of a use case. They also can help when
building the activity diagrams.

Use case relationships are discovered during use case modeling. The informal Include (usually
denoted as «include») and Extend (usually denoted as «extend») relationships become formal as
they are modeled in MoDeLine, since they relate Action nodes and use case elements in a precise
way. Common use cases for diverse applications become mandatory use cases of the product line.
Optional and alternative use cases will participate in Extend or Include relationships (except if they
are root use cases). As such, during this process of modeling use cases, we are also identifying
features of the product line. However, feature diagrams should not become only direct mappings of
use cases. For instance, all top-level mandatory use cases should relate to a single root feature. The
feature diagram can also include non-functional features that are not related to use cases. In

Chapter 3: The MoDeLine Method

- 88 -

MoDeLine, establishing relationships between features and use cases can be automated as
discussed in Chapter 5. However, modeling feature diagrams is also a human task since it usually
requires specifications that are hard to automate. For instance, there can be constraints between
features that are based on marketing decisions and as such, must be manually edited in the feature
model. Nonetheless, as we propose in Chapter 5, it is possible for a tool to automate part of this
process and to suggest operations on the models based, for instance, on the stereotypes presented
on Table 4.

Figure 53 presents the optional use case {U0.1.1} Renew Loan of the library product line (this
use case is only present in an application of the product line if the feature Borrow is selected). This
use case is extended by the use case {U0.1.2} Handle Gold Member. This extension was created
since different kinds of membership impose different behavior in the system. Extension points
usually give support to optional or alternative features. Since, in this case, an application of the
library product line can support one or more member types, the feature Membership (see Figure 52)
is modeled as a GroupFeature. As such, the extending use case {U0.1.2} Handle Gold Member
becomes a realization of the feature Gold Member (one of the composing features of Membership).
The Membership feature (a GroupFeature) relates to the extension points Collect Fine, Get Item
Status and Renew Loan of the use case {U0.1.1} Renew Loan.

«variant»
{U0.1.1} Renew Loan

{U0.1.2} Handle Gold
Member

«extend»

Condition: {Member Type=Gold Member}
Extension points: Collect Fine,
Get Item Status

extension points
«vp» Collect Fine

«vp» Get Item Status
«vp» Renew Loan

Figure 53: An «extend» relationship between use cases {U0.1.2} Handle Gold Member and {U0.1.1} Renew
Loan.

Similarly to this simple case, it is possible to relate use cases and features as the requirements
models are built. Other possible approach is to build the feature model after the use case model.
The two approaches are possible in MoDeLine and both compatible with the goal of keeping
relationships (links) between use case model elements and feature model elements.

In fact, since use case behavior is modeled by activity diagrams, a trace can be made from
elements of the activity diagrams to features, through use case elements. Figure 54 presents the
activity diagrams for the main behavior of use case {U0.1.1} Renew Loan and for two alternative
behaviors of the extending use case {U0.1.2} Handle Gold Member. The activity nodes marked
with the stereotype «extension_point» relate to the correspondent use case extension points with the
same name. And, as we saw, these extension points relate to the Membership feature. Similarly, the
alternative behaviors of use case {U0.1.2} Handle Gold Member that extend {U0.1.1} Renew
Loan at the previous mentioned extension points should be related to one of the sub-features of
Membership. In this case they relate to the sub-feature Gold Member.

3.3 Adopting CIM Models for Derivation of Architectural Requirements

- 89 -

Nodes of the MoDeLine activity diagrams are marked with additional information that is used
to support the MoDeLine transformation rules. The stereotypes «interface», «control» and «data»
are used to classify each node regarding its semantic role in the system. For instance, the node Find
Loan represents a data operation in the system. We also use the concept of partitions to model
‘who’ has the responsibility for the operation of the node or is the major ‘actor’ of the node. For
instance, the System is responsible for the node Find Loan.

When modeling activities, one very important aspect is the specification of object flows, i.e.,
input and output pins of the nodes. As they are specified, data types and associations are
discovered. These are of great value since they provide input when creating the entity model of the
domain (activity d of Figure 50).

3.3.3 Capturing Functional Architectural Requirements with Use
Case Realizations

The adoption of activity diagrams for modeling use case behavior results in a precise specification
of the functional requirements of the product line. Use case realizations are a very useful technique
that helps in making the transition from requirements to analysis. A use case realization is usually
modeled by a group of analysis classes that collaborate to perform the use case behavior. They
represent the first step in the transition from the problem space to the solution space. As such, they
should be the primary (eventually the only) input for the software engineer as he/she designs the
product line.

The first task of the design is the specification of the architecture of the product line, i.e., the
collection of computational components of the product line and the interactions between these
components. These elements can be essentially derived based on the input of use case realizations.
Other requirements may also influence the architecture. For instance, the architectural style of a
product line can be influenced by the specific run-time platform or the topology of the hardware. In
this chapter we will only address the functional requirements for the architecture. These are based
on the use case realizations.

Traditionally, the specification of use case realizations is a very creative task. It requires a lot
of experience from the software engineer, as he/she identifies the classes that realize the use case
from the use case textual description. However, even a very experienced software engineer can
misinterpret the requirements or forget some specification. What MoDeLine proposes is the
automation of this task.

The automatic creation of use case realizations in MoDeLine is possible since use case
behavior is totally specified by activity diagrams. The annotations made on the activity diagrams
(as described previously) also support this automatic transformation. The basic idea is that each
node of the activity diagrams gives origin to up to three analysis interfaces and analysis classes that
implement the interfaces. The interfaces that originate from nodes have one method that is based on
the input and output pins of the node.

Figure 55 and Figure 56 present the use case realization of, respectively, use case {U0.1.1}
Renew Loan and use case {U0.1.2} Handle Gold Member. Since we are addressing design at an
architectural level we find that component diagrams are more adequate than class diagrams to
model use case realizations. As such, in MoDeLine use case realizations are component diagrams.
Each use case gives origin to up to three analysis components. Each one is composed by the classes

Chapter 3: The MoDeLine Method

- 90 -

and interfaces that resulted from the transformation of the activity nodes. For instance, for the use
case realization of {U0.1.1} Renew Loan, the Collect Fine node gives origin to two analysis
classes: {c0.1.1b1.7.i} CollectFine and {c0.1.1b1.7.d} CollectFine because the
correspondent node was annotated with stereotypes «interface» and «data». Based on the Extend
relationship that exists between the two use cases, it is also possible to automatically annotate the
use case realization elements with the hook and template stereotypes of UML-F.

{U0.1.1.b1.1} Enter Renew Loan
Data

UserID
ItemID

«interface» (Librarian)

{U0.1.1.b1.5} Display Loan Info
«interface» (Librarian)

{U0.1.1.b1.2} Find Loan

LoanInfo
LoanStatus

«data» (System)

{U0.1.1.b1.3} Check if Loan Exists

LoanInfo; LoanStatus

«control» (System)

{U0.1.1.b1.4} Display Msg Loan
Existent

«interface» (Librarian)

LoanStatus.Exists=No
LoanStatus.Exists=Yes

{U0.1.1.b1.9} Get Item Status

«extension_point», «data» (System)

{U0.1.1.b1.7} Collect Fine

«extension_point», «interface, data»
(Librarian)

{U0.1.1.b1.6} Verify if Fine is Due
«control» (System)

LoanInfo

LoanStatus.Fine=FineDue

LoanInfo; LoanStatus

Else

LoanInfo; LoanStatus

LoanInfo; LoanStatus

LoanInfo; ItemStatus

{U0.1.1.b1.11} Verify if Reserved
«control» (System)

{U0.1.1.b1.8} Verify Fine Status
«control» (System)

LoanInfo

LoanStatus=FineDue

Else

{U0.1.1.b1.13} Renew Loan

«extension_point», «interface, data»
(System)

LoanInfo

LoanInfo

{U0.1.1.b1.10} Display Msg Fine Due
«interface» (Librarian)

Else

{U0.1.1.b1.12} Display Msg
Reserved

«interface» (Librarian)

LoanInfo

LoanInfo

ItemStatus=Reserved

{U0.1.2.b1.4} Renew Loan.Collect
Fine

«rejoin_point, before»

LoanInfo

{U0.1.2.b1.2} Verify if Collect Fine
«control», (System)

LoanInfo; LoanStatus

LoanStatus.Fine>LoanInfo.Member.Fee

Else

{U0.1.2.b1.1} Verify Condition
«control», (System)

LoanInfo; LoanStatus

Gold Membership Else

{U0.1.2.b1.3} RenewLoan.Get Item
Status

«rejoin_point, before»

LoanInfo

{U0.1.2.b2.3} Verify if Can Borrow
«control», (System)

LoanInfo; ItemStatus

LoanInfo

{U0.1.2.b2.1} Verify Condition
«control», (System)

LoanInfo; ItemStatus

Else
Gold Membership

ItemStatus.ReservationMemberType<>
Gold Member Else

{U0.1.2.b2.5} Display Msg Gold
Reservation

«interface», (Librarian)
LoanInfo

{U0.1.2.b2.4} Renew
Loan.Renew Loan

«rejoin_point, before»

{U0.1.2.b2.2} Renew Loan.Get Item
Status

«rejoin_point, after»

Use Case {U0.1.1} Renew Loan
Main Flow

Use Case {U0.1.2} Handle Gold Member
Extend Flow: Handle Renew Loan
 Condition: Member Type=Gold Member

Extension Fragment: {U0.1.2.b1} Handle Collect Fine
Extension Point: Renew Loan.Collect Fine
Moment: before

Extension Fragment: {U0.1.2.b2} Handle Borrow Rule
Extension Point: Renew Loan.Get Item Status
Moment: after

Figure 54: Activity diagrams for {U0.1.1} Renew Loan and {U0.1.2} Handle Gold Member.

3.3 Adopting CIM Models for Derivation of Architectural Requirements

- 91 -

«component, analysis, template»
{C0.1.1.i} RenewLoan

«analysis» {c0.1.1.b1.1.i}
EnterRenewLoanData

«analysis» {c0.1.1.b1.4.i}
DisplayMsgLoanExistent

«analysis» {c0.1.1.b1.5.i}
DisplayLoanInfo

«analysis»
{c0.1.1.b1.13.d}

RenewLoan

«component, analysis, template»
{C0.1.1.d} RenewLoan

«analysis»
{c0.1.1.b1.2.d}

FindLoan

«analysis» {c0.1.1.b1.7.i}
CollectFine

«analysis»
{c0.1.1.b1.10.i}

DisplayMsgFineDue

«analysis»
{c0.1.1.b1.12.i}

DisplayMsgReserved

«analysis»
{c0.1.1.b1.13.i}

RenewLoan

«analysis»
{c0.1.1.b1.7.d}

CollectFine

«analysis»
{c0.1.1.b1.9.d}
GetItemStatus

«component, analysis»
{C0.1.1.c} RenewLoan{I0.1.1.b1.1.i}

EnterRenewLoanData

{I0.1.1.b1.4.i}
DisplayMsgLoanExistent

{I0.1.1.b1.5.i}
DisplayLoanInfo

{I0.1.1.b1.10.i}
DisplayMsgFineDue

{I0.1.1.b1.12.i}
DisplayMsgReserved

«hook»
{I0.1.1.b1.7.i}
CollectFine

{I0.1.1.b1.2.d}
FindLoan

«hook»
{I0.1.1.b1.9.d}
GetItemStatus

«hook»
{I0.1.1.b1.13.i}
RenewLoan

{I0.1.1.b1.7.d}
CollectFine

{I0.1.1.b1.13.d}
RenewLoan

{I0.1.1.b1.3.c}
CheckIfLoanExists

{I0.1.1.b1.6.c}
VerifyIfFineIsDue

{I0.1.1.b1.8.c}
VerifyFineStatus

{I0.1.1.b1.11.c}
VerifyIfReserved

{I0.1.1.b1.c}
RenewLoan

Figure 55: Use case realization diagram for {U0.1.1} Renew Loan (filtered view).

The creation of use case realizations in MoDeLine is a task that can be totally automated. As
such, all the generated elements are linked to their origins. This makes it possible to trace, for
instance, a feature to its realization elements. Another advantage of this approach is that use case
realizations can be easily transformed into executable code for a specific language or platform
following code generation approaches such as the ones presented in [Chauvel et al. 2005]. Thus,
use case realizations can also provide simple prototypes of the product line that can be of great help
for the user validation of use cases.

«component, analysis»
{C0.1.2.c} HandleGoldMember

{I0.1.1.b1.7.i}
CollectFine

{I0.1.1.b1.9.d}
GetItemStatus

«hook»
{I0.1.1.b1.13.i}

RenewLoan

«component, analysis»
{C0.1.2.i} HandleGoldMember

{I0.1.2.b2.5.i}
DisplayMsgGoldReservation

«hook»
{I0.1.1.b1.9.d}
GetItemStatus

«hook»
{I0.1.1.b1.7.i}

CollectFine

Figure 56: Use case realization diagram for {U0.1.2} Handle Gold Member (filtered view).

As we saw, the MoDeLine approach to use case realizations can be totally automated. One
could argue that a complex use case could give origin to a complex use case realization. This is
true, but eventually this would also probably happen if the creation of use case realizations were
not automated.

Besides the previously discussed characteristics of MoDeLine use case realizations, the
fundamental value of the method is that as a result of a simple approach, the product line engineer
is able to reason with precise functional architecture requirements.

Chapter 3: The MoDeLine Method

- 92 -

3.3.4 Logical Architecture

Each case realization provides a partial view of the product line. It is necessary to create a global
model of the architecture of the product line. In MoDeLine this global architecture is based on the
use case realizations and represents an integration of them. In contrast with the creation of the use
case realizations, the creation of the architecture is a human based task. In this task, the product line
engineer has to transform the analysis elements that resulted from the use case realizations into
design elements. Each analysis element gives origin to a new design element or is incorporated into
an existing one. For instance, all «interface» analysis components that are related to the librarian
role can be incorporated into the LibrarianUI design component. Similarly, analysis classes give
origin to new design classes or are incorporated into existing design classes. In Figure 57, we can
see that the analysis class {c0.1.1.b1.7.i} CollectFine was incorporated into the design class
LoanUI. The only method of the class {c0.1.1.b1.7.i} CollectFine becomes a part of the
LoanUI class. To facilitate the trace to the original elements of the use case realizations, analysis
interfaces are not transformed, i.e., analysis interfaces also exist in design. As the described
transformations are performed the global architecture of the product line takes form. Associations
between components become visible as matching required and provided interfaces are transformed
from analysis to design. Variability points identified in the requirements phase are traceable to
variability points in the architecture of the product line. For instance, the hook method
collectFine of the LoanUI class originates from the Collect Fine extension point of use case
{U0.1.1} Renew Loan.

«component»
LoanControl

«component»
ReservationControl

«component»
LibraryRepository

«component»
MemberUI

«component»
MemberControl

«component»
CatalogControl

«component»
LibrarianUI

«template»
LoanUI

enterLoanData(…)
...
enterRenewLoanData(…)
collectFine(…) «variable, hook»
...

ReservationUI

CatalogUI

«interface, hook»
{I0.1.1.b1.7.i}CollectFine

collectFine(…)

«interface, hook»
{I0.1.1.b1.13.i}RenewLoan

{I0.1.1.b1.7.i}
CollectFine

Figure 57: Architectural logical view showing {I0.1.1.b1.7.i}CollectFine connecting the LibrarianUI
and LoanControl components (filtered view).

As Figure 50 shows, the design model is not based only on use case realizations. The entity
model is also an input for the design model. Its classes also populate the design model.

The tasks described in this chapter enable the creation of an initial version of the architecture
of a product line that is traceable to requirements and incorporates all functional requirements (as
they were modeled). The design of a product line does not end with its architecture. More detailed
design tasks are required to achieve the goal of activity j (see Figure 50): the creation of executable
code. One example of such design tasks is the use of design patterns, as the ones proposed initially
in [Gamma et al. 1995].

3.4 Conclusion

- 93 -

Figure 58 is an example of the result of applying the abstract factory design pattern to realize
the variability point of the collectFine method of the LoanUI class. Originally (Figure 57), the
hook (variability point) and the template were at the same class. The abstract factory design pattern
separates the template from the hook. This realization of the variability point supports changing
variants at runtime. Such a design decision should be made in accordance with the requirements. In
this case, for instance, the bindingTime attribute of the feature Membership should have the value
runtime. If only static binding time was required, the creation of subclasses of LoanUI would be
sufficient to support the variability point.

This topic is out of the scope of the Chapter. Nonetheless, these are all examples of how the
resulting artifacts of MoDeLine can be used to support detailed design activities.

«interface, hook»
HandleMemberRenewLoanUI

HandleGoldMemberUI HandleRegularMemberUI

«template»
LoanUI

handleMember

«interface, hook»
{I0.1.1.b1.7.i}CollectFine

«interface, hook»
{I0.1.1.b1.13.i}RenewLoan

Figure 58: Applying the abstract factory design pattern to realize the variability point of the collectFine
method of the LoanUI class.

3.4 Conclusion
In this chapter we have explored a possible methodological approach to support the model driven
development of software product lines. The first part of this chapter was essentially concerned with
adapting the 4SRS model driven method aimed at single system development to support variability
and, therefore, be used to develop software product lines.

We have focused the discussion in the 4SRS transformational technique used for obtaining an
object model from a use case model. We have discussed our approach by using a case study based
on the GoPhone product line [Muthig et al. 2004].

The first part of this chapter contributes to the research field with a UML-based
transformational technique which supports the derivation of the functional requirements of the
logical architecture of a software product line in the form of an object model based on a use case
model of the product line in which the variability ’dimension’ is added to the use case model by
using stereotypes and the Extend relationship.

The second half of this chapter presents a proposal to support the transformation of analysis
models into architectural models based on an evolution of the 4SRS method to support the model
driven development of software product lines that we called MoDeLine. It also delineates some
approaches to detail the first logical architecture of a system by integrating design patterns in the
proposed approach.

Chapter 3: The MoDeLine Method

- 94 -

The method presented in the second half of this chapter also integrates some proposals that are
only detailed in the next chapter, such as extending the UML 2.0 metamodel and the UML-F
profile. We have also discussed the integration of feature models. However, the focus of the
discussion was on linking analysis and design models. For the transition between analysis and
design we have proposed use case realizations.

Use case realizations are a technique used to help the transition from the problem domain to
the solution domain. We have presented how the creation of use case realizations could be totally
automated in the MoDeLine method. This is possible because use case behaviors are formally
modeled with activity diagrams and also because of the adaptations made to the UML 2.0
metamodel. These adaptations support the proper modeling of variability in all the activities of the
method.

As a result of our approach, it is possible to maintain traces between elements at different
conceptual levels. In the case of product lines, use case requirements are traced to architectural
requirements: use case variability is traceable into architectural elements; features are related to
architectural elements.

The MoDeLine model driven method can not be totally supported by common UML 2.0 tools,
since it requires adaptations to the UML 2.0 metamodel. Tool support requires the use of
metamodeling tools. This may have impact in the cost of applying MoDeLine or a similar
approach. The possible increase in the cost of a project can be balanced by the increase in
flexibility that such approach also brings. To be notice that product line approaches already require
important setup effort. This initial cost is amortized in the future, as new applications of the product
line are created. As such, we believe that MoDeLine, and similar approaches, are well suited for
product lines.

Although we have not presented or discuss details regarding tool support of our approach, the
results of our experimental development of tool support with metamodeling tools seems promising.
We have supervised two undergraduate monograph projects ([Riqueza 2005] and [Pinto 2007]) that
have made experimental developments of parts of our method with two metamodeling frameworks:
GME [Ledeczi et al. 2001] and EMF [EMF 2007].

The second part of this chapter contributes to the research field with a proposal of a ‘bridging’
technique between the problem space and the solution space for the model driven development of
software product lines that is based on the concept of use case realizations and its double view:
activity models for the problem space view and component models for the solution space view.

The contents of this chapter reflect our methodological proposals for model driven
development of software product lines. However, for a method to be adopted in a useful manner by
practitioners this is not enough. For instance, a clear definition of the languages and notations used
is required. In the next chapter, we address some particular issues regarding the languages and
notations used in our approach. We particularly explore metamodeling and modeling issues that are
related to the model driven development of software product lines.

3.5 References
[Anastasopoulos et al. 2000] Anastasopoulos, M., J. Bayer, O. Flege and C. Gacek, "A Process for
Product Line Architecture Creation and Evaluation," IESE 038.00/E, 2000.

3.5 References

- 95 -

[Bayer et al. 2001] Bayer, J., D. Muthig and B. Gopfert, "The Library Systems Product Line - A
KobrA Case Study," IESE 024.01/E, 2001.

[Chauvel et al. 2005] Chauvel, F. and J.-M. Jezequel, "Code generation from UML models with
semantic variation points," MODELS/UML'2005, Montego Bay, Jamaica, 2005.

[Cockburn 2001] Cockburn, A., Writing Effective Use Cases: Addison-Wesley, 2001.

[Deursen et al. 2002] Deursen, A. v. and P. Klint, "Domain-Specific Language Design Requires
Features Descriptions," Journal of Computing and Information Technology, vol. 10, pp. 1-
17, 2002.

[EMF 2007] Eclipse Foundation, "Eclipse Modeling Framework," Available at
http://www.eclipse.org/emf/, 2007.

[Fontoura et al. 2000] Fontoura, M., W. Pree and B. Rumpe, "UML-F: A Modeling Language for
Object-Oriented Frameworks," ECOOP 2000-Object-Oriented Programming Conference,
2000.

[Gamma et al. 1995] Gamma, E., R. Helm, R. Johnson and J. Vlissides, Design Patterns - Elements
of Reusable Object-Oriented Software: Addison-Wesley, 1995.

[Garlan et al. 1994] Garlan, D. and M. Shaw, "An Introduction to Software Architecture," Carnegie
Mellon University CMU-CS-94-166, 1994.

[Gomaa 2005] Gomaa, H., Designing Software Product Lines with UML: Addison Wesley, 2005.

[Gomaa et al. 2004] Gomaa, H. and M. E. Shin, "A Multiple-View Meta-modeling Approach for
Variability Management in Software Product Lines," ICSR International Conference on
Software Reuse, Madrid, 2004.

[Griss et al. 1998] Griss, M. L., J. Favaro and M. d'Alessandro, "Integrating Feature Modeling with
the RSEB," Fifth International Conference on Software Reuse, Victoria, Canada, 1998.

[Jacobson et al. 1997] Jacobson, I., M. Griss and P. Jonsson, Software Reuse: Architecture, Process
and Organization for Business Success: Addison Wesley Longman, 1997.

[Kang et al. 1990] Kang, K. C., S. G. Cohen, J. A. Hess, W. E. Novak and A. S. Peterson, "Feature-
Oriented Domain Analysis (FODA) Feasibility Study Technical Report," Software
Engineering Institute, Carnegie Mellon University CMU/SEI-90-TR-21, 1990.

[Kang et al. 2002] Kang, K. C., J. Lee and P. Donohoe, "Feature-Oriented Product Line
Engineering," IEEE Software, 2002.

[Ledeczi et al. 2001] Ledeczi, A., M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason, G.
Nordstrom, J. Sprinkle and P. Volgyesi, "The Generic Modeling Environment,"
WISP'2001, Budapest, Hungary, 2001.

[Lee et al. 2004] Lee, K. and K. C. Kang, "Feature Dependency Analysis for Product Line
Component Design," ICSR 2004 - International Conference on Software Reuse, Madrid,
2004.

Chapter 3: The MoDeLine Method

- 96 -

[Machado et al. 2005] Machado, R. J., J. M. Fernandes, P. Monteiro and H. Rodrigues, "On the
Transformation of UML Models for Service-Oriented Software," ECBS International
Conference and Workshop on the Engineering of Computer Based Systems, Greenbelt,
Maryland, 2005.

[Marcus Alanen et al. 2005] Marcus Alanen, J. Lilius, I. Porres and D. Truscan, "On Modeling
Techniques for Supporting Model Driven Development of Protocol Processing
Applications," in Model Driven Software Development - Volume II of Research and
Practice in Software Engineering, vol. 2, S. Beydeda, M. Book and V. Gruhn, Eds.:
Springer-Verlag, 2005, pp. 305-328.

[MDA 2007] OMG, "Model Driven Architecture Guide Version 1.0.1," Available at
http://www.omg.org, 2007.

[Muthig et al. 2004] Muthig, D., I. John, M. Anastasopoulos, T. Forster, J. Dorr and K. Schmid,
"GoPhone - A Software Product Line in the Mobile Phone Domain," IESE 025.04/E, 2004.

[Pinto 2007] Pinto, A., "Model-Driven Software Development: Sistema de Especificação de
Produtos de Seguros," in Departamento de Engenharia Informática. Porto: Instituto
Superior de Engenharia do Porto, 2007.

[Pree et al. 2002] Pree, W., M. Fontoura and B. Rumpe, "Product Line Annotations with UML-F,"
Software Product Lines - Second International Conference, SPLC 2, San Diego, 2002.

[QVT 2005] OMG, "MOF QVT Final Adopted Specification (ptc/05-11-01)," Available at
http://www.omg.org, 2005.

