
A First Look at RISC-V Virtualization from an
Embedded Systems Perspective

Bruno Sá, José Martins, Sandro Pinto
Centro ALGORITMI, Universidade do Minho, Portugal

bruno.vilaca.sa@gmail.com, {jose.martins, sandro.pinto}@dei.uminho.pt

F

Abstract—This article describes the first public implementation and
evaluation of the latest version of the RISC-V hypervisor extension
(H-extension v0.6.1) specification in a Rocket chip core. To perform
a meaningful evaluation for modern multi-core embedded and mixed-
criticality systems, we have ported Bao, an open-source static partition-
ing hypervisor, to RISC-V. We have also extended the RISC-V platform-
level interrupt controller (PLIC) to enable direct guest interrupt injection
with low and deterministic latency and we have enhanced the timer
infrastructure to avoid trap and emulation overheads. Experiments were
carried out in FireSim, a cycle-accurate, FPGA-accelerated simulator,
and the system was also successfully deployed and tested in a Zynq
UltraScale+ MPSoC ZCU104. Our hardware implementation was open-
sourced and is currently in use by the RISC-V community towards the
ratification of the H-extension specification.

Index Terms—Virtualization, RISC-V, H-extension, Hypervisor, Parti-
tioning, Mixed-criticality, Embedded Systems.

1 INTRODUCTION

In the last decade, virtualization has become a key enabling
technology for servers, but also for several embedded industries
such as the automotive and industrial control [1], [2]. In the
embedded space, the number of requirements has been steadily
increasing for the past few years. At the same time, the market
pressure to minimize size, weight, power, and cost (SWaP-C) has
pushed for the consolidation of several subsystems, typically with
distinct criticality levels, onto the same hardware platform [3], [4].
In response, academia and industry have focused on developing
hardware support to assist virtualization (e.g., Arm Virtualization
Extensions), and adding upstream support for these technologies
in mainstream hypervisor solutions [5], [6].

Embedded software stacks are progressively targeting pow-
erful multi-core platforms, endowed with complex memory hi-
erarchies [7], [8]. Despite the logical CPU and memory isolation
provided by existing hypervisor layers, there are several challenges
and difficulties in proving strong isolation, due to the recip-
rocal interference caused by micro-architectural resources (e.g.,
last-level caches, interconnects, and memory controllers) shared
among virtual machines (VM) [2], [5]. This issue is particularly
relevant for mixed-criticality applications, where security- and
safety-critical applications need to coexist along non-critical ones.
In this context, a malicious VM can either implement denial-of-
service (DoS) attacks by increasing their consumption of a shared
resource [3], [9] or to indirectly access other VM’s data leveraging
existing timing side-channels [10]. To tackle this issue, industry

has been developing specific hardware technology (e.g., Intel
Cache Allocation Technology) and the research community have
been very active proposing techniques based on cache locking,
cache/page coloring, or memory bandwidth reservations [5], [8],
[11]–[13].

Recent advances in computing systems have brought to light
an innovative computer architecture named RISC-V [14]. RISC-
V distinguishes itself from traditional platforms by offering a free
and open instruction set architecture (ISA) featuring a modular and
highly customizable extension scheme that allows it to scale from
tiny embedded microcontrollers up to supercomputers. RISC-
V is going towards mainstream adoption under the premise of
disrupting the hardware industry such as Linux has disrupted the
software industry. As part of the RISC-V privileged architecture
specification, hardware virtualization support is specified through
the hypervisor extension (H-extension) [15]. The H-extension
specification is currently in version 0.6.1, and no ratification
has been achieved so far. To date, the H-extension has achieved
function completeness with KVM and Xvisor in QEMU. However,
none hardware implementation is publicly available yet, and
commercial RISC-V cores endowed with hardware virtualization
support are not expected to be released in the foreseeable future.

In this work, we share our experience while providing the
first public hardware implementation of the latest version of the
RISC-V H-extension in the Rocket core [16]. While the speci-
fication is intended to fulfil cloud and embedded requirements,
we focused our evaluation on modern multi-core embedded and
mixed-criticality systems (MCS). In this context, we have ported
Bao [2], a type-1, open-source static partitioning hypervisor, to
RISC-V. In the spirit of leveraging the hardware-software codesign
opportunity offered by RISC-V, we have also performed a set of
architectural enhancements in the interrupt controller and the timer
infrastructure aiming at guaranteeing determinism and improving
performance, while minimizing interrupt latency and inter-hart
interference. The experiments carried out in FireSim [17], a cycle-
accurate, FPGA-accelerated simulator, and corroborated in Zynq
UltraScale+ MPSoC ZCU104, demonstrate significant improve-
ments in performance (<1% overhead for hosted execution) and
interrupt latency (>89% reduction for hosted execution), at a frac-
tion of hardware costs (11% look-up tables and 27-29% registers).
We released our hardware design as open source1 and the hardware
is currently being used as a reference implementation by the RISC-

1. https://github.com/josecm/rocket-chip/tree/hyp

ar
X

iv
:2

10
3.

14
95

1v
2

 [
cs

.A
R

]
 1

6
A

ug
 2

02
1

V International2 to ratify the H-extension specification.
In summary, with this work, we make the following contribu-

tions:

• the first public and open source implementation of the
latest version of the RISC-V H-extension (v0.6.1) in a
Rocket Chip core (Section 3);

• a set of hardware enhancements, in the platform-level in-
terrupt controller and the architectural timer infrastructure,
to tune virtualization support for embedded and mixed-
criticality requirements (Section 4);

• the port of the open source Bao hypervisor for RISC-V
(Section 5);

• the development of an open source ad-hoc testing frame-
work that enable the raw functional validation of fine-grain
features of the hypervisor specification (Section 6.1);

• the first public and cycle-accurate evaluation of the H-
extension in a RISC-V core. We focused on hardware
costs, performance overhead, inter-VM interference, and
interrupt latency (Section 6);

2 RISC-V VIRTUALIZATION SUPPORT

The RISC-V privilege architecture [15] features originally three
privilege levels: (i) machine (M) is the highest privilege mode and
intended to execute firmware which should provide the supervisor
binary interface (SBI); (ii) supervisor (S) mode is the level where
an operating system kernel such as Linux is intended to execute,
thus managing virtual-memory leveraging a memory management
unit (MMU); and (iii) user (U) for applications. The modularity
offered by the ISA allows implementations featuring only M
or M/U which are most appropriate for small microcontroller
implementations. However, only an implementation featuring the
three M/S/U modes is useful for systems requiring virtualization.
The ISA was designed from the ground-up to be classically
virtualizable [18] by allowing to selectively trap accesses to virtual
memory management control and status registers (CSRs) as well
as timeout and mode change instructions from supervisor/user
to machine mode. For instance, mstatus’s trap virtual memory
(TVM) bit enables trapping of satp, the root page table pointer,
while setting the trap sret (TSR) bit will cause the trap of the sret
instruction used by supervisor to return to user mode. Furthermore,
RISC-V provides fully precise exception handling, guaranteeing
the ability to fully specify the instruction stream state at the time of
an exception. The ISA simplicity coupled with its virtualization-
friendly design allow the easy implementation of a hypervisor
recurring to traditional techniques (e.g., full trap-and-emulate,
shadow page tables) as well as the emulation of the hypervisor
extension, described further ahead in this section, from machine
mode. However, it is well-understood that such techniques incur
large performance overheads.

2.1 Hypervisor Extension

Like most other mainstream ISAs, the latest draft of the RISC-
V privilege architecture specification offers hardware virtualiza-
tion support, i.e., the optional hypervisor extension (”H”), to
increase virtualization efficiency. As illustrated by Fig. 1, the H-
extension modifies the supervisor mode to an hypervisor-extended
supervisor mode (HS-mode), which similarly to Intel’s VT-x root

2. former RISC-V Foundation

Hypervisor

Firmware (SBI)

D
e
c
r
e
a
s
in

g

P
r
iv

il
e
g

e
 l
e
v
e
l

M

Guest OS

Guest User Space

Virtualised

Environment

Non-virtualised

Environment

HS

VS

VU

M

HS

UHost User Space

Fig. 1: RISC-V privileged levels: machine (M), hypervisor-
extended supervisor (HS), virtual supervisor (VS), and virtual user
(VU).

mode, is orthogonal to the new virtual supervisor mode (VS-
mode) and virtual user mode (VU-mode), and therefore can easily
accommodate both bare-metal and hosted (a.k.a. type-1 and -
2) as well as hybrid hypervisor architectures. Unavoidably, the
extension also introduces two-stage address translations where
the hypervisor controls the page tables mapping guest-physical
to host-physical addresses. The virtualization mode is controlled
by the implicit V bit. When V is set, either VU- or VS-mode are
executing and 2nd stage translation is in effect. When V is low, the
system may execute in M-, HS- or U- mode. The extension defines
a few new hypervisor instructions and CSRs, as well as extends
existing machine CSRs to control the guest virtual memory and
execution. For example, the hstatus allows the hypervisor to track
and control virtual machine exception behavior, hgatp points to
the 2nd-stage root page table, and the hfence instructions allow
the invalidation of any TLB entries related to guest translations.
Additionally, it introduces a set of virtual supervisor CSRs which
act as shadows for the original supervisor registers when the V bit
is set. A hypervisor executing in HS-mode can directly access
these registers to inspect the virtual machine state and easily
perform context switches. The original supervisor registers which
are not banked must be manually managed by the hypervisor.