[Riqueza 2005] Riqueza, J., "GME (Generic Modeling Environment): Estudo da ferramenta e sua
envolvente," in Departamento de Engenharia Informática. Porto: Instituto Superior de
Engenharia do Porto, 2005.

[UML1.4 2001] OMG, "Unified Modeling Language Version 1.4 (formal/01-09-67)," Available
at www.omg.org, 2001.

[UML 2005] OMG, "Unified Modeling Language Version 2.0: Superstructure (formal/05-07-04),"
Available at http://www.omg.org, 2005.

- 97 -

4. Modeling and
Metamodeling

“A computer program will always do what you tell it to do, but rarely what you want to do.”
Murphy's Laws of Computing

This chapter is concerned with modeling and metamodeling in the context of software product
lines. The first half of the chapter describes a proposal to adapt the UML 2.0 metamodel in a way
that effectively enables the adoption of use case diagrams in model driven approaches. The second
half of the chapter describes a proposal to extend a UML profile for the design of frameworks and
product lines called UML-F so that it includes requirements and analysis diagrams.

4.1 Introduction
Software product lines and related approaches, like software factories, are starting to capture the
attention of the industry practitioners. Nevertheless, their adoption outside the research community
and big companies is still very restricted. We believe that model driven approaches, like OMG’s
MDA [MDA 2007], with proper tool support, can bring the advantages of product lines to a
broader audience. For this to become a reality, model driven methods should integrate requirements
models into the software development process. In the first half of this chapter, we discuss the
semantics of the use case relationships and their formalization using activity diagrams to support
variability specification. Particularly, we propose an extension to the Extend relationship that
supports the adoption of UML 2.0 [UML 2005] use case diagrams into model driven methods. We
exemplify our approach with the MoDeLine method. In MoDeLine, use cases are the central model
for requirements specification and model transformation.

Variability is a major concern when developing software product lines or object-oriented
frameworks. In the context of the UML standard language, a profile has been proposed to represent
variability at the design level. The UML-F profile provides a way to model variability at the design
level in a unified way [Fontoura et al. 2000]. A method to design frameworks based on the same
basic concepts of the UML-F profile has also been proposed [Fontoura 1999]. Nevertheless,
variability identification and representation should be done as early as possible in the development
process. In the second part of this chapter we present an approach to extend UML-F to support
requirements and analysis diagrams. We present our proposals through an insurance framework
case study that shows how extensions to use case and component diagrams of UML 2.0 can be used
to capture variability as early as possible in a project and also how to map variability between
diagrams at requirements, analysis and design levels.

Chapter 4: Modeling and Metamodeling

- 98 -

4.2 Extending UML 2.0 Use Case’s Metamodel
Software product lines enable high productivity levels in software development through proactive
intra-organizational reuse. Nonetheless, such approaches imply relative demanding methods and, as
such, are difficult to implement in small and medium sized companies. Model-driven approaches
promise to facilitate the adoption of these demanding methods because they provide high levels of
automation. One well known example of such fusion of approaches is the Microsoft software
factories initiative [Greenfield et al. 2004].

Model driven methods are still a research topic. Much of the actual effort is on supporting
techniques for transformation of models. One example is QVT [QVT 2005], an OMG initiative to
standardize model transformations in MDA. Also, reports of model-driven approaches tend to
focus on transformations and are usually applied to design and implementation models, and usually
do not include requirement and analysis models.

Requirements and analysis are crucial activities of all software development processes. In the
case of product lines, their importance is higher because they guide the design of the reference
architecture of the product line and all the other common artifacts. As such, MDE approaches for
product lines should integrate models of these phases.

To fully integrate requirements into model-driven approaches the requirement model has to be
formalized. In the case of UML 2.0 this means the formalization of use cases. In product lines, a
vital concern is the specification of variability. Figure 59 presents types of alternatives (variability
in action flows) that are common in the textual description of use cases. UML 2.0 metamodel does
not support all these types of alternatives. In this section we address this limitation and we propose
an extension to the UML 2.0 metamodel to support model driven methods with such requirements
for variability modeling. For the formalization of the behavior of use cases we propose the adoption
of activity diagrams.

As an example of our approach, we present a process in which requirement models are fully
integrated into the MoDeLine method. The initial goal of 4SRS, the MoDeLine precursor, was to
provide a method to help analysts and designers develop large object-oriented systems through the
use of models and rules for model transformation.

Regular flow a) Alternative
Insertion

b) Alternative
History

c) Use Case
Exception

d) Alternative
Fragment

e) Alternative
Cycle

a

c

b

a

x

b

c

a

x
b

c

b

x

c

aa

x
b

c

b x

c

a

Figure 59: Types of alternative sequences of actions in use cases.

In Chapter 3 we have presented the first experimental results of adapting the 4SRS method for
explicitly handle variability. In Chapter 3 we have also presented a global overview of the
MoDeLine method. In this section we complement our previous work by addressing the

4.2 Extending UML 2.0 Use Case’s Metamodel

- 99 -

formalization of UML 2.0 use cases by extending its metamodel. In the context of the MoDeLine
method, we also briefly address the transformation of these new use case models into components
and classes, i.e., moving from the problem domain to the solution domain.

4.2.1 Use Case Relationships

According to the UML 2.0 metamodel, use cases can be associated by two major relationships:
Include and Extend. The Include relationship is used when there are parts (behavior) of use cases
that are common. When this happens, the common part can be extracted to a new use case. The
new use case is related to the original use cases by an Include relationship. According to the UML
2.0 specification, an Include relationship acts like a procedure call, since the location of the
inclusion of flow is coincident with the location of the rejoin of the flow.

The Extend relationship is used to model behavior that can extend the behavior of a base use
case. There is always a condition associated with an Extend relationship. This condition is used to
specify when the extension will be active.

Figure 60 presents an excerpt of UML 2.0 metamodel regarding use cases. From the presented
semantics and the metamodel, it is clear that in UML 2.0 only the Extend relationship can be used
to model variability. Nevertheless, other approaches have been proposed. For instance, Gomaa
proposes that the Include relationship can be used to model optional use cases in product lines
[Gomaa 2005]. In this section we will only address variability in use cases through the Extend
relationship.

UseCase

ExtensionPoint

Extend

Include

Constraint

extensionPoint

extensionLocation

extend

extension
extendedCase

includingCase addition

include

condition

useCase

Figure 60: Excerpt of UML 2.0 use case metamodel.

When developing software product lines, features and feature diagrams are also commonly
used to model variability. Features represent user-visible aspects or characteristics of a domain
[Kang et al. 1990]. When they represent functional characteristics of a product line they can be
related to use cases. Usually a feature can be modeled by one or more use cases [Griss et al. 1998;
Gomaa 2005]. But, in the case of ‘fine-grain’ features, it is possible that a use case encompass
several features. Features can be mandatory, optional or alternative. There can be also dependency
relations between features. Optional and alternative features represent variability in a product line.
These could be modeled by the Extend relationship.

Chapter 4: Modeling and Metamodeling

- 100 -

Usually, use cases are described in natural language. In fact, there is a pattern for the textual
description of use cases that is generally accepted by practitioners [Cockburn 2001]. In this pattern,
use cases are composed by sequences of steps, or actions. There is usually one main sequence and
many alternative sequences. There are five types of alternative sequences: conditional insertion; use
case exception; alternative history, alternative part and alternative cycle [Metz et al. 2004]. Figure
59 presents a graphical representation of the possible sequence alternatives.

An alternative insertion (Figure 59a) is used to represent conditional behavior that is inserted
into a precise point (extension point) of a flow. In this case the insertion point is coincident with the
rejoin point, i.e., at the end of the alternative behavior the flow rejoins the main flow at the initial
extension point. This is very similar to an Include relationship with a condition of insertion.
Alternative insertions can be easily modeled by Extend relationships because the extension point
and the rejoin point are coincident. In contrast, the other types of alternatives (alternative history,
use case exception, alternative fragment and alternative cycle) are not directly supported by the
UML 2.0 use case metamodel (see Figure 59). This is an important limitation since, in practice, it is
not so unusual for extensions to have flows that are diverse from that of an alternative insertion.

To illustrate our approach we will consider the example of a library system and two use cases
of that system, as presented in Figure 61 and Figure 62.

Use case Renew Loan:
- Main flow:
1. The Librarian enters the renew loan data (user ID and Item ID)
2. The system retrieves loan info
3. The loan info is displayed to the librarian
4. The system retrieves item info «extension point»
5. The system renews the loan «extension point»
Use case ends

- Alternative flows:
2a. Loan does no exist (after step 2)
 2a1. The system displays a message to librarian
 Use case ends
3a. A fine is due (after step 3)
 3a1. The librarian collects the fine «extension point»
 Use case rejoins (before step 4)
 Alternative flows:
 3a1a The fine is not totally paid (after step 3a1)
 3a1a1. The system displays a message to the librarian
 Use case ends
4a. The item is reserved (after step 4)
 4a1. The system displays a message to the librarian
 Use case ends

Figure 61: Excerpt of use case Renew Loan.

In Figure 61 there are 2 types of alternatives: exceptions (2a, 4a and 3a1a) and alternative flow
(3a). These are internal alternatives of the use case. One of the reasons to use the Extend
relationship is that it provides a way to extend already developed use cases with optional or
alternative external behavior without interfering with them (it only requires the proper
identification of the extension points in the extended use cases). This is a common process used to
develop use cases: first identify and model usual and common behavior and only after reason about
alternative and optional behavior. Alternative and optional behavior is usually related to entity
instances and values of attributes that imply different behavior from the one of base use cases. The
member type is an example of an entity type of the library domain that implies variability of
behavior to base use cases.

4.2 Extending UML 2.0 Use Case’s Metamodel

- 101 -

Figure 62 presents an excerpt of the description of the extending use case Handle Gold
Member. This excerpt contains only the extending behavior that regards use case Renew Loan.
Handle Gold Member extends Renew Loan and uses the three extension points defined in Renew
Loan.

We adopt a similar structure to specify regular and extending use cases, even if it is not
common to have extending use cases with main flow. Also, we describe alternative flows and
extension flows in the same section because their structure is basically the same, the major
difference being the fact that in an extending use case the alternative flows usually relate to flows
of other use cases.

Use case Handle Gold Member:
- Main flow: <empty>

- Alternative flows (Extension flows):
1. Handle Renew Loan
 Condition: MemberType=GoldMember
 1a. Handle Collect Fine
 (before Librarian collects the fine):
 1a1. If fine<member fee Rejoin base use case
 (before Retrieve item info).
 Rejoin base use case (before Librarian collects the fine).
 1b. Handle Borrow Rule
 (after Retrieve item info):
 1b1. If Item Reserved by non-gold member Rejoin
 base use case (before Renew loan)
 1b2. Display a message to the librarian
 Base use case ends

Referenced Extension Points:
-Librarian collects the fine:

Renew Loan.The librarian collects the fine
-Retrieve item info:

Renew Loan.The system retrives item info
-Renew loan: Renew Loan.The system renews the loan

Figure 62: Excerpt of use case Handle Gold Member.

Figure 62 presents common situations that reflect two types of alternatives that are not
adequately handled by the Extend relationship of UML 2.0:

The extending use case adds conditional behavior that can result in an alternative flow (1a.
Handle Collect Fine and 1b. Handle Borrow Rule), i.e., there are rejoin points that do not
match the original extension point;
The extending use case adds conditional behavior that can result in an alternative history (1b.
Handle Borrow Rule), i.e., the new behavior can lead to an alternative ending in the base use
case.

These situations could be handled by the incorporation of the alternatives into the base use
case. Nonetheless, this option would lead to base use cases that would be difficult to read and
understand. It would also become more difficult to handle variability in a product line, because
important features, like MemberType, would be disperse into several use cases. Our approach (see
next section) enables an effective way to model alternative flows that facilitates the process of
discovering new dimensions of variable features and easily integrate them into the use case model.

Chapter 4: Modeling and Metamodeling

- 102 -

For instance, Figure 63 presents how the alternative behaviors related to MemberType can be
modeled in such a way. In this example, MemberType was identified as a dimension of variability
because alternative behaviors that depend on the type of member of the library need to be
incorporated into several base use cases. In order to address future new types of members we can
model the extensions regarding member type in a single abstract use case. This type of abstract use
case represents a dimension of variability. Specific instances of that variability dimension are
modeled as sub-use cases. As such, in our example, Handle Gold Member could become a
specialization of the abstract use case Handle Member Type.

Borrow
Loancopy

Renew Loan

Return Loancopy

Handle Member
Type

«extend»

«extend»

«extend»

Handle
Gold Member

Figure 63: Modeling MemberType as a dimension of variability in use cases.

The use of the generalization/specialization relationship between the extending use cases (in
our example, Handle Member Type and Handle Gold Member) permits the proper handling of
dimensions of variability. The abstract extending use case functions as a template for the concrete
extending use cases. For instance, the conditions of the Extend relationships are only specified in
the concrete use cases.

As Figure 60 shows, the UML 2.0 metamodel only supports extensions that are basically
conditional Include relationships. This represents a major limitation to the modeling of the diverse
variability types that are commonly specified by textual use cases. In fact, it only supports
alternative type a (Figure 59a). In the next section we present and discuss a proposal of an
extension to the use case metamodel that addresses the modeling requirements identified in this
section.

4.2.2 Extending the UML 2.0 Metamodel

In the past, several proposals have been made to formalize use cases [Hurlbut 1998; Overgaard et
al. 1998; Porres 2001; Stevens 2001]. Some recent works also proposed approaches to manage
variability in use cases in the context of product lines [Fantechi et al. 2004; Eriksson et al. 2005].
The main concern of their authors has been the lack of formalism of the usual use case text
descriptions. Most well known proposals regard non-visual languages. In our specific case we aim
at integrating requirements into a model driven method. In the context of UML 2.0, the modeling of
behavior can be addressed by activity diagrams, so we have adopted activity diagrams for modeling
use case behavior. Figure 64 presents an excerpt of the UML 2.0 metamodel adapted (extended) to
support our proposal for formalization of use cases.

4.2 Extending UML 2.0 Use Case’s Metamodel

- 103 -

Figure 64 presents in gray those metamodel elements that correspond to extensions to the
UML 2.0. Since, according to UML 2.0 specification, a use case is a specialization of a
BehavioredClassifier, we use the classifierBehavior and ownedBehavior associations to model,
respectively, the use case main flow and the alternative flows.

«stereotype»
inclusion_point

UseCase

ExtensionPoint

Extend

Include

Constraint

extensionPoint

extensionLocation

extend

extensionextendedCase includingCase

addition

include

condition

useCase

classifierBehavior

Parameter

ownedParameter

0..1 0..1

*
0..1

0..1 *

Constraintprecondition

postcondition
Activity

ownedBehavior

0..1

1
*

1

1

1

*

*

*

*

1 1

Behavior

ExtensionFragment

extension *

1

rejoinTarget

*

extendingBehavior

InclusionPoint

inclusionPoint*

1

inclusionLocation

location

ActivityNode

node

Action ObjectNode

Pin

ActivityParameterNode

parameter

ActivityEdge

activity

edge

incoming

outgoing

InvocationAction

CallAction

CallBehaviorAction

behavior

location

1

1

1

«stereotype»
after

«stereotype»
rejoin_point

moment:MomentKind

«enumeration»
MomentKind

before
after

Rejoin

*

1

rejoinSource

1

«stereotype»
extension_point

«stereotype»
before

RefAction

refers

1

moment:MomentKind

Figure 64: Excerpt of proposed metamodel.

We propose a new ExtensionFragment metaclass to support the issues identified in the
previous section. In our proposed metamodel it is clear that an Extend relationship can have a
condition and make several extensions (via ExtensionFragment) to a base use case. Each extension
has one extension location but can have several rejoin locations. An extension also specifies which
behavior of the extending use case will extend the base use case in the extension location. Since use
case behaviors are formalized through activity diagrams, extension locations and rejoin locations
refer to elements of type Action of the corresponding behavior. To clarify if the extension or the
rejoin points are made before or after the corresponding Action, we propose the attribute moment.

Regarding the Include relationship, we propose the new InclusionPoint element so that we
have a similar approach to the one used in the Extend relationship. An InclusionPoint refers to the

Chapter 4: Modeling and Metamodeling

- 104 -

location where the behavior is to be included. This location has to refer to an element of type
CallBehaviorAction of the same use case as the Include relationship. It is not necessary to specify
what behavior is to be included because the semantic of the Include is to include the main behavior
(classifierBehavior) of the included use case.

The stereotypes extension_point, inclusion_point, rejoin_point, before and after are used as a
visual aid to more easily identify the semantics of the actions nodes of the activity diagrams.

In this section, we have briefly described the major characteristics of a proposed metamodel to
support the formalization of use case models with the aim of supporting their integration into model
driven methods. The next section describes how our approach is used to enhance variability support
in the MoDeLine method. The development activities covered are: Create Use Case Model; Create
Activity Model and Create Use Case Realization Model (see Figure 65).

a) Elicitation of Requirements

b) Create Use Case Model

e) Create Feature Model d) Create Entity Model

c) Create Activity Model

f) Create Use Case Realization Model
(Component/Class Model)

g) Create Component/Class Model

h) Refactor Component/Class Model

j) Create Code Base

i) Create State Model

D
es

ig
n

Im
pl

em
en

ta
tio

n
An

al
ys

is
R

eq
ui

re
m

en
ts

Figure 65: Development activities covered in Section 4.2.

4.2 Extending UML 2.0 Use Case’s Metamodel

- 105 -

4.2.3 From Problem to Solution Domain

This section describes the activities b, c and f of Figure 65, with the adoption of the UML 2.0
metamodel extensions proposed in 4.2.2 and the MoDeLine method applied for the use cases Renew
Loan and Handle Gold Member, as presented in Figure 61 and Figure 62.

4.2.3.1 Creation of Use Case Model and Activity Model

The activity of the creation of the use case models is essential in the MoDeLine method, since use
cases drive the creation of a very significant number of design elements, i.e., the design elements
that are derived from functional requirements.

To illustrate this process we will describe how use cases textual descriptions with
specifications similar to the ones described in [Cockburn 2001], can be modeled with our approach.
Figure 61 and Figure 62 are cases of such textual specification.

Use case specifications usually contain main flow descriptions and alternative flows. For the
construction of the use case models it is usual to address first regular use cases (i.e., non-extending
use cases) and Include relationships. As the use case model is constructed, it is possible to start also
developing the activity diagrams. For each regular use case, usually a single activity diagram is
sufficient. According to the metamodel of Figure 64, there should be an activity diagram for each
Behavior (ownedBehavior or classifierBehavior) of the use case. Since the classifierBehavior
specifies the main flow of a use case, and main flow alternatives can also be specified in the
classifierBehavior, a single activity diagram is sufficient for the majority of the use cases.

Activity Nodes. The construction of the activity diagrams is relatively straightforward. The base
idea is that each step of the use case textual description becomes an ActivityNode in the activity
diagram. Each ActivityNode refers or is performed by the system or an actor. As such, we adopt
UML 2.0 ActivityPartitions associated with ActivityNodes to identify «who» is related to the
ActivityNode. For instance, step 1 of Figure 61, “The Librarian enters the renew loan data (user ID
and Item ID)” becomes the Action (ActivityNode) Enter Renew Loan Data associated with the
ActivityPartition Librarian. Figure 67 presents the activity diagrams correspondent to the flows of
use cases Renew Loan (Figure 61) and Handle Gold Member (Figure 62).

Decision Nodes. An alternative flow implies a DecisionNode in the activity diagram. The
alternative flow “2a. Loan does not exist (after step 2)“ of Figure 61 is transformed into the
DecisionNode Check if Loan Exists. This kind of DecisionNode has usually two outgoing
edges. One corresponds to the main flow and is traversed when the condition for the alternative
flow is false. The other corresponds to the alternative flow. Usually, decision nodes in UML 2.0
are depicted with a diamond-shaped symbol. We represent all activity nodes in a uniform way. To
identify control nodes we represent their symbols as small icons within the right side of the node
visual symbol. This makes it possible to attach more information to control nodes (such as
stereotypes and partition names), making their visual representation more meaningful.

Object Nodes. A very important aspect of using activity diagrams to model use case behavior is
that it is possible to represent object nodes and their flow. The process of identifying the objects
that are used as parameters of actions and behaviors can provide significant input to the entity
model of the domain (see activity Create Entity Model of Figure 65). Another aspect of object
nodes and parameters is that they provide an effective way to validate Include and Extend

Chapter 4: Modeling and Metamodeling

- 106 -

relationships, since the parameters of the sources and targets of these relationships must be
compatible. Also, when we reason about conditions for alternatives and Extend relationships, object
nodes makes it possible to do it in a formal way, because they provide a way to constraint the
modeler to only refer to objects that are accessible from the specific location of the condition in the
activity diagram. These are all validations that are possible in our proposed metamodel.

Include relationship. An Include relationship in which use case A includes use case B, means that
there is a CallBehaviorAction node is use case A that calls the classifierBehavior of use case B.
This means that the main flow of use case B is included by the CallBehaviorAction node of use
case A. The parameters of the CallBehaviorAction of use case A must be compatible with the
parameters of the classifierBehavior of use case B.

Extend relationship. In order to support all possible alternative flows, our Extend relationship
becomes significantly more complex than the original UML 2.0 Extend relationship. Regarding the
extended use case, there are not significant changes. Basically, we only have to specify the
extension points. In the case of the activity diagrams, this is done by marking the respective nodes
with the stereotype extension_point. These become locations that can be used by extending use
cases as extension or rejoin points. We maintain the term extension point in the base use case to
expose nodes that can be used either as outgoing flows or as incoming flows of extending behavior.
Maybe a more appropriate term would be PublicPoint. Figure 66 presents three examples of
extension_points for the use case Renew Loan: Collect Fine, Get Item Status and Renew Loan.

Figure 66 presents the Extend relationship between Renew Loan and Handle Gold Member use
cases and follows our proposal for the visual representation of the Extend relationship. This visual
representation only differs from the actual notation of UML 2.0 in the contents of the note attached
to the Extend relationship, since it reflects the new ExtensionFragment element of the metamodel
(see Figure 64).

Renew Loan

Handle Gold Member

«extend»

Condition: {Member Type=Gold Member}
Extension: Handle Collect Fine
 before Collect Fine
 rejoins before Get Item Status
Extension: Handle Borrow Rule
 after Get Item Status
 rejoins before Renew Loan

extension points
Collect Fine

Get Item Status
Renew Loan

Figure 66: Proposed notation for the Extend relationship.

Regarding extending use cases, the extendingBehavior that will extend the extended use case
in a specific extensionLocation has to be specified by an activity diagram, since it is an
ownedBehavior of the extending use case. Figure 67 presents the activity diagrams that specify the
behavior of the two extensions fragments of the Extend relationship from the use case Handle Gold
Member to the use case Renew Loan. The figure also highlights the control flow that results from the
Extend relationship (that is depicted in Figure 66). To clarify the extension and rejoin points of an
extension we need to specify the moment: before or after. Since an ExtensionFragment has only

4.2 Extending UML 2.0 Use Case’s Metamodel

- 107 -

one extensionLocation this is coincident with the start flow node of the extendingBehavior. If the
flow of the extendingBehavior rejoins the extended use case, this must be modeled in the activity
diagram. We do this by using RefAction nodes. These are references to ExtensionPoints in the
extended use case (Renew Loan.Get Item Status, Renew Loan.Collect Fine and Renew
Loan.Renew Loan in Figure 67). They are marked with the rejoin_point stereotype and with a
stereotype stating the moment of the rejoin (after or before).

Enter Renew Loan Data

UserID
ItemID

«interface» (Librarian)

Display Loan Info
«interface» (Librarian)

Find Loan

LoanInfo
LoanStatus

«data» (System)

Check if Loan Exists

LoanInfo; LoanStatus

«control» (System)

Display Msg Loan Existent
«interface» (Librarian)

LoanStatus.Exists=No
LoanStatus.Exists=Yes

Get Item Status

«extension_point», «data» (System)

Collect Fine

«extension_point», «interface, data»
(Librarian)

Verify if Fine is Due
«control» (System)

LoanInfo

LoanStatus.Fine=FineDue

LoanInfo; LoanStatus

Else

LoanInfo; LoanStatus

LoanInfo; LoanStatus

LoanInfo; ItemStatus

Verify if Reserved
«control» (System)

Verify Fine Status
«control» (System)

LoanInfo

LoanStatus=FineDue

Else

Renew Loan

«extension_point», «interface, data»
(System)

LoanInfo

LoanInfo

Display Msg Fine Due
«interface» (Librarian)

Else

Display Msg Reserved
«interface» (Librarian)

LoanInfo

LoanInfo

ItemStatus=Reserved

Renew Loan.Collect Fine

«rejoin_point, before»

LoanInfo

Verify if Collect Fine
«control», (System)

LoanInfo; LoanStatus

LoanStatus.Fine>LoanInfo.Member.Fee

Else

Verify Condition
«control», (System)

LoanInfo; LoanStatus

Gold Membership Else

RenewLoan.Get Item Status

«rejoin_point, before»

LoanInfo

Verify if Can Borrow
«control», (System)

LoanInfo; ItemStatus

LoanInfo

Verify Condition
«control», (System)

LoanInfo; ItemStatus

Else
Gold Membership

ItemStatus.ReservationMemberType<>
Gold Member Else

Display Msg Gold Reservation
«interface», (Librarian)

LoanInfo

Renew Loan.Renew Loan

«rejoin_point, before»

Renew Loan.Get Item Status

«rejoin_point, after»

Use Case Renew Loan
Main Flow

Use Case Handle Gold Member
Extend Flow: Handle Renew Loan
 Condition: Member Type=Gold Member

Extension: Handle Collect Fine
Extension Point: Renew Loan.Collect Fine
Moment: before

Extension: Handle Borrow Rule
Extension Point: Renew Loan.Get Item Status
Moment: after

Figure 67: Extension points and rejoin points depicted in activity diagrams for base use case Renew Loan
and extending use case Handle Gold Member.