An innovative mechanism introduced with the H-extension
is the hypervisor virtual machine load and store instructions.
These instructions allow the hypervisor to directly access the guest
virtual address space to inspect guest memory without explicitly
mapping it in its own address space. Furthermore, because these
accesses are subject to the same permissions checks as normal
guest access, it precludes against confused deputy attacks when,
for example, accessing indirect hypercall arguments. This capabil-
ity can be extended to user mode, by setting hstatus hypervisor
user mode (HU) bit. This further simplifies the implementation of
(i) type-2 hypervisors such as KVM [6], which hosts device back-
ends in userland QEMU, or (ii) microkernel-based hypervisors
such as seL4 [19], which implement virtual machine monitors
(VMMs) as user-space applications.

With regard to interrupts, in RISC-V, there are three basic
types: external, timer, and software (essentially used as IPIs). Each
interrupt can be re-directed to one of the privileged modes by
setting the bit for target interrupt/mode in a per-hart (hardware-
thread, essentially a core in RISC-V terminology) interrupt pend-
ing bitmap, which might be directly driven by some hardware
device or set by software. This bitmap is fully visible to M-mode

through the mip CSR, while the S-mode has a filtered view of its
interrupt status through sip. This concept was extended to the new
virtual modes through the hvip, hip, and vsip CSRs. As further
detailed in Section 4, in current RISC-V implementations, a
hardware module called the CLINT (core-local interrupter) drives
the timer and software interrupts, but only for machine mode.
Supervisor software must configure timer interrupts and issue IPIs
via SBI, invoked through ecall (environment calls, i.e., system
call) instructions. The firmware in M-mode is then expected to in-
ject these interrupts through the interrupt bitmap in the supervisor.
The same is true regarding VS interrupts as the hypervisor must
itself service guest SBI requests and inject these interrupts through
hvip while in the process invoking the machine-mode layer SBI.
When the interrupt is triggered for the current hart, the process
is inversed: (i) the interrupt traps to machine software, which
must then (ii) inject the interrupt in HS-mode through the interrupt
pending bitmap, and then (iii) inject it in VS mode by setting the
corresponding hvip bit. As for external interrupts, these are driven
by the platform-level interrupt controller (PLIC) targeting both
M and HS modes. The hypervisor extensions specifies a guest
external interrupt mechanism which allows an external interrupt
controller to directly drive the VS external interrupt pending
bit. This allows an interrupt to be directly forward to a virtual
machine without hypervisor intervention (albeit in an hypervisor
controlled manner). However, this feature needs to be supported
by the external interrupt controller. Unfortunately, the PLIC is not
yet virtualization-aware. A hypervisor must fully trap-and-emulate
PLIC accesses by the guest and manually drive the VS external
interrupt pending bit in hvip. The sheer number of traps involved
in these processes is bound to impact interrupt latency, jitter, and,
depending on an OS tick frequency, overall performance. For these
reasons, interrupt virtualization support is one of the most pressing
open-issues in RISC-V virtualization. In section 4, we describe our
approach to address this issue.

The hypervisor extension also augments the trap encoding
scheme with multiple exceptions to support VS execution. For
instance, it adds guest-specific page faults exceptions for when
translations at the second stage MMU fail, as well as VS-level
ecalls which equate to hypercalls.

Finally, it is worth mentioning that the specification is tailored
to seamlessly support nested virtualization; however, nested virtu-
alization is out-of-scope of this article.

3 ROCKET CORE HYPERVISOR EXTENSION

We have implemented the RISC-V hypervisor extension in the
open-source Rocket core, a modern 5-stage, in-order, highly con-
figurable core, part of the Rocket chip SoC generator [16] and
written in the novel Chisel hardware construction language [20]
(Figure 2). Despite being possible to configure this core according
to the 32- or 64-bit variants of the ISA (RV32 or RV64, respec-
tively), our implementation currently only supports the latter. The
extension can be easily enabled by adding a WithHyp configuration
fragment in a typical Rocket chip configuration.

Hypervisor CSRs and Instructions. The bulk of our H-extension
implementation in the Rocket core revolves around the CSR
module which implements most of the privilege architecture logic:
exception triggering and delegation, mode changes, privilege
instruction and CSRs, their accesses, and respective permission
checks. These mechanisms were straightforward to implement, as
very similar ones already exist for other privilege modes. Although

Rocket Tile 0

L1D

Tile Bus

AXI To TL

AXI
Master

L2 Bank

TL To AXI

AXI
Mem

TL To AXI

AXI
Slave

Other
Device

BootROM PLICv CLINTv Debug
Unit

Front Bus

Memory Bus

Periphery Bus

Interrupt Bus

Control Bus

System Bus

L1I

Rocket Tile N

Rocket H

L1D

Tile Bus

TLBv

L1I

PTWv
1st-Stage

2nd-Stage

PTWv
Rocket H

TLBv PTWv
1st-Stage

2nd-Stage

PTWv

Fig. 2: Rocket chip diagram. H-extension and interrupt virtual-
ization enhancements (CLINTv and PLICv) highlighted in blue.
Adapted from [16].

.

most of the new CSRs and respective functionality mandated
by the specification were implemented, we have left out some
optional features. Specifically:

1) htimedelta is a register that contains the difference be-
tween the value obtained by a guest when reading the
time register and the actual time value. We expect this
register to be emulated by the firmware running in M-
mode as it is the only mode allowed to access time (see
CLINT background in section 4.1);

2) htinst and mtinst are hardwired to zero. These registers
expose a trapping instruction in an easy and pre-decoded
form so that the hypervisor can quickly handle the trap
while avoiding reading the actual guest instruction and
polluting the data cache;

3) hgatp is the hypervisor’s 2nd-stage root page-table
pointer register. Besides the pointer it allows to specify
a translation mode (essentially, page-table formats and
address space size) and the VMID (virtual machine IDs,
akin to 1st-stage ASIDs). The current implementation
does not support VMIDs and only allows for the Sv39x4
translation mode;

4) the hfence instructions, which are the hypervisor TLB
synchronization or invalidation instructions, always inval-
idate the full TLB structures. However, the specification
allows to provide specific virtual addresses and/or a
VMID to selectively invalidate TLB entries.

Nevertheless, all the mandatory H-extension features are im-
plemented and, therefore, our implementation is fully compliant
with the RISC-V H-extension specification. Table 1 summarizes
all the included and missing features.

Two-stage Address Translation. The next largest effort focused

rs1

rs2

PCGen Decode Execute Memory Write-Back

epc_mem

BTB

ICache+4 Regfile
(Read)

Sign Extend

Branch?

Mispredict?

ALU
D

IV
M

U
L

PC
Check

Select
PC

ITLBv

TO
PTW

In
st

ru
ct

io
n

Q
ue

ue

To
ITLBv

To
DTLBv

Scoreboard
(Read/Set)

DTLBv

Check alignment

Exception

To
PTW

IRQ

Load/Store Addr
Check

DCACHE

Regfile

next_pc

epc
ehpc

predict_addr

branch_addr

EPC
C

A
U

SE

EPC
C

A
U

SE

HS Load/Store

IDecode

Hfences

VS CSRs

CSRs
(READ)

HS CSRs

imm

VS CSRs

CSRs
(READ)

HS CSRs

er
et

by
pa

ss

EPC
C

A
U

SE

predict_addr

pr
ed

ic
t

ex
ce

pt
io

n

EPC
C

A
U

SE

ex
ce

pt
io

n

ep
c_

ex

Replay

re
pl

ay

VS CSRs

CSRs
(WRITE)

HS CSRs

sc
or

eb
oa

rd
(c

le
ar

)

wdata

waddr

Fetch

1st-Stage

2nd-Stage

PTWv

ex
ce

pt
io

n
re

pl
ay

m
is

pr
ed

ic
t

pr
ed

ic
t

er
et

hs
 ld

/s
t i

ns
t

vaddr

paddr

mode

vaddr

Fig. 3: Rocket core microarchitecture overview featuring the H-extension. Major architectural changes to the Rocket core functional
blocks (e.g., Decoder, PTW, TLBs, and CSRs) are highlighted in blue. Adapted from 3.

TABLE 1: Current state of Hypervisor Extension features im-
plemented in the Rocket core: fully-implemented; G# partially
implemented; # not implemented.