Chapter 4: Modeling and Metamodeling

- 108 -

4.2.3.2 Use Case Realization Model

A use case realization model acts like a ‘link’ between the problem domain and the solution
domain. It has the responsibility of guarantee that all functional requirements of the problem
domain are addressed in the solution domain, on a use case by use case basis.

Basically, the method follows a well-know applied practice introduced by [Jacobson et al.
1992] and creates three components for each use case: interface, control and data components.
This corresponds to step 1 of 4SRS (see Chapter 3). Since, in our approach, each use case is
complemented with activity diagrams, it is possible to use these activity diagrams to populate each
of the use case components with classes and interfaces that are responsible to realize the behavior
associated with the nodes of the activity diagrams. To guide this transformation each node in the
activity diagrams must be marked with the following stereotypes: interface, control and data. This
facilitates the allocation of the classes and interfaces to the three components that realize the use
case.

For a model driven approach to be feasible there must be simple and direct mappings between
the models. In this case, the mapping is done between Actions of activity models and Methods of
component/class models. For each Action in the activity model we create an Interface with a
Method in the use case realization model and also a Class that implements the interface. In the use
case realization model these interfaces act like roles that are needed in the final system to address
the behavior required by the specific use case. Extension, inclusion and rejoin points are realized
through required/provided interfaces. Since the components are populated with classes and
interfaces, micro-steps 2.i and 2.ii of 4SRS (Component Elimination) can be automated, i.e.,
components with no allocated classes and interfaces can be eliminated. Micro-steps 2.iii, 2.iv and
2.v are also addressed at activity Create Use Case Realization Model, but they require the human
intervention.

The elements that compose each use case realization will be incorporated into a global
component/class model during activity Create Component/Class Model (see Figure 65). This
activity addresses the remaining steps and micro-steps of 4SRS. In this activity, for instance, an
interface and method resulting from the action Get Item Status could be reused to specify a
global interface for a Book class. This interface of the Book class could also incorporate methods
from other use case realizations.

4.3 Extending UML-F for Analysis Models
UML-F has been proposed as an extension to UML for modeling frameworks [Fontoura et al.
2000]. Basically, it supports the modeling of framework variation points. Although the product line
approach encompasses more concerns than the framework approach, they share many similarities at
the technical level. For instance, they both share the principle of reuse and their main concern is the
management of variability. The applicability of UML-F to product lines has also been explained in
[Pree et al. 2002].

Design activities are the UML-F profile focus. UML-F is based on extensions to class
diagrams related elements such as classes, interfaces and relationships. We aim at exploring
possible directions in order to extend the UML-F to fully support a product line engineering
method. In this section, we address requirements and analysis. We present our approach in the
context of our experience in using UML-F in the experimental modeling of an insurance product
line in which we also adopted the MoDeLine model driven method. Figure 68 presents the
development activities that are covered in this section (activities b, c, e, f and g of Figure 68).

4.3 Extending UML-F for Analysis Models

- 109 -

By the time UML-F was proposed, UML 2.0 was not available, so UML-F is based on UML
1.3 and UML 1.4. As the specification of UML 2.0 is now available, this section also addresses the
adaptation of UML-F to UML 2.0.

a) Elicitation of Requirements

b) Create Use Case Model

e) Create Feature Model d) Create Entity Model

c) Create Activity Model

f) Create Use Case Realization Model
(Component/Class Model)

g) Create Component/Class Model

h) Refactor Component/Class Model

j) Create Code Base

i) Create State Model

D
es

ig
n

Im
pl

em
en

ta
tio

n
A

na
ly

si
s

R
eq

ui
re

m
en

ts

Figure 68: Development activities covered in Section 4.3.

4.3.1 UML-F: Variability at Design

UML 2.0 introduces some changes in the way profiles work. One of such changes is that tagged
values can no longer exist by themselves; they exist in the context of a stereotype, in the form of
attributes of the stereotype. UML-F is highly based on tags, as they existed in UML 1.3. One
simple way to address the transition to UML2 (that is suggested in UML 2.0 official
documentation) is to simply create a dummy stereotype to which the unattached UML 1.3 tags
could be attached. Nonetheless, in our work, we propose some adaptations to conform UML-F to
UML 2.0.

Chapter 4: Modeling and Metamodeling

- 110 -

The original UML-F profile proposes three ways of classifying elements (classes, packages
and interfaces) as framework or application assets: (1) the application stereotype marks an element
as being application specific or belonging to a particular element of a product line; (2) the
framework stereotype marks an element as belonging to the framework or as a common element in
a product line; (3) the utility stereotype marks an element as belonging to a utility library or to the
runtime system.

Regarding variability, UML-F proposes three tags that address three major types of variability
points: (1) the tag variable is used to mark a method, stating that the behavior of the method varies,
and that the method must be implemented during the framework instantiation; (2) the tag extensible
is used to mark a class, meaning that new methods can be added to the class interface during
framework instantiation; (3) the tag incomplete is used in a generalization relationship to indicate
that it is possible to add new concrete subclasses during the framework instantiation.

Additionally, both methods and classes can be marked with the tags static or dynamic, which
indicate if the variation’s instantiation is to be made at compile (static) or runtime (dynamic). In
this case, we propose that variable, extensible and incomplete tags become stereotypes with an
enumerate attribute instantiation with two possible values: static or dynamic. Figure 69 presents an
example of these stereotypes and respective attributes. This example is based on the motivation
example for the template method design pattern presented in [Gamma et al. 1995]. In this example,
the class Application can be extended and three methods must be implemented. The attribute
instantiation states that the concrete subclasses (i.e., variations) of Application are specified until
compile time.

+AddDocument()
+OpenDocument()
+DoCreateDocument() «variable»
+CanOpenDocument() «variable»
+AboutToOpenDocument() «variable»

«extensible»
Application

«extensible»
instantiation=static

Figure 69: Example of extensible and variable stereotypes.

Concerning the tag incomplete, UML 2.0 already addresses this issue by labeling
generalization sets with constraints, so the UML-F profile does not need to add any new elements.
Figure 70 presents an example of UML 2.0 constraints labeling a generalization set. In this
example, the abstract class Document has two framework realization classes (TextDocument and
XMLDocument) and one application specific realization class (MyDocument) that is depicted with the
application stereotype.

UML-F stereotypes provide a way to add more variability semantics to class diagrams. With
UML-F it is possible to clearly identify at design the variability points of a system and the
correspondent variations. For instance, in Figure 69, it is clear that DoCreateDocument,
CanOpenDocument and AboutToOpenDocument are all variation points. Variations of these
variability points can be added by implementing those methods in a specialization of the
Application class. Using this approach of attaching stereotypes to model elements it is possible to
add even more semantic to a model. For instance, we could identify which part of the model is
affected by the variability points. It is common to classify elements which behavior is affected by

4.3 Extending UML-F for Analysis Models

- 111 -

variants as templates, in the sense that they provide a template of behavior that is affected by
variations at specific spots, also known as variation points or hooks.

+Open()
+Close()
+Save()
+Revert()

Document

TextDocument XMLDocument

{incomplete, disjoint}

«application»
MyDocument

Figure 70: Example of incomplete interfaces.

In the example of Figure 69, and according to Figure 71, the method OpenDocument is a
template, in the sense that its behavior is affected by variants attached to the hooks (or variation
points). Basically, template and hooks can be in the same class, such as in the examples of Figure
69 and Figure 71 (which in UML-F is called the unification construction principle) or they can be
in separate classes (which in UML-F is called the separation construction principle). When
template and hook are in separate classes it is possible to change the behavior of the template at
runtime by plugging a specific instance of the hook. This case can be illustrated by the example of
Figure 70, where we have several variations for Document, which acts as a hook. By returning a
different instance of Document in the implementation of the method DoCreateDocument, it is
possible to change the behavior of the system at runtime. To support the annotation of model
elements with the discussed semantics, UML-F proposes two stereotypes: «template» and «hook».

class MyApplication extends Application {
…
 public void OpenDocument(String name) {
 if (!CanOpenDocument(name)) return;

 Document doc=DoCreateDocument();

 if (doc!=null) {
 docs.AddDocument(doc);
 AboutToOpenDocument(doc);
 doc.Open();
 }
 }
…
}

Figure 71: Implementation of the template method OpenDocument.

Generally speaking, one can say that all design variability is based on a template/hook meta-
pattern. In fact, GoF design patterns [Gamma et al. 1995] rely on one or more template/hook
related elements to provide its functionality. Further discussion of this topic can be found in [Pree
et al. 2002].

Chapter 4: Modeling and Metamodeling

- 112 -

Following this approach, any type of variability point can be implemented based on interfaces
and combinations of templates and hooks. In fact, variable methods, extensible classes and
incomplete interfaces semantically mean that it is possible to add or alter the behavior of a system
by hooking new behavior in a manner that conforms to the structure and behavior of the remaining
system, i.e., the new behavior must follow an interface that is used according to a template.

Since the UML-F approach to manage variability at design is based on the concepts of
templates and hooks, we followed the same concepts when we reasoned about variability in
requirements and analysis. The next Section presents the case we use to illustrate our approach to
extend UML-F to support requirements and analysis models. We do it by presenting the problem
domain and discuss some significant use cases. In sections 4.3.3 and 4.3.4 we explain our approach
using examples from our case study. The case study is kept simple in order to facilitate the
presentation of the central concepts.

4.3.2 Case Study

To illustrate our approach we use a case study based on an insurance product line. The aim of this
product line is to support the business of several insurance companies. Insurance business varies
significantly: insurance companies can have a specific line of business, i.e., life insurance or
automobile insurance, or they can work in several lines of business; they can insure several types of
objects or only insure persons; they can work with agents or not; they can be reinsured; etc.
Although diverse, the insurance business has some basic simple concepts. In this Section we will
use a simplified view of the insurance domain. Nevertheless, this view is sufficient to illustrate our
approach.

The central concept behind an insurance is that a customer pays an insurance company some
amount of money (the premium) so that the insurance company becomes responsible to pay for
some possible lost, that may happen or not (according to the risk). The contract that is made
between the customer and the insurance company is named policy. Figure 72 presents the use case
{U0.1} Operate an Insurance Policy. The Figure presents also use cases that result from the
functional decomposition of {U0.1} Operate an Insurance Policy. Since we will discuss our
approach in the context of the MoDeLine model driven method we use its naming conventions. For
instance, each use case name is prefixed with a sequence of numbers enclosed in brackets that
reflect the level of functional decomposition of the use case.

The use case {U0.1} Operate an Insurance Policy is a use case at level 1 of the
functional decomposition of our insurance product line. Use cases at this level are related to major
activities of the insurance business (problem domain). In this case other possible activity could be
reinsurance. Usually there are also top level use cases for administrative activities of the system,
such as configuration and monitoring. For the purposes of this section we will only focus on
{U0.1} Operate an Insurance Policy.

When reasoning about functional requirements it is usual to think about the behavior that the
system, or parts of the system, has regarding interactions with users or other systems. When doing
so it is also common, and easier, to address first the typical behavior of the system and leave the
variations to a later moment. So, when applying the MoDeLine method, we start by addressing the
common behavior of the insurance system. The results are very high-level use case diagrams that
are then functionally decomposed and give origin to more specific use cases. For instance, the
{U0.1} Operate an Insurance Policy use case can be functionally decomposed into other use
cases, like {U0.1.1} Buy a Policy and {U0.1.4} Claim against a Policy. Within the same
level of detail it may also make sense to create new use cases if, for instance, some behavior of a

4.3 Extending UML-F for Analysis Models

- 113 -

use case can be reused by other use cases. If this is the case, then a new use case can be created
with such behavior and that new use case can be included by the use cases that share that common
behavior.

{U0.1.2} Pay Premium

{U0.1} Operate an Insurance Policy

{U0.1.1} Buy a Policy

{U0.1.3} Change a Policy

{U0.1.4} Close a Policy

{U0.1.5} Claim Against a
Policy

Insurance Specialist

Thirdparty Specialist

Thirdparty
Adjuster

Benificiary

Customer

Figure 72: Functional decomposition of use case {U0.1} Operate an Insurance Policy.

Figure 73 presents how, for the use case {U0.1.1} Buy a Policy, tree new use cases are
created: {U0.1.1.1} Quote for Insurance, {U0.1.1.2} Risk Assessment and {U0.1.1.3}
Pay for Policy. These three use cases represent behavior that originally belonged to {U0.1.1}
Buy a Policy but, because they can be reused by other use cases, they give origin to new use cases
that are included by the use cases that reuse them.

{U0.1.1} Buy a Policy {U0.1.1.1} Quote for Insurance

{U0.1.1.2} Risk Assessment{U0.1.1.3} Pay for Policy

«include»

«include»
«include»

Figure 73: {U0.1.1} Buy a Policy functional decomposition.

During this functional decomposition of use cases, a proper characterization of the use cases is
required as new use cases are created and existing use cases are modified. This can be done by
following suggestions for textual description of use cases, such as the ones described in [Cockburn
2001].

The MoDeLine method only proposes that behavior variability be addressed after the initial
functional decomposition of the use cases of the system. This can be done by reasoning on how

Chapter 4: Modeling and Metamodeling

- 114 -

variants can affect the common behavior of the system. These variants can result from the addition
of a new product in the case of a product line or from considering new variability points in the case
of a framework. The next section presents our approach to model variability at requirements in
such a way that makes it possible to transform requirements models into analysis models.

4.3.3 Variability at Requirements

One common source of problems in software development is the transition from the problem
domain to the solution domain. The transformation is difficult and usually requirements get lost or
are misinterpreted. In UML, requirements are modeled using use case diagrams. In order to address
this transformation problem we propose that the behavior of use cases should be modeled with
activity diagrams. Usually, practitioners describe the behavior of use cases in an informal way, by
using textual descriptions. Formalization of use case behavior has been proposed in several
previous works, such as [Overgaard et al. 1998; Porres 2001; Stevens 2001]. These proposals are
all previous to UML 2.0 and do not adopt activity diagrams. In the context of UML 2.0 we propose
the adoption of activity diagrams to model the behavior of use cases.

To explain our approach we discuss, in Section 4.3.3.1, some aspects of the use case
metamodel that address variability. Section 4.3.3.2 presents how activity diagrams are used to
model use case behavior and illustrate it with the insurance demonstration case. We show how
variability concepts of requirements can be related to the variability concepts of design that were
presented in Section 4.3.1.

4.3.3.1 Use Case Metamodel

Use case diagrams are very simple. This simplicity reflects the fact that they are used for modeling
user requirements. According to the UML 2.0 specification, a use case is “the specification of a set
of actions performed by a system, which yields an observable result that is, typically, of value for
one or more actors or other stakeholders of the system”, i.e., it represents a declaration of an
offered behavior of a system.

Typically, the behavior that use cases offer to actors is described by regular text [Cockburn
2001]. This is mainly because text is a good mean of communication with non-technical users of
the system. Nonetheless, in order for transformation between requirements and analysis or design
to become feasible, use case behavior need to be specified in a more formal way. UML has been
introducing some formalization into use cases as the result of the revisions of the standard. But,
what forms of variability are possible to formalize with use cases? In order to adopt use cases in a
model-driven approach, as in our demonstration case, it is necessary to clearly specify the
open/unclear semantics of use cases in UML 2.0. Next we will address this specific question.

Extend Relationship
One of the results of the evolution of UML is the formalization of extending use cases. In UML
2.0, a use case can extend other use case through an Extend relationship. According to the UML 2.0
specification, “the extending use case defines a set of modular behavior increments that augment an
execution of the extended use case under specific conditions”. This definition clearly states that
Extend relationships can be used to specify variability, since there are conditions associated with
them. However, as we address variability at requirements, we find that to fully understand what the
Extend relationship really means it is necessary to investigate these three topics, extracted from the
previous definition:
a) a set of modular behavior increments
b) that augment an execution of the extended use case

4.3 Extending UML-F for Analysis Models

- 115 -

c) under specific conditions

According to the UML 2.0 specification, an extending use case is not a regular use case, i.e.,
the extending use case typically defines behavior that may not necessarily be meaningful by itself,
since it defines modular behavior increments that extend the base use case. These extensions occur
at extension points of the base use case. An extension point identifies a point in the behavior of the
base use case where that behavior can be extended by the behavior increments of the extending use
case. The UML 2.0 specification does not force any specific definition for the location of the
extension point. However, since a UseCase is a generalization of BehavioredClassifer, it inherits its
members classifierBehavior and ownedBehavior. They are both of type Behavior, which is an
abstract class. The classifierBehavior represents the behavior of the classifier itself. Since UseCase
inherits from BehavioredClassifier, it is acceptable to say that classifierBehavior represents the
behavior of the UseCase and that ownedBehavior represents other behaviors of the UseCase (which
can be invoked by the classifierBehavior). Also, according to UML 2.0, an Activity is a
specialization of a Behavior. In the light of these UML 2.0 specifications, it is acceptable to say
that the usual text description of the behavior of a use case can be substituted by activity diagrams.
In the next Section we will exemplify in detail how this can be done.

Since we are now assuming that the behaviors of use cases can be modeled by activity
diagrams it is possible to clarify the previous doubts. Regarding topic a) and b), a behavior
increment refers to an ownedBehavior of the extending use case (that is realized by an activity).
This extending behavior occurs at the extension points of the extended use case. These extension
points correspond to nodes of activities that realize the behavior of the extended use case.

Regarding topic c), and according to UML 2.0 metamodel, an Extend relationship has a
condition that must be true for the base use case to be extended at the extension points. Using well-
known concepts of the product line field, extension points can act as variation points and extending
use cases act as variants. It is possible to bind a variation point to a variant at several stages in the
development cycle [Gurp 2003]. Hence, the condition of the Extend relationship can have different
realizations according to the stage when the condition is evaluated. If the condition is to be
evaluated at runtime, then its operands can be based on the available values, i.e., the values of the
parameters of the behaviors. If we are resolving the variation point at a pre-runtime phase (which is
common in product lines and frameworks) then it is possible to use other operands like, for
instance, configuration values and feature options.

Figure 74 represents an excerpt of the MoDeLine metamodel where it is possible to observe
the previously discussed concepts and also some proposed UML-F stereotypes that facilitate the
modeling of those concepts. The figure also presents how modeling elements from distinct
development levels relate to each other. This figure is different from the one presented in Chapter 3
because here we want to describe how UML-F stereotypes can be applied in the standard UML 2.0
metamodel. Therefore, contrary to Chapter 3, here we do not show the MoDeLine proposed
extensions to the UML 2.0 metamodel.

Include Relationship
According to the UML 2.0 specification, an Include relationship between two use cases A and B
means that the behavior defined in the B use case is included in the behavior of the base use case
(A). It also states that the included use case is not optional, and is always required for the included
use case to execute correctly.

Include relationships are used to extract common parts of use cases and therefore represent
behavior that is reused across use cases. It can be also used to address functional decomposition in

Chapter 4: Modeling and Metamodeling

- 116 -

large systems. According to the same formalization we used for the Extend relationship, an Include
relationship acts like a procedure call. So, in the base use case, some part of its classifierBehavior
is realized by the behavior of the included use case. In an analogous manner to the Extend
relationship, in a point in the base use case (the inclusion point; a Node of an activity that realizes
the behavior of the base use case) the behavior (classifierBehavior) of another use case is included.

UseCase

ExtensionPoint

SolitaryFeature

extensionPoint

useCase

classifierBehavior

0..1 0..1

*

0..1

Activity

ownedBehavior

*

1

Behavior

ActivityNode
node

VPFeature

«analysis»
Class

«analysis»
Interface

«analysis»
Component

DesignElement

Feature

RootFeature

*

groupCardinalityfeatureCardinality

*

*

ProductLine ProductDomainModel 1 1 *

*

*includes

composedOf

exclude

require

*
*

*
*

*

*

1..31..3

1

1

0..1

11..3

1

1 11..*
1

1..*

1..*

1

1..*

0..*

1
1

0..* 0..*

ExtendConstraint

*

1 1extendedCase extension

extend

extensionLocation
1..*

condition

0..1

Include
*

*
1 1

«stereotype»
Variant

«stereotype»
VariationPoint

«stereotype»
ExtensionPoint

«stereotype»
InclusionPoint

«stereotype»
hook

«stereotype»
template

Figure 74: Excerpt of MoDeLine metamodel with proposed stereotypes to support variability.

4.3.3.2 Modeling the Behavior of Use Cases with Activity Diagrams

It is now possible to address behavior variability by reasoning on how variants can affect the
common behavior of the system. Variants can result from the addition of a new product in the case
of a product line or from considering new variability points in the case of a framework.

Activity diagrams can be constructed from the textual descriptions of the use cases. Basically,
from the text description of the use case we identify excerpts that can be modeled as sub-behaviors
of the use case. These sub-behaviors become activity nodes in the activity model. The global
behavior of the use case (i.e., classifierBehavior) can then be modeled by connecting the activity
nodes in a way that reflects the flow of behaviors of the use case. One possible way to construct

4.3 Extending UML-F for Analysis Models

- 117 -

these activity diagrams is to create first several sequence diagrams of the use case in order to better
reason about the global behavior of a use case. Figure 75 presents a simplified version (for clarity
reasons) of the activity diagram for the use case {U0.1.1} Buy a Policy.

{U0.1.1.b1} Quote for Insurance {U0.1.1.b2} Select Insurance Product

{U.0.1.1.b3} Supply Personal Data

{U0.1.1.b4} Supply Insured Entities

{U0.1.1.b5} Select Coverages

{U0.1.1.b6} Supply Insurance Data

{U0.1.1.b7} Risk Assessment

{U0.1.1.b8} Generate Policy

{U0.1.1.b9} Pay for Policy

[Quote Requested]

[Quote Accepted]

[Quote Refused]

[Risk High]

[Risk Ok]

«inclusion point»

«extension point»

«extension point»

«inclusion point»

«inclusion point»

[Defered Payment]

Figure 75: Activity diagram for the classifierBehavior of use case {U0.1.1} Buy a Policy.

All the Include relationships are modeled as activity nodes with the stereotype InclusionPoint.
This indicates that the Node is realized by the behavior of another use case. For instance, the
activity node {U0.1.1b0.7} risk assessment is an InclusionPoint for the classifierBehavior of
use case {U0.1.1.2} Risk Assessment.

Figure 75 also presents how the Extend relationship is modeled in activity diagrams. Regarding
the use case {U0.1.1} Buy a Policy, its behavior could be extended by adding support for
different lines of insurance business, for instance, life insurance and automobile insurance. If we do
so, the behavior of buying a policy needs to be extended to support the specificities of the new
insurance lines. For instance, insured entities in life insurance are persons but in automobile
insurance are vehicles. The possible insurance coverages are also different for different insurance
lines. Accordingly, the nodes {U0.1.1b0.4} Supply Insured Entities and {U0.1.1b0.5}
Select Coverages are marked with the stereotype ExtensionPoint. With this approach we relate
the extension points of the use case diagram with the correspondent nodes in the activity diagram.
Figure 76 presents this situation by adding the use cases {U0.1.1e1} Handle Automobile Line
and {U0.1.1e2} Handle Life line to the diagram of use case {U0.1.1} Buy a Policy.

What we are advocating is the adoption of activity diagrams for modeling the behavior of use
cases, either the main scenario (classifierBehavior in the use case metamodel) or the alternative
scenarios (ownedBehavior in the use case metamodel). As we saw, with this approach it becomes
possible to clearly model Extend and Include relationships. Since extension points can act like
variation points, they become like hooks at the requirements level. Accordingly, use cases which
behavior is affected by these variation points (hooks), i.e. the use case which own the

Chapter 4: Modeling and Metamodeling

- 118 -

correspondent ExtensionPoints, act like templates. We are identifying the concepts of templates
and hooks (and also of possible variants) as soon as possible in the development cycle. These
model elements will give origin (after some possible transformations) to the design hooks and
templates that were discussed in Section 4.3.1. Usually, they are first traced into analysis elements.
The next section briefly presents how these elements are transformed into analysis concepts.