CSRs

hstatus/mstatus
hideleg/hedeleg/mideleg
hvip/hip/hie/mip/mie
hgeip/hgeie
hcounteren
htimedelta #
mtval2/htval
mtinst/htinst #
hgapt G#
vsstatus/vsip/vsie/vstvec/vsscratch
vsepc/vscause/vstval/vsatp

Intructions hlv/hlvx/hsv
hfence.vvma/gvma G#

Exceptions & Interrupts

Environment call from VS-mode
Instruction/Load/Store guest-page fault
Virtual instruction
Virtual Supervisor sw/timer/external
interrupts

Supervisor guest external interrupt

on the MMU structures, specifically the page table walker (PTW)
and translation-lookaside buffer (TLB), in particular, to add to
support for the 2nd-stage translation. The implementation only
supports the Bare translation mode (i.e., no translation) and the
Sv39x4, which defines a specific page table size and topology
which results in guest-physical addresses with a maximum width
of 41-bits. The modification to the PTW extends the module’s
state-machine so that it switches to perform 2nd-stage translation
at each level of the 1st translation stage (Figure 4). At each step
it merges the results of both stages. When a guest leaf PTE
(page table entry) is reached, it performs a final translation of
the targeted guest-physical address. This proved to be one of the
trickiest mechanisms to implement, given the large number of
corner cases that arise when combining different page sizes at each
level and of exceptions that might occur at each step of the process.
TLB entries were also extended to store both the direct guest-
virtual to host-physical address as well as the resulting guest-
physical address of the translation. This is needed because even

for a valid cached 2-stage translation, later accesses might violate
one of the RWX permissions, and the specification mandates that
the guest-physical address must be reported in htval when the
resulting exception is triggered. Note that the implementation
does not support VMID TLB entry tagging. We have decided
to neglect this optional feature for two mains reasons. Firstly, at
the time of this witting, the Rocket core did not even support
ASIDs. Secondly, static partitioning hypervisors (our main use
case) do not use it at all. A different hypervisor must invalidate
these structures at each context-switch. As such, the implemented
support for hfence instructions ignores the VMID argument. Fur-
thermore, they invalidate all cached TLB or walk-cache entries
used in guest translation, despite it specifying a virtual address
argument, or being targeted at only the first stage (hfence.hvma)
or both stages (hfence.gvma). To this end, an extra bit was added
to TLB entries to differentiate between the hypervisor and virtual-
supervisor translations. Finally, we have not implemented any
optimizations such as dedicated 2nd-stage TLBs as many modern
comparable processors do, which still leaves room for important
optimizations.

Hypervisor Virtual-Machine Load and Store Instructions. De-
spite most of the implementation being straightforward, because it
mainly involved replicating or extending existing or very similar
functionality and mechanisms, the most invasive implemented
feature was the support for hypervisor virtual-machine load and
store instructions. This is because, although RISC-V already
provided mechanisms for a privilege level to perform memory
accesses subject to the same translation and restrictions of a lower
privilege (such as by setting the modify privilege - MPRV - bit in
mstatus), these sync the pipeline instruction stream which results
in the actual access permission modifications being associated
with the overall hart state and not tagged to a specific instruction.
As such, we added dedicated signals that needed to be propagated
throughout the pipeline starting from the decode stage, going
through the L1 data cache up to the data TLB to signal the memory
access originates from a hypervisor load/store. If this signal is set,
the TLB will ignore the current access privilege (either HS or HU),
and fetch the translation and perform the privilege checks as the

s_wait2

!l2_hit && l2_error
s_wait1

mem_req_ready &&
(!pte_cache_hit &&
(s2_act || !s2_en))s_req

(is_node && (!st1_st2_en || s2_act)) ||
(is_leaf && st1_st2_en && !st2_act && s2_final)

s_wait3

1

s_frag_super

is_leaf && level != pgLevels

!st1_st2_en

s_ready

l2_hit && !l2_error

1

!pte_cache_hit

s_switch
(is_node || (s2_final && is_leaf))

&& st1_2_en && !st2_act

l2_hit && l2_error

st2_en

pte_cache_hit

is_leaf && level ==pgLevels
&& !ptw_error

Fig. 4: PTW state machine featuring the two-stage transla-
tion. Modifications to the state machine, including a new state
(s switch) to switch the translation between the two stages (e.g.,
change the root page-table pointer), are highlighted in blue.

access was coming from a virtual machine (VS or VU). Similar
signals already existed for the fence instructions.

Other modifications. The Rocket chip generators truncate physi-
cal address width signals to the maximum needed for the config-
ured physical address space. Thus, another issue we faced was the
need to adapt the bit-width of some buses and register assumed
to be carrying physical addresses to support guest-physical ad-
dresses, essentially virtual addresses. Finally, we also needed to
slightly modify the main core pipeline to correctly forward virtual
exceptions, including the new virtual instruction exception, to the
CSR module along with other hypervisor-targeted information
such as faulting guest-physical addresses to set the htval/mtval
registers.

4 INTERRUPT VIRTUALIZATION ENHANCEMENTS

As explained in the previous sections, RISC-V support for vir-
tualization still only focuses on CPU virtualization. Therefore,
as illustrated in Figure 2, we have also extended other Rocket
chip components, namely the PLIC and the CLINT, to tackle
some of the previously identified drawbacks regarding interrupt
virtualization.

4.1 Timer virtualization

CLINT background. CLINT is the core-level interrupt con-
troller responsible for maintaining machine-level software and
timer interrupts in the majority of RISC-V systems. To inject
software interrupts (IPIs in RISC-V lingo) in M-mode, the CLINT
facilitates a memory-mapped register, denoted msip, where each
register is directly connected to a running CPU. Moreover, the
CLINT also implements the RISC-V timer M-mode specifica-
tion, more specifically the mtime and mtimecmp memory-mapped
control registers. mtime is a free-running counter and a machine
timer interrupt is triggered when its value is greater than the
one programmed in mtimecmp. There is also a read-only time
CSR accessible to all privilege modes, which is not supposed
to be implemented but converted to a MMIO access of mtime
or emulated by firmware. Thus, M-mode software implementing
the SBI interface (e.g., OpenSBI) must facilitate timer services to

Counter

mtime

msip

mtimecmp 0

mtimecmp N

...

/
/

/

stime

stimecmp 0

stimecmp N

...

/
/

/

vstimecmp 0 /
/vstime 0

vstimecmp N /
/vstime N

...

htimedelta 0

htimedelta N

...

+/

+/

msip

mtip 0

mtip N

stip 0

stip N

vstip 0

vstip N

Fig. 5: CLINT microarchitecture with virtualization enhance-
ments. Architectural changes to include hardware support for S
and VS mode timers are highlighted in blue.

lower privileges via ecalls, by multiplexing logical timers onto the
M-mode physical timer.

CLINT virtualization overhead. Naturally, this mechanism in-
troduces additional burdens and impacts the overall system per-
formance for HS-mode and VS-Mode execution, especially in
high-frequency tick OSes. As explained in section 2, a single
S-mode timer event involves several M-mode traps, i.e., first
to set up the timer and then to inject the interrupt in S-mode.
This issue is further aggravated in virtualized environments as it
adds extra HS-mode traps. The simplest solution to mitigate this
problem encompasses providing multiple independent hardware
timers directly available to the lower privilege levels, HS and VS,
through new registers analogous to the M-mode timer registers.
This approach is followed in other well-established computing
architectures. For instance, the Armv8-A architecture has separate
timer registers across all privilege levels and security states.

CLINT virtualization extensions. As detailed in Table 2, we
added read-only stime and vstime, as well as read/write stimecmp
and vstimecmp memory-mapped registers to the CLINT. Fur-
thermore, we implemented a memory-mapped version of the
htimedelta CSR, which defines a drift of time as viewed from VS-
or VU-mode perspectives. In our implementation (see Figure 5),
htimedelta will be reflected in the value of vstime, by adding it to
the value of mtime. Adopting such approach would enable S-mode
software to directly interact with its timer and receive interrupts
without firmware mediation. In CLINT implementations each type
of timer registers are mapped onto separate pages. However, hart
replicas of the same register are packed contiguously in the same
page. As such, with this approach, the hypervisor still needs
to mediate VS- register access as it cannot isolate VS registers
of each individual virtual hart (or vhart) using virtual memory.
Nevertheless, traps from HS- to M-mode are no longer required,
and when the HS and VS timer expires, the interrupt pending bit
of the respective privilege level is directly set.

TABLE 2: CLINT memory map. In bold, the new HS and VS
timer registers.

Field Offset(hex) Description
msip n 0x00000 + (n*4) M-mode hart n software interrupt

mtimecmp n 0x04000 + (n*8) Compare value for the M-mode
hart n timer

mtime 0x0bff8 Current time value

stimecmp n 0x0c000 + (n*8) Compare value for the S
or HS-mode hart n timer

stime 0x1bff8 Current time value for S-mode
(RO replica of mtime)

vstimecmp n 0x1c000 + (n*8) Compare value for the
VS-mode hart n timer

vstime n 0x14000 + (n*8)
Current time value for the
VS-mode hart n
(mtime + htimedelta n)

htimedelta n 0x24000 + (n*8)

Holds the current time delta
between the value of the time
CSR and the value returned
in VS-mode hart n

CLINTv vs Other proposals. Concurrently to our work, there
have been some proposals discussed among the community to
include dedicated timer CSRs for HS and VS modes. The latest
one which is officially under consideration, at a high-level, is very
similar to our implementation. However, there are differences with
regard to: firstly, it does not include stime and vstime registers but
only the respective timer compares; secondly, and more important,
we add the new timer registers as memory-mapped IO (MMIO) in
the CLINT, and not as CSRs. The rationale behind our decision
is based on the fact that the RISC-V specification states that the
original M-mode timer registers are memory-mapped, due to the
need to share them between all harts as well as due to power
and clock domain crossing concerns. As the new timers still
directly depend on the original mtime source value, we believe
its simpler to implement them as MMIO, centralizing all the
timer logic. Otherwise, every hart would have to continuously be
aware of the global mtime value, possibly through a dedicated bus.
Alternatively, it would be possible to provide the new registers, as
well as htimedelta, through the CSR interface following the same
approach as the one used for time, i.e., by converting the CSR
accesses to memory accesses. This approach would, however, in
our view, add unnecessary complexity to the pipeline as supervisor
software can always be informed of the platform’s CLINT physical
address through standard methods (e.g., device tree).

4.2 PLIC virtualization

PLIC background. The PLIC is the external interrupt controller
used in most current RISC-V systems. The PLIC is capable
of multiplexing multiple devices interrupts to one or more hart
contexts. More specifically, up to 1023 devices interrupt lines can
be connected to the PLIC, each with its configurable priority. PLIC
contexts represent a set of registers and external interrupts lines,
each targeting a specific privilege level within a given hart (see
Fig. 6). Each line will drive the corresponding privilege bit in the
hart global external interrupt pending bitmap. Part of each context,
the PLIC provides registers for interrupt enabling as well as for
interrupt handling: upon entry on an interrupt handler, software
reads a context claim register which returns the interrupt ID that
triggered the interrupt. To complete the interrupt handling process,

3. https://inst.eecs.berkeley.edu/∼cs250/fa13/handouts/lab2-riscv.pdf

PLIC

M-mode External Interrupt

S-mode External Interrupt

VS-mode External Interrupt 0

VS-mode External Interrupt GLEIN-1

HART 0

HART 1

HART N

Fig. 6: High-level virtualization-aware PLIC logic.

the hart must write back to the complete register the retrieved
interrupt ID. The claimed interrupt will not be re-triggered until
the interrupt during this process. Beyond that, PLIC also supports
context interrupt masking through the threshold register, i.e., inter-
rupts with priority lower than the threshold value are not delivered
to the context. Importantly, each set of claim/complete/threshold
registers is mapped onto a different physical memory page.

PLIC virtualization overhead. Currently, only M-mode and S-
mode contexts are supported (grey lines in Fig. 6), meaning the
PLIC specification does not provide additional interrupt virtual-
ization support. The hypervisor is then responsible for emulating
PLIC control registers accesses and fully managing interrupt
injection into VS-mode. Emulating PLIC interrupt configuration
registers, such as enable and priority registers, may not be critical
as it is often a one-time-only operation performed during OS
initialization. However, the same does not apply to the claim/-
complete registers, which must be accessed before and after
every interrupt handler. For physical interrupts directly assigned
to guests, this is further aggravated, since it incurs in the extra trap
to the hypervisor to receive the actual interrupt before injecting it
in the virtual PLIC. These additional mode-crosses causes a drastic
increase in the interrupt latency and might seriously impact overall
system performance, especially for real-time systems that rely on
low and deterministic latencies.

PLIC virtualization enhancements. Based on the aforemen-
tioned premises, we propose a virtualization extension to the
PLIC specification4 that could significantly improve the system’s
performance and latency by leveraging the guest external interrupt
feature of the RISC-V hypervisor extension (see section 2). We
had four main requirements: (i) allow direct assignment and injec-
tion of physical interrupts to the active VS-mode hart, i.e., without
hypervisor intervention; (ii) minimize traps to the hypervisor, in
particular, by eliminating traps on claim/complete register access;
(iii) allow a mix of purely virtual and physical interrupts for a
given VM; and (iv) a minimal design with a limited amount of
additional hardware cost and low overall complexity. We started
by adding GEILEN VS-mode contexts to every hart. GEILEN

4. https://github.com/josecm/riscv-plic-spec/tree/virt

https://inst.eecs.berkeley.edu/~cs250/fa13/handouts/lab2-riscv.pdf

Context 0 Interrupt Signal

Gateway 0

Claim/Complete Logic

PLICFanIn 0

Gateway 1

<

Interrupt 0 Signal Interrupt 1 Signal

va
lid

re
ad

y

co
m

pl
et

e

va
lid

re
ad

y

co
m

pl
et

e

PLICFanIn 1

pending

enables context 0

priorities

enables context 1

treshold context 0

treshold context 0

<

claim/complete
registers

Reg ID

Max Priority

Max Priority

Format to
VIIIR

vcibir 0

vcibir 1

/

viir blk 0
viir blk 1

viir blk N

Context 1 Interrupt Signal

ibmsr blk 0

ibmsr blk 1

ibmsr blk N

Fig. 7: PLIC microarchitecture with virtualization enhancements.
Architectural changes to include support for virtual interrupt
injection are highlighted in blue.

TABLE 3: Extended memory map for the virtualization-aware
PLIC. In bold, the new virtual interrupt injection registers.

Field Offset Description

priority i 0x0000000
(i * 4) Interrupt ID i priority register

pending 0x0001000 Interrupt source pending bits.
Up to 32 sources per register.

enable c 0x0002000 +
(c * 0x80)

Interrupt source enable registers
bits for context c. Upto 32
sources per register.

threshold c 0x0200000 +
(c * 0x1000)

Priority threshold register for
context c

claim/complete c 0x0200004 +
(c * 0x1000)

Claim/Complete register for
context c

vcibir c 0x4000000 +
(c * 4)

Virtual context c injection
block ID register

viir j block n
0x4010000 +
(n * 0x1000) +
(j * 4)

Virtual interrupt injection
register j of block n

ibmsr block n 0x4110000 +
(n * 4)

Injection block management
and status register for block n

is a hypervisor specification ”macro” that defines the maximum
(up to 64) available VS external interrupt contexts that can be
simultaneously active for a hart, in a given implementation. This
is a configurable parameter in our implementation. The context
for the currently executing vhart is selected through the VGEIN
field in the hstatus CSR. Fig. 6 highlights, in blue, the external
interrupt lines associated with VS contexts that directly drive the
hart’s VS mode external interrupt pending bits. With additional
virtual contexts and independent context’s claim/complete register
pair available on separate pages, the hypervisor can allow direct
guest access to claim/complete registers by mapping them in the
guests’ physical address space, mitigating the need to trap-and-
emulate such registers. However, access to configuration registers
such as priority and enable registers are still trapped since these
registers are not often accessed and are not in the critical path of
interrupt handling. A hypervisor might assign physical interrupts
to a guest as follows. When a guest sets configurations register
fields for a given interrupt, a hypervisor commits it to hardware
in the vhart’s context if the interrupt was assigned to its VM.
Otherwise, it might save it in memory structures if it corresponds
to an existing virtual interrupt fully managed by the hypervisor.

PLICv pure virtual interrupts extensions. With direct access
to claim/complete registers at the guest level, injection of purely

virtual interrupts must also be done through the PLIC, so there are
unified and consistent forwarding and handling for all the vhart’s
interrupts. To this end, and inspired by Arm’s GIC list registers, we
added three new memory-mapped 32-bit wide register sets to the
PLIC to support this operation (see Table 3 and Figure 7): Virtual
Interrupt Injection Registers (VIIR), Virtual Context Injection
Block ID Registers (VCIBIR), and Injection Block Management
and Status Registers (IBMSR). VIIRs are grouped into page-sized
injection blocks. The number of VIIRs in a block and the number
of available blocks are implementation-defined (up to a maximum
of 1000 and 240, respectively); however, if a given block exists,
at least one register must be implemented. There are GEILEN
VCIBIR per-hart which are used to specify the source injection
block used for a given context’s virtual interrupt injection. In this
way, virtual interrupts for multiple harts belonging to a specific
VM can be injected through a single injection block, precluding
the need for complex synchronization across hypervisor harts.
Also, this allows a hart to directly inject an interrupt in a foreign
vhart without forcing an extra HS trap. Setting a context’s VCIBIR
to zero indicates that no injection block is attached.

PLICv virtual interrupt injection mechanism. Virtual interrupt
injection is done through the VIIRs which are composed of three
fields: inFlight, interruptID, and priority. Setting the VIIR with
a interruptID greater than 0 and the inFlight bit not set would
make the interrupt pending for the virtual contexts associated
with its block. The bit inFlight is automatically set when the
virtual interrupt is pending and a claim is performed indicating
that the interrupt is active, preventing the virtual interrupt from
being pending. When the complete register is written with an ID
present in a VIIR, that register is cleared, otherwise an interrupt
might be raised to signal it, as explained next. On a claim register
read, the PLIC selects the higher priority pending interrupt of
either a context’s injection block or enabled physical interrupts.
Each block is associated with a block management interrupt (akin
to GIC’s maintenance interrupt) fed back through the PLIC itself
with implementation-defined IDs. It serves to signal events related
to the block’s VIIRs lifecycle. Currently, there are two well-defined
events: (i) no VIIR pending, and (ii) claim write of an non-present
interruptID. The enabling of each type of event, signaling of
currently pending events and complementary information are done
through a corresponding IBMSR. Note that all of the new PLIC
registers are optional as the minimum number of injection blocks
is zero. If this is the case, a hypervisor might support either (i) a
VM with only purely virtual interrupts, falling back to the full trap-
and-emulate model, or (ii) a VM with only physical interrupts.

PLICv context switch. An important point regarding the PLIC
virtualization extensions we have somewhat neglected in our
design is its impact on vhart context-switch. At first sight, it
might seem prohibitively costly due to the high number of MMIO
context and block registers to be saved and restored. However we
believe this is minimized first (i) due to the possibility of having up
to GEILEN virtual contexts for each hart and a number of injection
blocks larger than the maximum possible number of active vharts;
second (ii) we expect that only a small number (1 to 4) VIIRs
are implemented in each block; and third (iii) as we expect that
physical interrupt assignment will be sparse for a given virtual
machine, an hypervisor can keep a word-length bitmap of the
enable registers that contain these interrupts, and only save/restore
the absolutely needed.