{U0.1.1} Buy a Policy

«Variant»
{U0.1.1e1} Handle Life Line

«Variant»
{U0.1.1e2} Handle Automobile Line

{U0.1.1.2} Risk Assessment

«include»

«extend»

{U0.1.1.1} Quote for Insurance

{U0.1.1.3} Pay for Policy

«include»

«include»

«extend»

extension points
{U0.1.1b0.4} Supply Insured Entities

{U0.1.1b0.5} Select Coverages

Condition: {Life Line}
Extension points:
{U0.1.1b0.4} Supply Insured Entities
{U0.1.1b0.5} Select Coverages

Condition: {Automobile Line}
Extension points:
{U0.1.1b0.4} Supply Insured Entities
{U0.1.1b0.5} Select Coverages

Figure 76: Extend relationships of use case {U0.1.1} Buy a Policy.

4.3.4 Variability at Analysis

Bridging from problem space to solution space is a very difficult task that requires a lot of
experience. The MoDeLine method proposes a series of transformation steps to support this task.
Further details regarding this topic were discussed in Chapter 3. To facilitate this transformation we
adopt use case realization models. As presented in Chapter 3, use case realization models are
analysis component models that realize use cases. In the case of product lines two other diagrams
are common: feature diagrams and entity diagrams (in this section we will not address entity
diagrams). In order to construct feature diagrams we follow the same approach as [Griss et al.
1998]. Feature diagrams are constructed usually after identifying variability in use cases.
According to the metamodel of Figure 74, a Feature is realized by one or more behaviors of use
cases. A VPFeature (Variant Point Feature) is a feature that corresponds to optional or alternative
behavior. So it relates to one or more ExtensionPoints with stereotype VariationPoint. With this
simply mappings it becomes possible to construct a feature model and trace between features and
elements of use case diagrams.

Figure 77 presents a feature model of our case study that follows the notation proposed by
[Deursen et al. 2002]. In this case, the feature InsuranceLine relates at least with the
ExtensionPoints {U0.1.1b0.4} Supply Insured Entities and {U0.1.1b0.5} Select

Coverages. The feature LifeLine is realized by at least the behavior of the use case {U.0.1.1e1}
Handle Life Line. Other extension points and behaviors could be related to these features if we
considered all the use cases of the product line.

4.3 Extending UML-F for Analysis Models

- 119 -

«root_feature»
InsuranceSystem

«vp_feature»
InsuranceLine

«vp_feature»
Claims

«vp_feature»
Reinsurance

«feature»
LifeLine

«vp_feature»
AutomobileLine

«alternative»

1..*

«optional»

0..1

«optional»

0..1

«vp_feature»
AutomobileClaims

«optional»
0..1

«require»

Figure 77: Simplified feature diagram for insurance product line.

One common attribute of a feature is the binding time, i.e., the moment (compile-time,
runtime, setup-time, etc.) when a variant point feature is bound to a specific variant. This attribute
can be used as a hint for the instantiation attribute of the design variability stereotypes discussed in
Section 4.3.1.

In MoDeLine, behaviors of use cases are realized by at most three collaborating analysis
components. This follows the well-known interface-control-data analysis heuristic. Each
ActivityNode is also realized by at most three analysis classes and each analysis class implements
one analysis interface. Activity nodes with the stereotype VariationPoint become analysis
interfaces with the hook stereotype. Accordingly, the correspondent analysis components can be
annotated with the template stereotype. With this approach we annotate the analysis elements with
the same stereotypes used to annotate UML-F design elements. It becomes possible to transform
analysis elements into design elements and keep the trace into requirements and features. Figure 78
presents how elements of the interface analysis component {C0.1.1.i} BuyAPolicyUI (that
collaborates in the realization of use case {U0.1.1} Buy a Policy) relate to elements of the
abstract design class PolicyUI. In Figure 79, the abstract design class PolicyUI is transformed
according to the separation construction principle (discussed in Section 4.3.1). This could be done
in order to support a possible binding time of type runtime attached to the InsuranceLine feature
that is traceable to the hook methods of PolicyUI.

«hook» {I0.1.1b0.4.i}
SupplyInsuredEntities

«component, analisys, template»
{C0.1.1.i} BuyAPolicyUI

«analysis»
{c0.1.1b0.4.i}

SupplyInsuredEntities

«analysis»
{c0.1.1b0.5.i}

SelectCoverages

«hook» {I0.1.1b0.5.i}
SelectCoverages

«extensible, template, hook»
PolicyUI

buyAPolicy(…) «template»
...
supplyInsuredEntities(...) «variable, hook»
selectCoverages(…) «variable, hook»

«trace»

«trace»

«trace»

Figure 78: Example of traces between analysis and design elements.

Chapter 4: Modeling and Metamodeling

- 120 -

«interface»
SupplyInsuredEntities

«interface»
SelectCoverages

«interface, hook»
HandleInsuranceLineUI

AutomobileInsuranceLineUI LifeInsuranceLineUI

«template»
PolicyUI

buyAPolicy(…) «template»
...

insuranceLine

supplyInsuredEntities(…) selectCoverages(…)

Figure 79: Example of applying the separation construction principle.

4.4 Conclusion
A generalized adoption of product line approaches can only become a reality if supported by model
driven methods. In order to accomplish this goal, model driven methods should incorporate support
for all phases of the software development process, including the analysis phase and requirements
models.

In the first half of this chapter we have proposed extensions to the UML 2.0 metamodel so that
use case models can be effectively adopted in model driven methods to develop variability focused
systems. Our proposal is based on UML 2.0 use case models and on the previous work related to
the MoDeLine method that was discussed in Chapter 3. We have identified and discussed the UML
2.0 metamodel restrictions regarding the Extend relationship, particularly the issue that it only
supports alternative insertions. In that context, we have proposed a complementary extension to the
UML 2.0 metamodel since it adds support for new types of alternative flows.

We have also discussed how to transform the proposed use case models into their respective
realization models. Within the example, we have also discussed how use case realization models
could play an important role in supporting an incremental approach to system design which
provides an effective way to maintain the trace to requirements and enables model driven
development methods in which requirements models are first class citizens.

The first part of this chapter contributes to the research field with an extension to the UML 2.0
metamodel so that use case models can be adopted to model variability intensive systems and
support the following kinds of alternatives: alternative insertion; alternative history; use case
exception; alternative fragment; and alternative cycle.

UML-F is a UML profile for modeling frameworks and product lines, which major concern is
variability. Originally its focus was design level diagrams. In this chapter we have presented a
proposal to extend UML-F to also support requirements and analysis diagrams. We have discussed
our proposal in the context of an insurance product line case study and the MoDeLine model driven
development method. We have also described how UML-F could be upgraded to comply with
UML 2.0. Even if we manage to model variability at different levels of abstraction, a major
problem remains: how to address traceability and transformations between levels. We have also
presented an approach in the context of the MoDeLine method.

The second part of this chapter contributes to the research field with an extension to the
UML-F profile so that it supports the modeling of variability in requirements and analysis models

4.5 References

- 121 -

and maintains an integrated trace of the ‘hook’ and ‘template’ concepts throughout the analysis
and design phases of the software development process.

However, for a method to be adopted in a useful manner by practitioners it usually requires its
support by tools. This is even truer in the context of the complexity intrinsic to software product
lines. In the next chapter, we address this issue by exploring modeling, metamodeling and model
transformations in a more formal way. We use the term formal meaning clear specifications that
can be supported by existing tools as opposed to formal methods3.

4.5 References
[Cockburn 2001] Cockburn, A., Writing Effective Use Cases: Addison-Wesley, 2001.

[Deursen et al. 2002] Deursen, A. v. and P. Klint, "Domain-Specific Language Design Requires
Features Descriptions," Journal of Computing and Information Technology, vol. 10, pp. 1-
17, 2002.

[Eriksson et al. 2005] Eriksson, M., J. Borstler and K. Borg, "The PLUSS Approach - Domain
Modeling with Features, Use Cases and Use Case Realizations," SPLC2005, Rennes,
France, 2005.

[Fantechi et al. 2004] Fantechi, A., S. Gnesi, G. Lami and E. Nesti, "A Methodology for the
Derivation and Verification of Use Cases for Product Lines," SPLC2004, Boston, 2004.

[Fontoura 1999] Fontoura, M., "A Systematic Approach to Framework Development," in Computer
Science Department. Rio de Janeiro: Pontifical Catholic University, 1999.

[Fontoura et al. 2000] Fontoura, M., W. Pree and B. Rumpe, "UML-F: A Modeling Language for
Object-Oriented Frameworks," ECOOP 2000-Object-Oriented Programming Conference,
2000.

[Gamma et al. 1995] Gamma, E., R. Helm, R. Johnson and J. Vlissides, Design Patterns - Elements
of Reusable Object-Oriented Software: Addison-Wesley, 1995.

[Gomaa 2005] Gomaa, H., Designing Software Product Lines with UML: Addison Wesley, 2005.

[Greenfield et al. 2004] Greenfield, J., K. Short, S. Cook and S. Kent, Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools: Wiley, 2004.

[Griss et al. 1998] Griss, M. L., J. Favaro and M. d'Alessandro, "Integrating Feature Modeling with
the RSEB," Fifth International Conference on Software Reuse, Victoria, Canada, 1998.

[Gurp 2003] Gurp, J. v., "On the Design & Preservation of Software Systems," in Computer
Science Department. Groningen: University of Groningen, 2003.

3 In computer science and software engineering the term formal method is usually applied to denote
mathematically-based techniques for the specification, development and verification of software and
hardware.

Chapter 4: Modeling and Metamodeling

- 122 -

[Hurlbut 1998] Hurlbut, R., "Managing Domain Architecture Evolution Through Adaptive Use
Case and Business Rule Models," in Graduate College. Chicago: Illinois Institute of
Technology, 1998.

[Jacobson et al. 1992] Jacobson, I., M. Christerson, P. Jonsson and G. Overgaard, Object-Oriented
Software Engineering: A Use Case Driven Approach: Addison-Wesley, 1992.

[Kang et al. 1990] Kang, K. C., S. G. Cohen, J. A. Hess, W. E. Novak and A. S. Peterson, "Feature-
Oriented Domain Analysis (FODA) Feasibility Study Technical Report," Software
Engineering Institute, Carnegie Mellon University CMU/SEI-90-TR-21, 1990.

[MDA 2007] OMG, "Model Driven Architecture Guide Version 1.0.1," Available at
http://www.omg.org, 2007.

[Metz et al. 2004] Metz, P., J. O'Brian and W. Weber, "Specifying Use Case Interaction: Clarifying
Extension Points and Points of Rejoin," Journal of Object Technology, 2004.

[Overgaard et al. 1998] Overgaard, G. and K. Palmkvist, "A Formal Approach to Use Cases and
Their Relationships," «UML»98: Beyond the Notation, Ecole Superieure des Sciences
Appliques pour l'Ingenieur - Mulhouse, Universite de Haut-Alsace, France, 1998.

[Porres 2001] Porres, I., "Modeling and Analysing Software Behavior in UML," in Department of
Computer Science. Turku, Finland: Abo Akademi University, 2001.

[Pree et al. 2002] Pree, W., M. Fontoura and B. Rumpe, "Product Line Annotations with UML-F,"
Software Product Lines - Second International Conference, SPLC 2, San Diego, 2002.

[QVT 2005] OMG, "MOF QVT Final Adopted Specification (ptc/05-11-01)," Available at
http://www.omg.org, 2005.

[Stevens 2001] Stevens, P., "On Use Cases and Their Relationships in the Unified Modelling
Language," FASE'01, 2001.

[UML 2005] OMG, "Unified Modeling Language Version 2.0: Superstructure (formal/05-07-04),"
Available at http://www.omg.org, 2005.

- 123 -

5. Formal Model
Transformations

“There are two ways of constructing a software design: One way is to make it so simple that there
are obviously no deficiencies, and the other way is to make it so complicated that there are no

obvious deficiencies. The first method is far more difficult.”
Sir Charles Antony Richard Hoare

Chapter 5 is dedicated to formal model transformations. The first half of the chapter presents a
proposal of mappings between use cases and feature diagrams. It also presents how these mappings
can be supported by the QVT operational language. The second half of the chapter presents a
proposal to implement multi-staged software development in the context of model driven and
software product lines. This is also one of the scenarios of usage for software factories.

5.1 Introduction
Features have been widely used by the product line community to model variability. They represent
the common and variable characteristics of the members of a product line. They are very well
suited for the configuration of product line members. Outside the product line community, use
cases are also widely used to model the functionality of systems at a similar level of abstraction but
from a user perspective. Significant work has been done by several authors regarding the possible
relationship between these two perspectives of a system. Nonetheless, this has been done in an
informal way. In the first half of this chapter we explore the relationships between these two
perspectives and describe a possible approach to automate the transformation from UML [UML
2005] use case to feature models.

Model driven approaches are shifting software development from a code based activity to a
model based activity. Models can be refined and transformed from requirements into code specific
to a platform. Although several model transformations can occur, they usually take place at a single
software development stage. In the case of software product lines, and particularly of software
factories, the modeling of a system can occur at several stages, for instance, at the software-house,
at the systems integrator and at the final customer site. Basically, this requires that the model used
at a particular stage can be refined at the next stage. In the second half of this chapter, we explore
the issues related to such an approach and we propose model transformation patterns that can be
generically applied to models so that they can be used in multi-staged modeling approaches. We
show how to realize the approach with EMF (Eclipse Modeling Framework) [EMF 2007] and
present an insurance case study.

To contextualize the proposal discussed in this chapter we briefly discuss model
transformations in the next section.

Chapter 5: Formal Model Transformations

- 124 -

5.2 On the Transformation of Models
Model driven engineering is a promising approach to software development that could become the
mainstream paradigm for software development in the near future [Bezivin 2005]. In this new
paradigm, models play the central role, as the code does for traditional approaches. Models are
used to construct abstractions of the system at several levels and from different perspectives.
Models at higher abstraction levels can be transformed into models at lower abstraction levels and,
eventually, models are transformed into code that can be executed by a specific platform. Usually,
this is done at a single stage. For instance, a software-house can apply this approach to build its
software packages. In the case of software product lines, and particularly of software factories, the
modeling of a system can occur at several stages, for instance, at the software-house, at the system
integrator and at the final customer site. Generically, one can say that in this case, the software
system can be specialized at all the tiers (or stages) of the supply chain. Such scenario requires that
the models used at a particular stage can be refined at the next stage.

The Model Driven Architecture (MDA) is the Object Management Group (OMG) approach to
model driven development [MDA 2007]. At the core of this architecture is the Meta Object Facility
(MOF) standard [MOF 2006]. MOF provides a metadata management framework and a set of
metadata services to enable the development and interoperability of model and metadata driven
systems. Figure 80 presents an example of the MOF metadata architecture for UML [UML 2005].
The figure represents the relationships between models at different levels of the MOF architecture.
This figure also represents very well the metadata architecture for single-staged software
development approaches.

MOF model

UML Metamodel

UML Models

metamodel

metamodel

metamodel

Objects

metamodel

M3 Layer / meta-metamodel

M2 Layer / metamodels

M1 Layer / models

M0 Layer / instances

Figure 80: Example of MOF metadata architecture.

Model transformations can be classified as [Mens et al. 2005]: number of source and target
models; technological space; endogenous versus exogenous transformations; and horizontal versus
vertical transformations. Figure 81 presents a schematic representation of the elements involved in
model transformations that can be used to illustrate the discussion of the classifications of model
transformations.

Number of source and target models
We will adopt the following definition of model transformation [Kleppe et al. 2003]: “A
transformation is the automatic generation of a target model from a source model, according to a
transformation definition. A transformation definition is a set of transformation rules that together

5.2 On the Transformation of Models

- 125 -

describe how a model in the source language can be transformed into a model in the target
language. A transformation rule is a description of how one or more constructs in the source
language can be transformed into one or more constructs in the target language.”

We can generalize this definition and say that in a model transformation one or more input
models are transformed into one or more output models. In the case the source and target models
are the same we are in the presence of a refactoring of the source model4.

Model refactoring can take place on two levels [Biermann et al. 2006a] (See Figure 80):
1) Refactoring rules are typed over the metamodel (M2) and are applied to models (M1);
2) Refactoring rules are typed over some model (M1) and refactor instance models (M0).

Model A

Model B

Metamodel A

Metamodel B

Transformation T

source

target

conforms to

conforms to

transformation

Figure 81: Model transformations.

Technological space
The source and target models of a model transformation may belong to the same or to different
technological spaces [Bezivin et al. 2003]. Two models share the same technological space if they
have the same meta-metamodel (M3-level). For instance, in Figure 81, if Metamodel A and
Metamodel B have the same metamodel, then the technological space is the same. Models form
different technological spaces are hard to combine or work in an integrated manner because their
technological support is different. Examples of different technological spaces are EMF and the
DSL Tools for Visual Studio [DSL 2007].

Endogenous versus exogenous transformations
Endogenous and exogenous are terms used to classify transformations based on the language in
which the source and target models are expressed. Endogenous transformations are transformations
between models expressed in the same language. Exogenous transformations are transformations
between models expressed using different languages. In Figure 81, if Metamodel A and Metamodel
B are the same metamodel, then the source and target models share the same language and,
therefore, the transformation is endogenous.

Horizontal versus vertical transformations
A horizontal transformation is a transformation where the source and target models reside at the
same abstraction level. Possible examples are refactoring (an endogenous transformation) and
migration (an exogenous transformation). In vertical transformations, the source and target models
are at different abstraction levels. A typical example is refinement, where a specification is

4 If we take to the extreme the model driven approach, this is similar to source code refactoring, since a
program source code can be viewed as a model that is conformant to its metamodel – the grammar of the
programming language.

Chapter 5: Formal Model Transformations

- 126 -

gradually refined into lower abstraction levels, by means of successive refinement steps that add
more concrete details.

Table 5 illustrates that the dimensions horizontal versus vertical and endogenous versus
exogenous are orthogonal.

Table 5: Orthogonal dimensions of model transformations.

horizontal vertical

Refactoring Formal refinementendogenous

Language migration Code generationexogenous

Czarnecki et al. applied a domain analysis approach to elaborate an in deep classification of
model transformation by using feature models [Czarnecki et al. 2003]. In their work, the top level
features that characterize a transformation approach are: Transformation rules; Rule application
scoping; Source-target relationship; Rule application strategy; Rule scheduling; Rule organization;
Tracing; and Directionality.

According to those features, they identify the following major categories for existing model
transformation tools:

Model-to-code approaches (Ex: JET [JET 2007], AndroMDA [AndroMDA 2007]);
Model-to-model approaches
Direct-manipulation approaches (Ex: Jamda [Jamda 2007])
Relational approaches (Ex: QVT [QVT 2005])
Graph-transformation-based approaches (Ex: VIATRA [VIATRA 2007], GreAT [GReAT
2007])
Structure-driven approaches (Ex: OptimalJ [OptimalJ 2007])
Hybrid approaches (Ex: ATL [ATL 2007])

EMF Refactoring
An EMF transformation is a rule-based modification of an EMF source model resulting in an EMF
target model [Biermann et al. 2006a]. Both the EMF source and target models are typed over an
EMF core model which itself is again typed over Ecore. Refactoring can take place on two levels:
1) Refactoring rules are typed over the Ecore model (M2) and are applied to EMF models (M1);
2) Refactoring rules are typed over some EMF core model (M1) and refactor EMF instance models
(M0).

5.3 Automating Mappings between Use Cases and Features
In this section, we present an approach to formalize the mappings between use cases and features.
We do so in the context of the MoDeLine model driven approach and present a possible
implementation roadmap based on open source modeling and transformation tools. The activity
diagram presented in Figure 82 depicts our approach.

5.3 Automating Mappings between Use Cases and Features

- 127 -

The approach presented in this section is usually performed at a single stage. However, modeling
feature configurations can also be performed at several stages [Czarnecki et al. 2005b]. We will
address multi-stage modeling only in Section 5.4.

Figure 83 presents the development activities that are addressed in this section. In Figure 83, the
activities create use case model and create feature model seem to be independent, while in Figure
82 they are correlated. Both figures are correct since the dependence between use cases and
features only exists if we use the automation approach presented in this section and, even so, it is
also possible to add features to the feature model that do not have use cases as source.

T1) UseCase2Feature

aProduct : UseCase

family : UseCase

featureModel : Feature

T2) Feature2Ecore

configuration : Ecore

T3) Configuration2UseCase

aConfiguration : configuration

«instantiation»

Figure 82: Process for obtaining a product use case model from a family use case model.

5.3.1 Feature Models

Feature modeling is widely used to model commonality and variability in software systems,
particularly software product lines. Although this is true, implementations vary significantly and
there is no common globally accepted metamodel for features. In this section we present our
approach to feature modeling that is partially compliant on [Asikainen et al. 2006] and [Czarnecki
et al. 2004].

Figure 84 presents our metamodel for feature diagrams. We adopt the notion that a feature
represents a characteristic or property of a system that is relevant to some user or stakeholder. From
this perspective, a feature diagram represents the properties or characteristics that a system may
have. Since features can be further characterized by subfeatures, a feature diagram is usually
represented as a tree of features with adornments that visually represent relationships between the
features. The feature at the root of the tree is called root feature and it is usually a conceptual
feature that represents the whole system. Because features represent characteristics that may (or
not) be present in a system, feature diagrams are well suited to represent common (for features that

Chapter 5: Formal Model Transformations

- 128 -

are always present) and variable (for features that may not be present) characteristics of a system.
The process of removing the variability out of the feature diagram (by selecting -or not- optional
features) results in the configuration of a system (feature configuration). Basically, a feature is said
to be mandatory if it is included in all configurations. A feature that may not be present in all
configurations is called optional. Alternative features are features that form a group from which
they are selected according to some rule (usually the rule states that only one feature of the group
can be selected).

a) Elicitation of Requirements

b) Create Use Case Model

e) Create Feature Model d) Create Entity Model

c) Create Activity Model

f) Create Use Case Realization Model
(Component/Class Model)

g) Create Component/Class Model

h) Refactor Component/Class Model

j) Create Code Base

i) Create State Model

D
es

ig
n

Im
pl

em
en

ta
tio

n
A

na
ly

si
s

R
eq

ui
re

m
en

ts

Figure 83: Development activities covered in section 5.3.

Our metamodel for feature diagrams supports all the presented concepts. We use Subfeature to
represent containment relationships between features. A mandatory feature is a child (Subfeature)
of some other feature for which the minCardinality and maxCardinality are 1. An optional feature
is a child of some other feature for which the minCardinality is 0 and the maxCardinality is 1. A
feature group can be modeled by a SubFeature with the alternative features as childs and the
specific cardinality of the group stated by minCardinality and maxCardinality. The similarity
enumeration is used to state if the selected alternatives must by of the same kind5. Since a feature
can only be contained be another feature, we use the concept of Reference to enable a feature to be
referred by several Subfeature relations.

5 The similarity concept was proposed by [Asikainen et al. 2006] Asikainen, T., T. Mannisto and T. Soininen,
"A Unified Conceptual Foundation for Feature Modeling," SPLC2006, Baltimore, 2006..

5.3 Automating Mappings between Use Cases and Features

- 129 -

Figure 85 presents an excerpt of a feature model for a family of library applications. Features
are represented within rectangles, in a way that is similar to UML classifiers [UML 2005].
Subfeatures are represented as links between two or more Features. These links can be adorned
with the values for the attributes of Subfeatures. For instance, collectFine is a Subfeature that
relates the parent Feature BorrowLoanCopy with the childs CollectPartialFine and
CollectTotalFine. In this case, minCardinality and maxCardinality are both 1, which means that
when configuring a member of the family we must select only one of the Subfeatures of
BorrowLoanCopy. Figure 85 also presents examples of the use of References. For instance, a
Reference is used to state that the feature RenewLoan can also have CollectPartialFine as a
Subfeature. Attributes can be used to further characterize features. In this example, the feature
BorrowLoanCopy can be further characterized by the attribute days that represent the maximum
number of days that a library member can borrow a book.

1..*
FeatureModel Feature

rootFeatures

Subfeature

*

Node1..*

subFeafures

childs

Referencefeature

1

minCardinality: Int
maxCardinality: Int
similarity: Similarity

«enum»
Similarity

none
same
different

Attribute

minCardinality: Int
maxCardinality: Int
type: String

attributes

*Constraint *

Figure 84: Feature metamodel.

LibrarianApplication

borrows {0..1}

ManageBorrows

BorrowLoanCopy

RenewLoan

renewLoan {0..1}

CollectPartialFine CollectTotalFine

collectFine {1..1}
«reference»

CollectPartialFine

renewLoanCollectPartialFine
{0..1}days: Int[1..1]

HandleGoldMemberships

handleGoldMemberships
{0..1}

«reference»
CollectPartialFine

Figure 85: Excerpt of a library feature model.

Finally, it is possible to model dependencies between features using constraints. A constraint
language, such as OCL, can be used to express these dependencies [OCL 2006]. For instance,
Figure 86 presents an example of an OCL constraint that disables the subfeature
renewLoanCollectPartialFine if the feature CollectTotalFine is selected.

Chapter 5: Formal Model Transformations

- 130 -

context ManageBorrows inv:
self.borrowLoanCopy.collectFine
 ->oclIsTypeOf(CollectTotalFine) implies
 self.renewLoan.renewLoanCollectPartialFine
 ->isEmpty();

Figure 86: Example of OCL constraint implementing a feature dependency.