5 BAO RISC-V PORTING

Bao in a nutshell. Bao [2] is an open-source static partitioning hy-
pervisor developed with the main goal of facilitating the straight-
forward consolidation of mixed-criticality systems, thus focusing
on providing strong safety and security guarantees. It comprises
only a minimal, thin-layer of privileged software leveraging ISA
virtualization support to partition the hardware, including 1-to-1
virtual to physical CPU pinning, static memory allocation, and
device/interrupt direct assignment. Bao implements a clean-slate,
standalone component featuring about 8 KSLoC (source lines of
code), which depends only on standard firmware to initialize the
system and perform platform-specific tasks such as power man-
agement. It provides minimal inter-VM communication facilities
through statically configured shared memory and notifications in
the form of interrupts. It also implements from the get-go simple
hardware partitioning mechanisms such as cache coloring to avoid
interference in caches shared among the multiple VMs.

Bao for RISC-V. Bao originally targeted only Arm-based sys-
tems. So, we have initially ported to RISC-V using the QEMU
implementation of the H-extension. Later, this port was used in the
Rocket core with the extensions described in this article without
any friction. Given the simplicity of both the hypervisor and
RISC-V designs, in particular, the virtualization extensions and
the high degree of similarity with Arm’s Aarch64 ISA, the port
was mostly effortless. It comprised an extra 3731 SLoC compared
to Arm’s 5392 lines of arch-specific code. Nevertheless, a small
step-back arose that forced the need to modify the hypervisor’s
virtual address space mappings. For security reasons, Bao used
the recursive page table mapping technique so that each CPU
would map only the memory it needs and not map any internal
VM structures besides its own or any guest memory. RISC-V
impose some constrains given that each PTE must either serve has
a next-table pointer or a leaf PTE. Therefore, we had to modify
Bao to identity-map all physical memory, to enable performing
software page walks to build guest page tables. Another RISC-V-
specific facility we had to implement in Bao was the read guest
memory operation. This need arose because neither QEMU nor
our Rocket implementation of the H-extension provides the pre-
decoded trapped instruction on htinst. Therefore, on a guest trap
due to a page-fault that requires emulation (e.g., PLIC access),
Bao must read the instruction from guest memory and decode it in
software. Nevertheless, Bao never directly maps guest memory in
its own address space. It reads the instruction via hypervisor load
instructions. The RISC-V Bao port relies on a basic SBI firmware
implementation featuring the IPI, Timer, and RFENCE extensions.
As of this writing, only OpenSBI has been used. Bao provides SBI
services to guests so these can program timer interrupts and send
IPI between vharts. However, Bao mostly acts as a shim for most
VS- SBI calls, as the arguments are just processed and/or sanitized
and the actual operation is relegated to the firmware SBI running
in machine mode.

Bao RISC-V Limitations It is also worth mentioning there are
still some gaps in the ISA to suors like Bao. For example,
cache maintenance support operations are not standardized. At
the moment, core implementations must provide this functionality
via custom facilities. The Rocket core provides a custom machine-
mode instruction for flushing the L1 data cache. As Bao relies on
these operations to implement some of its features (e.g., cache
coloring), we have implemented a custom cache flush API in

OpenSBI that Bao calls when it needs to clean caches. Another
issue regards external interrupt support. Due to the PLIC’s virtu-
alization limitations (see section 4.2), Bao’s implementation must
fully trap and emulate guest access to the PLIC, i.e., not only
on configuration but also on interrupt delivery and processing. As
we show in section 6.4, this adds significant overheads, especially
on interrupt latency. Finally, Bao relies on IOMMU support to
be able to directly assign DMA-capable devices to guest OSes.
However, there is no standard IOMMU currently available in
RISC-V platforms (see section 8).

6 EVALUATION

The evaluation was conducted for three different SoC configura-
tions, i.e., dual-, quad-, and six-core Rocket chip with per-core
16 KiB L1 data and instruction caches, and a shared unified 512
KiB L2 LLC (last-level cache). The software stack encompasses
the OpenSBI (version 0.9), Bao (version 0.1), and Linux (version
5.9), and bare metal VMs. OpenSBI, Bao, and bare metal VMs
were compiled using the GNU RISC-V Toolchain (version 8.3.0
2020.04.0), with -O2 optimizations. Linux was compiled using
the GNU RISC-V Linux Toolchain (version 9.3.0 2020.02-2).
Our evaluation focused on functional verification (Section 6.1),
hardware resources (Section 6.2), performance and inter-VM in-
terference (Section 6.3), and interrupt latency (Section 6.2).

6.1 Functional Verification

The functional verification of our hardware implementation was
performed on a Verilator-generated simulator and on a Zynq
UltraScale+ MPSoC ZCU104 FPGA.

We have developed an ad-hoc testing framework as a bare-
metal application. Our goal was to test individual features of the
hypervisor specification without any additional system software
complexity and following a test-driven development (TDD) like
approach. During development, we have written a comprehen-
sive test suite spanning features such as two-stage translation,
exception delegation, virtual exceptions, hypervisor load-store
instructions, CSR access, just to name a few. To be able to test out
individual features, the framework provides an API which easily
allows: (i) fully resetting processor state at beginning of each test
unit; (ii) fluidly and transparently changing privilege mode; (iii)
easy access a guest virtual address with any combination of 1st
and 2nd stage permissions; and (iv) easy detection and recovery of
exceptions and later checking of its state and causes. Nevertheless,
the framework still has some limitations such as not allowing user
mode execution or experimenting with superpages. This hypervi-
sor extension testing framework and accompanying test suite are
openly available5 and can be easily adapted to other platforms.
We have also run our test suite in QEMU, unveiling bugs in the
hypervisor extension implementation, for which patches were later
submitted.

As a second step to validate our implementation we have
successfully ran two open-source hypervisors: Bao and XVisor
[21]. XVisor also provides a ”Nested MMU Test-suite” which
mainly exercises the two-stage translation. At the time of this
writing, our implementation fully passes this test suite. Some bugs
uncovered while running these hypervisors were translated into
tests and incorporated into our test suite.

TABLE 4: Rocket chip hardware resource overhead with virtual-
ization extensions

Dual-Core Quad-Core Six-Core
Rocket
Cores

LUTs 50922/11% 101744/12% 152957/12%
Regs 25086/30% 50172/30% 75258/30%

CLINT LUTs 68/375% 196/296% 269/373%
Regs 194/297% 324/336% 454/277%

PLIC LUTs 90/140% 144/236% 220/263%
Regs 83/325% 116/412% 149/460%

Others LUTs 11207/2% 13242/3% 91821/0,5%
Regs 4257/0,1% 4628/0,2% 4728/2%

Total LUTs 62287/11% 115356/11% 167753/11%
Regs 29620/27% 55250/28% 80589/29%

6.2 Hardware Overhead
To assess the hardware overhead, we synthesized multiple SoC
configurations with an increasing number of harts (2, 4, and 6).
We used Vivado 2018.3 targeting the Zynq UltraScale+ MPSoC
ZCU104 FPGA. Table 4 presents the post-synthesis results, de-
picting the number of look-up tables (LUTs) and registers for the
three SoC configurations. For each cell, there is the absolute value
for the target configuration and, in bold, the relative increment
(percentage) compared to the same configuration with the hyper-
visor extensions disabled. We withhold data on other resources
(e.g., BRAMs or DSPs) as the impact on its usage is insignificant.

According to Table 4, we can draw two main conclusions.
First, there is an overall non-negligible cost to implement the
hypervisor extensions support: an extra 11% LUTs, and 27-29%
registers. Diving deeper, we observed that this overhead comes
almost exclusively from two sources: the CSR and TLB modules.
The CSR increase is explained given the number of HS and VS
registers added by the H-extension specification. The increase in
the TLB is mainly due to the widening of data store to hold guest-
physical addresses (see section 3) and the extra privilege-level and
permission match and check complexity. The second important
point is that, although the enhancements to the CLINT and PLIC
reflect a large relative overhead, as these components are simple
and small compared to the overall SoC infrastructure, there is no
significant impact on the total hardware resources cost. Lastly, we
can also highlight that increasing the number of available harts in
the SoC does not impact the relative hardware costs.

6.3 Performance and Inter-VM Interference
To assess performance overhead and inter-hart / inter-VM in-
terference, we used the MiBench Embedded Benchmark Suite.
MiBench is a set of 35 benchmarks divided into six suites, each
one targeting a specific area of the embedded market. We focus our
evaluation on the automotive subset. The automotive suite includes
three high memory-intensive benchmarks, i.e., more susceptible
to interference due to LLC and memory contention (qsort, susan
corners, and susan edges).

Each benchmark was ran for seven different system configura-
tions targeting a six-core design: (i) guest native execution (bare);
(ii) hosted execution (solo); (iii) hosted execution with cache
coloring for VMs (solo-col); (iv) hosted execution with cache
coloring for VMs and the hypervisor (solo-hypcol); (v) hosted
execution under interference from multiple colocated VMs (in-
terf); (vi) hosted execution under interference with cache coloring
for VMs (interf-col); and (vii) hosted execution under interference

5. https://github.com/josecm/riscv-hyp-tests

with cache coloring for VMs and the hypervisor (interf-hypcol).
Hosted scenarios with cache partitioning aim at evaluating the
effects of partitioning micro-architectural resources at the VM and
hypervisor level and to what extent it can mitigate interference. We
execute the target benchmark in a Linux-based VM running in one
core, and we add interference by running one VM pinned to five
harts, each running a bare-metal application. Each hart runs an
ad-hoc bare-metal application that continuously writes and reads
a 1 MiB array with a stride equal to the cache line size (64 bytes).
The platform’s cache topology allows for 16 colors, each color
consisting of 32 KiB. When enabling coloring, we assign seven
colors (224 KiB) to each VM. The remaining two colors were
reserved for the hypervisor coloring case scenario.