A feature model, such as the one presented in Figure 85, represents all the possible features for
applications of a family of applications. We configure a specific application of the family, by
removing all the variability from the feature model. If we follow the analogy that a feature is
similar to a classifier, then a configuration is achieved by a valid instantiation of the features
(classifiers). We will elaborate such approach in section 5.3.4, when we describe a possible
implementation roadmap.

In the next section, we present and discuss the use case metamodel and in section 5.3.3 we
discuss how use cases can be used as a source for feature modeling.

5.3.2 Use Cases

Use cases have been widely adopted since its introduction [Jacobson et al. 1992]. They have
become an integral part of the UML standard modeling language. Use cases are used essentially for
functional requirements modeling, as a source for the initial design of a system and for
documentation. However, with the recent model driven approaches, such as MDA [MDA 2007],
and the appearance of supporting tools, using computational independent models - such as use
cases - as first-class development artifacts can become a reality. However, to achieve this goal with
use cases, it is necessary to remove all ambiguities existent in the UML use case metamodel,
specially for modeling variability [Maßen et al. 2002; Eriksson et al. 2005]. In this section we
present our approach to achieve that goal. Figure 87 presents an excerpt of the UML 2.0 metamodel
that is related to use cases. Our main extensions to the original metamodel are depicted in gray.
Next, we explain these extensions.

According to the UML 2.0 specification, a use case is the “specification of a set of actions
performed by a system, which yields an observable result that is, typically, of value for one or more
actors or other stakeholders of the system”. As such, these set of actions represent behavior of a
system. As it is possible to observe from Figure 87, a UseCase has one mainBehavior and can have
several alternativeBehavior’s. The UML 2.0 specification does not state how the behavior of use
cases should be specified but, since our approach needs a formal specification, we will use
activities. So, each behavior of a use case is specified by an Activity.

Use cases can have relationships between them. Basically, a use case can include (or be
included by) other use cases and can extend (or be extended by) other use cases.

The Include relationship acts like a procedure call, i.e., at some specific point of a use case the
behavior of another use case is executed. We have introduced the InclusionPoint element that
represents the point in the use case where the inclusion occurs (see Figure 87). The location
attribute is a reference to a node of an activity that models one of the behaviors of the use case.

On the other end, the Extend relationship acts like a deviation of the normal flow of a use case.
This deviation is usually conditional, so the base behavior is unaware of the extension. We
formalize the UML original notion of extension fragment (ExtensionFragment element) and add

5.3 Automating Mappings between Use Cases and Features

- 131 -

the notion of rejoin (Rejoin element). As such, if the extend condition is true, the use case behavior
is extended at one or more extension points, by the corresponding fragments (which are alternative
behaviors of the extending use case). The attribute location of the ExtensionPoint element is a
reference to a node of an activity that models one of the behaviors of the extended use case.

The rejoinSource of the Rejoin element is a reference to a node of an activity that models the
alternative behavior of the fragment of the extending use case. A more deep discussion of the
Extend relationship can be found in Section 5.3.

Subject

UseCase

1..* useCases

Include

Extend

Behavior

mainBehavior1

alternativeBehavior
*

extends

includes

*

*

extendedCase
1 addition

1

InclusionPoint

ExtensionPoint

location

inclusionPoints *

extensionPoints*

location

ExtensionFragment

Rejoin

rejoins

1..*

extensionLocation

1

*

rejoinTarget

rejoinSource

extendingBehavior1

inclusionLocation1

Parameter

parameters*

Constraint

0..1

condition

includingCase

useCase

fragments

useCase

extension

Figure 87: Excerpt of UML 2.0 metamodel relating to use cases.

With these extensions to the original UML 2.0 use case metamodel we remove the existing
limitations that restricted its application into model driven approaches. Of course, further
specifications can be added, notably constraints to validate the model, such as the ones presented in
Figure 88.

Constraints such as the ones presented in Figure 88 can assure that the use case model is well
formed. A well formed use case model is also required to help achieving valid results for the
transformations that will be discussed next.

context Include
inv: self.inclusionLocation.useCase =
 self.includingCase;
inv: self.addition <> self.includingCase;
context Extend
inv: self.extension <> self.extendedCase;
inv: self.fragments->forAll(f |
 f.extensionLocation.useCase =
 self.extendedCase);
inv: self.fragments->forAll(f |
 f.rejoins->forAll(r |
 r.rejoinTarget.useCase =
 self.extendedCase));

Figure 88: Example of OCL constraints for validating the use case metamodel.

Chapter 5: Formal Model Transformations

- 132 -

In this section we have presented an approach to remove ambiguities from the UML 2.0 use
case metamodel. It is now possible to analyze the semantic and syntactic relations between use
cases and features. In the next section we present our view on this topic.

5.3.3 Relating Use Cases and Features

The issue of relating use cases and features is not new. Notably, there is the much referenced work
of Griss, Favaro and d’Alessandro [Griss et al. 1998]. In their work they propose an approach by
which functional features are extracted from the domain use case model. They also propose that the
structure of the feature model can be created according to the structure of the use case model (by
using the «include» and «extend» relationships). As the authors suggest, further types of features
can be discovered and added along the development process, such as features resulting from
architectural or design modeling tasks. More recent works in this field are also aligned with this
approach [Eriksson et al. 2005; Gomaa 2005; Jacobson et al. 2005]. We also follow this approach,
since feature modeling requires an extensive knowledge of the domain, which is only possible after
the effective modeling of such a domain. This is true, particularly for the functional features of the
domain. So, the initial feature model is build from the domain use case model. In the remainder of
this section we will discuss this mapping based on the use case model example of Figure 89. Figure
89 already contains visual annotations that are used to model variability. For the moment we will
disregard these annotations. As the figure shows, a library system has functionality that regards to
the librarian. The librarian can use it to manage borrows. He can borrow loan copies to library users
and also renew loans. Such borrows can be subject to fines if they surpass a certain duration. In the
case the user is a gold member of the library, special treatment applies.

Use Cases
According to our approach, each use case is mapped to a feature. Top use cases become root
features (see feature metamodel in Figure 84). The complete structure of the feature model can only
be created by examining the relations between use cases. As such, we cannot say a use case is
mandatory or optional without a context. This context results from the relationships the use case
has with other use cases. For instance, if the functionality of a use case is always referenced by
other use cases, then we can say that such a use case is mandatory. This is the case for the top level
use case Interact with Librarian Application. This use case is an example of an abstract use
case, used as an umbrella use case in our model driven method. It helps in our functional
decomposition of use cases. In that perspective our method shares similarities with the KobrA
method discussed in Chapter 2. In other approaches such kind of use cases may not be necessary.

Next, we examine each of the use case types of relationships and elaborate on how they can be
used to model variability and how they can be mapped to the feature model.

Include Relationship
In the UML 2.0 standard documentation there is nothing to support that the Include relationship can
be used for modeling variability. The documentation states that “The including use case may only
depend on the result (value) of the included use case. This value is obtained as a result of the
execution of the included use case”. However, in the context of a variability focused system, like a
product line, it is common to have alternative or optional includes [Gomaa 2005]. In the example of
Figure 89, we have two alternative includes from the use case Borrow Loan Copy: one includes the
use case Collect Total Fine and the other includes the use case Collect Partial Fine. In this
case, if the two included use cases match the requirements for the inclusion point, no harm is done,
since one of them will supply the expected behavior to the including use case.

5.3 Automating Mappings between Use Cases and Features

- 133 -

In the case we need to model only one include as optional, some extra care is needed. If such
include does not take place, the result is the suppression of the inclusion point on the including use
case. Regarding the behavior of the use case, this results in the removal of the activity node
corresponding to the inclusion point. If the node had only one incoming and one outgoing control
flow, we simply connect the outgoing flow of the previous node with the incoming flow of the next
node. We must also make sure that the output object nodes of the previous node are connect to the
input object nodes of the next node and that they are compatible. This situation is presented in
Figure 90, where an inclusion point node (a) is removed (b). If such requirements are meet, then it
is also safe to have optional includes. More complex scenarios may also be possible but require
human intervention or more contextual knowledge from the modeling tool.

Borrow Loan Copy

Collect Partial Fine

Collect Total Fine

Manage Borrows
«include»

Librarian

«include»
«include»

«include»

«include»

{Collect Fine; cardinality:
1..1}

{Borrows; cardinality:
0..1}

Interact with Librarian
Application

«include»

{Renew Loan
Collect Partial Fine;

cardinality: 0..1}

{RenewLoan;
cardinality: 0..1}

Renew Loan

extension points
Collect Fine

Unable to Renew
After Collect Fine
Verify Reservation

Renew Loan

Handle Gold
Memberships

«extend»

Extension: Handle Renew Loan
Cond.: {Member Type=Gold Member}
E. Fragment: Handle Collect Fine

before Collect Fine
E. Fragement: Handle Borrow Rule

before Verify Reservation

«include»

{Handle Gold
Memberships;

cardinality: 0..1}

Figure 89: Example of a use case diagram for a Library product line.

Since we are using a metamodeling approach and extending existing metamodels (i.e., the
UML 2.0 metamodel) we will also use a metamodeling approach to model variability. In Chapter 4,
we used stereotypes to model variability in UML models. Here, we are going to use a
complementary approach based on creating a metamodel to support the concept of variability
annotation. This approach is somewhere between using stereotypes as we did in Chapter 4 and the
orthogonal variability model proposed in [Pohl et al. 2005].

A

IP

B

A

B

a) b)

Figure 90: Removing a node from an activity diagram.

Chapter 5: Formal Model Transformations

- 134 -

In Figure 89, variability annotations are represented as notes linked to the Include and Extend
relationships. They represent variability points with a name, a minimum and a maximum
cardinality and the respective options. For instance, the variability annotation Collect Fine, has a
cardinality 1..1 that says that one and only one of the options must be selected. The two options
are the includes that related the use case Borrow Loan Copy to the included use cases Collect
Total Fine and Collect Partial Fine. Since it is the modeler of the use case domain model
that is editing these use cases and relationships, he/she is also capable of making these annotations.

With this variability information annotated in the use case model it becomes possible to map
the use case relationships to the feature model. In the case of the Include relationship, each include
annotation is mapped into a Subfeature. The including use case is mapped to the parent feature of
the Subfeature and the included use cases are mapped to the childs of the Subfeature (see Figure
84). Since a use case can be referenced by more than one Include/Extend it can also become a child
in several Subfeatures. Because a feature definition exists only once, a use case is mapped only
once to a Feature and the subsequent references are mapped to a Reference in the feature model.

Extend Relationship
Contrasting with the Include relationship, the Extend relationship is used to model variability. As
we can observe from Figure 87, an Extend has an associated condition. If this condition evaluates
to true, the use case is extended by the extension fragment’s behaviors. On the other end, if the
condition is not true, no extension is performed, and the behavior of the base use case remains
unchanged and unaware of the extending use case.

In the example of Figure 89, the use case Renew Loan can be extended by the use case Handle
Gold Memberships. As the extend note states, the extension only takes place if the member that is
renewing the loan is a gold member. As the example shows, these conditions typically relate to
alternative or extending behavior at an application level, not at a product line level. As such, and
also not to alter the semantics of the Extend relationship, we also use variability annotations to
mark the Extend relationship. In Figure 89, the annotation Handle Gold Memberships states that
the corresponding Extend relationship is optional. The possibility of also annotating the Extend
relationships with variability annotations permits, for instance, the modeling of groups of
alternative extends.

5.3.4 Implementation Roadmap

In this section we present a possible implementation roadmap to the approach described in the
previous section. For that we use Eclipse Modeling Framework (EMF) version 2.2.0 [EMF 2007]
and SmartQVT version 0.1.3 [SmartQVT 2007]. The EMF provides a modeling and code
generation framework for Eclipse applications based on Ecore models. These Ecore models support
Essential MOF (EMOF) as part of the OMG MOF 2.0 specification [MOF 2006]. We note that the
code presented is in compliance with such versions and may not be valid in other versions of the
tools. For the validation of the Ecore models, a possible approach is to use an implementation
similar to the one described in [Damus 2006].

The process of mapping use cases to features is the one presented in Figure 82. The main goal
of the process is to obtain a use case model for a specific application of a domain based on a feature
configuration model. For that, we use the approach to map use cases to features as discussed in the
previous sections. Basically, it consists of three transformations: transform a family use case model
into a feature model (T1); transform a feature model into a configuration metamodel (Ecore model)
(T2); and finally, transform a configuration model and a family use case model into an application
use case model (T3).

5.3 Automating Mappings between Use Cases and Features

- 135 -

T1: Family Use Case Model to Feature Model
The family use case metamodel is similar to the one presented in Figure 87 with the addition of two
new elements used to annotate variability: ExtendVariability and IncludeVariability (see Figure
91). These enable the annotation of variability into Extend and Include relationships, as described
in the previous section. Figure 89 presents an example of these annotations in a family use case
model. The resulting feature model must be in conformance with the feature metamodel presented
in Figure 84. Figure 92 presents an extract of the QVT operational transformation that map a use
case family model into a feature model. Basically, the program starts by mapping each use case to a
feature (line 6). Features resulting from use cases have the name of the corresponding use case. The
program then maps each Include and Extend, that are not referenced by variability annotations, into
Subfeatures (lines 7 and 8). For that, it verifies if the Feature that maps to the included use case is
already member of a Subfeature (lines 34 and 35). If so, it uses a Reference to reference that
Feature. If not, the Feature becomes a direct child of the Subfeature. Obviously, these Subfeatures
are mandatory (line 38).

name: String;
min: Int;
max: Int;

IncludeVariability ExtendVariability

Variability

options: Include[1..*] options: Extend[1..*]

Figure 91: Variability annotations for use case models.

After mapping non-annotated Include and Extend relationships, the transformation program
maps IncludeVariability and ExtendVariability elements to Subfeatures (lines 9 and 10). The
transformation involves mapping each of the options of the IncludeVariability (or the
ExtendVariability) into a Subfeature child (lines 55 to 61). These options will become Subfeature
children of type Reference or Feature, according to the previously described logic. The
information regarding cardinality of the variability option groups is mapped directly to the
cardinality of the respective Subfeature (line 64 and 65).

With this transformation program, if we take as input the family use case model presented in
Figure 89, we obtain a feature model similar to the one presented in Figure 85.

T2: Feature Model to Configuration Metamodel
With the previous transformation we obtain a feature model that is in conformance with the feature
metamodel of Figure 84. What we would like to do now is to build configuration feature models
that are in conformance with the feature model that resulted from the previous transformation, i.e.,
the feature model should become the metamodel for the configuration models. To achieve this, we
use an approach in which a model is promoted to a metamodel. In this case, the feature model that
resulted from the previous transformation is transformed into an Ecore metamodel. If we map
Features to Classes, then Subfeatures become naturally associations between Classes. With this
approach, feature configurations are simply instances of the corresponding Classes. This is similar
to the approach proposed in [Asikainen et al. 2006]. Although it is a recent discussion topic, at least
among practitioners [Merks et al. 2006], the generic process of promoting models to metamodels is
out of scope of this section. This subject will be addressed in Section 5.4.

Chapter 5: Formal Model Transformations

- 136 -

Next, we briefly describe the transformation between feature models and Ecore feature
configuration metamodels. An extract of the QVT operational transformation is presented in Figure
93.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

transformation Usecases2Features(in ucModel:USECASE, out fModel:FEATURE);

main() {
 ucModel.objects()[Subject]->map subject_to_feature_model();

 ucModel.objects()[UseCase]->map usecase_to_feature();
 ucModel.objects()[Include]->map include_to_subfeature();
 ucModel.objects()[Extend]->map extend_to_subfeature();
 ucModel.objects()[IncludeVariability]->map includeVariability_to_subfeature();
 ucModel.objects()[ExtendVariability]->map extendVariability_to_subfeature();
}

mapping Subject::subject_to_feature_model () : FeatureModel {
 rootFeature := ucModel.objects()[UseCase]->map usecase_to_root_feature();
 name := self.name;
}

mapping UseCase::usecase_to_root_feature () ...

mapping UseCase::usecase_to_feature () : Feature ...

helper includeInVariability(i: Include) : Boolean {
var x :=ucModel.objects()[IncludeVariability]->select(iv | iv.options->exists(i1|i1=i));
var y := x->first();
return if y = null then false else true endif;

}

mapping Include::include_to_subfeature () : Subfeature
when { not includeInVariability(self); } {
var f: Feature; var r: Reference;

 parent := self.includingCase.resolveone(Feature);
 f := self.addition.resolveone(Feature);
 r := if repeatedFeature(f) then object Reference{ name:=f.name; feature:=f; }

else null endif;

 name := self.name;
 minCardinality:=1; maxCardinality:=1;
 childs := if repeatedFeature(f) then Sequence { r.asType(Node) }

else Sequence { f.asType(Node) } endif;
}

helper repeatedFeature(f: Feature) : Boolean {
var x := fModel.objects()[Subfeature]->select(sf | sf.childs->exists(f1| f1=f));
var y := x->first();
return if y = null then false else true endif;

}

mapping IncludeVariability::includeVariability_to_subfeature () : Subfeature {
var f: Feature; var r: Reference;

 parent := self.options->first().includingCase.resolveone(Feature);

 childs := Sequence { };
 self.options->forEach(i) {
 f := i.addition.resolveone(Feature);
 r := if repeatedFeature(f) then object Reference{ name:=f.name; feature:=f; }

else null endif;
 childs += if repeatedFeature(f) then Sequence { r.asType(Node) }

else Sequence { f.asType(Node) } endif;
 };

 name := self.name;
 minCardinality := self.min;
 maxCardinality := self.max;
}

Figure 92: Extract of QVT Operational transformation from use case to feature model.

5.3 Automating Mappings between Use Cases and Features

- 137 -

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

transformation Features2Ecore(in fModel:FEATURE, out eModel:Ecore);

main() {
 fModel.objects()[FeatureModel]->map feature_model_to_epackage();
}

mapping FeatureModel::feature_model_to_epackage () : EPackage {
var fm: EClass;

 name := self.name;

 -- first pass
 fm := self->map feature_model_to_eclass();
 eClassifiers := Sequence { fm };
 -- Each Subfeature becomes an abstract class
 eClassifiers += fModel.objects()[Subfeature]->map subfeature_to_eclass();
 eClassifiers += self.rootFeature[Feature]->map feature_to_eclass();
 fm.eStructuralFeatures := self.rootFeature[Feature]->map rootfeature_to_ereference(fm);
 -- Transform all other features...
 eClassifiers += fModel.objects()[Feature]->select(x | x.resolveone(EClass)=null)
 ->map feature_to_eclass();
 -- second pass
 fModel.objects()[Feature]->map subfeatures();
}

mapping FeatureModel::feature_model_to_eclass () : EClass ...

mapping Feature::rootfeature_to_ereference (fm: EClass) : EReference ...

mapping Feature::feature_to_eclass () : EClass ...

mapping inout Feature::subfeatures () {
var c:EClass;

 c := self.resolveone(EClass);
 c.eStructuralFeatures := self.subFeatures[Subfeature]->map subfeature_to_ereference();
}

mapping Subfeature::subfeature_to_eclass () : EClass ...

mapping Subfeature::subfeature_to_ereference () : EReference {
var c: EClass;

 name := self.name;
 containment := true;
 lowerBound := self.minCardinality;
 upperBound := self.maxCardinality;

 c := self.resolveone(EClass);
 eType := c;

 self.childs[Feature]->select(c|c.oclIsKindOf(Feature)).resolveone(EClass)
 ->map childs_to_subtype(c);
 self.childs[Reference]->select(c|c.oclIsKindOf(Reference)).feature.resolveone(EClass)
 ->map childs_to_subtype(c);
}

mapping inout EClass::childs_to_subtype (superType: EClass) ...

Figure 93: Extract of QVT Operational transformation from feature to Ecore model.

In the transformation, each Subfeature is mapped to an abstract EClass with the same name
(line 15). Later, this abstract EClass will become the eSuperType of the types that will map to the
childs of the Subfeature (lines 50 to 53). After transforming all Subfeatures to abstract EClasses,
the program maps each rootFeature to a non-abstract EClass (line 16) and to an EReference from
the EClass resulting from the FeatureModel element to each of the new EClasses (line 17). This
will map all top level Features. Next, all not yet mapped Features are also mapped to non-abstract
EClasses (lines 19 and 20). In a second pass, all Features are again processed (line 22). This time,
for each Feature, its Subfeatures are mapped to EReferences. The eType for each of these
EReferences is the abstract EClass that resulted from the initial transformation of the SubFeatures
(line 47 and 48). This abstract EClass becomes the eSuperType of the EClasses that were mapped

Chapter 5: Formal Model Transformations

- 138 -

from the childs (References or Features) of the Subfeature (lines 50 to 53). With this
transformation we obtain an Ecore metamodel that is equivalent to the feature model. This
transformation regards the activitity T2 depicted in Figure 82. We can now use the EMF generation
capabilities to generate an editor from which we can create feature configurations that are in
conformance with the metamodel.

T3: Family to Application Use Case Model
The last step in the transformation process involves the generation of application use case models
from feature configurations (activity T3 in Figure 82). This requires a transformation that must
have at least the family use case model and the feature configuration model as input and a product
(or application) use case model as output. Basically, the transformation involves including in the
output model only the use cases, includes and extends relationships that are referenced by the
feature configuration model. This transformation can be similar to the other two described in the
paper.

A more generic transformation program could be required if we wanted our transformation to
support changes in the family use case model (which can by very probable). Such changes result
also in changes to the feature model that acts as metamodel for the feature configurations. To have
only one T3 transformation process regardless of number of configuration metamodels, the T3
activity transformation could also have as input the feature model. Since this model is the source
for obtaining the configuration metamodels, it could serve as guide to process the feature
configuration models regardless of their metamodels (they would have to be processed as generic
Ecore models), thus allowing a generic transformation process that can be applied to all possible
feature models. In this case, the QVT transformation would follow the declaration presented in
Figure 94

transformation configuration2usecases(
 in fu:USECASE, -- family use case
 in fc:Ecore, -- untyped feature configuration
 in fmm:FEATURE, -- feature meta-metamodel
 out u:USECASE); -- product use case

Figure 94: Declaration of untype transformation configuration2usecases.

In Figure 94 we see that instead treating the feature configuration model fc as a typed model it
is handled as an Ecore model. The feature fmm metamodel that resulted from the T1 transformation
is used to dynamically guide the transformation. Model metadata can also be accessed dynamically
to support the transformations. In Figure 95, we present a helper function that dynamically verifies
if a use case is included in the feature configuration.

helper usecase_in_configuration(u: UseCase): Boolean
{
 var o:=fc.objects()[EObject]->select(x | x.metaClassName=u.name)->first();
 return if o = null then false else true endif;
}

Figure 95: QVT helper function that dynamically verifies if a use case in included in a feature configuration.

5.4 Transformation Patterns for Multi-Staged Development

- 139 -

5.4 Transformation Patterns for Multi-Staged Development
In this section, we will address in a practical way multi-staged model driven software approaches
and how they differ in their nature from single-staged approaches. As we will see, multi-staged
approaches result in a series of method recipes for applying model driven technologies in a way
similar to design patterns [Gamma et al. 1995]. As such, we will present the multi-staged model
driven software approach as a series of model driven transformation patterns. We will do so using
the Eclipse Modeling Framework (EMF) [EMF 2007], an Eclipse based metamodeling framework
that is based on the MOF standard, and an insurance software supply chain as a case study.

Figure 96 presents the development activities covered in this section.

5.4.1 Multi-Staged Modeling Approach

Multi-stage development is already a common approach in the software industry. In fact, it is
almost impossible to discover a software project that does not use software artifacts provided by
other players in the industry, be that open source code, software components, documentation,
integrated development environments (IDE) or even software platforms. Although this is a reality,
it is usually done in an informal way, i.e., the supplier and the customer do not usually share much
more than the exchange of the artifact. Examples from other industries demonstrate that supply
chains with strong relations between the players can be very beneficial (the well know example is
the automobile industry). Software product lines are an approach to software engineering that is
based on this principle [Clements et al. 2002]. Software factories extend the product line approach
beyond the frontier of the organization, into the supply chain [Greenfield et al. 2004]. In this case,
we say that a software supply chain becomes a multi-staged software development approach if it
achieves a level of integration of the software development phases that is similar to that of a
software development approach that is based on a single site (single-staged or traditional
approach). In this section we describe our view on supporting multi-staged software development
in the context of model driven approaches.

A model driven approach in the context of multi-stage software development implies that
models are used across the stages. They must support the specialization of the system and also its
instantiation (when models are transformed from platform independent formats to platform specific
formats). We will illustrate this approach with an insurance software supply chain case study.

Figure 97 presents a possible scenario for a multi-stage software insurance supply chain. The
figure presents how insurance agreements can be specialize in several stages. Insurance agreements
are contracts established between insurance companies and its customers which are usually
materialized as insurance policies. The structure and rules that apply to these agreements can vary
significantly according, for instance, with the insurance branch (life, property, etc.), the insurance
coverages, or the type of insured object.