The experiments were conducted in Firesim, an FPGA-
accelerated cycle-accurate simulator, deployed on an AWS EC2 F1
instance, running with a 3.2 GHz simulation clock. Fig. 8 presents
the results as performance normalized to bare execution, meaning
that higher values report worse results. Each bar represents the
average value of 100 samples. For each benchmark, we added
the execution time (i.e., absolute performance) at the top of the
bare-metal execution bar.

According to Fig. 8, we can draw six main conclusions. Firstly,
hosted execution (solo) causes a marginal decrease of performance
(i.e., average 1% overhead increase) due to the virtualization
overheads of 2-stage address translation. Secondly, when coloring
(solo-col and solo-hypcol) is enabled, the performance overhead
is further increased. This extra overhead is explained by the fact
that only about half of the L2 cache is available for the target VM,
and that coloring precludes the use of superpages, significantly
increasing TLB pressure. Thirdly, when the system is under
significant interference (inter), there is a considerable decrease
of performance, in particular, for the memory-intensive bench-
marks, i.e., qsort (small), susan corners (small), and susan edges
(small). For instance, for the susan corners (small) benchmark,
the performance overhead increases by 62%. Fourthly, we can
observe that cache coloring can reduce the interference (inter-col
and inter-hypcol) by almost 50%, with a slight advantage when the
hypervisor is also colored. Fifthly, we can observe that the cache
coloring, per se, is not a magic bullet for interference. Although
the interference is reduced, it is not completely mitigated, because
the performance overhead for the colored configurations under
interference (inter-col and inter-hypcol) is different from the ones
without interference (solo-col and solo-hypcol). Finally, we ob-
serve that the less memory-intensive benchmarks (i.e., basicmath
and bitcount) are less vulnerable to cache interference and that
benchmarks handling smaller datasets are more susceptible to
interference.

The achieved results for RISC-V share a similar pattern to
the ones assessed for Arm [2]. In our previous work [2], we
have deeply investigated the micro-architectural events using a
performance monitoring unit (PMU). As part of future work,
we plan to conduct a deeper evaluation of micro-architectural
interference effects while proposing additional mechanisms to
help mitigate inter-VM interference.

6.4 Interrupt Latency

To measure interrupt latency and respective interference, we use
a custom bare-metal benchmark application and a custom MMIO,
auto-restart, incrementing timer that drives a PLIC interrupt input
line. This application sets up the timer to trigger an interrupt at

Sheet15

Page 1

qsort
small

qsort
large

susanc
 small

susanc
large

susane
 small

susane
 large

susans
small

susans
 large

bitcount
 small

bitcount
large

basicmath
 small

basicmath
 large

0,9

1

1,1

1,2

1,3

1,4

1,5

1,6

1,7

bare
solo
solo-col
solo-hypcol
interf
interf-col
interf-hypcol

R
e

la
tiv

e
 P

e
rf

o
rm

a
n

ce
 D

e
g

ra
d

a
tio

n

9,
32

 m
s

12
 m

s
12

 m
s

12
 m

s

1,
13

 m
s

12
6,

56
 m

s

9,
61

 m
s

1,
48

 m
s

10
,8

2
m

s

21
,5

7
m

s

15
3,

9
m

s

11
,3

9
m

s

15
9,

29
 m

s

41
,8

6
m

s

13
5,

74
 m

s

Fig. 8: Relative performance overhead of MiBench automotive suite for different system configurations, relative to bare-metal execution.
Absolute value indicated at the top of the solo bar.

100Hz (each 10 ms). The latency corresponds to the value read
from the timer counter at the start of the interrupt handler. We
invalidate the L1 instruction cache at each measurement using the
fence.i instruction as we believe it is more realistic to assume
this cache is not hot with regard to the interrupt handling or the
hypervisor’s interrupt injection code. We ran the benchmark using
Firesim with the same platform and configurations described in
section 6.3. For guest configurations we took samples for both
trap-and-emulate and PLIC interrupt direct injection. The average
of the results obtained from 100 samples (the first 2 discarded) for
each configuration are depicted in Fig. 9.

The interrupt latency for the bare (in Fig. 9, no virt) execution
is quite low (approx. 80 ns) and steady. The trap-and-emulate
approach introduces a penalty of an order of magnitude (740 ns)
that is even more significant under interference (up to 2280 ns,
about 300%) both in average and standard deviation. Applying
cache partitioning via coloring helps to mitigate this, which shows
that most of the interference happens in the shared L2 LLC. The
difference between inter-col and interf-hypcol shows that it is
of utmost importance to assign dedicated cache partitions to the
hypervisor: the interfering VM also interferes with the hypervisor
while injecting the interrupt and not only with the benchmark code
execution itself.

Fig. 9 also shows that the effect of the direct injection achieved
with guest external interrupt and PLIC virtualization support can
bring guest interrupt latency to near-native values. Furthermore,
it shows only a fractional increase under interference (when
compared to the trap-and-emulate approach) which can also be
attenuated with cache coloring. As the hypervisor no longer
intervenes in interrupt injection, for this case, it suffices to color
guest memory. A small note is that the use of cache coloring does
not affect the benchmark for solo execution configurations, given
that the benchmark code is very small. Thus, the L1 and L2 caches
can easily fit both the benchmark and hypervisor’s injection code.
Finally, we can conclude that with PLIC virtualization support, it
is possible to significantly improve external interrupt latencies for
VMs.

7 RELATED WORK

There is a broad spectrum of hardware virtualization related
technologies and hypervisor solutions. Due to the extensive list
of works in the literature, we will focus on (i) COTS and
custom hardware virtualization technology and extensions and (ii)
hypervisors and microkernels solutions for RISC-V.

bare solo solo-col solo-hypcol interf interf-col interf-hypcol
0

500

1000

1500

2000

2500

no virt

trap-emulate

plicv direct
injection

In
te

rr
u

p
t L

a
te

n
cy

 (
n

s)

Fig. 9: Interrupt latency in nanoseconds for bare-metal execution
and for guest execution with injection following a trap-and-
emulate approach or direct injection with hardware support.

Hardware virtualization technology. Modern computing archi-
tectures such as x86 and Arm have been adding added hardware
extensions to assist virtualization to their CPUs for more than
a decade. Intel has developed the Intel Virtualization Technol-
ogy (Intel VT-x) [22], the Advanced Programmable Interrupt
Controller (APIC) virtualization extension (APICv), and Intel
Virtualization Technology for Directed I/O (Intel VT-d). Intel
has also included nested virtualization hardware-based capabilities
with Virtual Machine Control Structure (VMCS) Shadowing. Arm
included the virtualization extensions (Arm VE) since Armv7-
A and developed additional hardware to the Generic Interrupt
Controller (vGIC) for efficient virtual interrupt management. Re-
cently, Arm has announced a set of extensions in the Armv8.4-
A that includes the addition of secure virtualization support
[23] and the Memory System Resource Partition and Monitoring
(MPAM) [24]. There are additional COTS hardware technologies
that have been leveraged to assist virtualization, namely the MIPS
virtualization module [25], AMD Virtualization (AMD-V), and
Arm TrustZone [4], [26]. The academia has also been focused
on devising and proposing custom hardware virtualization support
and mechanisms [27], [28]. Xu et al. proposed vCAT [27], i.e.,
dynamic shared cache management for multi-core virtualization
platforms based on Intel’s Cache Allocation Technology (CAT).
With NEVE [28], Lim et al. developed a set of hardware en-
hancements to the Armv8.3-A architecture to improve nested
virtualization performance, which was then included in Armv8.4-
A. Within the RISC-V virtualization scope, Huawei has also pre-
sented extensions both to the CLINT and the PLIC [29], including

one of the timer extension proposals mentioned in section 4.
Regarding the PLIC, comparing to our approach, their design
is significantly more invasive and complex, as it uses memory-
resident tables for interrupt/vhart and vhart/hart mappings. Their
approach significantly complicates the PLIC implementation as it
must become a bus-master. Nevertheless, this might bring some
advantages, e.g., speeding-up VM context-switches. Furthermore,
they also propose to extend the CLINT not only to include
supervisor and virtual-supervisor timers but also to allow direct
send and receive of HS/VS software interrupts (i.e., IPIs) without
firmware/hypervisor intervention

Hypervisors and microkernels for RISC-V. KVM [30] and
Xvisor [21] were the first hypervisors adding support for the
RISC-V H-extension in QEMU. KVM [30] is a type-2 hosted
hypervisor integrated into Linux’s mainline as of 2.6.20. KVM
targets mainly enterprise virtualization setups for data centers
and private clouds. Xvisor [21] is a type-1 monolithic hypervisor
targeting embedded systems with soft real-time requirements.
Both hypervisors are officially part of the RISC-V Software
Ecosystem6 and naturally have been used by technical groups as
reference implementations to validate and evolve the H-extension.
RVirt7 is an S-mode trap-and-emulate hypervisor for RISC-V,
written in Rust. Contrarily to KVM and XVisor, RVirt can run
in RISC-V processors without hardware virtualization support.
Diosix8 is another lightweight bare-metal hypervisor written in
Rust for RISC-V. Similar to RVirt, Diosix can run in RISC-V
cores that lack the H-extension, leveraging the physical memory
protection (PMP) to achieve isolation. Xtratum, a hypervisor
primarily developed for safety-critical aerospace applications, has
also recently been ported to support RISC-V ISA [31], following
the same PMP-based concept for isolation as Diosix. Xen [32] and
Jailhouse [33], two widely used open-source hypervisor solutions,
have already given preliminary steps towards RISC-V support.
However, as of this writing, upstream support for RISC-V is not
yet available, but it is expected to be included in the foreseeable
future. seL4, a formally verified microkernel, is also verified on
RISC-V [34]. Other commercial microkernels already support
RISC-V. Preeminent examples include the SYSGO PikeOS and
the Wind River VxWorks.