The stages presented in Figure 97 represent players of an insurance company. In the figure we
can see the insurance company, an insurance company division and an insurance company branch.
Each of the stages runs a domain-specific platform [Czarnecki et al. 2006], in this case, an
insurance information system platform. The domain-specific platform can be configured for a
particular purpose through domain-specific modeling. Domain-specific modeling is done by a
domain-expert. In this case, insurance agreements are modeled and used to configure the

Chapter 5: Formal Model Transformations

- 140 -

domain-specific platform. As Figure 97 shows, agreement models can be also specialized in
subsequent modeling stages.

a) Elicitation of Requirements

b) Create Use Case Model

e) Create Feature Model d) Create Entity Model

c) Create Activity Model

f) Create Use Case Realization Model
(Component/Class Model)

g) Create Component/Class Model

h) Refactor Component/Class Model

j) Create Code Base

i) Create State Model

D
es

ig
n

Im
pl

em
en

ta
tio

n
An

al
ys

is
R

eq
ui

re
m

en
ts

Figure 96: Development activities covered in Section 5.4.

Figure 98a represents the typical architecture for EMF based applications, with three
architecture levels. The Ecore model is the equivalent of the MOF model. Figure 99 presents the
kernel of the Ecore model. Typically, using EMF, we construct a core model (which metamodel is
the Ecore model) based on which the EMF framework can generate java source code to support the
creation of model instances; support the edition of model instances using a tree based editor and
also testing classes. The EMF also supports the serialization of the model instances to XML. So, we
can say that EMF can be used to generate code to support the creation of domain-specific modeling
environments (the graphic part is usually complemented with the use of GMF [GMF 2007]). In
addition, since it generates java code to support the model, we can also use EMF as a source code
generation tool.

Figure 98b represents a possible usage of EMF to model insurance agreements. In Figure 98c,
we see how an insurance agreement model can be specialized into a car insurance model using
EMF. This can be done with EMF since the specialization relationship is supported by the Ecore
model and the EMF resource infrastructure allows references between models. So, the car

5.4 Transformation Patterns for Multi-Staged Development

- 141 -

insurance agreement model can reference the insurance agreement model and EClass elements
from the car insurance model can have EClass elements of the insurance model as their supertypes.

Insurance Agreement
Metamodel

Insurance Agreement
Metamodel

Car Insurance
Agreement Metamodel

Insurance Company Insurance Company
Division

Insurance Company
Branch

Insurance Agreement
Model

Car Insurance
Agreement Model

LuxuryCar Insurance
Agreement Model

Insurance Information
System

Insurance Information
System

Insurance Information
System

Metamodeling Expert

Domain Expert

Metamodeling Tool

Domain Modeling Tool

Domain Specific Platform

STAGE N STAGE N+1 STAGE N+2

Figure 97: Multi-staged model driven insurance supply chain.

Ecore model

Core model

Instance of Core
model

metamodel

metamodel

metamodel

Ecore model

Insurance
Agreement model

a Insurance
instance

metamodel

metamodel

metamodel

a) Ecore Metadata
Architecture

Ecore model

Car Insurance
Agreement model

a Car Insurance
instance

metamodel

metamodel

metamodel

M2

M1

M0

b) Insurance Metadata
Architecture (stage 1)

c) Car Insurance Metadata
Architecture (stage 2)

specializes

Figure 98: EMF multi-staged model driven metadata architecture for insurance supply chain with one
modeling level (M1).

Figure 98 can also serve as an example of a possible multi-staged modeling approach. In fact,
since EMF supports model references and the specialization relationship between EClass elements,
Figure 98b and Figure 98c could represent two stages of a software insurance supply chain: Figure
98b could represent modeling at insurance company headquarters while Figure 98c could represent
modeling at an insurance company division. Although this is true, the situation depicted in Figure
98 is not the most common because specialization between the modeling stages is done at the core
modeling level. As we saw in Figure 97, we usually want to specialize the domain-specific models
(at the domain expert level), not the core models (at the metamodeling expert level).

In fact, the usual approach for insurance supply chains requires an EMF architecture with four
levels, similar to the UML example presented in Figure 80. Figure 100 presents the four EMF
modeling levels (or layers) for insurance agreements.

Usually, the first metamodel (the M2 layer of Figure 100) is used to specify a specialized
modeling environment, i.e., a domain-specific modeling environment. With this environment, the
modeler at the M1 layer no longer needs to use Ecore abstractions, it can use specific abstractions
of the domain. In this case, at the M1 layer, the modeler specifies insurance agreement models. The
models created at the M1 layer can be used to create instances of agreements at the M0 layer.

Chapter 5: Formal Model Transformations

- 142 -

EModelElement

ENamedElement EAnnotation

ETypedElement EClassifier EPackage

EOperation

EParameter

EStructuralFeature EDataType

EReference EAttribute

EClass

eAnnotations

eModelElement

eType

ePackage

eClassifiers

eSuperPackage

eSubPackage

eParameters

eOperation

eStructuralFeatures

eContainingClass

eContainingClass

eReferences

eOpposite

eAttributes

eAttributeTypeeOperations

eSuperTypes

0..*

0..1 0..*

0..*

0..* 0..*

0..1

0..*

0..*

0..*

0..*

Figure 99: Kernel of the Ecore model.

Ecore model

Insurance Agreement Domain
Metamodel (core model)

Insurance Agreement Domain
Model (domain-specific model)

metamodel

metamodel

metamodel

Insurance Agreement
Instances

metamodel

M3 Layer / meta-metamodel

M2 Layer / metamodels

M1 Layer / models

M0 Layer / instances

Figure 100: EMF modeling layers for insurance agreements.

The scenario presented in Figure 100 has, however, a restriction: since models at the M1 layer
are not core models it is not possible to use the EMF infrastructure to generate support for the M0
layer (M0 usually is supported by platform specific code, for instance, java code). Of course, a
possible solution is to use a specific generative approach to transform the M1 models. In the case of
EMF, this can be done using JET [JET 2007]. This approach is probably suitable to single layer
scenarios, such as the one of Figure 100. However, a multi-level or a multi-staged model driven
scenario may not cope very well with this approach if support for the layers is based on specific
code, since it requires a significant development effort and it is hard to maintain. What we advocate
is an approach which reuses the metamodeling framework to support multiple modeling layers.
Basically, we propose that domain-specific models be promoted to metamodeling models (in the

5.4 Transformation Patterns for Multi-Staged Development

- 143 -

case of EMF, to core models). As such, all the generative infrastructure of the metamodeling
framework can be reused at the several modeling layers. Figure 101 depicts the approach. In the
next section we will explain the multi-staged modeling approach and the involved activities
(mainly model transformations) and roles.

5.4.2 Multi-Staged Model Transformations

To explain the multi-staged model driven scenario it is important to understand the involved roles.
There are basically three main roles: metamodeler; domain modeler and executer. The metamodeler
uses the metamodeling framework directly. In the case of EMF, the metamodeler edits directly core
models. A domain modeler is someone that edits domain-specific models, usually according to a
metamodel that is specified by a metamodeler. The executer is the system that runs instances of
models which metamodel is specified by the domain modeler. The distinction between the executer
and the other roles is that models at this level are not used as metamodels of other levels, as such,
this modeling level is terminal. As presented in Figure 97, usually the executer is a domain-specific
platform.

In our insurance software supply chain, the domain modeler must be an insurance expert, since
he/she must specify insurance agreements. The metamodeler is someone who will specify the
metamodel that will support the modeling environment of the domain modeler. As such, he/she
must be an expert in the metamodeling framework (for instance, in EMF) and must acquire the
necessary domain knowledge using some domain analysis method (e.g., FODA [Kang et al. 1990]).
In Figure 101, it is possible to observe the responsibility of these three roles for a multi-staged
modeling approach: the metamodeler has the responsibilities at the M2 layer; the domain modeler
has responsibilities at the M1 layer; and the executer (the domain-specific platform), at the M0
layer. In fact, the M1 layer is divided into M1 and M1’. The M1’ layer is where the domain
modeling takes place. The domain model must support two perspectives: one that supports the
creation of the instantiation model (M1) and other that support the creation of the specialization
model (M2). To reuse the metamodeling generative infrastructure, we propose that these two
perspectives be supported by transforming the domain model into the metamodeling native format
(in this case core models). Next, we will detail the multi-staged modeling approach and the
activities involved.

Figure 101 displays an overview of our approach to multi-stage model driven (the figure only
displays automatic activities). Since the approach is based on domain-specific models and those
require a domain-specific modeling environment, the process bootstrapping is done by the
metamodeler. The first metamodel (core model) is used to introduce the domain-specific modeling
concepts that will be used by domain experts in all the stages to create or specialize
domain-specific models (in this case, insurance agreements). Such metamodel will provide domain
modelers their modeling concepts in a way similar to the concepts that ecore provides to the
metamodeler. As a bootstrapping metamodel, it must also integrate with the concepts of the
domain-specific platform. Since the domain-specific platform will integrate domain concepts
through the instance models, the discussed integration is essentially achieved by the support for the
instantiation perspective of the initial metamodel. Figure 102 depicts the models at the
bootstrapping of the multi-staged model driven approach for the software insurance supply chain
case study. The bootstapping process corresponds to the first stage (stage N) depicted in Figure
101.

Chapter 5: Formal Model Transformations

- 144 -

Instantiation model
(core model)

Domain Metamodel
Domain Modeler

Specialization Metamodel
(core model)
Metamodeler

Agreement.ecore

CarInsurance.agreement

iCarInsurance.ecore CarInsurance.ecore

references

Instantiation

Specialization
Promotion

specializes
metamodel

LuxuryCarInsurance.carinsurance

metamodel

iLuxuryCarInsurance.ecore LuxuryCarInsurance.ecore
references

Instantiation

Specialization
Promotion

specializes
specializes

iAgreement.ecore

specializes

Instantiation

references

Instances
Executer

A.iagreement

B.iagreement

A.icarinsurance

B.icarinsurance

A.icarplusinsurance

B.icarplusinsurance

STAGE N

STAGE N+1

STAGE N+2

metamodel

metamodel

metamodel

metamodel

metamodel

metamodel

M0 M1 M1' M2

Figure 101: EMF multi-staged modeling of insurance supply chain with two modeling levels (M2 and M1’).

Figure 102 is divided in three parts: the specialization metamodel (Agreement.ecore in stage N
of Figure 101); the instantiation model (IAgreement.ecore in stage N of Figure 101); and the
domain model (part of the domain-specific platform, modeled using core models, not depicted in
Figure 101). The instantiation model is automatically generated from the specialization metamodel
by the instantiation automatic activity (see Figure 101). The instantiation activity basically creates
the instantiation model by filtering out of the metamodel elements that regard only its
specialization perspective. The result is the IAgreement.ecore instantiation model, which contents
are depicted in the lower part of Figure 102. The instantiation model can be used to generate code
(using the metamodeling tool generative capabilities) that integrates its concepts with the domain-
specific platform at this stage. The elements of the instantiation model can maintain references to
their origins in the metamodel if access to metadata is required by the domain-specific platform. To
distinguish between the two perspectives (instantiation and specialization) of the metamodel we
use annotations. This approach requires that the meta-metamodel support annotations. As Figure
99 shows, EMF ecore supports annotations. In Figure 102 we can see annotated elements. The
annotations are depicted in a similar way to that of stereotypes in UML diagrams. We will detail
the major role of annotations in the next section.

The specialization metamodel is also used to support the generation of the domain-specific
modeling environment used by the domain experts. Figure 101 shows how the Agreement.ecore
specialization metamodel (stage N) is used to support the domain modeling activity of stage N+1.
Figure 103 presents a possible model of a car insurance agreement that conforms to the
Agreement.ecore metamodel.

5.4 Transformation Patterns for Multi-Staged Development

- 145 -

Since domain metamodels (such as the one depicted in Figure 103) are not native metamodels
of the metamodeling framework they can not be directly used by the framework to generate a
specialization for the next stage. As such, they need to be transformed into native metamodels (core
models, in the case of EMF). Once again, we propose to do it by using the annotations of their
metamodels as guides to the transformation process (Specialization Promotion in Figure 101). In
the case presented in Figure 101, the CarInsurance.agreement domain metamodel can be
transformed into a core model by using the annotations of its Agreement.ecore metamodel.

«EClass»
TargetElement : EClass

«EReference»
Relationship : EClass

lowerBound: EInt
upperBound: Eint
containment:boolean

«EClass»
RelationalElement : EClass

«EOperation»
Action : EClass

«EOperation»
Constraint : EClass

«EAttribute»
Property : EClass

«EClass»
Role : EClass

«EClass»
Event : EClass

Agreement : EClass

target

relationships

behavior: EString behavior: EString value: EJavaObject
kind: EString
changeable: boolean

behavior: EString

actions constraints

properties

roles

constraints

properties

actions

events: EReference

«EClass»
NamedElement : EClass

elementName: EString

M2 – Specialization
Metamodel

AgreementRoot :
EClass

agreement1

agreementID: EString
start: EDate
end: EDate

«name»

«lowerBound»

«upperBound»

«containment»

Customer

customer

BusinessEntity

playedBy

«eReferenceType»

«EReference»
Roleplayer : EClass

lowerBound: EInt
upperBound: Eint

«lowerBound»
«upperBound»

«eReferenceType»

roleplayer

«meta»

«meta» «meta»

M1 – Instantiation
model

Agreement : EClass

AgreementRoot :
EClass

agreement1

agreementID: EString
start: EDate
end: EDate

customer

meta

meta

«eType»

Domain Model

Figure 102: Specialization metamodel vs instantiation model vs domain model.

Chapter 5: Formal Model Transformations

- 146 -

M1' – Domain
Metamodel

aAgreement : Agreement

elementName =
“CarInsurance”

bAgreement : Agreement

elementName = “Liability”
relationships

cAgreement : Agreement

elementName =
“PhysicalDamage”

aProperty : Property

elementName = “Amount”
kind = “Money”
value = <void>
changeable = true

properties

bRelationship:
Relationship

elementName =
“hasLiability”
lowerBound = 1
upperBound = 1
containment = true

target

aRelationship:
Relationship

elementName =
“hasPhysicalDamage”
lowerBound = 0
upperBound = 1
containment = true

relationships

target

aAgreementRoot :
AgreementRoot

elementName =
“CarInsuranceRoot”

aRole : Role

elementName =
“InsuredCar”

roles

aRoleplayer :
Roleplayer

elementName =
“insuredCarPlayer”
lowerBound = 1
upperBound = 1
playedBy = “Car”

roleplayer

Car
playedBy

BusinessEntity

Domain Model

agreement

Figure 103: Domain metamodel for a car insurance agreement (CarInsurance.agreement).

In this section we have discussed the principles by which a multi-stage model driven approach
can be supported by a metamodeling framework. The goal is to provide an approach that frees the
developer (as much as possible) of doing specific model transformations, i.e., provide a generic
approach that supports multi-staged model driven development. Similarly to the way design
patterns are presented as generic solutions to design problems, in the next section we will present
our approach as layers of metamodeling patterns that can be adopted to support multi-stage model
driven scenarios.

5.4.3 Transformation Patterns

In this section we present our approach to multi-stage model driven software development. Since a
multi-stage model driven approach can be applied in several scenarios (being the insurance
software supply chain only one of them) we explain our approach as a set of model driven
development patterns. We follow the spirit of the original description of design patterns and
describe the problem, solution and consequences of each model driven pattern. In fact, each
presented pattern is a part of a more large scale pattern that we call Multi-Stage Domain Specific
Modeling. If we continue to make the analogy with traditional development patterns we could say
that this is an architectural style pattern [Shaw et al. 1996].

As we will see next, the description of the solution of a model driven pattern consists
essentially in describing metamodeling approaches and transformation between models (or/and
metamodels).

5.4.3.1 Model Driven Architectural Pattern

Name
Multi-Stage Domain Specific Modeling

5.4 Transformation Patterns for Multi-Staged Development

- 147 -

Problem
How to support domain-specific modeling and domain-specific model specialization for several
domain-specific modeling stages in the context of a domain-specific platform.

Solution
The proposed solution adopts off-the-shelf metamodeling tools. By this we mean that the solution is
essentially based on existing generative and transformational support of publicly available
metamodeling tools. Eclipse EMF is one example of such a metamodeling tools.

To support the multi-stage model driven approach we propose that the models of the native
metamodel format be annotated in a manner that marks their elements as being instance elements
(instantiation perspective) or meta elements (specialization perspective). Such annotations can then
be used to guide two generic transformation activities: the instantiation transformation and the
specialization promotion transformation. Instance elements are the base for the creation of the
instantiation model (instantiation transformation) and meta elements are the base for the creation of
the specialization metamodel (specialization promotion transformation).
Figure 101 presents an illustration of this pattern for an insurance supply chain.

Consequences
The solution proposed for this model driven pattern requires that we solve two sub-problems (or
sub-patterns): the instantiation transformation pattern and the specialization promotion
transformation pattern.

The adoption of this model driven pattern has several consequences. These consequences were
largely discussed in the previous section, so we will not further detail them.

5.4.3.2 Model Transformation (Sub-)Patterns

Instantiation (metamodel to metamodel) Transformation Pattern

Problem
How to support instantiation from models (metamodels) where some elements have metadata
semantics, and as such should not appear in the instances of the models.

Solution
Here we propose a solution that adds a further constraint to the problem. Since this pattern occurs
in the context of multi-stage modeling, the instantiation models should support specialization from
stage to stage.

The general solution has already been discussed in the previous section. Basically, the original
metamodel should be annotated. These annotations should mark the elements that have meta
semantics. As such, the transformation consists of creating a metamodel that leaves out elements
with meta semantics. For the insurance supply chain, we can see an example of the result of the
transformation in the metamodel that appears at the bottom of Figure 102.

The multi-stage modeling approach implies that the instantiation models are specialized at
each stage. Figure 104 and Figure 105 can be used to illustrate the problem (and also the solution).
Figure 104 presents the specialization metamodel at stage N+1 of the insurance case study. This
specialization model was obtained from the domain model depicted in Figure 103. Figure 105
presents the output of the instantiation transformation, when the source metamodel is the one

Chapter 5: Formal Model Transformations

- 148 -

depicted in Figure 104. As it is possible to observe from both figures, the resulting instantiation
metamodel not only contains elements that are not annotated as meta elements in the source
metamodel but also contains the annotated elements that resulted from the specialization process.
These elements are those that subset or refine meta annotated elements of the previous stage. For
instance, in Figure 104 we can see that the hasLiability relationship between CarInsurance and the
HasLiability EClass subsets6 the relationships relationship of the previous stage. Therefore,
HasLiability is included in the resulting instantiation metamodel. Since this element has an
annotation stating that it has the meta semantics of an EReference, it becomes an EReference
element in the resulting metamodel.

M2 - Specialization
Metamodel

hasLiability

hasLiabilityTarget

amount
«EReference»

HasPhysicalDamage: EClass

elementName =
“HasPhysicalDamage”
lowerBound = 0
upperBound = 1
containment = true

hasPhysicalDamage

hasPhysicalDamageTarget

«subsets relationships»

eSuperTypes: Relationship
name = “HasLiability”

elementName = “hasLiability”
lowerBound = 1
upperBound = 1
containment = true

CarInsurance: EClass

eSuperTypes: Agreement
name = “CarInsurance”
elementName =
“CarInsurance”

«subsets relationships» Liability: EClass

eSuperTypes: Agreement
name = “Liability”
elementName : “Liability”

«EAttribute»
Amount: EClass

eSuperTypes: Property
name = “Amount”

elementName = “Amount”
kind = “Money”
value = <void>
changeable = true

PhysicalDamage: EClass

eSuperTypes: Agreement
name = “PhysicalDamage”
elementName =
”PhysicalDamage”

eSuperTypes: Relationship
name = “HasPhysicalDamage”

«subsets target»

«subsets target»

«subsets properties»

«defaultValue»

CarInsuranceRoot: EClass

eSuperTypes: AgreementRoot
name = “CarInsuranceRoot”

1

elementName =
“CarInsuranceRoot”

«refines agreement»

carInsurance

«defaultValue»

1

1

1

1

1

«defaultValue»
«defaultValue»

«defaultValue»
«defaultValue»

«defaultValue»

«defaultValue»
«defaultValue»

«defaultValue»
«defaultValue»

«defaultValue»
«defaultValue»

«defaultValue»

«defaultValue»
«defaultValue»

«EClass»
InsuredCar: EClass

eSuperTypes: Role
name = “InsuredCar”
elementName =
“InsuredCar” «defaultValue»

«subsets roles»
insuredCar

«EReference»
insuredCarPlayer: EClass

eSuperTypes: Roleplayer
name = “insuredCarPlayer”

elementName =
“InsuredCarPlayer”
lowerBound = 1
upperBound = 1

«defaultValue»
«defaultValue»
«defaultValue»

«refines roleplayer»
insuredCarPlayer

Car

BusinessEntity

Domain Model

insuredCarTarget

«refines playedBy»

«eReferenceType»

1

1

1

«EReference»
HasLiability: EClass

Figure 104: Native metamodel for a car insurance agreement (CarInsurance.ecore).

Consequences
The solution proposed for this pattern is straightforward if we consider it only in the context of
single stage development. When we consider it in a multi-stage approach we have to take into
account the refinements (specializations) made in the previous stage. The annotations in the source
elements regarding such refinements as well as their meta semantics can guide the creation of the
instantiation model. The annotations regarding the meta semantics are used to preserve the
intention of the original metamodeler. As it is possible to observe in the previous examples, such
annotations are done using the names of the elements of the meta-metamodel of the modeling tool
(or the native metamodel). In the case of EMF, Figure 99 presents such elements. From Figure 102,
we see that the original metamodeler intention was that the non-abstract elements Event and Role
should have a meta semantic of an EClass; the non-abstract elements Action and Constraint should
have a meta semantic of an EOperation; the non-abstract elements Roleplayer and Relationship
should have a meta semantic of an EReference; and the non-abstract element Property should have
a meta semantic of an EAttribute. These examples represent the four most typical element
transformations in the context of the instantiation transformation pattern: Class to Attribute; Class
to Operation; Class to Reference and Class to Class.

6 We use the term subset with similar semantics to that found in the subset annotations used in UML
associations.

5.4 Transformation Patterns for Multi-Staged Development

- 149 -

CarInsuranceRoot: EClass

eSuperTypes = AgreementRoot
name = “CarInsuranceRoot”

CarInsurance: EClass

eSuperTypes = Agreement
name = “CarInsurance”

Liability : EClass

eSuperTypes = Agreement
name = “Liability”

hasLiability

meta = Liability
amount : Money

PhysicalDamage : EClass

eSuperTypes = Agreement
name = “PhysicalDamage”

hasPhysicalDamage

meta = CarInsuranceRoot

meta = CarInsurance

meta = PhysicalDamage

carInsurance

hasLiability:
EReference

name = “hasLiability”
lowerBound = 1
upperBound = 1
containment = true

«derivedFrom hasLiability»

«derivedFrom Amount»

M1' – Instantiation
Metamodel

hasPhysicalDamage:
EReference

name = “hasPhysicaldamage”
lowerBound = 0
upperBound = 1
containment = true

«derivedFrom hasPhysicalDamage»

insuredCarPlayer :
EReference

name =
“insuredCarPlayer”
lowerBound = 1
upperBound = 1

«derivedFrom insuredCarPlayer»

insuredCar

Car

BusinessEntity

Domain Model

InsuredCar : EClass

eSuperTypes =
name = “InsuredCar”

meta = InsuredCar

insuredCar

Figure 105: Instantiation metamodel for a car insurance agreement (ICarInsurance.ecore).

Transformation Details
Essentially, the solution for this pattern consists on how elements of a metamodel can be
transformed into a resulting instantiation metamodel in the context of the general solution
suggested by the pattern. In a native metamodel similar to Ecore, we identify four major
transformations: Class to Attribute; Class to Operation; Class to Reference and Class to Class.
They transform source elements into target elements as their names imply. In Figure 105, we can
see the result of applying these transformations to the source metamodel of Figure 104. We will
now consider the example of the source element InsuredCar. This source element is annotated as
having the meta semantics of an EClass. As such, if transformed, it must become also an EClass
element in the target metamodel. Other possible annotations in the source element may be used to
further specify the value of target element attributes.

The resulting elements must also indicate if they are specializing elements of the previous
stage. This is not the case of the InsuredCar. On the other end, CarInsurance is an example of an
element that is specializing the Agreement element from the previous stage.

As we have discussed previously, only source elements that pertain to the instantiation
perspective of the metamodel are transformed. This includes elements that do not have an
annotation describing their meta semantics and elements that are annotated but have been refined
(specialized) by the domain modeler (these are elements resulting from the specialization
promotion transformation pattern). Such elements are linked to other elements by references with
the refine or subset annotations.

Specialization Promotion (model to metamodel) Transformation Pattern

Problem
How to support the specialization of domain models that are not native metamodels of the
metamodeling tool and, therefore, do not have the native support for specialization.