8 DISCUSSION

Hypervisor Extension Specification State. The RISC-V H-
extension is currently in its 0.6.1 version and is being developed
within the privileged specification working group of RISC-V
International, following a well-defined extension development
lifecycle. The specification draft has been stable for quite some
time and therefore is approaching a frozen state, after which it
will enter a period of public review before finally being ratified.
However, to enter a frozen state it will need both (i) open RTL core
implementations suitable for deployment as soft-cores on FPGA
platforms and (ii) hypervisor ports that exercise its mechanisms
and provide feedback. Until the extensions are ratified, we do
not expect any commercial IP or ASIC implementations to be
available. With this work, we have contributed with one open RTL
implementation but more are needed. Xvisor and KVM have been

6. https://github.com/riscv/riscv-software-list
7. https://github.com/mit-pdos/RVirt
8. https://diosix.org/

the reference open-source hypervisors used in the extension devel-
opment process. We have further contributed with the Bao port, but
the more hypervisor ports are available to evaluate the suitability
of the H-extension for different hypervisor architectures, the better.

Missing Architectural and Virtualization Features. As dis-
cussed in the article, there are still some gaps in RISC-V, in
particular with respect to virtualization. At the ISA level, features
like cache management operations are needed. Fortunately, there
is already a working group defining these mechanisms. At a
platform level, timer and external interrupt virtualization support
is needed. Our results show the importance of these mechanisms
to achieve low and deterministic interrupt latency in virtualized
real-time systems. There are already efforts within the RISC-V
community to provide this support: a new extension proposal is
on the fast track to include dedicated timers for HS- VS-modes;
and a new interrupt controller architecture featuring support for
message-signaled interrupts (MSI) and virtualization support is
under development within the privileged specification working
group. Another missing component critical for virtualization is the
IOMMU. An IOMMU is needed to implement efficient virtualiza-
tion, by allowing the direct assignment of DMA-capable devices
to VMs, while guaranteeing strong isolation between VMs and
the hypervisor itself. Static partitioning hypervisors such as Bao
completely depend on IOMMU, as they do not provide any kind of
device emulation and only pass-through access. At the moment,
in a RISC-V platform, a Bao guest that wishes to use a DMA
device must have all its memory configured with identity mapping.
Unfortunately, this still completely breaks encapsulation, serving
only for experimentation and demonstration purposes, not being
suitable for production.

Multi-core Interference Mitigation. In section 6, we have
demonstrated something well-understood and documented in the
literature [2], [5], [8], [11]–[13], i.e., that (i) in multi-core plat-
forms there is significant inter-core interference due to shared
micro-architectural resources (e.g. caches, buses, memory con-
trollers), (ii) which can be minimized by mechanisms such as
page coloring used to partition shared caches. Other techniques
such as memory bandwidth reservations [11] and DRAM bank
partitioning [35] can minimize interference further ahead in the
memory hierarchy. These partitioning mechanisms are important
in embedded mixed-criticality systems both from the security and
safety perspectives by protecting against side-channel attacks and
guaranteeing determinism and freedom-from-interference required
by certification standards (e.g. ISO26262). They are also useful for
server systems by helping to guarantee quality-of-service (QoS)
and increase overall utilization [36]. However, software-based
approaches typically have significant overheads and increase the
trusted computing base (TCB) complexity. Academic works such
as Hybcache [37] or the bandwidth regulation unit (BRU) [13]
propose the implementation of this kind of mechanisms in RISC-V
cores (Ariane [38] and Rocket respectively). SafeSU [39] provides
similar features by relying on a hardware statistics unit that mea-
sures inter-core interference in commercial space-graded RISC-V
MPSoC. SiFive has provided cache partitioning mechanisms in
hardware via way-locking [40]. We have started experimenting
with these mechanisms using Bao and will present our findings
in future work. During this work, we found it would be useful to
have a standard set of mechanisms and interfaces to rely on. We
argue that RISC-V is also missing a standard extension to provide
such facilities. Other ISAs have already introduced these ideas,

e.g., Intel’s CAT and Arm’s MPAM [24]. MPAM functionality is
also extended to other virtualization-critical system-bus masters
including the GIC and the SMMU (Arm’s interrupt controller and
IOMMU, respectively), something that should also be taken into
account when developing similar RISC-V specifications.

Alternative Partitioning Approach. Even without virtualization
support, it is possible to implement static partitioning in RISC-
V leveraging the trap-and-emulate features described in section
2 and using the PMP for memory isolation instead of two-stage
translation. The PMP is a RISC-V standard component that allows
M-mode software to white-list physical address space regions on
a per-core basis. This results in a kind of para-virtual approach, as
the guest must be aware of the full physical address space and pos-
sibly recompiled for different system configurations. To provide
direct assignment of DMA devices, the host platform would also
need to provide IOPMPs (akin to IOMMU, without translation),
which is a specification already on course. Furthermore, the
hypervisor would be forced to flush micro-architectural state such
as TLBs or virtual caches at each context switch resulting in
significant performance overheads. The use of VMIDs, part of
the H-extension, tackles this issue. Notwithstanding, this is not a
real problem for statically partitioned systems. Thus, once there
is no commercial hardware featuring the H-extension available
in the market, this is the approach of some of the hypervisors
mentioned in section 7. We are currently developing a customized
version of Bao to run in RISC-V platforms without H-extension
support (e.g., Microchip PolarFire SoC Icicle or the upcoming
PicoRio). Nevertheless, we believe the hypervisor extension is still
a better primitive for implementing these systems, given the higher
flexibility and scalability it provides.

9 CONCLUSION

In this article, we have presented the first implementation of the
RISC-V H-extension in a real RISC-V core, i.e. Rocket core.
We have also proposed a set of hardware enhancements to the
interrupt controller and the timer infrastructure aiming at tack-
ling mixed-criticality systems requirements of minimal latencies,
determinism and predictability. To validate and evaluate our hard-
ware implementation, we have also ported the Bao open-source
hypervisor to RISC-V. We achieved functional verification of our
implementation in a Verilator-generated simulator and a Zynq
UltraScale+ MPSoC ZCU104 FPGA. We carried out an extensive
set of experiments in FireSim, a cycle-accurate simulator, to assess
performance, inter-VM interference, and interrupt latency. The
results demonstrated that the H-extension, per se, introduces a
reduced performance penalty, but without additional hardware
support interference and interrupt latency can impose a prohibitive
cost for MCSs. Our proposed architectural enhancements consid-
erably minimize these effects, by reducing interrupt latency and
interference by an order of magnitude. Lastly, we discussed iden-
tified gaps existing in RISC-V with regard to virtualization and
we outlined internal ongoing efforts within RISC-V virtualization.
Our hardware design was made freely available for the RISC-V
community and is currently the single reference implementation
available to ratify the H-extension specification.

ACKNOWLEDGMENT

This work has been supported by FCT - Fundação para
a Ciência e Tecnologia within the R&D Units Project

Scope: UIDB/00319/2020. This work has also been sup-
ported by FCT within the PhD Scholarship Project Scope:
SFRH/BD/138660/2018.

REFERENCES

[1] G. Heiser, “Virtualizing embedded systems - why bother?” in 2011 48th
ACM/EDAC/IEEE DAC, 2011, pp. 901–905.

[2] J. Martins, A. Tavares, M. Solieri, M. Bertogna, and S. Pinto, “Bao:
A Lightweight Static Partitioning Hypervisor for Modern Multi-Core
Embedded Systems,” in Workshop on NG-RES, vol. 77. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2020, pp. 3:1–3:14.

[3] M. Bechtel and H. Yun, “Denial-of-Service Attacks on Shared Cache in
Multicore: Analysis and Prevention,” in IEEE RTAS, 2019, pp. 357–367.

[4] S. Pinto, H. Araujo, D. Oliveira, J. Martins, and A. Tavares, “Virtual-
ization on TrustZone-Enabled Microcontrollers? Voilà!” in IEEE RTAS,
2019, pp. 293–304.

[5] T. Kloda, M. Solieri, R. Mancuso, N. Capodieci, P. Valente, and
M. Bertogna, “Deterministic Memory Hierarchy and Virtualization for
Modern Multi-Core Embedded Systems,” in IEEE RTAS, 2019.

[6] C. Dall and J. Nieh, “KVM/ARM: The Design and Implementation of
the Linux ARM Hypervisor,” in Proceedings of the 19th International
Conference on ASPLOS, New York, NY, USA, 2014, p. 333–348.

[7] P. Burgio, M. Bertogna, N. Capodieci, R. Cavicchioli, M. Sojka,
P. Houdek, A. Marongiu, P. Gai, C. Scordino, and B. Morelli, “A
software stack for next-generation automotive systems on many-core
heterogeneous platforms,” Microprocessors and Microsystems, vol. 52,
pp. 299 – 311, 2017.

[8] M. Xu, L. T. X. Phan, H. Choi, Y. Lin, H. Li, C. Lu, and I. Lee, “Holistic
Resource Allocation for Multicore Real-Time Systems,” in IEEE RTAS,
2019, pp. 345–356.

[9] M. Bechtel and H. Yun, “Exploiting DRAM Bank Mapping and
HugePages for Effective Denial-of-Service Attacks on Shared Cache in
Multicore,” in Symposium on Hot Topics in the Science of Security, New
York, NY, USA, 2020.

[10] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microarchitectural
timing attacks and countermeasures on contemporary hardware,” Journal
of Cryptographic Engineering, vol. 8, no. 1, pp. 1–27, Apr 2018.

[11] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “MemGuard:
Memory bandwidth reservation system for efficient performance isola-
tion in multi-core platforms,” in IEEE RTAS, 2013, pp. 55–64.

[12] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pelliz-
zoni, “Real-time cache management framework for multi-core architec-
tures,” in IEEE RTAS, 2013, pp. 45–54.

[13] F. Farshchi, Q. Huang, and H. Yun, “BRU: Bandwidth Regulation Unit
for Real-Time Multicore Processors,” in IEEE RTAS, 2020, pp. 364–375.

[14] K. Asanović and D. A. Patterson, “Instruction sets should be free: The
case for risc-v,” EECS Department, Univ. of California, Berkeley, Tech.
Rep. UCB/EECS-2014-146, 2014.

[15] A. Waterman, K. Asanović, and J. Hauser, “The RISC-V Instruction
Set Manual Volume II: Privileged Architecture, Document Version 1.12-
draft,” RISC-V Foundation, December, 2020.

[16] K. Asanović et al., “The Rocket Chip Generator,” EECS Department,
Univ. of California, Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.

[17] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee,
N. Pemberton, E. Amaro, C. Schmidt, A. Chopra, Q. Huang, K. Kovacs,
B. Nikolic, R. Katz, J. Bachrach, and K. Asanovic, “FireSim: FPGA-
Accelerated Cycle-Exact Scale-Out System Simulation in the Public
Cloud,” in ACM/IEEE ISCA, 2018, pp. 29–42.

[18] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualiz-
able third generation architectures,” Commun. ACM, vol. 17, no. 7, p.
412–421, Jul. 1974.

[19] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Der-
rin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “SeL4: Formal Verification of an OS Kernel,”
in ACM SOSP, New York, NY, USA, 2009, p. 207–220.

[20] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: Constructing Hardware in a
Scala Embedded Language,” in DAC, 2012, p. 1216–1225.

[21] A. Patel, M. Daftedar, M. Shalan, and M. W. El-Kharashi, “Embedded
Hypervisor Xvisor: A Comparative Analysis,” in Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing,
March 2015, pp. 682–691.

[22] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. M. Martins, A. V.
Anderson, S. M. Bennett, A. Kagi, F. H. Leung, and L. Smith, “Intel
virtualization technology,” Computer, vol. 38, no. 5, pp. 48–56, 2005.

[23] Arm Ltd., “Isolation using virtualization in the Secure world Secure
world software architecture on Armv8.4,” 2018.

[24] ——, “Arm Architecture Reference Manual Supplement - Memory
System Resource Partitioning and Monitoring (MPAM), for Armv8-A,”
2018.

[25] C. Moratelli, S. Johann, and F. Hessel, “Exploring Embedded Systems
Virtualization Using MIPS Virtualization Module,” in ACM Conference
on Computing Frontiers, New York, NY, USA, 2016, p. 214–221.

[26] S. Pinto and N. Santos, “Demystifying Arm TrustZone: A Comprehen-
sive Survey,” ACM Comput. Surv., vol. 51, no. 6, Jan. 2019.

[27] M. Xu, L. Thi, X. Phan, H. Choi, and I. Lee, “vCAT: Dynamic Cache
Management Using CAT Virtualization,” in IEEE RTAS, 2017.

[28] J. T. Lim, C. Dall, S.-W. Li, J. Nieh, and M. Zyngier, “NEVE: Nested
Virtualization Extensions for ARM,” in Proceedings of SOSP, New York,
NY, USA, 2017, p. 201–217.

[29] S. Zhao, “Trap-less Virtual Interrupt for KVM on RISC-V,” in KVM
Forum, 2020.

[30] U. Lublin, Y. Kamay, D. Laor, and A. Liguori, “KVM: the Linux virtual
machine monitor,” in Proceedings of the Linux Symposium, 2007.

[31] F. Gómez, M. Masmano, V. Nicolau, J. Andersson, J. Le Rhun, D. Trilla,
F. Gallego, G. Cabo, and J. Abella, “De-RISC–Dependable Real-Time In-
frastructure for Safety-Critical Computer Systems,” ADA USER, vol. 41,
no. 2, p. 107, 2020.

[32] J. Hwang, S. Suh, S. Heo, C. Park, J. Ryu, S. Park, and C. Kim, “Xen
on ARM: System Virtualization Using Xen Hypervisor for ARM-Based
Secure Mobile Phones,” in 2008 5th IEEE Consumer Communications
and Networking Conference, 2008, pp. 257–261.

[33] R. Ramsauer, J. Kiszka, D. Lohmann, and W. Mauerer, “Look Mum, no
VM Exits!(Almost),” in Workshop on OSPERT, 2017.

[34] G. Heiser, “seL4 is verified on RISC-V!” in RISC-V International, 2020.
[35] H. Yun, R. Mancuso, Z. Wu, and R. Pellizzoni, “PALLOC: DRAM

bank-aware memory allocator for performance isolation on multicore
platforms,” in IEEE RTAS, 2014, pp. 155–166.

[36] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,
“Heracles: Improving resource efficiency at scale,” in ACM/IEEE ISCA,
2015, pp. 450–462.

[37] G. Dessouky, T. Frassetto, and A.-R. Sadeghi, “Hybcache: Hybrid side-
channel-resilient caches for trusted execution environments,” in USENIX
Security Symposium, 2020, pp. 451–468.

[38] F. Zaruba and L. Benini, “The Cost of Application-Class Processing:
Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit
RISC-V Core in 22-nm FDSOI Technology,” IEEE Trans. on Very Large
Scale Integration Systems, vol. 27, no. 11, pp. 2629–2640, Nov 2019.

[39] G. Cabo, F. Bas, R. Lorenzo, D. Trilla, S. Alcaide, M. Moretó,
C. Hernández, and J. Abella, “SafeSU: an Extended Statistics Unit for
Multicore Timing Interference,” in 2021 IEEE European Test Symposium
(ETS), 2021, pp. 1–4.

[40] L. Gwennap, “Deterministic Processing for Mission-Critical Appli-
cations Deterministic Processing for Mission-Critical Applications,”
Linley Group, Tech. Rep. September, 2020. [Online]. Available: https:
//www.linleygroup.com/uploads/sifive-deterministic-processing-wp.pdf

Bruno Sá is a Ph.D. student at the Embed-
ded Systems Research Group, University of
Minho, Portugal. Bruno holds a Master in Elec-
tronics and Computer Engineering with spe-
cialization in Embedded Systems and Automa-
tion,Control and Robotics. Bruno’s areas of inter-
est include operating systems, virtualization for
embedded systems, computer architectures, IoT
systems, and artificial intelligence. Contact him
at bruno.vilaca.sa@gmail.com.

José Martins is a Ph.D. student and teaching
assistant at the Embedded Systems Research
Group, University of Minho, Portugal. José holds
a Master in Electronics and Computer Engi-
neering - during his Masters, he also was a
visiting student at the University of Wurzburg,
Germany. Jose has a significant background
in operating systems and virtualization for em-
bedded systems. Over the last few years, he
has also been involved in several projects on
the aerospace, automotive, and video indus-

tries. He is the main author of the Bao hypervisor. Contact him at
jose.martins@dei.uminho.pt.

Dr. Sandro Pinto is a Research Scientist and
Invited Professor at the University of Minho, Por-
tugal. He holds a Ph.D. in Electronics and Com-
puter Engineering. During his Ph.D., Sandro was
a visiting researcher at the Asian Institute of
Technology (Thailand), University of Wurzburg
(Germany), and Jilin University (China). Sandro
has a deep academic background and several
years of industry collaboration focusing on op-
erating systems, virtualization, and security for
embedded, cyber-physical, and IoT-based sys-

tems. He has published several scientific papers in top-tier confer-
ences/journals and is a skilled presenter with speaking experience
in several academic and industrial conferences. Contact him at san-
dro.pinto@dei.uminho.pt.

https://www.linleygroup.com/uploads/sifive-deterministic-processing-wp.pdf
https://www.linleygroup.com/uploads/sifive-deterministic-processing-wp.pdf

	1 Introduction
	2 RISC-V Virtualization Support
	2.1 Hypervisor Extension

	3 Rocket Core Hypervisor Extension
	4 blueInterrupt Virtualization Enhancements
	4.1 blueTimer virtualization
	4.2 PLIC virtualization

	5 Bao RISC-V Porting
	6 Evaluation
	6.1 Functional Verification
	6.2 Hardware Overhead
	6.3 Performance and Inter-VM Interference
	6.4 Interrupt Latency

	7 Related Work
	8 Discussion
	9 Conclusion
	References
	Biographies
	Bruno Sá
	José Martins
	Dr. Sandro Pinto