Chapter 5: Formal Model Transformations

- 150 -

Solution
We propose a solution that is based on the promotion of the domain model to a native metamodel
of the metamoldeling tool in a way that preserves the semantics of the domain model. We call this
transformation a specialization promotion because we are transforming a model into a metamodel,
i.e., we are promoting a model into a metamodel. Our solution is proposed in the context of the
multi-stage model driven pattern and therefore, in conformance with the other patterns, we use
annotations to guide the transformation process.

Figure 103 presents an example of a domain model (in fact it is acting as a metamodel) which
metamodel is the one presented in Figure 102 (M2 Specialization metamodel). The result of
applying the specialization promotion transformation to the model of Figure 103 results in the
native metamodel of Figure 104. Basically, each object instance of the domain model becomes a
Class (EClass) in the native metamodel. Each reference instance (or object link) becomes a
Reference (EReference) in the native metamodel. Similarly to the instantiation transformation
pattern, these represent sub-patterns of the specialization promotion transformation pattern: Object
instance to Class and Reference Instance to Reference. These sub-patterns will be explained next.

Transformation Details
Here we discuss the possible transformations involved in the solution of the specialization
promotion transformation pattern. The goal is to transform domain models into their equivalent
native metamodels. A domain model is an instance of a metamodel, and as such is composed of
objects and links or reference instances between objects. The objects are instances of Class
elements (EClass) of the metamodel. The links are instances of Reference elements (EReference) of
the metamodel.

When the domain modeler creates an instance of a Class he/she is making a specialization of
the Class. As such, in the Object to Class transformation, an object is transformed into a Class that
must specialize (become a subtype of) the meta-class of the source object. For instance, the aRole
object of Figure 103 becomes the InsuredCar EClass in Figure 104. The InsuredCar EClass is a
specialization of the Role EClass, which is the meta-class of the aRole object. With this approach
domain models can be specialized in each stage of the multi-stage approach.

Links also follow an approach similar to that of the objects. As we have mentioned, they
become references in the resulting metamodel. But, because they are instances of references, they
are annotated as subsets or refines of the original reference. For instance, the roles link of Figure
103 that links aAgreement and aRole becomes the insuredCar reference between CarInsurance and
InsuredCar target elements (see Figure 104). This reference is annotated as being a subset of the
roles reference of the metamodel of the previous stage.

5.5 Conclusion
This chapter is essentially dedicated to formal transformations in model driven approaches. We
particularly address specific issues that are related to the development of variability focused
systems, such as software product lines. Our proposals are also discussed in the context of available
tools in a way that facilitates its adoption and implementation.

In the first part of this chapter, we have presented a model driven approach to map use case to
features. This approach is inspired by the original work of Griss et al. [Griss et al. 1998].

5.5 Conclusion

- 151 -

Gomaa also proposes a similar relationship between use cases and features [Gomaa 2005]. We
differ from their works because we base the variability annotations in the Extend and Include
relationships and not in the use cases. We have explained why this is more appropriate to model
variability.

Czarnecki et al. presented an approach to map features to design models [Czarnecki et al.
2005a]. Basically, in their approach, a template design model is annotated with presence conditions
that are logic expressions based on features. Non-annotated elements have an implicit true
presence condition. If these expressions evaluate to true, the design element is included in the result
model. In their approach, design elements must be annotated after the feature model. In our
approach, the use case variability annotations have a similar effect, but we differ, since the design
elements included in a configuration will result from the ones that are necessary to realize the
product use case model that results from the transformation process.

Eriksson et al. also describe a model based approach that relates use cases and features
[Eriksson et al. 2005]. However, their work is focused on used cases being described by scenarios
and sequences of steps. As such, it does not explicitly deal with mappings at a UML use case
diagram level (as we do) but at an inner use case level. They document the transformation process
but do not precisely specify it, so it is difficult to tell if such approach is possible to implement with
transformation languages such as QVT. Their approach to modeling use case variability has
similarities with the one of Fantechi et al. [Fantechi et al. 2004]. Our work differs from these
authors because our approach to model variability within use cases is based on models, not textual
representations in natural language. We use activities to model the use case’s behavior. Similar
variability annotations as the ones present for the Extend and Include relationships can be used to
annotate activity model elements and a similar transformation approach can also be used to map
such elements to feature model elements.

We have discussed and proposed mappings between use case and feature models in a formal
way that supports its implementation. Regarding applicability of our approach, we have showed
that an implementation is feasible even with a not yet mature QVT implementation. Clearly,
transformations could be improved by a complete QVT implementation enabling, for instance, the
use of the QVT relational language. This would facilitate, for instance, the specification of two way
transformation mappings between use cases and features. As discussed, the proposed method seams
to open a feasible approach to implement mixed use case and feature model driven based product
line engineering methods.

The first part of this chapter contributes to the research field with a ‘formalization’ of
mappings between use cases and feature models that supports its automation by standard model
transformation languages and metamodeling tools like QVT and EMF.

As models become first class artifacts of software development approaches they are treated in
a similar manner as code is in traditional software development. Therefore, it is also natural that, as
model driven approaches become widely adopted, issues and concerns that are related to code
become concerns at the modeling level. For instance, we have seen this regarding refactoring of
models [Biermann et al. 2006b]. As model driven approaches are adopted by the industry we will
see also more experience reports. The results from these experiences will undoubtedly support the
identification of mode driven patterns.

In the second half of this chapter, we have presented and discussed a problem that is common
in the software product lines and software factories: multi-stage development. We have described
this problem following the spirit of architectural and design patterns. The solutions proposed for the

Chapter 5: Formal Model Transformations

- 152 -

patterns were based on using as much as possible the functionalities of actual publicly available
metamodeling tools and their generative capabilities. We have presented the problem and the
patterns based on EMF and an insurance software supply chain example. We believe this is just one
in many model driven patterns that are yet to be identified. We have exemplified the described
approach with an insurance supply chain case study. However, the approach can be used in other
contexts like, for instance, to support multi-stage configuration of feature models such as we have
discussed in first part of this chapter. In fact, the promotion of a feature model to an Ecore model,
such as we have presented in Section 5.3, could be achieved by the approach we have presented in
Section 5.4. Multi-stage configuration of features is also discussed in [Czarnecki et al. 2004].

The solution part of the presented patterns was based on annotating models and on doing
transformations based on those annotations. We have not proposed a specific tool for the
transformations, however, in the spirit of following as much as possible standards and similarly to
the work presented in the first part of this chapter, an implementation of the QVT [QVT 2005]
language, such as SmartQVT [SmartQVT 2007] could be used.

The second part of this chapter contributes to the research field with a proposal to support the
multi-stage domain modeling of software systems based on model to metamodel transformations
that reuse the generative capabilities of metamodeling tools such as EMF and are guided by model
annotations.

5.6 References
[AndroMDA 2007] AndroMDA, "AndoMDA generator framework," Available at
http://www.andromda.org/, 2007.

[Asikainen et al. 2006] Asikainen, T., T. Mannisto and T. Soininen, "A Unified Conceptual
Foundation for Feature Modeling," SPLC2006, Baltimore, 2006.

[ATL 2007] INRIA, "Atlas Transformation Language," Available at
http://www.eclipse.org/m2m/atl/, 2007.

[Bezivin 2005] Bezivin, J., "Model Driven Engineering: Principles, Scope, Deployment and
Applicability," Generative and Transformational Technics in Software Engineering, Braga,
Portugal, 2005.

[Bezivin et al. 2003] Bezivin, J., G. G. Dupe, F. Jouault, G. Pitette and J. E. Rougui, "First
experiments with the ATL model transformation language: Transforming XSLT into
XQuery.," 2nd OOPSLA Workshop on Generative Techniques in the context of Model
Driven Architecture, 2003.

[Biermann et al. 2006a] Biermann, E., K. Ehrig, C. Kohler, G. Kuhns, G. Taentzer and E. Weiss,
"EMF Model Refactoring based on Graph Transformation Concepts," Electronic
Communication of the EASST, vol. 3, 2006a.

[Biermann et al. 2006b] Biermann, E., K. Ehrig, C. Kohler, G. Kuhns, G. Taentzer and E. Weiss,
"Graphical Definition of In-Place Transformations in the Eclipse Modeling Framework,"
Models 2006, Genova, Italy, 2006b.

[Clements et al. 2002] Clements, P. and L. Northrop, Software Product Lines - Practices and
Patterns: Addison Wesley, 2002.

5.6 References

- 153 -

[Czarnecki et al. 2005a] Czarnecki, K. and M. Antkiewicz, "Mapping Features to Models: A
Template Approach Based on Superimposed Variants," GPCE'05, Tallinn, Estonia, 2005a.

[Czarnecki et al. 2006] Czarnecki, K., M. Antkiewicz and C. H. P. Kim, "Multi-level
Customization in Application Engineering," Communications of the ACM, vol. 49, 2006.

[Czarnecki et al. 2003] Czarnecki, K. and S. Helsen, "Classification of Model Transformation
Approaches," OOPSLA’03 Workshop on Generative Techniques in the Context of Model-
Driven Architecture, Anaheim, 2003.

[Czarnecki et al. 2004] Czarnecki, K., S. Helsen and U. Eisenecker, "Staged Configuration Using
Feature Models," SPLC2004, Boston, 2004.

[Czarnecki et al. 2005b] Czarnecki, K., S. Helsen and U. Eisenecker, "Staged Configuration
Through Specialization and Multi-Level Configuration of Feature Models," Software
Process Improvement and Practice, special issue on "Software Variability: Process and
Management", vol. 10, pp. 143-169, 2005b.

[Damus 2006] "Implementing Model Integrity in EMF with EMFT OCL," Available at
http://www.eclipse.org/articles/Article-EMF-Codegen-with-OCL/article.html,

[DSL 2007] Microsoft, "DSL Tools for Visual Studio," Available at
http://msdn2.microsoft.com/en-us/vstudio/aa718368.aspx, 2007.

[EMF 2007] Eclipse Foundation, "Eclipse Modeling Framework," Available at
http://www.eclipse.org/emf/, 2007.

[Eriksson et al. 2005] Eriksson, M., J. Borstler and K. Borg, "The PLUSS Approach - Domain
Modeling with Features, Use Cases and Use Case Realizations," SPLC2005, Rennes, France,
2005.

[Fantechi et al. 2004] Fantechi, A., S. Gnesi, G. Lami and E. Nesti, "A Methodology for the
Derivation and Verification of Use Cases for Product Lines," SPLC2004, Boston, 2004.

[Gamma et al. 1995] Gamma, E., R. Helm, R. Johnson and J. Vlissides, Design Patterns - Elements
of Reusable Object-Oriented Software: Addison-Wesley, 1995.

[GMF 2007] Eclipse Foundation, "Graphical Modeling Framework," Available at
http://www.eclipse.org/gmf/, 2007.

[Gomaa 2005] Gomaa, H., Designing Software Product Lines with UML: Addison Wesley, 2005.

[GReAT 2007] ISIS Institute for Software Integrated Systems, Vanderbilt University, "Graph
Rewrite And Transformation (GReAT)," Available at
http://www.escherinstitute.org/Plone/tools/suites/mic/great, 2007.

[Greenfield et al. 2004] Greenfield, J., K. Short, S. Cook and S. Kent, Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools: Wiley, 2004.

Chapter 5: Formal Model Transformations

- 154 -

[Griss et al. 1998] Griss, M. L., J. Favaro and M. d'Alessandro, "Integrating Feature Modeling with
the RSEB," Fifth International Conference on Software Reuse, Victoria, Canada, 1998.

[Jacobson et al. 1992] Jacobson, I., M. Christerson, P. Jonsson and G. Overgaard, Object-Oriented
Software Engineering: A Use Case Driven Approach: Addison-Wesley, 1992.

[Jacobson et al. 2005] Jacobson, I. and P.-W. Ng, Aspect-Oriented Software Development with Use
Cases: Addison Wesley, 2005.

[Jamda 2007] Jamda, "Jamda Framework for Building Application Generators," Available at
http://jamda.sourceforge.net/, 2007.

[JET 2007] Eclipse Foundation, "Eclipse JET - Java Emitter Templates," Available at
http://www.eclipse.org/emft/projects/jet/, 2007.

[Kang et al. 1990] Kang, K. C., S. G. Cohen, J. A. Hess, W. E. Novak and A. S. Peterson, "Feature-
Oriented Domain Analysis (FODA) Feasibility Study Technical Report," Software
Engineering Institute, Carnegie Mellon University CMU/SEI-90-TR-21, 1990.

[Kleppe et al. 2003] Kleppe, A., J. Warmer and W. Bast., MDA Explained, The Model-Driven
Architecture: Practice and Promise: Addison Wesley, 2003.

[Maßen et al. 2002] Maßen, T. v. d. and H. Lichter, "Modeling Variability by UML Use Case
Diagrams," REPL'02, Essen, Germany, 2002.

[MDA 2007] OMG, "Model Driven Architecture Guide Version 1.0.1," Available at
http://www.omg.org, 2007.

[Mens et al. 2005] Mens, T. and P. V. Gorp, "A Taxonomy of Model Transformation and its
Application to Graph Transformation," International Workshop on Graph and Model
Transformation (GraMoT), Tallinn, Estonia, 2005.

[Merks et al. 2006] eclipse.tools.emf newsgroup thread, "Making EMF models valid Ecore models
for a two-level code generation," Available at
http://dev.eclipse.org/newslists/news.eclipse.tools.emf/msg20713.html,

[MOF 2006] OMG, "Meta Object Facility (MOF) 2.0 Core Specification (formal/06-01-01),"
Available at http://www.omg.org, 2006.

[OCL 2006] OMG, "Object Constraint Language Specification v2.0 Final Adopted Specification
(formal/06-05-01)," Available at http://www.omg.org, 2006.

[OptimalJ 2007] Compuware, "OptimalJ," Available at
http://www.compuware.com/products/optimalj/, 2007.

[Pohl et al. 2005] Pohl, K., G. Böckle and F. v. d. Linden, Software Product Line Engineering:
Foundations, Principles, and Techniques: Springer-Verlag, 2005.

[QVT 2005] OMG, "MOF QVT Final Adopted Specification (ptc/05-11-01)," Available at
http://www.omg.org, 2005.

5.6 References

- 155 -

[Shaw et al. 1996] Shaw, M. and D. Garlan, Software Architecture: Perspectives on an Emerging
Discipline: Prentice Hall Publishing, 1996.

[SmartQVT 2007] France Telecom, "SmartQVT - Open Source Transformation Tool Implementing
the MOF 2.0 QVT-Operational Language," Available at http://smartqvt.elibel.tm.fr/, 2007.

[UML 2005] OMG, "Unified Modeling Language Version 2.0: Superstructure (formal/05-07-04),"
Available at http://www.omg.org, 2005.

[VIATRA 2007] Budapest University of Technology and Economics (BME), "VIsual Automated
model TRAnsformations - VIATRA," Available at
http://dev.eclipse.org/viewcvs/indextech.cgi/gmt-home/subprojects/VIATRA2/index.html,
2007.

- 157 -

6. Conclusion
“The important thing is not to stop questioning”

Albert Einstein

This chapter is dedicated to the analysis of the work and proposals presented in this thesis. We also
discuss possible future research topics and the applicability of our proposals.

6.1 Discussion
This thesis proposes the adoption of a model driven approach to the development of software
product lines. The combination of model driven and software product line approaches promises
new possibilities to the field of software engineering. A symptom of this is the number of
presentations, tutorials and demonstrations that explored this approach in the last Software Product
Line Conference7. However, similarly to model driven approaches applied to single system
development, this has been done essentially in the context of platform independent and platform
specific models. The focus of this thesis and its contributions are essentially in the context of
computational independent models and its usage in model driven development of software product
lines.

6.1.1 Research Contributions

We will now discuss the research contributions of this thesis and how they address the research
goals.

Chapter 3 was concerned with a methodological approach for model driven development of
variability focused systems, particularly software product lines. We have explored how a variability
dimension could be added to computation independent models and how they could be used to
specify the functional requirements of product lines. We also described how these specifications
could be used to support the derivation of the architectural requirements of a product line. We
exemplified our approach by adapting 4SRS, a single system UML-based model driven
development technique, to support the development of software product lines. We demonstrated the
approach by applying it to a cellular phone product line described in [Muthig et al. 2004].

Research Contribution 1: A UML-based transformational technique which supports the
derivation of the functional requirements of the logical architecture of a software product line in
the form of an object model based on a use case model of the product line in which the variability
’dimension’ is added to the use case model by using stereotypes and the Extend relationship.
This contribution addresses research goals 1 and 2 of this thesis that were presented in Chapter 1.

The second half of this chapter presents a proposal to support the transformation of analysis
models into architectural models. Our proposal was based on an evolution of the 4SRS method to
support the model driven development of software product lines that we called MoDeLine. We also

7 Program available at http://sec.ipa.go.jp/SPLC2007/.

Chapter 6: Conclusion

- 158 -

delineate some approaches to detail the first logical architecture of a system by integrating design
patterns in the proposed approach. We have proposed the concept of use case realization as a way
to bridge between the problem domain and the solution domain. We discuss how use case
realizations can be supported by activity diagrams in the problem space and by component
diagrams in the solution space. We have also discussed how use case realizations could integrate
design models and design concepts such as the ones of UML-F. The approach was exemplified
with a library product line case study.

Research Contribution 2: A proposal of a ‘bridging’ technique between the problem space and
the solution space for the model driven development of software product lines that is based on the
concept of use case realizations and its double view: activity models for the problem space view
and component models for the solution space view.
This contribution addresses research goals 2 and 3 of this thesis that were presented in Chapter 1.

Chapter 4 was concerned with modeling and metamodeling to support variability focused systems.
The first half of Chapter 4 describes a proposal to adapt the UML 2.0 metamodel in a way that
effectively enables the adoption of use case diagrams in model driven approaches to software
product line development. Particularly, we identified that the Include and Extend use case
relationships only supported alternative insertions. We discussed the fact that other types of
alternatives (alternative history, use case exception, alternative fragment and alternative cycle) are
not directly supported by the UML 2.0 use case metamodel. Therefore, we have proposed an
extension to the UML 2.0 metamodel to overcome this limitation. We have also proposed the
adoption of activity diagrams to model use case behavior. We exemplified our approach with a
library product line case study.

Research Contribution 3: An extension to the UML 2.0 metamodel so that use case models can be
adopted to model variability intensive systems and support the following kinds of alternatives:
alternative insertion; alternative history; use case exception; alternative fragment; and alternative
cycle.
This contribution addresses research goal 1 of this thesis that was presented in Chapter 1.

The second half of the Chapter 4 describes a proposal to extend a UML profile for the design
of frameworks and product lines called UML-F so that it includes requirements and analysis
diagrams. Originally the UML-F profile only addressed UML design models [Fontoura et al.
2000]. We have discussed how the UML-F’s hook and template base concepts used to manage
variability at design could also be used and integrated earlier in the software development process,
at the requirements and analysis phases. We have discussed our proposal in the context of an
insurance product line case study and the MoDeLine model driven development method. We have
also described how UML-F could be upgraded to comply with UML 2.0.

Research Contribution 4: An extension to the UML-F profile so that it supports the modeling of
variability in requirements and analysis models and maintains an integrated trace of the ‘hook’
and ‘template’ concepts throughout the analysis and design phases of the software development
process.
This contribution addresses research goals 1 and 3 of this thesis that were presented in Chapter 1.

Chapter 5 was dedicated to model transformations. In the first part of Chapter 5 we have
proposed an approach of a mapping between use cases and features formalized through the QVT
model transformation language. We also provided an implementation roadmap based on EMF and
SmartQVT. The approach was exemplified with a library product line case study.

6.1 Discussion

- 159 -

Research Contribution 5: A ‘formalization’ of mappings between use cases and feature models
that supports its automation by standard model transformation languages and metamodeling tools
like QVT and EMF.
This contribution addresses research goals 1 and 4 of this thesis that were presented in Chapter 1.

The second half of Chapter 5 presented a proposal to implement multi-staged domain
modeling of software systems. We have seen that this is one of the common scenarios for software
factories. We have explored how such an approach could be realized by the metamodeling and
generative capabilities of tools such as EMF. The basic idea behind our approach is that a model in
one stage can be the metamodel of the following stage. Therefore, we propose an approach to
transform models into metamodels that is based on annotating models and reuse of the generative
capabilities of the metamodeling tools. We argue that such an approach can be seen as a pattern of
metamodeling. As such, we have detailed our proposals in a way similar to the description used for
design patterns [Gamma et al. 1995]. We illustrated our approach with an insurance case study that
resulted from our experimental work at I2S; a software house specialized in solutions for the
insurance market8.

Research Contribution 6: A proposal to support the multi-stage domain modeling of software
systems based on model to metamodel transformations that reuse the generative capabilities of
metamodeling tools such as EMF and are guided by model annotations.
This contribution addresses research goals 1 and 4 of this thesis that were presented in Chapter 1.

6.1.2 Publications

A PhD work is much more than the sum of its publications. However, they usually represent a
significant effort that is required of the student. Having said that, we now present a list of
publications related to this PhD in which we are author or co-author with our PhD supervisor. All
the publications were peer reviewed.

1. “Runtime Variability in Domain Engineering for Post-Deployment of User-Centric Software
Functional Completion”, Alexandre Bragança, 1st Year PhD Technical Report, University of
Minho, Guimarães, Portugal, December, 2003.
2. “Runtime Variability in Domain Engineering”, Alexandre Bragança, Software Engineering
Doctoral Consortium, SEDES 2004, part of the 1st Portuguese Conference of Software
Engineering, Coimbra, Portugal, April, 2004.
3. “Run-time Variability Issues in Software Product Lines", Alexandre Bragança and Ricardo J.
Machado. In “Implementation of Software Product Lines and Reusable Components”, IESE-Report
No. 122.04/E, Proceedings of the Implementation of Software Product Lines and Reusable
Components Workshop at the 8th International Conference on Software Reuse (ICSR 8), Madrid,
Spain, July, 2004.
4. “Run-time Feature Realization based on Domain-Specific Platforms”, Alexandre Bragança
and Ricardo J. Machado, Poster session, 8th International Conference on Software Reuse (ICSR 8),
Madrid, Spain, July, 2004.

5. "Engenharia de Domínio no Suporte ao Aumento de Flexibilidade nos Sistemas de Software",
Alexandre Bragança and Ricardo J. Machado, Proceedings of 5th International Conference on the
Quality of Information and Communications Technology, Quatic2004, pp 15-21, Porto, Portugal,
October, 2004 [ISBN 972-763-069-3].

8 I2S company web site accessible at http://www.i2s.pt

Chapter 6: Conclusion

- 160 -

6. “A Methodological Approach to Domain Engineering for Software Variability Enhancement”,
Alexandre Bragança and Ricardo J. Machado, Proceedings of the Second Workshop on Method
Engineering for Object-Oriented and Component-Based Development at OOPSLA 2004, pp 39-49,
Vancouver, Canada, October, 2004 [ISBN 0-9581915-3-0].

7. "Deriving Software Product Line's Architectural Requirements from Use Cases: an
Experimental Approach", Alexandre Bragança and Ricardo J. Machado, Proceedings of the
Second International Workshop on Model-Based Methodologies for Pervasive and Embedded
Software at ACSD 2005, pp 77-91, St. Malo, France, June, 2005 [ISBN 952-12-1556-9].

8. “Extending UML 2.0 Metamodel for Complementary Usages of the «extend» Relationship within
Use Case Variability Specification”, Alexandre Bragança and Ricardo J. Machado, Proceedings
of 10th International Software Product Line Conference, SPLC 2006, pp 123-127, Baltimore,
Maryland, August, 2006, IEEE CS Press [ISBN 0-7695-2599-7].

9. “Adopting Computational Independent Models for Derivation of Architectural Requirements of
Software Product Lines”, Alexandre Bragança and Ricardo J. Machado, Proceedings of the 4th

International Workshop on Model-Based Methodologies for Pervasive and Embedded Software at
ETAPS 2007, pp 91-101, Braga, Portugal, March, 2007, IEEE CS Press [ISBN 0-7695-2769-8].

10. “Model Driven Development of Software Product Lines”, Alexandre Bragança, Software
Engineering Doctoral Consortium, SEDES 2007, part of the 6th International Conference on the
Quality of Information and Communications Technology, Quatic 2007, pp 199-203, Lisbon,
Portugal, September, 2007, IEEE CS Press [ISBN 0-7695-2948-8].

11. "Automating Mappings between Use Case Diagrams and Feature Models for Software Product
Lines", Alexandre Bragança and Ricardo J. Machado, Proceedings of 11th International Software
Product Line Conference, SPLC 2007, pp 3-12, Kyoto, Japan, September, 2007, IEEE CS Press
[ISBN 0-7695-2888-0].

6.1.3 Research Validation
In Chapter 1 we have discussed our research approach and also research validation. Figure 106
presents in gray the development activities that were, to some extent, covered by this thesis.
Although we are very much aware of the limitations of our work, we are also aware of the
extension of the topics covered and of time and other resources constraints. We now remember
what Mary Shaw presents as being the validation approaches used in software engineering research
works [Shaw 2003]: Analysis, Evaluation, Experience, Example, and Persuasion. Obviously, being
this thesis about software engineering, we would like to have adopted an empirical research method
based on the application of our proposals to case studies in order to evaluate the results.
Unfortunately, that was not possible. Therefore, the validation of our work was done essentially
based on our own experience and on feedback from users and domain experts during projects and
meetings relating to the topics covered by this thesis and that were essentially experimented at I2S.
Other source of validation were the experimental software developments we have done during this
thesis that demonstrated that at least part of the methods and techniques presented in this thesis are
technologically feasible and provide the results we have discussed. Usually these results were
transmitted in the form of case studies.

6.2 Perspectives and Future Work

- 161 -

a) Elicitation of Requirements

b) Create Use Case Model

e) Create Feature Model d) Create Entity Model

c) Create Activity Model

f) Create Use Case Realization Model
(Component/Class Model)

g) Create Component/Class Model

h) Refactor Component/Class Model

j) Create Code Base

i) Create State Model

D
es

ig
n

Im
pl

em
en

ta
tio

n
An

al
ys

is
R

eq
ui

re
m

en
ts

Figure 106: Development activities covered by this thesis.

By the time we are writing this thesis, an experimental project regarding the multi-staged
model driven approach presented in Chapter 5 is running in a software house (I2S). We are certain
that in the near future we will be able to report on the results of this project. We are also working
on the application of our proposals to an open source ERP. We plan on report on how a model
driven approach can impact the usually very complex tasks associated with the configuration
management and implementation of ERP systems.

6.2 Perspectives and Future Work
The work presented in this thesis shows, at least in part, that model driven approaches to software
product line development are feasible and have a potential to become the next major evolution in
the software development practices. Signs of that evolution can be found in the software factories
proposal from Microsoft [DSL 2007] or the integration of model driven and product line tools such
as Gears from Biglever [Gears 2007] and Raphsody from Telelogic [Rhapsody 2007]. Our
experimental developments with available metamodeling and model transformation tools also show
that significant parts of the approach can be automated by available tools that can be integrated into

Chapter 6: Conclusion

- 162 -

the major integrated development environments. However, some open issues must be addressed
before mixed model driven and software product line approaches become a reality for the
mainstream software development practitioners.

Fundamental issues
The major fundamental issue we can think of is: will models substitute code and, therefore,
modeling substitute programming as we know it?

Of course we can not predict future, but we are convinced that in the near future models will
substitute traditional coding in a way similar to what exists today between mainstream object-
oriented programming languages and assembly programming. What happened in the past with
object-oriented programming languages, class frameworks and component technology could
happen in the near future with the conjunction of the promising emerging technologies and
approaches: model driven development; product line development; and web services. So, what is
missing for that promise to become a reality? We are still in the beginning, exploring essentially
each technology in its one. An integrated foundation framework is missing, similarly to what
happened with the Java and .Net programming platforms relatively to the object-oriented paradigm,
software reuse and software components. In this thesis, we have only grasped such a foundation, by
promoting modeling and, particularly, metamodeling and model transformations as first class tasks
in the software development process. We have also focused our contributions on the notion of
variability and, particularly, we have showed how the focus of the software development process
can be promoted to concepts as high as domain-specific features and variation points. Naturally,
nowadays, outside contexts with significant domain knowledge, domain artifacts and resources
available, the generalized adoption of this approach by software practitioners will be restricted.
Since the theoretical foundations of each field are becoming gradually stable and are shared by the
community, the missing parts for the realization of a foundation framework are tool and
methodological support.

Tool support
All the metamodeling and transformation approaches presented in this thesis where implemented
and tested with several tools. These tools included EMF [EMF 2007], GMF [GMF 2007], GME
[Ledeczi et al. 2001] and Microsoft DSL Tools for Visual Studio [DSL 2007] for metamodeling
and SmartQVT [SmartQVT 2007], ATL [ATL 2007b] and openArchitectWare
[openArchitectureWare 2007] for model transformation. Although we have not explored
transformations between model and code there are also several available tools for this particular
task. Therefore, we could say that there is already a significant offer of tools and, at least, they
cover the technical requirements of the approaches discussed in this thesis.

The open issues we see as requiring further research are the ones relating to building and
sharing reusable models and metamodels. For instance, if someone wanted to reuse the UML 2.0
use case modeling extensions proposed in Chapter 4 it could simple reuse the EMF metamodel.
However, an EMF metamodel only contains the abstract syntax of the composition of the modeling
elements. It does not contain concrete syntax or semantics associated with the metamodel. These
parts of a domain-specific modeling environment are usually specified in code (in the Eclipse
modeling project, GMF provides support for modeling a significant part of the graphical user
interface) with the exception, probably, of model constraints that can be also specified, for instance,
in an OCL model. As such, the resulting domain-specific modeling environment is still a code base
project and is usually deployed as an Eclipse plugin. An Eclipse plugin is reusable according to
code reuse rules, not model reuse rules. An approach could be to provide the metamodeling tools
with support for modeling semantics, for instance, by supporting action modeling. An example of
how EMF can be extended in such a way can be found in the Kermeta project [Kermeta 2007].

6.2 Perspectives and Future Work

- 163 -

 Another related technical issue that must be tackled before a mainstream adoption of model
driven approaches is the automatic support for maintaining and enforcing relations between model
elements. Actually the invocation of queries to verify relations and transformations to enforce them
is a manual activity. These are the fundamental technical issues that, in our perspective, are
required to be addressed by the research community in order to model driven development
approaches become mainstream technology. We see that a possible approach could be addressed by
the concept of metamodel and model modules. These reusable modules should include: metamodels
with abstract and concrete syntax (visual and/or textual); validation rules; mapping rules (relations
and transformations); metamodel semantics; and models (i.e., instances of metamodels). These
modules could then be shared, for instance, using web services. Actually, for instance, ATL
transformations sources can be accessed at the ATL transformation zoo web site and some
transformations are also accessible as web services [ATL 2007a]. Of course, all of these elements
should be specified also as models. Metamodeling tools would have to support these concepts.

An issue that naturally would rise is that of interoperability between different metamodeling
tools. This kind of issue is actually being addressed by the concept of technical spaces [Bezivin
2005]. These are generic issues of model driven approaches, not specific to software product line
approaches. These are also deep technical issues which require significant research resources and,
as such, will probably not be our next research topics.

In the near future we see our research effort being focused on more pragmatic issues that are
directly related to the work presented in this thesis that we see feasible to accomplish with the
actual existing tools. Similarly to the approaches discussed in this thesis, we propose to tackle these
issues with techniques and methods which can be supported by current tools or by adapting existing
tools.

Technical and Methodological support
This thesis is fundamentally about software development methods. Particularly, we have
approached very specific issues in tasks that generically can be a part of a process for the model
driven development of software product lines. These tasks are presented in Figure 106. There are
much more components of a software engineering method. For instance, we have left out several
very important tasks, such as: scoping; management; deployment; configuration; quality
assessment; and evolution. We also did not explore the global process flow, e.g., data-flow between
tasks, iterations, and roles. So, there are a lot of potential research fields to explore. Next, we will,
however, only discuss the topics that we see as natural follow up research issues of this thesis.

If we observe Figure 106, we see three development tasks that have not been addressed by this
thesis: elicitation of requirements; create state model and create code base.

Regarding requirements, there are essentially three kinds of sources of domain knowledge: human;
non-structured textual documentation; structured technical documentation (e.g., source code and
models). We see much space for automating as much as possible the task related to requirements
identification and elicitation. Some approaches were discussed in Chapter 2. This kind of
approaches could be of great help for companies trying to convert traditional approaches of
software development to the product line approach. For such, tools for manipulating source code
artifacts, such as, ASF+SDF could be adopted [Brand et al. 2001]. However, some issues still have
to be tackled. For instance, how to identify variation points, features, and use cases from existing
source code?

Chapter 6: Conclusion

- 164 -

Other important aspect in introducing a software product line approach in a company, which
can also be automated to some degree, is the reuse of existing components for the implementation
of features. Here, we see some potential to with our approach of mappings between features, use
cases and use case realizations (i.e., component collaborations). These mappings could help the
matching between features and its characteristic (e.g., binding time) and the characteristics of
potential reusable components.

For the create code base task (see Figure 106) we see two possible approaches. One is to
consider that code is also a model. This is a more radical approach that we do not see as a realistic
research topic for us, at least before the previously discussed model driven fundamental issues are
tackled. Another approach is to adopt a mixed model and code based approach. In this case, code
automatically generated and maintained based on models and hand written code must coexist. One
approach to keep of booth code bases coherent is to join them by using interface based design
patterns, such as the ones presented in [Gamma et al. 1995] (e.g., factory, strategy and bridge). For
the generation of code from models several approaches can be used, such as MOF Model to Text
[Mof2Text 2007] and JET [JET 2007]. Related to this issue is the task create state model (see
Figure 106). Using state machines to model the state of components and classes is a common
development task. Modeling variability in state machines has also been discussed in [Gomaa 2005].
Possible approaches for the generation of code from state machine models with variability have
been presented and discussed in [Chauvel et al. 2005].

Multi-staged domain specific modeling is a topic of particular interest to us. This interest has
its origins in a problem we have identified during a recent project with a software development
company. The approach we have presented in Chapter 5 was to some extent inspired by a similar
approach described in [Czarnecki et al. 2005]. Although our approach is aimed at tackling the
specific problems that were described in Chapter 5, we see the approach as having a lot of potential
for covering related issues, for instance, to support the multi-staged configuration of feature
models. Therefore, the investigation of the possibility of generalization of the approach is a natural
follow up of the work presented in this thesis.

We are certain that we have only tackled specific issues in this field of research and that we are
still far from a complete model driven approach to software product line development. However,
we truly hope this work can help practitioners in the current overwhelming task of adopting model
driven and product line approaches. For the research community, this thesis contributes to the
foundations of the novel model driven approach to software product line development, particularly
at the computation independent model level. We hope this thesis contributes to a deeper interest in
research topics related to the model driven development of software product lines, which we see as
a very promising approach in software engineering.

6.3 References
[ATL 2007a] INRIA, "ATL Transformations Zoo," Available at
http://www.eclipse.org/m2m/atl/atlTransformations/, 2007.

[ATL 2007b] INRIA, "Atlas Transformation Language," Available at
http://www.eclipse.org/m2m/atl/, 2007.

[Bezivin 2005] Bezivin, J., "Model Driven Engineering: Principles, Scope, Deployment and
Applicability," Generative and Transformational Technics in Software Engineering, Braga,
Portugal, 2005.

6.3 References

- 165 -

[Brand et al. 2001] Brand, M. G. J. v. d., A. v. Deursen, J. Heering, H. A. d. Jong, M. d. Jonge, T.
Kuipers, P. Klint, L. Moonen, P. A. Olivier, Scheerder, J. J. Vinju, E. Visser and J. Visser,
"The Asf+Sdf Meta-Environment: a Component-Based Language Development
Environment," IEEE Conference in Computational Complexity, 2001.

[Chauvel et al. 2005] Chauvel, F. and J.-M. Jezequel, "Code generation from UML models with
semantic variation points," MODELS/UML'2005, Montego Bay, Jamaica, 2005.

[Czarnecki et al. 2005] Czarnecki, K., S. Helsen and U. Eisenecker, "Staged Configuration
Through Specialization and Multi-Level Configuration of Feature Models," Software
Process Improvement and Practice, special issue on "Software Variability: Process and
Management", vol. 10, pp. 143-169, 2005.

[DSL 2007] Microsoft, "DSL Tools for Visual Studio," Available at
http://msdn2.microsoft.com/en-us/vstudio/aa718368.aspx, 2007.

[EMF 2007] Eclipse Foundation, "Eclipse Modeling Framework," Available at
http://www.eclipse.org/emf/, 2007.

[Fontoura et al. 2000] Fontoura, M., W. Pree and B. Rumpe, "The UML Profile for Framework
Architectures," 2000.

[Gamma et al. 1995] Gamma, E., R. Helm, R. Johnson and J. Vlissides, Design Patterns - Elements
of Reusable Object-Oriented Software: Addison-Wesley, 1995.

[Gears 2007] BigLever, "Gears," Available at http://www.biglever.com/solution/product.html,
2007.

[GMF 2007] Eclipse Foundation, "Graphical Modeling Framework," Available at
http://www.eclipse.org/gmf/, 2007.

[Gomaa 2005] Gomaa, H., Designing Software Product Lines with UML: Addison Wesley, 2005.

[JET 2007] Eclipse Foundation, "Eclipse JET - Java Emitter Templates," Available at
http://www.eclipse.org/emft/projects/jet/, 2007.

[Kermeta 2007] Triskell Project, "Kermeta," Available at http://www.kermeta.org/, 2007.

[Ledeczi et al. 2001] Ledeczi, A., M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason, G.
Nordstrom, J. Sprinkle and P. Volgyesi, "The Generic Modeling Environment,"
WISP'2001, Budapest, Hungary, 2001.

[Mof2Text 2007] OMG, "MOF Models to Text Transformation Language, Beta 2, (ptc/07-08-16),"
Available at http://www.omg.org, 2007.

[Muthig et al. 2004] Muthig, D., I. John, M. Anastasopoulos, T. Forster, J. Dorr and K. Schmid,
"GoPhone - A Software Product Line in the Mobile Phone Domain," IESE 025.04/E, 2004.

[openArchitectureWare 2007] openArchitectureWare.org, "openArchitectureWare platform for
model driven software development," Available at www.openarchitectureware.org, 2007.

Chapter 6: Conclusion

- 166 -

[Rhapsody 2007] Telelogic, "Rhapsody," Available at http://modeling.telelogic.com/, 2007.

[Shaw 2003] Shaw, M., "Writing Good Software Engineering Research Papers," 25th International
Conference on Software Engineering, 2003.

[SmartQVT 2007] France Telecom, "SmartQVT - Open Source Transformation Tool Implementing
the MOF 2.0 QVT-Operational Language," Available at http://smartqvt.elibel.tm.fr/, 2007.

- 167 -

Appendix A: Experimental
Implementation of Use Case Modeling

Environment
This appendix presents details about the experimental implementation of a use case modeling
environment for supporting the MoDeLine method. This experimental implementation was done
using the Generic Modeling Environment (GME).

Figure 107: Editing constraints in the MetaGME paradigm.

GME is part of the MultiGraph Architecture (MGA), a toolset for creating model-integrated
program synthesis (MIPS) environments. These tools are publicly available at
http://escher.isis.vanderbilt.edu/.

MIPS environments provide a means for evolving domain-specific applications through the
modification of models and re-synthesis of applications. In GME, a modeling paradigm defines the
family of models that can be created using the resultant MIPS environment. A metamodel is a
formalized description of a particular modeling language, and is used to configure GME itself. In
Figure 107 we see how the GME environment is used to model the MetaGME paradigm. The
MetaGME is the paradigm that is used in the synthesis of a modelling environment that transforms
GME in a MIPS environment. Not all MIPS environment is implemented using models; some
components are implemented using Microsoft’s COM technology as extensions to GME (e.g.,
model decorators and model interpreters). It is also possible to observe in Figure 107 some of the
modeling concepts used to create paradigms.

Appendix A: Experimental Implementation of Use Case Modeling Environment

- 168 -

Figure 108: Creating a new modeling project based on MetaGME.

In GME, all models must be created from registered metamodels (i.e., paradigms). For
instance, for creating the use case modeling environment presented in this appendix the MetaGME
paradigm must be selected, as illustrated in Figure 108.

Figure 109: GME metamodel paradigm sheet for Use Case.

Figure 109 presents GME adapted according to the MetaGME paradigm. It is also possible to
observe part of the use case metamodel specified using the MetaGME modeling concepts that
appears on the bottom of Figure 109.

- 169 -

Figure 110 illustrates another part (paradigm sheet) of the use case metamodel. The part of the
metamodel that is visible contains details of the specification of the Extend relationship.

Figure 110: GME paradigm sheet for the Extend relationship.

Figure 111: GME paradigm sheet for modeling the behavior of use cases with Activities.

Appendix A: Experimental Implementation of Use Case Modeling Environment

- 170 -

Figure 111 presents the part of the metamodel that specifies the behavior of use cases. As the
reader can observe from Figure 111, the behavior of use cases is based on activity diagrams.

Not all components of the MIPS environment are specified by models. For instance, Figure
112 illustrates the decorator that was developed in Microsoft’s Visual Studio to adapt some parts of
the visual representation of model elements (for which GME automatically provides default visual
representations and visual editors) according to the visualization requirements for our use case
modeling environment.

Figure 112: Implementing the COM use case decorator in Microsoft Visual Studio.

Figure 113: Creating a new GME project based on the new use case paradigm (metamodel).

- 171 -

Figure 114: Editing use case models with the GME environment adapted to the new use case paradigm.

Figure 115: Modeling the behavior of use case Renew Loan with activity diagrams.

Appendix A: Experimental Implementation of Use Case Modeling Environment

- 172 -

Once the metamodel is completed and validated (i.e., passes all the validation constraints on
the MetaGME paradigm) it can be registered and used to create models. Figure 113 presents the use
case paradigm registered and selected for adapting GME to be used as a use case modeling
environment.

Figure 114 presents GME being used to model use cases for a library software product line. In
Figure 115 we see another perspective of the use case modeling environment. In this case it is
being used to model the behavior of a use case with an activity diagram.

- 173 -

Appendix B: Experimental
Implementation of Model

Transformations
This appendix is about experimental implementation of model transformations between use cases
and feature models with EMF and SmartQVT. These experimental implementations are related to
the topics discussed in the first part of Chapter 5.

EMF is a project of Eclipse that consists of a modeling framework and code generation facility
for building tools and other applications based on a structured data model. This tool is available at
http://www.eclipse.org/modeling/emf/.

SmartQVT is a model transformation tool implementing the MOF 2.0 QVT-Operational
language. This tool is available at http://smartqvt.elibel.tm.fr/. The SmartQVT accepts as input for
the model transformations models in the EMF format.

EMF and SmartQVT are plugins of the Eclipse open development platform available at
http://www.eclipse.org/.

Figure 116: Editing, with EMF, a domain use case metamodel, i.e., a use case metamodel with support for
variability annotations.

Figure 116 presents how EMF can be used to construct a metamodel for supporting the
creation of an environment for modeling domain use cases. The modeling concepts that can be used
to create metamodels are visible in the tool palette. Since the initial design of EMF was inspired by

Appendix B: Experimental Implementation of Model Transformations

- 174 -

the MOF standard, the concepts that appear in the tool palette are based on the MOF concepts. In
fact, the metamodel used in EMF (Ecore) corresponds to a subset of MOF called EMOF (Essential
MOF).

Figure 117: Generating model, edit, editor and test code from the use cases genmodel.

Figure 118: Inspecting the generated code for the UseCase element.

- 175 -

After creating a metamodel with EMF it is possible to generate code to support an environment
for constructing models that are in conformance with the metamodel. For that, a genmodel must be
created. A genmodel is basically a model that is based on the created metamodel, but has
annotations that configure the generation process. It can be automatically created by EMF based on
a metamodel. In Figure 117 we see how the generation process can be invoked.

Figure 119: Editing GMF graph metamodel for the domain use case metamodel.

Figure 120: Domain use case model plugins installed in Eclipse.

Appendix B: Experimental Implementation of Model Transformations

- 176 -

Figure 118 presents several views of the code that was generated by EMF based on the
metamodel of the domain use cases presented in Figure 116. The code generated is included in
Eclipse plugin projects. Therefore, if properly deployed to an Eclipse installation they extend that
Eclipse installation to support the generated modeling environments. Figure 120 presents an
Eclipse installation with some modeling plugins configured.

Figure 121: Editing feature metamodel in EMF.

Figure 122: Editing QVT code and inspecting generated QVT operational model for use case to feature
transformation.

- 177 -

Figure 121 presents the metamodel for features. This metamodel is used for the generation of
the modeling environment for supporting modeling feature diagrams. This process is similar to the
one described for domain use case models.

The graphical support generated by EMF for the edition of models is based on a tree interface.
If the generated code is not adequate for specific requirements it can be adapted manually, since
EMF has support for integrating generated code and manually edited code. Other possibility
consists in using GMF (Graphical Modeling Framework) to generate more complex graphical
visualization and editing support for EMF metamodels. GMF is also an Eclipse project and is
available at http://www.eclipse.org/gmf/. For instance, Figure 119 presents how GMF was used to
generate a graphical representation for the domain use case models that was more similar to the
presentation notation proposed by the UML standard.

Figure 123: Coding, in Java, a helper function used in the feature to Ecore transformation.

Figure 122 presents the creation of the domain use case model to feature model transformation
specification using SmartQVT. In the figure it is possible to observe not only the source code of the
transformation in the QVT operational language but also the model that represents the
transformation code. This model is generated by the SmartQVT parser. The model that results from
the parser is used as input for the SmartQVT compiler. The result of the compiler is Java code that
implements the transformation.

The QVT language supports its extension by means of external functions that are called black
box. These can be used to declare operations (queries, helpers or mappings) that are implemented
in another language than QVT. In the case of SmartQVT these operations can be implemented in

Appendix B: Experimental Implementation of Model Transformations

- 178 -

Java. Figure 123 presents how this characteristic was used to implement several extensions to the
QVT language that were required to implement the feature to Ecore model transformation.
Essentially, our extensions added support in QVT for accessing model metadata and to be able to
manipulate models in an untyped way.

Figure 124: Using the use case editor generated with EMF to create a domain use case model for a library
product line.

Figure 124 presents Eclipse being used to construct a domain use case model for a library
product line. The model is being created using the modeling environment that was generated based
on the metamodel presented in Figure 116. After the domain use case model is created the
transformation domain use case model to feature model can be invoked to obtain a feature model.
In the middle of Figure 125 we see part of the generated feature model. This feature model can be
transformed into a configuration metamodel by invoking the transformation partially depicted in
Figure 123. This results in an Ecore model that can be used to automatically generate a modeling
environment to construct feature configurations that conform to the feature model that resulted
from the domain use case model.

The final step in this process is to obtain a use case model that reflects a feature configuration.
For that, the transformation domain use case model to product use case model must be invoked. As
described in Chapter 5, this transformation has three input models and one output model. The input
models are: the domain use case model; the feature model; and the configuration model. The output
model is the product use case model that results from selecting from the domain use case model
only the elements that are related to the features selected in the feature configuration model. In the
top of Figure 125 we can observe the resulting product use case model.

- 179 -

Figure 125: Inspecting the feature model generated from a domain use case model of the library product line
and a use case model that resulted from a feature configuration.

- 181 -

Appendix C: Experimental
Implementation of Multi-Staged

Modeling Approach

This appendix presents an experimental implementation of the multi-staged modeling approach that
was discussed in Chapter 5 with EMF and SmartQVT.

EMF is a project of Eclipse that consists of a modeling framework and code generation facility
for building tools and other applications based on a structured data model. This tool is available at
http://www.eclipse.org/modeling/emf/.

SmartQVT is a model transformation tool implementing the MOF 2.0 QVT-Operational
language. This tool is available at http://smartqvt.elibel.tm.fr/. The SmartQVT accepts as input for
the model transformations models in the EMF format.

EMF and SmartQVT are plugins of the Eclipse open development platform available at
http://www.eclipse.org/.

Figure 126 presents Eclipse and EMF being used to edit a metamodel for insurance agreements
(stage N of the multi-stage approach). This metamodel is called the specialization metamodel.
According to our approach, this metamodel must be annotated in a way that can be used to guide
the model transformations according to the patterns that were presented in Chapter 5. Figure 127
presents the agreement metamodel being annotated.

Figure 126: Editing a metamodel for insurance agreements (stage N).

Appendix C: Experimental Implementation of Multi-Staged Modeling Approach

- 182 -

Figure 127: Annotating the insurance agreement metamodel with annotations to guide the transformations
(stage N).

Figure 128: Entering a model of an insurance car agreement with the agreement modeling environment (stage
N+1).

After creating the agreement metamodel it is possible to generate code to support an
environment for constructing models that are in conformance with that metamodel. This generated

- 183 -

environment is used, according to our multi-stage modeling approach, as a domain-specific
modeling environment. Figure 128 presents Eclipse being used as a domain-specific modeling
environment. In this case it is being used to model a insurance car agreement.

Figure 129: Inspecting the instantiation model (ecore model) of stage N obtained from the annotated
agreement metamodel.

Figure 130: Inspecting the metamodel of stage N+1 that was obtained by promoting the insurance car
agreement model of stage N

Appendix C: Experimental Implementation of Multi-Staged Modeling Approach

- 184 -

According to our approach, at each stage the specialization metamodel is used to generate the
instantiation model (that is an ecore model) using the instantiation transformation. Figure 129
presents the instantiation model that resulted from the instantiation transformation on the
agreement metamodel.

From the models created with the domain-specific modeling environment of each stage it is
possible to generate the next specialization metamodel. Figure 130 presents the specialization
metamodel that results from the specialization promotion transformation applied on the insurance
car agreement model presented in Figure 128. The resulting specialization metamodel can be used
to generate the domain-specific modeling environment for the next stage. This process can be
repeated for each required modeling stage.

.

